aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2008-09-26 18:27:01 +0000
committerdos-reis <gdr@axiomatics.org>2008-09-26 18:27:01 +0000
commit5151c89ded8e401d2aec83e9a3f56c50a76f209b (patch)
treef0b5d92498d895a965102530f50eba6b96c5a349 /src/share/algebra
parente0c8f3d8155dabb7d7d54e426f56febfab77ee92 (diff)
downloadopen-axiom-5151c89ded8e401d2aec83e9a3f56c50a76f209b.tar.gz
* algebra/matrix.spad.pamphlet (new$Matrix): New.
Remove uses of pretend. Define Rep.
Diffstat (limited to 'src/share/algebra')
-rw-r--r--src/share/algebra/browse.daase2010
-rw-r--r--src/share/algebra/category.daase5798
-rw-r--r--src/share/algebra/compress.daase1971
-rw-r--r--src/share/algebra/interp.daase9532
-rw-r--r--src/share/algebra/operation.daase32216
5 files changed, 24763 insertions, 26764 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 2da45484..bd487162 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2266112 . 3431185328)
+(2264448 . 3431436953)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4337 . T) (-4336 . T) (-2623 . T))
+((-4337 . T) (-4336 . T) (-2359 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4333 . T) (-4331 . T) (-4330 . T) ((-4338 "*") . T) (-4329 . T) (-4334 . T) (-4328 . T) (-2623 . T))
+((-4333 . T) (-4331 . T) (-4330 . T) ((-4338 "*") . T) (-4329 . T) (-4334 . T) (-4328 . T) (-2359 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,17 +56,17 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -1421)
+(-32 R -3416)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))))
+((|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
((|HasAttribute| |#1| (QUOTE -4336)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-35)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4336 . T) (-4337 . T) (-2623 . T))
+((-4336 . T) (-4337 . T) (-2359 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -88,14 +88,14 @@ NIL
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1421 UP UPUP -2968)
+(-40 -3416 UP UPUP -2931)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4329 |has| (-400 |#2|) (-356)) (-4334 |has| (-400 |#2|) (-356)) (-4328 |has| (-400 |#2|) (-356)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-342))) (-1536 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-1536 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (-1536 (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-400 |#2|) (QUOTE (-342))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1536 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))))
-(-41 R -1421)
+((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-343))) (-3874 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-3874 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (-3874 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-343))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3874 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))))
+(-41 R -3416)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -414) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,24 +106,24 @@ NIL
((|HasCategory| |#1| (QUOTE (-300))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4333 |has| |#1| (-541)) (-4331 . T) (-4330 . T))
-((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541))))
+((-4333 |has| |#1| (-542)) (-4331 . T) (-4330 . T))
+((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
((-4336 . T) (-4337 . T))
-((-1536 (-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-823))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1792) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1792) (|devaluate| |#2|))))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-823))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-823))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1066)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1066)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1792) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-823)))) (-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-823))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-823))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4330 . T) (-4331 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-549)))))
+((|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-535)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
@@ -132,19 +132,19 @@ NIL
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
((-4333 . T))
NIL
-(-51 S)
-((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
+(-51)
+((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
NIL
NIL
-(-52)
-((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
+(-52 S)
+((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
NIL
NIL
(-53 R M P)
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -1421)
+(-54 |Base| R -3416)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -154,133 +154,133 @@ NIL
NIL
(-56 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4336 . T) (-4337 . T) (-2623 . T))
+((-4336 . T) (-4337 . T) (-2359 . T))
NIL
-(-57 A B)
+(-57 S)
+((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
+((-4337 . T) (-4336 . T))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-58 S)
-((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
(-59 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
-(-60 -2480)
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-60 -3888)
+((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+NIL
+NIL
+(-61 -3888)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-61 -2480)
+(-62 -3888)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-62 -2480)
+(-63 -3888)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-63 -2480)
-((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
-NIL
-NIL
-(-64 -2480)
+(-64 -3888)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-65 -2480)
+(-65 -3888)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-66 -2480)
+(-66 -3888)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -2480)
+(-67 -3888)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -2480)
+(-68 -3888)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-69 -2480)
+(-69 -3888)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-70 -2480)
+(-70 -3888)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-71 -2480)
+(-71 -3888)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-72 -2480)
+(-72 -3888)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-73 -2480)
+(-73 -3888)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-74 |nameOne| |nameTwo| |nameThree|)
-((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+(-74 -3888)
+((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-75 |nameOne| |nameTwo| |nameThree|)
-((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-76 -2480)
-((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+(-76 |nameOne| |nameTwo| |nameThree|)
+((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -2480)
-((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+(-77 -3888)
+((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -2480)
+(-78 -3888)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -2480)
+(-79 -3888)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2480)
+(-80 -3888)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2480)
+(-81 -3888)
+((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+NIL
+NIL
+(-82 -3888)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -2480)
+(-83 -3888)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2480)
+(-84 -3888)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2480)
+(-85 -3888)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2480)
-((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+(-86 -3888)
+((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-86 -2480)
+(-87 -3888)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -2480)
-((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
-NIL
-NIL
-(-88 -2480)
+(-88 -3888)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -291,7 +291,7 @@ NIL
(-90 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-91 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -339,7 +339,7 @@ NIL
(-102 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-103 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
@@ -354,12 +354,12 @@ NIL
NIL
(-106 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4337 . T) (-2623 . T))
+((-4337 . T) (-2359 . T))
NIL
(-107)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| (-549) (QUOTE (-880))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-549) (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-549) (QUOTE (-993))) (|HasCategory| (-549) (QUOTE (-796))) (-1536 (|HasCategory| (-549) (QUOTE (-796))) (|HasCategory| (-549) (QUOTE (-823)))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1117))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-227))) (|HasCategory| (-549) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-549) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -302) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -279) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-300))) (|HasCategory| (-549) (QUOTE (-534))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-549) (LIST (QUOTE -617) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (|HasCategory| (-549) (QUOTE (-143)))))
+((|HasCategory| (-535) (QUOTE (-881))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-535) (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-145))) (|HasCategory| (-535) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-535) (QUOTE (-991))) (|HasCategory| (-535) (QUOTE (-796))) (-3874 (|HasCategory| (-535) (QUOTE (-796))) (|HasCategory| (-535) (QUOTE (-823)))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-1117))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-535) (QUOTE (-227))) (|HasCategory| (-535) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-535) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -302) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -279) (QUOTE (-535)) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-300))) (|HasCategory| (-535) (QUOTE (-534))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-535) (LIST (QUOTE -617) (QUOTE (-535)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (|HasCategory| (-535) (QUOTE (-143)))))
(-108)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -371,7 +371,7 @@ NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
((-4337 . T) (-4336 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1066))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-112) (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-112) (QUOTE (-1066))) (|HasCategory| (-112) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| (-112) (QUOTE (-1067))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-112) (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-112) (QUOTE (-1067))) (|HasCategory| (-112) (LIST (QUOTE -593) (QUOTE (-835)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
((-4331 . T) (-4330 . T))
@@ -380,15 +380,15 @@ NIL
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-113 A)
-((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-823))))
-(-114)
+(-113)
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-115 -1421 UP)
+(-114 A)
+((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-823))))
+(-115 -3416 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
@@ -399,14 +399,14 @@ NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-880))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-116 |#1|) (QUOTE (-993))) (|HasCategory| (-116 |#1|) (QUOTE (-796))) (-1536 (|HasCategory| (-116 |#1|) (QUOTE (-796))) (|HasCategory| (-116 |#1|) (QUOTE (-823)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-116 |#1|) (QUOTE (-1117))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| (-116 |#1|) (QUOTE (-227))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-300))) (|HasCategory| (-116 |#1|) (QUOTE (-534))) (|HasCategory| (-116 |#1|) (QUOTE (-823))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-880)))) (|HasCategory| (-116 |#1|) (QUOTE (-143)))))
+((|HasCategory| (-116 |#1|) (QUOTE (-881))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-116 |#1|) (QUOTE (-991))) (|HasCategory| (-116 |#1|) (QUOTE (-796))) (-3874 (|HasCategory| (-116 |#1|) (QUOTE (-796))) (|HasCategory| (-116 |#1|) (QUOTE (-823)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-116 |#1|) (QUOTE (-1117))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| (-116 |#1|) (QUOTE (-227))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-300))) (|HasCategory| (-116 |#1|) (QUOTE (-534))) (|HasCategory| (-116 |#1|) (QUOTE (-823))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-881)))) (|HasCategory| (-116 |#1|) (QUOTE (-143)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
((|HasAttribute| |#1| (QUOTE -4337)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-120 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
@@ -415,14 +415,14 @@ NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4337 . T) (-4336 . T) (-2623 . T))
+((-4337 . T) (-4336 . T) (-2359 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,24 +430,24 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4336 . T) (-4337 . T) (-2623 . T))
+((-4336 . T) (-4337 . T) (-2359 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-128)
-((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes.")))
-((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| (-129) (QUOTE (-823))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1066))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129)))))) (-1536 (-12 (|HasCategory| (-129) (QUOTE (-1066))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-129) (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| (-129) (QUOTE (-823))) (|HasCategory| (-129) (QUOTE (-1066)))) (|HasCategory| (-129) (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-129) (QUOTE (-1066))) (-12 (|HasCategory| (-129) (QUOTE (-1066))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -593) (QUOTE (-834)))))
-(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
NIL
+(-129)
+((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes.")))
+((-4337 . T) (-4336 . T))
+((-3874 (-12 (|HasCategory| (-128) (QUOTE (-823))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1067))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128)))))) (-3874 (-12 (|HasCategory| (-128) (QUOTE (-1067))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| (-128) (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| (-128) (QUOTE (-823))) (|HasCategory| (-128) (QUOTE (-1067)))) (|HasCategory| (-128) (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-128) (QUOTE (-1067))) (-12 (|HasCategory| (-128) (QUOTE (-1067))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -593) (QUOTE (-835)))))
(-130)
((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")))
NIL
@@ -464,12 +464,12 @@ NIL
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
(((-4338 "*") . T))
NIL
-(-134 |minix| -2727 S T$)
-((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
+(-134 |minix| -2938 R)
+((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
-(-135 |minix| -2727 R)
-((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
+(-135 |minix| -2938 S T$)
+((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
(-136)
@@ -487,7 +487,7 @@ NIL
(-139)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
((-4336 . T) (-4326 . T) (-4337 . T))
-((-1536 (-12 (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1066))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1066))) (-12 (|HasCategory| (-142) (QUOTE (-1066))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1067))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-835)))))
(-140 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -512,7 +512,7 @@ NIL
((|constructor| (NIL "Rings of Characteristic Zero.")))
((-4333 . T))
NIL
-(-146 -1421 UP UPUP)
+(-146 -3416 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -523,10 +523,10 @@ NIL
(-148 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasAttribute| |#1| (QUOTE -4336)))
+((|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasAttribute| |#1| (QUOTE -4336)))
(-149 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-150 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
@@ -552,7 +552,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-156 R -1421)
+(-156 R -3416)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -565,11 +565,11 @@ NIL
NIL
NIL
(-159)
-((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
+((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
NIL
NIL
(-160)
-((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
+((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
NIL
NIL
(-161)
@@ -583,23 +583,23 @@ NIL
(-163 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1164))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasAttribute| |#2| (QUOTE -4332)) (|HasAttribute| |#2| (QUOTE -4335)) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-823))))
+((|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1164))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasAttribute| |#2| (QUOTE -4332)) (|HasAttribute| |#2| (QUOTE -4335)) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-823))))
(-164 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4329 -1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4332 |has| |#1| (-6 -4332)) (-4335 |has| |#1| (-6 -4335)) (-3409 . T) (-2623 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((-4329 -3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4332 |has| |#1| (-6 -4332)) (-4335 |has| |#1| (-6 -4335)) (-1420 . T) (-2359 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-165 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
NIL
NIL
-(-166 R S)
+(-166 R)
+((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
+((-4329 -3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4332 |has| |#1| (-6 -4332)) (-4335 |has| |#1| (-6 -4335)) (-1420 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-343))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1164)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-797)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-991))))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-356)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-881))))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1164)))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1164)))) (|HasCategory| |#1| (QUOTE (-534))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-356)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasAttribute| |#1| (QUOTE -4332)) (|HasAttribute| |#1| (QUOTE -4335)) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-343)))))
+(-167 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
NIL
-(-167 R)
-((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4329 -1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4332 |has| |#1| (-6 -4332)) (-4335 |has| |#1| (-6 -4335)) (-3409 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-342))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-361)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-804)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-993)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-1164)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-880))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-880)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-880))))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1164)))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1164)))) (|HasCategory| |#1| (QUOTE (-534))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasAttribute| |#1| (QUOTE -4332)) (|HasAttribute| |#1| (QUOTE -4335)) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-342)))))
(-168 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -635,7 +635,7 @@ NIL
(-176 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-923 |#2|) (LIST (QUOTE -857) (|devaluate| |#1|))))
+((|HasCategory| (-917 |#2|) (LIST (QUOTE -857) (|devaluate| |#1|))))
(-177 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -656,7 +656,7 @@ NIL
((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor")))
NIL
NIL
-(-182 R -1421)
+(-182 R -3416)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -764,28 +764,28 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-209 -1421 UP UPUP R)
+(-209 -3416 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-210 -1421 FP)
+(-210 -3416 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-211)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| (-549) (QUOTE (-880))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-549) (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-549) (QUOTE (-993))) (|HasCategory| (-549) (QUOTE (-796))) (-1536 (|HasCategory| (-549) (QUOTE (-796))) (|HasCategory| (-549) (QUOTE (-823)))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1117))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-227))) (|HasCategory| (-549) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-549) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -302) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -279) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-300))) (|HasCategory| (-549) (QUOTE (-534))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-549) (LIST (QUOTE -617) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (|HasCategory| (-549) (QUOTE (-143)))))
+((|HasCategory| (-535) (QUOTE (-881))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-535) (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-145))) (|HasCategory| (-535) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-535) (QUOTE (-991))) (|HasCategory| (-535) (QUOTE (-796))) (-3874 (|HasCategory| (-535) (QUOTE (-796))) (|HasCategory| (-535) (QUOTE (-823)))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-1117))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-535) (QUOTE (-227))) (|HasCategory| (-535) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-535) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -302) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -279) (QUOTE (-535)) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-300))) (|HasCategory| (-535) (QUOTE (-534))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-535) (LIST (QUOTE -617) (QUOTE (-535)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (|HasCategory| (-535) (QUOTE (-143)))))
(-212)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-213 R -1421)
-((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+(-213 R -3416)
+((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
(-214 R)
-((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
(-215 R1 R2)
@@ -795,18 +795,18 @@ NIL
(-216 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-217 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
((-4333 . T))
NIL
-(-218 R -1421)
+(-218 R -3416)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-219)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-2660 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((-4112 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-220)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -815,14 +815,14 @@ NIL
(-221 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-541))) (|HasAttribute| |#1| (QUOTE (-4338 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))) (|HasAttribute| |#1| (QUOTE (-4338 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-222 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-223 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4337 . T) (-2623 . T))
+((-4337 . T) (-2359 . T))
NIL
(-224 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
@@ -846,28 +846,28 @@ NIL
((|HasAttribute| |#1| (QUOTE -4336)))
(-229 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4337 . T) (-2623 . T))
+((-4337 . T) (-2359 . T))
NIL
(-230)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-231 S -2727 R)
+(-231 S -2938 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821))) (|HasAttribute| |#3| (QUOTE -4333)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-1066))))
-(-232 -2727 R)
+((|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821))) (|HasAttribute| |#3| (QUOTE -4333)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-1067))))
+(-232 -2938 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4330 |has| |#2| (-1018)) (-4331 |has| |#2| (-1018)) (-4333 |has| |#2| (-6 -4333)) ((-4338 "*") |has| |#2| (-170)) (-4336 . T) (-2623 . T))
+((-4330 |has| |#2| (-1018)) (-4331 |has| |#2| (-1018)) (-4333 |has| |#2| (-6 -4333)) ((-4338 "*") |has| |#2| (-170)) (-4336 . T) (-2359 . T))
NIL
-(-233 -2727 A B)
+(-233 -2938 R)
+((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
+((-4330 |has| |#2| (-1018)) (-4331 |has| |#2| (-1018)) (-4333 |has| |#2| (-6 -4333)) ((-4338 "*") |has| |#2| (-170)) (-4336 . T))
+((-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-769))) (-3874 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))))) (|HasCategory| (-535) (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4333)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-234 -2938 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-234 -2727 R)
-((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4330 |has| |#2| (-1018)) (-4331 |has| |#2| (-1018)) (-4333 |has| |#2| (-6 -4333)) ((-4338 "*") |has| |#2| (-170)) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-769))) (-1536 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1066)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-361)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-703)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1066))))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-1536 (|HasCategory| |#2| (QUOTE (-1018))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1066)))) (|HasAttribute| |#2| (QUOTE -4333)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))))
(-235)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -882,84 +882,84 @@ NIL
NIL
(-238 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-239 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-240 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-241 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-541)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#2| (QUOTE (-880))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-541)))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-542)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#2| (QUOTE (-881))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-881)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143)))))
(-242)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
(-243 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4333 -1536 (-1820 (|has| |#4| (-1018)) (|has| |#4| (-227))) (-1820 (|has| |#4| (-1018)) (|has| |#4| (-871 (-1142)))) (|has| |#4| (-6 -4333)) (-1820 (|has| |#4| (-1018)) (|has| |#4| (-617 (-549))))) (-4330 |has| |#4| (-1018)) (-4331 |has| |#4| (-1018)) ((-4338 "*") |has| |#4| (-170)) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#4| (QUOTE (-356))) (-1536 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-1018)))) (-1536 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356)))) (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (QUOTE (-769))) (-1536 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (QUOTE (-821)))) (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (QUOTE (-170))) (-1536 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1018)))) (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142)))) (-1536 (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018)))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-170)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-227)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-356)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-361)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-703)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-769)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-821)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-1018)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-1066))))) (-1536 (-12 (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-823))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018)))) (-1536 (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018)))) (|HasCategory| |#4| (QUOTE (-703))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142)))))) (-1536 (|HasCategory| |#4| (QUOTE (-1018))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-1066)))) (-1536 (|HasAttribute| |#4| (QUOTE -4333)) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018)))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-4333 -3874 (-3179 (|has| |#4| (-1018)) (|has| |#4| (-227))) (-3179 (|has| |#4| (-1018)) (|has| |#4| (-871 (-1142)))) (|has| |#4| (-6 -4333)) (-3179 (|has| |#4| (-1018)) (|has| |#4| (-617 (-535))))) (-4330 |has| |#4| (-1018)) (-4331 |has| |#4| (-1018)) ((-4338 "*") |has| |#4| (-170)) (-4336 . T))
+((-3874 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-356))) (-3874 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-1018)))) (-3874 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356)))) (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (QUOTE (-769))) (-3874 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (QUOTE (-821)))) (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (QUOTE (-170))) (-3874 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1018)))) (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (-3874 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535)))))) (|HasCategory| (-535) (QUOTE (-823))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018)))) (-3874 (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018)))) (|HasCategory| |#4| (QUOTE (-703)))) (-3874 (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#4| (QUOTE (-1018)))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasAttribute| |#4| (QUOTE -4333)) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-835)))))
(-244 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4333 -1536 (-1820 (|has| |#3| (-1018)) (|has| |#3| (-227))) (-1820 (|has| |#3| (-1018)) (|has| |#3| (-871 (-1142)))) (|has| |#3| (-6 -4333)) (-1820 (|has| |#3| (-1018)) (|has| |#3| (-617 (-549))))) (-4330 |has| |#3| (-1018)) (-4331 |has| |#3| (-1018)) ((-4338 "*") |has| |#3| (-170)) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#3| (QUOTE (-356))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-769))) (-1536 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821)))) (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-170))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (-1536 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-227)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-356)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-361)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-703)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-769)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-821)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1066))))) (-1536 (-12 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-823))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (-1536 (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-703))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))))) (-1536 (|HasCategory| |#3| (QUOTE (-1018))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1066)))) (-1536 (|HasAttribute| |#3| (QUOTE -4333)) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-4333 -3874 (-3179 (|has| |#3| (-1018)) (|has| |#3| (-227))) (-3179 (|has| |#3| (-1018)) (|has| |#3| (-871 (-1142)))) (|has| |#3| (-6 -4333)) (-3179 (|has| |#3| (-1018)) (|has| |#3| (-617 (-535))))) (-4330 |has| |#3| (-1018)) (-4331 |has| |#3| (-1018)) ((-4338 "*") |has| |#3| (-170)) (-4336 . T))
+((-3874 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-356))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-769))) (-3874 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821)))) (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-170))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535)))))) (|HasCategory| (-535) (QUOTE (-823))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-703)))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasAttribute| |#3| (QUOTE -4333)) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-835)))))
(-245 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-227))))
(-246 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
NIL
(-247 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4336 . T) (-4337 . T) (-2623 . T))
+((-4336 . T) (-4337 . T) (-2359 . T))
+NIL
+(-248 |Ex|)
+((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
+NIL
NIL
-(-248)
+(-249)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-249 R |Ex|)
+(-250 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-250)
+(-251)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-251 R)
+(-252 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-252 |Ex|)
-((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
-NIL
-NIL
(-253)
((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
(-254)
-((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
+((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-255 S)
-((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
+(-255)
+((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-256)
-((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
+(-256 S)
+((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
(-257 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-880))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#3| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#3| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-881))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#3| (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#3| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#3| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-258 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1004,11 +1004,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-269 R -1421)
+(-269 R -3416)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-270 R -1421)
+(-270 R -3416)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1027,10 +1027,10 @@ NIL
(-274 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1066))))
+((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))))
(-275 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4337 . T) (-2623 . T))
+((-4337 . T) (-2359 . T))
NIL
(-276 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1056,7 +1056,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-282 S R |Mod| -1998 -1586 |exactQuo|)
+(-282 S R |Mod| -2145 -3855 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
@@ -1072,58 +1072,58 @@ NIL
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-286 S R)
+(-286 S)
+((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
+((-4333 -3874 (|has| |#1| (-1018)) (|has| |#1| (-465))) (-4330 |has| |#1| (-1018)) (-4331 |has| |#1| (-1018)))
+((|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1018)))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-703)))) (|HasCategory| |#1| (QUOTE (-465))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-291))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465)))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703)))) (-3874 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
+(-287 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-287 S)
-((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4333 -1536 (|has| |#1| (-1018)) (|has| |#1| (-465))) (-4330 |has| |#1| (-1018)) (-4331 |has| |#1| (-1018)))
-((|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-703)))) (|HasCategory| |#1| (QUOTE (-465))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-1066)))) (-1536 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-295))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465)))) (-1536 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703)))) (-1536 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
(-288 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1792) (|devaluate| |#2|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1066)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1066))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))))
(-289)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-290 -1421 S)
-((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
+(-290 S)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
+NIL
+((|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-1018))))
+(-291)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-291 E -1421)
-((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
+(-292 -3416 S)
+((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-292 A B)
-((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
+(-293 E -3416)
+((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
-(-293)
+(-294)
((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-294 S)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
+(-295 A B)
+((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1018))))
-(-295)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
+NIL
+(-296)
+((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
-(-296 R1)
+(-297 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-297 R1 R2)
+(-298 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-298)
-((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
-NIL
-NIL
(-299 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
@@ -1140,35 +1140,35 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-303 -1421)
+(-303 -3416)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
(-304)
-((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
+((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
(-305)
-((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
+((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
NIL
NIL
(-306 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-880))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-993))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-796))) (-1536 (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-796))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-823)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-1117))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-227))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -302) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -279) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-300))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-534))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-823))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-880))) (|HasCategory| $ (QUOTE (-143)))) (-1536 (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-880))) (|HasCategory| $ (QUOTE (-143))))))
-(-307 R S)
+((|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-881))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-991))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-796))) (-3874 (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-796))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-823)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-1117))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-227))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -302) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (LIST (QUOTE -279) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-300))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-534))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-823))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-881)))) (|HasCategory| (-1211 |#1| |#2| |#3| |#4|) (QUOTE (-143)))))
+(-307 R)
+((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
+((-4333 -3874 (-3179 (|has| |#1| (-1018)) (|has| |#1| (-617 (-535)))) (-12 (|has| |#1| (-542)) (-3874 (-3179 (|has| |#1| (-1018)) (|has| |#1| (-617 (-535)))) (|has| |#1| (-1018)) (|has| |#1| (-465)))) (|has| |#1| (-1018)) (|has| |#1| (-465))) (-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) ((-4338 "*") |has| |#1| (-542)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-542)) (-4328 |has| |#1| (-542)))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-542))) (-3874 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (-3874 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-1078)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1078)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3874 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1018)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-535)))))
+(-308 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-308 R FE)
+(-309 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-309 R)
-((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4333 -1536 (-1820 (|has| |#1| (-1018)) (|has| |#1| (-617 (-549)))) (-12 (|has| |#1| (-541)) (-1536 (-1820 (|has| |#1| (-1018)) (|has| |#1| (-617 (-549)))) (|has| |#1| (-1018)) (|has| |#1| (-465)))) (|has| |#1| (-1018)) (|has| |#1| (-465))) (-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) ((-4338 "*") |has| |#1| (-541)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-541)) (-4328 |has| |#1| (-541)))
-((-1536 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-541))) (-1536 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (-1536 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549))))) (-1536 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1078)))) (-1536 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))))) (-1536 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1078)))) (-1536 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))))) (-1536 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-549)))))
-(-310 R -1421)
+(-310 R -3416)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1178,8 +1178,8 @@ NIL
NIL
(-312 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-549)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -3845) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -1531) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (LIST (QUOTE -621) (QUOTE (-1142))) (|devaluate| |#1|)))))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-535)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))))
(-313 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1191,7 +1191,7 @@ NIL
(-315 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
((-4331 . T) (-4330 . T))
-((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-768))))
+((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-768))))
(-316 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1203,20 +1203,20 @@ NIL
(-318 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))))
+((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))))
(-319 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4330 . T) (-4331 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-320 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
-(-321 S -1421)
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-321 S -3416)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-361))))
-(-322 -1421)
+(-322 -3416)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
@@ -1232,22 +1232,22 @@ NIL
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}")))
NIL
NIL
-(-326 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-326 -3416 UP UPUP R)
+((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
+NIL
+NIL
+(-327 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-327 S -1421 UP UPUP R)
+(-328 S -3416 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-328 -1421 UP UPUP R)
+(-329 -3416 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-329 -1421 UP UPUP R)
-((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
-NIL
-NIL
(-330 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
@@ -1259,87 +1259,87 @@ NIL
(-332 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
((-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-372)))) (|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-549)))))
-(-333 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
-((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
-NIL
-NIL
-(-334 S -1421 UP UPUP)
+((|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-371)))) (|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-535)))))
+(-333 |p| |n|)
+((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
+((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((-3874 (|HasCategory| (-877 |#1|) (QUOTE (-143))) (|HasCategory| (-877 |#1|) (QUOTE (-361)))) (|HasCategory| (-877 |#1|) (QUOTE (-145))) (|HasCategory| (-877 |#1|) (QUOTE (-361))) (|HasCategory| (-877 |#1|) (QUOTE (-143))))
+(-334 S -3416 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-356))))
-(-335 -1421 UP UPUP)
+(-335 -3416 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
((-4329 |has| (-400 |#2|) (-356)) (-4334 |has| (-400 |#2|) (-356)) (-4328 |has| (-400 |#2|) (-356)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-336 |p| |extdeg|)
+(-336 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
+NIL
+NIL
+(-337 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (|HasCategory| (-881 |#1|) (QUOTE (-143))) (|HasCategory| (-881 |#1|) (QUOTE (-361)))) (|HasCategory| (-881 |#1|) (QUOTE (-145))) (|HasCategory| (-881 |#1|) (QUOTE (-361))) (|HasCategory| (-881 |#1|) (QUOTE (-143))))
-(-337 GF |defpol|)
+((-3874 (|HasCategory| (-877 |#1|) (QUOTE (-143))) (|HasCategory| (-877 |#1|) (QUOTE (-361)))) (|HasCategory| (-877 |#1|) (QUOTE (-145))) (|HasCategory| (-877 |#1|) (QUOTE (-361))) (|HasCategory| (-877 |#1|) (QUOTE (-143))))
+(-338 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
-(-338 GF |extdeg|)
+((-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
+(-339 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
-(-339 GF)
+((-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
+(-340 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-340 F1 GF F2)
+(-341 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-341 S)
+(-342 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-342)
+(-343)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-343 R UP -1421)
+(-344 R UP -3416)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-344 |p| |extdeg|)
+(-345 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (|HasCategory| (-881 |#1|) (QUOTE (-143))) (|HasCategory| (-881 |#1|) (QUOTE (-361)))) (|HasCategory| (-881 |#1|) (QUOTE (-145))) (|HasCategory| (-881 |#1|) (QUOTE (-361))) (|HasCategory| (-881 |#1|) (QUOTE (-143))))
-(-345 GF |uni|)
+((-3874 (|HasCategory| (-877 |#1|) (QUOTE (-143))) (|HasCategory| (-877 |#1|) (QUOTE (-361)))) (|HasCategory| (-877 |#1|) (QUOTE (-145))) (|HasCategory| (-877 |#1|) (QUOTE (-361))) (|HasCategory| (-877 |#1|) (QUOTE (-143))))
+(-346 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
-(-346 GF |extdeg|)
+((-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
+(-347 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
-(-347 |p| |n|)
-((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (|HasCategory| (-881 |#1|) (QUOTE (-143))) (|HasCategory| (-881 |#1|) (QUOTE (-361)))) (|HasCategory| (-881 |#1|) (QUOTE (-145))) (|HasCategory| (-881 |#1|) (QUOTE (-361))) (|HasCategory| (-881 |#1|) (QUOTE (-143))))
+((-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
(-348 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
-(-349 -1421 GF)
-((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
+((-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
+(-349 GF)
+((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-350 GF)
-((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
+(-350 -3416 GF)
+((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-351 -1421 FP FPP)
+(-351 -3416 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-352 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
+((-3874 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
(-353 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
@@ -1356,21 +1356,21 @@ NIL
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-357 |Name| S)
-((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
+(-357 S)
+((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-358 S)
-((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
+(-358 |Name| S)
+((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
(-359 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-541))))
+((|HasCategory| |#2| (QUOTE (-542))))
(-360 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4333 |has| |#1| (-541)) (-4331 . T) (-4330 . T))
+((-4333 |has| |#1| (-542)) (-4331 . T) (-4330 . T))
NIL
(-361)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1384,17 +1384,17 @@ NIL
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
((-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-364 S A R B)
-((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
-NIL
-NIL
-(-365 A S)
+(-364 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1066))))
-(-366 S)
+((|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))))
+(-365 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4336 . T) (-2623 . T))
+((-4336 . T) (-2359 . T))
+NIL
+(-366 S A R B)
+((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
+NIL
NIL
(-367 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
@@ -1407,43 +1407,43 @@ NIL
(-369 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))))
+((|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))))
(-370 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
((-4333 . T))
NIL
-(-371 |Par|)
-((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
+(-371)
+((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
+((-4319 . T) (-4327 . T) (-4112 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
+(-372 |Par|)
+((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
-(-372)
-((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4319 . T) (-4327 . T) (-2660 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-373 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
(-374 R S)
-((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
+((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
((-4331 . T) (-4330 . T))
((|HasCategory| |#1| (QUOTE (-170))))
-(-375 R |Basis|)
-((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
+(-375 R S)
+((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
((-4331 . T) (-4330 . T))
-NIL
+((|HasCategory| |#1| (QUOTE (-170))))
(-376)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-2623 . T))
+((-2359 . T))
+NIL
+(-377 R |Basis|)
+((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
+((-4331 . T) (-4330 . T))
NIL
-(-377)
+(-378)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2623 . T))
+((-2359 . T))
NIL
-(-378 R S)
-((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4331 . T) (-4330 . T))
-((|HasCategory| |#1| (QUOTE (-170))))
(-379 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
@@ -1468,41 +1468,41 @@ NIL
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-385 -1421 UP UPUP R)
+(-385 -3416 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-386 S)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
+(-386)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format.")))
NIL
NIL
-(-387)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format.")))
+(-387 S)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
(-388)
-((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-2623 . T))
+((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
+NIL
NIL
(-389)
-((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2623 . T))
+((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
+((-2359 . T))
NIL
(-390)
-((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
-NIL
+((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
+((-2359 . T))
NIL
-(-391 -2480 |returnType| -2871 |symbols|)
+(-391 -3888 |returnType| -1463 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-392 -1421 UP)
+(-392 -3416 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
(-393 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-2623 . T))
+((-2359 . T))
NIL
(-394 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
@@ -1518,121 +1518,121 @@ NIL
((|HasAttribute| |#1| (QUOTE -4319)) (|HasAttribute| |#1| (QUOTE -4327)))
(-397)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-2660 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((-4112 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-398 R S)
+(-398 R)
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -302) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -279) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-1183))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-444))))
+(-399 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-399 A B)
-((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
-NIL
-NIL
(-400 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
((-4323 -12 (|has| |#1| (-6 -4334)) (|has| |#1| (-444)) (|has| |#1| (-6 -4323))) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-804)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-796))) (-1536 (|HasCategory| |#1| (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-823)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-804)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1117))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-804)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-804))))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-804))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-804)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-534))) (-12 (|HasAttribute| |#1| (QUOTE -4334)) (|HasAttribute| |#1| (QUOTE -4323)) (|HasCategory| |#1| (QUOTE (-444)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-401 S R UP)
+((|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-796))) (-3874 (|HasCategory| |#1| (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-823)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-1117))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-534))) (-12 (|HasAttribute| |#1| (QUOTE -4323)) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-401 A B)
+((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
+NIL
+NIL
+(-402 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-402 R UP)
+(-403 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
((-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-403 A S)
+(-404 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))
-(-404 S)
+((|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))))
+(-405 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-405 R1 F1 U1 A1 R2 F2 U2 A2)
-((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
-NIL
-NIL
-(-406 R -1421 UP A)
+(-406 R -3416 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
((-4333 . T))
NIL
-(-407 R -1421 UP A |ibasis|)
+(-407 R1 F1 U1 A1 R2 F2 U2 A2)
+((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
+NIL
+NIL
+(-408 R -3416 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1009) (|devaluate| |#2|))))
-(-408 AR R AS S)
+(-409 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-409 S R)
+(-410 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
((|HasCategory| |#2| (QUOTE (-356))))
-(-410 R)
+(-411 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4333 |has| |#1| (-541)) (-4331 . T) (-4330 . T))
+((-4333 |has| |#1| (-542)) (-4331 . T) (-4330 . T))
NIL
-(-411 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -302) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -279) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-1183))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-444))))
(-412 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
NIL
-(-413 R FE |x| |cen|)
-((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
+(-413 S R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
+((|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))))
+(-414 R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+((-4333 -3874 (|has| |#1| (-1018)) (|has| |#1| (-465))) (-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) ((-4338 "*") |has| |#1| (-542)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-542)) (-4328 |has| |#1| (-542)) (-2359 . T))
NIL
-(-414 R A S B)
+(-415 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-415 R FE |Expon| UPS TRAN |x|)
-((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'")))
+(-416 R FE |x| |cen|)
+((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-416 S A R B)
-((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
+(-417 R FE |Expon| UPS TRAN |x|)
+((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'")))
NIL
NIL
-(-417 A S)
+(-418 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-361))))
-(-418 S)
+(-419 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4336 . T) (-4326 . T) (-4337 . T) (-2623 . T))
+((-4336 . T) (-4326 . T) (-4337 . T) (-2359 . T))
NIL
-(-419 R -1421)
+(-420 S A R B)
+((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
+NIL
+NIL
+(-421 R -3416)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-420 R E)
+(-422 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
((-4323 -12 (|has| |#1| (-6 -4323)) (|has| |#2| (-6 -4323))) (-4330 . T) (-4331 . T) (-4333 . T))
((-12 (|HasAttribute| |#1| (QUOTE -4323)) (|HasAttribute| |#2| (QUOTE -4323))))
-(-421 R -1421)
+(-423 R -3416)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-422 S R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-NIL
-((|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))))
-(-423 R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4333 -1536 (|has| |#1| (-1018)) (|has| |#1| (-465))) (-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) ((-4338 "*") |has| |#1| (-541)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-541)) (-4328 |has| |#1| (-541)) (-2623 . T))
-NIL
-(-424 R -1421)
+(-424 R -3416)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-425 R -1421)
+(-425 R -3416)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-426 R -1421)
+(-426 R -3416)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1640,16 +1640,16 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-428 R -1421 UP)
+(-428 R -3416 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-48)))))
(-429)
-((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
+((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}")))
NIL
NIL
(-430)
-((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}")))
+((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
(-431 |f|)
@@ -1658,17 +1658,17 @@ NIL
NIL
(-432)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-433)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2623 . T))
+((-2359 . T))
NIL
(-434 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-435 R UP -1421)
+(-435 R UP -3416)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1685,21 +1685,21 @@ NIL
NIL
NIL
(-439 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
-NIL
+((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
+((|HasCategory| |#1| (QUOTE (-356))))
(-440 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
+((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
(-441 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
+((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
(-442 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
+((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
+NIL
NIL
-((|HasCategory| |#1| (QUOTE (-356))))
(-443 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
@@ -1710,12 +1710,12 @@ NIL
NIL
(-445 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4333 |has| (-400 (-923 |#1|)) (-541)) (-4331 . T) (-4330 . T))
-((|HasCategory| (-400 (-923 |#1|)) (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| (-400 (-923 |#1|)) (QUOTE (-541))))
+((-4333 |has| (-400 (-917 |#1|)) (-542)) (-4331 . T) (-4330 . T))
+((|HasCategory| (-400 (-917 |#1|)) (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| (-400 (-917 |#1|)) (QUOTE (-542))))
(-446 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-541)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#2| (QUOTE (-880))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-541)))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-542)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#2| (QUOTE (-881))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-881)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143)))))
(-447 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1751,7 +1751,7 @@ NIL
(-455 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
((-4337 . T) (-4336 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-835)))))
(-456 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1780,7 +1780,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-463 |lv| -1421 R)
+(-463 |lv| -3416 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1794,16 +1794,16 @@ NIL
NIL
(-466 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-549)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -3845) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -1531) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (LIST (QUOTE -621) (QUOTE (-1142))) (|devaluate| |#1|)))))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-535)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))))
(-467 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4337 . T))
-((-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1792) (|devaluate| |#2|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1066)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-823))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-823))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))))
(-468 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
((-4337 . T) (-4336 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-835)))))
(-469)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
@@ -1815,19 +1815,19 @@ NIL
(-471 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1792) (|devaluate| |#2|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1066)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1066))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))))
(-472)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-473 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-541)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#2| (QUOTE (-880))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-541)))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-474 -2727 S)
+(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-542)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#2| (QUOTE (-881))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-881)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(-474 -2938 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4330 |has| |#2| (-1018)) (-4331 |has| |#2| (-1018)) (-4333 |has| |#2| (-6 -4333)) ((-4338 "*") |has| |#2| (-170)) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-769))) (-1536 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1066)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-361)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-703)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1066))))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-1536 (|HasCategory| |#2| (QUOTE (-1018))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1066)))) (|HasAttribute| |#2| (QUOTE -4333)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-769))) (-3874 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))))) (|HasCategory| (-535) (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4333)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))))
(-475)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header.")))
NIL
@@ -1835,8 +1835,8 @@ NIL
(-476 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
-(-477 -1421 UP UPUP R)
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-477 -3416 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1847,14 +1847,14 @@ NIL
(-479)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| (-549) (QUOTE (-880))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-549) (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-549) (QUOTE (-993))) (|HasCategory| (-549) (QUOTE (-796))) (-1536 (|HasCategory| (-549) (QUOTE (-796))) (|HasCategory| (-549) (QUOTE (-823)))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1117))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-227))) (|HasCategory| (-549) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-549) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -302) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -279) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-300))) (|HasCategory| (-549) (QUOTE (-534))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-549) (LIST (QUOTE -617) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (|HasCategory| (-549) (QUOTE (-143)))))
+((|HasCategory| (-535) (QUOTE (-881))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-535) (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-145))) (|HasCategory| (-535) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-535) (QUOTE (-991))) (|HasCategory| (-535) (QUOTE (-796))) (-3874 (|HasCategory| (-535) (QUOTE (-796))) (|HasCategory| (-535) (QUOTE (-823)))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-1117))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-535) (QUOTE (-227))) (|HasCategory| (-535) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-535) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -302) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -279) (QUOTE (-535)) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-300))) (|HasCategory| (-535) (QUOTE (-534))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-535) (LIST (QUOTE -617) (QUOTE (-535)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (|HasCategory| (-535) (QUOTE (-143)))))
(-480 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4336)) (|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))))
+((|HasAttribute| |#1| (QUOTE -4336)) (|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))))
(-481 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-482)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
@@ -1868,34 +1868,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-485 -1421 UP |AlExt| |AlPol|)
+(-485 -3416 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-486)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-549)))))
+((|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-535)))))
(-487 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-488 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-489 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-490 R UP -1421)
+(-490 R UP -3416)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-491 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
((-4337 . T) (-4336 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1066))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-112) (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-112) (QUOTE (-1066))) (|HasCategory| (-112) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| (-112) (QUOTE (-1067))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-112) (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-112) (QUOTE (-1067))) (|HasCategory| (-112) (LIST (QUOTE -593) (QUOTE (-835)))))
(-492 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1908,7 +1908,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-495 -1421 |Expon| |VarSet| |DPoly|)
+(-495 -3416 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-1142)))))
@@ -1933,15 +1933,15 @@ NIL
NIL
NIL
(-501 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
(-502 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
(-503 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
(-504 S A B)
@@ -1959,7 +1959,7 @@ NIL
(-507 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-508)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
@@ -1967,15 +1967,15 @@ NIL
(-509 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (|HasCategory| (-563 |#1|) (QUOTE (-143))) (|HasCategory| (-563 |#1|) (QUOTE (-361)))) (|HasCategory| (-563 |#1|) (QUOTE (-145))) (|HasCategory| (-563 |#1|) (QUOTE (-361))) (|HasCategory| (-563 |#1|) (QUOTE (-143))))
+((-3874 (|HasCategory| (-563 |#1|) (QUOTE (-143))) (|HasCategory| (-563 |#1|) (QUOTE (-361)))) (|HasCategory| (-563 |#1|) (QUOTE (-145))) (|HasCategory| (-563 |#1|) (QUOTE (-361))) (|HasCategory| (-563 |#1|) (QUOTE (-143))))
(-510 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-511 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-512 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
@@ -1987,7 +1987,7 @@ NIL
(-514 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-541))) (|HasAttribute| |#1| (QUOTE (-4338 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))) (|HasAttribute| |#1| (QUOTE (-4338 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-515)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2016,7 +2016,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-522 K -1421 |Par|)
+(-522 K -3416 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2024,19 +2024,19 @@ NIL
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-524 R)
-((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
+(-524)
+((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-525)
-((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
+(-525 R)
+((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
(-526 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-527 K -1421 |Par|)
+(-527 K -3416 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2057,7 +2057,7 @@ NIL
NIL
NIL
(-532 R UP)
-((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
+((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
NIL
NIL
(-533 S)
@@ -2068,79 +2068,79 @@ NIL
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
((-4334 . T) (-4335 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-535 |Key| |Entry| |addDom|)
+(-535)
+((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
+((-4318 . T) (-4324 . T) (-4328 . T) (-4323 . T) (-4334 . T) (-4335 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+NIL
+(-536 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1792) (|devaluate| |#2|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1066)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1066))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
-(-536 R -1421)
+((-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))))
+(-537 R -3416)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-537 R0 -1421 UP UPUP R)
+(-538 R0 -3416 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-538)
+(-539)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-539 R)
+(-540 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-2660 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((-4112 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-540 S)
+(-541 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-541)
+(-542)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-542 R -1421)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
+(-543 R -3416)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-543 I)
+(-544 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-544)
-((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
+(-545)
+((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-545 R -1421 L)
-((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
+(-546 R -3416 L)
+((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -632) (|devaluate| |#2|))))
-(-546)
+((|HasCategory| |#3| (LIST (QUOTE -634) (|devaluate| |#2|))))
+(-547)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-547 -1421 UP UPUP R)
+(-548 -3416 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-548 -1421 UP)
+(-549 -3416 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-549)
-((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4318 . T) (-4324 . T) (-4328 . T) (-4323 . T) (-4334 . T) (-4335 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-NIL
(-550)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-551 R -1421 L)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
+(-551 R -3416 L)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -632) (|devaluate| |#2|))))
-(-552 R -1421)
+((|HasCategory| |#3| (LIST (QUOTE -634) (|devaluate| |#2|))))
+(-552 R -3416)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-607)))))
-(-553 -1421 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-608)))))
+(-553 -3416 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2148,27 +2148,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-555 -1421)
+(-555 -3416)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-556 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-2660 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((-4112 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-557)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-558 R -1421)
+(-558 R -3416)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-277))) (|HasCategory| |#2| (QUOTE (-607))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-277)))) (|HasCategory| |#1| (QUOTE (-541))))
-(-559 -1421 UP)
-((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
+((-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-277))) (|HasCategory| |#2| (QUOTE (-608))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-277)))) (|HasCategory| |#1| (QUOTE (-542))))
+(-559 -3416 UP)
+((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-560 R -1421)
+(-560 R -3416)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2188,18 +2188,18 @@ NIL
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-565 R -1421)
-((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
+(-565 -3416)
+((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
+((-4331 . T) (-4330 . T))
+((|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-1142)))))
+(-566 E -3416)
+((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-566 E -1421)
-((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
+(-567 R -3416)
+((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-567 -1421)
-((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4331 . T) (-4330 . T))
-((|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-1142)))))
(-568 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2227,19 +2227,19 @@ NIL
(-574 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1066))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (-1536 (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-834)))) (-12 (|HasCategory| (-142) (QUOTE (-1066))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1066)))) (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1066))) (-12 (|HasCategory| (-142) (QUOTE (-1066))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (-3874 (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| (-142) (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1067)))) (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1067))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-835)))))
(-575 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-576 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))) (|HasCategory| (-549) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3845) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|)))) (|HasCategory| (-535) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))))
(-577 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4331 |has| |#1| (-541)) (-4330 |has| |#1| (-541)) ((-4338 "*") |has| |#1| (-541)) (-4329 |has| |#1| (-541)) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-541))))
+((-4331 |has| |#1| (-542)) (-4330 |has| |#1| (-542)) ((-4338 "*") |has| |#1| (-542)) (-4329 |has| |#1| (-542)) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-542))))
(-578 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
@@ -2248,7 +2248,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-580 R -1421 FG)
+(-580 R -3416 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2259,14 +2259,14 @@ NIL
(-582 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-583 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#2| (QUOTE (-823))) (|HasAttribute| |#1| (QUOTE -4336)) (|HasCategory| |#3| (QUOTE (-1066))))
+((|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#2| (QUOTE (-823))) (|HasAttribute| |#1| (QUOTE -4336)) (|HasCategory| |#3| (QUOTE (-1067))))
(-584 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-585)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode.")))
@@ -2278,28 +2278,28 @@ NIL
NIL
(-587 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4333 -1536 (-1820 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))) (-4331 . T) (-4330 . T))
-((-1536 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))))
+((-4333 -3874 (-3179 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))) (-4331 . T) (-4330 . T))
+((-3874 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))))
(-588 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (QUOTE (-1124))) (LIST (QUOTE |:|) (QUOTE -1792) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| (-1124) (QUOTE (-823))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (QUOTE (-1124))) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| (-1124) (QUOTE (-823))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -593) (QUOTE (-835)))))
(-589 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-590 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4337 . T) (-2623 . T))
+((-4337 . T) (-2359 . T))
NIL
-(-591 R S)
-((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
+(-591 S)
+((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
+((|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))))
+(-592 R S)
+((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
-(-592 S)
-((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))))
(-593 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
@@ -2308,7 +2308,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-595 -1421 UP)
+(-595 -3416 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2316,26 +2316,26 @@ NIL
((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value")))
NIL
NIL
-(-597 S R)
+(-597 A R S)
+((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-821))))
+(-598 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-598 R)
+(-599 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
((-4333 . T))
NIL
-(-599 A R S)
-((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-821))))
-(-600 R -1421)
+(-600 R -3416)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-601 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
((-4331 . T) (-4330 . T) ((-4338 "*") . T) (-4329 . T) (-4333 . T))
-((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))))
+((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))))
(-602 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2356,66 +2356,66 @@ NIL
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-607)
-((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
+(-607 R -3416)
+((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-608 R -1421)
-((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
+(-608)
+((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-609 |lv| -1421)
+(-609 |lv| -3416)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-610)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
((-4337 . T))
-((-12 (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (QUOTE (-1124))) (LIST (QUOTE |:|) (QUOTE -1792) (QUOTE (-52))))))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (QUOTE (-1066))) (|HasCategory| (-52) (QUOTE (-1066)))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (QUOTE (-1066))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| (-52) (QUOTE (-1066))) (|HasCategory| (-52) (LIST (QUOTE -302) (QUOTE (-52))))) (|HasCategory| (-1124) (QUOTE (-823))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))))
-(-611 S R)
+((-12 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (QUOTE (-1124))) (LIST (QUOTE |:|) (QUOTE -2184) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (QUOTE (-1067)))) (-3874 (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-51) (LIST (QUOTE -302) (QUOTE (-51))))) (|HasCategory| (-1124) (QUOTE (-823))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))))
+(-611 R A)
+((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
+((-4333 -3874 (-3179 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))) (-4331 . T) (-4330 . T))
+((-3874 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))))
+(-612 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-356))))
-(-612 R)
+(-613 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
((|JacobiIdentity| . T) (|NullSquare| . T) (-4331 . T) (-4330 . T))
NIL
-(-613 R A)
-((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4333 -1536 (-1820 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))) (-4331 . T) (-4330 . T))
-((-1536 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))))
(-614 R FE)
-((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
+((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
NIL
(-615 R)
-((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
+((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
(-616 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-4007 (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-356))))
+((-3659 (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-356))))
(-617 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
((-4333 . T))
NIL
-(-618 A B)
-((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
-NIL
-NIL
+(-618 S)
+((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
+((-4337 . T) (-4336 . T))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-619 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-620 A B C)
+(-620 A B)
+((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
+NIL
+NIL
+(-621 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-621 S)
-((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
(-622 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
@@ -2423,7 +2423,7 @@ NIL
(-623 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-624 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
@@ -2438,52 +2438,52 @@ NIL
((|HasAttribute| |#1| (QUOTE -4337)))
(-627 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-2623 . T))
+((-2359 . T))
NIL
-(-628 R -1421 L)
+(-628 M R S)
+((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4331 . T) (-4330 . T))
+((|HasCategory| |#1| (QUOTE (-767))))
+(-629 R -3416 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-629 A)
+(-630 A -2739)
+((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
+((-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356))))
+(-631 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356))))
-(-630 A M)
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356))))
+(-632 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
((-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356))))
-(-631 S A)
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356))))
+(-633 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-356))))
-(-632 A)
+(-634 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
((-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-633 -1421 UP)
+(-635 -3416 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-634 A -3399)
-((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356))))
-(-635 A L)
+(-636 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-636 S)
+(-637 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-637)
+(-638)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-638 M R S)
-((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4331 . T) (-4330 . T))
-((|HasCategory| |#1| (QUOTE (-767))))
(-639 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
@@ -2498,14 +2498,14 @@ NIL
NIL
(-642 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4337 . T) (-4336 . T) (-2623 . T))
+((-4337 . T) (-4336 . T) (-2359 . T))
NIL
-(-643 -1421)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-643 -3416 |Row| |Col| M)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-644 -1421 |Row| |Col| M)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-644 -3416)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
(-645 R E OV P)
@@ -2515,7 +2515,7 @@ NIL
(-646 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
((-4333 . T) (-4336 . T) (-4330 . T) (-4331 . T))
-((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4338 "*"))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (-1536 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-541))) (-1536 (|HasAttribute| |#2| (QUOTE (-4338 "*"))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-170))))
+((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4338 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-542))) (-3874 (|HasAttribute| |#2| (QUOTE (-4338 #1#))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-170))))
(-647)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2530,12 +2530,12 @@ NIL
NIL
(-650 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-651 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-652)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2572,26 +2572,26 @@ NIL
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-661 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
-((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
-NIL
-NIL
-(-662 S R |Row| |Col|)
+(-661 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4338 "*"))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-541))))
-(-663 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4338 "*"))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-542))))
+(-662 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4336 . T) (-4337 . T) (-2623 . T))
+((-4336 . T) (-4337 . T) (-2359 . T))
+NIL
+(-663 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
+NIL
NIL
(-664 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-541))))
+((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))))
(-665 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
((-4336 . T) (-4337 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-541))) (|HasAttribute| |#1| (QUOTE (-4338 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-542))) (|HasAttribute| |#1| (QUOTE (-4338 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-666 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2600,7 +2600,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")))
NIL
NIL
-(-668 S -1421 FLAF FLAS)
+(-668 S -3416 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2610,27 +2610,27 @@ NIL
NIL
(-670)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4329 . T) (-4334 |has| (-675) (-356)) (-4328 |has| (-675) (-356)) (-3409 . T) (-4335 |has| (-675) (-6 -4335)) (-4332 |has| (-675) (-6 -4332)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| (-675) (QUOTE (-145))) (|HasCategory| (-675) (QUOTE (-143))) (|HasCategory| (-675) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-675) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| (-675) (QUOTE (-361))) (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-675) (QUOTE (-227))) (-1536 (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (QUOTE (-342)))) (|HasCategory| (-675) (QUOTE (-342))) (|HasCategory| (-675) (LIST (QUOTE -279) (QUOTE (-675)) (QUOTE (-675)))) (|HasCategory| (-675) (LIST (QUOTE -302) (QUOTE (-675)))) (|HasCategory| (-675) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-675)))) (|HasCategory| (-675) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-675) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-675) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-675) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (-1536 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (QUOTE (-342)))) (|HasCategory| (-675) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-675) (QUOTE (-993))) (|HasCategory| (-675) (QUOTE (-1164))) (-12 (|HasCategory| (-675) (QUOTE (-973))) (|HasCategory| (-675) (QUOTE (-1164)))) (-1536 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (|HasCategory| (-675) (QUOTE (-356))) (-12 (|HasCategory| (-675) (QUOTE (-342))) (|HasCategory| (-675) (QUOTE (-880))))) (-1536 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (-12 (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (QUOTE (-880)))) (-12 (|HasCategory| (-675) (QUOTE (-342))) (|HasCategory| (-675) (QUOTE (-880))))) (|HasCategory| (-675) (QUOTE (-534))) (-12 (|HasCategory| (-675) (QUOTE (-1027))) (|HasCategory| (-675) (QUOTE (-1164)))) (|HasCategory| (-675) (QUOTE (-1027))) (-1536 (|HasCategory| (-675) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-675) (QUOTE (-356)))) (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880))) (-1536 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (|HasCategory| (-675) (QUOTE (-356)))) (-1536 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (|HasCategory| (-675) (QUOTE (-541)))) (-12 (|HasCategory| (-675) (QUOTE (-227))) (|HasCategory| (-675) (QUOTE (-356)))) (-12 (|HasCategory| (-675) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-675) (QUOTE (-356)))) (|HasCategory| (-675) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-675) (QUOTE (-823))) (|HasCategory| (-675) (QUOTE (-541))) (|HasAttribute| (-675) (QUOTE -4335)) (|HasAttribute| (-675) (QUOTE -4332)) (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (|HasCategory| (-675) (QUOTE (-143)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (|HasCategory| (-675) (QUOTE (-342)))))
+((-4329 . T) (-4334 |has| (-675) (-356)) (-4328 |has| (-675) (-356)) (-1420 . T) (-4335 |has| (-675) (-6 -4335)) (-4332 |has| (-675) (-6 -4332)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| (-675) (QUOTE (-145))) (|HasCategory| (-675) (QUOTE (-143))) (|HasCategory| (-675) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-675) (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| (-675) (QUOTE (-361))) (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-675) (QUOTE (-227))) (-3874 (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (QUOTE (-343)))) (|HasCategory| (-675) (QUOTE (-343))) (|HasCategory| (-675) (LIST (QUOTE -279) (QUOTE (-675)) (QUOTE (-675)))) (|HasCategory| (-675) (LIST (QUOTE -302) (QUOTE (-675)))) (|HasCategory| (-675) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-675)))) (|HasCategory| (-675) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-675) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-675) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-675) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (-3874 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (QUOTE (-343)))) (|HasCategory| (-675) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-675) (QUOTE (-991))) (|HasCategory| (-675) (QUOTE (-1164))) (-12 (|HasCategory| (-675) (QUOTE (-973))) (|HasCategory| (-675) (QUOTE (-1164)))) (-3874 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (-12 (|HasCategory| (-675) (QUOTE (-343))) (|HasCategory| (-675) (QUOTE (-881)))) (|HasCategory| (-675) (QUOTE (-356)))) (-3874 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (-12 (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (QUOTE (-881)))) (-12 (|HasCategory| (-675) (QUOTE (-343))) (|HasCategory| (-675) (QUOTE (-881))))) (|HasCategory| (-675) (QUOTE (-534))) (-12 (|HasCategory| (-675) (QUOTE (-1027))) (|HasCategory| (-675) (QUOTE (-1164)))) (|HasCategory| (-675) (QUOTE (-1027))) (-3874 (|HasCategory| (-675) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-675) (QUOTE (-356)))) (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881))) (-3874 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (|HasCategory| (-675) (QUOTE (-356)))) (-3874 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (|HasCategory| (-675) (QUOTE (-542)))) (-12 (|HasCategory| (-675) (QUOTE (-227))) (|HasCategory| (-675) (QUOTE (-356)))) (-12 (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| (-675) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-675) (QUOTE (-823))) (|HasCategory| (-675) (QUOTE (-542))) (|HasAttribute| (-675) (QUOTE -4335)) (|HasAttribute| (-675) (QUOTE -4332)) (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (|HasCategory| (-675) (QUOTE (-143)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-881)))) (|HasCategory| (-675) (QUOTE (-343)))))
(-671 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4337 . T) (-2623 . T))
+((-4337 . T) (-2359 . T))
NIL
(-672 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
(-673)
-((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
+((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-674 OV E -1421 PG)
+(-674 OV E -3416 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-675)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-2660 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((-4112 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-676 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2660,7 +2660,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-683 S -1700 I)
+(-683 S -2990 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2680,14 +2680,14 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-688 R |Mod| -1998 -1586 |exactQuo|)
+(-688 R |Mod| -2145 -3855 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-689 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4332 |has| |#1| (-356)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-342))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4332 |has| |#1| (-356)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-343))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-690 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
@@ -2696,7 +2696,7 @@ NIL
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) (-4333 . T))
((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))))
-(-692 R |Mod| -1998 -1586 |exactQuo|)
+(-692 R |Mod| -2145 -3855 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4333 . T))
NIL
@@ -2708,7 +2708,7 @@ NIL
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
((-4331 . T) (-4330 . T))
NIL
-(-695 -1421)
+(-695 -3416)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
((-4333 . T))
NIL
@@ -2731,7 +2731,7 @@ NIL
(-700 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))))
+((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))))
(-701 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
((-4329 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
@@ -2744,7 +2744,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-704 -1421 UP)
+(-704 -3416 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2762,8 +2762,8 @@ NIL
NIL
(-708 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-541)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#2| (QUOTE (-880))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-541)))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-542)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#2| (QUOTE (-881))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-881)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143)))))
(-709 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2781,13 +2781,13 @@ NIL
((-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) (-4333 . T))
((-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-823))))
(-713 S)
-((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4326 . T) (-4337 . T) (-2623 . T))
-NIL
-(-714 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
((-4336 . T) (-4326 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-714 S)
+((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
+((-4326 . T) (-4337 . T) (-2359 . T))
+NIL
(-715)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
@@ -2798,7 +2798,7 @@ NIL
NIL
(-717 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4331 . T) (-4330 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4331 . T) (-4330 . T) (-4333 . T))
NIL
(-718 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2896,15 +2896,15 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-742 -1421)
+(-742 -3416)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-743 P -1421)
+(-743 P -3416)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-744 UP -1421)
+(-744 UP -3416)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -2920,16 +2920,16 @@ NIL
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
(((-4338 "*") . T))
NIL
-(-748 R -1421)
+(-748 R -3416)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-749 S)
-((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
+(-749)
+((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-750)
-((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
+(-750 S)
+((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
(-751 R |PolR| E |PolE|)
@@ -2940,7 +2940,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-753 -1421 |ExtF| |SUEx| |ExtP| |n|)
+(-753 -3416 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -2954,28 +2954,28 @@ NIL
NIL
(-756 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-880))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (-4007 (|HasCategory| |#1| (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-549))))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -963) (QUOTE (-549))))))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-757 R S)
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-881))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142))))) (-3874 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (-3659 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))))) (-3874 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (-3659 (|HasCategory| |#1| (QUOTE (-534)))) (-3659 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (-3659 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-535))))) (-3659 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1142)))) (-3659 (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-535))))))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-757 R)
+((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4332 |has| |#1| (-356)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-758 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-758 R)
-((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4332 |has| |#1| (-356)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-759 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))))
(-760 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4337 . T) (-4336 . T) (-2623 . T))
+((-4337 . T) (-4336 . T) (-2359 . T))
NIL
(-761 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-170))))
+((-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-170))))
(-762)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
@@ -3012,43 +3012,43 @@ NIL
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-771)
-((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
-NIL
-NIL
-(-772 S R)
+(-771 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-361))))
-(-773 R)
+((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-361))))
+(-772 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
((-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-774 -1536 R OS S)
-((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
+(-773)
+((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-775 R)
+(-774 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
((-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-1536 (|HasCategory| (-970 |#1|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (|HasCategory| (-970 |#1|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-970 |#1|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-970 |#1|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))))
+((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-3874 (|HasCategory| (-967 |#1|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-967 |#1|) (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-967 |#1|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-967 |#1|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))))
+(-775 -3874 R OS S)
+((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
+NIL
+NIL
(-776)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-777 R -1421 L)
+(-777 R -3416 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-778 R -1421)
-((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
+(-778 R -3416)
+((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
(-779)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-780 R -1421)
+(-780 R -3416)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3056,11 +3056,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-782 -1421 UP UPUP R)
+(-782 -3416 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-783 -1421 UP L LQ)
+(-783 -3416 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3068,38 +3068,38 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-785 -1421 UP L LQ)
+(-785 -3416 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-786 -1421 UP)
-((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
+(-786 -3416 UP)
+((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-787 -1421 L UP A LO)
+(-787 -3416 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-788 -1421 UP)
+(-788 -3416 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-789 -1421 LO)
+(-789 -3416 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-790 -1421 LODO)
+(-790 -3416 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-791 -2727 S |f|)
+(-791 -2938 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4330 |has| |#2| (-1018)) (-4331 |has| |#2| (-1018)) (-4333 |has| |#2| (-6 -4333)) ((-4338 "*") |has| |#2| (-170)) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-769))) (-1536 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1066)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-361)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-703)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1066))))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-1536 (|HasCategory| |#2| (QUOTE (-1018))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1066)))) (|HasAttribute| |#2| (QUOTE -4333)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-769))) (-3874 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))))) (|HasCategory| (-535) (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#2| (QUOTE -4333)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))))
(-792 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-880))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-794 (-1142)) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-794 (-1142)) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-794 (-1142)) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-794 (-1142)) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-794 (-1142)) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-881))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-794 (-1142)) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-794 (-1142)) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-794 (-1142)) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-794 (-1142)) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-794 (-1142)) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-793 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
(((-4338 "*") |has| |#2| (-356)) (-4329 |has| |#2| (-356)) (-4334 |has| |#2| (-356)) (-4328 |has| |#2| (-356)) (-4333 . T) (-4331 . T) (-4330 . T))
@@ -3117,57 +3117,57 @@ NIL
((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-797)
-((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
+((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
(-798)
-((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
+((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
(-799)
-((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
+((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
(-800)
-((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
+((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
(-801)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-802 R)
+(-802)
+((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
+NIL
+NIL
+(-803 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-803 P R)
+(-804 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
((-4330 . T) (-4331 . T) (-4333 . T))
((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-227))))
-(-804)
-((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
-NIL
-NIL
(-805)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
(-806 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4336 . T) (-4326 . T) (-4337 . T) (-2623 . T))
+((-4336 . T) (-4326 . T) (-4337 . T) (-2359 . T))
NIL
(-807)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-808 R S)
+(-808 R)
+((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
+((-4333 |has| |#1| (-821)))
+((|HasCategory| |#1| (QUOTE (-821))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-534))) (-3874 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-21))))
+(-809 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-809 R)
-((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4333 |has| |#1| (-821)))
-((|HasCategory| |#1| (QUOTE (-821))) (-1536 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-534))) (-1536 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-21))))
(-810 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
((-4331 |has| |#1| (-170)) (-4330 |has| |#1| (-170)) (-4333 . T))
@@ -3188,19 +3188,19 @@ NIL
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-815 R S)
+(-815 R)
+((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
+((-4333 |has| |#1| (-821)))
+((|HasCategory| |#1| (QUOTE (-821))) (-3874 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-534))) (-3874 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-21))))
+(-816 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-816 R)
-((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4333 |has| |#1| (-821)))
-((|HasCategory| |#1| (QUOTE (-821))) (-1536 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-534))) (-1536 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-21))))
(-817)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-818 -2727 S)
+(-818 -2938 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3227,7 +3227,7 @@ NIL
(-824 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))))
+((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))))
(-825 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
((-4330 . T) (-4331 . T) (-4333 . T))
@@ -3235,19 +3235,19 @@ NIL
(-826 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541))))
-(-827 R |sigma| -2656)
+((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542))))
+(-827 R |sigma| -3578)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
((-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356))))
-(-828 |x| R |sigma| -2656)
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356))))
+(-828 |x| R |sigma| -3578)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
((-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-356))))
+((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-356))))
(-829 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))))
(-830)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
@@ -3256,20 +3256,20 @@ NIL
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-832 S)
-((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}")))
+(-832)
+((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-833)
+(-833 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}")))
NIL
NIL
(-834)
-((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
+((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}")))
NIL
NIL
(-835)
-((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
+((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
(-836 |VariableList|)
@@ -3289,25 +3289,25 @@ NIL
NIL
NIL
(-840 |p|)
-((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
+((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-841 |p|)
-((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
+((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-842 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| (-841 |#1|) (QUOTE (-880))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-841 |#1|) (QUOTE (-143))) (|HasCategory| (-841 |#1|) (QUOTE (-145))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-841 |#1|) (QUOTE (-993))) (|HasCategory| (-841 |#1|) (QUOTE (-796))) (-1536 (|HasCategory| (-841 |#1|) (QUOTE (-796))) (|HasCategory| (-841 |#1|) (QUOTE (-823)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-841 |#1|) (QUOTE (-1117))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| (-841 |#1|) (QUOTE (-227))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -841) (|devaluate| |#1|)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -841) (|devaluate| |#1|)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -841) (|devaluate| |#1|)) (LIST (QUOTE -841) (|devaluate| |#1|)))) (|HasCategory| (-841 |#1|) (QUOTE (-300))) (|HasCategory| (-841 |#1|) (QUOTE (-534))) (|HasCategory| (-841 |#1|) (QUOTE (-823))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-841 |#1|) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-841 |#1|) (QUOTE (-880)))) (|HasCategory| (-841 |#1|) (QUOTE (-143)))))
+((|HasCategory| (-840 |#1|) (QUOTE (-881))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-840 |#1|) (QUOTE (-143))) (|HasCategory| (-840 |#1|) (QUOTE (-145))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-840 |#1|) (QUOTE (-991))) (|HasCategory| (-840 |#1|) (QUOTE (-796))) (-3874 (|HasCategory| (-840 |#1|) (QUOTE (-796))) (|HasCategory| (-840 |#1|) (QUOTE (-823)))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-840 |#1|) (QUOTE (-1117))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| (-840 |#1|) (QUOTE (-227))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -840) (|devaluate| |#1|)))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -840) (|devaluate| |#1|)))) (|HasCategory| (-840 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -840) (|devaluate| |#1|)) (LIST (QUOTE -840) (|devaluate| |#1|)))) (|HasCategory| (-840 |#1|) (QUOTE (-300))) (|HasCategory| (-840 |#1|) (QUOTE (-534))) (|HasCategory| (-840 |#1|) (QUOTE (-823))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-840 |#1|) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-840 |#1|) (QUOTE (-881)))) (|HasCategory| (-840 |#1|) (QUOTE (-143)))))
(-843 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-796))) (-1536 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-823))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-143)))))
+((|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-796))) (-3874 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143)))))
(-844 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1066)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067)))) (-3874 (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))))
(-845)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3363,27 +3363,27 @@ NIL
(-858 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-4007 (|HasCategory| |#2| (QUOTE (-1018)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))))
-(-859 R A B)
+((-12 (-3659 (|HasCategory| |#2| (QUOTE (-1018)))) (-3659 (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (-3659 (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))))
+(-859 R S)
+((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
+NIL
+NIL
+(-860 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-860 R S)
-((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
+(-861 R)
+((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-861 R -1700)
+(-862 R -2990)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-862 R S)
+(-863 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-863 R)
-((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
-NIL
-NIL
(-864 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
@@ -3396,7 +3396,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-867 UP -1421)
+(-867 UP -3416)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3419,44 +3419,44 @@ NIL
(-872 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
-(-873 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-873 S)
+((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
+((-4333 . T))
+((-3874 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-823))))
+(-874 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-874 S)
+(-875 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
((-4333 . T))
NIL
-(-875 S)
+(-876 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-876 S)
-((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4333 . T))
-((-1536 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-823))))
-(-877 R E |VarSet| S)
+(-877 |p|)
+((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
+((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-361))))
+(-878 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-878 R S)
+(-879 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-879 S)
+(-880 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-143))))
-(-880)
+(-881)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-881 |p|)
-((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-361))))
-(-882 R0 -1421 UP UPUP R)
+(-882 R0 -3416 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3484,63 +3484,63 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-889 -1421)
+(-889 -3416)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-890 R)
+(-890)
+((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
+(((-4338 "*") . T))
+NIL
+(-891 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-891)
+(-892)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-892)
-((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4338 "*") . T))
-NIL
-(-893 -1421 P)
-((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
+(-893 |xx| -3416)
+((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-894 |xx| -1421)
-((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
+(-894 -3416 P)
+((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
(-895 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-896 S)
-((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
+(-896)
+((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-897)
-((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
+(-897 S)
+((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
(-898)
-((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
+((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
(-899)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-900 R -1421)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
+(-900)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-901)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
+(-901 R -3416)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
(-902 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-903 S R -1421)
+(-903 S R -3416)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3560,12 +3560,12 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -857) (|devaluate| |#1|))))
-(-908 R -1421 -1700)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
+(-908 -2990)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-909 -1700)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
+(-909 R -3416 -2990)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
(-910 S R Q)
@@ -3587,7 +3587,7 @@ NIL
(-914 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-915 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3596,35 +3596,35 @@ NIL
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
((|HasCategory| |#1| (QUOTE (-821))))
-(-917 R S)
+(-917 R)
+((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-881))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1142) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1142) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1142) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1142) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1142) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-918 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-918 |x| R)
+(-919 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-919 S R E |VarSet|)
+(-920 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-880))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#4| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#4| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-823))))
-(-920 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-881))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#4| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#4| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#4| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-823))))
+(-921 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
NIL
-(-921 E V R P -1421)
+(-922 E V R P -3416)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-922 E |Vars| R P S)
+(-923 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-923 R)
-((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-880))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1142) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-1142) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-1142) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-1142) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-1142) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-924 E V R P -1421)
+(-924 E V R P -3416)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-444))))
@@ -3636,42 +3636,42 @@ NIL
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-927 R L)
+(-927 R E)
+((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-130)))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)))
+(-928 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-928 A B)
-((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
-NIL
-NIL
(-929 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
-(-930)
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-930 A B)
+((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
+NIL
+NIL
+(-931)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-931 -1421)
+(-932 -3416)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-932 I)
+(-933 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-933)
+(-934)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-934 R E)
-((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-6 -4334)) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-130)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4334)))
(-935 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
((-4333 -12 (|has| |#2| (-465)) (|has| |#1| (-465))))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-703))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-703)))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769))))) (-12 (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-703)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-823)))))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-703))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-703))))) (-12 (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-703)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-823)))))
(-936)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3686,7 +3686,7 @@ NIL
NIL
(-939 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4336 . T) (-4337 . T) (-2623 . T))
+((-4336 . T) (-4337 . T) (-2359 . T))
NIL
(-940 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3706,7 +3706,7 @@ NIL
NIL
(-944 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4330 . T) (-4331 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-945)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3715,10 +3715,10 @@ NIL
(-946 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-541))))
+((|HasCategory| |#2| (QUOTE (-542))))
(-947 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4336 . T) (-2623 . T))
+((-4336 . T) (-2359 . T))
NIL
(-948 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
@@ -3734,7 +3734,7 @@ NIL
NIL
(-951 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4337 . T) (-4336 . T) (-2623 . T))
+((-4337 . T) (-4336 . T) (-2359 . T))
NIL
(-952 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
@@ -3752,18 +3752,18 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-956 K R UP -1421)
+(-956 K R UP -3416)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-957 |vl| |nv|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
+(-957 R |Var| |Expon| |Dpoly|)
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
+((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-300)))))
+(-958 |vl| |nv|)
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
-(-958 R |Var| |Expon| |Dpoly|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-300)))))
(-959 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
@@ -3772,17 +3772,17 @@ NIL
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-961 A B R S)
-((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
-NIL
-NIL
-(-962 A S)
+(-961 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1117))))
-(-963 S)
+((|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1117))))
+(-962 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-2623 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((-2359 . T) (-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+NIL
+(-963 A B R S)
+((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
+NIL
NIL
(-964 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
@@ -3794,28 +3794,28 @@ NIL
NIL
(-966 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4336 . T) (-4337 . T) (-2623 . T))
+((-4336 . T) (-4337 . T) (-2359 . T))
NIL
-(-967 S R)
+(-967 R)
+((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
+((-4329 |has| |#1| (-283)) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-534))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))))
+(-968 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-283))))
-(-968 R)
+((|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-283))))
+(-969 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
((-4329 |has| |#1| (-283)) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-969 QR R QS S)
+(-970 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-970 R)
-((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4329 |has| |#1| (-283)) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-534))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))))
(-971 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-972 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3824,14 +3824,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-974 -1421 UP UPUP |radicnd| |n|)
+(-974 -3416 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
((-4329 |has| (-400 |#2|) (-356)) (-4334 |has| (-400 |#2|) (-356)) (-4328 |has| (-400 |#2|) (-356)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-342))) (-1536 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-1536 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (-1536 (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-400 |#2|) (QUOTE (-342))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1536 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))))
+((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-343))) (-3874 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-3874 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (-3874 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-343))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3874 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))))
(-975 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| (-549) (QUOTE (-880))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-549) (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-549) (QUOTE (-993))) (|HasCategory| (-549) (QUOTE (-796))) (-1536 (|HasCategory| (-549) (QUOTE (-796))) (|HasCategory| (-549) (QUOTE (-823)))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1117))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-227))) (|HasCategory| (-549) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-549) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -302) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -279) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-300))) (|HasCategory| (-549) (QUOTE (-534))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-549) (LIST (QUOTE -617) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (|HasCategory| (-549) (QUOTE (-143)))))
+((|HasCategory| (-535) (QUOTE (-881))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| (-535) (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-145))) (|HasCategory| (-535) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-535) (QUOTE (-991))) (|HasCategory| (-535) (QUOTE (-796))) (-3874 (|HasCategory| (-535) (QUOTE (-796))) (|HasCategory| (-535) (QUOTE (-823)))) (|HasCategory| (-535) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-1117))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-535) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-535) (QUOTE (-227))) (|HasCategory| (-535) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| (-535) (LIST (QUOTE -505) (QUOTE (-1142)) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -302) (QUOTE (-535)))) (|HasCategory| (-535) (LIST (QUOTE -279) (QUOTE (-535)) (QUOTE (-535)))) (|HasCategory| (-535) (QUOTE (-300))) (|HasCategory| (-535) (QUOTE (-534))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-535) (LIST (QUOTE -617) (QUOTE (-535)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-535) (QUOTE (-881)))) (|HasCategory| (-535) (QUOTE (-143)))))
(-976)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3851,10 +3851,10 @@ NIL
(-980 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#2| (QUOTE (-1066))))
+((|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#2| (QUOTE (-1067))))
(-981 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-982 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
@@ -3864,19 +3864,19 @@ NIL
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
((-4329 . T) (-4334 . T) (-4328 . T) (-4331 . T) (-4330 . T) ((-4338 "*") . T) (-4333 . T))
NIL
-(-984 R -1421)
+(-984 R -3416)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-985 R -1421)
+(-985 R -3416)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-986 -1421 UP)
+(-986 -3416 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-987 -1421 UP)
+(-987 -3416 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -3892,16 +3892,16 @@ NIL
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-991 |Pol|)
-((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
+(-991)
+((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
(-992 |Pol|)
-((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
+((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-993)
-((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
+(-993 |Pol|)
+((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
(-994)
@@ -3911,35 +3911,35 @@ NIL
(-995 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
((-4329 . T) (-4334 . T) (-4328 . T) (-4331 . T) (-4330 . T) ((-4338 "*") . T) (-4333 . T))
-((-1536 (|HasCategory| (-400 (-549)) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-400 (-549)) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-400 (-549)) (LIST (QUOTE -1009) (QUOTE (-549)))))
-(-996 -1421 L)
+((-3874 (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-400 (-535)) (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-400 (-535)) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-400 (-535)) (LIST (QUOTE -1009) (QUOTE (-535)))))
+(-996 -3416 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
(-997 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1066))))
+((|HasCategory| |#1| (QUOTE (-1067))))
(-998 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
((-4337 . T) (-4336 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-834)))))
-(-999 R)
+((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-999)
+((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
+NIL
+NIL
+(-1000 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
((|HasAttribute| |#1| (QUOTE (-4338 "*"))))
-(-1000 R)
+(-1001 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-300))))
-(-1001 S)
+(-1002 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1002)
-((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
-NIL
-NIL
(-1003 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
@@ -3948,14 +3948,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1005 -1421 |Expon| |VarSet| |FPol| |LFPol|)
+(-1005 -3416 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
(((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-1006)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (QUOTE (-1142))) (LIST (QUOTE |:|) (QUOTE -1792) (QUOTE (-52))))))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (QUOTE (-1066))) (|HasCategory| (-52) (QUOTE (-1066)))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (QUOTE (-1066))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| (-52) (QUOTE (-1066))) (|HasCategory| (-52) (LIST (QUOTE -302) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (QUOTE (-1066))) (|HasCategory| (-1142) (QUOTE (-823))) (|HasCategory| (-52) (QUOTE (-1066))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (QUOTE (-1142))) (LIST (QUOTE |:|) (QUOTE -2184) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067)))) (-3874 (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-51) (LIST (QUOTE -302) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067))) (|HasCategory| (-1142) (QUOTE (-823))) (|HasCategory| (-51) (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))))
(-1007)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -3972,26 +3972,26 @@ NIL
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1011)
-((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
+(-1011 R)
+((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1012 UP)
-((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
+(-1012)
+((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1013 R)
-((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
+(-1013 UP)
+((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
(-1014 R)
-((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
+((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
(-1015 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
((-4337 . T) (-4336 . T))
-((-12 (|HasCategory| (-756 |#1| (-836 |#2|)) (QUOTE (-1066))) (|HasCategory| (-756 |#1| (-836 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -756) (|devaluate| |#1|) (LIST (QUOTE -836) (|devaluate| |#2|)))))) (|HasCategory| (-756 |#1| (-836 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-756 |#1| (-836 |#2|)) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| (-836 |#2|) (QUOTE (-361))) (|HasCategory| (-756 |#1| (-836 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| (-756 |#1| (-836 |#2|)) (QUOTE (-1067))) (|HasCategory| (-756 |#1| (-836 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -756) (|devaluate| |#1|) (LIST (QUOTE -836) (|devaluate| |#2|)))))) (|HasCategory| (-756 |#1| (-836 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-756 |#1| (-836 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| (-836 |#2|) (QUOTE (-361))) (|HasCategory| (-756 |#1| (-836 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))))
(-1016)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
@@ -4004,22 +4004,22 @@ NIL
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
((-4333 . T))
NIL
-(-1019 |xx| -1421)
+(-1019 |xx| -3416)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
(-1020 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-300))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-541))) (|HasCategory| |#4| (QUOTE (-170))))
+((|HasCategory| |#4| (QUOTE (-300))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-542))) (|HasCategory| |#4| (QUOTE (-170))))
(-1021 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4336 . T) (-2623 . T) (-4331 . T) (-4330 . T))
+((-4336 . T) (-2359 . T) (-4331 . T) (-4330 . T))
NIL
(-1022 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
((-4336 . T) (-4331 . T) (-4330 . T))
-((-1536 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (QUOTE (-300))) (|HasCategory| |#3| (QUOTE (-541))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-834)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))))
+((-3874 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (QUOTE (-300))) (|HasCategory| |#3| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-835)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))))
(-1023 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4051,14 +4051,14 @@ NIL
(-1030)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (QUOTE (-1142))) (LIST (QUOTE |:|) (QUOTE -1792) (QUOTE (-52))))))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (QUOTE (-1066))) (|HasCategory| (-52) (QUOTE (-1066)))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (QUOTE (-1066))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| (-52) (QUOTE (-1066))) (|HasCategory| (-52) (LIST (QUOTE -302) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (QUOTE (-1066))) (|HasCategory| (-1142) (QUOTE (-823))) (|HasCategory| (-52) (QUOTE (-1066))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (QUOTE (-1142))) (LIST (QUOTE |:|) (QUOTE -2184) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067)))) (-3874 (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| (-51) (QUOTE (-1067))) (|HasCategory| (-51) (LIST (QUOTE -302) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (QUOTE (-1067))) (|HasCategory| (-1142) (QUOTE (-823))) (|HasCategory| (-51) (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| (-51) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (LIST (QUOTE -593) (QUOTE (-835)))))
(-1031 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -963) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-1142)))))
+((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-1142)))))
(-1032 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
NIL
(-1033)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
@@ -4082,7 +4082,7 @@ NIL
NIL
(-1038 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4337 . T) (-4336 . T) (-2623 . T))
+((-4337 . T) (-4336 . T) (-2359 . T))
NIL
(-1039 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -4092,15 +4092,15 @@ NIL
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1041 |f|)
-((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
+(-1041 |Base| R -3416)
+((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1042 |Base| R -1421)
-((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
+(-1042 |f|)
+((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1043 |Base| R -1421)
+(-1043 |Base| R -3416)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
@@ -4108,14 +4108,14 @@ NIL
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1045 UP SAE UPA)
+(-1045 R UP M)
+((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
+((-4329 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-343))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-343)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))))
+(-1046 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1046 R UP M)
-((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4329 |has| |#1| (-356)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-342))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-342)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142))))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))))
(-1047 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4142,74 +4142,74 @@ NIL
NIL
(-1053 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-880))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-881))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1054 (-1142)) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-1054 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1055 R S)
+(-1055 S)
+((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1067))))
+(-1056 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-821))))
-(-1056)
+(-1057)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1057 R S)
-((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
-NIL
-NIL
(-1058 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1066))))
-(-1059 S)
-((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-2623 . T))
+((|HasCategory| |#1| (QUOTE (-1067))))
+(-1059 R S)
+((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
+NIL
NIL
(-1060 S)
-((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
+((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
+((-2359 . T))
NIL
-((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1066))))
(-1061 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-1062)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1063 A S)
+(-1063 S)
+((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
+((-4336 . T) (-4326 . T) (-4337 . T))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-1064 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1064 S)
+(-1065 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4326 . T) (-2623 . T))
+((-4326 . T) (-2359 . T))
NIL
-(-1065 S)
+(-1066 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1066)
+(-1067)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1067 |m| |n|)
-((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
+(-1068 |m| |n|)
+((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1068 S)
-((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4336 . T) (-4326 . T) (-4337 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-823))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
-(-1069 |Str| |Sym| |Int| |Flt| |Expr|)
-((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
+(-1069)
+((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1070)
-((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
+(-1070 |Str| |Sym| |Int| |Flt| |Expr|)
+((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
(-1071 |Str| |Sym| |Int| |Flt| |Expr|)
@@ -4230,7 +4230,7 @@ NIL
NIL
(-1075 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4337 . T) (-4336 . T) (-2623 . T))
+((-4337 . T) (-4336 . T) (-2359 . T))
NIL
(-1076)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
@@ -4247,25 +4247,25 @@ NIL
(-1079 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4330 |has| |#3| (-1018)) (-4331 |has| |#3| (-1018)) (-4333 |has| |#3| (-6 -4333)) ((-4338 "*") |has| |#3| (-170)) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))))) (-1536 (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#3| (QUOTE (-356))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-769))) (-1536 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821)))) (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-170))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (-1536 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-1066)))) (-1536 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-1536 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-1536 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-1536 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-227)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-356)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-361)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-703)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-769)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-821)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1066))))) (-1536 (-12 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-823))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-1536 (|HasCategory| |#3| (QUOTE (-1018))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1066)))) (|HasAttribute| |#3| (QUOTE -4333)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#3| (QUOTE (-356))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-769))) (-3874 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821)))) (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-170))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-3874 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535)))))) (|HasCategory| (-535) (QUOTE (-823))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#3| (QUOTE -4333)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-835)))))
(-1080 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-444))))
(-1081)
-((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
+((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1082 R -1421)
-((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1082)
+((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1083 R)
-((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1083 R -3416)
+((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1084)
-((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
+(-1084 R)
+((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
(-1085)
@@ -4278,7 +4278,7 @@ NIL
NIL
(-1087 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4336 . T) (-4337 . T) (-2623 . T))
+((-4336 . T) (-4337 . T) (-2359 . T))
NIL
(-1088 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
@@ -4286,7 +4286,7 @@ NIL
((|HasCategory| |#3| (QUOTE (-356))) (|HasAttribute| |#3| (QUOTE (-4338 "*"))) (|HasCategory| |#3| (QUOTE (-170))))
(-1089 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-2623 . T) (-4336 . T) (-4330 . T) (-4331 . T) (-4333 . T))
+((-2359 . T) (-4336 . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-1090 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
@@ -4294,17 +4294,17 @@ NIL
NIL
(-1091 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-880))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-881))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-1092 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-356))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-356))))
(-1093 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4337 . T) (-4336 . T) (-2623 . T))
+((-4337 . T) (-4336 . T) (-2359 . T))
NIL
-(-1094 UP -1421)
+(-1094 UP -3416)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4342,7 +4342,7 @@ NIL
NIL
(-1103)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-1104)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
@@ -4359,18 +4359,18 @@ NIL
(-1107 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| (-1106 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1106) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1106 |#1| |#2|) (QUOTE (-1066)))) (|HasCategory| (-1106 |#1| |#2|) (QUOTE (-1066))) (-1536 (|HasCategory| (-1106 |#1| |#2|) (LIST (QUOTE -593) (QUOTE (-834)))) (-12 (|HasCategory| (-1106 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1106) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1106 |#1| |#2|) (QUOTE (-1066))))) (|HasCategory| (-1106 |#1| |#2|) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| (-1106 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1106) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1106 |#1| |#2|) (QUOTE (-1067)))) (|HasCategory| (-1106 |#1| |#2|) (QUOTE (-1067))) (-3874 (-12 (|HasCategory| (-1106 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1106) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1106 |#1| |#2|) (QUOTE (-1067)))) (|HasCategory| (-1106 |#1| |#2|) (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| (-1106 |#1| |#2|) (LIST (QUOTE -593) (QUOTE (-835)))))
(-1108 |ndim| R)
-((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
+((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
((-4333 . T) (-4325 |has| |#2| (-6 (-4338 "*"))) (-4336 . T) (-4330 . T) (-4331 . T))
-((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4338 "*"))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (-1536 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasAttribute| |#2| (QUOTE (-4338 "*"))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-170))))
+((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4338 "*"))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-356))) (-3874 (|HasAttribute| |#2| (QUOTE (-4338 "*"))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-170))))
(-1109 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
(-1110)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4337 . T) (-4336 . T) (-2623 . T))
+((-4337 . T) (-4336 . T) (-2359 . T))
NIL
(-1111 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
@@ -4379,23 +4379,23 @@ NIL
(-1112 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
((-4337 . T) (-4336 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-835)))))
(-1113 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-1114 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
(-1115 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-1116 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4337 . T))
-((-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1792) (|devaluate| |#2|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1066)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-823))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-823))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))))
(-1117)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
@@ -4405,43 +4405,43 @@ NIL
NIL
NIL
(-1119 S)
+((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
+((-4337 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-1120 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1120 A B)
+(-1121 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1121 A B C)
+(-1122 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1122 S)
-((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4337 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
(-1123)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4337 . T) (-4336 . T) (-2623 . T))
+((-4337 . T) (-4336 . T) (-2359 . T))
NIL
(-1124)
NIL
((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1066))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1066))) (-12 (|HasCategory| (-142) (QUOTE (-1066))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-3874 (-12 (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1067))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-835)))))
(-1125 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (QUOTE (-1124))) (LIST (QUOTE |:|) (QUOTE -1792) (|devaluate| |#1|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-1066)))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (QUOTE (-1066))) (|HasCategory| (-1124) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (QUOTE (-1124))) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (QUOTE (-1067))) (|HasCategory| (-1124) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (LIST (QUOTE -593) (QUOTE (-835)))))
(-1126 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))
+((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))))
(-1127 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
(-1128 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
(-1129 R UP)
@@ -4462,9 +4462,9 @@ NIL
NIL
(-1133 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4338 "*") -1536 (-1820 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-796))) (|has| |#1| (-170)) (-1820 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-880)))) (-4329 -1536 (-1820 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-796))) (|has| |#1| (-541)) (-1820 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-880)))) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1536 (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1536 (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))))) (-1536 (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasCategory| (-549) (QUOTE (-1078))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-356))))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3845) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -1531) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (LIST (QUOTE -621) (QUOTE (-1142))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1536 (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1134 R -1421)
+(((-4338 "*") -3874 (-3179 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-796))) (|has| |#1| (-170)) (-3179 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-881)))) (-4329 -3874 (-3179 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-796))) (|has| |#1| (-542)) (-3179 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-881)))) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-227)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|))))) (|HasCategory| (-535) (QUOTE (-1078))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-991)))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-300)))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-143)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1140 |#1| |#2| |#3|) (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-1134 R -3416)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4472,26 +4472,26 @@ NIL
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1136 R S)
+(-1136 R)
+((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4332 |has| |#1| (-356)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-881)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-1137 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1137 E OV R P)
+(-1138 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1138 R)
-((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4332 |has| |#1| (-356)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
(-1139 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-549)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -3845) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -1531) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (LIST (QUOTE -621) (QUOTE (-1142))) (|devaluate| |#1|)))))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-535)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))))
(-1140 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|)))) (|HasCategory| (-747) (QUOTE (-1078))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasSignature| |#1| (LIST (QUOTE -3845) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -1531) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (LIST (QUOTE -621) (QUOTE (-1142))) (|devaluate| |#1|)))))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|)))) (|HasCategory| (-747) (QUOTE (-1078))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))))
(-1141)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4506,10 +4506,10 @@ NIL
NIL
(-1144 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-6 -4334)) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| (-942) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4334)))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-6 -4334)) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| (-942) (QUOTE (-130)))) (-3874 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasAttribute| |#1| (QUOTE -4334)))
(-1145)
-((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
+((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
(-1146)
@@ -4532,14 +4532,14 @@ NIL
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1151 S)
+(-1151 |Key| |Entry|)
+((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
+((-4336 . T) (-4337 . T))
+((-12 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4203) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2184) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -594) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (-3874 (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-835)))) (|HasCategory| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (LIST (QUOTE -593) (QUOTE (-835)))))
+(-1152 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1152 |Key| |Entry|)
-((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4336 . T) (-4337 . T))
-((-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1792) (|devaluate| |#2|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1066)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1066))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
(-1153 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
@@ -4550,7 +4550,7 @@ NIL
NIL
(-1155 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4337 . T) (-2623 . T))
+((-4337 . T) (-2359 . T))
NIL
(-1156 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
@@ -4560,12 +4560,12 @@ NIL
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1158 S)
-((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
+(-1158)
+((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
NIL
NIL
-(-1159)
-((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
+(-1159 S)
+((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
(-1160)
@@ -4591,7 +4591,7 @@ NIL
(-1165 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
((-4337 . T) (-4336 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1066))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
(-1166 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4600,7 +4600,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1168 R -1421)
+(-1168 R -3416)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4608,22 +4608,22 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1170 R -1421)
+(-1170 R -3416)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -857) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -857) (|devaluate| |#1|)))))
-(-1171 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -861) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -857) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -857) (|devaluate| |#1|)))))
+(-1171 |Coef|)
+((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-356))))
+(-1172 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-361))))
-(-1172 R E V P)
+(-1173 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4337 . T) (-4336 . T) (-2623 . T))
+((-4337 . T) (-4336 . T) (-2359 . T))
NIL
-(-1173 |Coef|)
-((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-356))))
(-1174 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4635,18 +4635,18 @@ NIL
(-1176 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
-((|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
-(-1177 -1421)
+((|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-1177 -3416)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
(-1178)
-((|constructor| (NIL "This domain represents a type AST.")))
-NIL
+((|constructor| (NIL "The fundamental Type.")))
+((-2359 . T))
NIL
(-1179)
-((|constructor| (NIL "The fundamental Type.")))
-((-2623 . T))
+((|constructor| (NIL "This domain represents a type AST.")))
+NIL
NIL
(-1180 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
@@ -4664,153 +4664,153 @@ NIL
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
((-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-1184 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1184 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
+(((-4338 "*") -3874 (-3179 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-796))) (|has| |#1| (-170)) (-3179 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-881)))) (-4329 -3874 (-3179 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-796))) (|has| |#1| (-542)) (-3179 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-881)))) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-227)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|))))) (|HasCategory| (-535) (QUOTE (-1078))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-991)))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-796)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1214) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-300)))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-796)))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-796)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-143)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1214 |#1| |#2| |#3|) (QUOTE (-881)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-1185 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1185 |Coef|)
+(-1186 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-1186 S |Coef| UTS)
+(-1187 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-356))))
-(-1187 |Coef| UTS)
+(-1188 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-2623 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-2359 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-1188 |Coef| UTS)
+(-1189 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-880)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-993)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142)))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143))))) (-1536 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-145))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-227)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasCategory| (-549) (QUOTE (-1078))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-880)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-993)))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-796)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3845) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -1531) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (LIST (QUOTE -621) (QUOTE (-1142))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-880))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-300)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143))))))
-(-1189 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4338 "*") -1536 (-1820 (|has| |#1| (-356)) (|has| (-1217 |#1| |#2| |#3|) (-796))) (|has| |#1| (-170)) (-1820 (|has| |#1| (-356)) (|has| (-1217 |#1| |#2| |#3|) (-880)))) (-4329 -1536 (-1820 (|has| |#1| (-356)) (|has| (-1217 |#1| |#2| |#3|) (-796))) (|has| |#1| (-541)) (-1820 (|has| |#1| (-356)) (|has| (-1217 |#1| |#2| |#3|) (-880)))) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
-((-1536 (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1217) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1217) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1217) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1217) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1536 (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1536 (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))))) (-1536 (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasCategory| (-549) (QUOTE (-1078))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-356))))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1217) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1217) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1217) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1142)) (LIST (QUOTE -1217) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3845) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -1531) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (LIST (QUOTE -621) (QUOTE (-1142))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1536 (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1217 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143))))) (-3874 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-145))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|)))))) (-3874 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-535)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-227))))) (|HasCategory| (-535) (QUOTE (-1078))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-881)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1142))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-991)))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-796)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1142)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-535))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-881))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-300)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143))))))
(-1190 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1191 R S)
+(-1191 S)
+((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1067))))
+(-1192 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-821))))
-(-1192 S)
-((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1066))))
-(-1193 |x| R |y| S)
+(-1193 |x| R)
+((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
+(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-542)) (-4332 |has| |#2| (-356)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+((|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-371)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-535)))) (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-535))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535))))) (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -861) (QUOTE (-535)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (-3874 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-881)))) (-3874 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-881)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (-3874 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (-3874 (-12 (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(-1194 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1194 R Q UP)
+(-1195 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1195 R UP)
+(-1196 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1196 R UP)
+(-1197 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1197 R U)
+(-1198 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1198 |x| R)
-((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4338 "*") |has| |#2| (-170)) (-4329 |has| |#2| (-541)) (-4332 |has| |#2| (-356)) (-4334 |has| |#2| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-541)))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-1199 R PR S PS)
-((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
-NIL
-NIL
-(-1200 S R)
+(-1199 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1117))))
-(-1201 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1117))))
+(-1200 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4332 |has| |#1| (-356)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4332 |has| |#1| (-356)) (-4334 |has| |#1| (-6 -4334)) (-4331 . T) (-4330 . T) (-4333 . T))
+NIL
+(-1201 R PR S PS)
+((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
+NIL
NIL
(-1202 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3845) (LIST (|devaluate| |#2|) (QUOTE (-1142))))))
+((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4300) (LIST (|devaluate| |#2|) (QUOTE (-1142))))))
(-1203 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4330 . T) (-4331 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
(-1204 RC P)
-((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
+((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1205 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1205 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-535)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))))
+(-1206 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1206 |Coef|)
+(-1207 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-1207 S |Coef| ULS)
+(-1208 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1208 |Coef| ULS)
+(-1209 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-1209 |Coef| ULS)
+(-1210 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-549)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -3845) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -1531) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (LIST (QUOTE -621) (QUOTE (-1142))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))
-(-1210 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-549)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -3845) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -1531) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (LIST (QUOTE -621) (QUOTE (-1142))) (|devaluate| |#1|)))))))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4334 |has| |#1| (-356)) (-4328 |has| |#1| (-356)) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-170))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-535)) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-3874 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-542)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-535)))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))))
(-1211 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4338 "*") |has| (-1210 |#2| |#3| |#4|) (-170)) (-4329 |has| (-1210 |#2| |#3| |#4|) (-541)) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-356))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-444))) (-1536 (|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-541))))
+(((-4338 "*") |has| (-1205 |#2| |#3| |#4|) (-170)) (-4329 |has| (-1205 |#2| |#3| |#4|) (-542)) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| (-1205 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-1205 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1205 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1205 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1205 |#2| |#3| |#4|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-1205 |#2| |#3| |#4|) (LIST (QUOTE -1009) (QUOTE (-535)))) (|HasCategory| (-1205 |#2| |#3| |#4|) (QUOTE (-356))) (|HasCategory| (-1205 |#2| |#3| |#4|) (QUOTE (-444))) (-3874 (|HasCategory| (-1205 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| (-1205 |#2| |#3| |#4|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-535)))))) (|HasCategory| (-1205 |#2| |#3| |#4|) (QUOTE (-542))))
(-1212 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
((|HasAttribute| |#1| (QUOTE -4337)))
(-1213 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-2623 . T))
+((-2359 . T))
NIL
-(-1214 |Coef1| |Coef2| UTS1 UTS2)
+(-1214 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-542))) (-3874 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|)))) (|HasCategory| (-747) (QUOTE (-1078))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasSignature| |#1| (LIST (QUOTE -4300) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasCategory| |#1| (QUOTE (-356))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-931))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasSignature| |#1| (LIST (QUOTE -4155) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#1|)))))))
+(-1215 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1215 S |Coef|)
+(-1216 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-930))) (|HasCategory| |#2| (QUOTE (-1164))) (|HasSignature| |#2| (LIST (QUOTE -2271) (LIST (LIST (QUOTE -621) (QUOTE (-1142))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1531) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1142))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356))))
-(-1216 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-931))) (|HasCategory| |#2| (QUOTE (-1164))) (|HasSignature| |#2| (LIST (QUOTE -3405) (LIST (LIST (QUOTE -618) (QUOTE (-1142))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4155) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1142))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-356))))
+(-1217 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4330 . T) (-4331 . T) (-4333 . T))
+(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-542)) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
-(-1217 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4338 "*") |has| |#1| (-170)) (-4329 |has| |#1| (-541)) (-4330 . T) (-4331 . T) (-4333 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1142)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|)))) (|HasCategory| (-747) (QUOTE (-1078))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasSignature| |#1| (LIST (QUOTE -3845) (LIST (|devaluate| |#1|) (QUOTE (-1142)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -1531) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1142))))) (|HasSignature| |#1| (LIST (QUOTE -2271) (LIST (LIST (QUOTE -621) (QUOTE (-1142))) (|devaluate| |#1|)))))))
(-1218 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1219 -1421 UP L UTS)
+(-1219 -3416 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-541))))
+((|HasCategory| |#1| (QUOTE (-542))))
(-1220)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
-((-2623 . T))
+((-2359 . T))
NIL
(-1221 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
@@ -4822,30 +4822,30 @@ NIL
((|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
(-1223 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4337 . T) (-4336 . T) (-2623 . T))
+((-4337 . T) (-4336 . T) (-2359 . T))
NIL
-(-1224 A B)
+(-1224 R)
+((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
+((-4337 . T) (-4336 . T))
+((-3874 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3874 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-524)))) (-3874 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-535) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-835)))))
+(-1225 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1225 R)
-((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4337 . T) (-4336 . T))
-((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
(-1226)
-((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
+((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
(-1227)
-((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
+((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
(-1228)
-((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
+((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
(-1229)
-((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
+((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
(-1230)
@@ -4864,7 +4864,7 @@ NIL
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1234 K R UP -1421)
+(-1234 K R UP -3416)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -4883,7 +4883,7 @@ NIL
(-1238 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
((-4337 . T) (-4336 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-834)))))
+((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-835)))))
(-1239 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
((-4330 . T) (-4331 . T) (-4333 . T))
@@ -4896,30 +4896,30 @@ NIL
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1242 |vl| R)
-((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4329 |has| |#2| (-6 -4329)) (-4331 . T) (-4330 . T) (-4333 . T))
-NIL
-(-1243 S -1421)
+(-1242 S -3416)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))))
-(-1244 -1421)
+(-1243 -3416)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
((-4328 . T) (-4334 . T) (-4329 . T) ((-4338 "*") . T) (-4330 . T) (-4331 . T) (-4333 . T))
NIL
+(-1244 |vl| R)
+((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
+((-4329 |has| |#2| (-6 -4329)) (-4331 . T) (-4330 . T) (-4333 . T))
+NIL
(-1245 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
((-4329 |has| |#2| (-6 -4329)) (-4331 . T) (-4330 . T) (-4333 . T))
-((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -694) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasAttribute| |#2| (QUOTE -4329)))
-(-1246 |vl| R)
-((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4329 |has| |#2| (-6 -4329)) (-4331 . T) (-4330 . T) (-4333 . T))
-NIL
-(-1247 R)
+((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -694) (LIST (QUOTE -400) (QUOTE (-535))))) (|HasAttribute| |#2| (QUOTE -4329)))
+(-1246 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
((-4329 |has| |#1| (-6 -4329)) (-4331 . T) (-4330 . T) (-4333 . T))
((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4329)))
+(-1247 |vl| R)
+((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
+((-4329 |has| |#2| (-6 -4329)) (-4331 . T) (-4330 . T) (-4333 . T))
+NIL
(-1248 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
((-4333 . T) (-4334 |has| |#1| (-6 -4334)) (-4329 |has| |#1| (-6 -4329)) (-4331 . T) (-4330 . T))
@@ -4960,4 +4960,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2266092 2266097 2266102 2266107) (-2 NIL 2266072 2266077 2266082 2266087) (-1 NIL 2266052 2266057 2266062 2266067) (0 NIL 2266032 2266037 2266042 2266047) (-1253 "ZMOD.spad" 2265841 2265854 2265970 2266027) (-1252 "ZLINDEP.spad" 2264885 2264896 2265831 2265836) (-1251 "ZDSOLVE.spad" 2254734 2254756 2264875 2264880) (-1250 "YSTREAM.spad" 2254227 2254238 2254724 2254729) (-1249 "XRPOLY.spad" 2253447 2253467 2254083 2254152) (-1248 "XPR.spad" 2251176 2251189 2253165 2253264) (-1247 "XPOLY.spad" 2250731 2250742 2251032 2251101) (-1246 "XPOLYC.spad" 2250048 2250064 2250657 2250726) (-1245 "XPBWPOLY.spad" 2248485 2248505 2249828 2249897) (-1244 "XF.spad" 2246946 2246961 2248387 2248480) (-1243 "XF.spad" 2245387 2245404 2246830 2246835) (-1242 "XFALG.spad" 2242411 2242427 2245313 2245382) (-1241 "XEXPPKG.spad" 2241662 2241688 2242401 2242406) (-1240 "XDPOLY.spad" 2241276 2241292 2241518 2241587) (-1239 "XALG.spad" 2240874 2240885 2241232 2241271) (-1238 "WUTSET.spad" 2236713 2236730 2240520 2240547) (-1237 "WP.spad" 2235727 2235771 2236571 2236638) (-1236 "WHILEAST.spad" 2235525 2235534 2235717 2235722) (-1235 "WHEREAST.spad" 2235196 2235205 2235515 2235520) (-1234 "WFFINTBS.spad" 2232759 2232781 2235186 2235191) (-1233 "WEIER.spad" 2230973 2230984 2232749 2232754) (-1232 "VSPACE.spad" 2230646 2230657 2230941 2230968) (-1231 "VSPACE.spad" 2230339 2230352 2230636 2230641) (-1230 "VOID.spad" 2229929 2229938 2230329 2230334) (-1229 "VIEW.spad" 2227551 2227560 2229919 2229924) (-1228 "VIEWDEF.spad" 2222748 2222757 2227541 2227546) (-1227 "VIEW3D.spad" 2206583 2206592 2222738 2222743) (-1226 "VIEW2D.spad" 2194320 2194329 2206573 2206578) (-1225 "VECTOR.spad" 2192995 2193006 2193246 2193273) (-1224 "VECTOR2.spad" 2191622 2191635 2192985 2192990) (-1223 "VECTCAT.spad" 2189510 2189521 2191578 2191617) (-1222 "VECTCAT.spad" 2187218 2187231 2189288 2189293) (-1221 "VARIABLE.spad" 2186998 2187013 2187208 2187213) (-1220 "UTYPE.spad" 2186632 2186641 2186978 2186993) (-1219 "UTSODETL.spad" 2185925 2185949 2186588 2186593) (-1218 "UTSODE.spad" 2184113 2184133 2185915 2185920) (-1217 "UTS.spad" 2178902 2178930 2182580 2182677) (-1216 "UTSCAT.spad" 2176353 2176369 2178800 2178897) (-1215 "UTSCAT.spad" 2173448 2173466 2175897 2175902) (-1214 "UTS2.spad" 2173041 2173076 2173438 2173443) (-1213 "URAGG.spad" 2167663 2167674 2173021 2173036) (-1212 "URAGG.spad" 2162259 2162272 2167619 2167624) (-1211 "UPXSSING.spad" 2159902 2159928 2161340 2161473) (-1210 "UPXS.spad" 2156929 2156957 2158034 2158183) (-1209 "UPXSCONS.spad" 2154686 2154706 2155061 2155210) (-1208 "UPXSCCA.spad" 2153144 2153164 2154532 2154681) (-1207 "UPXSCCA.spad" 2151744 2151766 2153134 2153139) (-1206 "UPXSCAT.spad" 2150325 2150341 2151590 2151739) (-1205 "UPXS2.spad" 2149866 2149919 2150315 2150320) (-1204 "UPSQFREE.spad" 2148278 2148292 2149856 2149861) (-1203 "UPSCAT.spad" 2145871 2145895 2148176 2148273) (-1202 "UPSCAT.spad" 2143170 2143196 2145477 2145482) (-1201 "UPOLYC.spad" 2138148 2138159 2143012 2143165) (-1200 "UPOLYC.spad" 2133018 2133031 2137884 2137889) (-1199 "UPOLYC2.spad" 2132487 2132506 2133008 2133013) (-1198 "UP.spad" 2129529 2129544 2130037 2130190) (-1197 "UPMP.spad" 2128419 2128432 2129519 2129524) (-1196 "UPDIVP.spad" 2127982 2127996 2128409 2128414) (-1195 "UPDECOMP.spad" 2126219 2126233 2127972 2127977) (-1194 "UPCDEN.spad" 2125426 2125442 2126209 2126214) (-1193 "UP2.spad" 2124788 2124809 2125416 2125421) (-1192 "UNISEG.spad" 2124141 2124152 2124707 2124712) (-1191 "UNISEG2.spad" 2123634 2123647 2124097 2124102) (-1190 "UNIFACT.spad" 2122735 2122747 2123624 2123629) (-1189 "ULS.spad" 2113289 2113317 2114382 2114811) (-1188 "ULSCONS.spad" 2107328 2107348 2107700 2107849) (-1187 "ULSCCAT.spad" 2104925 2104945 2107148 2107323) (-1186 "ULSCCAT.spad" 2102656 2102678 2104881 2104886) (-1185 "ULSCAT.spad" 2100872 2100888 2102502 2102651) (-1184 "ULS2.spad" 2100384 2100437 2100862 2100867) (-1183 "UFD.spad" 2099449 2099458 2100310 2100379) (-1182 "UFD.spad" 2098576 2098587 2099439 2099444) (-1181 "UDVO.spad" 2097423 2097432 2098566 2098571) (-1180 "UDPO.spad" 2094850 2094861 2097379 2097384) (-1179 "TYPE.spad" 2094772 2094781 2094830 2094845) (-1178 "TYPEAST.spad" 2094691 2094700 2094762 2094767) (-1177 "TWOFACT.spad" 2093341 2093356 2094681 2094686) (-1176 "TUPLE.spad" 2092727 2092738 2093240 2093245) (-1175 "TUBETOOL.spad" 2089564 2089573 2092717 2092722) (-1174 "TUBE.spad" 2088205 2088222 2089554 2089559) (-1173 "TS.spad" 2086794 2086810 2087770 2087867) (-1172 "TSETCAT.spad" 2073909 2073926 2086750 2086789) (-1171 "TSETCAT.spad" 2061022 2061041 2073865 2073870) (-1170 "TRMANIP.spad" 2055388 2055405 2060728 2060733) (-1169 "TRIMAT.spad" 2054347 2054372 2055378 2055383) (-1168 "TRIGMNIP.spad" 2052864 2052881 2054337 2054342) (-1167 "TRIGCAT.spad" 2052376 2052385 2052854 2052859) (-1166 "TRIGCAT.spad" 2051886 2051897 2052366 2052371) (-1165 "TREE.spad" 2050457 2050468 2051493 2051520) (-1164 "TRANFUN.spad" 2050288 2050297 2050447 2050452) (-1163 "TRANFUN.spad" 2050117 2050128 2050278 2050283) (-1162 "TOPSP.spad" 2049791 2049800 2050107 2050112) (-1161 "TOOLSIGN.spad" 2049454 2049465 2049781 2049786) (-1160 "TEXTFILE.spad" 2048011 2048020 2049444 2049449) (-1159 "TEX.spad" 2045028 2045037 2048001 2048006) (-1158 "TEX1.spad" 2044584 2044595 2045018 2045023) (-1157 "TEMUTL.spad" 2044139 2044148 2044574 2044579) (-1156 "TBCMPPK.spad" 2042232 2042255 2044129 2044134) (-1155 "TBAGG.spad" 2041256 2041279 2042200 2042227) (-1154 "TBAGG.spad" 2040300 2040325 2041246 2041251) (-1153 "TANEXP.spad" 2039676 2039687 2040290 2040295) (-1152 "TABLE.spad" 2038087 2038110 2038357 2038384) (-1151 "TABLEAU.spad" 2037568 2037579 2038077 2038082) (-1150 "TABLBUMP.spad" 2034351 2034362 2037558 2037563) (-1149 "SYSTEM.spad" 2033625 2033634 2034341 2034346) (-1148 "SYSSOLP.spad" 2031098 2031109 2033615 2033620) (-1147 "SYNTAX.spad" 2027290 2027299 2031088 2031093) (-1146 "SYMTAB.spad" 2025346 2025355 2027280 2027285) (-1145 "SYMS.spad" 2021331 2021340 2025336 2025341) (-1144 "SYMPOLY.spad" 2020338 2020349 2020420 2020547) (-1143 "SYMFUNC.spad" 2019813 2019824 2020328 2020333) (-1142 "SYMBOL.spad" 2017149 2017158 2019803 2019808) (-1141 "SWITCH.spad" 2013906 2013915 2017139 2017144) (-1140 "SUTS.spad" 2010805 2010833 2012373 2012470) (-1139 "SUPXS.spad" 2007819 2007847 2008937 2009086) (-1138 "SUP.spad" 2004588 2004599 2005369 2005522) (-1137 "SUPFRACF.spad" 2003693 2003711 2004578 2004583) (-1136 "SUP2.spad" 2003083 2003096 2003683 2003688) (-1135 "SUMRF.spad" 2002049 2002060 2003073 2003078) (-1134 "SUMFS.spad" 2001682 2001699 2002039 2002044) (-1133 "SULS.spad" 1992223 1992251 1993329 1993758) (-1132 "SUCHTAST.spad" 1991992 1992001 1992213 1992218) (-1131 "SUCH.spad" 1991672 1991687 1991982 1991987) (-1130 "SUBSPACE.spad" 1983679 1983694 1991662 1991667) (-1129 "SUBRESP.spad" 1982839 1982853 1983635 1983640) (-1128 "STTF.spad" 1978938 1978954 1982829 1982834) (-1127 "STTFNC.spad" 1975406 1975422 1978928 1978933) (-1126 "STTAYLOR.spad" 1967804 1967815 1975287 1975292) (-1125 "STRTBL.spad" 1966309 1966326 1966458 1966485) (-1124 "STRING.spad" 1965718 1965727 1965732 1965759) (-1123 "STRICAT.spad" 1965494 1965503 1965674 1965713) (-1122 "STREAM.spad" 1962262 1962273 1965019 1965034) (-1121 "STREAM3.spad" 1961807 1961822 1962252 1962257) (-1120 "STREAM2.spad" 1960875 1960888 1961797 1961802) (-1119 "STREAM1.spad" 1960579 1960590 1960865 1960870) (-1118 "STINPROD.spad" 1959485 1959501 1960569 1960574) (-1117 "STEP.spad" 1958686 1958695 1959475 1959480) (-1116 "STBL.spad" 1957212 1957240 1957379 1957394) (-1115 "STAGG.spad" 1956277 1956288 1957192 1957207) (-1114 "STAGG.spad" 1955350 1955363 1956267 1956272) (-1113 "STACK.spad" 1954701 1954712 1954957 1954984) (-1112 "SREGSET.spad" 1952405 1952422 1954347 1954374) (-1111 "SRDCMPK.spad" 1950950 1950970 1952395 1952400) (-1110 "SRAGG.spad" 1946035 1946044 1950906 1950945) (-1109 "SRAGG.spad" 1941152 1941163 1946025 1946030) (-1108 "SQMATRIX.spad" 1938776 1938794 1939684 1939771) (-1107 "SPLTREE.spad" 1933328 1933341 1938212 1938239) (-1106 "SPLNODE.spad" 1929916 1929929 1933318 1933323) (-1105 "SPFCAT.spad" 1928693 1928702 1929906 1929911) (-1104 "SPECOUT.spad" 1927243 1927252 1928683 1928688) (-1103 "SPADXPT.spad" 1919372 1919381 1927223 1927238) (-1102 "spad-parser.spad" 1918837 1918846 1919362 1919367) (-1101 "SPADAST.spad" 1918538 1918547 1918827 1918832) (-1100 "SPACEC.spad" 1902551 1902562 1918528 1918533) (-1099 "SPACE3.spad" 1902327 1902338 1902541 1902546) (-1098 "SORTPAK.spad" 1901872 1901885 1902283 1902288) (-1097 "SOLVETRA.spad" 1899629 1899640 1901862 1901867) (-1096 "SOLVESER.spad" 1898149 1898160 1899619 1899624) (-1095 "SOLVERAD.spad" 1894159 1894170 1898139 1898144) (-1094 "SOLVEFOR.spad" 1892579 1892597 1894149 1894154) (-1093 "SNTSCAT.spad" 1892167 1892184 1892535 1892574) (-1092 "SMTS.spad" 1890427 1890453 1891732 1891829) (-1091 "SMP.spad" 1887866 1887886 1888256 1888383) (-1090 "SMITH.spad" 1886709 1886734 1887856 1887861) (-1089 "SMATCAT.spad" 1884807 1884837 1886641 1886704) (-1088 "SMATCAT.spad" 1882849 1882881 1884685 1884690) (-1087 "SKAGG.spad" 1881798 1881809 1882805 1882844) (-1086 "SINT.spad" 1880106 1880115 1881664 1881793) (-1085 "SIMPAN.spad" 1879834 1879843 1880096 1880101) (-1084 "SIG.spad" 1879162 1879171 1879824 1879829) (-1083 "SIGNRF.spad" 1878270 1878281 1879152 1879157) (-1082 "SIGNEF.spad" 1877539 1877556 1878260 1878265) (-1081 "SIGAST.spad" 1876920 1876929 1877529 1877534) (-1080 "SHP.spad" 1874838 1874853 1876876 1876881) (-1079 "SHDP.spad" 1865823 1865850 1866332 1866463) (-1078 "SGROUP.spad" 1865431 1865440 1865813 1865818) (-1077 "SGROUP.spad" 1865037 1865048 1865421 1865426) (-1076 "SGCF.spad" 1857918 1857927 1865027 1865032) (-1075 "SFRTCAT.spad" 1856834 1856851 1857874 1857913) (-1074 "SFRGCD.spad" 1855897 1855917 1856824 1856829) (-1073 "SFQCMPK.spad" 1850534 1850554 1855887 1855892) (-1072 "SFORT.spad" 1849969 1849983 1850524 1850529) (-1071 "SEXOF.spad" 1849812 1849852 1849959 1849964) (-1070 "SEX.spad" 1849704 1849713 1849802 1849807) (-1069 "SEXCAT.spad" 1846808 1846848 1849694 1849699) (-1068 "SET.spad" 1845108 1845119 1846229 1846268) (-1067 "SETMN.spad" 1843542 1843559 1845098 1845103) (-1066 "SETCAT.spad" 1843027 1843036 1843532 1843537) (-1065 "SETCAT.spad" 1842510 1842521 1843017 1843022) (-1064 "SETAGG.spad" 1839019 1839030 1842478 1842505) (-1063 "SETAGG.spad" 1835548 1835561 1839009 1839014) (-1062 "SEQAST.spad" 1835251 1835260 1835538 1835543) (-1061 "SEGXCAT.spad" 1834363 1834376 1835231 1835246) (-1060 "SEG.spad" 1834176 1834187 1834282 1834287) (-1059 "SEGCAT.spad" 1832995 1833006 1834156 1834171) (-1058 "SEGBIND.spad" 1832067 1832078 1832950 1832955) (-1057 "SEGBIND2.spad" 1831763 1831776 1832057 1832062) (-1056 "SEGAST.spad" 1831477 1831486 1831753 1831758) (-1055 "SEG2.spad" 1830902 1830915 1831433 1831438) (-1054 "SDVAR.spad" 1830178 1830189 1830892 1830897) (-1053 "SDPOL.spad" 1827568 1827579 1827859 1827986) (-1052 "SCPKG.spad" 1825647 1825658 1827558 1827563) (-1051 "SCOPE.spad" 1824792 1824801 1825637 1825642) (-1050 "SCACHE.spad" 1823474 1823485 1824782 1824787) (-1049 "SASTCAT.spad" 1823383 1823392 1823464 1823469) (-1048 "SAOS.spad" 1823255 1823264 1823373 1823378) (-1047 "SAERFFC.spad" 1822968 1822988 1823245 1823250) (-1046 "SAE.spad" 1821143 1821159 1821754 1821889) (-1045 "SAEFACT.spad" 1820844 1820864 1821133 1821138) (-1044 "RURPK.spad" 1818485 1818501 1820834 1820839) (-1043 "RULESET.spad" 1817926 1817950 1818475 1818480) (-1042 "RULE.spad" 1816130 1816154 1817916 1817921) (-1041 "RULECOLD.spad" 1815982 1815995 1816120 1816125) (-1040 "RSTRCAST.spad" 1815699 1815708 1815972 1815977) (-1039 "RSETGCD.spad" 1812077 1812097 1815689 1815694) (-1038 "RSETCAT.spad" 1801849 1801866 1812033 1812072) (-1037 "RSETCAT.spad" 1791653 1791672 1801839 1801844) (-1036 "RSDCMPK.spad" 1790105 1790125 1791643 1791648) (-1035 "RRCC.spad" 1788489 1788519 1790095 1790100) (-1034 "RRCC.spad" 1786871 1786903 1788479 1788484) (-1033 "RPTAST.spad" 1786573 1786582 1786861 1786866) (-1032 "RPOLCAT.spad" 1765933 1765948 1786441 1786568) (-1031 "RPOLCAT.spad" 1745007 1745024 1765517 1765522) (-1030 "ROUTINE.spad" 1740870 1740879 1743654 1743681) (-1029 "ROMAN.spad" 1740102 1740111 1740736 1740865) (-1028 "ROIRC.spad" 1739182 1739214 1740092 1740097) (-1027 "RNS.spad" 1738085 1738094 1739084 1739177) (-1026 "RNS.spad" 1737074 1737085 1738075 1738080) (-1025 "RNG.spad" 1736809 1736818 1737064 1737069) (-1024 "RMODULE.spad" 1736447 1736458 1736799 1736804) (-1023 "RMCAT2.spad" 1735855 1735912 1736437 1736442) (-1022 "RMATRIX.spad" 1734534 1734553 1735022 1735061) (-1021 "RMATCAT.spad" 1730055 1730086 1734478 1734529) (-1020 "RMATCAT.spad" 1725478 1725511 1729903 1729908) (-1019 "RINTERP.spad" 1725366 1725386 1725468 1725473) (-1018 "RING.spad" 1724723 1724732 1725346 1725361) (-1017 "RING.spad" 1724088 1724099 1724713 1724718) (-1016 "RIDIST.spad" 1723472 1723481 1724078 1724083) (-1015 "RGCHAIN.spad" 1722051 1722067 1722957 1722984) (-1014 "RF.spad" 1719665 1719676 1722041 1722046) (-1013 "RFFACTOR.spad" 1719127 1719138 1719655 1719660) (-1012 "RFFACT.spad" 1718862 1718874 1719117 1719122) (-1011 "RFDIST.spad" 1717850 1717859 1718852 1718857) (-1010 "RETSOL.spad" 1717267 1717280 1717840 1717845) (-1009 "RETRACT.spad" 1716616 1716627 1717257 1717262) (-1008 "RETRACT.spad" 1715963 1715976 1716606 1716611) (-1007 "RETAST.spad" 1715775 1715784 1715953 1715958) (-1006 "RESULT.spad" 1713835 1713844 1714422 1714449) (-1005 "RESRING.spad" 1713182 1713229 1713773 1713830) (-1004 "RESLATC.spad" 1712506 1712517 1713172 1713177) (-1003 "REPSQ.spad" 1712235 1712246 1712496 1712501) (-1002 "REP.spad" 1709787 1709796 1712225 1712230) (-1001 "REPDB.spad" 1709492 1709503 1709777 1709782) (-1000 "REP2.spad" 1699064 1699075 1709334 1709339) (-999 "REP1.spad" 1693055 1693065 1699014 1699019) (-998 "REGSET.spad" 1690853 1690869 1692701 1692728) (-997 "REF.spad" 1690183 1690193 1690808 1690813) (-996 "REDORDER.spad" 1689360 1689376 1690173 1690178) (-995 "RECLOS.spad" 1688144 1688163 1688847 1688940) (-994 "REALSOLV.spad" 1687277 1687285 1688134 1688139) (-993 "REAL.spad" 1687150 1687158 1687267 1687272) (-992 "REAL0Q.spad" 1684433 1684447 1687140 1687145) (-991 "REAL0.spad" 1681262 1681276 1684423 1684428) (-990 "RDUCEAST.spad" 1680984 1680992 1681252 1681257) (-989 "RDIV.spad" 1680636 1680660 1680974 1680979) (-988 "RDIST.spad" 1680200 1680210 1680626 1680631) (-987 "RDETRS.spad" 1678997 1679014 1680190 1680195) (-986 "RDETR.spad" 1677105 1677122 1678987 1678992) (-985 "RDEEFS.spad" 1676179 1676195 1677095 1677100) (-984 "RDEEF.spad" 1675176 1675192 1676169 1676174) (-983 "RCFIELD.spad" 1672363 1672371 1675078 1675171) (-982 "RCFIELD.spad" 1669636 1669646 1672353 1672358) (-981 "RCAGG.spad" 1667539 1667549 1669616 1669631) (-980 "RCAGG.spad" 1665379 1665391 1667458 1667463) (-979 "RATRET.spad" 1664740 1664750 1665369 1665374) (-978 "RATFACT.spad" 1664433 1664444 1664730 1664735) (-977 "RANDSRC.spad" 1663753 1663761 1664423 1664428) (-976 "RADUTIL.spad" 1663508 1663516 1663743 1663748) (-975 "RADIX.spad" 1660299 1660312 1661976 1662069) (-974 "RADFF.spad" 1658713 1658749 1658831 1658987) (-973 "RADCAT.spad" 1658307 1658315 1658703 1658708) (-972 "RADCAT.spad" 1657899 1657909 1658297 1658302) (-971 "QUEUE.spad" 1657242 1657252 1657506 1657533) (-970 "QUAT.spad" 1655824 1655834 1656166 1656231) (-969 "QUATCT2.spad" 1655443 1655461 1655814 1655819) (-968 "QUATCAT.spad" 1653608 1653618 1655373 1655438) (-967 "QUATCAT.spad" 1651524 1651536 1653291 1653296) (-966 "QUAGG.spad" 1650338 1650348 1651480 1651519) (-965 "QQUTAST.spad" 1650107 1650115 1650328 1650333) (-964 "QFORM.spad" 1649570 1649584 1650097 1650102) (-963 "QFCAT.spad" 1648261 1648271 1649460 1649565) (-962 "QFCAT.spad" 1646556 1646568 1647757 1647762) (-961 "QFCAT2.spad" 1646247 1646263 1646546 1646551) (-960 "QEQUAT.spad" 1645804 1645812 1646237 1646242) (-959 "QCMPACK.spad" 1640551 1640570 1645794 1645799) (-958 "QALGSET.spad" 1636626 1636658 1640465 1640470) (-957 "QALGSET2.spad" 1634622 1634640 1636616 1636621) (-956 "PWFFINTB.spad" 1631932 1631953 1634612 1634617) (-955 "PUSHVAR.spad" 1631261 1631280 1631922 1631927) (-954 "PTRANFN.spad" 1627387 1627397 1631251 1631256) (-953 "PTPACK.spad" 1624475 1624485 1627377 1627382) (-952 "PTFUNC2.spad" 1624296 1624310 1624465 1624470) (-951 "PTCAT.spad" 1623378 1623388 1624252 1624291) (-950 "PSQFR.spad" 1622685 1622709 1623368 1623373) (-949 "PSEUDLIN.spad" 1621543 1621553 1622675 1622680) (-948 "PSETPK.spad" 1606976 1606992 1621421 1621426) (-947 "PSETCAT.spad" 1600884 1600907 1606944 1606971) (-946 "PSETCAT.spad" 1594778 1594803 1600840 1600845) (-945 "PSCURVE.spad" 1593761 1593769 1594768 1594773) (-944 "PSCAT.spad" 1592528 1592557 1593659 1593756) (-943 "PSCAT.spad" 1591385 1591416 1592518 1592523) (-942 "PRTITION.spad" 1590228 1590236 1591375 1591380) (-941 "PRTDAST.spad" 1589947 1589955 1590218 1590223) (-940 "PRS.spad" 1579509 1579526 1589903 1589908) (-939 "PRQAGG.spad" 1578928 1578938 1579465 1579504) (-938 "PROPLOG.spad" 1578331 1578339 1578918 1578923) (-937 "PROPFRML.spad" 1576249 1576260 1578321 1578326) (-936 "PROPERTY.spad" 1575743 1575751 1576239 1576244) (-935 "PRODUCT.spad" 1573423 1573435 1573709 1573764) (-934 "PR.spad" 1571809 1571821 1572514 1572641) (-933 "PRINT.spad" 1571561 1571569 1571799 1571804) (-932 "PRIMES.spad" 1569812 1569822 1571551 1571556) (-931 "PRIMELT.spad" 1567793 1567807 1569802 1569807) (-930 "PRIMCAT.spad" 1567416 1567424 1567783 1567788) (-929 "PRIMARR.spad" 1566421 1566431 1566599 1566626) (-928 "PRIMARR2.spad" 1565144 1565156 1566411 1566416) (-927 "PREASSOC.spad" 1564516 1564528 1565134 1565139) (-926 "PPCURVE.spad" 1563653 1563661 1564506 1564511) (-925 "PORTNUM.spad" 1563428 1563436 1563643 1563648) (-924 "POLYROOT.spad" 1562200 1562222 1563384 1563389) (-923 "POLY.spad" 1559497 1559507 1560014 1560141) (-922 "POLYLIFT.spad" 1558758 1558781 1559487 1559492) (-921 "POLYCATQ.spad" 1556860 1556882 1558748 1558753) (-920 "POLYCAT.spad" 1550266 1550287 1556728 1556855) (-919 "POLYCAT.spad" 1542974 1542997 1549438 1549443) (-918 "POLY2UP.spad" 1542422 1542436 1542964 1542969) (-917 "POLY2.spad" 1542017 1542029 1542412 1542417) (-916 "POLUTIL.spad" 1540958 1540987 1541973 1541978) (-915 "POLTOPOL.spad" 1539706 1539721 1540948 1540953) (-914 "POINT.spad" 1538545 1538555 1538632 1538659) (-913 "PNTHEORY.spad" 1535211 1535219 1538535 1538540) (-912 "PMTOOLS.spad" 1533968 1533982 1535201 1535206) (-911 "PMSYM.spad" 1533513 1533523 1533958 1533963) (-910 "PMQFCAT.spad" 1533100 1533114 1533503 1533508) (-909 "PMPRED.spad" 1532569 1532583 1533090 1533095) (-908 "PMPREDFS.spad" 1532013 1532035 1532559 1532564) (-907 "PMPLCAT.spad" 1531083 1531101 1531945 1531950) (-906 "PMLSAGG.spad" 1530664 1530678 1531073 1531078) (-905 "PMKERNEL.spad" 1530231 1530243 1530654 1530659) (-904 "PMINS.spad" 1529807 1529817 1530221 1530226) (-903 "PMFS.spad" 1529380 1529398 1529797 1529802) (-902 "PMDOWN.spad" 1528666 1528680 1529370 1529375) (-901 "PMASS.spad" 1527678 1527686 1528656 1528661) (-900 "PMASSFS.spad" 1526647 1526663 1527668 1527673) (-899 "PLOTTOOL.spad" 1526427 1526435 1526637 1526642) (-898 "PLOT.spad" 1521258 1521266 1526417 1526422) (-897 "PLOT3D.spad" 1517678 1517686 1521248 1521253) (-896 "PLOT1.spad" 1516819 1516829 1517668 1517673) (-895 "PLEQN.spad" 1504035 1504062 1516809 1516814) (-894 "PINTERP.spad" 1503651 1503670 1504025 1504030) (-893 "PINTERPA.spad" 1503433 1503449 1503641 1503646) (-892 "PI.spad" 1503040 1503048 1503407 1503428) (-891 "PID.spad" 1501996 1502004 1502966 1503035) (-890 "PICOERCE.spad" 1501653 1501663 1501986 1501991) (-889 "PGROEB.spad" 1500250 1500264 1501643 1501648) (-888 "PGE.spad" 1491503 1491511 1500240 1500245) (-887 "PGCD.spad" 1490385 1490402 1491493 1491498) (-886 "PFRPAC.spad" 1489528 1489538 1490375 1490380) (-885 "PFR.spad" 1486185 1486195 1489430 1489523) (-884 "PFOTOOLS.spad" 1485443 1485459 1486175 1486180) (-883 "PFOQ.spad" 1484813 1484831 1485433 1485438) (-882 "PFO.spad" 1484232 1484259 1484803 1484808) (-881 "PF.spad" 1483806 1483818 1484037 1484130) (-880 "PFECAT.spad" 1481472 1481480 1483732 1483801) (-879 "PFECAT.spad" 1479166 1479176 1481428 1481433) (-878 "PFBRU.spad" 1477036 1477048 1479156 1479161) (-877 "PFBR.spad" 1474574 1474597 1477026 1477031) (-876 "PERM.spad" 1470255 1470265 1474404 1474419) (-875 "PERMGRP.spad" 1464991 1465001 1470245 1470250) (-874 "PERMCAT.spad" 1463543 1463553 1464971 1464986) (-873 "PERMAN.spad" 1462075 1462089 1463533 1463538) (-872 "PENDTREE.spad" 1461348 1461358 1461704 1461709) (-871 "PDRING.spad" 1459839 1459849 1461328 1461343) (-870 "PDRING.spad" 1458338 1458350 1459829 1459834) (-869 "PDEPROB.spad" 1457295 1457303 1458328 1458333) (-868 "PDEPACK.spad" 1451297 1451305 1457285 1457290) (-867 "PDECOMP.spad" 1450759 1450776 1451287 1451292) (-866 "PDECAT.spad" 1449113 1449121 1450749 1450754) (-865 "PCOMP.spad" 1448964 1448977 1449103 1449108) (-864 "PBWLB.spad" 1447546 1447563 1448954 1448959) (-863 "PATTERN.spad" 1441977 1441987 1447536 1447541) (-862 "PATTERN2.spad" 1441713 1441725 1441967 1441972) (-861 "PATTERN1.spad" 1440015 1440031 1441703 1441708) (-860 "PATRES.spad" 1437562 1437574 1440005 1440010) (-859 "PATRES2.spad" 1437224 1437238 1437552 1437557) (-858 "PATMATCH.spad" 1435381 1435412 1436932 1436937) (-857 "PATMAB.spad" 1434806 1434816 1435371 1435376) (-856 "PATLRES.spad" 1433890 1433904 1434796 1434801) (-855 "PATAB.spad" 1433654 1433664 1433880 1433885) (-854 "PARTPERM.spad" 1431016 1431024 1433644 1433649) (-853 "PARSURF.spad" 1430444 1430472 1431006 1431011) (-852 "PARSU2.spad" 1430239 1430255 1430434 1430439) (-851 "script-parser.spad" 1429759 1429767 1430229 1430234) (-850 "PARSCURV.spad" 1429187 1429215 1429749 1429754) (-849 "PARSC2.spad" 1428976 1428992 1429177 1429182) (-848 "PARPCURV.spad" 1428434 1428462 1428966 1428971) (-847 "PARPC2.spad" 1428223 1428239 1428424 1428429) (-846 "PAN2EXPR.spad" 1427635 1427643 1428213 1428218) (-845 "PALETTE.spad" 1426605 1426613 1427625 1427630) (-844 "PAIR.spad" 1425588 1425601 1426193 1426198) (-843 "PADICRC.spad" 1422919 1422937 1424094 1424187) (-842 "PADICRAT.spad" 1420935 1420947 1421156 1421249) (-841 "PADIC.spad" 1420630 1420642 1420861 1420930) (-840 "PADICCT.spad" 1419171 1419183 1420556 1420625) (-839 "PADEPAC.spad" 1417850 1417869 1419161 1419166) (-838 "PADE.spad" 1416590 1416606 1417840 1417845) (-837 "OWP.spad" 1415574 1415604 1416448 1416515) (-836 "OVAR.spad" 1415355 1415378 1415564 1415569) (-835 "OUT.spad" 1414439 1414447 1415345 1415350) (-834 "OUTFORM.spad" 1403853 1403861 1414429 1414434) (-833 "OUTBCON.spad" 1403132 1403140 1403843 1403848) (-832 "OUTBCON.spad" 1402409 1402419 1403122 1403127) (-831 "OSI.spad" 1401884 1401892 1402399 1402404) (-830 "OSGROUP.spad" 1401802 1401810 1401874 1401879) (-829 "ORTHPOL.spad" 1400263 1400273 1401719 1401724) (-828 "OREUP.spad" 1399621 1399649 1399943 1399982) (-827 "ORESUP.spad" 1398920 1398944 1399301 1399340) (-826 "OREPCTO.spad" 1396739 1396751 1398840 1398845) (-825 "OREPCAT.spad" 1390796 1390806 1396695 1396734) (-824 "OREPCAT.spad" 1384743 1384755 1390644 1390649) (-823 "ORDSET.spad" 1383909 1383917 1384733 1384738) (-822 "ORDSET.spad" 1383073 1383083 1383899 1383904) (-821 "ORDRING.spad" 1382463 1382471 1383053 1383068) (-820 "ORDRING.spad" 1381861 1381871 1382453 1382458) (-819 "ORDMON.spad" 1381716 1381724 1381851 1381856) (-818 "ORDFUNS.spad" 1380842 1380858 1381706 1381711) (-817 "ORDFIN.spad" 1380776 1380784 1380832 1380837) (-816 "ORDCOMP.spad" 1379241 1379251 1380323 1380352) (-815 "ORDCOMP2.spad" 1378526 1378538 1379231 1379236) (-814 "OPTPROB.spad" 1377106 1377114 1378516 1378521) (-813 "OPTPACK.spad" 1369491 1369499 1377096 1377101) (-812 "OPTCAT.spad" 1367166 1367174 1369481 1369486) (-811 "OPQUERY.spad" 1366715 1366723 1367156 1367161) (-810 "OP.spad" 1366457 1366467 1366537 1366604) (-809 "ONECOMP.spad" 1365202 1365212 1366004 1366033) (-808 "ONECOMP2.spad" 1364620 1364632 1365192 1365197) (-807 "OMSERVER.spad" 1363622 1363630 1364610 1364615) (-806 "OMSAGG.spad" 1363398 1363408 1363566 1363617) (-805 "OMPKG.spad" 1362010 1362018 1363388 1363393) (-804 "OM.spad" 1360975 1360983 1362000 1362005) (-803 "OMLO.spad" 1360400 1360412 1360861 1360900) (-802 "OMEXPR.spad" 1360234 1360244 1360390 1360395) (-801 "OMERR.spad" 1359777 1359785 1360224 1360229) (-800 "OMERRK.spad" 1358811 1358819 1359767 1359772) (-799 "OMENC.spad" 1358155 1358163 1358801 1358806) (-798 "OMDEV.spad" 1352444 1352452 1358145 1358150) (-797 "OMCONN.spad" 1351853 1351861 1352434 1352439) (-796 "OINTDOM.spad" 1351616 1351624 1351779 1351848) (-795 "OFMONOID.spad" 1347803 1347813 1351606 1351611) (-794 "ODVAR.spad" 1347064 1347074 1347793 1347798) (-793 "ODR.spad" 1346512 1346538 1346876 1347025) (-792 "ODPOL.spad" 1343858 1343868 1344198 1344325) (-791 "ODP.spad" 1334979 1334999 1335352 1335483) (-790 "ODETOOLS.spad" 1333562 1333581 1334969 1334974) (-789 "ODESYS.spad" 1331212 1331229 1333552 1333557) (-788 "ODERTRIC.spad" 1327153 1327170 1331169 1331174) (-787 "ODERED.spad" 1326540 1326564 1327143 1327148) (-786 "ODERAT.spad" 1324091 1324108 1326530 1326535) (-785 "ODEPRRIC.spad" 1320982 1321004 1324081 1324086) (-784 "ODEPROB.spad" 1320181 1320189 1320972 1320977) (-783 "ODEPRIM.spad" 1317455 1317477 1320171 1320176) (-782 "ODEPAL.spad" 1316831 1316855 1317445 1317450) (-781 "ODEPACK.spad" 1303433 1303441 1316821 1316826) (-780 "ODEINT.spad" 1302864 1302880 1303423 1303428) (-779 "ODEIFTBL.spad" 1300259 1300267 1302854 1302859) (-778 "ODEEF.spad" 1295626 1295642 1300249 1300254) (-777 "ODECONST.spad" 1295145 1295163 1295616 1295621) (-776 "ODECAT.spad" 1293741 1293749 1295135 1295140) (-775 "OCT.spad" 1291879 1291889 1292595 1292634) (-774 "OCTCT2.spad" 1291523 1291544 1291869 1291874) (-773 "OC.spad" 1289297 1289307 1291479 1291518) (-772 "OC.spad" 1286796 1286808 1288980 1288985) (-771 "OCAMON.spad" 1286644 1286652 1286786 1286791) (-770 "OASGP.spad" 1286459 1286467 1286634 1286639) (-769 "OAMONS.spad" 1285979 1285987 1286449 1286454) (-768 "OAMON.spad" 1285840 1285848 1285969 1285974) (-767 "OAGROUP.spad" 1285702 1285710 1285830 1285835) (-766 "NUMTUBE.spad" 1285289 1285305 1285692 1285697) (-765 "NUMQUAD.spad" 1273151 1273159 1285279 1285284) (-764 "NUMODE.spad" 1264287 1264295 1273141 1273146) (-763 "NUMINT.spad" 1261845 1261853 1264277 1264282) (-762 "NUMFMT.spad" 1260685 1260693 1261835 1261840) (-761 "NUMERIC.spad" 1252757 1252767 1260490 1260495) (-760 "NTSCAT.spad" 1251247 1251263 1252713 1252752) (-759 "NTPOLFN.spad" 1250792 1250802 1251164 1251169) (-758 "NSUP.spad" 1243802 1243812 1248342 1248495) (-757 "NSUP2.spad" 1243194 1243206 1243792 1243797) (-756 "NSMP.spad" 1239389 1239408 1239697 1239824) (-755 "NREP.spad" 1237761 1237775 1239379 1239384) (-754 "NPCOEF.spad" 1237007 1237027 1237751 1237756) (-753 "NORMRETR.spad" 1236605 1236644 1236997 1237002) (-752 "NORMPK.spad" 1234507 1234526 1236595 1236600) (-751 "NORMMA.spad" 1234195 1234221 1234497 1234502) (-750 "NONE.spad" 1233936 1233944 1234185 1234190) (-749 "NONE1.spad" 1233612 1233622 1233926 1233931) (-748 "NODE1.spad" 1233081 1233097 1233602 1233607) (-747 "NNI.spad" 1231968 1231976 1233055 1233076) (-746 "NLINSOL.spad" 1230590 1230600 1231958 1231963) (-745 "NIPROB.spad" 1229073 1229081 1230580 1230585) (-744 "NFINTBAS.spad" 1226533 1226550 1229063 1229068) (-743 "NCODIV.spad" 1224731 1224747 1226523 1226528) (-742 "NCNTFRAC.spad" 1224373 1224387 1224721 1224726) (-741 "NCEP.spad" 1222533 1222547 1224363 1224368) (-740 "NASRING.spad" 1222129 1222137 1222523 1222528) (-739 "NASRING.spad" 1221723 1221733 1222119 1222124) (-738 "NARNG.spad" 1221067 1221075 1221713 1221718) (-737 "NARNG.spad" 1220409 1220419 1221057 1221062) (-736 "NAGSP.spad" 1219482 1219490 1220399 1220404) (-735 "NAGS.spad" 1209007 1209015 1219472 1219477) (-734 "NAGF07.spad" 1207400 1207408 1208997 1209002) (-733 "NAGF04.spad" 1201632 1201640 1207390 1207395) (-732 "NAGF02.spad" 1195441 1195449 1201622 1201627) (-731 "NAGF01.spad" 1191044 1191052 1195431 1195436) (-730 "NAGE04.spad" 1184504 1184512 1191034 1191039) (-729 "NAGE02.spad" 1174846 1174854 1184494 1184499) (-728 "NAGE01.spad" 1170730 1170738 1174836 1174841) (-727 "NAGD03.spad" 1168650 1168658 1170720 1170725) (-726 "NAGD02.spad" 1161181 1161189 1168640 1168645) (-725 "NAGD01.spad" 1155294 1155302 1161171 1161176) (-724 "NAGC06.spad" 1151081 1151089 1155284 1155289) (-723 "NAGC05.spad" 1149550 1149558 1151071 1151076) (-722 "NAGC02.spad" 1148805 1148813 1149540 1149545) (-721 "NAALG.spad" 1148340 1148350 1148773 1148800) (-720 "NAALG.spad" 1147895 1147907 1148330 1148335) (-719 "MULTSQFR.spad" 1144853 1144870 1147885 1147890) (-718 "MULTFACT.spad" 1144236 1144253 1144843 1144848) (-717 "MTSCAT.spad" 1142270 1142291 1144134 1144231) (-716 "MTHING.spad" 1141927 1141937 1142260 1142265) (-715 "MSYSCMD.spad" 1141361 1141369 1141917 1141922) (-714 "MSET.spad" 1139303 1139313 1141067 1141106) (-713 "MSETAGG.spad" 1139136 1139146 1139259 1139298) (-712 "MRING.spad" 1136107 1136119 1138844 1138911) (-711 "MRF2.spad" 1135675 1135689 1136097 1136102) (-710 "MRATFAC.spad" 1135221 1135238 1135665 1135670) (-709 "MPRFF.spad" 1133251 1133270 1135211 1135216) (-708 "MPOLY.spad" 1130686 1130701 1131045 1131172) (-707 "MPCPF.spad" 1129950 1129969 1130676 1130681) (-706 "MPC3.spad" 1129765 1129805 1129940 1129945) (-705 "MPC2.spad" 1129407 1129440 1129755 1129760) (-704 "MONOTOOL.spad" 1127742 1127759 1129397 1129402) (-703 "MONOID.spad" 1127061 1127069 1127732 1127737) (-702 "MONOID.spad" 1126378 1126388 1127051 1127056) (-701 "MONOGEN.spad" 1125124 1125137 1126238 1126373) (-700 "MONOGEN.spad" 1123892 1123907 1125008 1125013) (-699 "MONADWU.spad" 1121906 1121914 1123882 1123887) (-698 "MONADWU.spad" 1119918 1119928 1121896 1121901) (-697 "MONAD.spad" 1119062 1119070 1119908 1119913) (-696 "MONAD.spad" 1118204 1118214 1119052 1119057) (-695 "MOEBIUS.spad" 1116890 1116904 1118184 1118199) (-694 "MODULE.spad" 1116760 1116770 1116858 1116885) (-693 "MODULE.spad" 1116650 1116662 1116750 1116755) (-692 "MODRING.spad" 1115981 1116020 1116630 1116645) (-691 "MODOP.spad" 1114640 1114652 1115803 1115870) (-690 "MODMONOM.spad" 1114172 1114190 1114630 1114635) (-689 "MODMON.spad" 1110874 1110890 1111650 1111803) (-688 "MODFIELD.spad" 1110232 1110271 1110776 1110869) (-687 "MMLFORM.spad" 1109092 1109100 1110222 1110227) (-686 "MMAP.spad" 1108832 1108866 1109082 1109087) (-685 "MLO.spad" 1107259 1107269 1108788 1108827) (-684 "MLIFT.spad" 1105831 1105848 1107249 1107254) (-683 "MKUCFUNC.spad" 1105364 1105382 1105821 1105826) (-682 "MKRECORD.spad" 1104966 1104979 1105354 1105359) (-681 "MKFUNC.spad" 1104347 1104357 1104956 1104961) (-680 "MKFLCFN.spad" 1103303 1103313 1104337 1104342) (-679 "MKCHSET.spad" 1103079 1103089 1103293 1103298) (-678 "MKBCFUNC.spad" 1102564 1102582 1103069 1103074) (-677 "MINT.spad" 1102003 1102011 1102466 1102559) (-676 "MHROWRED.spad" 1100504 1100514 1101993 1101998) (-675 "MFLOAT.spad" 1099020 1099028 1100394 1100499) (-674 "MFINFACT.spad" 1098420 1098442 1099010 1099015) (-673 "MESH.spad" 1096152 1096160 1098410 1098415) (-672 "MDDFACT.spad" 1094345 1094355 1096142 1096147) (-671 "MDAGG.spad" 1093620 1093630 1094313 1094340) (-670 "MCMPLX.spad" 1089595 1089603 1090209 1090410) (-669 "MCDEN.spad" 1088803 1088815 1089585 1089590) (-668 "MCALCFN.spad" 1085905 1085931 1088793 1088798) (-667 "MAYBE.spad" 1085154 1085165 1085895 1085900) (-666 "MATSTOR.spad" 1082430 1082440 1085144 1085149) (-665 "MATRIX.spad" 1081134 1081144 1081618 1081645) (-664 "MATLIN.spad" 1078460 1078484 1081018 1081023) (-663 "MATCAT.spad" 1070033 1070055 1078416 1078455) (-662 "MATCAT.spad" 1061490 1061514 1069875 1069880) (-661 "MATCAT2.spad" 1060758 1060806 1061480 1061485) (-660 "MAPPKG3.spad" 1059657 1059671 1060748 1060753) (-659 "MAPPKG2.spad" 1058991 1059003 1059647 1059652) (-658 "MAPPKG1.spad" 1057809 1057819 1058981 1058986) (-657 "MAPPAST.spad" 1057122 1057130 1057799 1057804) (-656 "MAPHACK3.spad" 1056930 1056944 1057112 1057117) (-655 "MAPHACK2.spad" 1056695 1056707 1056920 1056925) (-654 "MAPHACK1.spad" 1056325 1056335 1056685 1056690) (-653 "MAGMA.spad" 1054115 1054132 1056315 1056320) (-652 "MACROAST.spad" 1053694 1053702 1054105 1054110) (-651 "M3D.spad" 1051390 1051400 1053072 1053077) (-650 "LZSTAGG.spad" 1048608 1048618 1051370 1051385) (-649 "LZSTAGG.spad" 1045834 1045846 1048598 1048603) (-648 "LWORD.spad" 1042539 1042556 1045824 1045829) (-647 "LSTAST.spad" 1042323 1042331 1042529 1042534) (-646 "LSQM.spad" 1040549 1040563 1040947 1040998) (-645 "LSPP.spad" 1040082 1040099 1040539 1040544) (-644 "LSMP.spad" 1038922 1038950 1040072 1040077) (-643 "LSMP1.spad" 1036726 1036740 1038912 1038917) (-642 "LSAGG.spad" 1036383 1036393 1036682 1036721) (-641 "LSAGG.spad" 1036072 1036084 1036373 1036378) (-640 "LPOLY.spad" 1035026 1035045 1035928 1035997) (-639 "LPEFRAC.spad" 1034283 1034293 1035016 1035021) (-638 "LO.spad" 1033684 1033698 1034217 1034244) (-637 "LOGIC.spad" 1033286 1033294 1033674 1033679) (-636 "LOGIC.spad" 1032886 1032896 1033276 1033281) (-635 "LODOOPS.spad" 1031804 1031816 1032876 1032881) (-634 "LODO.spad" 1031188 1031204 1031484 1031523) (-633 "LODOF.spad" 1030232 1030249 1031145 1031150) (-632 "LODOCAT.spad" 1028890 1028900 1030188 1030227) (-631 "LODOCAT.spad" 1027546 1027558 1028846 1028851) (-630 "LODO2.spad" 1026819 1026831 1027226 1027265) (-629 "LODO1.spad" 1026219 1026229 1026499 1026538) (-628 "LODEEF.spad" 1024991 1025009 1026209 1026214) (-627 "LNAGG.spad" 1020783 1020793 1024971 1024986) (-626 "LNAGG.spad" 1016549 1016561 1020739 1020744) (-625 "LMOPS.spad" 1013285 1013302 1016539 1016544) (-624 "LMODULE.spad" 1012927 1012937 1013275 1013280) (-623 "LMDICT.spad" 1012210 1012220 1012478 1012505) (-622 "LITERAL.spad" 1012116 1012127 1012200 1012205) (-621 "LIST.spad" 1009834 1009844 1011263 1011290) (-620 "LIST3.spad" 1009125 1009139 1009824 1009829) (-619 "LIST2.spad" 1007765 1007777 1009115 1009120) (-618 "LIST2MAP.spad" 1004642 1004654 1007755 1007760) (-617 "LINEXP.spad" 1004074 1004084 1004622 1004637) (-616 "LINDEP.spad" 1002851 1002863 1003986 1003991) (-615 "LIMITRF.spad" 1000765 1000775 1002841 1002846) (-614 "LIMITPS.spad" 999648 999661 1000755 1000760) (-613 "LIE.spad" 997662 997674 998938 999083) (-612 "LIECAT.spad" 997138 997148 997588 997657) (-611 "LIECAT.spad" 996642 996654 997094 997099) (-610 "LIB.spad" 994690 994698 995301 995316) (-609 "LGROBP.spad" 992043 992062 994680 994685) (-608 "LF.spad" 990962 990978 992033 992038) (-607 "LFCAT.spad" 989981 989989 990952 990957) (-606 "LEXTRIPK.spad" 985484 985499 989971 989976) (-605 "LEXP.spad" 983487 983514 985464 985479) (-604 "LETAST.spad" 983186 983194 983477 983482) (-603 "LEADCDET.spad" 981570 981587 983176 983181) (-602 "LAZM3PK.spad" 980274 980296 981560 981565) (-601 "LAUPOL.spad" 978963 978976 979867 979936) (-600 "LAPLACE.spad" 978536 978552 978953 978958) (-599 "LA.spad" 977976 977990 978458 978497) (-598 "LALG.spad" 977752 977762 977956 977971) (-597 "LALG.spad" 977536 977548 977742 977747) (-596 "KTVLOGIC.spad" 976959 976967 977526 977531) (-595 "KOVACIC.spad" 975672 975689 976949 976954) (-594 "KONVERT.spad" 975394 975404 975662 975667) (-593 "KOERCE.spad" 975131 975141 975384 975389) (-592 "KERNEL.spad" 973666 973676 974915 974920) (-591 "KERNEL2.spad" 973369 973381 973656 973661) (-590 "KDAGG.spad" 972460 972482 973337 973364) (-589 "KDAGG.spad" 971571 971595 972450 972455) (-588 "KAFILE.spad" 970534 970550 970769 970796) (-587 "JORDAN.spad" 968361 968373 969824 969969) (-586 "JOINAST.spad" 968055 968063 968351 968356) (-585 "JAVACODE.spad" 967821 967829 968045 968050) (-584 "IXAGG.spad" 965934 965958 967801 967816) (-583 "IXAGG.spad" 963912 963938 965781 965786) (-582 "IVECTOR.spad" 962683 962698 962838 962865) (-581 "ITUPLE.spad" 961828 961838 962673 962678) (-580 "ITRIGMNP.spad" 960639 960658 961818 961823) (-579 "ITFUN3.spad" 960133 960147 960629 960634) (-578 "ITFUN2.spad" 959863 959875 960123 960128) (-577 "ITAYLOR.spad" 957655 957670 959699 959824) (-576 "ISUPS.spad" 950066 950081 956629 956726) (-575 "ISUMP.spad" 949563 949579 950056 950061) (-574 "ISTRING.spad" 948566 948579 948732 948759) (-573 "ISAST.spad" 948285 948293 948556 948561) (-572 "IRURPK.spad" 946998 947017 948275 948280) (-571 "IRSN.spad" 944958 944966 946988 946993) (-570 "IRRF2F.spad" 943433 943443 944914 944919) (-569 "IRREDFFX.spad" 943034 943045 943423 943428) (-568 "IROOT.spad" 941365 941375 943024 943029) (-567 "IR.spad" 939154 939168 941220 941247) (-566 "IR2.spad" 938174 938190 939144 939149) (-565 "IR2F.spad" 937374 937390 938164 938169) (-564 "IPRNTPK.spad" 937134 937142 937364 937369) (-563 "IPF.spad" 936699 936711 936939 937032) (-562 "IPADIC.spad" 936460 936486 936625 936694) (-561 "IOBCON.spad" 936325 936333 936450 936455) (-560 "INVLAPLA.spad" 935970 935986 936315 936320) (-559 "INTTR.spad" 929216 929233 935960 935965) (-558 "INTTOOLS.spad" 926927 926943 928790 928795) (-557 "INTSLPE.spad" 926233 926241 926917 926922) (-556 "INTRVL.spad" 925799 925809 926147 926228) (-555 "INTRF.spad" 924163 924177 925789 925794) (-554 "INTRET.spad" 923595 923605 924153 924158) (-553 "INTRAT.spad" 922270 922287 923585 923590) (-552 "INTPM.spad" 920633 920649 921913 921918) (-551 "INTPAF.spad" 918401 918419 920565 920570) (-550 "INTPACK.spad" 908711 908719 918391 918396) (-549 "INT.spad" 908072 908080 908565 908706) (-548 "INTHERTR.spad" 907338 907355 908062 908067) (-547 "INTHERAL.spad" 907004 907028 907328 907333) (-546 "INTHEORY.spad" 903417 903425 906994 906999) (-545 "INTG0.spad" 896880 896898 903349 903354) (-544 "INTFTBL.spad" 890909 890917 896870 896875) (-543 "INTFACT.spad" 889968 889978 890899 890904) (-542 "INTEF.spad" 888283 888299 889958 889963) (-541 "INTDOM.spad" 886898 886906 888209 888278) (-540 "INTDOM.spad" 885575 885585 886888 886893) (-539 "INTCAT.spad" 883828 883838 885489 885570) (-538 "INTBIT.spad" 883331 883339 883818 883823) (-537 "INTALG.spad" 882513 882540 883321 883326) (-536 "INTAF.spad" 882005 882021 882503 882508) (-535 "INTABL.spad" 880523 880554 880686 880713) (-534 "INS.spad" 877990 877998 880425 880518) (-533 "INS.spad" 875543 875553 877980 877985) (-532 "INPSIGN.spad" 874977 874990 875533 875538) (-531 "INPRODPF.spad" 874043 874062 874967 874972) (-530 "INPRODFF.spad" 873101 873125 874033 874038) (-529 "INNMFACT.spad" 872072 872089 873091 873096) (-528 "INMODGCD.spad" 871556 871586 872062 872067) (-527 "INFSP.spad" 869841 869863 871546 871551) (-526 "INFPROD0.spad" 868891 868910 869831 869836) (-525 "INFORM.spad" 866052 866060 868881 868886) (-524 "INFORM1.spad" 865677 865687 866042 866047) (-523 "INFINITY.spad" 865229 865237 865667 865672) (-522 "INEP.spad" 863761 863783 865219 865224) (-521 "INDE.spad" 863490 863507 863751 863756) (-520 "INCRMAPS.spad" 862911 862921 863480 863485) (-519 "INBFF.spad" 858681 858692 862901 862906) (-518 "INBCON.spad" 857981 857989 858671 858676) (-517 "INBCON.spad" 857279 857289 857971 857976) (-516 "INAST.spad" 856944 856952 857269 857274) (-515 "IMPTAST.spad" 856652 856660 856934 856939) (-514 "IMATRIX.spad" 855597 855623 856109 856136) (-513 "IMATQF.spad" 854691 854735 855553 855558) (-512 "IMATLIN.spad" 853296 853320 854647 854652) (-511 "ILIST.spad" 851952 851967 852479 852506) (-510 "IIARRAY2.spad" 851340 851378 851559 851586) (-509 "IFF.spad" 850750 850766 851021 851114) (-508 "IFAST.spad" 850364 850372 850740 850745) (-507 "IFARRAY.spad" 847851 847866 849547 849574) (-506 "IFAMON.spad" 847713 847730 847807 847812) (-505 "IEVALAB.spad" 847102 847114 847703 847708) (-504 "IEVALAB.spad" 846489 846503 847092 847097) (-503 "IDPO.spad" 846287 846299 846479 846484) (-502 "IDPOAMS.spad" 846043 846055 846277 846282) (-501 "IDPOAM.spad" 845763 845775 846033 846038) (-500 "IDPC.spad" 844697 844709 845753 845758) (-499 "IDPAM.spad" 844442 844454 844687 844692) (-498 "IDPAG.spad" 844189 844201 844432 844437) (-497 "IDENT.spad" 844106 844114 844179 844184) (-496 "IDECOMP.spad" 841343 841361 844096 844101) (-495 "IDEAL.spad" 836266 836305 841278 841283) (-494 "ICDEN.spad" 835417 835433 836256 836261) (-493 "ICARD.spad" 834606 834614 835407 835412) (-492 "IBPTOOLS.spad" 833199 833216 834596 834601) (-491 "IBITS.spad" 832398 832411 832835 832862) (-490 "IBATOOL.spad" 829273 829292 832388 832393) (-489 "IBACHIN.spad" 827760 827775 829263 829268) (-488 "IARRAY2.spad" 826748 826774 827367 827394) (-487 "IARRAY1.spad" 825793 825808 825931 825958) (-486 "IAN.spad" 824006 824014 825609 825702) (-485 "IALGFACT.spad" 823607 823640 823996 824001) (-484 "HYPCAT.spad" 823031 823039 823597 823602) (-483 "HYPCAT.spad" 822453 822463 823021 823026) (-482 "HOSTNAME.spad" 822261 822269 822443 822448) (-481 "HOAGG.spad" 819519 819529 822241 822256) (-480 "HOAGG.spad" 816562 816574 819286 819291) (-479 "HEXADEC.spad" 814432 814440 815030 815123) (-478 "HEUGCD.spad" 813447 813458 814422 814427) (-477 "HELLFDIV.spad" 813037 813061 813437 813442) (-476 "HEAP.spad" 812429 812439 812644 812671) (-475 "HEADAST.spad" 811960 811968 812419 812424) (-474 "HDP.spad" 803077 803093 803454 803585) (-473 "HDMP.spad" 800253 800268 800871 800998) (-472 "HB.spad" 798490 798498 800243 800248) (-471 "HASHTBL.spad" 796960 796991 797171 797198) (-470 "HASAST.spad" 796676 796684 796950 796955) (-469 "HACKPI.spad" 796159 796167 796578 796671) (-468 "GTSET.spad" 795098 795114 795805 795832) (-467 "GSTBL.spad" 793617 793652 793791 793806) (-466 "GSERIES.spad" 790784 790811 791749 791898) (-465 "GROUP.spad" 790053 790061 790764 790779) (-464 "GROUP.spad" 789330 789340 790043 790048) (-463 "GROEBSOL.spad" 787818 787839 789320 789325) (-462 "GRMOD.spad" 786389 786401 787808 787813) (-461 "GRMOD.spad" 784958 784972 786379 786384) (-460 "GRIMAGE.spad" 777563 777571 784948 784953) (-459 "GRDEF.spad" 775942 775950 777553 777558) (-458 "GRAY.spad" 774401 774409 775932 775937) (-457 "GRALG.spad" 773448 773460 774391 774396) (-456 "GRALG.spad" 772493 772507 773438 773443) (-455 "GPOLSET.spad" 771947 771970 772175 772202) (-454 "GOSPER.spad" 771212 771230 771937 771942) (-453 "GMODPOL.spad" 770350 770377 771180 771207) (-452 "GHENSEL.spad" 769419 769433 770340 770345) (-451 "GENUPS.spad" 765520 765533 769409 769414) (-450 "GENUFACT.spad" 765097 765107 765510 765515) (-449 "GENPGCD.spad" 764681 764698 765087 765092) (-448 "GENMFACT.spad" 764133 764152 764671 764676) (-447 "GENEEZ.spad" 762072 762085 764123 764128) (-446 "GDMP.spad" 759090 759107 759866 759993) (-445 "GCNAALG.spad" 752985 753012 758884 758951) (-444 "GCDDOM.spad" 752157 752165 752911 752980) (-443 "GCDDOM.spad" 751391 751401 752147 752152) (-442 "GB.spad" 748909 748947 751347 751352) (-441 "GBINTERN.spad" 744929 744967 748899 748904) (-440 "GBF.spad" 740686 740724 744919 744924) (-439 "GBEUCLID.spad" 738560 738598 740676 740681) (-438 "GAUSSFAC.spad" 737857 737865 738550 738555) (-437 "GALUTIL.spad" 736179 736189 737813 737818) (-436 "GALPOLYU.spad" 734625 734638 736169 736174) (-435 "GALFACTU.spad" 732790 732809 734615 734620) (-434 "GALFACT.spad" 722923 722934 732780 732785) (-433 "FVFUN.spad" 719936 719944 722903 722918) (-432 "FVC.spad" 718978 718986 719916 719931) (-431 "FUNCTION.spad" 718827 718839 718968 718973) (-430 "FT.spad" 717039 717047 718817 718822) (-429 "FTEM.spad" 716202 716210 717029 717034) (-428 "FSUPFACT.spad" 715102 715121 716138 716143) (-427 "FST.spad" 713188 713196 715092 715097) (-426 "FSRED.spad" 712666 712682 713178 713183) (-425 "FSPRMELT.spad" 711490 711506 712623 712628) (-424 "FSPECF.spad" 709567 709583 711480 711485) (-423 "FS.spad" 703617 703627 709330 709562) (-422 "FS.spad" 697457 697469 703172 703177) (-421 "FSINT.spad" 697115 697131 697447 697452) (-420 "FSERIES.spad" 696302 696314 696935 697034) (-419 "FSCINT.spad" 695615 695631 696292 696297) (-418 "FSAGG.spad" 694720 694730 695559 695610) (-417 "FSAGG.spad" 693799 693811 694640 694645) (-416 "FSAGG2.spad" 692498 692514 693789 693794) (-415 "FS2UPS.spad" 686887 686921 692488 692493) (-414 "FS2.spad" 686532 686548 686877 686882) (-413 "FS2EXPXP.spad" 685655 685678 686522 686527) (-412 "FRUTIL.spad" 684597 684607 685645 685650) (-411 "FR.spad" 678292 678302 683622 683691) (-410 "FRNAALG.spad" 673379 673389 678234 678287) (-409 "FRNAALG.spad" 668478 668490 673335 673340) (-408 "FRNAAF2.spad" 667932 667950 668468 668473) (-407 "FRMOD.spad" 667326 667356 667863 667868) (-406 "FRIDEAL.spad" 666521 666542 667306 667321) (-405 "FRIDEAL2.spad" 666123 666155 666511 666516) (-404 "FRETRCT.spad" 665634 665644 666113 666118) (-403 "FRETRCT.spad" 665011 665023 665492 665497) (-402 "FRAMALG.spad" 663339 663352 664967 665006) (-401 "FRAMALG.spad" 661699 661714 663329 663334) (-400 "FRAC.spad" 658799 658809 659202 659375) (-399 "FRAC2.spad" 658402 658414 658789 658794) (-398 "FR2.spad" 657736 657748 658392 658397) (-397 "FPS.spad" 654545 654553 657626 657731) (-396 "FPS.spad" 651382 651392 654465 654470) (-395 "FPC.spad" 650424 650432 651284 651377) (-394 "FPC.spad" 649552 649562 650414 650419) (-393 "FPATMAB.spad" 649304 649314 649532 649547) (-392 "FPARFRAC.spad" 647777 647794 649294 649299) (-391 "FORTRAN.spad" 646283 646326 647767 647772) (-390 "FORT.spad" 645212 645220 646273 646278) (-389 "FORTFN.spad" 642372 642380 645192 645207) (-388 "FORTCAT.spad" 642046 642054 642352 642367) (-387 "FORMULA.spad" 639384 639392 642036 642041) (-386 "FORMULA1.spad" 638863 638873 639374 639379) (-385 "FORDER.spad" 638554 638578 638853 638858) (-384 "FOP.spad" 637755 637763 638544 638549) (-383 "FNLA.spad" 637179 637201 637723 637750) (-382 "FNCAT.spad" 635507 635515 637169 637174) (-381 "FNAME.spad" 635399 635407 635497 635502) (-380 "FMTC.spad" 635197 635205 635325 635394) (-379 "FMONOID.spad" 632252 632262 635153 635158) (-378 "FM.spad" 631947 631959 632186 632213) (-377 "FMFUN.spad" 628967 628975 631927 631942) (-376 "FMC.spad" 628009 628017 628947 628962) (-375 "FMCAT.spad" 625663 625681 627977 628004) (-374 "FM1.spad" 625020 625032 625597 625624) (-373 "FLOATRP.spad" 622741 622755 625010 625015) (-372 "FLOAT.spad" 615905 615913 622607 622736) (-371 "FLOATCP.spad" 613322 613336 615895 615900) (-370 "FLINEXP.spad" 613034 613044 613302 613317) (-369 "FLINEXP.spad" 612700 612712 612970 612975) (-368 "FLASORT.spad" 612020 612032 612690 612695) (-367 "FLALG.spad" 609666 609685 611946 612015) (-366 "FLAGG.spad" 606672 606682 609634 609661) (-365 "FLAGG.spad" 603591 603603 606555 606560) (-364 "FLAGG2.spad" 602272 602288 603581 603586) (-363 "FINRALG.spad" 600301 600314 602228 602267) (-362 "FINRALG.spad" 598256 598271 600185 600190) (-361 "FINITE.spad" 597408 597416 598246 598251) (-360 "FINAALG.spad" 586389 586399 597350 597403) (-359 "FINAALG.spad" 575382 575394 586345 586350) (-358 "FILE.spad" 574965 574975 575372 575377) (-357 "FILECAT.spad" 573483 573500 574955 574960) (-356 "FIELD.spad" 572889 572897 573385 573478) (-355 "FIELD.spad" 572381 572391 572879 572884) (-354 "FGROUP.spad" 570990 571000 572361 572376) (-353 "FGLMICPK.spad" 569777 569792 570980 570985) (-352 "FFX.spad" 569152 569167 569493 569586) (-351 "FFSLPE.spad" 568641 568662 569142 569147) (-350 "FFPOLY.spad" 559893 559904 568631 568636) (-349 "FFPOLY2.spad" 558953 558970 559883 559888) (-348 "FFP.spad" 558350 558370 558669 558762) (-347 "FF.spad" 557798 557814 558031 558124) (-346 "FFNBX.spad" 556310 556330 557514 557607) (-345 "FFNBP.spad" 554823 554840 556026 556119) (-344 "FFNB.spad" 553288 553309 554504 554597) (-343 "FFINTBAS.spad" 550702 550721 553278 553283) (-342 "FFIELDC.spad" 548277 548285 550604 550697) (-341 "FFIELDC.spad" 545938 545948 548267 548272) (-340 "FFHOM.spad" 544686 544703 545928 545933) (-339 "FFF.spad" 542121 542132 544676 544681) (-338 "FFCGX.spad" 540968 540988 541837 541930) (-337 "FFCGP.spad" 539857 539877 540684 540777) (-336 "FFCG.spad" 538649 538670 539538 539631) (-335 "FFCAT.spad" 531676 531698 538488 538644) (-334 "FFCAT.spad" 524782 524806 531596 531601) (-333 "FFCAT2.spad" 524527 524567 524772 524777) (-332 "FEXPR.spad" 516236 516282 524283 524322) (-331 "FEVALAB.spad" 515942 515952 516226 516231) (-330 "FEVALAB.spad" 515433 515445 515719 515724) (-329 "FDIV.spad" 514875 514899 515423 515428) (-328 "FDIVCAT.spad" 512917 512941 514865 514870) (-327 "FDIVCAT.spad" 510957 510983 512907 512912) (-326 "FDIV2.spad" 510611 510651 510947 510952) (-325 "FCPAK1.spad" 509164 509172 510601 510606) (-324 "FCOMP.spad" 508543 508553 509154 509159) (-323 "FC.spad" 498368 498376 508533 508538) (-322 "FAXF.spad" 491303 491317 498270 498363) (-321 "FAXF.spad" 484290 484306 491259 491264) (-320 "FARRAY.spad" 482436 482446 483473 483500) (-319 "FAMR.spad" 480556 480568 482334 482431) (-318 "FAMR.spad" 478660 478674 480440 480445) (-317 "FAMONOID.spad" 478310 478320 478614 478619) (-316 "FAMONC.spad" 476532 476544 478300 478305) (-315 "FAGROUP.spad" 476138 476148 476428 476455) (-314 "FACUTIL.spad" 474334 474351 476128 476133) (-313 "FACTFUNC.spad" 473510 473520 474324 474329) (-312 "EXPUPXS.spad" 470343 470366 471642 471791) (-311 "EXPRTUBE.spad" 467571 467579 470333 470338) (-310 "EXPRODE.spad" 464443 464459 467561 467566) (-309 "EXPR.spad" 459718 459728 460432 460839) (-308 "EXPR2UPS.spad" 455810 455823 459708 459713) (-307 "EXPR2.spad" 455513 455525 455800 455805) (-306 "EXPEXPAN.spad" 452452 452477 453086 453179) (-305 "EXIT.spad" 452123 452131 452442 452447) (-304 "EXITAST.spad" 451859 451867 452113 452118) (-303 "EVALCYC.spad" 451317 451331 451849 451854) (-302 "EVALAB.spad" 450881 450891 451307 451312) (-301 "EVALAB.spad" 450443 450455 450871 450876) (-300 "EUCDOM.spad" 447985 447993 450369 450438) (-299 "EUCDOM.spad" 445589 445599 447975 447980) (-298 "ESTOOLS.spad" 437429 437437 445579 445584) (-297 "ESTOOLS2.spad" 437030 437044 437419 437424) (-296 "ESTOOLS1.spad" 436715 436726 437020 437025) (-295 "ES.spad" 429262 429270 436705 436710) (-294 "ES.spad" 421715 421725 429160 429165) (-293 "ESCONT.spad" 418488 418496 421705 421710) (-292 "ESCONT1.spad" 418237 418249 418478 418483) (-291 "ES2.spad" 417732 417748 418227 418232) (-290 "ES1.spad" 417298 417314 417722 417727) (-289 "ERROR.spad" 414619 414627 417288 417293) (-288 "EQTBL.spad" 413091 413113 413300 413327) (-287 "EQ.spad" 407965 407975 410764 410876) (-286 "EQ2.spad" 407681 407693 407955 407960) (-285 "EP.spad" 403995 404005 407671 407676) (-284 "ENV.spad" 402697 402705 403985 403990) (-283 "ENTIRER.spad" 402365 402373 402641 402692) (-282 "EMR.spad" 401566 401607 402291 402360) (-281 "ELTAGG.spad" 399806 399825 401556 401561) (-280 "ELTAGG.spad" 398010 398031 399762 399767) (-279 "ELTAB.spad" 397457 397475 398000 398005) (-278 "ELFUTS.spad" 396836 396855 397447 397452) (-277 "ELEMFUN.spad" 396525 396533 396826 396831) (-276 "ELEMFUN.spad" 396212 396222 396515 396520) (-275 "ELAGG.spad" 394143 394153 396180 396207) (-274 "ELAGG.spad" 392023 392035 394062 394067) (-273 "ELABEXPR.spad" 390954 390962 392013 392018) (-272 "EFUPXS.spad" 387730 387760 390910 390915) (-271 "EFULS.spad" 384566 384589 387686 387691) (-270 "EFSTRUC.spad" 382521 382537 384556 384561) (-269 "EF.spad" 377287 377303 382511 382516) (-268 "EAB.spad" 375563 375571 377277 377282) (-267 "E04UCFA.spad" 375099 375107 375553 375558) (-266 "E04NAFA.spad" 374676 374684 375089 375094) (-265 "E04MBFA.spad" 374256 374264 374666 374671) (-264 "E04JAFA.spad" 373792 373800 374246 374251) (-263 "E04GCFA.spad" 373328 373336 373782 373787) (-262 "E04FDFA.spad" 372864 372872 373318 373323) (-261 "E04DGFA.spad" 372400 372408 372854 372859) (-260 "E04AGNT.spad" 368242 368250 372390 372395) (-259 "DVARCAT.spad" 364927 364937 368232 368237) (-258 "DVARCAT.spad" 361610 361622 364917 364922) (-257 "DSMP.spad" 359041 359055 359346 359473) (-256 "DROPT.spad" 352986 352994 359031 359036) (-255 "DROPT1.spad" 352649 352659 352976 352981) (-254 "DROPT0.spad" 347476 347484 352639 352644) (-253 "DRAWPT.spad" 345631 345639 347466 347471) (-252 "DRAW.spad" 338231 338244 345621 345626) (-251 "DRAWHACK.spad" 337539 337549 338221 338226) (-250 "DRAWCX.spad" 334981 334989 337529 337534) (-249 "DRAWCURV.spad" 334518 334533 334971 334976) (-248 "DRAWCFUN.spad" 323690 323698 334508 334513) (-247 "DQAGG.spad" 321846 321856 323646 323685) (-246 "DPOLCAT.spad" 317187 317203 321714 321841) (-245 "DPOLCAT.spad" 312614 312632 317143 317148) (-244 "DPMO.spad" 305917 305933 306055 306356) (-243 "DPMM.spad" 299233 299251 299358 299659) (-242 "DOMAIN.spad" 298504 298512 299223 299228) (-241 "DMP.spad" 295726 295741 296298 296425) (-240 "DLP.spad" 295074 295084 295716 295721) (-239 "DLIST.spad" 293486 293496 294257 294284) (-238 "DLAGG.spad" 291887 291897 293466 293481) (-237 "DIVRING.spad" 291429 291437 291831 291882) (-236 "DIVRING.spad" 291015 291025 291419 291424) (-235 "DISPLAY.spad" 289195 289203 291005 291010) (-234 "DIRPROD.spad" 280049 280065 280689 280820) (-233 "DIRPROD2.spad" 278857 278875 280039 280044) (-232 "DIRPCAT.spad" 277787 277803 278709 278852) (-231 "DIRPCAT.spad" 276458 276476 277382 277387) (-230 "DIOSP.spad" 275283 275291 276448 276453) (-229 "DIOPS.spad" 274255 274265 275251 275278) (-228 "DIOPS.spad" 273213 273225 274211 274216) (-227 "DIFRING.spad" 272505 272513 273193 273208) (-226 "DIFRING.spad" 271805 271815 272495 272500) (-225 "DIFEXT.spad" 270964 270974 271785 271800) (-224 "DIFEXT.spad" 270040 270052 270863 270868) (-223 "DIAGG.spad" 269658 269668 270008 270035) (-222 "DIAGG.spad" 269296 269308 269648 269653) (-221 "DHMATRIX.spad" 267600 267610 268753 268780) (-220 "DFSFUN.spad" 261008 261016 267590 267595) (-219 "DFLOAT.spad" 257611 257619 260898 261003) (-218 "DFINTTLS.spad" 255820 255836 257601 257606) (-217 "DERHAM.spad" 253730 253762 255800 255815) (-216 "DEQUEUE.spad" 253048 253058 253337 253364) (-215 "DEGRED.spad" 252663 252677 253038 253043) (-214 "DEFINTRF.spad" 250188 250198 252653 252658) (-213 "DEFINTEF.spad" 248684 248700 250178 250183) (-212 "DEFAST.spad" 248052 248060 248674 248679) (-211 "DECIMAL.spad" 245934 245942 246520 246613) (-210 "DDFACT.spad" 243733 243750 245924 245929) (-209 "DBLRESP.spad" 243331 243355 243723 243728) (-208 "DBASE.spad" 241903 241913 243321 243326) (-207 "DATABUF.spad" 241391 241404 241893 241898) (-206 "D03FAFA.spad" 241219 241227 241381 241386) (-205 "D03EEFA.spad" 241039 241047 241209 241214) (-204 "D03AGNT.spad" 240119 240127 241029 241034) (-203 "D02EJFA.spad" 239581 239589 240109 240114) (-202 "D02CJFA.spad" 239059 239067 239571 239576) (-201 "D02BHFA.spad" 238549 238557 239049 239054) (-200 "D02BBFA.spad" 238039 238047 238539 238544) (-199 "D02AGNT.spad" 232843 232851 238029 238034) (-198 "D01WGTS.spad" 231162 231170 232833 232838) (-197 "D01TRNS.spad" 231139 231147 231152 231157) (-196 "D01GBFA.spad" 230661 230669 231129 231134) (-195 "D01FCFA.spad" 230183 230191 230651 230656) (-194 "D01ASFA.spad" 229651 229659 230173 230178) (-193 "D01AQFA.spad" 229097 229105 229641 229646) (-192 "D01APFA.spad" 228521 228529 229087 229092) (-191 "D01ANFA.spad" 228015 228023 228511 228516) (-190 "D01AMFA.spad" 227525 227533 228005 228010) (-189 "D01ALFA.spad" 227065 227073 227515 227520) (-188 "D01AKFA.spad" 226591 226599 227055 227060) (-187 "D01AJFA.spad" 226114 226122 226581 226586) (-186 "D01AGNT.spad" 222173 222181 226104 226109) (-185 "CYCLOTOM.spad" 221679 221687 222163 222168) (-184 "CYCLES.spad" 218511 218519 221669 221674) (-183 "CVMP.spad" 217928 217938 218501 218506) (-182 "CTRIGMNP.spad" 216418 216434 217918 217923) (-181 "CTORCALL.spad" 216006 216014 216408 216413) (-180 "CSTTOOLS.spad" 215249 215262 215996 216001) (-179 "CRFP.spad" 208953 208966 215239 215244) (-178 "CRCEAST.spad" 208673 208681 208943 208948) (-177 "CRAPACK.spad" 207716 207726 208663 208668) (-176 "CPMATCH.spad" 207216 207231 207641 207646) (-175 "CPIMA.spad" 206921 206940 207206 207211) (-174 "COORDSYS.spad" 201814 201824 206911 206916) (-173 "CONTOUR.spad" 201216 201224 201804 201809) (-172 "CONTFRAC.spad" 196828 196838 201118 201211) (-171 "CONDUIT.spad" 196586 196594 196818 196823) (-170 "COMRING.spad" 196260 196268 196524 196581) (-169 "COMPPROP.spad" 195774 195782 196250 196255) (-168 "COMPLPAT.spad" 195541 195556 195764 195769) (-167 "COMPLEX.spad" 189567 189577 189811 190072) (-166 "COMPLEX2.spad" 189280 189292 189557 189562) (-165 "COMPFACT.spad" 188882 188896 189270 189275) (-164 "COMPCAT.spad" 186938 186948 188604 188877) (-163 "COMPCAT.spad" 184700 184712 186368 186373) (-162 "COMMUPC.spad" 184446 184464 184690 184695) (-161 "COMMONOP.spad" 183979 183987 184436 184441) (-160 "COMM.spad" 183788 183796 183969 183974) (-159 "COMMAAST.spad" 183551 183559 183778 183783) (-158 "COMBOPC.spad" 182456 182464 183541 183546) (-157 "COMBINAT.spad" 181201 181211 182446 182451) (-156 "COMBF.spad" 178569 178585 181191 181196) (-155 "COLOR.spad" 177406 177414 178559 178564) (-154 "COLONAST.spad" 177072 177080 177396 177401) (-153 "CMPLXRT.spad" 176781 176798 177062 177067) (-152 "CLLCTAST.spad" 176443 176451 176771 176776) (-151 "CLIP.spad" 172535 172543 176433 176438) (-150 "CLIF.spad" 171174 171190 172491 172530) (-149 "CLAGG.spad" 167649 167659 171154 171169) (-148 "CLAGG.spad" 164005 164017 167512 167517) (-147 "CINTSLPE.spad" 163330 163343 163995 164000) (-146 "CHVAR.spad" 161408 161430 163320 163325) (-145 "CHARZ.spad" 161323 161331 161388 161403) (-144 "CHARPOL.spad" 160831 160841 161313 161318) (-143 "CHARNZ.spad" 160584 160592 160811 160826) (-142 "CHAR.spad" 158452 158460 160574 160579) (-141 "CFCAT.spad" 157768 157776 158442 158447) (-140 "CDEN.spad" 156926 156940 157758 157763) (-139 "CCLASS.spad" 155075 155083 156337 156376) (-138 "CATEGORY.spad" 154854 154862 155065 155070) (-137 "CATAST.spad" 154481 154489 154844 154849) (-136 "CASEAST.spad" 154195 154203 154471 154476) (-135 "CARTEN.spad" 149298 149322 154185 154190) (-134 "CARTEN2.spad" 148684 148711 149288 149293) (-133 "CARD.spad" 145973 145981 148658 148679) (-132 "CAPSLAST.spad" 145747 145755 145963 145968) (-131 "CACHSET.spad" 145369 145377 145737 145742) (-130 "CABMON.spad" 144922 144930 145359 145364) (-129 "BYTE.spad" 144316 144324 144912 144917) (-128 "BYTEARY.spad" 143391 143399 143485 143512) (-127 "BTREE.spad" 142460 142470 142998 143025) (-126 "BTOURN.spad" 141463 141473 142067 142094) (-125 "BTCAT.spad" 140839 140849 141419 141458) (-124 "BTCAT.spad" 140247 140259 140829 140834) (-123 "BTAGG.spad" 139357 139365 140203 140242) (-122 "BTAGG.spad" 138499 138509 139347 139352) (-121 "BSTREE.spad" 137234 137244 138106 138133) (-120 "BRILL.spad" 135429 135440 137224 137229) (-119 "BRAGG.spad" 134343 134353 135409 135424) (-118 "BRAGG.spad" 133231 133243 134299 134304) (-117 "BPADICRT.spad" 131213 131225 131468 131561) (-116 "BPADIC.spad" 130877 130889 131139 131208) (-115 "BOUNDZRO.spad" 130533 130550 130867 130872) (-114 "BOP.spad" 125997 126005 130523 130528) (-113 "BOP1.spad" 123383 123393 125953 125958) (-112 "BOOLEAN.spad" 122707 122715 123373 123378) (-111 "BMODULE.spad" 122419 122431 122675 122702) (-110 "BITS.spad" 121838 121846 122055 122082) (-109 "BINFILE.spad" 121181 121189 121828 121833) (-108 "BINDING.spad" 120600 120608 121171 121176) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP8.spad" 98087 98100 99034 99039) (-86 "ASP80.spad" 97409 97422 98077 98082) (-85 "ASP7.spad" 96569 96582 97399 97404) (-84 "ASP78.spad" 96020 96033 96559 96564) (-83 "ASP77.spad" 95389 95402 96010 96015) (-82 "ASP74.spad" 94481 94494 95379 95384) (-81 "ASP73.spad" 93752 93765 94471 94476) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP4.spad" 88005 88018 88700 88705) (-76 "ASP49.spad" 87004 87017 87995 88000) (-75 "ASP42.spad" 85411 85450 86994 86999) (-74 "ASP41.spad" 83990 84029 85401 85406) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP1.spad" 67191 67204 67800 67805) (-62 "ASP19.spad" 61877 61890 67181 67186) (-61 "ASP12.spad" 61291 61304 61867 61872) (-60 "ASP10.spad" 60562 60575 61281 61286) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY1.spad" 58757 58766 59105 59132) (-57 "ARRAY12.spad" 57426 57437 58747 58752) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY.spad" 45959 45966 47607 47612) (-51 "ANY1.spad" 45030 45039 45949 45954) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2264428 2264433 2264438 2264443) (-2 NIL 2264408 2264413 2264418 2264423) (-1 NIL 2264388 2264393 2264398 2264403) (0 NIL 2264368 2264373 2264378 2264383) (-1253 "ZMOD.spad" 2264177 2264190 2264306 2264363) (-1252 "ZLINDEP.spad" 2263221 2263232 2264167 2264172) (-1251 "ZDSOLVE.spad" 2253070 2253092 2263211 2263216) (-1250 "YSTREAM.spad" 2252563 2252574 2253060 2253065) (-1249 "XRPOLY.spad" 2251783 2251803 2252419 2252488) (-1248 "XPR.spad" 2249512 2249525 2251501 2251600) (-1247 "XPOLYC.spad" 2248829 2248845 2249438 2249507) (-1246 "XPOLY.spad" 2248384 2248395 2248685 2248754) (-1245 "XPBWPOLY.spad" 2246821 2246841 2248164 2248233) (-1244 "XFALG.spad" 2243845 2243861 2246747 2246816) (-1243 "XF.spad" 2242306 2242321 2243747 2243840) (-1242 "XF.spad" 2240747 2240764 2242190 2242195) (-1241 "XEXPPKG.spad" 2239998 2240024 2240737 2240742) (-1240 "XDPOLY.spad" 2239612 2239628 2239854 2239923) (-1239 "XALG.spad" 2239210 2239221 2239568 2239607) (-1238 "WUTSET.spad" 2235049 2235066 2238856 2238883) (-1237 "WP.spad" 2234063 2234107 2234907 2234974) (-1236 "WHILEAST.spad" 2233861 2233870 2234053 2234058) (-1235 "WHEREAST.spad" 2233532 2233541 2233851 2233856) (-1234 "WFFINTBS.spad" 2231095 2231117 2233522 2233527) (-1233 "WEIER.spad" 2229309 2229320 2231085 2231090) (-1232 "VSPACE.spad" 2228982 2228993 2229277 2229304) (-1231 "VSPACE.spad" 2228675 2228688 2228972 2228977) (-1230 "VOID.spad" 2228265 2228274 2228665 2228670) (-1229 "VIEWDEF.spad" 2223462 2223471 2228255 2228260) (-1228 "VIEW3D.spad" 2207297 2207306 2223452 2223457) (-1227 "VIEW2D.spad" 2195034 2195043 2207287 2207292) (-1226 "VIEW.spad" 2192656 2192665 2195024 2195029) (-1225 "VECTOR2.spad" 2191283 2191296 2192646 2192651) (-1224 "VECTOR.spad" 2189958 2189969 2190209 2190236) (-1223 "VECTCAT.spad" 2187846 2187857 2189914 2189953) (-1222 "VECTCAT.spad" 2185554 2185567 2187624 2187629) (-1221 "VARIABLE.spad" 2185334 2185349 2185544 2185549) (-1220 "UTYPE.spad" 2184968 2184977 2185314 2185329) (-1219 "UTSODETL.spad" 2184261 2184285 2184924 2184929) (-1218 "UTSODE.spad" 2182449 2182469 2184251 2184256) (-1217 "UTSCAT.spad" 2179900 2179916 2182347 2182444) (-1216 "UTSCAT.spad" 2176995 2177013 2179444 2179449) (-1215 "UTS2.spad" 2176588 2176623 2176985 2176990) (-1214 "UTS.spad" 2171377 2171405 2175055 2175152) (-1213 "URAGG.spad" 2165999 2166010 2171357 2171372) (-1212 "URAGG.spad" 2160595 2160608 2165955 2165960) (-1211 "UPXSSING.spad" 2158238 2158264 2159676 2159809) (-1210 "UPXSCONS.spad" 2155995 2156015 2156370 2156519) (-1209 "UPXSCCA.spad" 2154453 2154473 2155841 2155990) (-1208 "UPXSCCA.spad" 2153053 2153075 2154443 2154448) (-1207 "UPXSCAT.spad" 2151634 2151650 2152899 2153048) (-1206 "UPXS2.spad" 2151175 2151228 2151624 2151629) (-1205 "UPXS.spad" 2148202 2148230 2149307 2149456) (-1204 "UPSQFREE.spad" 2146615 2146629 2148192 2148197) (-1203 "UPSCAT.spad" 2144208 2144232 2146513 2146610) (-1202 "UPSCAT.spad" 2141507 2141533 2143814 2143819) (-1201 "UPOLYC2.spad" 2140976 2140995 2141497 2141502) (-1200 "UPOLYC.spad" 2135954 2135965 2140818 2140971) (-1199 "UPOLYC.spad" 2130824 2130837 2135690 2135695) (-1198 "UPMP.spad" 2129714 2129727 2130814 2130819) (-1197 "UPDIVP.spad" 2129277 2129291 2129704 2129709) (-1196 "UPDECOMP.spad" 2127514 2127528 2129267 2129272) (-1195 "UPCDEN.spad" 2126721 2126737 2127504 2127509) (-1194 "UP2.spad" 2126083 2126104 2126711 2126716) (-1193 "UP.spad" 2123125 2123140 2123633 2123786) (-1192 "UNISEG2.spad" 2122618 2122631 2123081 2123086) (-1191 "UNISEG.spad" 2121971 2121982 2122537 2122542) (-1190 "UNIFACT.spad" 2121072 2121084 2121961 2121966) (-1189 "ULSCONS.spad" 2115111 2115131 2115483 2115632) (-1188 "ULSCCAT.spad" 2112708 2112728 2114931 2115106) (-1187 "ULSCCAT.spad" 2110439 2110461 2112664 2112669) (-1186 "ULSCAT.spad" 2108655 2108671 2110285 2110434) (-1185 "ULS2.spad" 2108167 2108220 2108645 2108650) (-1184 "ULS.spad" 2098721 2098749 2099814 2100243) (-1183 "UFD.spad" 2097786 2097795 2098647 2098716) (-1182 "UFD.spad" 2096913 2096924 2097776 2097781) (-1181 "UDVO.spad" 2095760 2095769 2096903 2096908) (-1180 "UDPO.spad" 2093187 2093198 2095716 2095721) (-1179 "TYPEAST.spad" 2093106 2093115 2093177 2093182) (-1178 "TYPE.spad" 2093028 2093037 2093086 2093101) (-1177 "TWOFACT.spad" 2091678 2091693 2093018 2093023) (-1176 "TUPLE.spad" 2091064 2091075 2091577 2091582) (-1175 "TUBETOOL.spad" 2087901 2087910 2091054 2091059) (-1174 "TUBE.spad" 2086542 2086559 2087891 2087896) (-1173 "TSETCAT.spad" 2073657 2073674 2086498 2086537) (-1172 "TSETCAT.spad" 2060770 2060789 2073613 2073618) (-1171 "TS.spad" 2059359 2059375 2060335 2060432) (-1170 "TRMANIP.spad" 2053725 2053742 2059065 2059070) (-1169 "TRIMAT.spad" 2052684 2052709 2053715 2053720) (-1168 "TRIGMNIP.spad" 2051201 2051218 2052674 2052679) (-1167 "TRIGCAT.spad" 2050713 2050722 2051191 2051196) (-1166 "TRIGCAT.spad" 2050223 2050234 2050703 2050708) (-1165 "TREE.spad" 2048794 2048805 2049830 2049857) (-1164 "TRANFUN.spad" 2048625 2048634 2048784 2048789) (-1163 "TRANFUN.spad" 2048454 2048465 2048615 2048620) (-1162 "TOPSP.spad" 2048128 2048137 2048444 2048449) (-1161 "TOOLSIGN.spad" 2047791 2047802 2048118 2048123) (-1160 "TEXTFILE.spad" 2046348 2046357 2047781 2047786) (-1159 "TEX1.spad" 2045904 2045915 2046338 2046343) (-1158 "TEX.spad" 2042921 2042930 2045894 2045899) (-1157 "TEMUTL.spad" 2042476 2042485 2042911 2042916) (-1156 "TBCMPPK.spad" 2040569 2040592 2042466 2042471) (-1155 "TBAGG.spad" 2039593 2039616 2040537 2040564) (-1154 "TBAGG.spad" 2038637 2038662 2039583 2039588) (-1153 "TANEXP.spad" 2038013 2038024 2038627 2038632) (-1152 "TABLEAU.spad" 2037494 2037505 2038003 2038008) (-1151 "TABLE.spad" 2035905 2035928 2036175 2036202) (-1150 "TABLBUMP.spad" 2032688 2032699 2035895 2035900) (-1149 "SYSTEM.spad" 2031962 2031971 2032678 2032683) (-1148 "SYSSOLP.spad" 2029435 2029446 2031952 2031957) (-1147 "SYNTAX.spad" 2025627 2025636 2029425 2029430) (-1146 "SYMTAB.spad" 2023683 2023692 2025617 2025622) (-1145 "SYMS.spad" 2019674 2019683 2023673 2023678) (-1144 "SYMPOLY.spad" 2018681 2018692 2018763 2018890) (-1143 "SYMFUNC.spad" 2018156 2018167 2018671 2018676) (-1142 "SYMBOL.spad" 2015492 2015501 2018146 2018151) (-1141 "SWITCH.spad" 2012249 2012258 2015482 2015487) (-1140 "SUTS.spad" 2009148 2009176 2010716 2010813) (-1139 "SUPXS.spad" 2006162 2006190 2007280 2007429) (-1138 "SUPFRACF.spad" 2005267 2005285 2006152 2006157) (-1137 "SUP2.spad" 2004657 2004670 2005257 2005262) (-1136 "SUP.spad" 2001426 2001437 2002207 2002360) (-1135 "SUMRF.spad" 2000392 2000403 2001416 2001421) (-1134 "SUMFS.spad" 2000025 2000042 2000382 2000387) (-1133 "SULS.spad" 1990566 1990594 1991672 1992101) (-1132 "SUCHTAST.spad" 1990335 1990344 1990556 1990561) (-1131 "SUCH.spad" 1990015 1990030 1990325 1990330) (-1130 "SUBSPACE.spad" 1982022 1982037 1990005 1990010) (-1129 "SUBRESP.spad" 1981182 1981196 1981978 1981983) (-1128 "STTFNC.spad" 1977650 1977666 1981172 1981177) (-1127 "STTF.spad" 1973749 1973765 1977640 1977645) (-1126 "STTAYLOR.spad" 1966147 1966158 1973630 1973635) (-1125 "STRTBL.spad" 1964652 1964669 1964801 1964828) (-1124 "STRING.spad" 1964061 1964070 1964075 1964102) (-1123 "STRICAT.spad" 1963837 1963846 1964017 1964056) (-1122 "STREAM3.spad" 1963382 1963397 1963827 1963832) (-1121 "STREAM2.spad" 1962450 1962463 1963372 1963377) (-1120 "STREAM1.spad" 1962154 1962165 1962440 1962445) (-1119 "STREAM.spad" 1958922 1958933 1961679 1961694) (-1118 "STINPROD.spad" 1957828 1957844 1958912 1958917) (-1117 "STEP.spad" 1957029 1957038 1957818 1957823) (-1116 "STBL.spad" 1955555 1955583 1955722 1955737) (-1115 "STAGG.spad" 1954620 1954631 1955535 1955550) (-1114 "STAGG.spad" 1953693 1953706 1954610 1954615) (-1113 "STACK.spad" 1953044 1953055 1953300 1953327) (-1112 "SREGSET.spad" 1950748 1950765 1952690 1952717) (-1111 "SRDCMPK.spad" 1949293 1949313 1950738 1950743) (-1110 "SRAGG.spad" 1944378 1944387 1949249 1949288) (-1109 "SRAGG.spad" 1939495 1939506 1944368 1944373) (-1108 "SQMATRIX.spad" 1937111 1937129 1938027 1938114) (-1107 "SPLTREE.spad" 1931663 1931676 1936547 1936574) (-1106 "SPLNODE.spad" 1928251 1928264 1931653 1931658) (-1105 "SPFCAT.spad" 1927028 1927037 1928241 1928246) (-1104 "SPECOUT.spad" 1925578 1925587 1927018 1927023) (-1103 "SPADXPT.spad" 1917707 1917716 1925558 1925573) (-1102 "spad-parser.spad" 1917172 1917181 1917697 1917702) (-1101 "SPADAST.spad" 1916873 1916882 1917162 1917167) (-1100 "SPACEC.spad" 1900886 1900897 1916863 1916868) (-1099 "SPACE3.spad" 1900662 1900673 1900876 1900881) (-1098 "SORTPAK.spad" 1900207 1900220 1900618 1900623) (-1097 "SOLVETRA.spad" 1897964 1897975 1900197 1900202) (-1096 "SOLVESER.spad" 1896484 1896495 1897954 1897959) (-1095 "SOLVERAD.spad" 1892494 1892505 1896474 1896479) (-1094 "SOLVEFOR.spad" 1890914 1890932 1892484 1892489) (-1093 "SNTSCAT.spad" 1890502 1890519 1890870 1890909) (-1092 "SMTS.spad" 1888762 1888788 1890067 1890164) (-1091 "SMP.spad" 1886201 1886221 1886591 1886718) (-1090 "SMITH.spad" 1885044 1885069 1886191 1886196) (-1089 "SMATCAT.spad" 1883142 1883172 1884976 1885039) (-1088 "SMATCAT.spad" 1881184 1881216 1883020 1883025) (-1087 "SKAGG.spad" 1880133 1880144 1881140 1881179) (-1086 "SINT.spad" 1878441 1878450 1879999 1880128) (-1085 "SIMPAN.spad" 1878169 1878178 1878431 1878436) (-1084 "SIGNRF.spad" 1877284 1877295 1878159 1878164) (-1083 "SIGNEF.spad" 1876560 1876577 1877274 1877279) (-1082 "SIGAST.spad" 1875941 1875950 1876550 1876555) (-1081 "SIG.spad" 1875269 1875278 1875931 1875936) (-1080 "SHP.spad" 1873187 1873202 1875225 1875230) (-1079 "SHDP.spad" 1864172 1864199 1864681 1864812) (-1078 "SGROUP.spad" 1863780 1863789 1864162 1864167) (-1077 "SGROUP.spad" 1863386 1863397 1863770 1863775) (-1076 "SGCF.spad" 1856267 1856276 1863376 1863381) (-1075 "SFRTCAT.spad" 1855183 1855200 1856223 1856262) (-1074 "SFRGCD.spad" 1854246 1854266 1855173 1855178) (-1073 "SFQCMPK.spad" 1848883 1848903 1854236 1854241) (-1072 "SFORT.spad" 1848318 1848332 1848873 1848878) (-1071 "SEXOF.spad" 1848161 1848201 1848308 1848313) (-1070 "SEXCAT.spad" 1845265 1845305 1848151 1848156) (-1069 "SEX.spad" 1845157 1845166 1845255 1845260) (-1068 "SETMN.spad" 1843593 1843610 1845147 1845152) (-1067 "SETCAT.spad" 1843078 1843087 1843583 1843588) (-1066 "SETCAT.spad" 1842561 1842572 1843068 1843073) (-1065 "SETAGG.spad" 1839070 1839081 1842529 1842556) (-1064 "SETAGG.spad" 1835599 1835612 1839060 1839065) (-1063 "SET.spad" 1833899 1833910 1835020 1835059) (-1062 "SEQAST.spad" 1833602 1833611 1833889 1833894) (-1061 "SEGXCAT.spad" 1832714 1832727 1833582 1833597) (-1060 "SEGCAT.spad" 1831533 1831544 1832694 1832709) (-1059 "SEGBIND2.spad" 1831229 1831242 1831523 1831528) (-1058 "SEGBIND.spad" 1830301 1830312 1831184 1831189) (-1057 "SEGAST.spad" 1830015 1830024 1830291 1830296) (-1056 "SEG2.spad" 1829440 1829453 1829971 1829976) (-1055 "SEG.spad" 1829253 1829264 1829359 1829364) (-1054 "SDVAR.spad" 1828529 1828540 1829243 1829248) (-1053 "SDPOL.spad" 1825919 1825930 1826210 1826337) (-1052 "SCPKG.spad" 1823998 1824009 1825909 1825914) (-1051 "SCOPE.spad" 1823143 1823152 1823988 1823993) (-1050 "SCACHE.spad" 1821825 1821836 1823133 1823138) (-1049 "SASTCAT.spad" 1821734 1821743 1821815 1821820) (-1048 "SAOS.spad" 1821606 1821615 1821724 1821729) (-1047 "SAERFFC.spad" 1821319 1821339 1821596 1821601) (-1046 "SAEFACT.spad" 1821020 1821040 1821309 1821314) (-1045 "SAE.spad" 1819195 1819211 1819806 1819941) (-1044 "RURPK.spad" 1816836 1816852 1819185 1819190) (-1043 "RULESET.spad" 1816277 1816301 1816826 1816831) (-1042 "RULECOLD.spad" 1816129 1816142 1816267 1816272) (-1041 "RULE.spad" 1814333 1814357 1816119 1816124) (-1040 "RSTRCAST.spad" 1814050 1814059 1814323 1814328) (-1039 "RSETGCD.spad" 1810428 1810448 1814040 1814045) (-1038 "RSETCAT.spad" 1800200 1800217 1810384 1810423) (-1037 "RSETCAT.spad" 1790004 1790023 1800190 1800195) (-1036 "RSDCMPK.spad" 1788456 1788476 1789994 1789999) (-1035 "RRCC.spad" 1786840 1786870 1788446 1788451) (-1034 "RRCC.spad" 1785222 1785254 1786830 1786835) (-1033 "RPTAST.spad" 1784924 1784933 1785212 1785217) (-1032 "RPOLCAT.spad" 1764284 1764299 1784792 1784919) (-1031 "RPOLCAT.spad" 1743358 1743375 1763868 1763873) (-1030 "ROUTINE.spad" 1739221 1739230 1742005 1742032) (-1029 "ROMAN.spad" 1738453 1738462 1739087 1739216) (-1028 "ROIRC.spad" 1737533 1737565 1738443 1738448) (-1027 "RNS.spad" 1736436 1736445 1737435 1737528) (-1026 "RNS.spad" 1735425 1735436 1736426 1736431) (-1025 "RNG.spad" 1735160 1735169 1735415 1735420) (-1024 "RMODULE.spad" 1734798 1734809 1735150 1735155) (-1023 "RMCAT2.spad" 1734206 1734263 1734788 1734793) (-1022 "RMATRIX.spad" 1732885 1732904 1733373 1733412) (-1021 "RMATCAT.spad" 1728406 1728437 1732829 1732880) (-1020 "RMATCAT.spad" 1723829 1723862 1728254 1728259) (-1019 "RINTERP.spad" 1723717 1723737 1723819 1723824) (-1018 "RING.spad" 1723074 1723083 1723697 1723712) (-1017 "RING.spad" 1722439 1722450 1723064 1723069) (-1016 "RIDIST.spad" 1721823 1721832 1722429 1722434) (-1015 "RGCHAIN.spad" 1720402 1720418 1721308 1721335) (-1014 "RFFACTOR.spad" 1719864 1719875 1720392 1720397) (-1013 "RFFACT.spad" 1719599 1719611 1719854 1719859) (-1012 "RFDIST.spad" 1718587 1718596 1719589 1719594) (-1011 "RF.spad" 1716201 1716212 1718577 1718582) (-1010 "RETSOL.spad" 1715618 1715631 1716191 1716196) (-1009 "RETRACT.spad" 1714967 1714978 1715608 1715613) (-1008 "RETRACT.spad" 1714314 1714327 1714957 1714962) (-1007 "RETAST.spad" 1714126 1714135 1714304 1714309) (-1006 "RESULT.spad" 1712186 1712195 1712773 1712800) (-1005 "RESRING.spad" 1711533 1711580 1712124 1712181) (-1004 "RESLATC.spad" 1710857 1710868 1711523 1711528) (-1003 "REPSQ.spad" 1710586 1710597 1710847 1710852) (-1002 "REPDB.spad" 1710291 1710302 1710576 1710581) (-1001 "REP2.spad" 1699863 1699874 1710133 1710138) (-1000 "REP1.spad" 1693853 1693864 1699813 1699818) (-999 "REP.spad" 1691406 1691414 1693843 1693848) (-998 "REGSET.spad" 1689204 1689220 1691052 1691079) (-997 "REF.spad" 1688534 1688544 1689159 1689164) (-996 "REDORDER.spad" 1687711 1687727 1688524 1688529) (-995 "RECLOS.spad" 1686495 1686514 1687198 1687291) (-994 "REALSOLV.spad" 1685628 1685636 1686485 1686490) (-993 "REAL0Q.spad" 1682911 1682925 1685618 1685623) (-992 "REAL0.spad" 1679740 1679754 1682901 1682906) (-991 "REAL.spad" 1679613 1679621 1679730 1679735) (-990 "RDUCEAST.spad" 1679335 1679343 1679603 1679608) (-989 "RDIV.spad" 1678987 1679011 1679325 1679330) (-988 "RDIST.spad" 1678551 1678561 1678977 1678982) (-987 "RDETRS.spad" 1677348 1677365 1678541 1678546) (-986 "RDETR.spad" 1675456 1675473 1677338 1677343) (-985 "RDEEFS.spad" 1674530 1674546 1675446 1675451) (-984 "RDEEF.spad" 1673527 1673543 1674520 1674525) (-983 "RCFIELD.spad" 1670714 1670722 1673429 1673522) (-982 "RCFIELD.spad" 1667987 1667997 1670704 1670709) (-981 "RCAGG.spad" 1665890 1665900 1667967 1667982) (-980 "RCAGG.spad" 1663730 1663742 1665809 1665814) (-979 "RATRET.spad" 1663091 1663101 1663720 1663725) (-978 "RATFACT.spad" 1662784 1662795 1663081 1663086) (-977 "RANDSRC.spad" 1662104 1662112 1662774 1662779) (-976 "RADUTIL.spad" 1661859 1661867 1662094 1662099) (-975 "RADIX.spad" 1658650 1658663 1660327 1660420) (-974 "RADFF.spad" 1657064 1657100 1657182 1657338) (-973 "RADCAT.spad" 1656658 1656666 1657054 1657059) (-972 "RADCAT.spad" 1656250 1656260 1656648 1656653) (-971 "QUEUE.spad" 1655593 1655603 1655857 1655884) (-970 "QUATCT2.spad" 1655212 1655230 1655583 1655588) (-969 "QUATCAT.spad" 1653377 1653387 1655142 1655207) (-968 "QUATCAT.spad" 1651293 1651305 1653060 1653065) (-967 "QUAT.spad" 1649875 1649885 1650217 1650282) (-966 "QUAGG.spad" 1648689 1648699 1649831 1649870) (-965 "QQUTAST.spad" 1648458 1648466 1648679 1648684) (-964 "QFORM.spad" 1647921 1647935 1648448 1648453) (-963 "QFCAT2.spad" 1647612 1647628 1647911 1647916) (-962 "QFCAT.spad" 1646303 1646313 1647502 1647607) (-961 "QFCAT.spad" 1644598 1644610 1645799 1645804) (-960 "QEQUAT.spad" 1644155 1644163 1644588 1644593) (-959 "QCMPACK.spad" 1638902 1638921 1644145 1644150) (-958 "QALGSET2.spad" 1636898 1636916 1638892 1638897) (-957 "QALGSET.spad" 1632975 1633007 1636812 1636817) (-956 "PWFFINTB.spad" 1630285 1630306 1632965 1632970) (-955 "PUSHVAR.spad" 1629614 1629633 1630275 1630280) (-954 "PTRANFN.spad" 1625740 1625750 1629604 1629609) (-953 "PTPACK.spad" 1622828 1622838 1625730 1625735) (-952 "PTFUNC2.spad" 1622649 1622663 1622818 1622823) (-951 "PTCAT.spad" 1621731 1621741 1622605 1622644) (-950 "PSQFR.spad" 1621038 1621062 1621721 1621726) (-949 "PSEUDLIN.spad" 1619896 1619906 1621028 1621033) (-948 "PSETPK.spad" 1605329 1605345 1619774 1619779) (-947 "PSETCAT.spad" 1599237 1599260 1605297 1605324) (-946 "PSETCAT.spad" 1593131 1593156 1599193 1599198) (-945 "PSCURVE.spad" 1592114 1592122 1593121 1593126) (-944 "PSCAT.spad" 1590881 1590910 1592012 1592109) (-943 "PSCAT.spad" 1589738 1589769 1590871 1590876) (-942 "PRTITION.spad" 1588581 1588589 1589728 1589733) (-941 "PRTDAST.spad" 1588300 1588308 1588571 1588576) (-940 "PRS.spad" 1577862 1577879 1588256 1588261) (-939 "PRQAGG.spad" 1577281 1577291 1577818 1577857) (-938 "PROPLOG.spad" 1576684 1576692 1577271 1577276) (-937 "PROPFRML.spad" 1574602 1574613 1576674 1576679) (-936 "PROPERTY.spad" 1574096 1574104 1574592 1574597) (-935 "PRODUCT.spad" 1571776 1571788 1572062 1572117) (-934 "PRINT.spad" 1571528 1571536 1571766 1571771) (-933 "PRIMES.spad" 1569779 1569789 1571518 1571523) (-932 "PRIMELT.spad" 1567760 1567774 1569769 1569774) (-931 "PRIMCAT.spad" 1567383 1567391 1567750 1567755) (-930 "PRIMARR2.spad" 1566106 1566118 1567373 1567378) (-929 "PRIMARR.spad" 1565111 1565121 1565289 1565316) (-928 "PREASSOC.spad" 1564483 1564495 1565101 1565106) (-927 "PR.spad" 1562869 1562881 1563574 1563701) (-926 "PPCURVE.spad" 1562006 1562014 1562859 1562864) (-925 "PORTNUM.spad" 1561781 1561789 1561996 1562001) (-924 "POLYROOT.spad" 1560553 1560575 1561737 1561742) (-923 "POLYLIFT.spad" 1559814 1559837 1560543 1560548) (-922 "POLYCATQ.spad" 1557916 1557938 1559804 1559809) (-921 "POLYCAT.spad" 1551322 1551343 1557784 1557911) (-920 "POLYCAT.spad" 1544030 1544053 1550494 1550499) (-919 "POLY2UP.spad" 1543478 1543492 1544020 1544025) (-918 "POLY2.spad" 1543073 1543085 1543468 1543473) (-917 "POLY.spad" 1540370 1540380 1540887 1541014) (-916 "POLUTIL.spad" 1539311 1539340 1540326 1540331) (-915 "POLTOPOL.spad" 1538059 1538074 1539301 1539306) (-914 "POINT.spad" 1536898 1536908 1536985 1537012) (-913 "PNTHEORY.spad" 1533564 1533572 1536888 1536893) (-912 "PMTOOLS.spad" 1532321 1532335 1533554 1533559) (-911 "PMSYM.spad" 1531866 1531876 1532311 1532316) (-910 "PMQFCAT.spad" 1531453 1531467 1531856 1531861) (-909 "PMPREDFS.spad" 1530897 1530919 1531443 1531448) (-908 "PMPRED.spad" 1530366 1530380 1530887 1530892) (-907 "PMPLCAT.spad" 1529436 1529454 1530298 1530303) (-906 "PMLSAGG.spad" 1529017 1529031 1529426 1529431) (-905 "PMKERNEL.spad" 1528584 1528596 1529007 1529012) (-904 "PMINS.spad" 1528160 1528170 1528574 1528579) (-903 "PMFS.spad" 1527733 1527751 1528150 1528155) (-902 "PMDOWN.spad" 1527019 1527033 1527723 1527728) (-901 "PMASSFS.spad" 1525988 1526004 1527009 1527014) (-900 "PMASS.spad" 1525000 1525008 1525978 1525983) (-899 "PLOTTOOL.spad" 1524780 1524788 1524990 1524995) (-898 "PLOT3D.spad" 1521200 1521208 1524770 1524775) (-897 "PLOT1.spad" 1520341 1520351 1521190 1521195) (-896 "PLOT.spad" 1515172 1515180 1520331 1520336) (-895 "PLEQN.spad" 1502388 1502415 1515162 1515167) (-894 "PINTERPA.spad" 1502170 1502186 1502378 1502383) (-893 "PINTERP.spad" 1501786 1501805 1502160 1502165) (-892 "PID.spad" 1500742 1500750 1501712 1501781) (-891 "PICOERCE.spad" 1500399 1500409 1500732 1500737) (-890 "PI.spad" 1500006 1500014 1500373 1500394) (-889 "PGROEB.spad" 1498603 1498617 1499996 1500001) (-888 "PGE.spad" 1489856 1489864 1498593 1498598) (-887 "PGCD.spad" 1488738 1488755 1489846 1489851) (-886 "PFRPAC.spad" 1487881 1487891 1488728 1488733) (-885 "PFR.spad" 1484538 1484548 1487783 1487876) (-884 "PFOTOOLS.spad" 1483796 1483812 1484528 1484533) (-883 "PFOQ.spad" 1483166 1483184 1483786 1483791) (-882 "PFO.spad" 1482585 1482612 1483156 1483161) (-881 "PFECAT.spad" 1480251 1480259 1482511 1482580) (-880 "PFECAT.spad" 1477945 1477955 1480207 1480212) (-879 "PFBRU.spad" 1475815 1475827 1477935 1477940) (-878 "PFBR.spad" 1473353 1473376 1475805 1475810) (-877 "PF.spad" 1472927 1472939 1473158 1473251) (-876 "PERMGRP.spad" 1467663 1467673 1472917 1472922) (-875 "PERMCAT.spad" 1466215 1466225 1467643 1467658) (-874 "PERMAN.spad" 1464747 1464761 1466205 1466210) (-873 "PERM.spad" 1460428 1460438 1464577 1464592) (-872 "PENDTREE.spad" 1459701 1459711 1460057 1460062) (-871 "PDRING.spad" 1458192 1458202 1459681 1459696) (-870 "PDRING.spad" 1456691 1456703 1458182 1458187) (-869 "PDEPROB.spad" 1455648 1455656 1456681 1456686) (-868 "PDEPACK.spad" 1449650 1449658 1455638 1455643) (-867 "PDECOMP.spad" 1449112 1449129 1449640 1449645) (-866 "PDECAT.spad" 1447466 1447474 1449102 1449107) (-865 "PCOMP.spad" 1447317 1447330 1447456 1447461) (-864 "PBWLB.spad" 1445899 1445916 1447307 1447312) (-863 "PATTERN2.spad" 1445635 1445647 1445889 1445894) (-862 "PATTERN1.spad" 1443937 1443953 1445625 1445630) (-861 "PATTERN.spad" 1438368 1438378 1443927 1443932) (-860 "PATRES2.spad" 1438030 1438044 1438358 1438363) (-859 "PATRES.spad" 1435577 1435589 1438020 1438025) (-858 "PATMATCH.spad" 1433734 1433765 1435285 1435290) (-857 "PATMAB.spad" 1433159 1433169 1433724 1433729) (-856 "PATLRES.spad" 1432243 1432257 1433149 1433154) (-855 "PATAB.spad" 1432007 1432017 1432233 1432238) (-854 "PARTPERM.spad" 1429369 1429377 1431997 1432002) (-853 "PARSURF.spad" 1428797 1428825 1429359 1429364) (-852 "PARSU2.spad" 1428592 1428608 1428787 1428792) (-851 "script-parser.spad" 1428112 1428120 1428582 1428587) (-850 "PARSCURV.spad" 1427540 1427568 1428102 1428107) (-849 "PARSC2.spad" 1427329 1427345 1427530 1427535) (-848 "PARPCURV.spad" 1426787 1426815 1427319 1427324) (-847 "PARPC2.spad" 1426576 1426592 1426777 1426782) (-846 "PAN2EXPR.spad" 1425988 1425996 1426566 1426571) (-845 "PALETTE.spad" 1424958 1424966 1425978 1425983) (-844 "PAIR.spad" 1423941 1423954 1424546 1424551) (-843 "PADICRC.spad" 1421272 1421290 1422447 1422540) (-842 "PADICRAT.spad" 1419288 1419300 1419509 1419602) (-841 "PADICCT.spad" 1417829 1417841 1419214 1419283) (-840 "PADIC.spad" 1417524 1417536 1417755 1417824) (-839 "PADEPAC.spad" 1416203 1416222 1417514 1417519) (-838 "PADE.spad" 1414943 1414959 1416193 1416198) (-837 "OWP.spad" 1413927 1413957 1414801 1414868) (-836 "OVAR.spad" 1413708 1413731 1413917 1413922) (-835 "OUTFORM.spad" 1403122 1403130 1413698 1413703) (-834 "OUTBCON.spad" 1402401 1402409 1403112 1403117) (-833 "OUTBCON.spad" 1401678 1401688 1402391 1402396) (-832 "OUT.spad" 1400762 1400770 1401668 1401673) (-831 "OSI.spad" 1400237 1400245 1400752 1400757) (-830 "OSGROUP.spad" 1400155 1400163 1400227 1400232) (-829 "ORTHPOL.spad" 1398616 1398626 1400072 1400077) (-828 "OREUP.spad" 1397974 1398002 1398296 1398335) (-827 "ORESUP.spad" 1397273 1397297 1397654 1397693) (-826 "OREPCTO.spad" 1395092 1395104 1397193 1397198) (-825 "OREPCAT.spad" 1389149 1389159 1395048 1395087) (-824 "OREPCAT.spad" 1383096 1383108 1388997 1389002) (-823 "ORDSET.spad" 1382262 1382270 1383086 1383091) (-822 "ORDSET.spad" 1381426 1381436 1382252 1382257) (-821 "ORDRING.spad" 1380816 1380824 1381406 1381421) (-820 "ORDRING.spad" 1380214 1380224 1380806 1380811) (-819 "ORDMON.spad" 1380069 1380077 1380204 1380209) (-818 "ORDFUNS.spad" 1379195 1379211 1380059 1380064) (-817 "ORDFIN.spad" 1379129 1379137 1379185 1379190) (-816 "ORDCOMP2.spad" 1378414 1378426 1379119 1379124) (-815 "ORDCOMP.spad" 1376879 1376889 1377961 1377990) (-814 "OPTPROB.spad" 1375459 1375467 1376869 1376874) (-813 "OPTPACK.spad" 1367844 1367852 1375449 1375454) (-812 "OPTCAT.spad" 1365519 1365527 1367834 1367839) (-811 "OPQUERY.spad" 1365068 1365076 1365509 1365514) (-810 "OP.spad" 1364810 1364820 1364890 1364957) (-809 "ONECOMP2.spad" 1364228 1364240 1364800 1364805) (-808 "ONECOMP.spad" 1362973 1362983 1363775 1363804) (-807 "OMSERVER.spad" 1361975 1361983 1362963 1362968) (-806 "OMSAGG.spad" 1361751 1361761 1361919 1361970) (-805 "OMPKG.spad" 1360363 1360371 1361741 1361746) (-804 "OMLO.spad" 1359788 1359800 1360249 1360288) (-803 "OMEXPR.spad" 1359622 1359632 1359778 1359783) (-802 "OMERRK.spad" 1358656 1358664 1359612 1359617) (-801 "OMERR.spad" 1358199 1358207 1358646 1358651) (-800 "OMENC.spad" 1357543 1357551 1358189 1358194) (-799 "OMDEV.spad" 1351832 1351840 1357533 1357538) (-798 "OMCONN.spad" 1351241 1351249 1351822 1351827) (-797 "OM.spad" 1350206 1350214 1351231 1351236) (-796 "OINTDOM.spad" 1349969 1349977 1350132 1350201) (-795 "OFMONOID.spad" 1346156 1346166 1349959 1349964) (-794 "ODVAR.spad" 1345417 1345427 1346146 1346151) (-793 "ODR.spad" 1344865 1344891 1345229 1345378) (-792 "ODPOL.spad" 1342211 1342221 1342551 1342678) (-791 "ODP.spad" 1333332 1333352 1333705 1333836) (-790 "ODETOOLS.spad" 1331915 1331934 1333322 1333327) (-789 "ODESYS.spad" 1329565 1329582 1331905 1331910) (-788 "ODERTRIC.spad" 1325506 1325523 1329522 1329527) (-787 "ODERED.spad" 1324893 1324917 1325496 1325501) (-786 "ODERAT.spad" 1322446 1322463 1324883 1324888) (-785 "ODEPRRIC.spad" 1319337 1319359 1322436 1322441) (-784 "ODEPROB.spad" 1318536 1318544 1319327 1319332) (-783 "ODEPRIM.spad" 1315810 1315832 1318526 1318531) (-782 "ODEPAL.spad" 1315186 1315210 1315800 1315805) (-781 "ODEPACK.spad" 1301788 1301796 1315176 1315181) (-780 "ODEINT.spad" 1301219 1301235 1301778 1301783) (-779 "ODEIFTBL.spad" 1298614 1298622 1301209 1301214) (-778 "ODEEF.spad" 1293985 1294001 1298604 1298609) (-777 "ODECONST.spad" 1293504 1293522 1293975 1293980) (-776 "ODECAT.spad" 1292100 1292108 1293494 1293499) (-775 "OCTCT2.spad" 1291744 1291765 1292090 1292095) (-774 "OCT.spad" 1289882 1289892 1290598 1290637) (-773 "OCAMON.spad" 1289730 1289738 1289872 1289877) (-772 "OC.spad" 1287504 1287514 1289686 1289725) (-771 "OC.spad" 1285003 1285015 1287187 1287192) (-770 "OASGP.spad" 1284818 1284826 1284993 1284998) (-769 "OAMONS.spad" 1284338 1284346 1284808 1284813) (-768 "OAMON.spad" 1284199 1284207 1284328 1284333) (-767 "OAGROUP.spad" 1284061 1284069 1284189 1284194) (-766 "NUMTUBE.spad" 1283648 1283664 1284051 1284056) (-765 "NUMQUAD.spad" 1271510 1271518 1283638 1283643) (-764 "NUMODE.spad" 1262646 1262654 1271500 1271505) (-763 "NUMINT.spad" 1260204 1260212 1262636 1262641) (-762 "NUMFMT.spad" 1259044 1259052 1260194 1260199) (-761 "NUMERIC.spad" 1251116 1251126 1258849 1258854) (-760 "NTSCAT.spad" 1249606 1249622 1251072 1251111) (-759 "NTPOLFN.spad" 1249151 1249161 1249523 1249528) (-758 "NSUP2.spad" 1248543 1248555 1249141 1249146) (-757 "NSUP.spad" 1241553 1241563 1246093 1246246) (-756 "NSMP.spad" 1237748 1237767 1238056 1238183) (-755 "NREP.spad" 1236120 1236134 1237738 1237743) (-754 "NPCOEF.spad" 1235366 1235386 1236110 1236115) (-753 "NORMRETR.spad" 1234964 1235003 1235356 1235361) (-752 "NORMPK.spad" 1232866 1232885 1234954 1234959) (-751 "NORMMA.spad" 1232554 1232580 1232856 1232861) (-750 "NONE1.spad" 1232230 1232240 1232544 1232549) (-749 "NONE.spad" 1231971 1231979 1232220 1232225) (-748 "NODE1.spad" 1231440 1231456 1231961 1231966) (-747 "NNI.spad" 1230327 1230335 1231414 1231435) (-746 "NLINSOL.spad" 1228949 1228959 1230317 1230322) (-745 "NIPROB.spad" 1227432 1227440 1228939 1228944) (-744 "NFINTBAS.spad" 1224892 1224909 1227422 1227427) (-743 "NCODIV.spad" 1223090 1223106 1224882 1224887) (-742 "NCNTFRAC.spad" 1222732 1222746 1223080 1223085) (-741 "NCEP.spad" 1220892 1220906 1222722 1222727) (-740 "NASRING.spad" 1220488 1220496 1220882 1220887) (-739 "NASRING.spad" 1220082 1220092 1220478 1220483) (-738 "NARNG.spad" 1219426 1219434 1220072 1220077) (-737 "NARNG.spad" 1218768 1218778 1219416 1219421) (-736 "NAGSP.spad" 1217841 1217849 1218758 1218763) (-735 "NAGS.spad" 1207366 1207374 1217831 1217836) (-734 "NAGF07.spad" 1205759 1205767 1207356 1207361) (-733 "NAGF04.spad" 1199991 1199999 1205749 1205754) (-732 "NAGF02.spad" 1193800 1193808 1199981 1199986) (-731 "NAGF01.spad" 1189403 1189411 1193790 1193795) (-730 "NAGE04.spad" 1182863 1182871 1189393 1189398) (-729 "NAGE02.spad" 1173205 1173213 1182853 1182858) (-728 "NAGE01.spad" 1169089 1169097 1173195 1173200) (-727 "NAGD03.spad" 1167009 1167017 1169079 1169084) (-726 "NAGD02.spad" 1159540 1159548 1166999 1167004) (-725 "NAGD01.spad" 1153653 1153661 1159530 1159535) (-724 "NAGC06.spad" 1149440 1149448 1153643 1153648) (-723 "NAGC05.spad" 1147909 1147917 1149430 1149435) (-722 "NAGC02.spad" 1147164 1147172 1147899 1147904) (-721 "NAALG.spad" 1146699 1146709 1147132 1147159) (-720 "NAALG.spad" 1146254 1146266 1146689 1146694) (-719 "MULTSQFR.spad" 1143212 1143229 1146244 1146249) (-718 "MULTFACT.spad" 1142595 1142612 1143202 1143207) (-717 "MTSCAT.spad" 1140629 1140650 1142493 1142590) (-716 "MTHING.spad" 1140286 1140296 1140619 1140624) (-715 "MSYSCMD.spad" 1139720 1139728 1140276 1140281) (-714 "MSETAGG.spad" 1139553 1139563 1139676 1139715) (-713 "MSET.spad" 1137495 1137505 1139259 1139298) (-712 "MRING.spad" 1134466 1134478 1137203 1137270) (-711 "MRF2.spad" 1134034 1134048 1134456 1134461) (-710 "MRATFAC.spad" 1133580 1133597 1134024 1134029) (-709 "MPRFF.spad" 1131610 1131629 1133570 1133575) (-708 "MPOLY.spad" 1129045 1129060 1129404 1129531) (-707 "MPCPF.spad" 1128309 1128328 1129035 1129040) (-706 "MPC3.spad" 1128124 1128164 1128299 1128304) (-705 "MPC2.spad" 1127766 1127799 1128114 1128119) (-704 "MONOTOOL.spad" 1126101 1126118 1127756 1127761) (-703 "MONOID.spad" 1125420 1125428 1126091 1126096) (-702 "MONOID.spad" 1124737 1124747 1125410 1125415) (-701 "MONOGEN.spad" 1123483 1123496 1124597 1124732) (-700 "MONOGEN.spad" 1122251 1122266 1123367 1123372) (-699 "MONADWU.spad" 1120265 1120273 1122241 1122246) (-698 "MONADWU.spad" 1118277 1118287 1120255 1120260) (-697 "MONAD.spad" 1117421 1117429 1118267 1118272) (-696 "MONAD.spad" 1116563 1116573 1117411 1117416) (-695 "MOEBIUS.spad" 1115249 1115263 1116543 1116558) (-694 "MODULE.spad" 1115119 1115129 1115217 1115244) (-693 "MODULE.spad" 1115009 1115021 1115109 1115114) (-692 "MODRING.spad" 1114340 1114379 1114989 1115004) (-691 "MODOP.spad" 1112999 1113011 1114162 1114229) (-690 "MODMONOM.spad" 1112531 1112549 1112989 1112994) (-689 "MODMON.spad" 1109233 1109249 1110009 1110162) (-688 "MODFIELD.spad" 1108591 1108630 1109135 1109228) (-687 "MMLFORM.spad" 1107451 1107459 1108581 1108586) (-686 "MMAP.spad" 1107191 1107225 1107441 1107446) (-685 "MLO.spad" 1105618 1105628 1107147 1107186) (-684 "MLIFT.spad" 1104190 1104207 1105608 1105613) (-683 "MKUCFUNC.spad" 1103723 1103741 1104180 1104185) (-682 "MKRECORD.spad" 1103325 1103338 1103713 1103718) (-681 "MKFUNC.spad" 1102706 1102716 1103315 1103320) (-680 "MKFLCFN.spad" 1101662 1101672 1102696 1102701) (-679 "MKCHSET.spad" 1101438 1101448 1101652 1101657) (-678 "MKBCFUNC.spad" 1100923 1100941 1101428 1101433) (-677 "MINT.spad" 1100362 1100370 1100825 1100918) (-676 "MHROWRED.spad" 1098863 1098873 1100352 1100357) (-675 "MFLOAT.spad" 1097379 1097387 1098753 1098858) (-674 "MFINFACT.spad" 1096779 1096801 1097369 1097374) (-673 "MESH.spad" 1094516 1094524 1096769 1096774) (-672 "MDDFACT.spad" 1092709 1092719 1094506 1094511) (-671 "MDAGG.spad" 1091984 1091994 1092677 1092704) (-670 "MCMPLX.spad" 1087959 1087967 1088573 1088774) (-669 "MCDEN.spad" 1087167 1087179 1087949 1087954) (-668 "MCALCFN.spad" 1084269 1084295 1087157 1087162) (-667 "MAYBE.spad" 1083518 1083529 1084259 1084264) (-666 "MATSTOR.spad" 1080794 1080804 1083508 1083513) (-665 "MATRIX.spad" 1079498 1079508 1079982 1080009) (-664 "MATLIN.spad" 1076824 1076848 1079382 1079387) (-663 "MATCAT2.spad" 1076092 1076140 1076814 1076819) (-662 "MATCAT.spad" 1067665 1067687 1076048 1076087) (-661 "MATCAT.spad" 1059122 1059146 1067507 1067512) (-660 "MAPPKG3.spad" 1058021 1058035 1059112 1059117) (-659 "MAPPKG2.spad" 1057355 1057367 1058011 1058016) (-658 "MAPPKG1.spad" 1056173 1056183 1057345 1057350) (-657 "MAPPAST.spad" 1055486 1055494 1056163 1056168) (-656 "MAPHACK3.spad" 1055294 1055308 1055476 1055481) (-655 "MAPHACK2.spad" 1055059 1055071 1055284 1055289) (-654 "MAPHACK1.spad" 1054689 1054699 1055049 1055054) (-653 "MAGMA.spad" 1052479 1052496 1054679 1054684) (-652 "MACROAST.spad" 1052058 1052066 1052469 1052474) (-651 "M3D.spad" 1049754 1049764 1051436 1051441) (-650 "LZSTAGG.spad" 1046972 1046982 1049734 1049749) (-649 "LZSTAGG.spad" 1044198 1044210 1046962 1046967) (-648 "LWORD.spad" 1040903 1040920 1044188 1044193) (-647 "LSTAST.spad" 1040687 1040695 1040893 1040898) (-646 "LSQM.spad" 1038910 1038924 1039308 1039359) (-645 "LSPP.spad" 1038443 1038460 1038900 1038905) (-644 "LSMP1.spad" 1036264 1036278 1038433 1038438) (-643 "LSMP.spad" 1035111 1035139 1036254 1036259) (-642 "LSAGG.spad" 1034768 1034778 1035067 1035106) (-641 "LSAGG.spad" 1034457 1034469 1034758 1034763) (-640 "LPOLY.spad" 1033411 1033430 1034313 1034382) (-639 "LPEFRAC.spad" 1032668 1032678 1033401 1033406) (-638 "LOGIC.spad" 1032270 1032278 1032658 1032663) (-637 "LOGIC.spad" 1031870 1031880 1032260 1032265) (-636 "LODOOPS.spad" 1030788 1030800 1031860 1031865) (-635 "LODOF.spad" 1029832 1029849 1030745 1030750) (-634 "LODOCAT.spad" 1028490 1028500 1029788 1029827) (-633 "LODOCAT.spad" 1027146 1027158 1028446 1028451) (-632 "LODO2.spad" 1026419 1026431 1026826 1026865) (-631 "LODO1.spad" 1025819 1025829 1026099 1026138) (-630 "LODO.spad" 1025203 1025219 1025499 1025538) (-629 "LODEEF.spad" 1023975 1023993 1025193 1025198) (-628 "LO.spad" 1023376 1023390 1023909 1023936) (-627 "LNAGG.spad" 1019168 1019178 1023356 1023371) (-626 "LNAGG.spad" 1014934 1014946 1019124 1019129) (-625 "LMOPS.spad" 1011670 1011687 1014924 1014929) (-624 "LMODULE.spad" 1011312 1011322 1011660 1011665) (-623 "LMDICT.spad" 1010595 1010605 1010863 1010890) (-622 "LITERAL.spad" 1010501 1010512 1010585 1010590) (-621 "LIST3.spad" 1009792 1009806 1010491 1010496) (-620 "LIST2MAP.spad" 1006669 1006681 1009782 1009787) (-619 "LIST2.spad" 1005309 1005321 1006659 1006664) (-618 "LIST.spad" 1003027 1003037 1004456 1004483) (-617 "LINEXP.spad" 1002459 1002469 1003007 1003022) (-616 "LINDEP.spad" 1001236 1001248 1002371 1002376) (-615 "LIMITRF.spad" 999169 999179 1001226 1001231) (-614 "LIMITPS.spad" 998059 998072 999159 999164) (-613 "LIECAT.spad" 997535 997545 997985 998054) (-612 "LIECAT.spad" 997039 997051 997491 997496) (-611 "LIE.spad" 995053 995065 996329 996474) (-610 "LIB.spad" 993101 993109 993712 993727) (-609 "LGROBP.spad" 990454 990473 993091 993096) (-608 "LFCAT.spad" 989473 989481 990444 990449) (-607 "LF.spad" 988392 988408 989463 989468) (-606 "LEXTRIPK.spad" 983895 983910 988382 988387) (-605 "LEXP.spad" 981898 981925 983875 983890) (-604 "LETAST.spad" 981597 981605 981888 981893) (-603 "LEADCDET.spad" 979981 979998 981587 981592) (-602 "LAZM3PK.spad" 978685 978707 979971 979976) (-601 "LAUPOL.spad" 977374 977387 978278 978347) (-600 "LAPLACE.spad" 976947 976963 977364 977369) (-599 "LALG.spad" 976723 976733 976927 976942) (-598 "LALG.spad" 976507 976519 976713 976718) (-597 "LA.spad" 975947 975961 976429 976468) (-596 "KTVLOGIC.spad" 975370 975378 975937 975942) (-595 "KOVACIC.spad" 974083 974100 975360 975365) (-594 "KONVERT.spad" 973805 973815 974073 974078) (-593 "KOERCE.spad" 973542 973552 973795 973800) (-592 "KERNEL2.spad" 973245 973257 973532 973537) (-591 "KERNEL.spad" 971780 971790 973029 973034) (-590 "KDAGG.spad" 970871 970893 971748 971775) (-589 "KDAGG.spad" 969982 970006 970861 970866) (-588 "KAFILE.spad" 968945 968961 969180 969207) (-587 "JORDAN.spad" 966772 966784 968235 968380) (-586 "JOINAST.spad" 966466 966474 966762 966767) (-585 "JAVACODE.spad" 966232 966240 966456 966461) (-584 "IXAGG.spad" 964345 964369 966212 966227) (-583 "IXAGG.spad" 962323 962349 964192 964197) (-582 "IVECTOR.spad" 961094 961109 961249 961276) (-581 "ITUPLE.spad" 960239 960249 961084 961089) (-580 "ITRIGMNP.spad" 959050 959069 960229 960234) (-579 "ITFUN3.spad" 958544 958558 959040 959045) (-578 "ITFUN2.spad" 958274 958286 958534 958539) (-577 "ITAYLOR.spad" 956066 956081 958110 958235) (-576 "ISUPS.spad" 948477 948492 955040 955137) (-575 "ISUMP.spad" 947974 947990 948467 948472) (-574 "ISTRING.spad" 946977 946990 947143 947170) (-573 "ISAST.spad" 946696 946704 946967 946972) (-572 "IRURPK.spad" 945409 945428 946686 946691) (-571 "IRSN.spad" 943369 943377 945399 945404) (-570 "IRRF2F.spad" 941844 941854 943325 943330) (-569 "IRREDFFX.spad" 941445 941456 941834 941839) (-568 "IROOT.spad" 939776 939786 941435 941440) (-567 "IR2F.spad" 938976 938992 939766 939771) (-566 "IR2.spad" 937996 938012 938966 938971) (-565 "IR.spad" 935785 935799 937851 937878) (-564 "IPRNTPK.spad" 935545 935553 935775 935780) (-563 "IPF.spad" 935110 935122 935350 935443) (-562 "IPADIC.spad" 934871 934897 935036 935105) (-561 "IOBCON.spad" 934736 934744 934861 934866) (-560 "INVLAPLA.spad" 934381 934397 934726 934731) (-559 "INTTR.spad" 927639 927656 934371 934376) (-558 "INTTOOLS.spad" 925350 925366 927213 927218) (-557 "INTSLPE.spad" 924656 924664 925340 925345) (-556 "INTRVL.spad" 924222 924232 924570 924651) (-555 "INTRF.spad" 922586 922600 924212 924217) (-554 "INTRET.spad" 922018 922028 922576 922581) (-553 "INTRAT.spad" 920693 920710 922008 922013) (-552 "INTPM.spad" 919056 919072 920336 920341) (-551 "INTPAF.spad" 916831 916849 918988 918993) (-550 "INTPACK.spad" 907141 907149 916821 916826) (-549 "INTHERTR.spad" 906407 906424 907131 907136) (-548 "INTHERAL.spad" 906073 906097 906397 906402) (-547 "INTHEORY.spad" 902486 902494 906063 906068) (-546 "INTG0.spad" 895967 895985 902418 902423) (-545 "INTFTBL.spad" 891421 891429 895957 895962) (-544 "INTFACT.spad" 890480 890490 891411 891416) (-543 "INTEF.spad" 888797 888813 890470 890475) (-542 "INTDOM.spad" 887412 887420 888723 888792) (-541 "INTDOM.spad" 886089 886099 887402 887407) (-540 "INTCAT.spad" 884342 884352 886003 886084) (-539 "INTBIT.spad" 883845 883853 884332 884337) (-538 "INTALG.spad" 883027 883054 883835 883840) (-537 "INTAF.spad" 882519 882535 883017 883022) (-536 "INTABL.spad" 881037 881068 881200 881227) (-535 "INT.spad" 880398 880406 880891 881032) (-534 "INS.spad" 877865 877873 880300 880393) (-533 "INS.spad" 875418 875428 877855 877860) (-532 "INPSIGN.spad" 874874 874887 875408 875413) (-531 "INPRODPF.spad" 873940 873959 874864 874869) (-530 "INPRODFF.spad" 872998 873022 873930 873935) (-529 "INNMFACT.spad" 871969 871986 872988 872993) (-528 "INMODGCD.spad" 871453 871483 871959 871964) (-527 "INFSP.spad" 869738 869760 871443 871448) (-526 "INFPROD0.spad" 868788 868807 869728 869733) (-525 "INFORM1.spad" 868413 868423 868778 868783) (-524 "INFORM.spad" 865574 865582 868403 868408) (-523 "INFINITY.spad" 865126 865134 865564 865569) (-522 "INEP.spad" 863658 863680 865116 865121) (-521 "INDE.spad" 863387 863404 863648 863653) (-520 "INCRMAPS.spad" 862808 862818 863377 863382) (-519 "INBFF.spad" 858578 858589 862798 862803) (-518 "INBCON.spad" 857878 857886 858568 858573) (-517 "INBCON.spad" 857176 857186 857868 857873) (-516 "INAST.spad" 856841 856849 857166 857171) (-515 "IMPTAST.spad" 856549 856557 856831 856836) (-514 "IMATRIX.spad" 855494 855520 856006 856033) (-513 "IMATQF.spad" 854588 854632 855450 855455) (-512 "IMATLIN.spad" 853193 853217 854544 854549) (-511 "ILIST.spad" 851849 851864 852376 852403) (-510 "IIARRAY2.spad" 851237 851275 851456 851483) (-509 "IFF.spad" 850647 850663 850918 851011) (-508 "IFAST.spad" 850261 850269 850637 850642) (-507 "IFARRAY.spad" 847748 847763 849444 849471) (-506 "IFAMON.spad" 847610 847627 847704 847709) (-505 "IEVALAB.spad" 846999 847011 847600 847605) (-504 "IEVALAB.spad" 846386 846400 846989 846994) (-503 "IDPOAMS.spad" 846142 846154 846376 846381) (-502 "IDPOAM.spad" 845862 845874 846132 846137) (-501 "IDPO.spad" 845660 845672 845852 845857) (-500 "IDPC.spad" 844594 844606 845650 845655) (-499 "IDPAM.spad" 844339 844351 844584 844589) (-498 "IDPAG.spad" 844086 844098 844329 844334) (-497 "IDENT.spad" 844003 844011 844076 844081) (-496 "IDECOMP.spad" 841240 841258 843993 843998) (-495 "IDEAL.spad" 836163 836202 841175 841180) (-494 "ICDEN.spad" 835314 835330 836153 836158) (-493 "ICARD.spad" 834503 834511 835304 835309) (-492 "IBPTOOLS.spad" 833096 833113 834493 834498) (-491 "IBITS.spad" 832295 832308 832732 832759) (-490 "IBATOOL.spad" 829170 829189 832285 832290) (-489 "IBACHIN.spad" 827657 827672 829160 829165) (-488 "IARRAY2.spad" 826645 826671 827264 827291) (-487 "IARRAY1.spad" 825690 825705 825828 825855) (-486 "IAN.spad" 823903 823911 825506 825599) (-485 "IALGFACT.spad" 823504 823537 823893 823898) (-484 "HYPCAT.spad" 822928 822936 823494 823499) (-483 "HYPCAT.spad" 822350 822360 822918 822923) (-482 "HOSTNAME.spad" 822158 822166 822340 822345) (-481 "HOAGG.spad" 819416 819426 822138 822153) (-480 "HOAGG.spad" 816459 816471 819183 819188) (-479 "HEXADEC.spad" 814329 814337 814927 815020) (-478 "HEUGCD.spad" 813344 813355 814319 814324) (-477 "HELLFDIV.spad" 812934 812958 813334 813339) (-476 "HEAP.spad" 812326 812336 812541 812568) (-475 "HEADAST.spad" 811857 811865 812316 812321) (-474 "HDP.spad" 802974 802990 803351 803482) (-473 "HDMP.spad" 800150 800165 800768 800895) (-472 "HB.spad" 798387 798395 800140 800145) (-471 "HASHTBL.spad" 796857 796888 797068 797095) (-470 "HASAST.spad" 796573 796581 796847 796852) (-469 "HACKPI.spad" 796056 796064 796475 796568) (-468 "GTSET.spad" 794995 795011 795702 795729) (-467 "GSTBL.spad" 793514 793549 793688 793703) (-466 "GSERIES.spad" 790681 790708 791646 791795) (-465 "GROUP.spad" 789950 789958 790661 790676) (-464 "GROUP.spad" 789227 789237 789940 789945) (-463 "GROEBSOL.spad" 787715 787736 789217 789222) (-462 "GRMOD.spad" 786286 786298 787705 787710) (-461 "GRMOD.spad" 784855 784869 786276 786281) (-460 "GRIMAGE.spad" 777460 777468 784845 784850) (-459 "GRDEF.spad" 775839 775847 777450 777455) (-458 "GRAY.spad" 774298 774306 775829 775834) (-457 "GRALG.spad" 773345 773357 774288 774293) (-456 "GRALG.spad" 772390 772404 773335 773340) (-455 "GPOLSET.spad" 771844 771867 772072 772099) (-454 "GOSPER.spad" 771109 771127 771834 771839) (-453 "GMODPOL.spad" 770247 770274 771077 771104) (-452 "GHENSEL.spad" 769316 769330 770237 770242) (-451 "GENUPS.spad" 765417 765430 769306 769311) (-450 "GENUFACT.spad" 764994 765004 765407 765412) (-449 "GENPGCD.spad" 764578 764595 764984 764989) (-448 "GENMFACT.spad" 764030 764049 764568 764573) (-447 "GENEEZ.spad" 761969 761982 764020 764025) (-446 "GDMP.spad" 758987 759004 759763 759890) (-445 "GCNAALG.spad" 752882 752909 758781 758848) (-444 "GCDDOM.spad" 752054 752062 752808 752877) (-443 "GCDDOM.spad" 751288 751298 752044 752049) (-442 "GBINTERN.spad" 747308 747346 751278 751283) (-441 "GBF.spad" 743065 743103 747298 747303) (-440 "GBEUCLID.spad" 740939 740977 743055 743060) (-439 "GB.spad" 738457 738495 740895 740900) (-438 "GAUSSFAC.spad" 737754 737762 738447 738452) (-437 "GALUTIL.spad" 736076 736086 737710 737715) (-436 "GALPOLYU.spad" 734522 734535 736066 736071) (-435 "GALFACTU.spad" 732687 732706 734512 734517) (-434 "GALFACT.spad" 722820 722831 732677 732682) (-433 "FVFUN.spad" 719833 719841 722800 722815) (-432 "FVC.spad" 718875 718883 719813 719828) (-431 "FUNCTION.spad" 718724 718736 718865 718870) (-430 "FTEM.spad" 717887 717895 718714 718719) (-429 "FT.spad" 716102 716110 717877 717882) (-428 "FSUPFACT.spad" 715002 715021 716038 716043) (-427 "FST.spad" 713088 713096 714992 714997) (-426 "FSRED.spad" 712566 712582 713078 713083) (-425 "FSPRMELT.spad" 711390 711406 712523 712528) (-424 "FSPECF.spad" 709467 709483 711380 711385) (-423 "FSINT.spad" 709125 709141 709457 709462) (-422 "FSERIES.spad" 708312 708324 708945 709044) (-421 "FSCINT.spad" 707625 707641 708302 708307) (-420 "FSAGG2.spad" 706324 706340 707615 707620) (-419 "FSAGG.spad" 705429 705439 706268 706319) (-418 "FSAGG.spad" 704508 704520 705349 705354) (-417 "FS2UPS.spad" 698897 698931 704498 704503) (-416 "FS2EXPXP.spad" 698020 698043 698887 698892) (-415 "FS2.spad" 697665 697681 698010 698015) (-414 "FS.spad" 691715 691725 697428 697660) (-413 "FS.spad" 685555 685567 691270 691275) (-412 "FRUTIL.spad" 684497 684507 685545 685550) (-411 "FRNAALG.spad" 679584 679594 684439 684492) (-410 "FRNAALG.spad" 674683 674695 679540 679545) (-409 "FRNAAF2.spad" 674137 674155 674673 674678) (-408 "FRMOD.spad" 673531 673561 674068 674073) (-407 "FRIDEAL2.spad" 673133 673165 673521 673526) (-406 "FRIDEAL.spad" 672328 672349 673113 673128) (-405 "FRETRCT.spad" 671839 671849 672318 672323) (-404 "FRETRCT.spad" 671216 671228 671697 671702) (-403 "FRAMALG.spad" 669544 669557 671172 671211) (-402 "FRAMALG.spad" 667904 667919 669534 669539) (-401 "FRAC2.spad" 667507 667519 667894 667899) (-400 "FRAC.spad" 664607 664617 665010 665183) (-399 "FR2.spad" 663941 663953 664597 664602) (-398 "FR.spad" 657663 657673 662966 663035) (-397 "FPS.spad" 654472 654480 657553 657658) (-396 "FPS.spad" 651309 651319 654392 654397) (-395 "FPC.spad" 650351 650359 651211 651304) (-394 "FPC.spad" 649479 649489 650341 650346) (-393 "FPATMAB.spad" 649231 649241 649459 649474) (-392 "FPARFRAC.spad" 647704 647721 649221 649226) (-391 "FORTRAN.spad" 646210 646253 647694 647699) (-390 "FORTFN.spad" 643370 643378 646190 646205) (-389 "FORTCAT.spad" 643044 643052 643350 643365) (-388 "FORT.spad" 641973 641981 643034 643039) (-387 "FORMULA1.spad" 641452 641462 641963 641968) (-386 "FORMULA.spad" 638790 638798 641442 641447) (-385 "FORDER.spad" 638481 638505 638780 638785) (-384 "FOP.spad" 637682 637690 638471 638476) (-383 "FNLA.spad" 637106 637128 637650 637677) (-382 "FNCAT.spad" 635434 635442 637096 637101) (-381 "FNAME.spad" 635326 635334 635424 635429) (-380 "FMTC.spad" 635124 635132 635252 635321) (-379 "FMONOID.spad" 632179 632189 635080 635085) (-378 "FMFUN.spad" 629199 629207 632159 632174) (-377 "FMCAT.spad" 626853 626871 629167 629194) (-376 "FMC.spad" 625895 625903 626833 626848) (-375 "FM1.spad" 625252 625264 625829 625856) (-374 "FM.spad" 624947 624959 625186 625213) (-373 "FLOATRP.spad" 622668 622682 624937 624942) (-372 "FLOATCP.spad" 620085 620099 622658 622663) (-371 "FLOAT.spad" 613249 613257 619951 620080) (-370 "FLINEXP.spad" 612961 612971 613229 613244) (-369 "FLINEXP.spad" 612627 612639 612897 612902) (-368 "FLASORT.spad" 611947 611959 612617 612622) (-367 "FLALG.spad" 609593 609612 611873 611942) (-366 "FLAGG2.spad" 608274 608290 609583 609588) (-365 "FLAGG.spad" 605280 605290 608242 608269) (-364 "FLAGG.spad" 602199 602211 605163 605168) (-363 "FINRALG.spad" 600228 600241 602155 602194) (-362 "FINRALG.spad" 598183 598198 600112 600117) (-361 "FINITE.spad" 597335 597343 598173 598178) (-360 "FINAALG.spad" 586316 586326 597277 597330) (-359 "FINAALG.spad" 575309 575321 586272 586277) (-358 "FILECAT.spad" 573827 573844 575299 575304) (-357 "FILE.spad" 573410 573420 573817 573822) (-356 "FIELD.spad" 572816 572824 573312 573405) (-355 "FIELD.spad" 572308 572318 572806 572811) (-354 "FGROUP.spad" 570917 570927 572288 572303) (-353 "FGLMICPK.spad" 569704 569719 570907 570912) (-352 "FFX.spad" 569079 569094 569420 569513) (-351 "FFSLPE.spad" 568568 568589 569069 569074) (-350 "FFPOLY2.spad" 567628 567645 568558 568563) (-349 "FFPOLY.spad" 558880 558891 567618 567623) (-348 "FFP.spad" 558277 558297 558596 558689) (-347 "FFNBX.spad" 556789 556809 557993 558086) (-346 "FFNBP.spad" 555302 555319 556505 556598) (-345 "FFNB.spad" 553767 553788 554983 555076) (-344 "FFINTBAS.spad" 551181 551200 553757 553762) (-343 "FFIELDC.spad" 548756 548764 551083 551176) (-342 "FFIELDC.spad" 546417 546427 548746 548751) (-341 "FFHOM.spad" 545165 545182 546407 546412) (-340 "FFF.spad" 542600 542611 545155 545160) (-339 "FFCGX.spad" 541447 541467 542316 542409) (-338 "FFCGP.spad" 540336 540356 541163 541256) (-337 "FFCG.spad" 539128 539149 540017 540110) (-336 "FFCAT2.spad" 538873 538913 539118 539123) (-335 "FFCAT.spad" 531900 531922 538712 538868) (-334 "FFCAT.spad" 525006 525030 531820 531825) (-333 "FF.spad" 524454 524470 524687 524780) (-332 "FEXPR.spad" 516163 516209 524210 524249) (-331 "FEVALAB.spad" 515869 515879 516153 516158) (-330 "FEVALAB.spad" 515360 515372 515646 515651) (-329 "FDIVCAT.spad" 513402 513426 515350 515355) (-328 "FDIVCAT.spad" 511442 511468 513392 513397) (-327 "FDIV2.spad" 511096 511136 511432 511437) (-326 "FDIV.spad" 510538 510562 511086 511091) (-325 "FCPAK1.spad" 509091 509099 510528 510533) (-324 "FCOMP.spad" 508470 508480 509081 509086) (-323 "FC.spad" 498295 498303 508460 508465) (-322 "FAXF.spad" 491230 491244 498197 498290) (-321 "FAXF.spad" 484217 484233 491186 491191) (-320 "FARRAY.spad" 482363 482373 483400 483427) (-319 "FAMR.spad" 480483 480495 482261 482358) (-318 "FAMR.spad" 478587 478601 480367 480372) (-317 "FAMONOID.spad" 478237 478247 478541 478546) (-316 "FAMONC.spad" 476459 476471 478227 478232) (-315 "FAGROUP.spad" 476065 476075 476355 476382) (-314 "FACUTIL.spad" 474261 474278 476055 476060) (-313 "FACTFUNC.spad" 473437 473447 474251 474256) (-312 "EXPUPXS.spad" 470270 470293 471569 471718) (-311 "EXPRTUBE.spad" 467498 467506 470260 470265) (-310 "EXPRODE.spad" 464370 464386 467488 467493) (-309 "EXPR2UPS.spad" 460462 460475 464360 464365) (-308 "EXPR2.spad" 460165 460177 460452 460457) (-307 "EXPR.spad" 455440 455450 456154 456561) (-306 "EXPEXPAN.spad" 452379 452404 453013 453106) (-305 "EXITAST.spad" 452115 452123 452369 452374) (-304 "EXIT.spad" 451786 451794 452105 452110) (-303 "EVALCYC.spad" 451244 451258 451776 451781) (-302 "EVALAB.spad" 450808 450818 451234 451239) (-301 "EVALAB.spad" 450370 450382 450798 450803) (-300 "EUCDOM.spad" 447912 447920 450296 450365) (-299 "EUCDOM.spad" 445516 445526 447902 447907) (-298 "ESTOOLS2.spad" 445117 445131 445506 445511) (-297 "ESTOOLS1.spad" 444802 444813 445107 445112) (-296 "ESTOOLS.spad" 436642 436650 444792 444797) (-295 "ESCONT1.spad" 436391 436403 436632 436637) (-294 "ESCONT.spad" 433164 433172 436381 436386) (-293 "ES2.spad" 432659 432675 433154 433159) (-292 "ES1.spad" 432225 432241 432649 432654) (-291 "ES.spad" 424772 424780 432215 432220) (-290 "ES.spad" 417225 417235 424670 424675) (-289 "ERROR.spad" 414546 414554 417215 417220) (-288 "EQTBL.spad" 413018 413040 413227 413254) (-287 "EQ2.spad" 412734 412746 413008 413013) (-286 "EQ.spad" 407608 407618 410407 410519) (-285 "EP.spad" 403922 403932 407598 407603) (-284 "ENV.spad" 402624 402632 403912 403917) (-283 "ENTIRER.spad" 402292 402300 402568 402619) (-282 "EMR.spad" 401493 401534 402218 402287) (-281 "ELTAGG.spad" 399733 399752 401483 401488) (-280 "ELTAGG.spad" 397937 397958 399689 399694) (-279 "ELTAB.spad" 397384 397402 397927 397932) (-278 "ELFUTS.spad" 396763 396782 397374 397379) (-277 "ELEMFUN.spad" 396452 396460 396753 396758) (-276 "ELEMFUN.spad" 396139 396149 396442 396447) (-275 "ELAGG.spad" 394070 394080 396107 396134) (-274 "ELAGG.spad" 391950 391962 393989 393994) (-273 "ELABEXPR.spad" 390881 390889 391940 391945) (-272 "EFUPXS.spad" 387657 387687 390837 390842) (-271 "EFULS.spad" 384493 384516 387613 387618) (-270 "EFSTRUC.spad" 382448 382464 384483 384488) (-269 "EF.spad" 377214 377230 382438 382443) (-268 "EAB.spad" 375490 375498 377204 377209) (-267 "E04UCFA.spad" 375026 375034 375480 375485) (-266 "E04NAFA.spad" 374603 374611 375016 375021) (-265 "E04MBFA.spad" 374183 374191 374593 374598) (-264 "E04JAFA.spad" 373719 373727 374173 374178) (-263 "E04GCFA.spad" 373255 373263 373709 373714) (-262 "E04FDFA.spad" 372791 372799 373245 373250) (-261 "E04DGFA.spad" 372327 372335 372781 372786) (-260 "E04AGNT.spad" 368169 368177 372317 372322) (-259 "DVARCAT.spad" 364854 364864 368159 368164) (-258 "DVARCAT.spad" 361537 361549 364844 364849) (-257 "DSMP.spad" 358968 358982 359273 359400) (-256 "DROPT1.spad" 358631 358641 358958 358963) (-255 "DROPT0.spad" 353458 353466 358621 358626) (-254 "DROPT.spad" 347403 347411 353448 353453) (-253 "DRAWPT.spad" 345558 345566 347393 347398) (-252 "DRAWHACK.spad" 344866 344876 345548 345553) (-251 "DRAWCX.spad" 342308 342316 344856 344861) (-250 "DRAWCURV.spad" 341845 341860 342298 342303) (-249 "DRAWCFUN.spad" 331017 331025 341835 341840) (-248 "DRAW.spad" 323617 323630 331007 331012) (-247 "DQAGG.spad" 321773 321783 323573 323612) (-246 "DPOLCAT.spad" 317114 317130 321641 321768) (-245 "DPOLCAT.spad" 312541 312559 317070 317075) (-244 "DPMO.spad" 305844 305860 305982 306283) (-243 "DPMM.spad" 299160 299178 299285 299586) (-242 "DOMAIN.spad" 298431 298439 299150 299155) (-241 "DMP.spad" 295653 295668 296225 296352) (-240 "DLP.spad" 295001 295011 295643 295648) (-239 "DLIST.spad" 293413 293423 294184 294211) (-238 "DLAGG.spad" 291814 291824 293393 293408) (-237 "DIVRING.spad" 291356 291364 291758 291809) (-236 "DIVRING.spad" 290942 290952 291346 291351) (-235 "DISPLAY.spad" 289122 289130 290932 290937) (-234 "DIRPROD2.spad" 287930 287948 289112 289117) (-233 "DIRPROD.spad" 278784 278800 279424 279555) (-232 "DIRPCAT.spad" 277714 277730 278636 278779) (-231 "DIRPCAT.spad" 276385 276403 277309 277314) (-230 "DIOSP.spad" 275210 275218 276375 276380) (-229 "DIOPS.spad" 274182 274192 275178 275205) (-228 "DIOPS.spad" 273140 273152 274138 274143) (-227 "DIFRING.spad" 272432 272440 273120 273135) (-226 "DIFRING.spad" 271732 271742 272422 272427) (-225 "DIFEXT.spad" 270891 270901 271712 271727) (-224 "DIFEXT.spad" 269967 269979 270790 270795) (-223 "DIAGG.spad" 269585 269595 269935 269962) (-222 "DIAGG.spad" 269223 269235 269575 269580) (-221 "DHMATRIX.spad" 267527 267537 268680 268707) (-220 "DFSFUN.spad" 260935 260943 267517 267522) (-219 "DFLOAT.spad" 257538 257546 260825 260930) (-218 "DFINTTLS.spad" 255747 255763 257528 257533) (-217 "DERHAM.spad" 253657 253689 255727 255742) (-216 "DEQUEUE.spad" 252975 252985 253264 253291) (-215 "DEGRED.spad" 252590 252604 252965 252970) (-214 "DEFINTRF.spad" 250160 250170 252580 252585) (-213 "DEFINTEF.spad" 248684 248700 250150 250155) (-212 "DEFAST.spad" 248052 248060 248674 248679) (-211 "DECIMAL.spad" 245934 245942 246520 246613) (-210 "DDFACT.spad" 243733 243750 245924 245929) (-209 "DBLRESP.spad" 243331 243355 243723 243728) (-208 "DBASE.spad" 241903 241913 243321 243326) (-207 "DATABUF.spad" 241391 241404 241893 241898) (-206 "D03FAFA.spad" 241219 241227 241381 241386) (-205 "D03EEFA.spad" 241039 241047 241209 241214) (-204 "D03AGNT.spad" 240119 240127 241029 241034) (-203 "D02EJFA.spad" 239581 239589 240109 240114) (-202 "D02CJFA.spad" 239059 239067 239571 239576) (-201 "D02BHFA.spad" 238549 238557 239049 239054) (-200 "D02BBFA.spad" 238039 238047 238539 238544) (-199 "D02AGNT.spad" 232843 232851 238029 238034) (-198 "D01WGTS.spad" 231162 231170 232833 232838) (-197 "D01TRNS.spad" 231139 231147 231152 231157) (-196 "D01GBFA.spad" 230661 230669 231129 231134) (-195 "D01FCFA.spad" 230183 230191 230651 230656) (-194 "D01ASFA.spad" 229651 229659 230173 230178) (-193 "D01AQFA.spad" 229097 229105 229641 229646) (-192 "D01APFA.spad" 228521 228529 229087 229092) (-191 "D01ANFA.spad" 228015 228023 228511 228516) (-190 "D01AMFA.spad" 227525 227533 228005 228010) (-189 "D01ALFA.spad" 227065 227073 227515 227520) (-188 "D01AKFA.spad" 226591 226599 227055 227060) (-187 "D01AJFA.spad" 226114 226122 226581 226586) (-186 "D01AGNT.spad" 222173 222181 226104 226109) (-185 "CYCLOTOM.spad" 221679 221687 222163 222168) (-184 "CYCLES.spad" 218511 218519 221669 221674) (-183 "CVMP.spad" 217928 217938 218501 218506) (-182 "CTRIGMNP.spad" 216418 216434 217918 217923) (-181 "CTORCALL.spad" 216006 216014 216408 216413) (-180 "CSTTOOLS.spad" 215249 215262 215996 216001) (-179 "CRFP.spad" 208953 208966 215239 215244) (-178 "CRCEAST.spad" 208673 208681 208943 208948) (-177 "CRAPACK.spad" 207716 207726 208663 208668) (-176 "CPMATCH.spad" 207216 207231 207641 207646) (-175 "CPIMA.spad" 206921 206940 207206 207211) (-174 "COORDSYS.spad" 201814 201824 206911 206916) (-173 "CONTOUR.spad" 201216 201224 201804 201809) (-172 "CONTFRAC.spad" 196828 196838 201118 201211) (-171 "CONDUIT.spad" 196586 196594 196818 196823) (-170 "COMRING.spad" 196260 196268 196524 196581) (-169 "COMPPROP.spad" 195774 195782 196250 196255) (-168 "COMPLPAT.spad" 195541 195556 195764 195769) (-167 "COMPLEX2.spad" 195254 195266 195531 195536) (-166 "COMPLEX.spad" 189280 189290 189524 189785) (-165 "COMPFACT.spad" 188882 188896 189270 189275) (-164 "COMPCAT.spad" 186938 186948 188604 188877) (-163 "COMPCAT.spad" 184700 184712 186368 186373) (-162 "COMMUPC.spad" 184446 184464 184690 184695) (-161 "COMMONOP.spad" 183979 183987 184436 184441) (-160 "COMMAAST.spad" 183742 183750 183969 183974) (-159 "COMM.spad" 183551 183559 183732 183737) (-158 "COMBOPC.spad" 182456 182464 183541 183546) (-157 "COMBINAT.spad" 181201 181211 182446 182451) (-156 "COMBF.spad" 178569 178585 181191 181196) (-155 "COLOR.spad" 177406 177414 178559 178564) (-154 "COLONAST.spad" 177072 177080 177396 177401) (-153 "CMPLXRT.spad" 176781 176798 177062 177067) (-152 "CLLCTAST.spad" 176443 176451 176771 176776) (-151 "CLIP.spad" 172535 172543 176433 176438) (-150 "CLIF.spad" 171174 171190 172491 172530) (-149 "CLAGG.spad" 167649 167659 171154 171169) (-148 "CLAGG.spad" 164005 164017 167512 167517) (-147 "CINTSLPE.spad" 163330 163343 163995 164000) (-146 "CHVAR.spad" 161408 161430 163320 163325) (-145 "CHARZ.spad" 161323 161331 161388 161403) (-144 "CHARPOL.spad" 160831 160841 161313 161318) (-143 "CHARNZ.spad" 160584 160592 160811 160826) (-142 "CHAR.spad" 158452 158460 160574 160579) (-141 "CFCAT.spad" 157768 157776 158442 158447) (-140 "CDEN.spad" 156926 156940 157758 157763) (-139 "CCLASS.spad" 155075 155083 156337 156376) (-138 "CATEGORY.spad" 154854 154862 155065 155070) (-137 "CATAST.spad" 154481 154489 154844 154849) (-136 "CASEAST.spad" 154195 154203 154471 154476) (-135 "CARTEN2.spad" 153581 153608 154185 154190) (-134 "CARTEN.spad" 148684 148708 153571 153576) (-133 "CARD.spad" 145973 145981 148658 148679) (-132 "CAPSLAST.spad" 145747 145755 145963 145968) (-131 "CACHSET.spad" 145369 145377 145737 145742) (-130 "CABMON.spad" 144922 144930 145359 145364) (-129 "BYTEARY.spad" 143997 144005 144091 144118) (-128 "BYTE.spad" 143391 143399 143987 143992) (-127 "BTREE.spad" 142460 142470 142998 143025) (-126 "BTOURN.spad" 141463 141473 142067 142094) (-125 "BTCAT.spad" 140839 140849 141419 141458) (-124 "BTCAT.spad" 140247 140259 140829 140834) (-123 "BTAGG.spad" 139357 139365 140203 140242) (-122 "BTAGG.spad" 138499 138509 139347 139352) (-121 "BSTREE.spad" 137234 137244 138106 138133) (-120 "BRILL.spad" 135429 135440 137224 137229) (-119 "BRAGG.spad" 134343 134353 135409 135424) (-118 "BRAGG.spad" 133231 133243 134299 134304) (-117 "BPADICRT.spad" 131213 131225 131468 131561) (-116 "BPADIC.spad" 130877 130889 131139 131208) (-115 "BOUNDZRO.spad" 130533 130550 130867 130872) (-114 "BOP1.spad" 127919 127929 130489 130494) (-113 "BOP.spad" 123383 123391 127909 127914) (-112 "BOOLEAN.spad" 122707 122715 123373 123378) (-111 "BMODULE.spad" 122419 122431 122675 122702) (-110 "BITS.spad" 121838 121846 122055 122082) (-109 "BINFILE.spad" 121181 121189 121828 121833) (-108 "BINDING.spad" 120600 120608 121171 121176) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP80.spad" 98366 98379 99034 99039) (-86 "ASP8.spad" 97409 97422 98356 98361) (-85 "ASP78.spad" 96860 96873 97399 97404) (-84 "ASP77.spad" 96229 96242 96850 96855) (-83 "ASP74.spad" 95321 95334 96219 96224) (-82 "ASP73.spad" 94592 94605 95311 95316) (-81 "ASP7.spad" 93752 93765 94582 94587) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP49.spad" 87709 87722 88700 88705) (-76 "ASP42.spad" 86116 86155 87699 87704) (-75 "ASP41.spad" 84695 84734 86106 86111) (-74 "ASP4.spad" 83990 84003 84685 84690) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP19.spad" 62496 62509 67800 67805) (-62 "ASP12.spad" 61910 61923 62486 62491) (-61 "ASP10.spad" 61181 61194 61900 61905) (-60 "ASP1.spad" 60562 60575 61171 61176) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY12.spad" 58591 58602 59912 59917) (-57 "ARRAY1.spad" 57426 57435 57774 57801) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY1.spad" 46688 46697 47607 47612) (-51 "ANY.spad" 45030 45037 46678 46683) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index b51fdda9..f6f65285 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,3266 +1,3266 @@
-(144986 . 3431185335)
-(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((#0=(-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))))
-(((|#2| |#2|) . T))
-((((-549)) . T))
-((($ $) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))) ((|#2| |#2|) . T) ((#0=(-400 (-549)) #0#) |has| |#2| (-38 (-400 (-549)))))
-((($) . T))
-(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(((|#2|) . T))
-((($) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))) ((|#2|) . T) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))))
-(|has| |#1| (-880))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((($) . T) (((-400 (-549))) . T))
-((($) . T))
-((($) . T))
-(((|#2| |#2|) . T))
-((((-142)) . T))
-((((-525)) . T) (((-1124)) . T) (((-219)) . T) (((-372)) . T) (((-863 (-372))) . T))
-(((|#1|) . T))
-((((-219)) . T) (((-834)) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1|) . T))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
-((($ $) . T) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1| |#1|) . T))
-(-1536 (|has| |#1| (-796)) (|has| |#1| (-823)))
-((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
-((((-834)) . T))
-((((-834)) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-(|has| |#1| (-821))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
+(145006 . 3431436958)
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-400 |#2|) |#3|) . T))
+((((-400 (-535))) |has| #1=(-400 |#2|) (-1009 (-400 (-535)))) (((-535)) |has| #1# (-1009 (-535))) ((#1#) . T))
+((((-400 |#2|)) . T))
+((((-535)) |has| #1=(-400 |#2|) (-617 (-535))) ((#1#) . T))
+((((-400 |#2|)) . T))
+((((-400 |#2|) |#3|) . T))
+(|has| (-400 |#2|) (-145))
+((((-400 |#2|) |#3|) . T))
+(|has| (-400 |#2|) (-143))
+((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T))
+((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T))
+(|has| (-400 |#2|) (-227))
+((((-1142)) |has| (-400 |#2|) (-871 (-1142))))
+((((-400 |#2|)) . T))
+(((|#3|) . T))
+(((#1=(-400 |#2|) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T))
+((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T))
(((|#1| |#2| |#3|) . T))
-(((|#4|) . T))
-((($) . T) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
-((((-834)) . T))
-((((-834)) |has| |#1| (-1066)))
-((((-834)) . T) (((-1147)) . T))
-(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(((|#2| (-474 (-3774 |#1|) (-747))) . T))
-(((|#1| (-521 (-1142))) . T))
-(((#0=(-841 |#1|) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(|has| |#4| (-361))
-(|has| |#3| (-361))
-(((|#1|) . T))
-((((-841 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
-(((|#1| |#2|) . T))
-((($) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(|has| |#1| (-541))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-((($) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1066))))
-((((-525)) |has| |#1| (-594 (-525))))
-((($) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-834)) . T))
-((((-834)) . T))
-((((-400 (-549))) . T) (($) . T))
-((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (((-1217 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T))
-((((-834)) . T))
-(((|#1|) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((|#1|) . T) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) . T))
-(((|#1| |#2|) . T))
-((((-834)) . T))
(((|#1|) . T))
-(((#0=(-400 (-549)) #0#) |has| |#2| (-38 (-400 (-549)))) ((|#2| |#2|) . T) (($ $) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
(((|#1|) . T))
-(((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) (($) . T))
-((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-(((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))) ((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
-((($ $) . T))
-(((|#2|) . T))
-((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T) (($) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
-((($) . T))
-(|has| |#1| (-361))
+((((-1108 |#2| |#1|)) . T) ((|#1|) . T))
+((((-835)) . T))
(((|#1|) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-834)) . T))
-((((-834)) . T))
-(((|#1| |#2|) . T))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
(((|#1| |#1|) . T))
-(|has| |#1| (-541))
-(((|#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) (((-1142) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1142) |#2|))))
-((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
-((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(|has| |#1| (-1066))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(|has| |#1| (-1066))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(|has| |#1| (-821))
-((($) . T) (((-400 (-549))) . T))
(((|#1|) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
-(-1536 (|has| |#4| (-769)) (|has| |#4| (-821)))
-(-1536 (|has| |#4| (-769)) (|has| |#4| (-821)))
-(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
-(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(((|#1|) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-835)) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
(((|#1| |#2|) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1066))
-(|has| |#1| (-1066))
-(((|#1| (-1142) (-1054 (-1142)) (-521 (-1054 (-1142)))) . T))
-((((-549) |#1|) . T))
-((((-549)) . T))
-((((-549)) . T))
-((((-881 |#1|)) . T))
-(((|#1| (-521 |#2|)) . T))
-((((-549)) . T))
-((((-549)) . T))
-(((|#1|) . T))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(((|#1| (-747)) . T))
-(|has| |#2| (-769))
-(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
-(|has| |#2| (-821))
-(((|#1| |#2| |#3| |#4|) . T))
+((((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((|#1| |#2|) . T))
+((((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((|#1| |#2|) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((|#2|) . T))
+(((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) ((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+((((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-1124) |#1|) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-(((|#1|) . T))
-(((|#3| (-747)) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
-(|has| |#1| (-1066))
-((((-400 (-549))) . T) (((-549)) . T))
-((((-1142) |#2|) |has| |#2| (-505 (-1142) |#2|)) ((|#2| |#2|) |has| |#2| (-302 |#2|)))
-((((-400 (-549))) . T) (((-549)) . T))
+((((-166 (-371))) . T) (((-219)) . T) (((-371)) . T))
+((((-400 (-535))) . T) (((-535)) . T))
+((($) . T) (((-400 (-535))) . T))
+((($) . T) (((-400 (-535))) . T))
+((($) . T) (((-400 (-535))) . T))
+((((-400 (-535))) . T) (($) . T))
+(((#1=(-400 (-535)) #1#) . T) (($ $) . T))
+((($) . T))
+((($ $) . T) (((-591 $) $) . T))
+((((-835)) . T))
+((((-400 (-535))) . T) (((-535)) . T) (((-591 $)) . T))
+((((-835)) . T))
+(((|#1|) . T))
+((((-835)) . T))
(((|#1|) . T) (($) . T))
-((((-549)) . T))
-((((-549)) . T))
-((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170)))
-((((-549)) . T))
-((((-549)) . T))
-(((#0=(-675) (-1138 #0#)) . T))
-((((-400 (-549))) . T) (($) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-((((-549) |#1|) . T))
-((($) . T) (((-549)) . T) (((-400 (-549))) . T))
(((|#1|) . T))
-(|has| |#2| (-356))
+((((-835)) . T))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-((((-834)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-1124) |#1|) . T))
-(((|#3| |#3|) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((|#1| |#1|) . T))
-(((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))) ((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
-(((|#1|) . T))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((($) -1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) ((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-549) |#1|) . T))
-((((-834)) . T))
-((((-167 (-219))) |has| |#1| (-993)) (((-167 (-372))) |has| |#1| (-993)) (((-525)) |has| |#1| (-594 (-525))) (((-1138 |#1|)) . T) (((-863 (-549))) |has| |#1| (-594 (-863 (-549)))) (((-863 (-372))) |has| |#1| (-594 (-863 (-372)))))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1|) . T))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
-((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))))
-(|has| |#1| (-356))
-(-12 (|has| |#4| (-227)) (|has| |#4| (-1018)))
-(-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))
-(-1536 (|has| |#4| (-170)) (|has| |#4| (-821)) (|has| |#4| (-1018)))
-(-1536 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T))
-(((|#1|) . T))
-((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
-(((|#1|) . T) (((-549)) |has| |#1| (-617 (-549))))
-(((|#2|) . T) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) . T))
-(|has| |#1| (-541))
-(|has| |#1| (-541))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(((|#1|) . T))
-(|has| |#1| (-541))
-(|has| |#1| (-541))
-(|has| |#1| (-541))
-((((-675)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-973)) (|has| |#1| (-1164)))
-(((|#2|) . T) (($) . T) (((-400 (-549))) . T))
-(-12 (|has| |#1| (-1066)) (|has| |#2| (-1066)))
-((($) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T))
-((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) . T))
-(((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) (($) . T))
-(((|#4| |#4|) -1536 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1018))) (($ $) |has| |#4| (-170)))
-(((|#3| |#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($ $) |has| |#3| (-170)))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-525)) |has| |#2| (-594 (-525))) (((-863 (-372))) |has| |#2| (-594 (-863 (-372)))) (((-863 (-549))) |has| |#2| (-594 (-863 (-549)))))
-((((-834)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-834)) . T))
-((((-525)) |has| |#1| (-594 (-525))) (((-863 (-372))) |has| |#1| (-594 (-863 (-372)))) (((-863 (-549))) |has| |#1| (-594 (-863 (-549)))))
-(((|#4|) -1536 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1018))) (($) |has| |#4| (-170)))
-(((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($) |has| |#3| (-170)))
-((((-834)) . T))
-((((-834)) . T))
-((((-525)) . T) (((-549)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
-(((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
-((($) . T) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T))
-((((-400 $) (-400 $)) |has| |#2| (-541)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-880))
-((((-1124) (-52)) . T))
-((((-549)) |has| #0=(-400 |#2|) (-617 (-549))) ((#0#) . T))
-((((-525)) . T) (((-219)) . T) (((-372)) . T) (((-863 (-372))) . T))
-((((-834)) . T))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
-(((|#1|) |has| |#1| (-170)))
-(((|#1| $) |has| |#1| (-279 |#1| |#1|)))
-((((-834)) . T))
-((((-834)) . T))
-((((-400 (-549))) . T) (($) . T))
-((((-400 (-549))) . T) (($) . T))
-((((-834)) . T))
(|has| |#1| (-823))
-(|has| |#1| (-1066))
-(((|#1|) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1066))))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-834)) . T) (((-1147)) . T))
-((((-129)) . T))
-((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-((((-129)) . T))
-((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(|has| |#1| (-227))
-((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(((|#1| (-521 (-794 (-1142)))) . T))
-(((|#1| (-942)) . T))
-(((#0=(-841 |#1|) $) |has| #0# (-279 #0# #0#)))
-((((-549) |#4|) . T))
-((((-549) |#3|) . T))
(((|#1|) . T))
-(((|#2| |#2|) . T))
-(|has| |#1| (-1117))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) . T))
-(|has| (-1211 |#1| |#2| |#3| |#4|) (-143))
-(|has| (-1211 |#1| |#2| |#3| |#4|) (-145))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(((|#1|) |has| |#1| (-170)))
-((((-1142)) -12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018))))
-(((|#2|) . T))
-(|has| |#1| (-1066))
-((((-1124) |#1|) . T))
-(((|#1|) . T))
-(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
-(|has| |#2| (-361))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1018)))
-((((-834)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((#0=(-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))))
-(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((#0=(-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) #0#) |has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))))
-((((-549) |#1|) . T))
-((((-834)) . T))
-((((-525)) -12 (|has| |#1| (-594 (-525))) (|has| |#2| (-594 (-525)))) (((-863 (-372))) -12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372))))) (((-863 (-549))) -12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549))))))
-((((-834)) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(((|#1|) . T))
+((((-524)) |has| |#1| (-594 (-524))))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1| (-57 |#1|) (-57 |#1|)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+(((|#1|) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T))
+(((|#1| |#1|) . T))
+((((-835)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-535)) . T))
+((((-535)) . T) (($) . T) (((-400 (-535))) . T))
+((($) . T) (((-535)) . T) (((-400 (-535))) . T))
+((((-535)) . T) (($) . T) (((-400 (-535))) . T))
+((((-535)) . T) (((-400 (-535))) . T) (($) . T))
+(((#1=(-535) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-524)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T))
+((((-400 (-535))) . T) (((-535)) . T))
+((((-535)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-381) (-1086)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-535) (-112)) . T))
+((((-535) (-112)) . T))
+((((-535) (-112)) . T))
+((((-524)) . T))
+((((-112)) . T))
+((((-835)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-524)) . T))
+((((-835)) . T))
+((((-835)) . T))
((($) . T))
-((((-834)) . T))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
+((((-835)) . T))
((($) . T))
+((($ $) . T))
((($) . T))
((($) . T))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((((-834)) . T))
-((((-834)) . T))
-(|has| (-1210 |#2| |#3| |#4|) (-145))
-(|has| (-1210 |#2| |#3| |#4|) (-143))
-(((|#2|) |has| |#2| (-1066)) (((-549)) -12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066))) (((-400 (-549))) -12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066))))
-(((|#1|) . T))
-(|has| |#1| (-1066))
-((((-834)) . T))
(((|#1|) . T))
+((((-835)) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-400 (-535))) . T))
+((($) . T) (((-116 |#1|)) . T) (((-400 (-535))) . T))
+((((-116 |#1|)) . T) (($) . T) (((-400 (-535))) . T))
+((((-116 |#1|)) . T) (((-400 (-535))) . T) (($) . T))
+(((#1=(-116 |#1|) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T))
+((((-116 |#1|)) . T))
+((((-1142) #1=(-116 |#1|)) |has| #1# (-505 (-1142) #1#)) ((#1# #1#) |has| #1# (-302 #1#)))
+(((#1=(-116 |#1|)) |has| #1# (-302 #1#)))
+(((#1=(-116 |#1|) $) |has| #1# (-279 #1# #1#)))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
+((((-116 |#1|)) . T))
(((|#1|) . T))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
(((|#1|) . T))
-((((-549) |#1|) . T))
-(((|#2|) |has| |#2| (-170)))
-(((|#1|) |has| |#1| (-170)))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
(((|#1|) . T))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
-((((-834)) |has| |#1| (-1066)))
-(-1536 (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)) (|has| |#1| (-1078)))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
-((((-881 |#1|)) . T))
-((((-400 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-549) |#1|)))
-((((-400 (-549))) . T) (($) . T))
-(|has| |#1| (-823))
-(((|#1|) . T) (($) . T))
-((((-400 (-549))) . T) (($) . T))
-((((-834)) . T))
(((|#1|) . T))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)))
-(|has| |#1| (-356))
-(-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))
-(|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))
-(|has| |#1| (-356))
-((((-549)) . T))
-(|has| |#1| (-15 * (|#1| (-747) |#1|)))
-((((-1108 |#2| (-400 (-923 |#1|)))) . T) (((-400 (-923 |#1|))) . T))
-((($) . T))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-(((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) (($) . T))
(((|#1|) . T))
-((((-549) |#1|) . T))
-(((|#2|) . T))
-(-1536 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
-(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
-(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
(((|#1|) . T))
-((((-1142)) -12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018))))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
-(-1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-541)))
-(((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))) ((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))))
-((($ $) |has| |#1| (-541)))
-(((#0=(-675) (-1138 #0#)) . T))
-((((-834)) . T))
-((((-834)) . T) (((-1225 |#4|)) . T))
-((((-834)) . T) (((-1225 |#3|)) . T))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))))
-((($) |has| |#1| (-541)))
-((((-834)) . T))
-((($) . T))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((#1=(-1217 |#1| |#2| |#3|) #1#) |has| |#1| (-356)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (((-1217 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T))
-(((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))))
-(((|#3|) |has| |#3| (-1018)))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(|has| |#1| (-1066))
-(((|#2| (-795 |#1|)) . T))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
(((|#1|) . T))
-(|has| |#1| (-356))
-((((-400 $) (-400 $)) |has| |#1| (-541)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-1048) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-881 |#1|)) . T))
-((((-142)) . T))
-((((-142)) . T))
-(((|#3|) |has| |#3| (-1066)) (((-549)) -12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1066))) (((-400 (-549))) -12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1066))))
-((((-834)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
(((|#1|) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1066))))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) . T))
-(|has| |#1| (-356))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
-((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|)))
-(|has| |#2| (-796))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-821))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-((((-834)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-525)) |has| |#1| (-594 (-525))))
-(((|#1| |#2|) . T))
-((((-1142)) -12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142)))))
-((((-1124) |#1|) . T))
-(((|#1| |#2| |#3| (-521 |#3|)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(|has| |#1| (-361))
-(|has| |#1| (-361))
-(|has| |#1| (-361))
-((((-834)) . T))
(((|#1|) . T))
-(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
-(|has| |#1| (-361))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-((((-549)) . T))
-((((-549)) . T))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
-((((-834)) . T))
-((((-834)) . T))
-(-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))
-((((-1142) #0=(-841 |#1|)) |has| #0# (-505 (-1142) #0#)) ((#0# #0#) |has| #0# (-302 #0#)))
(((|#1|) . T))
-((((-549) |#4|) . T))
-((((-549) |#3|) . T))
-(((|#1|) . T) (((-549)) |has| |#1| (-617 (-549))))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-((((-1211 |#1| |#2| |#3| |#4|)) . T))
-((((-400 (-549))) . T) (((-549)) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-(((|#1| |#1|) . T))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
(((|#1|) . T))
+((((-747)) . T) (((-835)) . T))
+((((-128)) . T))
+((((-128)) . T))
+((((-835)) . T))
+((((-128)) . T))
+((((-535) (-128)) . T))
+((((-535) (-128)) . T))
+((((-535) (-128)) . T))
+((((-128)) . T))
+((((-128)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-747)) . T))
+((((-835)) . T))
+((((-535) (-747)) . T) ((|#3| (-747)) . T))
+((((-835)) . T))
+(((|#3|) . T))
+(((|#3| (-747)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T))
+((((-142)) . T))
+((((-142)) . T))
+((((-142)) . T))
+((((-142)) . T))
+((((-142)) . T))
+((((-142)) . T))
+((((-142)) . T))
+((((-618 (-142))) . T) (((-1124)) . T))
+((((-835)) . T))
+((((-835)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+(((|#2|) . T) (($) . T))
+((((-835)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T) (((-1147)) . T))
+(|has| |#1| (-797))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-343)))
+((((-835)) . T))
+(|has| |#1| (-145))
(((|#1|) . T))
-((($) . T) (((-549)) . T) (((-400 (-549))) . T))
-((((-549)) . T))
-((((-549)) . T))
-((($) . T) (((-549)) . T) (((-400 (-549))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+((((-1142)) |has| |#1| (-871 (-1142))))
+(-3874 (|has| |#1| (-227)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-542)))
+(-3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-542)))
+(-3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-343)))
(((|#1|) . T))
+((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|)))
+(((|#1|) |has| |#1| (-302 |#1|)))
+(((|#1| $) |has| |#1| (-279 |#1| |#1|)))
(((|#1|) . T))
+(((|#1|) . T) (((-535)) |has| |#1| (-617 (-535))))
+(((|#1|) . T))
+((((-535)) |has| |#1| (-857 (-535))) (((-371)) |has| |#1| (-857 (-371))))
+(((|#1|) . T))
+(((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))))
+(((|#1| (-1136 |#1|)) . T))
+(((|#1| (-1136 |#1|)) . T))
+((($) -3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T))
+((($) . T) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T))
+((($) . T) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T))
+((($ $) . T) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1| |#1|) . T))
+((($) -3874 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T))
+(((|#1| (-1136 |#1|)) . T))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(-3874 (|has| |#1| (-361)) (|has| |#1| (-343)))
+(|has| |#1| (-823))
(((|#1|) . T))
-(((#0=(-549) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
-(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
-(((|#1|) |has| |#1| (-541)))
-((((-549) |#4|) . T))
-((((-549) |#3|) . T))
-((((-834)) . T))
-((((-549)) . T) (((-400 (-549))) . T) (($) . T))
-((((-834)) . T))
-((((-549) |#1|) . T))
+((((-166 (-219))) |has| |#1| . #1=((-991))) (((-166 (-371))) |has| |#1| . #1#) (((-524)) |has| |#1| (-594 (-524))) (((-1136 |#1|)) . T) (((-861 (-535))) |has| |#1| (-594 (-861 (-535)))) (((-861 (-371))) |has| |#1| (-594 (-861 (-371)))))
+(-12 (|has| |#1| (-300)) (|has| |#1| (-881)))
+(-12 (|has| |#1| (-973)) (|has| |#1| (-1164)))
+(|has| |#1| (-1164))
+(|has| |#1| (-1164))
+(|has| |#1| (-1164))
+(|has| |#1| (-1164))
+(|has| |#1| (-1164))
+(|has| |#1| (-1164))
(((|#1|) . T))
-((($ $) . T) ((#0=(-836 |#1|) $) . T) ((#0# |#2|) . T))
-((($) . T))
-((($ $) . T) ((#0=(-1142) $) . T) ((#0# |#1|) . T))
+((((-835)) . T))
+((((-400 (-535))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T))
+((((-835)) . T))
+((($) . T) (((-400 (-535))) . T) (((-400 |#1|)) . T) ((|#1|) . T))
+((($ $) . T) ((#1=(-400 (-535)) #1#) . T) ((#2=(-400 |#1|) #2#) . T) ((|#1| |#1|) . T))
+((((-400 (-535))) . T) (((-400 |#1|)) . T) ((|#1|) . T) (($) . T))
+((((-400 (-535))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T))
+((((-835)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-535)) . T))
+((((-535)) . T) (($) . T) (((-400 (-535))) . T))
+((($) . T) (((-535)) . T) (((-400 (-535))) . T))
+((((-535)) . T) (($) . T) (((-400 (-535))) . T))
+((((-535)) . T) (((-400 (-535))) . T) (($) . T))
+(((#1=(-535) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-524)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T))
+((((-400 (-535))) . T) (((-535)) . T))
+((((-535)) . T))
+((((-835)) . T) (((-1147)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-307 |#1|)) . T))
+((((-835)) . T))
+((((-307 |#1|)) . T) (($) . T))
+((((-307 |#1|)) . T))
+((((-535)) . T) (((-400 (-535))) . T))
+((((-371)) . T))
+((($) . T) (((-400 (-535))) . T))
+((($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-524)) . T) (((-219)) . T) (((-371)) . T) (((-861 (-371))) . T))
+((((-835)) . T))
+((((-400 (-535))) . T) (($) . T))
+(((|#1| (-1224 |#1|) (-1224 |#1|)) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1|) . T))
+(((|#1| (-1224 |#1|) (-1224 |#1|)) . T))
+(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067)))
+(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067)))
(((|#2|) |has| |#2| (-170)))
-((($) -1536 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))) ((|#2|) |has| |#2| (-170)) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))))
-(((|#2| |#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($ $) |has| |#2| (-170)))
-((((-142)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-361)) (|has| |#2| (-361)))
-((((-834)) . T))
-(((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($) |has| |#2| (-170)))
-(((|#1|) . T))
-((((-834)) . T))
-(|has| |#1| (-1066))
-(|has| $ (-145))
-((((-549) |#1|) . T))
-((($) -1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
-((((-1142)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142)))))
-(|has| |#1| (-356))
-(-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))
-(|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))
-(|has| |#1| (-356))
-(|has| |#1| (-15 * (|#1| (-747) |#1|)))
-(((|#1|) . T))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-((((-834)) . T))
-((((-549) (-129)) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
-(((|#2| (-521 (-836 |#1|))) . T))
-((((-834)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1|) . T))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-((((-563 |#1|)) . T))
-((($) . T))
-(((|#1|) . T) (($) . T))
-((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
-(((|#4|) . T))
-(((|#3|) . T))
-((((-841 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+((($) -3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) ((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))))
+(((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356))))
+((((-835)) -3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-593 (-835))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) (((-1224 |#2|)) . T))
+(|has| |#2| (-170))
+(((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($) |has| |#2| (-170)))
+(((|#2| |#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($ $) |has| |#2| (-170)))
+(((|#2|) |has| |#2| (-1018)))
((((-1142)) -12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018))))
-(((|#1|) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-549) |#2|) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))) ((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((#1=(-1140 |#1| |#2| |#3|) #1#) |has| |#1| (-356)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
+(-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))
+(|has| |#2| (-361))
(((|#2|) |has| |#2| (-1018)))
-(|has| |#1| (-1066))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T))
-(((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(((|#1|) |has| |#1| (-170)) (($) . T))
+(((|#2|) |has| |#2| (-1018)) (((-535)) -12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018))))
+(((|#2|) |has| |#2| (-1067)))
+(((|#2|) |has| |#2| (-1067)) (((-535)) -12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (((-400 (-535))) -12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067))))
+((((-535) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((|#2|) . T))
+((((-535) |#2|) . T))
+((((-535) |#2|) . T))
+(|has| |#2| (-769))
+(-3874 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-3874 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-3874 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-3874 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(|has| |#2| (-821))
+(|has| |#2| (-821))
+(((|#2|) |has| |#2| (-356)))
+(((|#1| |#2|) . T))
(((|#1|) . T))
-(((#0=(-400 (-549)) #0#) |has| |#2| (-38 (-400 (-549)))) ((|#2| |#2|) . T) (($ $) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-((((-834)) . T))
-((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
-(((#0=(-1048) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T) (($) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-((($) . T))
-(((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) (($) . T))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-356)))
-(((|#2|) |has| |#2| (-1066)) (((-549)) -12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066))) (((-400 (-549))) -12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066))))
-((((-549) |#1|) . T))
-((((-834)) . T))
-((((-400 |#2|) |#3|) . T))
-(((|#1| (-400 (-549))) . T))
-((((-400 (-549))) . T) (($) . T))
-((((-400 (-549))) . T) (($) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-((((-834)) . T) (((-1147)) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((((-400 (-549))) . T) (($) . T))
-((((-400 (-549))) . T) (($) . T))
-((((-400 (-549))) . T) (($) . T))
-(((|#2| |#3| (-836 |#1|)) . T))
-((((-1142)) |has| |#2| (-871 (-1142))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
(((|#1|) . T))
-(((|#1| (-521 |#2|) |#2|) . T))
-(((|#1| (-747) (-1048)) . T))
-((((-400 (-549))) |has| |#2| (-356)) (($) . T))
-(((|#1| (-521 (-1054 (-1142))) (-1054 (-1142))) . T))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+((((-524)) |has| |#1| (-594 (-524))))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
(((|#1|) . T))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(|has| |#2| (-769))
-(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
-(|has| |#1| (-361))
-(|has| |#1| (-361))
-(|has| |#1| (-361))
-(|has| |#2| (-821))
-((((-864 |#1|)) . T) (((-795 |#1|)) . T))
-((((-795 (-1142))) . T))
(((|#1|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-621 (-549))) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-525)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
-(|has| |#1| (-227))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((($ $) . T))
-(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-1217 |#1| |#2| |#3|) $) -12 (|has| (-1217 |#1| |#2| |#3|) (-279 (-1217 |#1| |#2| |#3|) (-1217 |#1| |#2| |#3|))) (|has| |#1| (-356))) (($ $) . T))
-((($ $) . T))
-((($ $) . T))
+(|has| |#1| (-823))
(((|#1|) . T))
-((((-1106 |#1| |#2|)) |has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))
-(((|#2|) . T) (((-549)) |has| |#2| (-1009 (-549))) (((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))))
-(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066))))
-(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-((($) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-524)) |has| |#2| (-594 (-524))) (((-861 (-371))) |has| |#2| (-594 (-861 (-371)))) (((-861 (-535))) |has| |#2| (-594 (-861 (-535)))))
((($) . T))
+(((|#2| (-233 (-4299 |#1|) (-747))) . T))
(((|#2|) . T))
-(((|#3|) . T))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))))
-(((|#2|) . T))
-((((-834)) -1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-593 (-834))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1066))) (((-1225 |#2|)) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-549)) . T))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
-((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((((-549) (-142)) . T))
-((($) -1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) ((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018)))
-(((|#1|) . T))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018)))
-(((|#2|) |has| |#1| (-356)))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1| |#1|) . T) (($ $) . T))
-((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170)))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1| (-521 #0=(-1142)) #0#) . T))
-(((|#1|) . T) (($) . T))
+((((-835)) . T))
+((($) . T) (((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T))
+(|has| |#2| (-143))
+(|has| |#2| (-145))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T) (($) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+(((#1=(-400 (-535)) #1#) |has| |#2| (-38 (-400 (-535)))) ((|#2| |#2|) . T) (($ $) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+(((|#2| (-233 (-4299 |#1|) (-747))) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535))))
+(-3874 (|has| |#2| (-444)) (|has| |#2| (-881)))
+((($ $) . T) ((#1=(-836 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-823))
+((((-836 |#1|)) . T))
+(|has| |#2| (-881))
+(|has| |#2| (-881))
+((((-400 (-535))) |has| |#2| (-1009 (-400 (-535)))) (((-535)) |has| |#2| (-1009 (-535))) ((|#2|) . T) (((-836 |#1|)) . T))
+(((|#2| (-233 (-4299 |#1|) (-747)) (-836 |#1|)) . T))
+((((-835)) . T))
+(((|#4|) |has| |#4| (-170)))
+(-3874 (|has| |#4| (-170)) (|has| |#4| (-703)) (|has| |#4| (-821)) (|has| |#4| (-1018)))
+(-3874 (|has| |#4| (-170)) (|has| |#4| (-703)) (|has| |#4| (-821)) (|has| |#4| (-1018)))
+(-3874 (|has| |#4| (-170)) (|has| |#4| (-821)) (|has| |#4| (-1018)))
+(-3874 (|has| |#4| (-170)) (|has| |#4| (-821)) (|has| |#4| (-1018)))
+(((|#3|) . T) ((|#2|) . T) (($) -3874 (|has| |#4| (-170)) (|has| |#4| (-821)) (|has| |#4| (-1018))) ((|#4|) -3874 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1018))))
+(((|#4|) -3874 (|has| |#4| (-170)) (|has| |#4| (-356))))
+((((-835)) . T) (((-1224 |#4|)) . T))
(|has| |#4| (-170))
+(((|#4|) -3874 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1018))) (($) |has| |#4| (-170)))
+(((|#4| |#4|) -3874 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1018))) (($ $) |has| |#4| (-170)))
+(((|#4|) |has| |#4| (-1018)))
+((((-1142)) -12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018))))
+(-12 (|has| |#4| (-227)) (|has| |#4| (-1018)))
+(|has| |#4| (-361))
+(((|#4|) |has| |#4| (-1018)))
+(((|#4|) |has| |#4| (-1018)) (((-535)) -12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))))
+(((|#4|) |has| |#4| (-1067)))
+(((|#4|) |has| |#4| (-1067)) (((-535)) -12 (|has| |#4| (-1009 (-535))) (|has| |#4| (-1067))) (((-400 (-535))) -12 (|has| |#4| (-1009 (-400 (-535)))) (|has| |#4| (-1067))))
+((((-535) |#4|) . T))
+(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4|) . T))
+((((-535) |#4|) . T))
+((((-535) |#4|) . T))
+(|has| |#4| (-769))
+(-3874 (|has| |#4| (-769)) (|has| |#4| (-821)))
+(-3874 (|has| |#4| (-769)) (|has| |#4| (-821)))
+(-3874 (|has| |#4| (-769)) (|has| |#4| (-821)))
+(-3874 (|has| |#4| (-769)) (|has| |#4| (-821)))
+(|has| |#4| (-821))
+(|has| |#4| (-821))
+(((|#4|) |has| |#4| (-356)))
+(((|#1| |#4|) . T))
+(((|#3|) |has| |#3| (-170)))
+(-3874 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(-3874 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(-3874 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(-3874 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(((|#2|) . T) (($) -3874 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018))) ((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))))
+(((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356))))
+((((-835)) . T) (((-1224 |#3|)) . T))
(|has| |#3| (-170))
-(((#0=(-400 (-923 |#1|)) #0#) . T))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(|has| |#1| (-1066))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(|has| |#1| (-1066))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1066))))
-((((-525)) |has| |#1| (-594 (-525))))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-((((-834)) . T) (((-1147)) . T))
-(((|#1| |#1|) |has| |#1| (-170)))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1|) . T))
-((((-400 (-923 |#1|))) . T))
-((((-549) (-129)) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-129)) . T))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-((((-834)) . T))
-((((-1211 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1018)) (((-549)) -12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))))
-(((|#1| |#2|) . T))
-(-1536 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($) |has| |#3| (-170)))
+(((|#3| |#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($ $) |has| |#3| (-170)))
+(((|#3|) |has| |#3| (-1018)))
+((((-1142)) -12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018))))
+(-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))
+(|has| |#3| (-361))
+(((|#3|) |has| |#3| (-1018)))
+(((|#3|) |has| |#3| (-1018)) (((-535)) -12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))))
+(((|#3|) |has| |#3| (-1067)))
+(((|#3|) |has| |#3| (-1067)) (((-535)) -12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067))) (((-400 (-535))) -12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067))))
+((((-535) |#3|) . T))
+(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))
+(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))
+(((|#3|) . T))
+((((-535) |#3|) . T))
+((((-535) |#3|) . T))
(|has| |#3| (-769))
-(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(-3874 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(-3874 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(-3874 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(-3874 (|has| |#3| (-769)) (|has| |#3| (-821)))
(|has| |#3| (-821))
-((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))))
-(((|#2|) . T))
-((((-549) (-129)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-549) |#2|) . T))
-(((|#1| (-1122 |#1|)) |has| |#1| (-821)))
-(|has| |#1| (-1066))
-(((|#1|) . T))
-(-12 (|has| |#1| (-356)) (|has| |#2| (-1117)))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(|has| |#1| (-1066))
-(((|#2|) . T))
-((((-525)) |has| |#2| (-594 (-525))) (((-863 (-372))) |has| |#2| (-594 (-863 (-372)))) (((-863 (-549))) |has| |#2| (-594 (-863 (-549)))))
-(((|#4|) -1536 (|has| |#4| (-170)) (|has| |#4| (-356))))
-(((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356))))
-((((-834)) . T))
-(((|#1|) . T))
-(-1536 (|has| |#2| (-444)) (|has| |#2| (-880)))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-880)))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-880)))
-((($ $) . T) ((#0=(-1142) $) |has| |#1| (-227)) ((#0# |#1|) |has| |#1| (-227)) ((#1=(-794 (-1142)) |#1|) . T) ((#1# $) . T))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-880)))
-((((-549) |#2|) . T))
-((((-834)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((($) -1536 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018))) ((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))))
-((((-549) |#1|) . T))
-(|has| (-400 |#2|) (-145))
-(|has| (-400 |#2|) (-143))
-(((|#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))))
-(|has| |#1| (-38 (-400 (-549))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-400 (-549))) . T))
-((((-834)) . T))
-(|has| |#1| (-541))
-(|has| |#1| (-541))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-834)) . T))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) . T))
-(|has| |#1| (-38 (-400 (-549))))
-((((-381) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#2| (-1117))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-1178)) . T) (((-834)) . T) (((-1147)) . T))
-((((-834)) . T) (((-1147)) . T))
+(|has| |#3| (-821))
+(((|#3|) |has| |#3| (-356)))
+(((|#1| |#3|) . T))
+((((-835)) . T))
(((|#1|) . T))
-((((-381) (-1124)) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-((((-116 |#1|)) . T))
-(|has| |#1| (-541))
-((((-129)) . T))
-((((-549) |#1|) . T))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(((|#2|) . T))
-((((-834)) . T))
-((((-795 |#1|)) . T))
-(((|#2|) |has| |#2| (-170)))
-((((-1142) (-52)) . T))
+((((-835)) . T))
+(|has| |#1| (-227))
+((($) . T))
+(((|#1| (-521 |#3|) |#3|) . T))
+(|has| |#1| (-881))
+(|has| |#1| (-881))
+((((-535)) -12 (|has| |#1| (-857 (-535))) (|has| |#3| (-857 (-535)))) (((-371)) -12 (|has| |#1| (-857 (-371))) (|has| |#3| (-857 (-371)))))
+((((-1142)) |has| |#1| (-871 (-1142))) ((|#3|) . T))
+(|has| |#1| (-823))
+((($ $) . T) ((|#2| $) |has| |#1| . #1=((-227))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-881)))
+((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-541))
-(((|#1|) |has| |#1| (-170)))
-((((-834)) . T))
-((((-525)) |has| |#1| (-594 (-525))))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(((|#2|) |has| |#2| (-302 |#2|)))
-(((#0=(-549) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
+(((|#1| (-521 |#3|)) . T))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
(((|#1|) . T))
-(((|#1| (-1138 |#1|)) . T))
-(|has| $ (-145))
-(((|#2|) . T))
-(((#0=(-549) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
-((($) . T) (((-549)) . T) (((-400 (-549))) . T))
-(|has| |#2| (-361))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-((((-549)) . T) (((-400 (-549))) . T) (($) . T))
+(((|#1| (-521 |#3|)) . T))
+((((-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#3| (-594 (-861 (-535))))) (((-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#3| (-594 (-861 (-371))))) (((-524)) -12 (|has| |#1| (-594 (-524))) (|has| |#3| (-594 (-524)))))
+((((-1091 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((|#2|) . T))
+(((|#1| |#2| |#3| (-521 |#3|)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+((((-835)) . T))
+((($) . T))
+((($) . T))
+((((-835)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((((-835)) . T))
+(((|#1|) |has| |#1| (-356)))
+((((-1142)) |has| |#1| (-871 (-1142))))
+(((|#1|) -3874 (|has| |#1| (-170)) (|has| |#1| (-356))))
+(((|#1|) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1018))))
+(((|#1| |#1|) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1018))))
+(((|#1|) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1018))) (($) -3874 (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018))))
+(-3874 (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
+(-3874 (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
+(|has| |#1| (-465))
+(-3874 (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
+(-3874 (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)) (|has| |#1| (-1078)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)) (|has| |#1| (-1078)) (|has| |#1| (-1067)))
+((((-112)) |has| |#1| (-1067)) (((-835)) -3874 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)) (|has| |#1| (-1078)) (|has| |#1| (-1067))))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)) (|has| |#1| (-1078)) (|has| |#1| (-1067)))
+((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)))
(((|#1| |#2|) . T))
+((((-835)) . T))
(((|#1| |#2|) . T))
-((((-549)) . T) (((-400 (-549))) . T) (($) . T))
-((((-1140 |#1| |#2| |#3|) $) -12 (|has| (-1140 |#1| |#2| |#3|) (-279 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356))) (($ $) . T))
-((((-834)) . T))
-((((-834)) . T))
-((($) . T) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-((($ $) . T))
-((($ $) . T))
-((((-834)) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((#0=(-1217 |#1| |#2| |#3|) #0#) -12 (|has| (-1217 |#1| |#2| |#3|) (-302 (-1217 |#1| |#2| |#3|))) (|has| |#1| (-356))) (((-1142) #0#) -12 (|has| (-1217 |#1| |#2| |#3|) (-505 (-1142) (-1217 |#1| |#2| |#3|))) (|has| |#1| (-356))))
-(-12 (|has| |#1| (-1066)) (|has| |#2| (-1066)))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-835)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T))
+(|has| (-1211 |#1| |#2| |#3| |#4|) (-143))
+(|has| (-1211 |#1| |#2| |#3| |#4|) (-145))
+((((-1211 |#1| |#2| |#3| |#4|)) . T))
+((((-1211 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-535))) . T))
+((($) . T) (((-1211 |#1| |#2| |#3| |#4|)) . T) (((-400 (-535))) . T))
+((((-1211 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-535))) . T))
+((((-1211 |#1| |#2| |#3| |#4|)) . T) (((-400 (-535))) . T) (($) . T))
+(((#1=(-1211 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T))
+((((-1211 |#1| |#2| |#3| |#4|)) . T))
+((((-1142) #1=(-1211 |#1| |#2| |#3| |#4|)) |has| #1# (-505 (-1142) #1#)) ((#1# #1#) |has| #1# (-302 #1#)))
+(((#1=(-1211 |#1| |#2| |#3| |#4|)) |has| #1# (-302 #1#)))
+(((#1=(-1211 |#1| |#2| |#3| |#4|) $) |has| #1# (-279 #1# #1#)))
+((((-1211 |#1| |#2| |#3| |#4|)) . T))
+((((-1211 |#1| |#2| |#3| |#4|)) . T))
+((((-1211 |#1| |#2| |#3| |#4|)) . T))
+((((-1211 |#1| |#2| |#3| |#4|)) . T))
+((((-1205 |#2| |#3| |#4|)) . T) (((-1211 |#1| |#2| |#3| |#4|)) . T))
+((((-1211 |#1| |#2| |#3| |#4|)) . T))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(((|#1|) |has| |#1| (-542)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018)))
+((((-835)) . T))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018)))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-542)) (|has| |#1| (-1018)) (|has| |#1| (-1078)))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-542)) (|has| |#1| (-1018)) (|has| |#1| (-1078)))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018)))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018)))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+((((-591 $) $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)) (((-400 (-535))) |has| |#1| (-542)))
+((($) -3874 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-542)) (|has| |#1| (-1018))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-542)))
+(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)) (((-400 (-535))) |has| |#1| (-542)))
+(|has| |#1| (-542))
+(((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-542)) (($) |has| |#1| (-542)))
+(((|#1| |#1|) |has| |#1| (-170)) ((#1=(-400 (-535)) #1#) |has| |#1| (-542)) (($ $) |has| |#1| (-542)))
+(|has| |#1| (-542))
+(((|#1|) |has| |#1| (-1018)))
+(((|#1|) |has| |#1| (-1018)) (((-535)) -12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))))
(((|#1|) . T))
+((((-535)) |has| |#1| (-857 (-535))) (((-371)) |has| |#1| (-857 (-371))))
(((|#1|) . T))
+(|has| |#1| (-465))
+((((-1142)) |has| |#1| (-1018)))
(((|#1|) . T))
-((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((((-400 (-549))) . T) (((-549)) . T))
-((((-549) (-142)) . T))
-((((-142)) . T))
+((((-524)) |has| |#1| (-594 (-524))) (((-861 (-535))) |has| |#1| (-594 (-861 (-535)))) (((-861 (-371))) |has| |#1| (-594 (-861 (-371)))))
+((((-48)) -12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535)))) (((-591 $)) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) -3874 (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535)))) (|has| |#1| (-1009 (-400 (-535))))) (((-400 (-917 |#1|))) |has| |#1| (-542)) (((-917 |#1|)) |has| |#1| (-1018)) (((-1142)) . T))
(((|#1|) . T))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018)))
-((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-112)) . T))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+((((-835)) . T))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+(|has| |#1| (-356))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(((|#1| (-400 (-535))) . T))
+(((|#1| (-400 (-535))) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170)))
+((($) . T) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#1|) . T))
+((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1|) . T))
+(((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1| |#1|) . T))
+((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170)))
+(((|#1| (-400 (-535)) (-1048)) . T))
+((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))))
+((($ $) . T))
+(|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))
(((|#1|) . T))
-((((-525)) |has| |#1| (-594 (-525))) (((-219)) . #0=(|has| |#1| (-993))) (((-372)) . #0#))
-((((-834)) . T))
-(|has| |#1| (-796))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
(|has| |#1| (-823))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
-(|has| |#1| (-541))
-(|has| |#1| (-880))
-(((|#1|) . T))
-(|has| |#1| (-1066))
-((((-834)) . T))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((|#1| (-1225 |#1|) (-1225 |#1|)) . T))
-((((-549) (-142)) . T))
-((($) . T))
-(-1536 (|has| |#4| (-170)) (|has| |#4| (-821)) (|has| |#4| (-1018)))
-(-1536 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
-((((-1147)) . T) (((-834)) . T))
-((((-834)) . T))
-(|has| |#1| (-1066))
-(((|#1| (-942)) . T))
-(((|#1| |#1|) . T))
-((($) . T))
-(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
-(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
-(-12 (|has| |#1| (-465)) (|has| |#2| (-465)))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))))
(((|#1|) . T))
-(|has| |#2| (-769))
-(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
-(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(|has| |#2| (-821))
-(-12 (|has| |#1| (-769)) (|has| |#2| (-769)))
-(-12 (|has| |#1| (-769)) (|has| |#2| (-769)))
-(((|#1| |#2|) . T))
-(((|#2|) |has| |#2| (-170)))
-(((|#1|) |has| |#1| (-170)))
-((((-834)) . T))
-(|has| |#1| (-342))
+(((|#1| (-535)) . T))
+(((#1=(-535) #1#) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-835)) . T))
+((((-835)) . T))
(((|#1|) . T))
+(((|#1| (-747)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-400 (-549))) . T) (($) . T))
-((($) . T) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#1|) . T))
-(|has| |#1| (-804))
-((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
-(|has| |#1| (-1066))
-(((|#1| $) |has| |#1| (-279 |#1| |#1|)))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)))
-((($) |has| |#1| (-541)))
-(((|#4|) |has| |#4| (-1066)))
-(((|#3|) |has| |#3| (-1066)))
-(|has| |#3| (-361))
-(((|#1|) . T) (((-834)) . T))
-((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-1217 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
-((((-834)) . T))
-(((|#2|) . T))
-(((|#1|) |has| |#1| (-170)) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))))
-(((|#1| |#2|) . T))
-((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(((|#1| |#1|) |has| |#1| (-170)))
-(|has| |#2| (-356))
+(|has| |#1| (-823))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-400 (-549))) . T) (((-549)) . T))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))
-((((-142)) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
(((|#1|) . T))
-((($) -1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) ((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))))
-((((-142)) . T))
-((((-142)) . T))
-(((|#1| |#2| |#3|) . T))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018)))
+((((-524)) |has| |#1| (-594 (-524))))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-1142)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+(((|#3| |#3|) . T))
+(((|#3|) . T) (($) . T))
+(((|#3|) . T))
+((($) . T))
+((($ $) . T) (((-591 $) $) . T))
+((((-835)) . T))
+(((|#3|) . T) (((-591 $)) . T))
+((((-877 |#1|)) . T))
+((((-877 |#1|)) . T))
+((((-877 |#1|)) . T))
+((((-877 |#1|)) . T) (($) . T) (((-400 (-535))) . T))
+(((#1=(-877 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-535)) #2#) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-877 |#1|)) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+((((-877 |#1|)) . T) (((-400 (-535))) . T) (($) . T))
(|has| $ (-145))
+((((-877 |#1|)) . T))
+((((-877 |#1|)) . T))
+((((-877 |#1|)) . T))
+((((-877 |#1|)) . T))
+((((-877 |#1|)) . T) (($) . T) (((-400 (-535))) . T))
+(((#1=(-877 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-535)) #2#) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-877 |#1|)) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+((((-877 |#1|)) . T) (((-400 (-535))) . T) (($) . T))
(|has| $ (-145))
-(|has| |#1| (-1066))
-((((-834)) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-541)) (|has| |#1| (-1018)) (|has| |#1| (-1078)))
-((($ $) |has| |#1| (-279 $ $)) ((|#1| $) |has| |#1| (-279 |#1| |#1|)))
-(((|#1| (-400 (-549))) . T))
+((((-877 |#1|)) . T))
(((|#1|) . T))
-((((-1142)) . T))
-(|has| |#1| (-541))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-(|has| |#1| (-541))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-((((-834)) . T))
-(|has| |#2| (-143))
-(|has| |#2| (-145))
-(((|#2|) . T) (($) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-(|has| |#4| (-821))
-(((|#2| (-234 (-3774 |#1|) (-747)) (-836 |#1|)) . T))
-(|has| |#3| (-821))
-(((|#1| (-521 |#3|) |#3|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(((|#1|) . T) (($) . T) (((-400 (-535))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
(|has| |#1| (-145))
-(|has| |#1| (-143))
-(((#0=(-400 (-549)) #0#) |has| |#2| (-356)) (($ $) . T))
-((((-841 |#1|)) . T))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(((|#1|) . T) (($) . T) (((-400 (-535))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
(|has| |#1| (-145))
(|has| |#1| (-361))
(|has| |#1| (-361))
(|has| |#1| (-361))
-(|has| |#1| (-143))
-((((-400 (-549))) |has| |#2| (-356)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
-(-1536 (|has| |#1| (-342)) (|has| |#1| (-361)))
-((((-1108 |#2| |#1|)) . T) ((|#1|) . T))
-(|has| |#2| (-170))
-(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))
-(((|#2|) . T) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
-(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
-((((-834)) . T))
+(|has| |#1| (-361))
(((|#1|) . T))
-(((|#2|) . T) (($) . T))
-(((|#1|) . T) (($) . T))
-((((-675)) . T))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(|has| |#1| (-541))
+((((-877 |#1|)) . T))
+((((-877 |#1|)) . T))
+((((-877 |#1|)) . T))
+((((-877 |#1|)) . T) (($) . T) (((-400 (-535))) . T))
+(((#1=(-877 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-535)) #2#) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-877 |#1|)) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+((((-877 |#1|)) . T) (((-400 (-535))) . T) (($) . T))
+(|has| $ (-145))
+((((-877 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(((|#1|) . T) (($) . T) (((-400 (-535))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1142) (-52)) . T))
-((((-834)) . T))
-((((-525)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
(((|#1|) . T))
-((((-834)) . T))
-((((-525)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
-(((|#1| (-549)) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((|#1| |#2|) . T))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(((|#1|) . T) (($) . T) (((-400 (-535))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
(((|#1|) . T))
-(((|#1| (-400 (-549))) . T))
-(((|#3|) . T) (((-592 $)) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((($ $) . T) ((|#2| $) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-(((#0=(-1140 |#1| |#2| |#3|) #0#) -12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356))) (((-1142) #0#) -12 (|has| (-1140 |#1| |#2| |#3|) (-505 (-1142) (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356))))
-((((-549)) . T) (($) . T) (((-400 (-549))) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) |has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))))
-((((-834)) . T))
(((|#1|) . T))
-(((|#3| |#3|) . T))
(((|#1|) . T))
-((($) . T) ((|#2|) . T))
-((((-1142) (-52)) . T))
-(((|#3|) . T))
-((($ $) . T) ((#0=(-836 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-804))
-(|has| |#1| (-1066))
-(((|#2| |#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($ $) |has| |#2| (-170)))
-(((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356))))
-((((-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($) |has| |#2| (-170)))
-((((-747)) . T))
-((((-549)) . T))
-(|has| |#1| (-541))
-((((-834)) . T))
-(((|#1| (-400 (-549)) (-1048)) . T))
-(|has| |#1| (-143))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(((|#1|) . T) (($) . T) (((-400 (-535))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(((|#1|) . T))
+(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-541))
-((((-549)) . T))
-((((-116 |#1|)) . T))
(((|#1|) . T))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(((|#1|) . T) (($) . T) (((-400 (-535))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
(|has| |#1| (-145))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
-((((-863 (-549))) . T) (((-863 (-372))) . T) (((-525)) . T) (((-1142)) . T))
-((((-834)) . T))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-((((-834)) . T) (((-1147)) . T))
-((($) . T))
-((((-834)) . T))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
-(((|#2|) |has| |#2| (-170)))
-((($) -1536 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))) ((|#2|) |has| |#2| (-170)) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))))
-((((-841 |#1|)) . T))
-(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1066)))
-(-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))
-(|has| |#2| (-1117))
-(((#0=(-52)) . T) (((-2 (|:| -3337 (-1142)) (|:| -1792 #0#))) . T))
-(((|#1| |#2|) . T))
-(-1536 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
-(((|#1| (-549) (-1048)) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1| (-400 (-549)) (-1048)) . T))
-((($) -1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
-((((-549) |#2|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-(|has| |#2| (-361))
-(-12 (|has| |#1| (-361)) (|has| |#2| (-361)))
-((((-834)) . T))
-((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|)))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
-(((|#1|) . T))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)))
-((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))))
-((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((((-834)) . T))
-(|has| |#1| (-342))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((#0=(-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))))
-(|has| |#1| (-541))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-834)) . T))
-(((|#1| |#2|) . T))
-(-1536 (|has| |#2| (-444)) (|has| |#2| (-880)))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-880)))
-((((-400 (-549))) . T) (((-549)) . T))
-((((-549)) . T))
-((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-((($) . T))
-((((-834)) . T))
-(((|#1|) . T))
-((((-841 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
-((((-834)) . T))
-(((|#3| |#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($ $) |has| |#3| (-170)))
-(|has| |#1| (-993))
-((((-834)) . T))
-(((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($) |has| |#3| (-170)))
-((((-549) (-112)) . T))
-(((|#1|) |has| |#1| (-302 |#1|)))
(|has| |#1| (-361))
(|has| |#1| (-361))
(|has| |#1| (-361))
-((((-1142) $) |has| |#1| (-505 (-1142) $)) (($ $) |has| |#1| (-302 $)) ((|#1| |#1|) |has| |#1| (-302 |#1|)) (((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)))
-((((-1142)) |has| |#1| (-871 (-1142))))
-(-1536 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))
-((((-381) (-1086)) . T))
-(((|#1| |#4|) . T))
-(((|#1| |#3|) . T))
+(|has| |#1| (-361))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-835)) . T))
+((((-835)) . T))
((((-381) |#1|) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
-(|has| |#1| (-1066))
-((((-834)) . T))
-((((-834)) . T))
-((((-881 |#1|)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
+((((-535)) . T) (((-400 (-535))) . T))
+((((-371)) . T))
+((($) . T) (((-400 (-535))) . T))
+((($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-524)) . T) (((-1124)) . T) (((-219)) . T) (((-371)) . T) (((-861 (-371))) . T))
+((((-219)) . T) (((-835)) . T))
+((((-400 (-535))) . T) (($) . T))
+(((|#1|) |has| |#1| (-170)))
(((|#1| |#2|) . T))
-((($) . T))
+(((|#1|) . T))
+((((-835)) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
-(((#0=(-841 |#1|)) |has| #0# (-302 #0#)))
-(((|#1| |#2|) . T))
-(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
-(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
-(-12 (|has| |#1| (-769)) (|has| |#2| (-769)))
(((|#1|) . T))
-(-12 (|has| |#1| (-769)) (|has| |#2| (-769)))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(|has| |#1| (-1164))
-(((#0=(-549) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
-((((-400 (-549))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1018)))
-(((|#3|) |has| |#3| (-1018)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-(|has| |#1| (-356))
-((((-549)) . T) (((-400 (-549))) . T) (($) . T))
-((($ $) . T) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1| |#1|) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
-(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-549) |#3|) . T))
-((((-834)) . T))
-((((-525)) |has| |#3| (-594 (-525))))
-((((-665 |#3|)) . T) (((-834)) . T))
+((((-835)) . T))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((($) . T) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
-((($) . T))
-(((#0=(-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) #0#) |has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))))
-(|has| |#2| (-823))
-((($) . T))
-(((|#2|) |has| |#2| (-1066)))
-((((-834)) -1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-593 (-834))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1066))) (((-1225 |#2|)) . T))
-(|has| |#1| (-823))
(|has| |#1| (-823))
-((((-1124) (-52)) . T))
-(|has| |#1| (-823))
-((((-834)) . T))
-((((-549)) |has| #0=(-400 |#2|) (-617 (-549))) ((#0#) . T))
-((((-549) (-142)) . T))
-((((-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T) ((|#1| |#2|) . T))
-((((-400 (-549))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-834)) . T))
-((((-881 |#1|)) . T))
-(|has| |#1| (-356))
-(|has| |#1| (-356))
-(|has| |#1| (-356))
-(|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))
-(|has| |#1| (-821))
-(|has| |#1| (-356))
-(|has| |#1| (-821))
-(((|#1|) . T) (($) . T))
-(|has| |#1| (-821))
-((((-1142)) |has| |#1| (-871 (-1142))))
-(((|#1| (-1142)) . T))
-(((|#1| (-1225 |#1|) (-1225 |#1|)) . T))
-((((-834)) . T) (((-1147)) . T))
-(((|#1| |#2|) . T))
-((($ $) . T))
-(|has| |#1| (-1066))
-(((|#1| (-1142) (-794 (-1142)) (-521 (-794 (-1142)))) . T))
-((((-400 (-923 |#1|))) . T))
-((((-525)) . T))
-((((-834)) . T))
-((($) . T))
-(((|#2|) . T) (($) . T))
-((((-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-170)))
-((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
+((((-835)) . T))
+((((-835)) . T))
(((|#3|) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
-((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(((|#1|) . T))
+(((|#3|) . T))
+((((-835)) . T))
+(((|#3|) . T))
+(((|#3| |#3|) . T))
+(((|#3|) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-400 |#2|)) . T))
+((((-835)) . T))
+(|has| |#1| (-1183))
+((((-524)) |has| |#1| (-594 (-524))) (((-219)) . #1=(|has| |#1| (-991))) (((-371)) . #1#))
+(|has| |#1| (-991))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-1183)))
+((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T))
(((|#1|) . T))
-((((-525)) |has| |#1| (-594 (-525))) (((-863 (-372))) |has| |#1| (-594 (-863 (-372)))) (((-863 (-549))) |has| |#1| (-594 (-863 (-549)))))
-((((-834)) . T))
-(((|#2|) . T) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(|has| |#2| (-821))
-(-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))
-(|has| |#1| (-541))
-(|has| |#1| (-1117))
-((((-1124) |#1|) . T))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((|#1| |#1|) . T))
-((((-400 (-549))) |has| |#1| (-1009 (-549))) (((-549)) |has| |#1| (-1009 (-549))) (((-1142)) |has| |#1| (-1009 (-1142))) ((|#1|) . T))
-((((-549) |#2|) . T))
-((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
-((((-549)) |has| |#1| (-857 (-549))) (((-372)) |has| |#1| (-857 (-372))))
-((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((|#1|) . T))
-(((|#1|) . T))
-((((-621 |#4|)) . T) (((-834)) . T))
-((((-525)) |has| |#4| (-594 (-525))))
-((((-525)) |has| |#4| (-594 (-525))))
-((((-834)) . T) (((-621 |#4|)) . T))
-((($) |has| |#1| (-821)))
+((($ $) |has| |#1| (-279 $ $)) ((|#1| $) |has| |#1| (-279 |#1| |#1|)))
+((($) |has| |#1| (-302 $)) ((|#1|) |has| |#1| (-302 |#1|)))
+((((-1142) $) |has| |#1| (-505 (-1142) $)) (($ $) |has| |#1| (-302 $)) ((|#1| |#1|) |has| |#1| (-302 |#1|)) (((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)))
(((|#1|) . T))
-((((-621 |#4|)) . T) (((-834)) . T))
-((((-525)) |has| |#4| (-594 (-525))))
+(|has| |#1| (-227))
+((((-1142)) |has| |#1| (-871 (-1142))))
(((|#1|) . T))
-(((|#2|) . T))
-((((-1142)) |has| (-400 |#2|) (-871 (-1142))))
-(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((#0=(-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-834)) -1536 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-593 (-834))) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-703)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)) (|has| |#3| (-1066))) (((-1225 |#3|)) . T))
-((((-549) |#2|) . T))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(((|#2| |#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($ $) |has| |#2| (-170)))
-((((-834)) . T))
-((((-834)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T) ((|#2|) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-1124) (-1142) (-549) (-219) (-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-((((-834)) . T))
-((((-549) (-112)) . T))
-(((|#1|) . T))
-((((-834)) . T))
-((((-112)) . T))
-((((-112)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-112)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-((((-834)) . T))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-(((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($) |has| |#2| (-170)))
-(|has| $ (-145))
-((((-400 |#2|)) . T))
-((((-400 (-549))) |has| #0=(-400 |#2|) (-1009 (-400 (-549)))) (((-549)) |has| #0# (-1009 (-549))) ((#0#) . T))
-(((|#2| |#2|) . T))
-(((|#4|) |has| |#4| (-170)))
-(|has| |#2| (-143))
-(|has| |#2| (-145))
-(((|#3|) |has| |#3| (-170)))
-(|has| |#1| (-145))
+(((|#1|) . T) (($) . T))
+(((|#1| |#1|) . T) (($ $) . T))
+(((|#1|) . T) (($) . T))
+((((-835)) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) . T) (($) . T))
+(-12 (|has| |#1| (-534)) (|has| |#1| (-797)))
+((((-835)) . T))
(|has| |#1| (-143))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
-(|has| |#1| (-145))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
-(|has| |#1| (-145))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
(|has| |#1| (-145))
(((|#1|) . T))
-(((|#2|) . T))
-(|has| |#2| (-227))
-((((-834)) . T) (((-1147)) . T))
-((((-1142) (-52)) . T))
-((((-834)) . T))
-((((-834)) . T) (((-1147)) . T))
-(((|#1| |#1|) . T))
-((((-1142)) |has| |#2| (-871 (-1142))))
-((((-549) (-112)) . T))
-(|has| |#1| (-541))
-(((|#2|) . T))
-(((|#2|) . T))
+((((-1142)) |has| |#1| (-871 (-1142))))
+(|has| |#1| (-227))
+(((|#1|) . T) (($) . T) (((-400 (-535))) . T))
+((($) . T) ((|#1|) . T) (((-400 (-535))) . T))
+(((|#1|) . T) (($) . T) (((-400 (-535))) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+(((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) . T) (($ $) . T))
+(((|#1|) . T))
+((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|)))
+(((|#1|) |has| |#1| (-302 |#1|)))
+(((|#1| $) |has| |#1| (-279 |#1| |#1|)))
+(((|#1|) . T))
+(((|#1|) . T) (((-535)) |has| |#1| (-617 (-535))))
+(((|#1|) . T))
+((((-535)) |has| |#1| (-857 (-535))) (((-371)) |has| |#1| (-857 (-371))))
+(|has| |#1| (-796))
+(|has| |#1| (-796))
+(|has| |#1| (-796))
+(-3874 (|has| |#1| (-796)) (|has| |#1| (-823)))
+(|has| |#1| (-796))
+(|has| |#1| (-796))
+(|has| |#1| (-796))
+(((|#1|) . T))
+(|has| |#1| (-881))
+(|has| |#1| (-991))
+((((-524)) |has| |#1| (-594 (-524))) (((-861 (-535))) |has| |#1| (-594 (-861 (-535)))) (((-861 (-371))) |has| |#1| (-594 (-861 (-371)))) (((-371)) . #1=(|has| |#1| (-991))) (((-219)) . #1#))
+((((-400 (-535))) |has| |#1| . #1=((-1009 (-535)))) (((-535)) |has| |#1| . #1#) (((-1142)) |has| |#1| (-1009 (-1142))) ((|#1|) . T))
+(|has| |#1| (-1117))
+(((|#1|) . T))
+((((-835)) . T))
+((((-835)) . T))
+(((|#1|) . T))
+((((-835)) . T))
(((|#1|) . T))
-(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
+(((|#1|) . T) (($) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(((|#3|) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(((|#1|) . T))
-((((-834)) . T))
-((((-525)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-970 |#1|)) . T) ((|#1|) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-400 (-549))) . T) (((-400 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1138 |#1|)) . T))
-((((-549)) . T) (($) . T) (((-400 (-549))) . T))
-(((|#3|) . T) (($) . T))
-(|has| |#1| (-823))
-(((|#2|) . T))
-((((-549)) . T) (($) . T) (((-400 (-549))) . T))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) . T))
-((((-549) |#2|) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-(((|#2|) . T))
-((((-549) |#3|) . T))
-(((|#2|) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-((((-1217 |#1| |#2| |#3|)) |has| |#1| (-356)))
-(|has| |#1| (-38 (-400 (-549))))
-((((-834)) . T))
-(|has| |#1| (-1066))
-(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))
-(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066))))
-(|has| |#1| (-38 (-400 (-549))))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-381) (-1124)) . T))
+((((-835)) . T))
+((((-400 (-917 |#1|))) . T))
+((((-400 (-917 |#1|))) . T))
+((((-1108 |#2| (-400 (-917 |#1|)))) . T) (((-400 (-917 |#1|))) . T))
+((((-835)) . T))
+((((-400 (-917 |#1|))) . T))
+(((#1=(-400 (-917 |#1|)) #1#) . T))
+((((-400 (-917 |#1|))) . T))
+((((-400 (-917 |#1|))) . T))
+((((-524)) |has| |#2| (-594 (-524))) (((-861 (-371))) |has| |#2| (-594 (-861 (-371)))) (((-861 (-535))) |has| |#2| (-594 (-861 (-535)))))
+((($) . T))
+(((|#2| |#3|) . T))
(((|#2|) . T))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((#0=(-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))))
-(((|#2| |#2|) . T))
-(|has| |#2| (-356))
-(((|#2|) . T) (((-549)) |has| |#2| (-1009 (-549))) (((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))))
+((((-835)) . T))
+((($) . T) (((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T))
+(|has| |#2| (-143))
+(|has| |#2| (-145))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T) (($) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+(((#1=(-400 (-535)) #1#) |has| |#2| (-38 (-400 (-535)))) ((|#2| |#2|) . T) (($ $) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+(((|#2| |#3|) . T))
(((|#2|) . T))
-((((-1124) (-52)) . T))
-(((|#2|) |has| |#2| (-170)))
-((((-549) |#3|) . T))
-((((-549) (-142)) . T))
-((((-142)) . T))
-((((-834)) . T))
-((((-112)) . T))
+(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535))))
+(-3874 (|has| |#2| (-444)) (|has| |#2| (-881)))
+((($ $) . T) ((#1=(-836 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-823))
+((((-836 |#1|)) . T))
+(|has| |#2| (-881))
+(|has| |#2| (-881))
+((((-400 (-535))) |has| |#2| (-1009 (-400 (-535)))) (((-535)) |has| |#2| (-1009 (-535))) ((|#2|) . T) (((-836 |#1|)) . T))
+(((|#2| |#3| (-836 |#1|)) . T))
+(((|#2| |#2|) . T) ((|#6| |#6|) . T))
+(((|#2|) . T) ((|#6|) . T))
+((((-835)) . T))
+(((|#2|) . T) ((|#6|) . T))
+(((|#2|) . T) ((|#6|) . T))
+(((|#4|) . T))
+((((-618 |#4|)) . T) (((-835)) . T))
+(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4|) . T))
+((((-524)) |has| |#4| (-594 (-524))))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-835)) . T))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+((((-835)) . T))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+(|has| |#1| (-356))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(((|#1| (-400 (-535))) . T))
+(((|#1| (-400 (-535))) . T))
(|has| |#1| (-145))
-(((|#1|) . T))
(|has| |#1| (-143))
-((($) . T))
-(|has| |#1| (-541))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((($) . T))
-(((|#1|) . T))
-(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
-((((-834)) . T))
-((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
-((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
-((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
-((((-1124) (-52)) . T))
+((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170)))
+((($) . T) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#1|) . T))
+((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1|) . T))
+(((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#1| |#1|) . T))
+((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170)))
+(((|#1| (-400 (-535)) (-1048)) . T))
+((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))))
+((($ $) . T))
+(|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
(((|#1| |#2|) . T))
-((((-549) (-142)) . T))
-(((#0=(-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))
-((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(|has| |#1| (-823))
-(((|#2| (-747) (-1048)) . T))
+((((-835)) . T))
(((|#1| |#2|) . T))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
-(|has| |#1| (-767))
-(((|#1|) |has| |#1| (-170)))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-524)) |has| |#4| (-594 (-524))))
(((|#4|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
(((|#4|) . T))
+((((-835)) . T) (((-618 |#4|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-524)) . T) (((-400 (-1136 (-535)))) . T) (((-219)) . T) (((-371)) . T))
+((((-400 (-535))) . T) (((-535)) . T))
+((((-371)) . T) (((-219)) . T) (((-835)) . T))
+((($) . T) (((-400 (-535))) . T))
+((($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-835)) . T) (((-1147)) . T))
(((|#1| |#2|) . T))
-(-1536 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| |#2| (-145))))
-(-1536 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| |#2| (-143))))
-(((|#4|) . T))
-(|has| |#1| (-143))
-((((-1124) |#1|) . T))
-(|has| |#1| (-145))
-(((|#1|) . T))
-((((-549)) . T))
-((((-834)) . T))
+((((-835)) . T))
(((|#1| |#2|) . T))
-((((-834)) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#3|) . T))
-((((-1217 |#1| |#2| |#3|)) |has| |#1| (-356)))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(((|#1|) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))) (((-929 |#1|)) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(|has| |#2| (-356))
-(((|#1|) |has| |#1| (-170)))
-(((|#2|) |has| |#2| (-1018)))
-((((-1124) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066))))
-(((|#2| (-864 |#1|)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-524)) |has| |#2| (-594 (-524))) (((-861 (-371))) |has| |#2| (-594 (-861 (-371)))) (((-861 (-535))) |has| |#2| (-594 (-861 (-535)))))
((($) . T))
-((((-381) (-1124)) . T))
-((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((((-834)) -1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-593 (-834))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1066))) (((-1225 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -3337 (-1124)) (|:| -1792 #0#))) . T))
-(((|#1|) . T))
-((((-834)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))
-((((-142)) . T))
+(((|#2| (-474 (-4299 |#1|) (-747))) . T))
+(((|#2|) . T))
+((((-835)) . T))
+((($) . T) (((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T))
(|has| |#2| (-143))
(|has| |#2| (-145))
-(|has| |#1| (-465))
-(-1536 (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
-(|has| |#1| (-356))
-((((-834)) . T))
-(|has| |#1| (-38 (-400 (-549))))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)))
-((($) |has| |#1| (-541)))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-834)) . T))
-((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-1217 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))))
-((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T) (($) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+(((#1=(-400 (-535)) #1#) |has| |#2| (-38 (-400 (-535)))) ((|#2| |#2|) . T) (($ $) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+(((|#2| (-474 (-4299 |#1|) (-747))) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535))))
+(-3874 (|has| |#2| (-444)) (|has| |#2| (-881)))
+((($ $) . T) ((#1=(-836 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-823))
+((((-836 |#1|)) . T))
+(|has| |#2| (-881))
+(|has| |#2| (-881))
+((((-400 (-535))) |has| |#2| (-1009 (-400 (-535)))) (((-535)) |has| |#2| (-1009 (-535))) ((|#2|) . T) (((-836 |#1|)) . T))
+(((|#2| (-474 (-4299 |#1|) (-747)) (-836 |#1|)) . T))
+(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067)))
+(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067)))
+(((|#2|) |has| |#2| (-170)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+((($) -3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) ((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))))
+(((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356))))
+((((-835)) -3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-593 (-835))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) (((-1224 |#2|)) . T))
+(|has| |#2| (-170))
+(((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($) |has| |#2| (-170)))
+(((|#2| |#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($ $) |has| |#2| (-170)))
+(((|#2|) |has| |#2| (-1018)))
+((((-1142)) -12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018))))
+(-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))
+(|has| |#2| (-361))
+(((|#2|) |has| |#2| (-1018)))
+(((|#2|) |has| |#2| (-1018)) (((-535)) -12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018))))
+(((|#2|) |has| |#2| (-1067)))
+(((|#2|) |has| |#2| (-1067)) (((-535)) -12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (((-400 (-535))) -12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067))))
+((((-535) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((|#2|) . T))
+((((-535) |#2|) . T))
+((((-535) |#2|) . T))
+(|has| |#2| (-769))
+(-3874 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-3874 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-3874 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-3874 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(|has| |#2| (-821))
+(|has| |#2| (-821))
+(((|#2|) |has| |#2| (-356)))
(((|#1| |#2|) . T))
-((((-1142)) |has| |#1| (-871 (-1142))))
-((((-881 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
-((((-834)) . T))
-((((-834)) . T))
-(|has| |#1| (-1066))
-(((|#2| (-474 (-3774 |#1|) (-747)) (-836 |#1|)) . T))
-((((-400 (-549))) . #0=(|has| |#2| (-356))) (($) . #0#))
-(((|#1| (-521 (-1142)) (-1142)) . T))
+((((-835)) . T) (((-1147)) . T))
(((|#1|) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
(((|#1|) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-170))
-(((|#2| |#2|) . T))
+((((-835)) . T))
(((|#1| |#2| |#3| |#4|) . T))
+((((-835)) . T))
+((((-535)) . T))
+((((-535)) . T) (($) . T) (((-400 (-535))) . T))
+((($) . T) (((-535)) . T) (((-400 (-535))) . T))
+((((-535)) . T) (($) . T) (((-400 (-535))) . T))
+((((-535)) . T) (((-400 (-535))) . T) (($) . T))
+(((#1=(-535) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-524)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T))
+((((-400 (-535))) . T) (((-535)) . T))
+((((-535)) . T))
+((((-1124)) . T) (((-835)) . T))
+((((-166 (-371))) . T) (((-219)) . T) (((-371)) . T))
+((((-400 (-535))) . T) (((-535)) . T))
+((($) . T) (((-400 (-535))) . T))
+((($) . T) (((-400 (-535))) . T))
+((($) . T) (((-400 (-535))) . T))
+((((-400 (-535))) . T) (($) . T))
+(((#1=(-400 (-535)) #1#) . T) (($ $) . T))
+((($) . T))
+((($ $) . T) (((-591 $) $) . T))
+((((-835)) . T))
+((((-400 (-535))) . T) (((-535)) . T) (((-591 $)) . T))
(((|#1|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(((|#1|) . T))
-(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) . T))
-((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-1142) (-52)) . T))
-((($ $) . T))
-(((|#1| (-549)) . T))
-((((-881 |#1|)) . T))
-(((|#1|) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1018))) (($) -1536 (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018))))
-(((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
(|has| |#1| (-823))
-(|has| |#1| (-823))
-((((-549) |#2|) . T))
-((((-549)) . T))
-((((-1217 |#1| |#2| |#3|)) -12 (|has| (-1217 |#1| |#2| |#3|) (-302 (-1217 |#1| |#2| |#3|))) (|has| |#1| (-356))))
-(|has| |#1| (-823))
-((((-665 |#2|)) . T) (((-834)) . T))
+(((|#1|) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(((|#1|) . T))
+((((-524)) |has| |#1| (-594 (-524))))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-535) (-112)) . T))
+((((-535) (-112)) . T))
+((((-535) (-112)) . T))
+((((-524)) . T))
+((((-112)) . T))
+((((-835)) . T))
+((((-112)) . T))
+((((-112)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-1142)) . T) (((-835)) . T) (((-1147)) . T))
(((|#1| |#2|) . T))
-((((-400 (-923 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))
-(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))
-(((|#1|) |has| |#1| (-170)))
-(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))
-(((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356))))
-(|has| |#2| (-823))
-(|has| |#1| (-823))
-(-1536 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-880)))
-((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-((((-549) |#2|) . T))
-(((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356))))
-(|has| |#1| (-342))
-(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066))))
-((($) . T) (((-400 (-549))) . T))
-((((-549) (-112)) . T))
-(|has| |#1| (-796))
-(|has| |#1| (-796))
+((((-835)) . T))
+(((|#1| |#2|) . T))
+((((-835)) . T))
+((((-835)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-835)) . T))
+(((|#1| |#2|) . T))
+((((-835)) . T))
+((((-835)) . T))
(((|#1|) . T))
-(-1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-(|has| |#1| (-38 (-400 (-549))))
-((((-549)) . T) (($) . T) (((-400 (-549))) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
-(|has| |#1| (-38 (-400 (-549))))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-1142)) |has| |#1| (-871 (-1142))) (((-1048)) . T))
+(((|#1| |#2|) . T))
(((|#1|) . T))
-(|has| |#1| (-821))
-(((#0=(-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) #0#) |has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(|has| |#1| (-1066))
-((((-834)) . T) (((-1147)) . T))
(((|#1|) . T))
-(((|#2| |#2|) . T))
+(|has| |#1| (-823))
(((|#1|) . T))
-(((|#1| |#2| |#3| (-234 |#2| |#3|) (-234 |#1| |#3|)) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
(((|#1|) . T))
-(((|#3| |#3|) . T))
-(((|#2|) . T))
+((((-524)) |has| |#1| (-594 (-524))))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
(((|#1|) . T))
-(((|#1| (-521 |#2|) |#2|) . T))
-((((-834)) . T))
-((((-747)) . T) (((-834)) . T))
-(((|#1| (-747) (-1048)) . T))
-(((|#3|) . T))
(((|#1|) . T))
-((((-142)) . T))
-(((|#2|) |has| |#2| (-170)))
-(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1066)))
+((((-835)) . T) (((-1147)) . T))
+((((-563 |#1|)) . T))
+((((-563 |#1|)) . T))
+((((-563 |#1|)) . T))
+((((-563 |#1|)) . T) (($) . T) (((-400 (-535))) . T))
+(((#1=(-563 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-535)) #2#) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-563 |#1|)) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+((((-563 |#1|)) . T) (((-400 (-535))) . T) (($) . T))
+(|has| $ (-145))
+((((-563 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(|has| |#3| (-170))
-(((|#4|) |has| |#4| (-356)))
-(((|#3|) |has| |#3| (-356)))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1| |#4| |#5|) . T))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-356)))
-((((-834)) . T))
-(((|#2|) . T))
-(((|#1| (-1138 |#1|)) . T))
-((((-1048)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
-((($) . T) ((|#1|) . T) (((-400 (-549))) . T))
-(((|#2|) . T))
-((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
-((($) |has| |#1| (-821)))
-(|has| |#1| (-880))
-((((-834)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((#0=(-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) #0#) |has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))))
-(-1536 (|has| |#2| (-444)) (|has| |#2| (-880)))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-880)))
-(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))
-(((|#1| |#2|) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
(((|#1|) . T))
+((((-524)) |has| |#1| (-594 (-524))))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356))))
(|has| |#1| (-823))
-(|has| |#1| (-541))
-((((-563 |#1|)) . T))
-((($) . T))
-(((|#2|) . T))
-(-1536 (-12 (|has| |#1| (-356)) (|has| |#2| (-796))) (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-((((-881 |#1|)) . T))
-(((|#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) . T))
-(((|#1| |#4| |#5|) . T))
-(((|#1| (-747)) . T))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)))
-((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))))
-((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((((-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) . T))
-((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
-((((-648 |#1|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-525)) . T))
-((((-834)) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-834)) . T))
-((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((|#2|) . T))
-(-1536 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-703)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)) (|has| |#3| (-1066)))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
-(|has| |#1| (-1164))
-(|has| |#1| (-1164))
-(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1066)))
-(|has| |#1| (-1164))
-(|has| |#1| (-1164))
-(((|#3| |#3|) . T))
-((((-549)) . T) (($) . T) (((-400 (-549))) . T))
-((($) . T) (((-400 (-549))) . T) (((-400 |#1|)) . T) ((|#1|) . T))
-((($ $) . T) ((#0=(-400 (-549)) #0#) . T) ((#1=(-400 |#1|) #1#) . T) ((|#1| |#1|) . T))
-(((|#3|) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-((((-1124) (-52)) . T))
-(|has| |#1| (-1066))
-(-1536 (|has| |#2| (-796)) (|has| |#2| (-823)))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1|) . T))
+(((|#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-747) |#1|) . T))
+((((-835)) . T))
+((((-1069)) . T))
+((((-835)) . T))
+((((-1124) (-1142) (-535) (-219) (-835)) . T))
((($) . T))
-((((-1140 |#1| |#2| |#3|)) -12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356))))
-((((-834)) . T))
-(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+((((-835)) . T))
((($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-((((-834)) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(|has| |#2| (-880))
-(|has| |#1| (-356))
-(((|#2|) |has| |#2| (-1066)))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-880)))
-((($) . T) ((|#2|) . T))
-((((-525)) . T) (((-400 (-1138 (-549)))) . T) (((-219)) . T) (((-372)) . T))
-((((-372)) . T) (((-219)) . T) (((-834)) . T))
-(|has| |#1| (-880))
-(|has| |#1| (-880))
-(|has| |#1| (-880))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-880)))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))
((($ $) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
+((($) . T))
+((($) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-1124)) . T) (((-524)) . T) (((-535)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T))
+((((-535)) . T))
+(((|#1| |#2|) . T))
+((((-835)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#1| |#2|) . T))
+((($) . T))
((($ $) . T))
-((((-549) (-112)) . T))
((($) . T))
+((((-835)) . T))
+((($) . T))
+((($) . T))
+((((-535)) . T))
(((|#1|) . T))
-((((-549)) . T))
-((((-112)) . T))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
-(|has| |#1| (-38 (-400 (-549))))
-(((|#1| (-549)) . T))
((($) . T))
-(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
-((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
+((((-835)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
(((|#1|) . T))
-((((-549)) . T))
-(((|#1| |#2|) . T))
-((((-1142)) |has| |#1| (-1018)))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
+((((-535)) . T))
+((($) . T))
+((($) . T))
+((($) . T))
+(|has| $ (-145))
+((($) . T))
+((((-835)) . T))
+((($) . T) (((-400 (-535))) . T))
+((($) . T) (((-400 (-535))) . T))
+((($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-400 (-535))) . T) (($) . T))
+(((|#1|) . T))
+(((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T))
+((((-835)) . T))
+((((-400 (-535))) . T))
+((((-400 (-535))) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-142)) . T))
+((((-142)) . T))
+((((-535) (-142)) . T))
+((((-535) (-142)) . T))
+((((-535) (-142)) . T))
+((((-142)) . T))
+((((-835)) . T))
+((((-142)) . T))
+((((-142)) . T))
+(|has| |#1| (-15 * (|#1| (-535) |#1|)))
+((((-835)) . T))
+((($ $) . T))
+((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))
+(((|#1| (-535) (-1048)) . T))
+((($) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-542)))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))))
+(((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))) ((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)))
+(((|#1| (-535)) . T))
+(((|#1| (-535)) . T))
+((($) |has| |#1| (-542)))
+((($ $) |has| |#1| (-542)))
+((($) |has| |#1| (-542)))
+((($) |has| |#1| (-542)))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+((($) . T))
+((((-835)) . T))
+((((-835)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-524)) |has| |#1| (-594 (-524))))
+(((|#1|) . T))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
(((|#1|) . T))
-((((-834)) . T))
-(((|#1| (-549)) . T))
-(((|#1| (-1217 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-823))
(((|#1|) . T))
-(((|#1| (-400 (-549))) . T))
-(((|#1| (-1189 |#1| |#2| |#3|)) . T))
-(((|#1| (-747)) . T))
(((|#1|) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-834)) . T))
-(|has| |#1| (-1066))
-((((-1124) |#1|) . T))
-((($) . T))
-(|has| |#2| (-145))
-(|has| |#2| (-143))
-(((|#1| (-521 (-794 (-1142))) (-794 (-1142))) . T))
-((((-834)) . T))
-((((-1211 |#1| |#2| |#3| |#4|)) . T))
-((((-1211 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1018)))
-((((-549) (-112)) . T))
-((((-834)) |has| |#1| (-1066)))
-(|has| |#2| (-170))
-((((-549)) . T))
-(|has| |#2| (-821))
+((((-128)) . T) (((-835)) . T))
+((((-1179)) . T) (((-835)) . T) (((-1147)) . T))
+(((|#1|) -3874 (|has| |#2| (-360 |#1|)) (|has| |#2| (-411 |#1|))))
+(((|#1|) |has| |#2| (-411 |#1|)))
(((|#1|) . T))
-((((-549)) . T))
-((((-834)) . T))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-342)))
-(|has| |#1| (-145))
-((((-834)) . T))
-(((|#3|) . T))
-(-1536 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
-((((-834)) . T))
-((((-1210 |#2| |#3| |#4|)) . T) (((-1211 |#1| |#2| |#3| |#4|)) . T))
-((((-834)) . T))
-((((-48)) -12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549)))) (((-592 $)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) -1536 (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549)))) (|has| |#1| (-1009 (-400 (-549))))) (((-400 (-923 |#1|))) |has| |#1| (-541)) (((-923 |#1|)) |has| |#1| (-1018)) (((-1142)) . T))
-(((|#1|) . T) (($) . T))
-(((|#1| (-747)) . T))
-((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-302 |#1|)))
-((((-1211 |#1| |#2| |#3| |#4|)) . T))
-((((-549)) |has| |#1| (-857 (-549))) (((-372)) |has| |#1| (-857 (-372))))
(((|#1|) . T))
-(|has| |#1| (-541))
+(((|#2|) . T) (((-835)) . T))
(((|#1|) . T))
-((((-834)) . T))
-(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))))
-(((|#1|) |has| |#1| (-170)))
-((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#3|) |has| |#3| (-1066)))
-(((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356))))
-((((-1210 |#2| |#3| |#4|)) . T))
-((((-112)) . T))
-(|has| |#1| (-796))
-(|has| |#1| (-796))
-(((|#1| (-549) (-1048)) . T))
-((($) |has| |#1| (-302 $)) ((|#1|) |has| |#1| (-302 |#1|)))
+((((-1124) |#1|) . T))
+((((-1124) |#1|) . T))
+((((-1124) |#1|) . T))
+((((-1124) |#1|) . T))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T))
+(((|#1|) . T) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((#1=(-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) #1#) |has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) |has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T))
+((((-1124) |#1|) . T))
+((((-835)) . T))
+((((-381) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T))
+((((-524)) |has| |#1| (-594 (-524))) (((-861 (-371))) |has| |#1| (-594 (-861 (-371)))) (((-861 (-535))) |has| |#1| (-594 (-861 (-535)))))
+(((|#1|) . T))
+((((-835)) . T))
+((((-835)) . T))
(|has| |#1| (-821))
(|has| |#1| (-821))
-(((|#1| (-549) (-1048)) . T))
-(-1536 (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(((|#1| (-400 (-549)) (-1048)) . T))
-(((|#1| (-747) (-1048)) . T))
-(|has| |#1| (-823))
-(((#0=(-881 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-549)) #1#) . T))
-(|has| |#2| (-143))
-(|has| |#2| (-145))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(((|#2|) . T))
+((((-835)) . T))
+(((|#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T) (($) . T))
(((|#2|) . T))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
(|has| |#1| (-143))
(|has| |#1| (-145))
-(|has| |#1| (-1066))
-((((-881 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
-(|has| |#1| (-1066))
+(((|#2|) . T) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1066))
-((((-549)) -12 (|has| |#1| (-356)) (|has| |#2| (-617 (-549)))) ((|#2|) |has| |#1| (-356)))
-(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1066)))
-(((|#2|) |has| |#2| (-170)))
-(((|#1|) |has| |#1| (-170)))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) . T))
-((((-834)) . T))
-(|has| |#3| (-821))
-((((-834)) . T))
-((((-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T))
-((((-834)) . T))
-(((|#1| |#1|) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1018))))
-(((|#1|) . T))
-((((-549)) . T))
-((((-549)) . T))
-(((|#1|) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1018))))
-(((|#2|) |has| |#2| (-356)))
-((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-356)))
-(|has| |#1| (-823))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) |has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-880)))
-(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-525)) . T) (((-549)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
-((((-834)) . T))
-(|has| |#1| (-38 (-400 (-549))))
-((((-549)) . T) (($) . T) (((-400 (-549))) . T))
-((((-549)) . T) (($) . T) (((-400 (-549))) . T))
-(|has| |#1| (-227))
+((((-400 |#2|)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
+(|has| |#2| (-227))
+((($) . T))
+((((-835)) . T))
+((((-1142)) |has| |#2| (-871 (-1142))))
+(((|#2|) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T))
+((((-1124) (-51)) . T))
+((((-835)) . T))
+((((-1124) (-51)) . T))
+((((-1124) (-51)) . T))
+((((-1124) (-51)) . T))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) . T))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) . T))
+(((#1=(-51)) . T) (((-2 (|:| -4203 (-1124)) (|:| -2184 #1#))) . T))
+(((#1=(-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) #1#) |has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) |has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) . T))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) . T))
+((((-1124) (-51)) . T))
+(((|#1|) -3874 (|has| |#2| (-360 |#1|)) (|has| |#2| (-411 |#1|))))
+(((|#1|) |has| |#2| (-411 |#1|)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#2|) . T) (((-835)) . T))
(((|#1|) . T))
-(((|#1| (-549)) . T))
-(|has| |#1| (-821))
-(((|#1| (-1140 |#1| |#2| |#3|)) . T))
-(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-797))
(((|#1|) . T))
-(((|#1| (-400 (-549))) . T))
-(((|#1| (-1133 |#1| |#2| |#3|)) . T))
-(((|#1| (-747)) . T))
(((|#1|) . T))
-(((|#1| |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
(((|#1|) . T))
+((((-524)) |has| |#1| (-594 (-524))))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-823))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-835)) . T) (((-1147)) . T))
+(((|#1|) . T))
+((((-524)) |has| |#1| (-594 (-524))))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-835)) . T))
+(|has| |#1| (-767))
+(|has| |#1| (-767))
+(|has| |#1| (-767))
+(|has| |#1| (-767))
+(|has| |#1| (-767))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-835)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T))
+((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-(((|#1| |#2|) . T))
-((((-129)) . T))
-((((-142)) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(((|#1|) . T))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) . T) (($ $) . T))
-((((-834)) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-(|has| |#1| (-356))
-(|has| |#1| (-356))
-(|has| (-400 |#2|) (-227))
-(|has| |#1| (-880))
-(((|#2|) |has| |#2| (-1018)))
-(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))))
-(|has| |#1| (-356))
(((|#1|) |has| |#1| (-170)))
+((((-835)) . T))
+(((|#1|) . T))
(((|#1| |#1|) . T))
-((((-841 |#1|)) . T))
-((((-834)) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1066)))
-(|has| |#2| (-823))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-400 (-549))) . T) (((-549)) . T) (((-592 $)) . T))
+((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T))
(((|#1|) . T))
-((((-834)) . T))
-((($) . T))
-(|has| |#1| (-823))
-((((-834)) . T))
-(((|#1| (-521 |#2|) |#2|) . T))
-(((|#1| (-549) (-1048)) . T))
-((((-881 |#1|)) . T))
-((((-834)) . T))
-(((|#1| |#2|) . T))
+(((|#1|) |has| |#1| (-170)))
+((((-835)) . T))
(((|#1|) . T))
-(((|#1| (-400 (-549)) (-1048)) . T))
-(((|#1| (-747) (-1048)) . T))
-(((#0=(-400 |#2|) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-549)) -1536 (|has| (-400 (-549)) (-1009 (-549))) (|has| |#1| (-1009 (-549)))) (((-400 (-549))) . T))
-(((|#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T) (($) . T))
(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
+(((|#2| |#2|) . T) ((|#1| |#1|) . T))
(((|#1|) . T))
+((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T))
(((|#1|) . T))
-((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
-(|has| |#2| (-227))
-(((|#2| (-521 (-836 |#1|)) (-836 |#1|)) . T))
-((((-834)) . T))
-((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((((-834)) . T))
-(((|#1| |#3|) . T))
-((((-834)) . T))
(((|#1|) |has| |#1| (-170)))
-((((-675)) . T))
-((((-675)) . T))
-(((|#2|) |has| |#2| (-170)))
-(|has| |#2| (-821))
-((((-112)) |has| |#1| (-1066)) (((-834)) -1536 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)) (|has| |#1| (-1078)) (|has| |#1| (-1066))))
+((((-835)) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T) (($) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) . T))
+((((-648 |#1|)) . T))
+(((|#2| (-648 |#1|)) . T))
+(((|#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-835)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) . T))
-((((-834)) . T))
-((((-549) |#1|) . T))
-((((-675)) . T) (((-400 (-549))) . T) (((-549)) . T))
-(((|#1| |#1|) |has| |#1| (-170)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))))
-((((-372)) . T))
-((((-675)) . T))
-((((-400 (-549))) . #0=(|has| |#2| (-356))) (($) . #0#))
-(((|#1|) |has| |#1| (-170)))
-((((-400 (-923 |#1|))) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-6 (-4338 "*"))))
(((|#2| |#2|) . T))
-(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
(((|#2|) . T))
-(|has| |#2| (-823))
-(((|#3|) |has| |#3| (-1018)))
-(|has| |#2| (-880))
-(|has| |#1| (-880))
-(|has| |#1| (-356))
-(|has| |#1| (-823))
+((((-665 |#2|)) . T) (((-835)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
((((-1142)) |has| |#2| (-871 (-1142))))
-((((-834)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-400 (-549))) . T) (($) . T))
-(|has| |#1| (-465))
-(|has| |#1| (-361))
-(|has| |#1| (-361))
-(|has| |#1| (-361))
-(|has| |#1| (-356))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-541)) (|has| |#1| (-1018)) (|has| |#1| (-1078)))
-(|has| |#1| (-38 (-400 (-549))))
-((((-116 |#1|)) . T))
-((((-116 |#1|)) . T))
-(|has| |#1| (-342))
-((((-142)) . T))
-(|has| |#1| (-38 (-400 (-549))))
-((($) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(((|#2|) . T) (((-834)) . T))
-(((|#2|) . T) (((-834)) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-823))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) . T))
-(((|#1| |#2|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) ((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))
+(|has| |#2| (-227))
(((|#2|) . T))
-(((|#3|) . T))
-((((-116 |#1|)) . T))
+(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535))))
+(((|#2|) . T))
+(((|#2|) . T) (((-535)) |has| |#2| (-1009 (-535))) (((-400 (-535))) |has| |#2| (-1009 (-400 (-535)))))
+(((|#1| |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((|#2|) . T))
+(((|#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T))
+((((-835)) . T) (((-1147)) . T))
+(((|#1|) . T))
+((((-835)) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1|) . T))
+((((-835)) . T) (((-1147)) . T))
+(((|#1|) . T))
+((((-835)) . T))
+((((-1179)) . T) (((-835)) . T) (((-1147)) . T))
+((((-524)) |has| |#1| (-594 (-524))))
+(((|#1| (-1224 |#1|) (-1224 |#1|)) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1|) . T))
+(((|#1| (-1224 |#1|) (-1224 |#1|)) . T))
+((((-835)) . T))
+((((-675)) . T))
+((((-675)) . T))
+((((-675)) . T))
+((((-675)) . T))
+((((-675)) . T))
+((((-371)) . T))
+((((-675)) . T))
+(((#1=(-675) (-1136 #1#)) . T))
+(((#1=(-675) (-1136 #1#)) . T))
+(((#1=(-675) (-1136 #1#)) . T))
+((((-675)) . T))
+((((-166 (-219))) . T) (((-166 (-371))) . T) (((-1136 (-675))) . T) (((-861 (-371))) . T))
+((((-675)) . T))
+((((-400 (-535))) . T) (((-675)) . T) (($) . T))
+((((-400 (-535))) . T) (((-675)) . T) (($) . T))
+((((-835)) . T))
+((((-400 (-535))) . T) (((-675)) . T) (($) . T))
+(((#1=(-400 (-535)) #1#) . T) ((#2=(-675) #2#) . T) (($ $) . T))
+((((-400 (-535))) . T) (((-675)) . T) (($) . T))
+((((-675)) . T) (((-400 (-535))) . T) (((-535)) . T))
+((((-371)) . T) (((-535)) . T) (((-400 (-535))) . T))
+((((-371)) . T))
+((($) . T) (((-400 (-535))) . T))
+((($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-219)) . T) (((-371)) . T) (((-861 (-371))) . T))
+((((-835)) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-524)) . T) (((-535)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T))
+((($) . T))
+((($) . T))
+((((-835)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((((-535)) . T))
+(((|#1|) . T) (((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((($) . T) (((-400 (-535))) . T))
+((($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-400 (-535))) . T) (($) . T))
(|has| |#1| (-361))
-(|has| |#1| (-823))
-(((|#2|) . T) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
-((((-116 |#1|)) . T))
-(((|#2|) |has| |#2| (-170)))
(((|#1|) . T))
-((((-549)) . T))
+((((-835)) . T))
+((((-400 $) (-400 $)) |has| |#1| (-542)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-356))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
(|has| |#1| (-356))
-((((-834)) . T))
-((((-834)) . T))
-((((-525)) |has| |#1| (-594 (-525))) (((-863 (-549))) |has| |#1| (-594 (-863 (-549)))) (((-863 (-372))) |has| |#1| (-594 (-863 (-372)))) (((-372)) . #0=(|has| |#1| (-993))) (((-219)) . #0#))
-(((|#1|) |has| |#1| (-356)))
-((((-834)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((($ $) . T) (((-592 $) $) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-((($) . T) (((-1211 |#1| |#2| |#3| |#4|)) . T) (((-400 (-549))) . T))
-((($) -1536 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-541)))
-(|has| |#1| (-356))
-(|has| |#1| (-356))
-(|has| |#1| (-356))
-((((-372)) . T) (((-549)) . T) (((-400 (-549))) . T))
-((((-621 (-756 |#1| (-836 |#2|)))) . T) (((-834)) . T))
-((((-525)) |has| (-756 |#1| (-836 |#2|)) (-594 (-525))))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-372)) . T))
-(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066))))
-((((-834)) . T))
-(-1536 (|has| |#2| (-444)) (|has| |#2| (-880)))
-(((|#1|) . T))
-(|has| |#1| (-823))
+(((|#1| (-747) (-1048)) . T))
+(|has| |#1| (-881))
+(|has| |#1| (-881))
+((((-1142)) |has| |#1| (-871 (-1142))) (((-1048)) . T))
(|has| |#1| (-823))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-((((-525)) |has| |#1| (-594 (-525))))
-(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))
-(|has| |#1| (-1066))
-((((-834)) . T))
-((((-1142)) . T) (((-834)) . T) (((-1147)) . T))
-((((-400 (-549))) . T) (((-549)) . T) (((-592 $)) . T))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-((((-549)) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-(((#0=(-1210 |#2| |#3| |#4|)) . T) (((-400 (-549))) |has| #0# (-38 (-400 (-549)))) (($) . T))
-((((-549)) . T))
-(|has| |#1| (-356))
-(-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-145)) (|has| |#1| (-356))) (|has| |#1| (-145)))
-(-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143)))
-(|has| |#1| (-356))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
+((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-747)) . T))
(|has| |#1| (-145))
(|has| |#1| (-143))
-(|has| |#1| (-227))
-(|has| |#1| (-356))
-(((|#3|) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-549)) |has| |#2| (-617 (-549))) ((|#2|) . T))
-(((|#2|) . T))
-(|has| |#1| (-1066))
-(((|#1| |#2|) . T))
-(((|#1|) . T) (((-549)) |has| |#1| (-617 (-549))))
-(((|#3|) |has| |#3| (-170)))
-(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1066)))
-((((-834)) . T))
-((((-549)) . T))
-(((|#1| $) |has| |#1| (-279 |#1| |#1|)))
-((((-400 (-549))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T))
-((((-834)) . T))
-(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-283)) (|has| |#1| (-356))) ((#0=(-400 (-549)) #0#) |has| |#1| (-356)))
-((((-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) . T))
-((($) . T))
-((((-549) |#1|) . T))
-((((-1142)) |has| (-400 |#2|) (-871 (-1142))))
-(((|#1|) . T) (($) -1536 (|has| |#1| (-283)) (|has| |#1| (-356))) (((-400 (-549))) |has| |#1| (-356)))
-((((-525)) |has| |#2| (-594 (-525))))
-((((-665 |#2|)) . T) (((-834)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))
-(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))
-((((-841 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(-1536 (|has| |#4| (-769)) (|has| |#4| (-821)))
-(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
-((((-834)) . T))
-((((-834)) . T))
-(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))
-(((|#2|) |has| |#2| (-1018)))
-(((|#1|) . T))
-((((-400 |#2|)) . T))
-(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066))))
-((((-549) |#1|) . T))
+((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
(((|#1|) . T))
-((($) . T))
-((((-549)) . T) (($) . T) (((-400 (-549))) . T))
-((((-400 (-549))) . T) (($) . T))
-((((-400 (-549))) . T) (($) . T))
-((((-400 (-549))) . T) (($) . T))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-1183)))
-((($) . T))
-((((-400 (-549))) |has| #0=(-400 |#2|) (-1009 (-400 (-549)))) (((-549)) |has| #0# (-1009 (-549))) ((#0#) . T))
-(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
+((((-1048)) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))))
(((|#1| (-747)) . T))
-(|has| |#1| (-823))
-(((|#1|) . T) (((-549)) |has| |#1| (-617 (-549))))
-((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
-((((-549)) . T))
-(|has| |#1| (-38 (-400 (-549))))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) |has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))))))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(|has| |#1| (-821))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-361))
-(|has| |#1| (-361))
-(|has| |#1| (-361))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-342))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(((|#1| |#2|) . T))
-((((-142)) . T))
-((((-756 |#1| (-836 |#2|))) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-(|has| |#1| (-1164))
-(((|#1|) . T))
-(-1536 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-703)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)) (|has| |#3| (-1066)))
-((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)))
-(((|#2|) . T))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((((-881 |#1|)) . T))
+(((#1=(-1048) |#1|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-((((-400 (-923 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-525)) |has| |#4| (-594 (-525))))
-((((-834)) . T) (((-621 |#4|)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(((|#1|) . T))
-(|has| |#1| (-821))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) |has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))))
-(|has| |#1| (-1066))
-(|has| |#1| (-356))
-(|has| |#1| (-823))
-(((|#1|) . T))
-(((|#1|) . T))
+(|has| |#1| (-1117))
(((|#1|) . T))
-((($) . T) (((-400 (-549))) . T))
-((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170)))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
-(-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-145)) (|has| |#1| (-356))) (|has| |#1| (-145)))
-(-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143)))
+((((-835)) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)))
+(((|#1| |#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)))
(|has| |#1| (-143))
(|has| |#1| (-145))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-((((-1217 |#1| |#2| |#3|)) |has| |#1| (-356)))
-(|has| |#1| (-821))
-(((|#1| |#2|) . T))
-(((|#1|) . T) (((-549)) |has| |#1| (-617 (-549))))
-((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
-((((-881 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
-(|has| |#1| (-1066))
-(((|#1|) . T) (($) . T) (((-400 (-549))) . T) (((-549)) . T))
+(((|#2| |#2|) . T))
+((((-113)) . T) ((|#1|) . T))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+((((-835)) . T))
+((($) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-524)) |has| |#2| (-594 (-524))) (((-861 (-371))) |has| |#2| (-594 (-861 (-371)))) (((-861 (-535))) |has| |#2| (-594 (-861 (-535)))))
+((($) . T))
+(((|#2| (-521 (-836 |#1|))) . T))
+(((|#2|) . T))
+((((-835)) . T))
+((($) . T) (((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T))
(|has| |#2| (-143))
(|has| |#2| (-145))
-((((-881 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
-(|has| |#1| (-1066))
-(((|#2|) |has| |#2| (-170)))
-(((|#2|) . T))
-(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-356)))
-((((-400 |#2|)) . T))
-((((-834)) . T))
-(((|#1|) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|)))
-(((|#1|) -1536 (|has| |#1| (-170)) (|has| |#1| (-356))))
-((((-309 |#1|)) . T))
-(((|#2|) |has| |#2| (-356)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) . T) (($) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+(((#1=(-400 (-535)) #1#) |has| |#2| (-38 (-400 (-535)))) ((|#2| |#2|) . T) (($ $) -3874 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+(-3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+((((-400 (-535))) |has| |#2| (-38 (-400 (-535)))) ((|#2|) |has| |#2| (-170)) (($) -3874 (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))))
+(((|#2| (-521 (-836 |#1|))) . T))
(((|#2|) . T))
-((((-400 (-549))) . T) (((-675)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((#0=(-756 |#1| (-836 |#2|)) #0#) |has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))))
+(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535))))
+(-3874 (|has| |#2| (-444)) (|has| |#2| (-881)))
+((($ $) . T) ((#1=(-836 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-823))
((((-836 |#1|)) . T))
-(((|#2|) |has| |#2| (-170)))
+(|has| |#2| (-881))
+(|has| |#2| (-881))
+((((-400 (-535))) |has| |#2| (-1009 (-400 (-535)))) (((-535)) |has| |#2| (-1009 (-535))) ((|#2|) . T) (((-836 |#1|)) . T))
+(((|#2| (-521 (-836 |#1|)) (-836 |#1|)) . T))
+(-12 (|has| |#1| (-361)) (|has| |#2| (-361)))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)))
+(((|#1| |#1|) |has| |#1| (-170)))
(((|#1|) |has| |#1| (-170)))
-(((|#2|) . T))
-((((-1142)) |has| |#1| (-871 (-1142))) (((-1048)) . T))
-((((-1142)) |has| |#1| (-871 (-1142))) (((-1054 (-1142))) . T))
-(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(|has| |#1| (-38 (-400 (-549))))
-(((|#4|) |has| |#4| (-1018)) (((-549)) -12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))))
-(((|#3|) |has| |#3| (-1018)) (((-549)) -12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))))
(|has| |#1| (-143))
(|has| |#1| (-145))
-((($ $) . T))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)) (|has| |#1| (-1078)) (|has| |#1| (-1066)))
-(|has| |#1| (-541))
-(((|#2|) . T))
-((((-549)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
+(((|#1|) . T) ((|#2|) . T))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+((((-835)) . T))
(((|#1|) . T))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018)))
-((((-563 |#1|)) . T))
-((($) . T))
-(((|#1| (-58 |#1|) (-58 |#1|)) . T))
(((|#1|) . T))
+((((-835)) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(((|#1|) . T))
-((($) . T))
(((|#1|) . T))
-((((-834)) . T))
-(((|#2|) |has| |#2| (-6 (-4338 "*"))))
+((((-524)) |has| |#1| (-594 (-524))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+(((|#1| (-521 |#2|) |#2|) . T))
+(|has| |#1| (-881))
+(|has| |#1| (-881))
+((((-535)) -12 (|has| |#1| (-857 (-535))) (|has| |#2| (-857 (-535)))) (((-371)) -12 (|has| |#1| (-857 (-371))) (|has| |#2| (-857 (-371)))))
+(((|#2|) . T))
+(|has| |#1| (-823))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-881)))
+((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T))
(((|#1|) . T))
-((((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))) (((-549)) |has| |#2| (-1009 (-549))) ((|#2|) . T) (((-836 |#1|)) . T))
-((($) . T) (((-116 |#1|)) . T) (((-400 (-549))) . T))
-((((-1091 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
-((((-1138 |#1|)) . T) (((-1048)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
-((((-1091 |#1| (-1142))) . T) (((-1054 (-1142))) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-1142)) . T))
-(|has| |#1| (-1066))
-((($) . T))
-(|has| |#1| (-1066))
-((((-549)) -12 (|has| |#1| (-857 (-549))) (|has| |#2| (-857 (-549)))) (((-372)) -12 (|has| |#1| (-857 (-372))) (|has| |#2| (-857 (-372)))))
-(((|#1| |#2|) . T))
-((((-1142) |#1|) . T))
-(((|#4|) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
-((((-1142) (-52)) . T))
-((((-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T))
-((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
-((((-834)) . T))
-(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1066)))
-(((#0=(-1211 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-170)) ((#0=(-400 (-549)) #0#) |has| |#1| (-541)) (($ $) |has| |#1| (-541)))
-(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
-(((|#1| $) |has| |#1| (-279 |#1| |#1|)))
-((((-1211 |#1| |#2| |#3| |#4|)) . T) (((-400 (-549))) . T) (($) . T))
-(((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-541)) (($) |has| |#1| (-541)))
-(|has| |#1| (-356))
-(|has| |#1| (-143))
-(|has| |#1| (-145))
+(((|#1| (-521 |#2|)) . T))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
(|has| |#1| (-145))
(|has| |#1| (-143))
-((((-400 (-549))) . T) (($) . T))
-(((|#3|) |has| |#3| (-356)))
-(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))
-((((-1142)) . T))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))
-(((|#2| |#3|) . T))
-(-1536 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((((-1091 |#1| |#2|)) . T) (((-917 |#1|)) |has| |#2| (-594 (-1142))) (((-835)) . T))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))))
+(((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) (($) . T))
+((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+(((|#1|) . T))
+((((-1091 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))))
(((|#1| (-521 |#2|)) . T))
-(((|#1| (-747)) . T))
-(((|#1| (-521 (-1054 (-1142)))) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) . T))
-(|has| |#2| (-880))
-(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
-((((-834)) . T))
-((($ $) . T) ((#0=(-1210 |#2| |#3| |#4|) #0#) . T) ((#1=(-400 (-549)) #1#) |has| #0# (-38 (-400 (-549)))))
-((((-881 |#1|)) . T))
-(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
-((($) . T) (((-400 (-549))) . T))
-((($) . T))
+(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
((($) . T))
+((((-917 |#1|)) |has| |#2| (-594 (-1142))) (((-1124)) -12 (|has| |#1| (-1009 (-535))) (|has| |#2| (-594 (-1142)))) (((-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535))))) (((-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371))))) (((-524)) -12 (|has| |#1| (-594 (-524))) (|has| |#2| (-594 (-524)))))
+(((|#1| (-521 |#2|) |#2|) . T))
+(((|#1|) . T))
+((((-1136 |#1|)) . T) (((-835)) . T))
+((((-400 $) (-400 $)) |has| |#1| (-542)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-356))
-(-1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-541)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
(|has| |#1| (-356))
-((($) . T) ((#0=(-1210 |#2| |#3| |#4|)) . T) (((-400 (-549))) |has| #0# (-38 (-400 (-549)))))
-(((|#1| |#2|) . T))
-((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
-(-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356)) (|has| |#1| (-342)))
-(-1536 (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)))
-((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
-(((|#1| |#2|) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-112)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) . T))
-(|has| |#2| (-356))
+(((|#1| (-747) (-1048)) . T))
+(|has| |#1| (-881))
+(|has| |#1| (-881))
+((((-1142)) |has| |#1| (-871 (-1142))) (((-1048)) . T))
(|has| |#1| (-823))
+((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T))
(((|#1|) . T))
+(((|#1| (-747)) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
(((|#1|) . T))
-(((|#1|) . T))
-((((-834)) . T))
-(|has| |#1| (-1066))
-(((|#4|) . T))
-(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-400 $) (-400 $)) |has| |#1| (-541)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-796))
-(((|#4|) . T))
-((($) . T))
-((($ $) . T))
+((((-1136 |#1|)) . T) (((-1048)) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))))
+(((|#1| (-747)) . T))
+(((#1=(-1048) |#1|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-((((-834)) . T))
-(((|#1| (-521 (-1142))) . T))
-(((|#1|) |has| |#1| (-170)))
-((((-834)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))
-(((|#2|) -1536 (|has| |#2| (-6 (-4338 "*"))) (|has| |#2| (-170))))
-(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(|has| |#2| (-823))
-(|has| |#2| (-880))
-(|has| |#1| (-880))
-(((|#2|) |has| |#2| (-170)))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-1217 |#1| |#2| |#3|)) |has| |#1| (-356)))
-((((-834)) . T))
-((((-834)) . T))
-((((-525)) . T) (((-549)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) . T))
-(((|#1|) . T))
-((((-834)) . T))
-(((|#1| |#2|) . T))
-(((|#1| (-400 (-549))) . T))
-(((|#1|) . T))
-(-1536 (|has| |#1| (-283)) (|has| |#1| (-356)))
-((((-142)) . T))
-((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
-(|has| |#1| (-821))
-((((-834)) . T))
-((((-834)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1| |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T))
+(|has| |#1| (-1117))
(((|#1|) . T))
(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-((((-400 (-549))) . T) (($) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-525)) |has| |#1| (-594 (-525))) (((-863 (-549))) |has| |#1| (-594 (-863 (-549)))) (((-863 (-372))) |has| |#1| (-594 (-863 (-372)))))
-((((-1142) (-52)) . T))
-(((|#2|) . T))
+((((-835)) . T))
+((($) . T) ((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+((((-524)) |has| |#1| (-594 (-524))))
+(|has| |#1| (-361))
(((|#1|) . T))
-((((-834)) . T))
-((((-621 (-142))) . T) (((-1124)) . T))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) . T))
((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|)))
+(((|#1|) |has| |#1| (-302 |#1|)))
+(((|#1| $) |has| |#1| (-279 |#1| |#1|)))
+((((-967 |#1|)) . T) ((|#1|) . T))
+((((-967 |#1|)) . T) ((|#1|) . T) (((-535)) -3874 (|has| |#1| (-1009 (-535))) (|has| (-967 |#1|) (-1009 (-535)))) (((-400 (-535))) -3874 (|has| |#1| (-1009 (-400 (-535)))) (|has| (-967 |#1|) (-1009 (-400 (-535))))))
(|has| |#1| (-823))
-((((-834)) . T))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-834)) . T))
-(((|#2|) |has| |#2| (-356)))
-((((-834)) . T))
-((((-525)) |has| |#4| (-594 (-525))))
-((((-834)) . T) (((-621 |#4|)) . T))
-(((|#2|) . T))
-((((-881 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
-(-1536 (|has| |#4| (-170)) (|has| |#4| (-703)) (|has| |#4| (-821)) (|has| |#4| (-1018)))
-(-1536 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
-((((-1142) (-52)) . T))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(|has| |#1| (-880))
-(|has| |#1| (-880))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-834)) . T))
-((((-549)) . T))
-(((#0=(-400 (-549)) #0#) . T) (($ $) . T))
-((((-400 (-549))) . T) (($) . T))
-(((|#1| (-400 (-549)) (-1048)) . T))
-(|has| |#1| (-1066))
-(|has| |#1| (-541))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(|has| |#1| (-796))
-(((#0=(-881 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-549)) #1#) . T))
-((((-400 |#2|)) . T))
-(|has| |#1| (-821))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-(((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) . T) ((#1=(-549) #1#) . T) (($ $) . T))
-((((-881 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
-(((|#2|) |has| |#2| (-1018)) (((-549)) -12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018))))
-(((|#1|) . T) (((-400 (-549))) . T) (((-549)) . T) (($) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-(((|#2|) . T))
-((((-834)) . T))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
-((((-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) . T))
-(((#0=(-52)) . T) (((-2 (|:| -3337 (-1142)) (|:| -1792 #0#))) . T))
-(|has| |#1| (-342))
-((((-549)) . T))
-((((-834)) . T))
-(((#0=(-1211 |#1| |#2| |#3| |#4|) $) |has| #0# (-279 #0# #0#)))
-(|has| |#1| (-356))
-(((#0=(-1048) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
-(((#0=(-400 (-549)) #0#) . T) ((#1=(-675) #1#) . T) (($ $) . T))
-((((-309 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-400 (-549))) |has| |#1| (-356)))
-(|has| |#1| (-1066))
(((|#1|) . T))
-(((|#1|) -1536 (|has| |#2| (-360 |#1|)) (|has| |#2| (-410 |#1|))))
-(((|#1|) -1536 (|has| |#2| (-360 |#1|)) (|has| |#2| (-410 |#1|))))
-(((|#2|) . T))
-((((-400 (-549))) . T) (((-675)) . T) (($) . T))
-(((|#3| |#3|) . T))
-(|has| |#2| (-227))
-((((-836 |#1|)) . T))
-((((-1142)) |has| |#1| (-871 (-1142))) ((|#3|) . T))
-(-12 (|has| |#1| (-356)) (|has| |#2| (-993)))
-((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
-((((-834)) . T))
-(|has| |#1| (-356))
-(|has| |#1| (-356))
-((((-400 (-549))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T))
-((((-549)) . T))
-(|has| |#1| (-1066))
-(((|#3|) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-549)) . T))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
+((((-835)) . T))
+(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067)))
+(-3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067)))
+(((|#2|) |has| |#2| (-170)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-3874 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+((($) -3874 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) ((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))))
+(((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356))))
+((((-835)) -3874 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-593 (-835))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) (((-1224 |#2|)) . T))
+(|has| |#2| (-170))
+(((|#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($) |has| |#2| (-170)))
+(((|#2| |#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($ $) |has| |#2| (-170)))
+(((|#2|) |has| |#2| (-1018)))
+((((-1142)) -12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018))))
+(-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))
+(|has| |#2| (-361))
+(((|#2|) |has| |#2| (-1018)))
+(((|#2|) |has| |#2| (-1018)) (((-535)) -12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018))))
+(((|#2|) |has| |#2| (-1067)))
+(((|#2|) |has| |#2| (-1067)) (((-535)) -12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (((-400 (-535))) -12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067))))
+((((-535) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((|#2|) . T))
+((((-535) |#2|) . T))
+((((-535) |#2|) . T))
+(|has| |#2| (-769))
+(-3874 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-3874 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-3874 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-3874 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(|has| |#2| (-821))
+(|has| |#2| (-821))
+(((|#2|) |has| |#2| (-356)))
(((|#1| |#2|) . T))
-((($) . T))
-((((-563 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
-((($) . T) (((-400 (-549))) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1|) . T) (($) . T))
-(((|#1| (-1225 |#1|) (-1225 |#1|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((#0=(-116 |#1|) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
-((((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))) (((-549)) |has| |#2| (-1009 (-549))) ((|#2|) . T) (((-836 |#1|)) . T))
-((((-1091 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((|#2|) . T))
(((|#1|) . T))
+((((-835)) . T))
+(|has| |#1| (-227))
+((($) . T))
+(((|#1| (-521 (-794 (-1142))) (-794 (-1142))) . T))
+(|has| |#1| (-881))
+(|has| |#1| (-881))
+((((-1142)) |has| |#1| (-871 (-1142))) (((-794 (-1142))) . T))
+(|has| |#1| (-823))
+((($ $) . T) ((#1=(-1142) $) |has| |#1| . #2=((-227))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-794 (-1142)) |#1|) . T) ((#3# $) . T))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-881)))
+((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T))
(((|#1|) . T))
+(((|#1| (-521 (-794 (-1142)))) . T))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
(((|#1|) . T))
-((($ $) . T))
-((((-648 |#1|)) . T))
-((($) . T) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T))
-((((-116 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
-((((-549)) -12 (|has| |#1| (-857 (-549))) (|has| |#3| (-857 (-549)))) (((-372)) -12 (|has| |#1| (-857 (-372))) (|has| |#3| (-857 (-372)))))
-(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) (($) . T))
-((((-142)) . T))
-((($) . T))
-((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(((|#1| (-521 (-794 (-1142)))) . T))
+((((-1091 |#1| (-1142))) . T) (((-794 (-1142))) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-1142)) . T))
+(((|#1| (-1142) (-794 (-1142)) (-521 (-794 (-1142)))) . T))
+(|has| |#2| (-356))
+(|has| |#2| (-356))
+(|has| |#2| (-356))
+(|has| |#2| (-356))
+((((-400 (-535))) . #1=(|has| |#2| (-356))) (($) . #1#))
+((((-400 (-535))) . #1=(|has| |#2| (-356))) (($) . #1#))
+(|has| |#2| (-356))
+(|has| |#2| (-356))
+(|has| |#2| (-356))
+(|has| |#2| (-356))
+(|has| |#2| (-356))
+((((-400 (-535))) |has| |#2| (-356)) (($) . T))
+((((-835)) . T))
+((((-400 (-535))) |has| |#2| (-356)) (($) . T))
+(((#1=(-400 (-535)) #1#) |has| |#2| (-356)) (($ $) . T))
+((((-835)) . T))
(((|#1|) . T))
-(|has| |#2| (-880))
-(|has| |#1| (-880))
-(|has| |#1| (-880))
-(((|#4|) . T))
-(|has| |#2| (-993))
-((($) . T))
-(|has| |#1| (-880))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((($) . T))
-(((|#2|) . T))
(((|#1|) . T))
-(((|#1|) . T) (($) . T))
-((($) . T))
-(|has| |#1| (-356))
-((((-881 |#1|)) . T))
-((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-(-1536 (|has| |#1| (-361)) (|has| |#1| (-823)))
(((|#1|) . T))
-((((-834)) . T))
-((((-1142)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142)))))
-((((-400 |#2|) |#3|) . T))
-((($) . T) (((-400 (-549))) . T))
-((((-747) |#1|) . T))
-(((|#2| (-234 (-3774 |#1|) (-747))) . T))
-(((|#1| (-521 |#3|)) . T))
-((((-400 (-549))) . T))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-((((-834)) . T))
-(((#0=(-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) #0#) |has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))))
-(|has| |#1| (-880))
-(|has| |#2| (-356))
-(-1536 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-((((-167 (-372))) . T) (((-219)) . T) (((-372)) . T))
-((((-834)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+(|has| |#1| (-227))
+(((|#2|) |has| |#2| (-170)))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-835)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) |has| |#2| (-170)))
+(((|#2|) . T))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+((($) |has| |#1| (-821)))
+(|has| |#1| (-821))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-821)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-821)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-821)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-821)))
+((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T))
(((|#1|) . T))
-((((-372)) . T) (((-549)) . T))
-(((#0=(-400 (-549)) #0#) . T) (($ $) . T))
-((($ $) . T))
-((($ $) . T))
+((((-835)) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)))
+(((|#1| |#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
(((|#1| |#1|) . T))
-((((-834)) . T))
-(|has| |#1| (-541))
-((((-400 (-549))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(-1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)))
-(|has| |#1| (-38 (-400 (-549))))
-(-12 (|has| |#1| (-534)) (|has| |#1| (-804)))
-((((-834)) . T))
-((((-1142)) -1536 (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142))))))
-(|has| |#1| (-356))
-((((-1142)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142)))))
-(|has| |#1| (-356))
-((((-400 (-549))) . T) (($) . T))
-((($) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T))
-((((-549) |#1|) . T))
+((((-113)) . T) ((|#1|) . T))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+((((-835)) . T))
+((((-835)) . T))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+((($) |has| |#1| (-821)))
+(|has| |#1| (-821))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-821)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-821)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-821)))
+(-3874 (|has| |#1| (-21)) (|has| |#1| (-821)))
+((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-356)))
-(((|#2|) |has| |#1| (-356)))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
+((((-835)) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#1| |#1|) . T))
(((|#1|) . T))
+((((-835)) . T))
+((($) . T) ((|#1|) . T))
(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
-(((|#2|) . T) (((-1142)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1142)))) (((-549)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-549)))) (((-400 (-549))) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-549)))))
+(((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))))
+(((|#1|) . T))
+(((|#2|) |has| |#2| (-170)))
+(((|#2| |#2|) . T))
(((|#2|) . T))
-((((-1142) #0=(-1211 |#1| |#2| |#3| |#4|)) |has| #0# (-505 (-1142) #0#)) ((#0# #0#) |has| #0# (-302 #0#)))
-((((-592 $) $) . T) (($ $) . T))
-((((-167 (-219))) . T) (((-167 (-372))) . T) (((-1138 (-675))) . T) (((-863 (-372))) . T))
-((((-834)) . T))
-(|has| |#1| (-541))
-(|has| |#1| (-541))
-(|has| (-400 |#2|) (-227))
-(((|#1| (-400 (-549))) . T))
+((((-835)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) |has| |#2| (-170)))
+(((|#2|) . T))
+(((|#2|) . T) (((-535)) |has| |#2| (-1009 (-535))) (((-400 (-535))) |has| |#2| (-1009 (-400 (-535)))))
+(((|#2|) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-861 (-535))) . T) (((-861 (-371))) . T) (((-524)) . T) (((-1142)) . T))
+((((-835)) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)))
+(((|#1| |#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+((((-835)) . T))
+((($) . T))
+((((-835)) . T))
+((($) . T))
((($ $) . T))
-((((-1142)) |has| |#2| (-871 (-1142))))
((($) . T))
-((((-834)) . T))
-((((-400 (-549))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-834)) . T))
-(((|#2|) |has| |#1| (-356)))
-((((-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-372)))) (((-549)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-549)))))
-(|has| |#1| (-356))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-(|has| |#1| (-356))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-(|has| |#1| (-356))
-(|has| |#1| (-541))
-(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))
-(((|#3|) . T))
+((($) . T))
(((|#1|) . T))
-(-1536 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+((((-835)) . T))
+((((-840 |#1|)) . T))
+((((-840 |#1|)) . T) (($) . T) (((-400 (-535))) . T))
+((($) . T) (((-840 |#1|)) . T) (((-400 (-535))) . T))
+((((-840 |#1|)) . T) (($) . T) (((-400 (-535))) . T))
+((((-840 |#1|)) . T) (((-400 (-535))) . T) (($) . T))
+(((#1=(-840 |#1|) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T))
+((((-840 |#1|)) . T))
+((((-1142) #1=(-840 |#1|)) |has| #1# (-505 (-1142) #1#)) ((#1# #1#) |has| #1# (-302 #1#)))
+(((#1=(-840 |#1|)) |has| #1# (-302 #1#)))
+(((#1=(-840 |#1|) $) |has| #1# (-279 #1# #1#)))
+((((-840 |#1|)) . T))
+((((-840 |#1|)) . T))
+((((-840 |#1|)) . T))
+((((-840 |#1|)) . T))
+((((-840 |#1|)) . T))
+((((-840 |#1|)) . T))
+((((-835)) . T))
+(|has| |#2| (-143))
+(|has| |#2| (-145))
(((|#2|) . T))
+((((-1142)) |has| |#2| (-871 (-1142))))
+(|has| |#2| (-227))
+(((|#2|) . T) (($) . T) (((-400 (-535))) . T))
+((($) . T) ((|#2|) . T) (((-400 (-535))) . T))
+(((|#2|) . T) (($) . T) (((-400 (-535))) . T))
+(((|#2|) . T) (((-400 (-535))) . T) (($) . T))
+(((|#2| |#2|) . T) ((#1=(-400 (-535)) #1#) . T) (($ $) . T))
(((|#2|) . T))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
-(|has| |#1| (-145))
-((((-1124) |#1|) . T))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
-(|has| |#1| (-145))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
-(|has| |#1| (-145))
-((((-563 |#1|)) . T))
-((($) . T))
-((((-400 |#2|)) . T))
-(|has| |#1| (-541))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-342)))
-(|has| |#1| (-145))
-((((-834)) . T))
-((($) . T))
-((((-400 (-549))) |has| |#2| (-1009 (-549))) (((-549)) |has| |#2| (-1009 (-549))) (((-1142)) |has| |#2| (-1009 (-1142))) ((|#2|) . T))
-(((#0=(-400 |#2|) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
-((((-1106 |#1| |#2|)) . T))
-(((|#1| (-549)) . T))
-(((|#1| (-400 (-549))) . T))
-((((-549)) |has| |#2| (-857 (-549))) (((-372)) |has| |#2| (-857 (-372))))
+((((-1142) |#2|) |has| |#2| (-505 (-1142) |#2|)) ((|#2| |#2|) |has| |#2| (-302 |#2|)))
+(((|#2|) |has| |#2| (-302 |#2|)))
+(((|#2| $) |has| |#2| (-279 |#2| |#2|)))
(((|#2|) . T))
-((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
-((((-112)) . T))
-(((|#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T))
+(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535))))
(((|#2|) . T))
-((((-834)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-1142) (-52)) . T))
-((((-400 |#2|)) . T))
-((((-834)) . T))
+((((-535)) |has| |#2| (-857 (-535))) (((-371)) |has| |#2| (-857 (-371))))
+(|has| |#2| (-796))
+(|has| |#2| (-796))
+(|has| |#2| (-796))
+(-3874 (|has| |#2| (-796)) (|has| |#2| (-823)))
+(|has| |#2| (-796))
+(|has| |#2| (-796))
+(|has| |#2| (-796))
+(((|#2|) . T))
+(|has| |#2| (-881))
+(|has| |#2| (-991))
+((((-524)) |has| |#2| (-594 (-524))) (((-861 (-535))) |has| |#2| (-594 (-861 (-535)))) (((-861 (-371))) |has| |#2| (-594 (-861 (-371)))) (((-371)) . #1=(|has| |#2| (-991))) (((-219)) . #1#))
+((((-400 (-535))) |has| |#2| . #1=((-1009 (-535)))) (((-535)) |has| |#2| . #1#) (((-1142)) |has| |#2| (-1009 (-1142))) ((|#2|) . T))
+(|has| |#2| (-1117))
+(((|#2|) . T))
+(-12 (|has| |#1| (-1067)) (|has| |#2| (-1067)))
+(-12 (|has| |#1| (-1067)) (|has| |#2| (-1067)))
+((((-835)) -3874 (-12 (|has| |#1| (-593 (-835))) (|has| |#2| (-593 (-835)))) (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067)))))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-1142)) . T) ((|#1|) . T))
+((((-835)) . T))
+((((-648 |#1|)) . T))
+((((-835)) . T))
+((((-835)) . T))
(((|#1|) . T))
-(|has| |#1| (-1066))
-(|has| |#1| (-767))
-(|has| |#1| (-767))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1066))))
-((((-114)) . T) ((|#1|) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
(((|#1|) . T))
(((|#1|) . T))
-((((-219)) . T) (((-372)) . T) (((-863 (-372))) . T))
-((((-834)) . T))
-((((-1211 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-549))) . T))
-(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)) (((-400 (-549))) |has| |#1| (-541)))
-((((-834)) . T))
-((((-834)) . T))
-(((|#2|) . T))
-((((-834)) . T))
-(((#0=(-881 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-549)) #1#) . T))
+((((-835)) . T))
+(-3874 (|has| |#1| (-361)) (|has| |#1| (-823)))
(((|#1|) . T))
+((((-835)) . T))
+((((-535)) . T))
+((($) . T))
+((($) . T))
+((($) . T))
+(|has| $ (-145))
+((($) . T))
+((((-835)) . T))
+((($) . T) (((-400 (-535))) . T))
+((($) . T) (((-400 (-535))) . T))
+((($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+(((|#1|) . T) (($) . T) (((-400 (-535))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-535)) #1#) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
(((|#1|) . T))
-((((-881 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
-(|has| |#1| (-356))
-(((|#2|) . T))
-((((-549)) . T))
-((((-834)) . T))
-((((-549)) . T))
-(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
-((((-167 (-372))) . T) (((-219)) . T) (((-372)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-1124)) . T) (((-525)) . T) (((-549)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
-((((-834)) . T))
-(|has| |#1| (-145))
-(|has| |#1| (-143))
-((($) . T) ((#0=(-1210 |#2| |#3| |#4|)) |has| #0# (-170)) (((-400 (-549))) |has| #0# (-38 (-400 (-549)))))
-(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
-(|has| |#1| (-356))
-(|has| |#1| (-356))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1142))) (|has| |#1| (-1018)) (|has| |#1| (-1078)) (|has| |#1| (-1066)))
-(|has| |#1| (-1117))
-((((-549) |#1|) . T))
(((|#1|) . T))
-(((#0=(-116 |#1|) $) |has| #0# (-279 #0# #0#)))
-(((|#1|) |has| |#1| (-170)))
+(|has| |#1| (-823))
(((|#1|) . T))
-((((-114)) . T) ((|#1|) . T))
-((((-834)) . T))
-(((|#1| |#2|) . T))
-((((-1142) |#1|) . T))
-(((|#1|) |has| |#1| (-302 |#1|)))
-((((-549) |#1|) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
(((|#1|) . T))
-((((-549)) . T) (((-400 (-549))) . T))
+((((-524)) |has| |#1| (-594 (-524))))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-541))
-((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-((((-372)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-356))
-(|has| |#1| (-356))
-(|has| |#1| (-541))
-(|has| |#1| (-1066))
-((((-756 |#1| (-836 |#2|))) |has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))))
-(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+((((-524)) |has| |#1| (-594 (-524))) (((-861 (-371))) |has| |#1| (-594 (-861 (-371)))) (((-861 (-535))) |has| |#1| (-594 (-861 (-535)))))
+((($) . T))
+(((|#1| (-521 (-1142))) . T))
(((|#1|) . T))
-(((|#2| |#3|) . T))
+((((-835)) . T))
+((($) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))))
+(((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))) ((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))))
+(((|#1| (-521 (-1142))) . T))
(((|#1|) . T))
-(|has| |#2| (-880))
-(((|#1| (-521 |#2|)) . T))
-(((|#1| (-747)) . T))
-(|has| |#1| (-227))
-(((|#1| (-521 (-1054 (-1142)))) . T))
-(|has| |#2| (-356))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) . T))
+(((|#1|) . T) (((-535)) |has| |#1| (-617 (-535))))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-881)))
+((($ $) . T) ((#1=(-1142) $) . T) ((#1# |#1|) . T))
+(|has| |#1| (-823))
+((((-1142)) . T))
+((((-371)) |has| |#1| (-857 (-371))) (((-535)) |has| |#1| (-857 (-535))))
+(|has| |#1| (-881))
+(|has| |#1| (-881))
+((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T) (((-1142)) . T))
+(((|#1| (-521 (-1142)) (-1142)) . T))
+((((-1086)) . T) (((-835)) . T))
+(((|#1| |#2|) . T))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-542)))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((((-835)) . T))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))))
+(((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) (($) . T))
+((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))))
+(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-834)) . T))
-((((-834)) . T))
-(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
-((((-834)) . T))
-((((-1086)) . T) (((-834)) . T))
-((((-834)) . T))
+(|has| |#1| (-823))
(((|#1|) . T))
-((($ $) . T) (((-592 $) $) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
(((|#1|) . T))
-((((-549)) . T))
-(((|#3|) . T))
-((((-834)) . T))
-(-1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)))
-(-1536 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018)))
-(((#0=(-563 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-549)) #1#) . T))
-((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-(((|#1|) |has| |#1| (-170)))
-(((|#1| (-1225 |#1|) (-1225 |#1|)) . T))
-((((-563 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
-((($) . T) (((-400 (-549))) . T))
-((($) . T) (((-400 (-549))) . T))
-(((|#2|) |has| |#2| (-6 (-4338 "*"))))
+((((-524)) |has| |#1| (-594 (-524))))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-834)) . T))
-((((-287 |#3|)) . T))
-(((#0=(-400 (-549)) #0#) |has| |#2| (-38 (-400 (-549)))) ((|#2| |#2|) . T) (($ $) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-(((|#2| |#2|) . T) ((|#6| |#6|) . T))
+(-12 (|has| |#1| (-769)) (|has| |#2| (-769)))
+(-12 (|has| |#1| (-769)) (|has| |#2| (-769)))
+(-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823))))
+(-12 (|has| |#1| (-769)) (|has| |#2| (-769)))
+(-12 (|has| |#1| (-769)) (|has| |#2| (-769)))
+(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
+(-12 (|has| |#1| (-465)) (|has| |#2| (-465)))
+(-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))
+(-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))
+(-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))
+(-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))))
+(-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))))
+(-12 (|has| |#1| (-361)) (|has| |#2| (-361)))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-618 (-535))) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+((((-524)) |has| |#1| (-594 (-524))))
(((|#1|) . T))
-((($) . T) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
-(((|#2|) . T))
-((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T) (($) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-(((|#2|) . T) ((|#6|) . T))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
-((((-834)) . T))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(|has| |#2| (-880))
-(|has| |#1| (-880))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-1142)) |has| |#1| (-871 (-1142))))
+(|has| |#1| (-227))
+(|has| |#1| (-356))
+(-3874 (|has| |#1| (-283)) (|has| |#1| (-356)))
+(((|#1|) . T) (((-400 (-535))) |has| |#1| (-356)))
+((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-356)))
+(((|#1|) . T) (($) -3874 (|has| |#1| (-283)) (|has| |#1| (-356))) (((-400 (-535))) |has| |#1| (-356)))
+(((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-283)) (|has| |#1| (-356))) ((#1=(-400 (-535)) #1#) |has| |#1| (-356)))
+(((|#1|) . T) (((-400 (-535))) |has| |#1| (-356)))
(((|#1|) . T))
-((((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) . T))
+((((-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|)))
+(((|#1|) |has| |#1| (-302 |#1|)))
+(((|#1| $) |has| |#1| (-279 |#1| |#1|)))
(((|#1|) . T))
+(((|#1|) . T) (((-535)) |has| |#1| (-617 (-535))))
(((|#1|) . T))
-(((|#1| |#1|) . T))
+(((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))))
+(|has| |#1| (-823))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1066))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
(((|#1|) . T))
-((((-1142)) . T) ((|#1|) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))
-(((#0=(-400 (-549)) #0#) . T))
-((((-400 (-549))) . T))
-(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(((|#1|) . T))
+((((-400 |#2|) |#3|) . T))
+((((-400 (-535))) |has| #1=(-400 |#2|) (-1009 (-400 (-535)))) (((-535)) |has| #1# (-1009 (-535))) ((#1#) . T))
+((((-400 |#2|)) . T))
+((((-535)) |has| #1=(-400 |#2|) (-617 (-535))) ((#1#) . T))
+((((-400 |#2|)) . T))
+((((-400 |#2|) |#3|) . T))
+(|has| (-400 |#2|) (-145))
+((((-400 |#2|) |#3|) . T))
+(|has| (-400 |#2|) (-143))
+((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T))
+((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T))
+(|has| (-400 |#2|) (-227))
+((((-1142)) |has| (-400 |#2|) (-871 (-1142))))
+((((-400 |#2|)) . T))
+(((|#3|) . T))
+(((#1=(-400 |#2|) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T))
+((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T))
+((((-835)) . T))
+((((-400 |#2|)) . T) (((-400 (-535))) . T) (($) . T))
+(((|#1| |#2| |#3|) . T))
+((((-835)) . T))
+((((-535)) . T))
+((((-535)) . T) (($) . T) (((-400 (-535))) . T))
+((($) . T) (((-535)) . T) (((-400 (-535))) . T))
+((((-535)) . T) (($) . T) (((-400 (-535))) . T))
+((((-535)) . T) (((-400 (-535))) . T) (($) . T))
+(((#1=(-535) #1#) . T) ((#2=(-400 (-535)) #2#) . T) (($ $) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-524)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T))
+((((-400 (-535))) . T) (((-535)) . T))
+((((-535)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T))
+(((|#1|) . T) (($) . T) (((-400 (-535))) . T) (((-535)) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (((-535)) . T) (($) . T))
+(((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) . T) ((#2=(-535) #2#) . T) (($ $) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (((-535)) . T) (($) . T))
+(((|#1|) . T) (((-400 (-535))) . T) (((-535)) . T) (($) . T))
+(((|#1|) . T) (((-400 (-535))) . T))
+(((|#1|) . T) (((-535)) -3874 (|has| |#1| (-1009 (-535))) (|has| (-400 (-535)) (-1009 (-535)))) (((-400 (-535))) . T))
+(|has| |#1| (-1067))
+((((-835)) |has| |#1| (-1067)))
+(|has| |#1| (-1067))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#4|) . T))
+((((-618 |#4|)) . T) (((-835)) . T))
+(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4|) . T))
+((((-524)) |has| |#4| (-594 (-524))))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-((((-525)) . T))
-((((-834)) . T))
-((((-1142)) |has| |#2| (-871 (-1142))) (((-1048)) . T))
-((((-1210 |#2| |#3| |#4|)) . T))
-((((-881 |#1|)) . T))
-((($) . T) (((-400 (-549))) . T))
-(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
-(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
-((((-834)) . T))
-(|has| |#1| (-1183))
+(((|#1| |#1|) . T) (($ $) . T))
+(((|#1|) . T) (($) . T))
+((((-835)) . T))
+(((|#1|) . T) (($) . T))
+((((-1142) (-51)) . T))
+((((-835)) . T))
+((((-1142) (-51)) . T))
+((((-1142) (-51)) . T))
+((((-1142) (-51)) . T))
+((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T))
+((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T))
+(((#1=(-51)) . T) (((-2 (|:| -4203 (-1142)) (|:| -2184 #1#))) . T))
+(((#1=(-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) #1#) |has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))))
+((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) |has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))))
+((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T))
+((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T))
+((((-1142) (-51)) . T))
+((((-835)) . T) (((-1147)) . T))
+(((|#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) . T))
+((((-756 |#1| (-836 |#2|))) . T))
+((((-618 (-756 |#1| (-836 |#2|)))) . T) (((-835)) . T))
+((((-756 |#1| (-836 |#2|))) |has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))))
+(((#1=(-756 |#1| (-836 |#2|)) #1#) |has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))))
+((((-756 |#1| (-836 |#2|))) . T))
+((((-524)) |has| (-756 |#1| (-836 |#2|)) (-594 (-524))))
+(((|#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) . T))
+(((|#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) . T))
+((((-524)) |has| |#3| (-594 (-524))))
+(((|#3|) |has| |#3| (-356)))
+(((|#3| |#3|) . T))
+(((|#3|) . T))
+((((-665 |#3|)) . T) (((-835)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))
+(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))
+(((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356))))
+(((|#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) . T))
+((((-835)) . T))
+(((|#1| |#2|) . T))
+((($) . T))
+((((-835)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
+((((-535)) . T))
+((((-535)) . T))
+((((-524)) . T) (((-535)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T))
+((((-535)) . T))
+((((-1142) (-51)) . T))
+((((-835)) . T))
+((((-1142) (-51)) . T))
+((((-1142) (-51)) . T))
+((((-1142) (-51)) . T))
+((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T))
+((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T))
+(((#1=(-51)) . T) (((-2 (|:| -4203 (-1142)) (|:| -2184 #1#))) . T))
+(((#1=(-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) #1#) |has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))))
+((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) |has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))))
+((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T))
+((((-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) . T))
+((((-1142) (-51)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-286 |#3|)) . T))
+(((|#3| |#3|) . T))
+((((-835)) . T))
+((((-835)) . T))
+(((|#3| |#3|) . T))
+((((-835)) . T))
+((((-835)) . T))
(((|#2|) . T))
-((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-((((-1142)) |has| |#1| (-871 (-1142))))
-((((-881 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
-((($) . T) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#1|) . T))
-(((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))) ((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))))
-((($) . T) (((-400 (-549))) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (((-549)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1018)) (((-549)) -12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018))))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))))
-(|has| |#1| (-541))
(((|#1|) |has| |#1| (-356)))
-((((-549)) . T))
-(|has| |#1| (-767))
-(|has| |#1| (-767))
-((((-1142) #0=(-116 |#1|)) |has| #0# (-505 (-1142) #0#)) ((#0# #0#) |has| #0# (-302 #0#)))
-(((|#2|) . T) (((-549)) |has| |#2| (-1009 (-549))) (((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))))
-((((-1048)) . T) ((|#2|) . T) (((-549)) |has| |#2| (-1009 (-549))) (((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))))
-(((|#1|) . T))
-(((|#1|) . T))
+((((-1142)) -12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142)))))
+(-3874 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-343)))
+(-3874 (|has| |#1| (-361)) (|has| |#1| (-343)))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(-3874 (|has| |#1| (-143)) (|has| |#1| (-343)))
+(|has| |#1| (-343))
+(((|#1| |#2|) . T))
+((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T))
+((($ $) . T) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1| |#1|) . T))
+((($) . T) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T))
+((($) . T) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T))
+((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) (((-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T))
+(|has| |#1| (-145))
+(((|#1| |#2|) . T))
(((|#1|) . T))
-((((-549) (-747)) . T) ((|#3| (-747)) . T))
+(((|#1|) . T) (((-535)) |has| |#1| (-617 (-535))))
(((|#1|) . T))
+(((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-834)) . T))
-(|has| |#2| (-796))
-(|has| |#2| (-796))
-((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
-((((-549)) |has| |#1| (-857 (-549))) (((-372)) |has| |#1| (-857 (-372))))
-(((|#1|) . T))
-((((-841 |#1|)) . T))
-((((-841 |#1|)) . T))
-(-12 (|has| |#1| (-356)) (|has| |#2| (-880)))
-((((-400 (-549))) . T) (((-675)) . T) (($) . T))
-(|has| |#1| (-356))
-(|has| |#1| (-356))
+((((-835)) . T))
+((((-835)) . T))
(((|#1|) . T))
+((((-835)) . T))
+(|has| |#1| (-227))
+((($) . T))
+(((|#1| (-521 (-1054 (-1142))) (-1054 (-1142))) . T))
+(|has| |#1| (-881))
+(|has| |#1| (-881))
+((((-1142)) |has| |#1| (-871 (-1142))) (((-1054 (-1142))) . T))
+(|has| |#1| (-823))
+((($ $) . T) ((#1=(-1142) $) |has| |#1| . #2=((-227))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1054 (-1142)) |#1|) . T) ((#3# $) . T))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-881)))
+((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))
-(|has| |#1| (-356))
-(((|#2|) . T))
+(((|#1| (-521 (-1054 (-1142)))) . T))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
(((|#1|) . T))
+(((|#1| (-521 (-1054 (-1142)))) . T))
+((((-1091 |#1| (-1142))) . T) (((-1054 (-1142))) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-1142)) . T))
+(((|#1| (-1142) (-1054 (-1142)) (-521 (-1054 (-1142)))) . T))
+((((-835)) . T))
(((|#1|) . T))
(((|#1|) . T))
+(((|#1| (-618 |#1|)) |has| |#1| (-821)))
+(|has| |#1| (-1067))
+((((-835)) |has| |#1| (-1067)))
+(|has| |#1| (-1067))
(((|#1|) . T))
-((((-836 |#1|)) . T))
+((((-835)) . T) (((-1147)) . T))
+(|has| |#1| (-1067))
+((((-835)) |has| |#1| (-1067)))
+(|has| |#1| (-1067))
+((((-835)) . T) (((-1147)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-747)) . T))
-((((-1142)) . T))
-((((-841 |#1|)) . T))
-(-1536 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
-(-1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
-((((-834)) . T))
+((((-835)) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(((|#1|) . T))
-(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
-(-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823))))
-((((-841 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-361))
-(|has| |#1| (-361))
-(|has| |#1| (-361))
-((($ $) . T) (((-592 $) $) . T))
-((($) . T))
-((((-834)) . T))
-((((-549)) . T))
-(((|#2|) . T))
-((((-834)) . T))
-(((|#1|) . T) (((-400 (-549))) |has| |#1| (-356)))
-((((-834)) . T))
-(((|#1|) . T))
-((((-834)) . T))
-((($) . T) ((|#2|) . T) (((-400 (-549))) . T))
-(|has| |#1| (-1066))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-834)) . T))
-(|has| |#2| (-880))
-((((-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) . T))
-((((-525)) |has| |#2| (-594 (-525))) (((-863 (-372))) |has| |#2| (-594 (-863 (-372)))) (((-863 (-549))) |has| |#2| (-594 (-863 (-549)))))
-((((-834)) . T))
-((((-834)) . T))
-(((|#3|) |has| |#3| (-1018)) (((-549)) -12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))))
-((((-1091 |#1| |#2|)) . T) (((-923 |#1|)) |has| |#2| (-594 (-1142))) (((-834)) . T))
-((((-923 |#1|)) |has| |#2| (-594 (-1142))) (((-1124)) -12 (|has| |#1| (-1009 (-549))) (|has| |#2| (-594 (-1142)))) (((-863 (-549))) -12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549))))) (((-863 (-372))) -12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372))))) (((-525)) -12 (|has| |#1| (-594 (-525))) (|has| |#2| (-594 (-525)))))
-((((-1138 |#1|)) . T) (((-834)) . T))
-((((-834)) . T))
-((((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))) (((-549)) |has| |#2| (-1009 (-549))) ((|#2|) . T) (((-836 |#1|)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
-((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T) (((-1142)) . T))
-((((-834)) . T))
-((((-549)) . T))
-((($) . T))
-((((-372)) |has| |#1| (-857 (-372))) (((-549)) |has| |#1| (-857 (-549))))
-((((-549)) . T))
-(((|#1|) . T))
-((((-834)) . T))
-(((|#1|) . T))
-((((-834)) . T))
-(((|#1|) |has| |#1| (-170)) (($) . T))
-((((-549)) . T) (((-400 (-549))) . T))
-(((|#1|) |has| |#1| (-302 |#1|)))
-((((-834)) . T))
-((((-372)) . T))
+((((-524)) |has| |#1| (-594 (-524))))
(((|#1|) . T))
+(|has| |#1| (-361))
(((|#1|) . T))
-((((-834)) . T))
-((((-400 (-549))) . T) (($) . T))
-((((-400 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1066))
-(((|#2| (-474 (-3774 |#1|) (-747))) . T))
-((((-549) |#1|) . T))
-((((-1124)) . T) (((-834)) . T))
-(((|#2| |#2|) . T))
-(((|#1| (-521 (-1142))) . T))
-(-1536 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-((((-549)) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-1142)) |has| |#1| (-871 (-1142))) (((-1048)) . T))
-(((|#1|) . T) (((-549)) |has| |#1| (-617 (-549))))
-(|has| |#1| (-541))
-((($) . T) (((-400 (-549))) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-1124) (-1142) (-535) (-219) (-835)) . T))
+((((-835)) . T))
+(((|#1| |#2| |#3| |#4| |#5|) . T))
+((((-835)) . T))
+(-3874 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(-3874 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-703)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)) (|has| |#3| (-1067)))
+(-3874 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-703)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)) (|has| |#3| (-1067)))
+(((|#3|) |has| |#3| (-170)))
+(-3874 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(-3874 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(-3874 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(-3874 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(-3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(-3874 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(-3874 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+((($) -3874 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018))) ((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))))
+(((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356))))
+((((-835)) -3874 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-593 (-835))) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-703)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)) (|has| |#3| (-1067))) (((-1224 |#3|)) . T))
+(|has| |#3| (-170))
+(((|#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($) |has| |#3| (-170)))
+(((|#3| |#3|) -3874 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($ $) |has| |#3| (-170)))
+(((|#3|) |has| |#3| (-1018)))
+((((-1142)) -12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018))))
+(-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))
+(|has| |#3| (-361))
+(((|#3|) |has| |#3| (-1018)))
+(((|#3|) |has| |#3| (-1018)) (((-535)) -12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))))
+(((|#3|) |has| |#3| (-1067)))
+(((|#3|) |has| |#3| (-1067)) (((-535)) -12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067))) (((-400 (-535))) -12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067))))
+((((-535) |#3|) . T))
+(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))
+(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))
+(((|#3|) . T))
+((((-535) |#3|) . T))
+((((-535) |#3|) . T))
+(|has| |#3| (-769))
+(-3874 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(-3874 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(-3874 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(-3874 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(|has| |#3| (-821))
+(|has| |#3| (-821))
+(((|#3|) |has| |#3| (-356)))
+(((|#1| |#3|) . T))
+((((-835)) . T))
+((((-835)) . T) (((-1147)) . T))
((($) . T))
+((((-835)) . T))
((($) . T))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-(((|#1|) . T))
-((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((((-834)) . T))
-((((-142)) . T))
-(((|#1|) . T) (((-400 (-549))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-834)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1117))
-(((|#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) . T))
-(((|#1|) . T))
-((((-400 $) (-400 $)) |has| |#1| (-541)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
-((((-834)) . T))
-((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T) ((|#2|) . T))
-((((-1048)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
-((((-372)) -12 (|has| |#1| (-857 (-372))) (|has| |#2| (-857 (-372)))) (((-549)) -12 (|has| |#1| (-857 (-549))) (|has| |#2| (-857 (-549)))))
-((((-1211 |#1| |#2| |#3| |#4|)) . T))
-((((-549) |#1|) . T))
-(((|#1| |#1|) . T))
-((($) . T) ((|#2|) . T))
-(((|#1|) |has| |#1| (-170)) (($) . T))
+((($ $) . T))
((($) . T))
-((((-675)) . T))
-((((-756 |#1| (-836 |#2|))) . T))
((($) . T))
-((((-400 (-549))) . T) (($) . T))
-(|has| |#1| (-1066))
-(|has| |#1| (-1066))
-(|has| |#2| (-356))
-(|has| |#1| (-356))
-(|has| |#1| (-356))
-(|has| |#1| (-38 (-400 (-549))))
-((((-549)) . T))
-((((-1142)) -12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018))))
-((((-1142)) -12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018))))
+((((-535)) . T))
+((((-535)) . T))
+((((-524)) . T) (((-535)) . T) (((-861 (-535))) . T) (((-371)) . T) (((-219)) . T))
+((((-535)) . T))
+((((-524)) -12 (|has| |#1| (-594 (-524))) (|has| |#2| (-594 (-524)))) (((-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371))))) (((-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535))))))
+((($) . T))
+(((|#1| (-521 |#2|)) . T))
(((|#1|) . T))
-(|has| |#1| (-227))
-(((|#1| (-521 |#3|)) . T))
-(|has| |#1| (-361))
-(((|#2| (-234 (-3774 |#1|) (-747))) . T))
-(|has| |#1| (-361))
-(|has| |#1| (-361))
-(((|#1|) . T) (($) . T))
+((((-835)) . T))
+((($) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))))
+(((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))) ((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) -3874 (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))))
(((|#1| (-521 |#2|)) . T))
-(-1536 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(((|#1| (-747)) . T))
-(|has| |#1| (-541))
-(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-834)) . T))
-(-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))
-(-1536 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(((|#1|) |has| |#1| (-170)))
-(((|#4|) |has| |#4| (-1018)))
-(((|#3|) |has| |#3| (-1018)))
-(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
-(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1066))))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
-((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-((((-834)) . T))
-((($) . T) (((-400 (-549))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1066)) (((-549)) -12 (|has| |#4| (-1009 (-549))) (|has| |#4| (-1066))) (((-400 (-549))) -12 (|has| |#4| (-1009 (-400 (-549)))) (|has| |#4| (-1066))))
-(((|#3|) |has| |#3| (-1066)) (((-549)) -12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1066))) (((-400 (-549))) -12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1066))))
-(|has| |#2| (-356))
-(((|#2|) |has| |#2| (-1018)) (((-549)) -12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018))))
(((|#1|) . T))
-(|has| |#2| (-356))
-(((#0=(-400 (-549)) #0#) |has| |#2| (-38 (-400 (-549)))) ((|#2| |#2|) . T) (($ $) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-(((|#2| |#2|) . T))
-((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T) (($) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
-(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
-(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
+(((|#1|) . T) (((-535)) |has| |#1| (-617 (-535))))
+(-3874 (|has| |#1| (-444)) (|has| |#1| (-881)))
+((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
+(|has| |#1| (-823))
(((|#2|) . T))
-((((-834)) |has| |#1| (-1066)))
+((((-371)) -12 (|has| |#1| (-857 (-371))) (|has| |#2| (-857 (-371)))) (((-535)) -12 (|has| |#1| (-857 (-535))) (|has| |#2| (-857 (-535)))))
+(|has| |#1| (-881))
+(|has| |#1| (-881))
+((((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) (((-535)) |has| |#1| (-1009 (-535))) ((|#1|) . T) ((|#2|) . T))
+(((|#1| (-521 |#2|) |#2|) . T))
((($) . T))
-((((-1211 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-796))
-(|has| |#2| (-796))
-(|has| |#1| (-356))
-(|has| |#1| (-356))
-(|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))
-(|has| |#1| (-356))
-(((|#1|) |has| |#2| (-410 |#1|)))
-(((|#1|) |has| |#2| (-410 |#1|)))
-((((-881 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1066))))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-1178)) . T) (((-834)) . T) (((-1147)) . T))
-((((-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) |has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))))
-(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
-((((-549) |#1|) . T))
-((((-549) |#1|) . T))
-((((-549) |#1|) . T))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-((((-549) |#1|) . T))
-(((|#1|) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-((((-1142)) |has| |#1| (-871 (-1142))) (((-794 (-1142))) . T))
-(-1536 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
-((((-795 |#1|)) . T))
-(((|#1| |#2|) . T))
-((((-834)) . T))
-(-1536 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+((($ $) . T) ((|#2| $) . T))
+(((|#2|) . T))
+((((-835)) . T))
+(((|#1| (-521 |#2|) |#2|) . T))
+((($) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-542)))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))))
+(((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))) ((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)))
+(((|#1| (-521 |#2|)) . T))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-400 (-549))))
-((((-834)) . T))
-((((-1211 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-549))) . T))
-(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)) (((-400 (-549))) |has| |#1| (-541)))
-(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
-(|has| |#1| (-356))
-(-1536 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (-12 (|has| |#1| (-356)) (|has| |#2| (-227))))
-(|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))
-(|has| |#1| (-356))
+((((-835)) . T))
(((|#1|) . T))
-(((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((|#1| |#1|) . T))
-((((-549) |#1|) . T))
-((((-309 |#1|)) . T))
-(((#0=(-675) (-1138 #0#)) . T))
-((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((|#1|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-821))
-((($ $) . T) ((#0=(-836 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1091 |#1| (-1142))) . T) (((-794 (-1142))) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-1142)) . T))
-((($) . T))
-(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1048) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1142) $) |has| |#1| (-227)) ((#0# |#1|) |has| |#1| (-227)) ((#1=(-1054 (-1142)) |#1|) . T) ((#1# $) . T))
+((((-1147)) . T) (((-835)) . T))
+((((-835)) . T))
+((((-1106 |#1| |#2|)) . T))
+(((#1=(-1106 |#1| |#2|) #1#) |has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))))
+((((-1106 |#1| |#2|)) |has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))))
+((((-835)) . T))
+((((-1106 |#1| |#2|)) . T))
+((((-524)) |has| |#2| (-594 (-524))))
+(((|#2|) |has| |#2| (-6 (-4338 "*"))))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-665 |#2|)) . T) (((-835)) . T))
((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))))
-(|has| |#2| (-880))
-((($) . T) ((#0=(-1210 |#2| |#3| |#4|)) |has| #0# (-170)) (((-400 (-549))) |has| #0# (-38 (-400 (-549)))))
-((((-549) |#1|) . T))
-(((#0=(-1211 |#1| |#2| |#3| |#4|)) |has| #0# (-302 #0#)))
-((($) . T))
-(((|#1|) . T))
-((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#2| |#2|) |has| |#1| (-356)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))))
+(((|#2|) -3874 (|has| |#2| (-6 (-4338 "*"))) (|has| |#2| (-170))))
+(((|#2|) . T))
+((((-1142)) |has| |#2| (-871 (-1142))))
(|has| |#2| (-227))
-(|has| $ (-145))
-((((-834)) . T))
-((($) . T) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
-((((-834)) . T))
-(|has| |#1| (-821))
-((((-1142)) -12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))
-((((-400 |#2|) |#3|) . T))
-(((|#1|) . T))
-((((-834)) . T))
-(((|#2| (-648 |#1|)) . T))
-(-12 (|has| |#1| (-300)) (|has| |#1| (-880)))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
+(((|#2|) . T))
+(((|#2|) . T) (((-535)) |has| |#2| (-617 (-535))))
+(((|#2|) . T))
+(((|#2|) . T) (((-535)) |has| |#2| (-1009 (-535))) (((-400 (-535))) |has| |#2| (-1009 (-400 (-535)))))
+(((|#1| |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((|#2|) . T))
+(((|#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-524)) |has| |#4| (-594 (-524))))
(((|#4|) . T))
-(|has| |#1| (-541))
-((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) ((|#1|) . T))
-((((-1142)) -1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))))
-(((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))))
-((((-1142)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142)))))
-((((-1142)) -12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142)))))
-(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))
-((((-549) |#1|) . T))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4|) . T))
+((((-835)) . T) (((-618 |#4|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
-(((|#1| (-521 (-794 (-1142)))) . T))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
(((|#1|) . T))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
(((|#1|) . T))
-(-1536 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))
-((((-1217 |#1| |#2| |#3|)) |has| |#1| (-356)))
-((($) . T) (((-841 |#1|)) . T) (((-400 (-549))) . T))
-((((-1217 |#1| |#2| |#3|)) |has| |#1| (-356)))
-(|has| |#1| (-541))
+(((|#1| |#2|) . T))
+((((-835)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-400 |#2|)) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1066))))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1066))))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1066))))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-400 (-549)) #0#) . T) (($ $) . T))
-((((-549)) . T))
-((((-834)) . T))
-(((|#2|) . T) (((-400 (-549))) . T) (($) . T))
-((((-563 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
-((((-834)) . T))
-((((-400 (-549))) . T) (($) . T))
-((((-549) |#1|) . T))
-((((-834)) . T))
-((($ $) . T) (((-1142) $) . T))
-((((-1217 |#1| |#2| |#3|)) . T))
-((((-525)) |has| |#2| (-594 (-525))) (((-863 (-372))) |has| |#2| (-594 (-863 (-372)))) (((-863 (-549))) |has| |#2| (-594 (-863 (-549)))))
-((((-834)) . T))
-((((-834)) . T))
-((((-863 (-549))) -12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#3| (-594 (-863 (-549))))) (((-863 (-372))) -12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#3| (-594 (-863 (-372))))) (((-525)) -12 (|has| |#1| (-594 (-525))) (|has| |#3| (-594 (-525)))))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((|#1|) . T) (((-834)) . T) (((-1147)) . T))
-((((-834)) . T))
-(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) . T))
-(((|#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T))
-((((-834)) . T))
-((((-1217 |#1| |#2| |#3|)) |has| |#1| (-356)))
-(|has| |#1| (-356))
-((((-1217 |#1| |#2| |#3|)) . T) (((-1189 |#1| |#2| |#3|)) . T))
-((((-1142)) . T) (((-834)) . T))
-((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
-(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T))
-((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((((-1070)) . T))
-((((-834)) . T))
-((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-((($) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T))
-((($) . T))
-((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(|has| |#2| (-880))
-(|has| |#1| (-880))
(((|#1|) . T))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
(((|#1|) . T))
-(((|#1| |#1|) |has| |#1| (-170)))
-((((-675)) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-(((|#1|) |has| |#1| (-170)))
-(((|#1|) |has| |#1| (-170)))
-((((-400 (-549))) . T) (($) . T))
-(((|#1| (-549)) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
+((((-524)) |has| |#1| (-594 (-524))))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-835)) . T))
+((((-142)) . T))
+((((-142)) . T))
+((((-142)) . T))
+((((-535) (-142)) . T))
+((((-535) (-142)) . T))
+((((-535) (-142)) . T))
+((((-142)) . T))
+((((-142)) . T))
+((((-1124) |#1|) . T))
+((((-835)) . T))
+((((-1124) |#1|) . T))
+((((-1124) |#1|) . T))
+((((-1124) |#1|) . T))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T))
+(((|#1|) . T) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((#1=(-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) #1#) |has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) |has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T))
+((((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) . T))
+((((-1124) |#1|) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((((-1140 |#1| |#2| |#3|)) . T))
+((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
(|has| |#1| (-356))
+((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((((-1140 |#1| |#2| |#3|)) -12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|)))))
+(((#1=(-1140 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|)))) (((-1142) #1#) -12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-505 (-1142) (-1140 |#1| |#2| |#3|)))))
+((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
(|has| |#1| (-356))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
-(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
-(((|#1| (-549)) . T))
-(((|#1| (-400 (-549))) . T))
-(((|#1| (-747)) . T))
-((((-400 (-549))) . T))
-(((|#1| (-521 |#2|) |#2|) . T))
-((((-549) |#1|) . T))
-((((-549) |#1|) . T))
-(|has| |#1| (-1066))
-((((-549) |#1|) . T))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(-3874 (-12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))
+((((-1142)) -3874 (-12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142)))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))
+((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
+(-3874 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-145))))
+(-3874 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-143))))
+((((-835)) . T))
+(((|#1|) . T))
+((((-1140 |#1| |#2| |#3|) $) -12 (|has| |#1| (-356)) (|has| (-1140 |#1| |#2| |#3|) (-279 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)))) (($ $) . T))
+(((|#1| (-535) (-1048)) . T))
+((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((#2=(-1140 |#1| |#2| |#3|) #2#) |has| |#1| (-356)) ((|#1| |#1|) . T))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T))
+((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T))
+((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
+(((|#1| (-535)) . T))
+(((|#1| (-535)) . T))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(((|#1| (-1140 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+((((-835)) . T))
+((((-400 $) (-400 $)) |has| |#1| (-542)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#1| (-356))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881)))
+(|has| |#1| (-356))
+(((|#1| (-747) (-1048)) . T))
+(|has| |#1| (-881))
+(|has| |#1| (-881))
+((((-1142)) |has| |#1| (-871 (-1142))) (((-1048)) . T))
+(|has| |#1| (-823))
+((((-535)) |has| |#1| (-617 (-535))) ((|#1|) . T))
(((|#1|) . T))
+(((|#1| (-747)) . T))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) . T) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-542)) (|has| |#1| (-881))) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
(((|#1|) . T))
-((((-863 (-372))) . T) (((-863 (-549))) . T) (((-1142)) . T) (((-525)) . T))
+((((-1048)) . T) ((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))))
+(((|#1| (-747)) . T))
+(((#1=(-1048) |#1|) . T) ((#1# $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-1117))
(((|#1|) . T))
-((((-834)) . T))
-(-1536 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-(-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))
-((((-549)) . T))
-((((-549)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(((|#1| |#2|) . T))
+((((-1140 |#1| |#2| |#3|)) . T) (((-1133 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(-1536 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
-((((-1142)) -12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018))))
-(-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))))
+(|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))
+((($ $) . T))
+((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))))
+(((|#1| (-400 (-535)) (-1048)) . T))
(|has| |#1| (-143))
(|has| |#1| (-145))
+(((|#1| (-400 (-535))) . T))
+(((|#1| (-400 (-535))) . T))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-356))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+((((-835)) . T))
+(((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))))
+(((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))))
+(((|#1|) . T) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) . T))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(((|#1|) |has| |#1| (-170)) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))))
+(((|#1|) |has| |#1| (-170)) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(((|#1| (-1133 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(((|#1| (-747)) . T))
+(((|#1| (-747)) . T))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-542)))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))))
+((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+(((|#1| (-747) (-1048)) . T))
+((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|)))))
+((($ $) . T))
+((((-835)) . T))
+(((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) (($) . T))
+(|has| |#1| (-15 * (|#1| (-747) |#1|)))
+(((|#1|) . T))
+((((-835)) . T))
+((((-371)) . T) (((-535)) . T))
+((((-861 (-371))) . T) (((-861 (-535))) . T) (((-1142)) . T) (((-524)) . T))
+((((-835)) . T))
+(((|#1| (-942)) . T))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-542)))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((((-835)) . T))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))))
+(((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) (($) . T))
+((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-535)) |has| |#1| (-1009 (-535))) (((-400 (-535))) |has| |#1| (-1009 (-400 (-535)))))
+(((|#1| (-942)) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T))
(((|#1| |#2|) . T))
+((((-835)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-227))
-((((-834)) . T))
-(((|#1| (-747) (-1048)) . T))
-((((-549) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-549) |#1|) . T))
-((((-549) |#1|) . T))
-((((-116 |#1|)) . T))
-((((-400 (-549))) . T) (((-549)) . T))
-(((|#2|) |has| |#2| (-1018)))
-((((-400 (-549))) . T) (($) . T))
-(((|#2|) . T))
-((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)))
-((((-549)) . T))
-((((-549)) . T))
-((((-1124) (-1142) (-549) (-219) (-834)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-1536 (|has| |#1| (-342)) (|has| |#1| (-361)))
(((|#1| |#2|) . T))
-((($) . T) ((|#1|) . T))
-((((-834)) . T))
-((($) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
-(((|#2|) |has| |#2| (-1066)) (((-549)) -12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066))) (((-400 (-549))) -12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066))))
-((((-525)) |has| |#1| (-594 (-525))))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1066))))
-((($) . T) (((-400 (-549))) . T))
-(|has| |#1| (-880))
-(|has| |#1| (-880))
-((((-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-993))) (((-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-993))) (((-863 (-372))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-863 (-372))))) (((-863 (-549))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-863 (-549))))) (((-525)) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-525)))))
-((((-834)) . T))
-((((-834)) . T))
-(((|#2| |#2|) . T))
-(((|#1| |#1|) |has| |#1| (-170)))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
-(((|#2|) . T))
-(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
-(((|#1|) |has| |#1| (-170)))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #1#) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+((((-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-381) (-1124)) . T))
(((|#1|) . T))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))))
(((|#1|) . T))
-((((-834)) -1536 (-12 (|has| |#1| (-593 (-834))) (|has| |#2| (-593 (-834)))) (-12 (|has| |#1| (-1066)) (|has| |#2| (-1066)))))
-((((-400 |#2|) |#3|) . T))
-((((-400 (-549))) . T) (($) . T))
-(|has| |#1| (-38 (-400 (-549))))
+((($) . T))
+((($ $) . T) (((-1142) $) . T))
+((((-1142)) . T))
+((((-835)) . T))
+(((|#1| (-521 #1=(-1142)) #1#) . T))
+((($) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-542)))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))))
+(((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))) ((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)))
+((((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-542)))
+(((|#1| (-521 (-1142))) . T))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(((|#1| (-1142)) . T))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-1067))) (((-929 |#1|)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((((-1214 |#1| |#2| |#3|)) . T))
+((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)))
(|has| |#1| (-356))
-((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
-(|has| (-400 |#2|) (-145))
-(|has| (-400 |#2|) (-143))
-((((-675)) . T))
-(((|#1|) . T) (((-400 (-549))) . T) (((-549)) . T) (($) . T))
-(((#0=(-549) #0#) . T))
-((($) . T) (((-400 (-549))) . T))
-(-1536 (|has| |#4| (-170)) (|has| |#4| (-703)) (|has| |#4| (-821)) (|has| |#4| (-1018)))
-(-1536 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
-((((-834)) . T) (((-1147)) . T))
-(|has| |#4| (-769))
-(-1536 (|has| |#4| (-769)) (|has| |#4| (-821)))
-(|has| |#4| (-821))
-(|has| |#3| (-769))
-(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
-(|has| |#3| (-821))
-((((-549)) . T))
-(((|#2|) . T))
-((((-1142)) -1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))))
-((((-1142)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142)))))
-((((-1142)) -12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142)))))
-(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
+((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((((-1214 |#1| |#2| |#3|)) -12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-302 (-1214 |#1| |#2| |#3|)))))
+(((#1=(-1214 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-302 (-1214 |#1| |#2| |#3|)))) (((-1142) #1#) -12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-505 (-1142) (-1214 |#1| |#2| |#3|)))))
+((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)))
+(|has| |#1| (-356))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(-3874 (-12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))
+((((-1142)) -3874 (-12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142)))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))
+((((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)))
+(-3874 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-145))))
+(-3874 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-143))))
+((((-835)) . T))
+(((|#1|) . T))
+((((-1214 |#1| |#2| |#3|) $) -12 (|has| |#1| (-356)) (|has| (-1214 |#1| |#2| |#3|) (-279 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)))) (($ $) . T))
+(((|#1| (-535) (-1048)) . T))
+((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((#2=(-1214 |#1| |#2| |#3|) #2#) |has| |#1| (-356)) ((|#1| |#1|) . T))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T))
+((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T))
+((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) (((-1214 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
+(((|#1| (-535)) . T))
+(((|#1| (-535)) . T))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(((|#1| (-1214 |#1| |#2| |#3|)) . T))
+(((|#2|) |has| |#1| (-356)))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-1117)))
+(((|#2|) . T) (((-1142)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1142)))) (((-535)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535)))) (((-400 (-535))) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535)))))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-991)))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-881)))
+(((|#2|) |has| |#1| (-356)))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
+(-3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-796))) (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
+((((-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-371)))) (((-535)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-535)))))
+(|has| |#1| (-356))
+(((|#2|) |has| |#1| (-356)))
+((((-535)) -12 (|has| |#1| (-356)) (|has| |#2| (-617 (-535)))) ((|#2|) |has| |#1| (-356)))
+(((|#2|) |has| |#1| (-356)))
+(((|#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))))
+(((|#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) (((-1142) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1142) |#2|))))
+(((|#2|) |has| |#1| (-356)))
+(|has| |#1| (-356))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(-3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))
+((((-1142)) -3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))
+(((|#2|) |has| |#1| (-356)))
+((((-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-991))) (((-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-991))) (((-861 (-371))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-861 (-371))))) (((-861 (-535))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-861 (-535))))) (((-524)) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-524)))))
+(-3874 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| |#2| (-145))))
+(-3874 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| |#2| (-143))))
+((((-835)) . T))
(((|#1|) . T))
-(((|#1|) . T) (($) . T))
+(((|#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) (($ $) . T))
+(((|#1| (-535) (-1048)) . T))
+((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#2| |#2|) |has| |#1| (-356)) ((|#1| |#1|) . T))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) ((|#1|) . T))
+((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) (($) . T) ((|#1|) . T))
+((((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
+(((|#1| (-535)) . T))
+(((|#1| (-535)) . T))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(((|#1| |#2|) . T))
+(((|#1| (-1119 |#1|)) |has| |#1| (-821)))
+(|has| |#1| (-1067))
+((((-835)) |has| |#1| (-1067)))
+(|has| |#1| (-1067))
(((|#1|) . T))
-((((-836 |#1|)) . T))
-((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
-((((-1106 |#1| |#2|)) . T))
-((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
-(((|#2|) . T) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) . T))
+(((|#2|) . T))
+((((-835)) . T))
+((((-400 $) (-400 $)) |has| |#2| (-542)) (($ $) . T) ((|#2| |#2|) . T))
+(|has| |#2| (-356))
+(-3874 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-881)))
+(-3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+(-3874 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+(-3874 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881)))
+(|has| |#2| (-356))
+(((|#2| (-747) (-1048)) . T))
+(|has| |#2| (-881))
+(|has| |#2| (-881))
+((((-1142)) |has| |#2| (-871 (-1142))) (((-1048)) . T))
+(|has| |#2| (-823))
+((((-535)) |has| |#2| (-617 (-535))) ((|#2|) . T))
+(((|#2|) . T))
+(((|#2| (-747)) . T))
+(|has| |#2| (-145))
+(|has| |#2| (-143))
+((($) -3874 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) ((|#2|) |has| |#2| (-170)) (((-400 (-535))) |has| |#2| (-38 (-400 (-535)))))
+((($) . T) ((|#2|) . T) (((-400 (-535))) |has| |#2| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) ((|#2|) . T) (((-400 (-535))) |has| |#2| (-38 (-400 (-535)))))
+((($ $) -3874 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) ((|#2| |#2|) . T) ((#1=(-400 (-535)) #1#) |has| |#2| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-542)) (|has| |#2| (-881))) ((|#2|) |has| |#2| (-170)) (((-400 (-535))) |has| |#2| (-38 (-400 (-535)))))
+(((|#2|) . T))
+((((-1048)) . T) ((|#2|) . T) (((-535)) |has| |#2| (-1009 (-535))) (((-400 (-535))) |has| |#2| (-1009 (-400 (-535)))))
+(((|#2| (-747)) . T))
+(((#1=(-1048) |#2|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-993))
-(((|#2|) . T) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-((((-834)) . T))
-((((-525)) |has| |#2| (-594 (-525))) (((-863 (-549))) |has| |#2| (-594 (-863 (-549)))) (((-863 (-372))) |has| |#2| (-594 (-863 (-372)))) (((-372)) . #0=(|has| |#2| (-993))) (((-219)) . #0#))
-((((-1142) (-52)) . T))
-(|has| |#1| (-38 (-400 (-549))))
-(|has| |#1| (-38 (-400 (-549))))
+(|has| |#2| (-1117))
(((|#2|) . T))
-((($ $) . T))
-((((-400 (-549))) . T) (((-675)) . T) (($) . T))
-((((-1140 |#1| |#2| |#3|)) . T))
-((((-1140 |#1| |#2| |#3|)) . T) (((-1133 |#1| |#2| |#3|)) . T))
-((((-834)) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-((((-549) |#1|) . T))
-((((-1140 |#1| |#2| |#3|)) |has| |#1| (-356)))
-(((|#1| |#2| |#3| |#4|) . T))
+((((-1214 |#1| |#2| |#3|)) . T) (((-1184 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))
+((($ $) . T))
+((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))))
+(((|#1| (-400 (-535)) (-1048)) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+(((|#1| (-400 (-535))) . T))
+(((|#1| (-400 (-535))) . T))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-356))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+((((-835)) . T))
+(((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))))
+(((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))))
+(((|#1|) . T) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) . T))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(((|#1|) |has| |#1| (-170)) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))))
+(((|#1|) |has| |#1| (-170)) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(((|#1| (-1184 |#1| |#2| |#3|)) . T))
(((|#2|) . T))
-(|has| |#2| (-356))
-(((|#3|) . T) ((|#2|) . T) (($) -1536 (|has| |#4| (-170)) (|has| |#4| (-821)) (|has| |#4| (-1018))) ((|#4|) -1536 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1018))))
-(((|#2|) . T) (($) -1536 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018))) ((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))))
-(((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))
+((($ $) . T))
+((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))))
+(((|#1| (-400 (-535)) (-1048)) . T))
+(|has| |#1| (-143))
+(|has| |#1| (-145))
+(((|#1| (-400 (-535))) . T))
+(((|#1| (-400 (-535))) . T))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
(|has| |#1| (-356))
-((((-116 |#1|)) . T))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+((((-835)) . T))
+(((|#1|) . T) (($) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))))
+(((|#1| |#1|) . T) (($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542))) ((#1=(-400 (-535)) #1#) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))))
+(((|#1|) . T) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) . T))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(((|#1|) |has| |#1| (-170)) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))))
+(((|#1|) |has| |#1| (-170)) (((-400 (-535))) -3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-356))) (($) -3874 (|has| |#1| (-356)) (|has| |#1| (-542))))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-542)))
+(-3874 (|has| |#1| (-356)) (|has| |#1| (-542)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(((|#1| |#2|) . T))
+((((-1205 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T))
+(|has| (-1205 |#2| |#3| |#4|) (-145))
+(|has| (-1205 |#2| |#3| |#4|) (-143))
+((($) . T) ((#1=(-1205 |#2| |#3| |#4|)) |has| #1# (-170)) (((-400 (-535))) |has| #1# (-38 (-400 (-535)))))
+((((-835)) . T))
+((($) . T) ((#1=(-1205 |#2| |#3| |#4|)) . T) (((-400 (-535))) |has| #1# (-38 (-400 (-535)))))
+((($ $) . T) ((#1=(-1205 |#2| |#3| |#4|) #1#) . T) ((#2=(-400 (-535)) #2#) |has| #1# (-38 (-400 (-535)))))
+(((#1=(-1205 |#2| |#3| |#4|)) . T) (((-400 (-535))) |has| #1# (-38 (-400 (-535)))) (($) . T))
+((($) . T) ((#1=(-1205 |#2| |#3| |#4|)) |has| #1# (-170)) (((-400 (-535))) |has| #1# (-38 (-400 (-535)))))
+((((-1205 |#2| |#3| |#4|)) . T))
+((((-1205 |#2| |#3| |#4|)) . T))
+((((-1205 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(|has| |#1| (-38 (-400 (-535))))
+(((|#1| (-747)) . T))
+(((|#1| (-747)) . T))
+(|has| |#1| (-542))
+(|has| |#1| (-542))
+(-3874 (|has| |#1| (-170)) (|has| |#1| (-542)))
+(|has| |#1| (-145))
+(|has| |#1| (-143))
+((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+((($ $) -3874 (|has| |#1| (-170)) (|has| |#1| (-542))) ((|#1| |#1|) . T) ((#1=(-400 (-535)) #1#) |has| |#1| (-38 (-400 (-535)))))
+((($) |has| |#1| (-542)) ((|#1|) |has| |#1| (-170)) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))))
+(((|#1| (-747) (-1048)) . T))
+((((-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|)))))
+((($ $) . T))
+((((-835)) . T))
+(((|#1|) . T) (((-400 (-535))) |has| |#1| (-38 (-400 (-535)))) (($) . T))
+(|has| |#1| (-15 * (|#1| (-747) |#1|)))
(((|#1|) . T))
+((((-1142)) . T) (((-835)) . T))
(((|#1|) . T))
-((((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))) (((-549)) |has| |#2| (-1009 (-549))) ((|#2|) . T) (((-836 |#1|)) . T))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
(((|#1|) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
-((((-129)) . T) (((-834)) . T))
-((((-549) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-535) |#1|) . T))
+((((-524)) |has| |#1| (-594 (-524))))
(((|#1|) . T))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(-3874 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-835)) -3874 (|has| |#1| (-593 (-835))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
(((|#1|) . T))
+(|has| |#1| (-823))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) (($ $) . T))
-((($ $) . T))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-880)))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-((((-834)) . T))
-((((-834)) . T))
-((((-834)) . T))
-(((|#1| (-521 |#2|)) . T))
-((((-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) . T))
-(((|#1| (-549)) . T))
-(((|#1| (-400 (-549))) . T))
-(((|#1| (-747)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T) (((-1147)) . T))
-(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
-(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
-((($) . T))
-(((|#2| (-521 (-836 |#1|))) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-834)) . T) (((-1147)) . T))
-((((-549) |#1|) . T))
-((((-834)) . T) (((-1147)) . T))
-(((|#2|) . T))
-(((|#2| (-747)) . T))
-((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1066))))
(((|#1|) . T))
+((((-835)) . T))
+((((-835)) . T))
+((((-835)) . T) (((-1147)) . T))
+((((-835)) . T) (((-1147)) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)))
+(((|#1| |#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+((((-835)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-524)) |has| |#4| (-594 (-524))))
+(((|#4|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4|) . T))
+((((-835)) . T) (((-618 |#4|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1124) |#1|) . T))
-((((-400 |#2|)) . T))
-((((-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T))
-(|has| |#1| (-541))
-(|has| |#1| (-541))
+(((|#2|) |has| |#2| (-170)))
+(((|#2|) . T))
+(((|#1| |#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-835)) . T))
((($) . T) ((|#2|) . T))
+(((|#2|) |has| |#2| (-170)))
+((((-795 |#1|)) . T))
+(((|#2| (-795 |#1|)) . T))
+(((|#2| (-864 |#1|)) . T))
+(((|#1| |#2|) . T))
+(((|#2|) |has| |#2| (-170)))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-170)))
+(((|#2|) . T))
+(((|#2|) . T) (($) . T))
+((((-835)) . T))
+((((-864 |#1|)) . T) (((-795 |#1|)) . T))
+(((|#1| |#2|) . T))
+((((-1142) |#1|) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#1| |#1|) . T))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
+(((|#1|) . T) (($) . T))
+((((-835)) . T))
+((((-795 (-1142))) . T))
+((((-1142) |#1|) . T))
+(((|#2|) . T))
(((|#1| |#2|) . T))
-(((|#2| $) |has| |#2| (-279 |#2| |#2|)))
-(((|#1| (-621 |#1|)) |has| |#1| (-821)))
-(-1536 (|has| |#1| (-227)) (|has| |#1| (-342)))
-(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
-(|has| |#1| (-1066))
-(((|#1|) . T))
-((((-400 (-549))) . T) (($) . T))
-((((-970 |#1|)) . T) ((|#1|) . T) (((-549)) -1536 (|has| (-970 |#1|) (-1009 (-549))) (|has| |#1| (-1009 (-549)))) (((-400 (-549))) -1536 (|has| (-970 |#1|) (-1009 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-((((-1142)) |has| |#1| (-871 (-1142))))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))
-(((|#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1106 |#1| |#2|) #0#) |has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((#0=(-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))))
-(((#0=(-116 |#1|)) |has| #0# (-302 #0#)))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) . T))
+(((|#1|) . T) (($) . T))
+((((-835)) . T))
+(((|#1| |#2|) . T))
+(((|#2|) |has| |#2| (-170)))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-170)))
+(((|#2|) . T))
+(((|#2|) . T) (($) . T))
+((((-835)) . T))
+((((-795 |#1|)) . T))
+(((|#1| |#2|) . T))
+((((-535)) . T))
((($ $) . T))
-(-1536 (|has| |#1| (-823)) (|has| |#1| (-1066)))
-((($ $) . T) ((#0=(-836 |#1|) $) . T) ((#0# |#2|) . T))
-((($ $) . T) ((|#2| $) |has| |#1| (-227)) ((|#2| |#1|) |has| |#1| (-227)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-470 . -1066) T) ((-257 . -505) 144877) ((-241 . -505) 144820) ((-239 . -1066) 144770) ((-556 . -111) 144755) ((-521 . -23) T) ((-137 . -1066) T) ((-136 . -1066) T) ((-117 . -302) 144712) ((-132 . -1066) T) ((-471 . -505) 144504) ((-670 . -101) T) ((-1107 . -505) 144423) ((-383 . -130) T) ((-1238 . -947) 144392) ((-31 . -92) T) ((-582 . -481) 144376) ((-599 . -130) T) ((-795 . -819) T) ((-514 . -56) 144326) ((-58 . -505) 144259) ((-510 . -505) 144192) ((-411 . -871) 144151) ((-167 . -1018) T) ((-507 . -505) 144084) ((-488 . -505) 144017) ((-487 . -505) 143950) ((-775 . -1009) 143733) ((-675 . -38) 143698) ((-336 . -342) T) ((-1060 . -1059) 143682) ((-1060 . -1066) 143660) ((-167 . -237) 143611) ((-167 . -227) 143562) ((-1060 . -1061) 143520) ((-843 . -279) 143478) ((-219 . -771) T) ((-219 . -768) T) ((-670 . -277) NIL) ((-1116 . -1155) 143457) ((-400 . -963) 143441) ((-677 . -21) T) ((-677 . -25) T) ((-1240 . -624) 143415) ((-309 . -158) 143394) ((-309 . -141) 143373) ((-1116 . -106) 143323) ((-133 . -25) T) ((-40 . -225) 143300) ((-116 . -21) T) ((-116 . -25) T) ((-588 . -281) 143276) ((-467 . -281) 143255) ((-1198 . -1018) T) ((-828 . -1018) T) ((-775 . -331) 143239) ((-117 . -1117) NIL) ((-90 . -593) 143171) ((-469 . -130) T) ((-574 . -1179) T) ((-1198 . -319) 143148) ((-556 . -1018) T) ((-1198 . -227) T) ((-638 . -694) 143132) ((-1062 . -593) 143098) ((-929 . -281) 143075) ((-59 . -34) T) ((-1056 . -593) 143041) ((-1040 . -593) 143007) ((-1029 . -771) T) ((-1029 . -768) T) ((-792 . -703) T) ((-708 . -47) 142972) ((-601 . -38) 142959) ((-348 . -283) T) ((-345 . -283) T) ((-337 . -283) T) ((-257 . -283) 142890) ((-241 . -283) 142821) ((-1033 . -593) 142787) ((-1007 . -593) 142753) ((-995 . -101) T) ((-990 . -593) 142719) ((-406 . -703) T) ((-117 . -38) 142664) ((-604 . -593) 142630) ((-406 . -465) T) ((-475 . -593) 142596) ((-347 . -101) T) ((-212 . -593) 142562) ((-1173 . -1025) T) ((-688 . -1025) T) ((-1140 . -47) 142539) ((-1139 . -47) 142509) ((-1133 . -47) 142486) ((-1006 . -149) 142432) ((-881 . -283) T) ((-1092 . -47) 142404) ((-670 . -302) NIL) ((-506 . -593) 142386) ((-501 . -593) 142368) ((-499 . -593) 142350) ((-320 . -1066) 142300) ((-689 . -444) 142231) ((-48 . -101) T) ((-1209 . -279) 142216) ((-1188 . -279) 142136) ((-621 . -642) 142120) ((-621 . -627) 142104) ((-332 . -21) T) ((-332 . -25) T) ((-40 . -342) NIL) ((-172 . -21) T) ((-172 . -25) T) ((-621 . -366) 142088) ((-582 . -279) 142065) ((-585 . -593) 142032) ((-381 . -101) T) ((-1086 . -141) T) ((-126 . -593) 141964) ((-845 . -1066) T) ((-634 . -404) 141948) ((-691 . -593) 141930) ((-160 . -593) 141912) ((-155 . -593) 141894) ((-1240 . -703) T) ((-1068 . -34) T) ((-842 . -771) NIL) ((-842 . -768) NIL) ((-831 . -823) T) ((-708 . -857) NIL) ((-1249 . -130) T) ((-374 . -130) T) ((-875 . -101) T) ((-708 . -1009) 141770) ((-521 . -130) T) ((-1053 . -404) 141754) ((-971 . -481) 141738) ((-117 . -393) 141715) ((-1133 . -1179) 141694) ((-758 . -404) 141678) ((-756 . -404) 141662) ((-914 . -34) T) ((-670 . -1117) NIL) ((-244 . -624) 141497) ((-243 . -624) 141319) ((-793 . -891) 141298) ((-446 . -404) 141282) ((-582 . -19) 141266) ((-1112 . -1172) 141235) ((-1133 . -857) NIL) ((-1133 . -855) 141187) ((-582 . -584) 141164) ((-1165 . -593) 141096) ((-1141 . -593) 141078) ((-61 . -388) T) ((-1139 . -1009) 141013) ((-1133 . -1009) 140979) ((-670 . -38) 140929) ((-466 . -279) 140914) ((-708 . -370) 140898) ((-634 . -1025) T) ((-1209 . -973) 140864) ((-1188 . -973) 140830) ((-1030 . -1155) 140805) ((-843 . -594) 140613) ((-843 . -593) 140595) ((-1152 . -481) 140532) ((-411 . -993) 140511) ((-48 . -302) 140498) ((-1030 . -106) 140444) ((-471 . -481) 140381) ((-511 . -1179) T) ((-1133 . -331) 140333) ((-1107 . -481) 140304) ((-1133 . -370) 140256) ((-1053 . -1025) T) ((-430 . -101) T) ((-181 . -1066) T) ((-244 . -34) T) ((-243 . -34) T) ((-758 . -1025) T) ((-756 . -1025) T) ((-708 . -871) 140233) ((-446 . -1025) T) ((-58 . -481) 140217) ((-1005 . -1024) 140191) ((-510 . -481) 140175) ((-507 . -481) 140159) ((-488 . -481) 140143) ((-487 . -481) 140127) ((-239 . -505) 140060) ((-1005 . -111) 140027) ((-1140 . -871) 139940) ((-1139 . -871) 139846) ((-1133 . -871) 139679) ((-646 . -1078) T) ((-1092 . -871) 139663) ((-622 . -92) T) ((-347 . -1117) T) ((-315 . -1024) 139645) ((-244 . -767) 139624) ((-244 . -770) 139575) ((-244 . -769) 139554) ((-243 . -767) 139533) ((-243 . -770) 139484) ((-243 . -769) 139463) ((-31 . -593) 139429) ((-50 . -1025) T) ((-244 . -703) 139339) ((-243 . -703) 139249) ((-1173 . -1066) T) ((-646 . -23) T) ((-563 . -1025) T) ((-509 . -1025) T) ((-372 . -1024) 139214) ((-315 . -111) 139189) ((-72 . -376) T) ((-72 . -388) T) ((-995 . -38) 139126) ((-670 . -393) 139108) ((-98 . -101) T) ((-688 . -1066) T) ((-974 . -143) 139080) ((-974 . -145) 139052) ((-372 . -111) 139008) ((-312 . -1183) 138987) ((-466 . -973) 138953) ((-347 . -38) 138918) ((-40 . -363) 138890) ((-844 . -593) 138762) ((-127 . -125) 138746) ((-121 . -125) 138730) ((-810 . -1024) 138700) ((-809 . -21) 138652) ((-803 . -1024) 138636) ((-809 . -25) 138588) ((-312 . -541) 138539) ((-549 . -804) T) ((-234 . -1179) T) ((-810 . -111) 138504) ((-803 . -111) 138483) ((-1209 . -593) 138465) ((-1188 . -593) 138447) ((-1188 . -594) 138120) ((-1138 . -880) 138099) ((-1091 . -880) 138078) ((-48 . -38) 138043) ((-1247 . -1078) T) ((-582 . -593) 137955) ((-582 . -594) 137916) ((-1245 . -1078) T) ((-234 . -1009) 137743) ((-1138 . -624) 137668) ((-1091 . -624) 137593) ((-695 . -593) 137575) ((-827 . -624) 137549) ((-482 . -1066) T) ((-1247 . -23) T) ((-1245 . -23) T) ((-1005 . -1018) T) ((-1152 . -279) 137528) ((-167 . -361) 137479) ((-975 . -1179) T) ((-44 . -23) T) ((-471 . -279) 137458) ((-567 . -1066) T) ((-1112 . -1075) 137427) ((-1070 . -1069) 137379) ((-128 . -1179) T) ((-383 . -21) T) ((-383 . -25) T) ((-150 . -1078) T) ((-1253 . -101) T) ((-975 . -855) 137361) ((-975 . -857) 137343) ((-1173 . -694) 137240) ((-601 . -225) 137224) ((-599 . -21) T) ((-282 . -541) T) ((-599 . -25) T) ((-1159 . -1066) T) ((-688 . -694) 137189) ((-234 . -370) 137158) ((-975 . -1009) 137118) ((-372 . -1018) T) ((-217 . -1025) T) ((-117 . -225) 137095) ((-58 . -279) 137072) ((-150 . -23) T) ((-507 . -279) 137049) ((-320 . -505) 136982) ((-487 . -279) 136959) ((-372 . -237) T) ((-372 . -227) T) ((-810 . -1018) T) ((-803 . -1018) T) ((-689 . -920) 136928) ((-677 . -823) T) ((-466 . -593) 136910) ((-803 . -227) 136889) ((-133 . -823) T) ((-634 . -1066) T) ((-1152 . -584) 136868) ((-535 . -1155) 136847) ((-329 . -1066) T) ((-312 . -356) 136826) ((-400 . -145) 136805) ((-400 . -143) 136784) ((-935 . -1078) 136683) ((-234 . -871) 136615) ((-791 . -1078) 136525) ((-630 . -825) 136509) ((-471 . -584) 136488) ((-535 . -106) 136438) ((-975 . -370) 136420) ((-975 . -331) 136402) ((-96 . -1066) T) ((-935 . -23) 136213) ((-469 . -21) T) ((-469 . -25) T) ((-791 . -23) 136083) ((-1142 . -593) 136065) ((-58 . -19) 136049) ((-1142 . -594) 135971) ((-1138 . -703) T) ((-1091 . -703) T) ((-507 . -19) 135955) ((-487 . -19) 135939) ((-58 . -584) 135916) ((-1053 . -1066) T) ((-872 . -101) 135894) ((-827 . -703) T) ((-758 . -1066) T) ((-507 . -584) 135871) ((-487 . -584) 135848) ((-756 . -1066) T) ((-756 . -1032) 135815) ((-453 . -1066) T) ((-446 . -1066) T) ((-567 . -694) 135790) ((-625 . -1066) T) ((-975 . -871) NIL) ((-1217 . -47) 135767) ((-605 . -1078) T) ((-646 . -130) T) ((-1211 . -101) T) ((-1210 . -47) 135737) ((-1189 . -47) 135714) ((-1173 . -170) 135665) ((-1046 . -1183) 135616) ((-268 . -1066) T) ((-84 . -433) T) ((-84 . -388) T) ((-1139 . -300) 135595) ((-1133 . -300) 135574) ((-50 . -1066) T) ((-1046 . -541) 135525) ((-688 . -170) T) ((-576 . -47) 135502) ((-219 . -624) 135467) ((-563 . -1066) T) ((-509 . -1066) T) ((-352 . -1183) T) ((-346 . -1183) T) ((-338 . -1183) T) ((-479 . -796) T) ((-479 . -891) T) ((-312 . -1078) T) ((-107 . -1183) T) ((-332 . -823) T) ((-211 . -891) T) ((-211 . -796) T) ((-691 . -1024) 135437) ((-352 . -541) T) ((-346 . -541) T) ((-338 . -541) T) ((-107 . -541) T) ((-634 . -694) 135407) ((-1133 . -993) NIL) ((-312 . -23) T) ((-66 . -1179) T) ((-971 . -593) 135339) ((-670 . -225) 135321) ((-691 . -111) 135286) ((-621 . -34) T) ((-239 . -481) 135270) ((-1068 . -1064) 135254) ((-169 . -1066) T) ((-923 . -880) 135233) ((-473 . -880) 135212) ((-1253 . -1117) T) ((-1249 . -21) T) ((-1249 . -25) T) ((-1247 . -130) T) ((-1245 . -130) T) ((-1053 . -694) 135061) ((-1029 . -624) 135048) ((-923 . -624) 134973) ((-758 . -694) 134802) ((-525 . -593) 134784) ((-525 . -594) 134765) ((-756 . -694) 134614) ((-1238 . -101) T) ((-1043 . -101) T) ((-374 . -25) T) ((-374 . -21) T) ((-473 . -624) 134539) ((-453 . -694) 134510) ((-446 . -694) 134359) ((-958 . -101) T) ((-1221 . -593) 134325) ((-1210 . -1009) 134260) ((-1189 . -1179) 134239) ((-714 . -101) T) ((-1189 . -857) NIL) ((-1189 . -855) 134191) ((-1152 . -594) NIL) ((-1152 . -593) 134173) ((-521 . -25) T) ((-1108 . -1089) 134118) ((-1015 . -1172) 134047) ((-872 . -302) 133985) ((-336 . -1025) T) ((-139 . -101) T) ((-44 . -130) T) ((-282 . -1078) T) ((-657 . -92) T) ((-652 . -92) T) ((-640 . -593) 133967) ((-622 . -593) 133920) ((-470 . -92) T) ((-348 . -593) 133902) ((-345 . -593) 133884) ((-337 . -593) 133866) ((-257 . -594) 133614) ((-257 . -593) 133596) ((-241 . -593) 133578) ((-241 . -594) 133439) ((-137 . -92) T) ((-136 . -92) T) ((-132 . -92) T) ((-1189 . -1009) 133405) ((-1173 . -505) 133372) ((-1107 . -593) 133354) ((-795 . -830) T) ((-795 . -703) T) ((-582 . -281) 133331) ((-563 . -694) 133296) ((-471 . -594) NIL) ((-471 . -593) 133278) ((-509 . -694) 133223) ((-309 . -101) T) ((-306 . -101) T) ((-282 . -23) T) ((-150 . -130) T) ((-379 . -703) T) ((-843 . -1024) 133175) ((-881 . -593) 133157) ((-881 . -594) 133139) ((-843 . -111) 133077) ((-135 . -101) T) ((-114 . -101) T) ((-689 . -1201) 133061) ((-691 . -1018) T) ((-670 . -342) NIL) ((-510 . -593) 132993) ((-372 . -771) T) ((-217 . -1066) T) ((-372 . -768) T) ((-219 . -770) T) ((-219 . -767) T) ((-58 . -594) 132954) ((-58 . -593) 132866) ((-219 . -703) T) ((-507 . -594) 132827) ((-507 . -593) 132739) ((-488 . -593) 132671) ((-487 . -594) 132632) ((-487 . -593) 132544) ((-1046 . -356) 132495) ((-40 . -404) 132472) ((-76 . -1179) T) ((-842 . -880) NIL) ((-352 . -322) 132456) ((-352 . -356) T) ((-346 . -322) 132440) ((-346 . -356) T) ((-338 . -322) 132424) ((-338 . -356) T) ((-309 . -277) 132403) ((-107 . -356) T) ((-69 . -1179) T) ((-1189 . -331) 132355) ((-842 . -624) 132300) ((-1189 . -370) 132252) ((-935 . -130) 132107) ((-791 . -130) 131977) ((-929 . -627) 131961) ((-1053 . -170) 131872) ((-929 . -366) 131856) ((-1029 . -770) T) ((-1029 . -767) T) ((-758 . -170) 131747) ((-756 . -170) 131658) ((-792 . -47) 131620) ((-1029 . -703) T) ((-320 . -481) 131604) ((-923 . -703) T) ((-446 . -170) 131515) ((-239 . -279) 131492) ((-473 . -703) T) ((-1238 . -302) 131430) ((-1217 . -871) 131343) ((-1210 . -871) 131249) ((-1209 . -1024) 131084) ((-1189 . -871) 130917) ((-1188 . -1024) 130725) ((-1173 . -283) 130704) ((-1112 . -149) 130688) ((-1086 . -101) T) ((-1041 . -101) T) ((-898 . -926) T) ((-714 . -302) 130626) ((-74 . -1179) T) ((-30 . -926) T) ((-167 . -880) 130579) ((-640 . -375) 130551) ((-112 . -817) T) ((-1 . -593) 130533) ((-1084 . -1066) T) ((-1046 . -23) T) ((-50 . -598) 130517) ((-1046 . -1078) T) ((-974 . -402) 130489) ((-576 . -871) 130402) ((-431 . -101) T) ((-139 . -302) NIL) ((-843 . -1018) T) ((-809 . -823) 130381) ((-80 . -1179) T) ((-688 . -283) T) ((-40 . -1025) T) ((-563 . -170) T) ((-509 . -170) T) ((-502 . -593) 130363) ((-167 . -624) 130273) ((-498 . -593) 130255) ((-344 . -145) 130237) ((-344 . -143) T) ((-352 . -1078) T) ((-346 . -1078) T) ((-338 . -1078) T) ((-975 . -300) T) ((-885 . -300) T) ((-843 . -237) T) ((-107 . -1078) T) ((-843 . -227) 130216) ((-1209 . -111) 130037) ((-1188 . -111) 129826) ((-239 . -1213) 129810) ((-549 . -821) T) ((-352 . -23) T) ((-347 . -342) T) ((-309 . -302) 129797) ((-306 . -302) 129738) ((-346 . -23) T) ((-312 . -130) T) ((-338 . -23) T) ((-975 . -993) T) ((-107 . -23) T) ((-239 . -584) 129715) ((-1211 . -38) 129607) ((-1198 . -880) 129586) ((-112 . -1066) T) ((-1006 . -101) T) ((-1198 . -624) 129511) ((-842 . -770) NIL) ((-828 . -624) 129485) ((-842 . -767) NIL) ((-792 . -857) NIL) ((-842 . -703) T) ((-1053 . -505) 129358) ((-758 . -505) 129305) ((-756 . -505) 129257) ((-556 . -624) 129244) ((-792 . -1009) 129072) ((-446 . -505) 129015) ((-381 . -382) T) ((-59 . -1179) T) ((-599 . -823) 128994) ((-491 . -637) T) ((-1112 . -947) 128963) ((-974 . -444) T) ((-675 . -821) T) ((-501 . -768) T) ((-466 . -1024) 128798) ((-336 . -1066) T) ((-306 . -1117) NIL) ((-282 . -130) T) ((-387 . -1066) T) ((-670 . -363) 128765) ((-841 . -1025) T) ((-217 . -598) 128742) ((-320 . -279) 128719) ((-466 . -111) 128540) ((-1209 . -1018) T) ((-1188 . -1018) T) ((-792 . -370) 128524) ((-167 . -703) T) ((-630 . -101) T) ((-1209 . -237) 128503) ((-1209 . -227) 128455) ((-1188 . -227) 128360) ((-1188 . -237) 128339) ((-974 . -395) NIL) ((-646 . -617) 128287) ((-309 . -38) 128197) ((-306 . -38) 128126) ((-68 . -593) 128108) ((-312 . -484) 128074) ((-1152 . -281) 128053) ((-1079 . -1078) 127963) ((-82 . -1179) T) ((-60 . -593) 127945) ((-471 . -281) 127924) ((-1240 . -1009) 127901) ((-1130 . -1066) T) ((-1079 . -23) 127771) ((-792 . -871) 127707) ((-1198 . -703) T) ((-1068 . -1179) T) ((-1053 . -283) 127638) ((-937 . -1066) T) ((-864 . -101) T) ((-758 . -283) 127549) ((-320 . -19) 127533) ((-58 . -281) 127510) ((-756 . -283) 127441) ((-828 . -703) T) ((-117 . -821) NIL) ((-507 . -281) 127418) ((-320 . -584) 127395) ((-487 . -281) 127372) ((-446 . -283) 127303) ((-1006 . -302) 127154) ((-556 . -703) T) ((-657 . -593) 127104) ((-652 . -593) 127070) ((-638 . -593) 127052) ((-470 . -593) 127018) ((-239 . -594) 126979) ((-239 . -593) 126891) ((-137 . -593) 126857) ((-136 . -593) 126823) ((-132 . -593) 126789) ((-1113 . -34) T) ((-914 . -1179) T) ((-336 . -694) 126734) ((-646 . -25) T) ((-646 . -21) T) ((-466 . -1018) T) ((-613 . -410) 126699) ((-587 . -410) 126664) ((-1086 . -1117) T) ((-563 . -283) T) ((-509 . -283) T) ((-1210 . -300) 126643) ((-466 . -227) 126595) ((-466 . -237) 126574) ((-1189 . -300) 126553) ((-1189 . -993) NIL) ((-1046 . -130) T) ((-843 . -771) 126532) ((-142 . -101) T) ((-40 . -1066) T) ((-843 . -768) 126511) ((-621 . -981) 126495) ((-562 . -1025) T) ((-549 . -1025) T) ((-486 . -1025) T) ((-400 . -444) T) ((-352 . -130) T) ((-309 . -393) 126479) ((-306 . -393) 126440) ((-346 . -130) T) ((-338 . -130) T) ((-1147 . -1066) T) ((-1086 . -38) 126427) ((-1060 . -593) 126394) ((-107 . -130) T) ((-925 . -1066) T) ((-892 . -1066) T) ((-747 . -1066) T) ((-648 . -1066) T) ((-497 . -1049) T) ((-677 . -145) T) ((-116 . -145) T) ((-1247 . -21) T) ((-1247 . -25) T) ((-1245 . -21) T) ((-1245 . -25) T) ((-640 . -1024) 126378) ((-521 . -823) T) ((-491 . -823) T) ((-348 . -1024) 126330) ((-345 . -1024) 126282) ((-337 . -1024) 126234) ((-244 . -1179) T) ((-243 . -1179) T) ((-257 . -1024) 126077) ((-241 . -1024) 125920) ((-640 . -111) 125899) ((-348 . -111) 125837) ((-345 . -111) 125775) ((-337 . -111) 125713) ((-257 . -111) 125542) ((-241 . -111) 125371) ((-793 . -1183) 125350) ((-601 . -404) 125334) ((-44 . -21) T) ((-44 . -25) T) ((-791 . -617) 125240) ((-793 . -541) 125219) ((-244 . -1009) 125046) ((-243 . -1009) 124873) ((-126 . -119) 124857) ((-881 . -1024) 124822) ((-675 . -1025) T) ((-689 . -101) T) ((-336 . -170) T) ((-150 . -21) T) ((-150 . -25) T) ((-87 . -593) 124804) ((-881 . -111) 124760) ((-40 . -694) 124705) ((-841 . -1066) T) ((-320 . -594) 124666) ((-320 . -593) 124578) ((-1188 . -768) 124531) ((-1188 . -771) 124484) ((-244 . -370) 124453) ((-243 . -370) 124422) ((-630 . -38) 124392) ((-588 . -34) T) ((-474 . -1078) 124302) ((-467 . -34) T) ((-1079 . -130) 124172) ((-935 . -25) 123983) ((-845 . -593) 123965) ((-935 . -21) 123920) ((-791 . -21) 123830) ((-791 . -25) 123681) ((-601 . -1025) T) ((-1144 . -541) 123660) ((-1138 . -47) 123637) ((-348 . -1018) T) ((-345 . -1018) T) ((-474 . -23) 123507) ((-337 . -1018) T) ((-257 . -1018) T) ((-241 . -1018) T) ((-1091 . -47) 123479) ((-117 . -1025) T) ((-1005 . -624) 123453) ((-929 . -34) T) ((-348 . -227) 123432) ((-348 . -237) T) ((-345 . -227) 123411) ((-345 . -237) T) ((-241 . -319) 123368) ((-337 . -227) 123347) ((-337 . -237) T) ((-257 . -319) 123319) ((-257 . -227) 123298) ((-1122 . -149) 123282) ((-244 . -871) 123214) ((-243 . -871) 123146) ((-1048 . -823) T) ((-1192 . -1179) T) ((-407 . -1078) T) ((-1022 . -23) T) ((-881 . -1018) T) ((-315 . -624) 123128) ((-995 . -821) T) ((-1173 . -973) 123094) ((-1139 . -891) 123073) ((-1133 . -891) 123052) ((-881 . -237) T) ((-793 . -356) 123031) ((-378 . -23) T) ((-127 . -1066) 123009) ((-121 . -1066) 122987) ((-881 . -227) T) ((-1133 . -796) NIL) ((-372 . -624) 122952) ((-841 . -694) 122939) ((-1015 . -149) 122904) ((-40 . -170) T) ((-670 . -404) 122886) ((-689 . -302) 122873) ((-810 . -624) 122833) ((-803 . -624) 122807) ((-312 . -25) T) ((-312 . -21) T) ((-634 . -279) 122786) ((-562 . -1066) T) ((-549 . -1066) T) ((-486 . -1066) T) ((-239 . -281) 122763) ((-306 . -225) 122724) ((-1138 . -857) NIL) ((-1091 . -857) 122583) ((-129 . -823) T) ((-1138 . -1009) 122463) ((-1091 . -1009) 122346) ((-181 . -593) 122328) ((-827 . -1009) 122224) ((-758 . -279) 122151) ((-793 . -1078) T) ((-1005 . -703) T) ((-582 . -627) 122135) ((-1015 . -947) 122064) ((-970 . -101) T) ((-793 . -23) T) ((-689 . -1117) 122042) ((-670 . -1025) T) ((-582 . -366) 122026) ((-344 . -444) T) ((-336 . -283) T) ((-1226 . -1066) T) ((-242 . -1066) T) ((-392 . -101) T) ((-282 . -21) T) ((-282 . -25) T) ((-354 . -703) T) ((-687 . -1066) T) ((-675 . -1066) T) ((-354 . -465) T) ((-1173 . -593) 122008) ((-1138 . -370) 121992) ((-1091 . -370) 121976) ((-995 . -404) 121938) ((-139 . -223) 121920) ((-372 . -770) T) ((-372 . -767) T) ((-841 . -170) T) ((-372 . -703) T) ((-688 . -593) 121902) ((-689 . -38) 121731) ((-1225 . -1223) 121715) ((-344 . -395) T) ((-1225 . -1066) 121665) ((-562 . -694) 121652) ((-549 . -694) 121639) ((-486 . -694) 121604) ((-309 . -607) 121583) ((-810 . -703) T) ((-803 . -703) T) ((-621 . -1179) T) ((-1046 . -617) 121531) ((-1138 . -871) 121474) ((-1091 . -871) 121458) ((-638 . -1024) 121442) ((-107 . -617) 121424) ((-474 . -130) 121294) ((-1144 . -1078) T) ((-923 . -47) 121263) ((-601 . -1066) T) ((-638 . -111) 121242) ((-482 . -593) 121208) ((-320 . -281) 121185) ((-473 . -47) 121142) ((-1144 . -23) T) ((-117 . -1066) T) ((-102 . -101) 121120) ((-1237 . -1078) T) ((-1022 . -130) T) ((-995 . -1025) T) ((-795 . -1009) 121104) ((-974 . -701) 121076) ((-1237 . -23) T) ((-675 . -694) 121041) ((-567 . -593) 121023) ((-379 . -1009) 121007) ((-347 . -1025) T) ((-378 . -130) T) ((-317 . -1009) 120991) ((-219 . -857) 120973) ((-975 . -891) T) ((-90 . -34) T) ((-975 . -796) T) ((-885 . -891) T) ((-479 . -1183) T) ((-1159 . -593) 120955) ((-1071 . -1066) T) ((-211 . -1183) T) ((-970 . -302) 120920) ((-219 . -1009) 120880) ((-40 . -283) T) ((-1046 . -21) T) ((-1046 . -25) T) ((-1086 . -804) T) ((-479 . -541) T) ((-352 . -25) T) ((-211 . -541) T) ((-352 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-691 . -624) 120840) ((-338 . -25) T) ((-338 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1025) T) ((-562 . -170) T) ((-549 . -170) T) ((-486 . -170) T) ((-634 . -593) 120822) ((-714 . -713) 120806) ((-329 . -593) 120788) ((-67 . -376) T) ((-67 . -388) T) ((-1068 . -106) 120772) ((-1029 . -857) 120754) ((-923 . -857) 120679) ((-629 . -1078) T) ((-601 . -694) 120666) ((-473 . -857) NIL) ((-1112 . -101) T) ((-1029 . -1009) 120648) ((-96 . -593) 120630) ((-469 . -145) T) ((-923 . -1009) 120510) ((-117 . -694) 120455) ((-629 . -23) T) ((-473 . -1009) 120331) ((-1053 . -594) NIL) ((-1053 . -593) 120313) ((-758 . -594) NIL) ((-758 . -593) 120274) ((-756 . -594) 119908) ((-756 . -593) 119822) ((-1079 . -617) 119728) ((-453 . -593) 119710) ((-446 . -593) 119692) ((-446 . -594) 119553) ((-1006 . -223) 119499) ((-126 . -34) T) ((-793 . -130) T) ((-843 . -880) 119478) ((-625 . -593) 119460) ((-348 . -1244) 119444) ((-345 . -1244) 119428) ((-337 . -1244) 119412) ((-127 . -505) 119345) ((-121 . -505) 119278) ((-502 . -768) T) ((-502 . -771) T) ((-501 . -770) T) ((-102 . -302) 119216) ((-216 . -101) 119194) ((-670 . -1066) T) ((-675 . -170) T) ((-843 . -624) 119146) ((-64 . -377) T) ((-268 . -593) 119128) ((-64 . -388) T) ((-923 . -370) 119112) ((-841 . -283) T) ((-50 . -593) 119094) ((-970 . -38) 119042) ((-563 . -593) 119024) ((-473 . -370) 119008) ((-563 . -594) 118990) ((-509 . -593) 118972) ((-881 . -1244) 118959) ((-842 . -1179) T) ((-677 . -444) T) ((-486 . -505) 118925) ((-479 . -356) T) ((-348 . -361) 118904) ((-345 . -361) 118883) ((-337 . -361) 118862) ((-211 . -356) T) ((-691 . -703) T) ((-116 . -444) T) ((-1248 . -1239) 118846) ((-842 . -855) 118823) ((-842 . -857) NIL) ((-935 . -823) 118722) ((-791 . -823) 118673) ((-630 . -632) 118657) ((-1165 . -34) T) ((-169 . -593) 118639) ((-1079 . -21) 118549) ((-1079 . -25) 118400) ((-842 . -1009) 118377) ((-923 . -871) 118358) ((-1198 . -47) 118335) ((-881 . -361) T) ((-58 . -627) 118319) ((-507 . -627) 118303) ((-473 . -871) 118280) ((-70 . -433) T) ((-70 . -388) T) ((-487 . -627) 118264) ((-58 . -366) 118248) ((-601 . -170) T) ((-507 . -366) 118232) ((-487 . -366) 118216) ((-803 . -685) 118200) ((-1138 . -300) 118179) ((-1144 . -130) T) ((-117 . -170) T) ((-1112 . -302) 118117) ((-167 . -1179) T) ((-613 . -721) 118101) ((-587 . -721) 118085) ((-1237 . -130) T) ((-1210 . -891) 118064) ((-1189 . -891) 118043) ((-1189 . -796) NIL) ((-670 . -694) 117993) ((-1188 . -880) 117946) ((-995 . -1066) T) ((-842 . -370) 117923) ((-842 . -331) 117900) ((-876 . -1078) T) ((-167 . -855) 117884) ((-167 . -857) 117809) ((-479 . -1078) T) ((-347 . -1066) T) ((-211 . -1078) T) ((-75 . -433) T) ((-75 . -388) T) ((-167 . -1009) 117705) ((-312 . -823) T) ((-1225 . -505) 117638) ((-1209 . -624) 117535) ((-1188 . -624) 117405) ((-843 . -770) 117384) ((-843 . -767) 117363) ((-843 . -703) T) ((-479 . -23) T) ((-217 . -593) 117345) ((-172 . -444) T) ((-216 . -302) 117283) ((-85 . -433) T) ((-85 . -388) T) ((-211 . -23) T) ((-1249 . -1242) 117262) ((-562 . -283) T) ((-549 . -283) T) ((-653 . -1009) 117246) ((-486 . -283) T) ((-135 . -462) 117201) ((-48 . -1066) T) ((-689 . -225) 117185) ((-842 . -871) NIL) ((-1198 . -857) NIL) ((-860 . -101) T) ((-856 . -101) T) ((-381 . -1066) T) ((-167 . -370) 117169) ((-167 . -331) 117153) ((-1198 . -1009) 117033) ((-828 . -1009) 116929) ((-1108 . -101) T) ((-629 . -130) T) ((-117 . -505) 116837) ((-638 . -768) 116816) ((-638 . -771) 116795) ((-556 . -1009) 116777) ((-287 . -1232) 116747) ((-837 . -101) T) ((-934 . -541) 116726) ((-1173 . -1024) 116609) ((-474 . -617) 116515) ((-875 . -1066) T) ((-995 . -694) 116452) ((-688 . -1024) 116417) ((-596 . -101) T) ((-582 . -34) T) ((-1113 . -1179) T) ((-1173 . -111) 116286) ((-466 . -624) 116183) ((-347 . -694) 116128) ((-167 . -871) 116087) ((-675 . -283) T) ((-670 . -170) T) ((-688 . -111) 116043) ((-1253 . -1025) T) ((-1198 . -370) 116027) ((-411 . -1183) 116005) ((-1084 . -593) 115987) ((-306 . -821) NIL) ((-411 . -541) T) ((-219 . -300) T) ((-1188 . -767) 115940) ((-1188 . -770) 115893) ((-1209 . -703) T) ((-1188 . -703) T) ((-48 . -694) 115858) ((-219 . -993) T) ((-344 . -1232) 115835) ((-1211 . -404) 115801) ((-695 . -703) T) ((-1198 . -871) 115744) ((-112 . -593) 115726) ((-112 . -594) 115708) ((-695 . -465) T) ((-474 . -21) 115618) ((-127 . -481) 115602) ((-121 . -481) 115586) ((-474 . -25) 115437) ((-601 . -283) T) ((-567 . -1024) 115412) ((-430 . -1066) T) ((-1029 . -300) T) ((-117 . -283) T) ((-1070 . -101) T) ((-974 . -101) T) ((-567 . -111) 115380) ((-1108 . -302) 115318) ((-1173 . -1018) T) ((-1029 . -993) T) ((-65 . -1179) T) ((-1022 . -25) T) ((-1022 . -21) T) ((-688 . -1018) T) ((-378 . -21) T) ((-378 . -25) T) ((-670 . -505) NIL) ((-995 . -170) T) ((-688 . -237) T) ((-1029 . -534) T) ((-497 . -101) T) ((-493 . -101) T) ((-347 . -170) T) ((-336 . -593) 115300) ((-387 . -593) 115282) ((-466 . -703) T) ((-1086 . -821) T) ((-863 . -1009) 115250) ((-107 . -823) T) ((-634 . -1024) 115234) ((-479 . -130) T) ((-1211 . -1025) T) ((-211 . -130) T) ((-1122 . -101) 115212) ((-98 . -1066) T) ((-239 . -642) 115196) ((-239 . -627) 115180) ((-634 . -111) 115159) ((-309 . -404) 115143) ((-239 . -366) 115127) ((-1125 . -229) 115074) ((-970 . -225) 115058) ((-73 . -1179) T) ((-48 . -170) T) ((-677 . -380) T) ((-677 . -141) T) ((-1248 . -101) T) ((-1053 . -1024) 114901) ((-257 . -880) 114880) ((-241 . -880) 114859) ((-758 . -1024) 114682) ((-756 . -1024) 114525) ((-588 . -1179) T) ((-1130 . -593) 114507) ((-1053 . -111) 114336) ((-1015 . -101) T) ((-467 . -1179) T) ((-453 . -1024) 114307) ((-446 . -1024) 114150) ((-640 . -624) 114134) ((-842 . -300) T) ((-758 . -111) 113943) ((-756 . -111) 113772) ((-348 . -624) 113724) ((-345 . -624) 113676) ((-337 . -624) 113628) ((-257 . -624) 113553) ((-241 . -624) 113478) ((-1124 . -823) T) ((-1054 . -1009) 113462) ((-453 . -111) 113423) ((-446 . -111) 113252) ((-1042 . -1009) 113229) ((-971 . -34) T) ((-937 . -593) 113211) ((-929 . -1179) T) ((-126 . -981) 113195) ((-934 . -1078) T) ((-842 . -993) NIL) ((-712 . -1078) T) ((-692 . -1078) T) ((-1225 . -481) 113179) ((-1108 . -38) 113139) ((-934 . -23) T) ((-816 . -101) T) ((-793 . -21) T) ((-793 . -25) T) ((-712 . -23) T) ((-692 . -23) T) ((-110 . -637) T) ((-881 . -624) 113104) ((-563 . -1024) 113069) ((-509 . -1024) 113014) ((-221 . -56) 112972) ((-445 . -23) T) ((-400 . -101) T) ((-256 . -101) T) ((-670 . -283) T) ((-837 . -38) 112942) ((-563 . -111) 112898) ((-509 . -111) 112827) ((-411 . -1078) T) ((-309 . -1025) 112717) ((-306 . -1025) T) ((-634 . -1018) T) ((-1253 . -1066) T) ((-167 . -300) 112648) ((-411 . -23) T) ((-40 . -593) 112630) ((-40 . -594) 112614) ((-107 . -963) 112596) ((-116 . -840) 112580) ((-48 . -505) 112546) ((-1165 . -981) 112530) ((-1147 . -593) 112512) ((-1152 . -34) T) ((-925 . -593) 112478) ((-892 . -593) 112460) ((-1079 . -823) 112411) ((-747 . -593) 112393) ((-648 . -593) 112375) ((-1122 . -302) 112313) ((-471 . -34) T) ((-1058 . -1179) T) ((-469 . -444) T) ((-1053 . -1018) T) ((-1107 . -34) T) ((-758 . -1018) T) ((-756 . -1018) T) ((-623 . -229) 112297) ((-610 . -229) 112243) ((-1198 . -300) 112222) ((-1053 . -319) 112183) ((-446 . -1018) T) ((-1144 . -21) T) ((-1053 . -227) 112162) ((-758 . -319) 112139) ((-758 . -227) T) ((-756 . -319) 112111) ((-708 . -1183) 112090) ((-320 . -627) 112074) ((-1144 . -25) T) ((-58 . -34) T) ((-510 . -34) T) ((-507 . -34) T) ((-446 . -319) 112053) ((-320 . -366) 112037) ((-488 . -34) T) ((-487 . -34) T) ((-974 . -1117) NIL) ((-613 . -101) T) ((-587 . -101) T) ((-708 . -541) 111968) ((-348 . -703) T) ((-345 . -703) T) ((-337 . -703) T) ((-257 . -703) T) ((-241 . -703) T) ((-1015 . -302) 111876) ((-872 . -1066) 111854) ((-50 . -1018) T) ((-1237 . -21) T) ((-1237 . -25) T) ((-1140 . -541) 111833) ((-1139 . -1183) 111812) ((-563 . -1018) T) ((-509 . -1018) T) ((-1133 . -1183) 111791) ((-354 . -1009) 111775) ((-315 . -1009) 111759) ((-995 . -283) T) ((-372 . -857) 111741) ((-1139 . -541) 111692) ((-1133 . -541) 111643) ((-974 . -38) 111588) ((-775 . -1078) T) ((-881 . -703) T) ((-563 . -237) T) ((-563 . -227) T) ((-509 . -227) T) ((-509 . -237) T) ((-1092 . -541) 111567) ((-347 . -283) T) ((-623 . -671) 111551) ((-372 . -1009) 111511) ((-1086 . -1025) T) ((-102 . -125) 111495) ((-775 . -23) T) ((-1225 . -279) 111472) ((-400 . -302) 111437) ((-1247 . -1242) 111413) ((-1245 . -1242) 111392) ((-1211 . -1066) T) ((-841 . -593) 111374) ((-810 . -1009) 111343) ((-197 . -763) T) ((-196 . -763) T) ((-195 . -763) T) ((-194 . -763) T) ((-193 . -763) T) ((-192 . -763) T) ((-191 . -763) T) ((-190 . -763) T) ((-189 . -763) T) ((-188 . -763) T) ((-486 . -973) T) ((-267 . -812) T) ((-266 . -812) T) ((-265 . -812) T) ((-264 . -812) T) ((-48 . -283) T) ((-263 . -812) T) ((-262 . -812) T) ((-261 . -812) T) ((-187 . -763) T) ((-592 . -823) T) ((-630 . -404) 111327) ((-110 . -823) T) ((-629 . -21) T) ((-629 . -25) T) ((-1248 . -38) 111297) ((-117 . -279) 111248) ((-1225 . -19) 111232) ((-1225 . -584) 111209) ((-1238 . -1066) T) ((-1043 . -1066) T) ((-958 . -1066) T) ((-934 . -130) T) ((-714 . -1066) T) ((-712 . -130) T) ((-692 . -130) T) ((-502 . -769) T) ((-400 . -1117) 111187) ((-445 . -130) T) ((-502 . -770) T) ((-217 . -1018) T) ((-287 . -101) 110969) ((-139 . -1066) T) ((-675 . -973) T) ((-90 . -1179) T) ((-127 . -593) 110901) ((-121 . -593) 110833) ((-1253 . -170) T) ((-1139 . -356) 110812) ((-1133 . -356) 110791) ((-309 . -1066) T) ((-411 . -130) T) ((-306 . -1066) T) ((-400 . -38) 110743) ((-1099 . -101) T) ((-1211 . -694) 110635) ((-630 . -1025) T) ((-1101 . -1220) T) ((-312 . -143) 110614) ((-312 . -145) 110593) ((-135 . -1066) T) ((-114 . -1066) T) ((-831 . -101) T) ((-562 . -593) 110575) ((-549 . -594) 110474) ((-549 . -593) 110456) ((-486 . -593) 110438) ((-486 . -594) 110383) ((-477 . -23) T) ((-474 . -823) 110334) ((-479 . -617) 110316) ((-936 . -593) 110298) ((-211 . -617) 110280) ((-219 . -397) T) ((-638 . -624) 110264) ((-1138 . -891) 110243) ((-708 . -1078) T) ((-344 . -101) T) ((-1178 . -1049) T) ((-794 . -823) T) ((-708 . -23) T) ((-336 . -1024) 110188) ((-1124 . -1123) T) ((-1113 . -106) 110172) ((-1140 . -1078) T) ((-1139 . -1078) T) ((-506 . -1009) 110156) ((-1133 . -1078) T) ((-1092 . -1078) T) ((-336 . -111) 110085) ((-975 . -1183) T) ((-126 . -1179) T) ((-885 . -1183) T) ((-670 . -279) NIL) ((-1226 . -593) 110067) ((-1140 . -23) T) ((-1139 . -23) T) ((-1133 . -23) T) ((-975 . -541) T) ((-1108 . -225) 110051) ((-885 . -541) T) ((-1092 . -23) T) ((-242 . -593) 110033) ((-1041 . -1066) T) ((-775 . -130) T) ((-687 . -593) 110015) ((-309 . -694) 109925) ((-306 . -694) 109854) ((-675 . -593) 109836) ((-675 . -594) 109781) ((-400 . -393) 109765) ((-431 . -1066) T) ((-479 . -25) T) ((-479 . -21) T) ((-1086 . -1066) T) ((-211 . -25) T) ((-211 . -21) T) ((-689 . -404) 109749) ((-691 . -1009) 109718) ((-1225 . -593) 109630) ((-1225 . -594) 109591) ((-1211 . -170) T) ((-239 . -34) T) ((-897 . -945) T) ((-1165 . -1179) T) ((-638 . -767) 109570) ((-638 . -770) 109549) ((-391 . -388) T) ((-514 . -101) 109527) ((-1006 . -1066) T) ((-216 . -966) 109511) ((-495 . -101) T) ((-601 . -593) 109493) ((-45 . -823) NIL) ((-601 . -594) 109470) ((-1006 . -590) 109445) ((-872 . -505) 109378) ((-336 . -1018) T) ((-117 . -594) NIL) ((-117 . -593) 109360) ((-843 . -1179) T) ((-646 . -410) 109344) ((-646 . -1089) 109289) ((-491 . -149) 109271) ((-336 . -227) T) ((-336 . -237) T) ((-40 . -1024) 109216) ((-843 . -855) 109200) ((-843 . -857) 109125) ((-689 . -1025) T) ((-670 . -973) NIL) ((-3 . |UnionCategory|) T) ((-1209 . -47) 109095) ((-1188 . -47) 109072) ((-1107 . -981) 109043) ((-219 . -891) T) ((-40 . -111) 108972) ((-843 . -1009) 108836) ((-1086 . -694) 108823) ((-1071 . -593) 108805) ((-1046 . -145) 108784) ((-1046 . -143) 108735) ((-975 . -356) T) ((-312 . -1167) 108701) ((-372 . -300) T) ((-312 . -1164) 108667) ((-309 . -170) 108646) ((-306 . -170) T) ((-974 . -225) 108623) ((-885 . -356) T) ((-563 . -1244) 108610) ((-509 . -1244) 108587) ((-352 . -145) 108566) ((-352 . -143) 108517) ((-346 . -145) 108496) ((-346 . -143) 108447) ((-588 . -1155) 108423) ((-338 . -145) 108402) ((-338 . -143) 108353) ((-312 . -35) 108319) ((-467 . -1155) 108298) ((0 . |EnumerationCategory|) T) ((-312 . -94) 108264) ((-372 . -993) T) ((-107 . -145) T) ((-107 . -143) NIL) ((-45 . -229) 108214) ((-630 . -1066) T) ((-588 . -106) 108161) ((-477 . -130) T) ((-467 . -106) 108111) ((-234 . -1078) 108021) ((-843 . -370) 108005) ((-843 . -331) 107989) ((-234 . -23) 107859) ((-1029 . -891) T) ((-1029 . -796) T) ((-563 . -361) T) ((-509 . -361) T) ((-344 . -1117) T) ((-320 . -34) T) ((-44 . -410) 107843) ((-844 . -1179) T) ((-383 . -721) 107827) ((-1238 . -505) 107760) ((-708 . -130) T) ((-1217 . -541) 107739) ((-1210 . -1183) 107718) ((-1210 . -541) 107669) ((-1189 . -1183) 107648) ((-304 . -1049) T) ((-1189 . -541) 107599) ((-714 . -505) 107532) ((-1188 . -1179) 107511) ((-1188 . -857) 107384) ((-864 . -1066) T) ((-142 . -817) T) ((-1188 . -855) 107354) ((-667 . -593) 107336) ((-1140 . -130) T) ((-514 . -302) 107274) ((-1139 . -130) T) ((-139 . -505) NIL) ((-1133 . -130) T) ((-1092 . -130) T) ((-995 . -973) T) ((-975 . -23) T) ((-344 . -38) 107239) ((-975 . -1078) T) ((-885 . -1078) T) ((-81 . -593) 107221) ((-40 . -1018) T) ((-841 . -1024) 107208) ((-974 . -342) NIL) ((-843 . -871) 107167) ((-677 . -101) T) ((-942 . -23) T) ((-582 . -1179) T) ((-885 . -23) T) ((-841 . -111) 107152) ((-420 . -1078) T) ((-466 . -47) 107122) ((-207 . -101) T) ((-133 . -101) T) ((-40 . -227) 107094) ((-40 . -237) T) ((-116 . -101) T) ((-577 . -541) 107073) ((-576 . -541) 107052) ((-670 . -593) 107034) ((-670 . -594) 106942) ((-309 . -505) 106908) ((-306 . -505) 106800) ((-1209 . -1009) 106784) ((-1188 . -1009) 106570) ((-970 . -404) 106554) ((-420 . -23) T) ((-1086 . -170) T) ((-1211 . -283) T) ((-630 . -694) 106524) ((-142 . -1066) T) ((-48 . -973) T) ((-400 . -225) 106508) ((-288 . -229) 106458) ((-842 . -891) T) ((-842 . -796) NIL) ((-836 . -823) T) ((-1188 . -331) 106428) ((-1188 . -370) 106398) ((-216 . -1087) 106382) ((-1225 . -281) 106359) ((-1173 . -624) 106284) ((-934 . -21) T) ((-934 . -25) T) ((-712 . -21) T) ((-712 . -25) T) ((-692 . -21) T) ((-692 . -25) T) ((-688 . -624) 106249) ((-445 . -21) T) ((-445 . -25) T) ((-332 . -101) T) ((-172 . -101) T) ((-970 . -1025) T) ((-841 . -1018) T) ((-750 . -101) T) ((-1210 . -356) 106228) ((-1209 . -871) 106134) ((-1189 . -356) 106113) ((-1188 . -871) 105964) ((-995 . -593) 105946) ((-400 . -804) 105899) ((-1140 . -484) 105865) ((-167 . -891) 105796) ((-1139 . -484) 105762) ((-1133 . -484) 105728) ((-689 . -1066) T) ((-1092 . -484) 105694) ((-562 . -1024) 105681) ((-549 . -1024) 105668) ((-486 . -1024) 105633) ((-309 . -283) 105612) ((-306 . -283) T) ((-347 . -593) 105594) ((-411 . -25) T) ((-411 . -21) T) ((-98 . -279) 105573) ((-562 . -111) 105558) ((-549 . -111) 105543) ((-486 . -111) 105499) ((-1142 . -857) 105466) ((-872 . -481) 105450) ((-48 . -593) 105432) ((-48 . -594) 105377) ((-234 . -130) 105247) ((-1198 . -891) 105226) ((-792 . -1183) 105205) ((-1006 . -505) 105049) ((-381 . -593) 105031) ((-792 . -541) 104962) ((-567 . -624) 104937) ((-257 . -47) 104909) ((-241 . -47) 104866) ((-521 . -500) 104843) ((-971 . -1179) T) ((-675 . -1024) 104808) ((-1217 . -1078) T) ((-1210 . -1078) T) ((-1189 . -1078) T) ((-974 . -363) 104780) ((-112 . -361) T) ((-466 . -871) 104686) ((-1217 . -23) T) ((-1210 . -23) T) ((-875 . -593) 104668) ((-90 . -106) 104652) ((-1173 . -703) T) ((-876 . -823) 104603) ((-677 . -1117) T) ((-675 . -111) 104559) ((-1189 . -23) T) ((-577 . -1078) T) ((-576 . -1078) T) ((-689 . -694) 104388) ((-688 . -703) T) ((-1086 . -283) T) ((-975 . -130) T) ((-479 . -823) T) ((-942 . -130) T) ((-885 . -130) T) ((-775 . -25) T) ((-211 . -823) T) ((-775 . -21) T) ((-562 . -1018) T) ((-549 . -1018) T) ((-486 . -1018) T) ((-577 . -23) T) ((-336 . -1244) 104365) ((-312 . -444) 104344) ((-332 . -302) 104331) ((-576 . -23) T) ((-420 . -130) T) ((-634 . -624) 104305) ((-239 . -981) 104289) ((-843 . -300) T) ((-1249 . -1239) 104273) ((-747 . -768) T) ((-747 . -771) T) ((-677 . -38) 104260) ((-549 . -227) T) ((-486 . -237) T) ((-486 . -227) T) ((-1116 . -229) 104210) ((-1053 . -880) 104189) ((-116 . -38) 104176) ((-203 . -776) T) ((-202 . -776) T) ((-201 . -776) T) ((-200 . -776) T) ((-843 . -993) 104155) ((-1238 . -481) 104139) ((-758 . -880) 104118) ((-756 . -880) 104097) ((-1152 . -1179) T) ((-446 . -880) 104076) ((-714 . -481) 104060) ((-1053 . -624) 103985) ((-758 . -624) 103910) ((-601 . -1024) 103897) ((-471 . -1179) T) ((-336 . -361) T) ((-139 . -481) 103879) ((-756 . -624) 103804) ((-1107 . -1179) T) ((-453 . -624) 103775) ((-257 . -857) 103634) ((-241 . -857) NIL) ((-117 . -1024) 103579) ((-446 . -624) 103504) ((-640 . -1009) 103481) ((-601 . -111) 103466) ((-348 . -1009) 103450) ((-345 . -1009) 103434) ((-337 . -1009) 103418) ((-257 . -1009) 103262) ((-241 . -1009) 103138) ((-117 . -111) 103067) ((-58 . -1179) T) ((-510 . -1179) T) ((-507 . -1179) T) ((-488 . -1179) T) ((-487 . -1179) T) ((-430 . -593) 103049) ((-427 . -593) 103031) ((-3 . -101) T) ((-998 . -1172) 103000) ((-809 . -101) T) ((-665 . -56) 102958) ((-675 . -1018) T) ((-50 . -624) 102932) ((-282 . -444) T) ((-468 . -1172) 102901) ((0 . -101) T) ((-563 . -624) 102866) ((-509 . -624) 102811) ((-49 . -101) T) ((-881 . -1009) 102798) ((-675 . -237) T) ((-1046 . -402) 102777) ((-708 . -617) 102725) ((-970 . -1066) T) ((-689 . -170) 102616) ((-479 . -963) 102598) ((-257 . -370) 102582) ((-241 . -370) 102566) ((-392 . -1066) T) ((-332 . -38) 102550) ((-997 . -101) 102528) ((-211 . -963) 102510) ((-172 . -38) 102442) ((-1209 . -300) 102421) ((-1188 . -300) 102400) ((-634 . -703) T) ((-98 . -593) 102382) ((-1133 . -617) 102334) ((-477 . -25) T) ((-477 . -21) T) ((-1188 . -993) 102287) ((-601 . -1018) T) ((-372 . -397) T) ((-383 . -101) T) ((-257 . -871) 102233) ((-241 . -871) 102210) ((-117 . -1018) T) ((-792 . -1078) T) ((-1053 . -703) T) ((-601 . -227) 102189) ((-599 . -101) T) ((-758 . -703) T) ((-756 . -703) T) ((-406 . -1078) T) ((-117 . -237) T) ((-40 . -361) NIL) ((-117 . -227) NIL) ((-446 . -703) T) ((-792 . -23) T) ((-708 . -25) T) ((-708 . -21) T) ((-679 . -823) T) ((-1043 . -279) 102168) ((-77 . -389) T) ((-77 . -388) T) ((-670 . -1024) 102118) ((-1217 . -130) T) ((-1210 . -130) T) ((-1189 . -130) T) ((-1108 . -404) 102102) ((-613 . -360) 102034) ((-587 . -360) 101966) ((-1122 . -1115) 101950) ((-102 . -1066) 101928) ((-1140 . -25) T) ((-1140 . -21) T) ((-1139 . -21) T) ((-970 . -694) 101876) ((-217 . -624) 101843) ((-670 . -111) 101777) ((-50 . -703) T) ((-1139 . -25) T) ((-344 . -342) T) ((-1133 . -21) T) ((-1046 . -444) 101728) ((-1133 . -25) T) ((-689 . -505) 101675) ((-563 . -703) T) ((-509 . -703) T) ((-1092 . -21) T) ((-1092 . -25) T) ((-577 . -130) T) ((-576 . -130) T) ((-352 . -444) T) ((-346 . -444) T) ((-338 . -444) T) ((-466 . -300) 101654) ((-306 . -279) 101589) ((-107 . -444) T) ((-78 . -433) T) ((-78 . -388) T) ((-469 . -101) T) ((-1253 . -593) 101571) ((-1253 . -594) 101553) ((-1046 . -395) 101532) ((-1006 . -481) 101463) ((-549 . -771) T) ((-549 . -768) T) ((-1030 . -229) 101409) ((-352 . -395) 101360) ((-346 . -395) 101311) ((-338 . -395) 101262) ((-1240 . -1078) T) ((-1240 . -23) T) ((-1227 . -101) T) ((-173 . -593) 101244) ((-1108 . -1025) T) ((-646 . -721) 101228) ((-1144 . -143) 101207) ((-1144 . -145) 101186) ((-1112 . -1066) T) ((-1112 . -1038) 101155) ((-68 . -1179) T) ((-995 . -1024) 101092) ((-837 . -1025) T) ((-234 . -617) 100998) ((-670 . -1018) T) ((-347 . -1024) 100943) ((-60 . -1179) T) ((-995 . -111) 100859) ((-872 . -593) 100791) ((-670 . -237) T) ((-670 . -227) NIL) ((-816 . -821) 100770) ((-675 . -771) T) ((-675 . -768) T) ((-974 . -404) 100747) ((-347 . -111) 100676) ((-372 . -891) T) ((-400 . -821) 100655) ((-689 . -283) 100566) ((-217 . -703) T) ((-1217 . -484) 100532) ((-1210 . -484) 100498) ((-1189 . -484) 100464) ((-309 . -973) 100443) ((-216 . -1066) 100421) ((-312 . -944) 100383) ((-104 . -101) T) ((-48 . -1024) 100348) ((-1249 . -101) T) ((-374 . -101) T) ((-48 . -111) 100304) ((-975 . -617) 100286) ((-1211 . -593) 100268) ((-521 . -101) T) ((-491 . -101) T) ((-1099 . -1100) 100252) ((-150 . -1232) 100236) ((-239 . -1179) T) ((-1178 . -101) T) ((-1138 . -1183) 100215) ((-1091 . -1183) 100194) ((-234 . -21) 100104) ((-234 . -25) 99955) ((-127 . -119) 99939) ((-121 . -119) 99923) ((-44 . -721) 99907) ((-1138 . -541) 99818) ((-1091 . -541) 99749) ((-1006 . -279) 99724) ((-1132 . -1049) T) ((-965 . -1049) T) ((-792 . -130) T) ((-117 . -771) NIL) ((-117 . -768) NIL) ((-348 . -300) T) ((-345 . -300) T) ((-337 . -300) T) ((-1060 . -1179) T) ((-244 . -1078) 99634) ((-243 . -1078) 99544) ((-995 . -1018) T) ((-974 . -1025) T) ((-336 . -624) 99489) ((-599 . -38) 99473) ((-1238 . -593) 99435) ((-1238 . -594) 99396) ((-1043 . -593) 99378) ((-995 . -237) T) ((-347 . -1018) T) ((-791 . -1232) 99348) ((-244 . -23) T) ((-243 . -23) T) ((-958 . -593) 99330) ((-714 . -594) 99291) ((-714 . -593) 99273) ((-775 . -823) 99252) ((-970 . -505) 99164) ((-347 . -227) T) ((-347 . -237) T) ((-1125 . -149) 99111) ((-975 . -25) T) ((-139 . -594) 99070) ((-139 . -593) 99052) ((-881 . -300) T) ((-975 . -21) T) ((-942 . -25) T) ((-885 . -21) T) ((-885 . -25) T) ((-420 . -21) T) ((-420 . -25) T) ((-816 . -404) 99036) ((-48 . -1018) T) ((-1247 . -1239) 99020) ((-1245 . -1239) 99004) ((-1006 . -584) 98979) ((-309 . -594) 98840) ((-309 . -593) 98822) ((-306 . -594) NIL) ((-306 . -593) 98804) ((-48 . -237) T) ((-48 . -227) T) ((-630 . -279) 98765) ((-535 . -229) 98715) ((-135 . -593) 98697) ((-114 . -593) 98679) ((-469 . -38) 98644) ((-1249 . -1246) 98623) ((-1240 . -130) T) ((-1248 . -1025) T) ((-1048 . -101) T) ((-87 . -1179) T) ((-491 . -302) NIL) ((-971 . -106) 98607) ((-860 . -1066) T) ((-856 . -1066) T) ((-1225 . -627) 98591) ((-1225 . -366) 98575) ((-320 . -1179) T) ((-574 . -823) T) ((-1108 . -1066) T) ((-1108 . -1021) 98515) ((-102 . -505) 98448) ((-898 . -593) 98430) ((-336 . -703) T) ((-30 . -593) 98412) ((-837 . -1066) T) ((-816 . -1025) 98391) ((-40 . -624) 98336) ((-219 . -1183) T) ((-400 . -1025) T) ((-1124 . -149) 98318) ((-970 . -283) 98269) ((-596 . -1066) T) ((-219 . -541) T) ((-312 . -1206) 98253) ((-312 . -1203) 98223) ((-1152 . -1155) 98202) ((-1041 . -593) 98184) ((-623 . -149) 98168) ((-610 . -149) 98114) ((-1152 . -106) 98064) ((-471 . -1155) 98043) ((-479 . -145) T) ((-479 . -143) NIL) ((-1086 . -594) 97958) ((-431 . -593) 97940) ((-211 . -145) T) ((-211 . -143) NIL) ((-1086 . -593) 97922) ((-129 . -101) T) ((-52 . -101) T) ((-1189 . -617) 97874) ((-471 . -106) 97824) ((-964 . -23) T) ((-1249 . -38) 97794) ((-1138 . -1078) T) ((-1091 . -1078) T) ((-1029 . -1183) T) ((-304 . -101) T) ((-827 . -1078) T) ((-923 . -1183) 97773) ((-473 . -1183) 97752) ((-708 . -823) 97731) ((-1029 . -541) T) ((-923 . -541) 97662) ((-1138 . -23) T) ((-1091 . -23) T) ((-827 . -23) T) ((-473 . -541) 97593) ((-1108 . -694) 97525) ((-1112 . -505) 97458) ((-1006 . -594) NIL) ((-1006 . -593) 97440) ((-95 . -1049) T) ((-837 . -694) 97410) ((-1173 . -47) 97379) ((-244 . -130) T) ((-243 . -130) T) ((-1070 . -1066) T) ((-974 . -1066) T) ((-61 . -593) 97361) ((-1133 . -823) NIL) ((-995 . -768) T) ((-995 . -771) T) ((-1253 . -1024) 97348) ((-1253 . -111) 97333) ((-841 . -624) 97320) ((-1217 . -25) T) ((-1217 . -21) T) ((-1210 . -21) T) ((-1210 . -25) T) ((-1189 . -21) T) ((-1189 . -25) T) ((-998 . -149) 97304) ((-843 . -796) 97283) ((-843 . -891) T) ((-689 . -279) 97210) ((-577 . -21) T) ((-577 . -25) T) ((-576 . -21) T) ((-40 . -703) T) ((-216 . -505) 97143) ((-576 . -25) T) ((-468 . -149) 97127) ((-455 . -149) 97111) ((-892 . -770) T) ((-892 . -703) T) ((-747 . -769) T) ((-747 . -770) T) ((-497 . -1066) T) ((-493 . -1066) T) ((-747 . -703) T) ((-219 . -356) T) ((-1122 . -1066) 97089) ((-842 . -1183) T) ((-630 . -593) 97071) ((-842 . -541) T) ((-670 . -361) NIL) ((-352 . -1232) 97055) ((-646 . -101) T) ((-346 . -1232) 97039) ((-338 . -1232) 97023) ((-1248 . -1066) T) ((-511 . -823) 97002) ((-793 . -444) 96981) ((-1015 . -1066) T) ((-1015 . -1038) 96910) ((-998 . -947) 96879) ((-795 . -1078) T) ((-974 . -694) 96824) ((-379 . -1078) T) ((-468 . -947) 96793) ((-455 . -947) 96762) ((-110 . -149) 96744) ((-72 . -593) 96726) ((-864 . -593) 96708) ((-1046 . -701) 96687) ((-1253 . -1018) T) ((-792 . -617) 96635) ((-287 . -1025) 96577) ((-167 . -1183) 96482) ((-219 . -1078) T) ((-317 . -23) T) ((-1133 . -963) 96434) ((-816 . -1066) T) ((-1092 . -717) 96413) ((-1211 . -1024) 96318) ((-1209 . -891) 96297) ((-841 . -703) T) ((-167 . -541) 96208) ((-1188 . -891) 96187) ((-562 . -624) 96174) ((-400 . -1066) T) ((-549 . -624) 96161) ((-256 . -1066) T) ((-486 . -624) 96126) ((-219 . -23) T) ((-1188 . -796) 96079) ((-1247 . -101) T) ((-347 . -1244) 96056) ((-1245 . -101) T) ((-1211 . -111) 95948) ((-142 . -593) 95930) ((-964 . -130) T) ((-44 . -101) T) ((-234 . -823) 95881) ((-1198 . -1183) 95860) ((-102 . -481) 95844) ((-1248 . -694) 95814) ((-1053 . -47) 95775) ((-1029 . -1078) T) ((-923 . -1078) T) ((-127 . -34) T) ((-121 . -34) T) ((-758 . -47) 95752) ((-756 . -47) 95724) ((-1198 . -541) 95635) ((-347 . -361) T) ((-473 . -1078) T) ((-1138 . -130) T) ((-1091 . -130) T) ((-446 . -47) 95614) ((-842 . -356) T) ((-827 . -130) T) ((-150 . -101) T) ((-1029 . -23) T) ((-923 . -23) T) ((-556 . -541) T) ((-792 . -25) T) ((-792 . -21) T) ((-1108 . -505) 95547) ((-573 . -1049) T) ((-567 . -1009) 95531) ((-473 . -23) T) ((-344 . -1025) T) ((-1173 . -871) 95512) ((-646 . -302) 95450) ((-1079 . -1232) 95420) ((-675 . -624) 95385) ((-974 . -170) T) ((-934 . -143) 95364) ((-613 . -1066) T) ((-587 . -1066) T) ((-934 . -145) 95343) ((-975 . -823) T) ((-712 . -145) 95322) ((-712 . -143) 95301) ((-942 . -823) T) ((-466 . -891) 95280) ((-309 . -1024) 95190) ((-306 . -1024) 95119) ((-970 . -279) 95077) ((-400 . -694) 95029) ((-128 . -823) T) ((-677 . -821) T) ((-1211 . -1018) T) ((-309 . -111) 94925) ((-306 . -111) 94838) ((-935 . -101) T) ((-791 . -101) 94628) ((-689 . -594) NIL) ((-689 . -593) 94610) ((-634 . -1009) 94506) ((-1211 . -319) 94450) ((-1006 . -281) 94425) ((-562 . -703) T) ((-549 . -770) T) ((-167 . -356) 94376) ((-549 . -767) T) ((-549 . -703) T) ((-486 . -703) T) ((-1112 . -481) 94360) ((-1053 . -857) NIL) ((-842 . -1078) T) ((-117 . -880) NIL) ((-1247 . -1246) 94336) ((-1245 . -1246) 94315) ((-758 . -857) NIL) ((-756 . -857) 94174) ((-1240 . -25) T) ((-1240 . -21) T) ((-1176 . -101) 94152) ((-1072 . -388) T) ((-601 . -624) 94139) ((-446 . -857) NIL) ((-651 . -101) 94117) ((-1053 . -1009) 93944) ((-842 . -23) T) ((-758 . -1009) 93803) ((-756 . -1009) 93660) ((-117 . -624) 93605) ((-446 . -1009) 93481) ((-625 . -1009) 93465) ((-605 . -101) T) ((-216 . -481) 93449) ((-1225 . -34) T) ((-613 . -694) 93433) ((-587 . -694) 93417) ((-646 . -38) 93377) ((-312 . -101) T) ((-84 . -593) 93359) ((-50 . -1009) 93343) ((-1086 . -1024) 93330) ((-1053 . -370) 93314) ((-758 . -370) 93298) ((-59 . -56) 93260) ((-675 . -770) T) ((-675 . -767) T) ((-563 . -1009) 93247) ((-509 . -1009) 93224) ((-675 . -703) T) ((-317 . -130) T) ((-309 . -1018) 93114) ((-306 . -1018) T) ((-167 . -1078) T) ((-756 . -370) 93098) ((-45 . -149) 93048) ((-975 . -963) 93030) ((-446 . -370) 93014) ((-400 . -170) T) ((-309 . -237) 92993) ((-306 . -237) T) ((-306 . -227) NIL) ((-287 . -1066) 92775) ((-219 . -130) T) ((-1086 . -111) 92760) ((-167 . -23) T) ((-775 . -145) 92739) ((-775 . -143) 92718) ((-244 . -617) 92624) ((-243 . -617) 92530) ((-312 . -277) 92496) ((-1122 . -505) 92429) ((-1099 . -1066) T) ((-219 . -1027) T) ((-791 . -302) 92367) ((-1053 . -871) 92302) ((-758 . -871) 92245) ((-756 . -871) 92229) ((-1247 . -38) 92199) ((-1245 . -38) 92169) ((-1198 . -1078) T) ((-828 . -1078) T) ((-446 . -871) 92146) ((-831 . -1066) T) ((-1198 . -23) T) ((-556 . -1078) T) ((-828 . -23) T) ((-601 . -703) T) ((-348 . -891) T) ((-345 . -891) T) ((-282 . -101) T) ((-337 . -891) T) ((-1029 . -130) T) ((-941 . -1049) T) ((-923 . -130) T) ((-117 . -770) NIL) ((-117 . -767) NIL) ((-117 . -703) T) ((-670 . -880) NIL) ((-1015 . -505) 92047) ((-473 . -130) T) ((-556 . -23) T) ((-651 . -302) 91985) ((-613 . -738) T) ((-587 . -738) T) ((-1189 . -823) NIL) ((-974 . -283) T) ((-244 . -21) T) ((-670 . -624) 91935) ((-344 . -1066) T) ((-244 . -25) T) ((-243 . -21) T) ((-243 . -25) T) ((-150 . -38) 91919) ((-2 . -101) T) ((-881 . -891) T) ((-474 . -1232) 91889) ((-217 . -1009) 91866) ((-1086 . -1018) T) ((-688 . -300) T) ((-287 . -694) 91808) ((-677 . -1025) T) ((-479 . -444) T) ((-400 . -505) 91720) ((-211 . -444) T) ((-1086 . -227) T) ((-288 . -149) 91670) ((-970 . -594) 91631) ((-970 . -593) 91613) ((-960 . -593) 91595) ((-116 . -1025) T) ((-630 . -1024) 91579) ((-219 . -484) T) ((-392 . -593) 91561) ((-392 . -594) 91538) ((-1022 . -1232) 91508) ((-630 . -111) 91487) ((-1108 . -481) 91471) ((-791 . -38) 91441) ((-62 . -433) T) ((-62 . -388) T) ((-1125 . -101) T) ((-842 . -130) T) ((-476 . -101) 91419) ((-1253 . -361) T) ((-1046 . -101) T) ((-1028 . -101) T) ((-344 . -694) 91364) ((-708 . -145) 91343) ((-708 . -143) 91322) ((-995 . -624) 91259) ((-514 . -1066) 91237) ((-352 . -101) T) ((-346 . -101) T) ((-338 . -101) T) ((-107 . -101) T) ((-495 . -1066) T) ((-347 . -624) 91182) ((-1138 . -617) 91130) ((-1091 . -617) 91078) ((-378 . -500) 91057) ((-809 . -821) 91036) ((-372 . -1183) T) ((-670 . -703) T) ((-332 . -1025) T) ((-1189 . -963) 90988) ((-172 . -1025) T) ((-102 . -593) 90920) ((-1140 . -143) 90899) ((-1140 . -145) 90878) ((-372 . -541) T) ((-1139 . -145) 90857) ((-1139 . -143) 90836) ((-1133 . -143) 90743) ((-400 . -283) T) ((-1133 . -145) 90650) ((-1092 . -145) 90629) ((-1092 . -143) 90608) ((-312 . -38) 90449) ((-167 . -130) T) ((-306 . -771) NIL) ((-306 . -768) NIL) ((-630 . -1018) T) ((-48 . -624) 90414) ((-1132 . -101) T) ((-965 . -101) T) ((-964 . -21) T) ((-127 . -981) 90398) ((-121 . -981) 90382) ((-964 . -25) T) ((-872 . -119) 90366) ((-1124 . -101) T) ((-792 . -823) 90345) ((-1198 . -130) T) ((-1138 . -25) T) ((-1138 . -21) T) ((-828 . -130) T) ((-1091 . -25) T) ((-1091 . -21) T) ((-827 . -25) T) ((-827 . -21) T) ((-758 . -300) 90324) ((-623 . -101) 90302) ((-610 . -101) T) ((-1125 . -302) 90097) ((-556 . -130) T) ((-599 . -821) 90076) ((-1122 . -481) 90060) ((-1116 . -149) 90010) ((-1112 . -593) 89972) ((-1112 . -594) 89933) ((-995 . -767) T) ((-995 . -770) T) ((-995 . -703) T) ((-476 . -302) 89871) ((-445 . -410) 89841) ((-344 . -170) T) ((-282 . -38) 89828) ((-267 . -101) T) ((-266 . -101) T) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-262 . -101) T) ((-261 . -101) T) ((-336 . -1009) 89805) ((-206 . -101) T) ((-205 . -101) T) ((-203 . -101) T) ((-202 . -101) T) ((-201 . -101) T) ((-200 . -101) T) ((-197 . -101) T) ((-196 . -101) T) ((-689 . -1024) 89628) ((-195 . -101) T) ((-194 . -101) T) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-188 . -101) T) ((-187 . -101) T) ((-347 . -703) T) ((-689 . -111) 89437) ((-646 . -225) 89421) ((-563 . -300) T) ((-509 . -300) T) ((-287 . -505) 89370) ((-107 . -302) NIL) ((-71 . -388) T) ((-1079 . -101) 89160) ((-809 . -404) 89144) ((-1086 . -771) T) ((-1086 . -768) T) ((-677 . -1066) T) ((-372 . -356) T) ((-167 . -484) 89122) ((-207 . -1066) T) ((-216 . -593) 89054) ((-133 . -1066) T) ((-116 . -1066) T) ((-48 . -703) T) ((-1015 . -481) 89019) ((-497 . -92) T) ((-139 . -418) 89001) ((-139 . -361) T) ((-998 . -101) T) ((-503 . -500) 88980) ((-468 . -101) T) ((-455 . -101) T) ((-1005 . -1078) T) ((-1140 . -35) 88946) ((-1140 . -94) 88912) ((-1140 . -1167) 88878) ((-1140 . -1164) 88844) ((-1124 . -302) NIL) ((-88 . -389) T) ((-88 . -388) T) ((-1046 . -1117) 88823) ((-1139 . -1164) 88789) ((-1139 . -1167) 88755) ((-1005 . -23) T) ((-1139 . -94) 88721) ((-556 . -484) T) ((-1139 . -35) 88687) ((-1133 . -1164) 88653) ((-1133 . -1167) 88619) ((-1133 . -94) 88585) ((-354 . -1078) T) ((-352 . -1117) 88564) ((-346 . -1117) 88543) ((-338 . -1117) 88522) ((-1133 . -35) 88488) ((-1092 . -35) 88454) ((-1092 . -94) 88420) ((-107 . -1117) T) ((-1092 . -1167) 88386) ((-809 . -1025) 88365) ((-623 . -302) 88303) ((-610 . -302) 88154) ((-1092 . -1164) 88120) ((-689 . -1018) T) ((-1029 . -617) 88102) ((-1046 . -38) 87970) ((-923 . -617) 87918) ((-975 . -145) T) ((-975 . -143) NIL) ((-372 . -1078) T) ((-317 . -25) T) ((-315 . -23) T) ((-914 . -823) 87897) ((-689 . -319) 87874) ((-473 . -617) 87822) ((-40 . -1009) 87710) ((-677 . -694) 87697) ((-689 . -227) T) ((-332 . -1066) T) ((-172 . -1066) T) ((-324 . -823) T) ((-411 . -444) 87647) ((-372 . -23) T) ((-352 . -38) 87612) ((-346 . -38) 87577) ((-338 . -38) 87542) ((-79 . -433) T) ((-79 . -388) T) ((-219 . -25) T) ((-219 . -21) T) ((-810 . -1078) T) ((-107 . -38) 87492) ((-803 . -1078) T) ((-750 . -1066) T) ((-116 . -694) 87479) ((-648 . -1009) 87463) ((-592 . -101) T) ((-810 . -23) T) ((-803 . -23) T) ((-1122 . -279) 87440) ((-1079 . -302) 87378) ((-1068 . -229) 87362) ((-63 . -389) T) ((-63 . -388) T) ((-110 . -101) T) ((-40 . -370) 87339) ((-95 . -101) T) ((-629 . -825) 87323) ((-1101 . -1049) T) ((-1029 . -21) T) ((-1029 . -25) T) ((-791 . -225) 87292) ((-923 . -25) T) ((-923 . -21) T) ((-599 . -1025) T) ((-473 . -25) T) ((-473 . -21) T) ((-998 . -302) 87230) ((-860 . -593) 87212) ((-856 . -593) 87194) ((-244 . -823) 87145) ((-243 . -823) 87096) ((-514 . -505) 87029) ((-842 . -617) 87006) ((-468 . -302) 86944) ((-455 . -302) 86882) ((-344 . -283) T) ((-1122 . -1213) 86866) ((-1108 . -593) 86828) ((-1108 . -594) 86789) ((-1106 . -101) T) ((-970 . -1024) 86685) ((-40 . -871) 86637) ((-1122 . -584) 86614) ((-1253 . -624) 86601) ((-1030 . -149) 86547) ((-843 . -1183) T) ((-970 . -111) 86429) ((-332 . -694) 86413) ((-837 . -593) 86395) ((-172 . -694) 86327) ((-400 . -279) 86285) ((-843 . -541) T) ((-107 . -393) 86267) ((-83 . -377) T) ((-83 . -388) T) ((-677 . -170) T) ((-596 . -593) 86249) ((-98 . -703) T) ((-474 . -101) 86039) ((-98 . -465) T) ((-116 . -170) T) ((-1079 . -38) 86009) ((-167 . -617) 85957) ((-1022 . -101) T) ((-842 . -25) T) ((-791 . -232) 85936) ((-842 . -21) T) ((-794 . -101) T) ((-407 . -101) T) ((-378 . -101) T) ((-110 . -302) NIL) ((-221 . -101) 85914) ((-127 . -1179) T) ((-121 . -1179) T) ((-1005 . -130) T) ((-646 . -360) 85898) ((-970 . -1018) T) ((-1198 . -617) 85846) ((-1070 . -593) 85828) ((-974 . -593) 85810) ((-506 . -23) T) ((-501 . -23) T) ((-336 . -300) T) ((-499 . -23) T) ((-315 . -130) T) ((-3 . -1066) T) ((-974 . -594) 85794) ((-970 . -237) 85773) ((-970 . -227) 85752) ((-1253 . -703) T) ((-1217 . -143) 85731) ((-809 . -1066) T) ((-1217 . -145) 85710) ((-1210 . -145) 85689) ((-1210 . -143) 85668) ((-1209 . -1183) 85647) ((-1189 . -143) 85554) ((-1189 . -145) 85461) ((-1188 . -1183) 85440) ((-372 . -130) T) ((-549 . -857) 85422) ((0 . -1066) T) ((-172 . -170) T) ((-167 . -21) T) ((-167 . -25) T) ((-49 . -1066) T) ((-1211 . -624) 85327) ((-1209 . -541) 85278) ((-691 . -1078) T) ((-1188 . -541) 85229) ((-549 . -1009) 85211) ((-576 . -145) 85190) ((-576 . -143) 85169) ((-486 . -1009) 85112) ((-1101 . -1103) T) ((-86 . -377) T) ((-86 . -388) T) ((-843 . -356) T) ((-810 . -130) T) ((-803 . -130) T) ((-691 . -23) T) ((-497 . -593) 85062) ((-493 . -593) 85044) ((-1249 . -1025) T) ((-372 . -1027) T) ((-997 . -1066) 85022) ((-872 . -34) T) ((-474 . -302) 84960) ((-573 . -101) T) ((-1122 . -594) 84921) ((-1122 . -593) 84853) ((-1138 . -823) 84832) ((-45 . -101) T) ((-1091 . -823) 84811) ((-793 . -101) T) ((-1198 . -25) T) ((-1198 . -21) T) ((-828 . -25) T) ((-44 . -360) 84795) ((-828 . -21) T) ((-708 . -444) 84746) ((-1248 . -593) 84728) ((-1022 . -302) 84666) ((-647 . -1049) T) ((-586 . -1049) T) ((-383 . -1066) T) ((-556 . -25) T) ((-556 . -21) T) ((-178 . -1049) T) ((-159 . -1049) T) ((-154 . -1049) T) ((-152 . -1049) T) ((-599 . -1066) T) ((-675 . -857) 84648) ((-1225 . -1179) T) ((-221 . -302) 84586) ((-142 . -361) T) ((-1015 . -594) 84528) ((-1015 . -593) 84471) ((-306 . -880) NIL) ((-675 . -1009) 84416) ((-688 . -891) T) ((-466 . -1183) 84395) ((-1139 . -444) 84374) ((-1133 . -444) 84353) ((-323 . -101) T) ((-843 . -1078) T) ((-309 . -624) 84174) ((-306 . -624) 84103) ((-466 . -541) 84054) ((-332 . -505) 84020) ((-535 . -149) 83970) ((-40 . -300) T) ((-816 . -593) 83952) ((-677 . -283) T) ((-843 . -23) T) ((-372 . -484) T) ((-1046 . -225) 83922) ((-503 . -101) T) ((-400 . -594) 83730) ((-400 . -593) 83712) ((-256 . -593) 83694) ((-116 . -283) T) ((-1211 . -703) T) ((-1209 . -356) 83673) ((-1188 . -356) 83652) ((-1238 . -34) T) ((-117 . -1179) T) ((-107 . -225) 83634) ((-1144 . -101) T) ((-469 . -1066) T) ((-514 . -481) 83618) ((-714 . -34) T) ((-474 . -38) 83588) ((-139 . -34) T) ((-117 . -855) 83565) ((-117 . -857) NIL) ((-601 . -1009) 83448) ((-621 . -823) 83427) ((-1237 . -101) T) ((-288 . -101) T) ((-689 . -361) 83406) ((-117 . -1009) 83383) ((-383 . -694) 83367) ((-599 . -694) 83351) ((-45 . -302) 83155) ((-792 . -143) 83134) ((-792 . -145) 83113) ((-1248 . -375) 83092) ((-795 . -823) T) ((-1227 . -1066) T) ((-1125 . -223) 83039) ((-379 . -823) 83018) ((-1217 . -1167) 82984) ((-1217 . -1164) 82950) ((-1210 . -1164) 82916) ((-506 . -130) T) ((-1210 . -1167) 82882) ((-1189 . -1164) 82848) ((-1189 . -1167) 82814) ((-1217 . -35) 82780) ((-1217 . -94) 82746) ((-613 . -593) 82715) ((-587 . -593) 82684) ((-219 . -823) T) ((-1210 . -94) 82650) ((-1210 . -35) 82616) ((-1209 . -1078) T) ((-1086 . -624) 82603) ((-1189 . -94) 82569) ((-1188 . -1078) T) ((-574 . -149) 82551) ((-1046 . -342) 82530) ((-172 . -283) T) ((-117 . -370) 82507) ((-117 . -331) 82484) ((-1189 . -35) 82450) ((-841 . -300) T) ((-306 . -770) NIL) ((-306 . -767) NIL) ((-309 . -703) 82299) ((-306 . -703) T) ((-466 . -356) 82278) ((-352 . -342) 82257) ((-346 . -342) 82236) ((-338 . -342) 82215) ((-309 . -465) 82194) ((-1209 . -23) T) ((-1188 . -23) T) ((-695 . -1078) T) ((-691 . -130) T) ((-629 . -101) T) ((-469 . -694) 82159) ((-45 . -275) 82109) ((-104 . -1066) T) ((-67 . -593) 82091) ((-941 . -101) T) ((-836 . -101) T) ((-601 . -871) 82050) ((-1249 . -1066) T) ((-374 . -1066) T) ((-1178 . -1066) T) ((-81 . -1179) T) ((-1029 . -823) T) ((-923 . -823) 82029) ((-117 . -871) NIL) ((-758 . -891) 82008) ((-690 . -823) T) ((-521 . -1066) T) ((-491 . -1066) T) ((-348 . -1183) T) ((-345 . -1183) T) ((-337 . -1183) T) ((-257 . -1183) 81987) ((-241 . -1183) 81966) ((-1079 . -225) 81935) ((-473 . -823) 81914) ((-1108 . -1024) 81898) ((-383 . -738) T) ((-1124 . -804) T) ((-670 . -1179) T) ((-348 . -541) T) ((-345 . -541) T) ((-337 . -541) T) ((-257 . -541) 81829) ((-241 . -541) 81760) ((-516 . -1049) T) ((-1108 . -111) 81739) ((-445 . -721) 81709) ((-837 . -1024) 81679) ((-793 . -38) 81621) ((-670 . -855) 81603) ((-670 . -857) 81585) ((-288 . -302) 81389) ((-881 . -1183) T) ((-646 . -404) 81373) ((-837 . -111) 81338) ((-670 . -1009) 81283) ((-975 . -444) T) ((-881 . -541) T) ((-563 . -891) T) ((-466 . -1078) T) ((-509 . -891) T) ((-1122 . -281) 81260) ((-885 . -444) T) ((-64 . -593) 81242) ((-610 . -223) 81188) ((-466 . -23) T) ((-1086 . -770) T) ((-843 . -130) T) ((-1086 . -767) T) ((-1240 . -1242) 81167) ((-1086 . -703) T) ((-630 . -624) 81141) ((-287 . -593) 80882) ((-1006 . -34) T) ((-791 . -821) 80861) ((-562 . -300) T) ((-549 . -300) T) ((-486 . -300) T) ((-1249 . -694) 80831) ((-670 . -370) 80813) ((-670 . -331) 80795) ((-469 . -170) T) ((-374 . -694) 80765) ((-842 . -823) NIL) ((-549 . -993) T) ((-486 . -993) T) ((-1099 . -593) 80747) ((-1079 . -232) 80726) ((-208 . -101) T) ((-1116 . -101) T) ((-70 . -593) 80708) ((-1108 . -1018) T) ((-1144 . -38) 80605) ((-831 . -593) 80587) ((-549 . -534) T) ((-646 . -1025) T) ((-708 . -920) 80540) ((-1108 . -227) 80519) ((-1048 . -1066) T) ((-1005 . -25) T) ((-1005 . -21) T) ((-974 . -1024) 80464) ((-876 . -101) T) ((-837 . -1018) T) ((-670 . -871) NIL) ((-348 . -322) 80448) ((-348 . -356) T) ((-345 . -322) 80432) ((-345 . -356) T) ((-337 . -322) 80416) ((-337 . -356) T) ((-479 . -101) T) ((-1237 . -38) 80386) ((-514 . -663) 80336) ((-211 . -101) T) ((-995 . -1009) 80216) ((-974 . -111) 80145) ((-1140 . -944) 80114) ((-1139 . -944) 80076) ((-511 . -149) 80060) ((-1046 . -363) 80039) ((-344 . -593) 80021) ((-315 . -21) T) ((-347 . -1009) 79998) ((-315 . -25) T) ((-1133 . -944) 79967) ((-1092 . -944) 79934) ((-75 . -593) 79916) ((-675 . -300) T) ((-167 . -823) 79895) ((-881 . -356) T) ((-372 . -25) T) ((-372 . -21) T) ((-881 . -322) 79882) ((-85 . -593) 79864) ((-675 . -993) T) ((-653 . -823) T) ((-1209 . -130) T) ((-1188 . -130) T) ((-872 . -981) 79848) ((-810 . -21) T) ((-48 . -1009) 79791) ((-810 . -25) T) ((-803 . -25) T) ((-803 . -21) T) ((-1247 . -1025) T) ((-1245 . -1025) T) ((-630 . -703) T) ((-1248 . -1024) 79775) ((-1198 . -823) 79754) ((-791 . -404) 79723) ((-102 . -119) 79707) ((-129 . -1066) T) ((-52 . -1066) T) ((-897 . -593) 79689) ((-842 . -963) 79666) ((-799 . -101) T) ((-1248 . -111) 79645) ((-629 . -38) 79615) ((-556 . -823) T) ((-348 . -1078) T) ((-345 . -1078) T) ((-337 . -1078) T) ((-257 . -1078) T) ((-241 . -1078) T) ((-601 . -300) 79594) ((-1116 . -302) 79398) ((-515 . -1049) T) ((-304 . -1066) T) ((-640 . -23) T) ((-474 . -225) 79367) ((-150 . -1025) T) ((-348 . -23) T) ((-345 . -23) T) ((-337 . -23) T) ((-117 . -300) T) ((-257 . -23) T) ((-241 . -23) T) ((-974 . -1018) T) ((-689 . -880) 79346) ((-974 . -227) 79318) ((-974 . -237) T) ((-117 . -993) NIL) ((-881 . -1078) T) ((-1210 . -444) 79297) ((-1189 . -444) 79276) ((-514 . -593) 79208) ((-689 . -624) 79133) ((-400 . -1024) 79085) ((-495 . -593) 79067) ((-881 . -23) T) ((-479 . -302) NIL) ((-466 . -130) T) ((-211 . -302) NIL) ((-400 . -111) 79005) ((-791 . -1025) 78935) ((-714 . -1064) 78919) ((-1209 . -484) 78885) ((-1188 . -484) 78851) ((-469 . -283) T) ((-139 . -1064) 78833) ((-128 . -149) 78815) ((-1248 . -1018) T) ((-1030 . -101) T) ((-491 . -505) NIL) ((-679 . -101) T) ((-474 . -232) 78794) ((-1138 . -143) 78773) ((-1138 . -145) 78752) ((-1091 . -145) 78731) ((-1091 . -143) 78710) ((-613 . -1024) 78694) ((-587 . -1024) 78678) ((-646 . -1066) T) ((-646 . -1021) 78618) ((-1140 . -1216) 78602) ((-1140 . -1203) 78579) ((-479 . -1117) T) ((-1139 . -1208) 78540) ((-1139 . -1203) 78510) ((-1139 . -1206) 78494) ((-211 . -1117) T) ((-336 . -891) T) ((-794 . -259) 78478) ((-613 . -111) 78457) ((-587 . -111) 78436) ((-1133 . -1187) 78397) ((-816 . -1018) 78376) ((-1133 . -1203) 78353) ((-506 . -25) T) ((-486 . -295) T) ((-502 . -23) T) ((-501 . -25) T) ((-499 . -25) T) ((-498 . -23) T) ((-1133 . -1185) 78337) ((-400 . -1018) T) ((-312 . -1025) T) ((-670 . -300) T) ((-107 . -821) T) ((-400 . -237) T) ((-400 . -227) 78316) ((-689 . -703) T) ((-479 . -38) 78266) ((-211 . -38) 78216) ((-466 . -484) 78182) ((-1124 . -1110) T) ((-1067 . -101) T) ((-677 . -593) 78164) ((-677 . -594) 78079) ((-691 . -21) T) ((-691 . -25) T) ((-1101 . -101) T) ((-207 . -593) 78061) ((-133 . -593) 78043) ((-116 . -593) 78025) ((-155 . -25) T) ((-1247 . -1066) T) ((-843 . -617) 77973) ((-1245 . -1066) T) ((-934 . -101) T) ((-712 . -101) T) ((-692 . -101) T) ((-445 . -101) T) ((-792 . -444) 77924) ((-44 . -1066) T) ((-1054 . -823) T) ((-640 . -130) T) ((-1030 . -302) 77775) ((-646 . -694) 77759) ((-282 . -1025) T) ((-348 . -130) T) ((-345 . -130) T) ((-337 . -130) T) ((-257 . -130) T) ((-241 . -130) T) ((-411 . -101) T) ((-150 . -1066) T) ((-45 . -223) 77709) ((-929 . -823) 77688) ((-970 . -624) 77626) ((-234 . -1232) 77596) ((-995 . -300) T) ((-287 . -1024) 77517) ((-881 . -130) T) ((-40 . -891) T) ((-479 . -393) 77499) ((-347 . -300) T) ((-211 . -393) 77481) ((-1046 . -404) 77465) ((-287 . -111) 77381) ((-843 . -25) T) ((-843 . -21) T) ((-332 . -593) 77363) ((-1211 . -47) 77307) ((-219 . -145) T) ((-172 . -593) 77289) ((-1079 . -821) 77268) ((-750 . -593) 77250) ((-588 . -229) 77197) ((-467 . -229) 77147) ((-1247 . -694) 77117) ((-48 . -300) T) ((-1245 . -694) 77087) ((-935 . -1066) T) ((-791 . -1066) 76877) ((-305 . -101) T) ((-872 . -1179) T) ((-48 . -993) T) ((-1188 . -617) 76785) ((-665 . -101) 76763) ((-44 . -694) 76747) ((-535 . -101) T) ((-66 . -376) T) ((-66 . -388) T) ((-638 . -23) T) ((-646 . -738) T) ((-1176 . -1066) 76725) ((-344 . -1024) 76670) ((-651 . -1066) 76648) ((-1029 . -145) T) ((-923 . -145) 76627) ((-923 . -143) 76606) ((-775 . -101) T) ((-150 . -694) 76590) ((-473 . -145) 76569) ((-473 . -143) 76548) ((-344 . -111) 76477) ((-1046 . -1025) T) ((-315 . -823) 76456) ((-1217 . -944) 76425) ((-605 . -1066) T) ((-1210 . -944) 76387) ((-502 . -130) T) ((-498 . -130) T) ((-288 . -223) 76337) ((-352 . -1025) T) ((-346 . -1025) T) ((-338 . -1025) T) ((-287 . -1018) 76279) ((-1189 . -944) 76248) ((-372 . -823) T) ((-107 . -1025) T) ((-970 . -703) T) ((-841 . -891) T) ((-816 . -771) 76227) ((-816 . -768) 76206) ((-411 . -302) 76145) ((-460 . -101) T) ((-576 . -944) 76114) ((-312 . -1066) T) ((-400 . -771) 76093) ((-400 . -768) 76072) ((-491 . -481) 76054) ((-1211 . -1009) 76020) ((-1209 . -21) T) ((-1209 . -25) T) ((-1188 . -21) T) ((-1188 . -25) T) ((-791 . -694) 75962) ((-675 . -397) T) ((-1238 . -1179) T) ((-586 . -101) T) ((-1079 . -404) 75931) ((-974 . -361) NIL) ((-647 . -101) T) ((-178 . -101) T) ((-159 . -101) T) ((-154 . -101) T) ((-152 . -101) T) ((-102 . -34) T) ((-714 . -1179) T) ((-44 . -738) T) ((-574 . -101) T) ((-76 . -389) T) ((-76 . -388) T) ((-629 . -632) 75915) ((-139 . -1179) T) ((-842 . -145) T) ((-842 . -143) NIL) ((-1178 . -92) T) ((-344 . -1018) T) ((-69 . -376) T) ((-69 . -388) T) ((-1131 . -101) T) ((-646 . -505) 75848) ((-665 . -302) 75786) ((-934 . -38) 75683) ((-712 . -38) 75653) ((-535 . -302) 75457) ((-309 . -1179) T) ((-344 . -227) T) ((-344 . -237) T) ((-306 . -1179) T) ((-282 . -1066) T) ((-1146 . -593) 75439) ((-688 . -1183) T) ((-1122 . -627) 75423) ((-1173 . -541) 75402) ((-688 . -541) T) ((-309 . -855) 75386) ((-309 . -857) 75311) ((-306 . -855) 75272) ((-306 . -857) NIL) ((-775 . -302) 75237) ((-312 . -694) 75078) ((-317 . -316) 75055) ((-477 . -101) T) ((-466 . -25) T) ((-466 . -21) T) ((-411 . -38) 75029) ((-309 . -1009) 74692) ((-219 . -1164) T) ((-219 . -1167) T) ((-3 . -593) 74674) ((-306 . -1009) 74604) ((-2 . -1066) T) ((-2 . |RecordCategory|) T) ((-809 . -593) 74586) ((-1079 . -1025) 74516) ((-562 . -891) T) ((-549 . -796) T) ((-549 . -891) T) ((-486 . -891) T) ((-135 . -1009) 74500) ((-219 . -94) T) ((-74 . -433) T) ((-74 . -388) T) ((0 . -593) 74482) ((-167 . -145) 74461) ((-167 . -143) 74412) ((-219 . -35) T) ((-49 . -593) 74394) ((-469 . -1025) T) ((-479 . -225) 74376) ((-476 . -939) 74360) ((-474 . -821) 74339) ((-211 . -225) 74321) ((-80 . -433) T) ((-80 . -388) T) ((-1112 . -34) T) ((-791 . -170) 74300) ((-708 . -101) T) ((-997 . -593) 74267) ((-491 . -279) 74242) ((-309 . -370) 74211) ((-306 . -370) 74172) ((-306 . -331) 74133) ((-1051 . -593) 74115) ((-792 . -920) 74062) ((-638 . -130) T) ((-1198 . -143) 74041) ((-1198 . -145) 74020) ((-1140 . -101) T) ((-1139 . -101) T) ((-1133 . -101) T) ((-1125 . -1066) T) ((-1092 . -101) T) ((-216 . -34) T) ((-282 . -694) 74007) ((-1125 . -590) 73983) ((-574 . -302) NIL) ((-476 . -1066) 73961) ((-383 . -593) 73943) ((-501 . -823) T) ((-1116 . -223) 73893) ((-1217 . -1216) 73877) ((-1217 . -1203) 73854) ((-1210 . -1208) 73815) ((-1210 . -1203) 73785) ((-1210 . -1206) 73769) ((-1189 . -1187) 73730) ((-1189 . -1203) 73707) ((-599 . -593) 73689) ((-1189 . -1185) 73673) ((-675 . -891) T) ((-1140 . -277) 73639) ((-1139 . -277) 73605) ((-1133 . -277) 73571) ((-1046 . -1066) T) ((-1028 . -1066) T) ((-48 . -295) T) ((-309 . -871) 73537) ((-306 . -871) NIL) ((-1028 . -1035) 73516) ((-1086 . -857) 73498) ((-775 . -38) 73482) ((-257 . -617) 73430) ((-241 . -617) 73378) ((-677 . -1024) 73365) ((-576 . -1203) 73342) ((-1092 . -277) 73308) ((-312 . -170) 73239) ((-352 . -1066) T) ((-346 . -1066) T) ((-338 . -1066) T) ((-491 . -19) 73221) ((-1086 . -1009) 73203) ((-1068 . -149) 73187) ((-107 . -1066) T) ((-116 . -1024) 73174) ((-688 . -356) T) ((-491 . -584) 73149) ((-677 . -111) 73134) ((-429 . -101) T) ((-45 . -1115) 73084) ((-116 . -111) 73069) ((-613 . -697) T) ((-587 . -697) T) ((-791 . -505) 73002) ((-1006 . -1179) T) ((-914 . -149) 72986) ((-516 . -101) T) ((-511 . -101) 72936) ((-1138 . -444) 72867) ((-1132 . -1066) T) ((-1053 . -1183) 72846) ((-758 . -1183) 72825) ((-756 . -1183) 72804) ((-61 . -1179) T) ((-469 . -593) 72756) ((-469 . -594) 72678) ((-1124 . -1066) T) ((-1108 . -624) 72652) ((-1091 . -444) 72603) ((-1053 . -541) 72534) ((-474 . -404) 72503) ((-601 . -891) 72482) ((-446 . -1183) 72461) ((-965 . -1066) T) ((-758 . -541) 72372) ((-391 . -593) 72354) ((-756 . -541) 72285) ((-651 . -505) 72218) ((-708 . -302) 72205) ((-640 . -25) T) ((-640 . -21) T) ((-446 . -541) 72136) ((-117 . -891) T) ((-117 . -796) NIL) ((-348 . -25) T) ((-348 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-337 . -25) T) ((-337 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-82 . -377) T) ((-82 . -388) T) ((-241 . -25) T) ((-241 . -21) T) ((-1227 . -593) 72118) ((-1173 . -1078) T) ((-1173 . -23) T) ((-1133 . -302) 72003) ((-1092 . -302) 71990) ((-1046 . -694) 71858) ((-837 . -624) 71818) ((-914 . -951) 71802) ((-881 . -21) T) ((-282 . -170) T) ((-881 . -25) T) ((-304 . -92) T) ((-843 . -823) 71753) ((-688 . -1078) T) ((-688 . -23) T) ((-623 . -1066) 71731) ((-610 . -590) 71706) ((-610 . -1066) T) ((-563 . -1183) T) ((-509 . -1183) T) ((-563 . -541) T) ((-509 . -541) T) ((-352 . -694) 71658) ((-346 . -694) 71610) ((-338 . -694) 71562) ((-332 . -1024) 71546) ((-172 . -111) 71457) ((-172 . -1024) 71389) ((-107 . -694) 71339) ((-332 . -111) 71318) ((-267 . -1066) T) ((-266 . -1066) T) ((-265 . -1066) T) ((-264 . -1066) T) ((-677 . -1018) T) ((-263 . -1066) T) ((-262 . -1066) T) ((-261 . -1066) T) ((-206 . -1066) T) ((-205 . -1066) T) ((-203 . -1066) T) ((-167 . -1167) 71296) ((-167 . -1164) 71274) ((-202 . -1066) T) ((-201 . -1066) T) ((-116 . -1018) T) ((-200 . -1066) T) ((-197 . -1066) T) ((-677 . -227) T) ((-196 . -1066) T) ((-195 . -1066) T) ((-194 . -1066) T) ((-193 . -1066) T) ((-192 . -1066) T) ((-191 . -1066) T) ((-190 . -1066) T) ((-189 . -1066) T) ((-188 . -1066) T) ((-187 . -1066) T) ((-234 . -101) 71064) ((-167 . -35) 71042) ((-167 . -94) 71020) ((-630 . -1009) 70916) ((-474 . -1025) 70846) ((-1079 . -1066) 70636) ((-1108 . -34) T) ((-646 . -481) 70620) ((-72 . -1179) T) ((-104 . -593) 70602) ((-1249 . -593) 70584) ((-374 . -593) 70566) ((-708 . -38) 70415) ((-556 . -1167) T) ((-556 . -1164) T) ((-521 . -593) 70397) ((-511 . -302) 70335) ((-491 . -593) 70317) ((-491 . -594) 70299) ((-1178 . -593) 70265) ((-1133 . -1117) NIL) ((-998 . -1038) 70234) ((-998 . -1066) T) ((-975 . -101) T) ((-942 . -101) T) ((-885 . -101) T) ((-864 . -1009) 70211) ((-1108 . -703) T) ((-974 . -624) 70156) ((-468 . -1066) T) ((-455 . -1066) T) ((-567 . -23) T) ((-556 . -35) T) ((-556 . -94) T) ((-420 . -101) T) ((-1030 . -223) 70102) ((-128 . -101) T) ((-1140 . -38) 69999) ((-837 . -703) T) ((-670 . -891) T) ((-502 . -25) T) ((-498 . -21) T) ((-498 . -25) T) ((-1139 . -38) 69840) ((-332 . -1018) T) ((-1133 . -38) 69636) ((-1046 . -170) T) ((-172 . -1018) T) ((-1092 . -38) 69533) ((-689 . -47) 69510) ((-352 . -170) T) ((-346 . -170) T) ((-510 . -56) 69484) ((-488 . -56) 69434) ((-344 . -1244) 69411) ((-219 . -444) T) ((-312 . -283) 69362) ((-338 . -170) T) ((-172 . -237) T) ((-1188 . -823) 69261) ((-107 . -170) T) ((-843 . -963) 69245) ((-634 . -1078) T) ((-563 . -356) T) ((-563 . -322) 69232) ((-509 . -322) 69209) ((-509 . -356) T) ((-309 . -300) 69188) ((-306 . -300) T) ((-582 . -823) 69167) ((-1079 . -694) 69109) ((-511 . -275) 69093) ((-634 . -23) T) ((-411 . -225) 69077) ((-306 . -993) NIL) ((-329 . -23) T) ((-102 . -981) 69061) ((-45 . -36) 69040) ((-592 . -1066) T) ((-344 . -361) T) ((-515 . -101) T) ((-486 . -27) T) ((-234 . -302) 68978) ((-1053 . -1078) T) ((-1248 . -624) 68952) ((-758 . -1078) T) ((-756 . -1078) T) ((-446 . -1078) T) ((-1029 . -444) T) ((-923 . -444) 68903) ((-1081 . -1049) T) ((-110 . -1066) T) ((-1053 . -23) T) ((-793 . -1025) T) ((-758 . -23) T) ((-756 . -23) T) ((-473 . -444) 68854) ((-1125 . -505) 68637) ((-374 . -375) 68616) ((-1144 . -404) 68600) ((-453 . -23) T) ((-446 . -23) T) ((-95 . -1066) T) ((-476 . -505) 68533) ((-282 . -283) T) ((-1048 . -593) 68515) ((-400 . -880) 68494) ((-50 . -1078) T) ((-995 . -891) T) ((-974 . -703) T) ((-689 . -857) NIL) ((-563 . -1078) T) ((-509 . -1078) T) ((-816 . -624) 68467) ((-1173 . -130) T) ((-1133 . -393) 68419) ((-975 . -302) NIL) ((-791 . -481) 68403) ((-347 . -891) T) ((-1122 . -34) T) ((-400 . -624) 68355) ((-50 . -23) T) ((-688 . -130) T) ((-689 . -1009) 68235) ((-563 . -23) T) ((-107 . -505) NIL) ((-509 . -23) T) ((-167 . -402) 68206) ((-128 . -302) NIL) ((-1106 . -1066) T) ((-1240 . -1239) 68190) ((-677 . -771) T) ((-677 . -768) T) ((-1086 . -300) T) ((-372 . -145) T) ((-273 . -593) 68172) ((-1188 . -963) 68142) ((-48 . -891) T) ((-651 . -481) 68126) ((-244 . -1232) 68096) ((-243 . -1232) 68066) ((-1142 . -823) T) ((-1079 . -170) 68045) ((-1086 . -993) T) ((-1015 . -34) T) ((-810 . -145) 68024) ((-810 . -143) 68003) ((-714 . -106) 67987) ((-592 . -131) T) ((-474 . -1066) 67777) ((-1144 . -1025) T) ((-842 . -444) T) ((-84 . -1179) T) ((-234 . -38) 67747) ((-139 . -106) 67729) ((-689 . -370) 67713) ((-1086 . -534) T) ((-383 . -1024) 67697) ((-1248 . -703) T) ((-1138 . -920) 67666) ((-129 . -593) 67633) ((-52 . -593) 67615) ((-1091 . -920) 67582) ((-629 . -404) 67566) ((-1237 . -1025) T) ((-599 . -1024) 67550) ((-638 . -25) T) ((-638 . -21) T) ((-1124 . -505) NIL) ((-1217 . -101) T) ((-1210 . -101) T) ((-383 . -111) 67529) ((-216 . -247) 67513) ((-1189 . -101) T) ((-1022 . -1066) T) ((-975 . -1117) T) ((-1022 . -1021) 67453) ((-794 . -1066) T) ((-336 . -1183) T) ((-613 . -624) 67437) ((-599 . -111) 67416) ((-587 . -624) 67400) ((-577 . -101) T) ((-567 . -130) T) ((-576 . -101) T) ((-407 . -1066) T) ((-378 . -1066) T) ((-304 . -593) 67366) ((-221 . -1066) 67344) ((-623 . -505) 67277) ((-610 . -505) 67121) ((-809 . -1018) 67100) ((-621 . -149) 67084) ((-336 . -541) T) ((-689 . -871) 67027) ((-535 . -223) 66977) ((-1217 . -277) 66943) ((-1046 . -283) 66894) ((-479 . -821) T) ((-217 . -1078) T) ((-1210 . -277) 66860) ((-1189 . -277) 66826) ((-975 . -38) 66776) ((-211 . -821) T) ((-1173 . -484) 66742) ((-885 . -38) 66694) ((-816 . -770) 66673) ((-816 . -767) 66652) ((-816 . -703) 66631) ((-352 . -283) T) ((-346 . -283) T) ((-338 . -283) T) ((-167 . -444) 66562) ((-420 . -38) 66546) ((-107 . -283) T) ((-217 . -23) T) ((-400 . -770) 66525) ((-400 . -767) 66504) ((-400 . -703) T) ((-491 . -281) 66479) ((-469 . -1024) 66444) ((-634 . -130) T) ((-1079 . -505) 66377) ((-329 . -130) T) ((-167 . -395) 66356) ((-474 . -694) 66298) ((-791 . -279) 66275) ((-469 . -111) 66231) ((-629 . -1025) T) ((-1198 . -444) 66162) ((-1236 . -1049) T) ((-1235 . -1049) T) ((-1053 . -130) T) ((-257 . -823) 66141) ((-241 . -823) 66120) ((-758 . -130) T) ((-756 . -130) T) ((-556 . -444) T) ((-1022 . -694) 66062) ((-599 . -1018) T) ((-998 . -505) 65995) ((-573 . -1066) T) ((-453 . -130) T) ((-446 . -130) T) ((-45 . -1066) T) ((-378 . -694) 65965) ((-793 . -1066) T) ((-468 . -505) 65898) ((-455 . -505) 65831) ((-445 . -360) 65801) ((-45 . -590) 65780) ((-309 . -295) T) ((-646 . -593) 65742) ((-58 . -823) 65721) ((-1189 . -302) 65606) ((-975 . -393) 65588) ((-791 . -584) 65565) ((-507 . -823) 65544) ((-487 . -823) 65523) ((-40 . -1183) T) ((-970 . -1009) 65419) ((-50 . -130) T) ((-563 . -130) T) ((-509 . -130) T) ((-287 . -624) 65279) ((-336 . -322) 65256) ((-336 . -356) T) ((-315 . -316) 65233) ((-312 . -279) 65218) ((-40 . -541) T) ((-372 . -1164) T) ((-372 . -1167) T) ((-1006 . -1155) 65193) ((-1152 . -229) 65143) ((-1133 . -225) 65095) ((-323 . -1066) T) ((-372 . -94) T) ((-372 . -35) T) ((-1006 . -106) 65041) ((-469 . -1018) T) ((-471 . -229) 64991) ((-1125 . -481) 64925) ((-1249 . -1024) 64909) ((-374 . -1024) 64893) ((-469 . -237) T) ((-792 . -101) T) ((-691 . -145) 64872) ((-691 . -143) 64851) ((-476 . -481) 64835) ((-477 . -328) 64804) ((-1249 . -111) 64783) ((-503 . -1066) T) ((-474 . -170) 64762) ((-970 . -370) 64746) ((-406 . -101) T) ((-374 . -111) 64725) ((-970 . -331) 64709) ((-272 . -954) 64693) ((-271 . -954) 64677) ((-1247 . -593) 64659) ((-1245 . -593) 64641) ((-110 . -505) NIL) ((-1138 . -1201) 64625) ((-827 . -825) 64609) ((-1144 . -1066) T) ((-102 . -1179) T) ((-923 . -920) 64570) ((-793 . -694) 64512) ((-1189 . -1117) NIL) ((-473 . -920) 64457) ((-1029 . -141) T) ((-59 . -101) 64435) ((-44 . -593) 64417) ((-77 . -593) 64399) ((-344 . -624) 64344) ((-1237 . -1066) T) ((-502 . -823) T) ((-336 . -1078) T) ((-288 . -1066) T) ((-970 . -871) 64303) ((-288 . -590) 64282) ((-1217 . -38) 64179) ((-1210 . -38) 64020) ((-479 . -1025) T) ((-1189 . -38) 63816) ((-211 . -1025) T) ((-336 . -23) T) ((-150 . -593) 63798) ((-809 . -771) 63777) ((-809 . -768) 63756) ((-577 . -38) 63729) ((-576 . -38) 63626) ((-841 . -541) T) ((-217 . -130) T) ((-312 . -973) 63592) ((-78 . -593) 63574) ((-689 . -300) 63553) ((-287 . -703) 63455) ((-800 . -101) T) ((-836 . -817) T) ((-287 . -465) 63434) ((-1240 . -101) T) ((-40 . -356) T) ((-843 . -145) 63413) ((-843 . -143) 63392) ((-1124 . -481) 63374) ((-1249 . -1018) T) ((-474 . -505) 63307) ((-1112 . -1179) T) ((-935 . -593) 63289) ((-623 . -481) 63273) ((-610 . -481) 63204) ((-791 . -593) 62935) ((-48 . -27) T) ((-1144 . -694) 62832) ((-629 . -1066) T) ((-429 . -357) 62806) ((-1068 . -101) T) ((-792 . -302) 62793) ((-941 . -1066) T) ((-836 . -1066) T) ((-1245 . -375) 62765) ((-1022 . -505) 62698) ((-1125 . -279) 62674) ((-234 . -225) 62643) ((-1237 . -694) 62613) ((-1132 . -92) T) ((-965 . -92) T) ((-793 . -170) 62592) ((-221 . -505) 62525) ((-599 . -771) 62504) ((-599 . -768) 62483) ((-1176 . -593) 62395) ((-216 . -1179) T) ((-651 . -593) 62327) ((-1122 . -981) 62311) ((-344 . -703) T) ((-914 . -101) 62261) ((-1189 . -393) 62213) ((-1079 . -481) 62197) ((-59 . -302) 62135) ((-324 . -101) T) ((-1173 . -21) T) ((-1173 . -25) T) ((-40 . -1078) T) ((-688 . -21) T) ((-605 . -593) 62117) ((-506 . -316) 62096) ((-688 . -25) T) ((-107 . -279) NIL) ((-892 . -1078) T) ((-40 . -23) T) ((-747 . -1078) T) ((-549 . -1183) T) ((-486 . -1183) T) ((-312 . -593) 62078) ((-975 . -225) 62060) ((-167 . -164) 62044) ((-562 . -541) T) ((-549 . -541) T) ((-486 . -541) T) ((-747 . -23) T) ((-1209 . -145) 62023) ((-1125 . -584) 61999) ((-1209 . -143) 61978) ((-998 . -481) 61962) ((-1188 . -143) 61887) ((-1188 . -145) 61812) ((-1240 . -1246) 61791) ((-468 . -481) 61775) ((-455 . -481) 61759) ((-514 . -34) T) ((-629 . -694) 61729) ((-112 . -938) T) ((-638 . -823) 61708) ((-1144 . -170) 61659) ((-358 . -101) T) ((-234 . -232) 61638) ((-244 . -101) T) ((-243 . -101) T) ((-1198 . -920) 61607) ((-109 . -101) T) ((-239 . -823) 61586) ((-792 . -38) 61435) ((-45 . -505) 61227) ((-1124 . -279) 61202) ((-208 . -1066) T) ((-1116 . -1066) T) ((-1116 . -590) 61181) ((-567 . -25) T) ((-567 . -21) T) ((-1068 . -302) 61119) ((-934 . -404) 61103) ((-675 . -1183) T) ((-610 . -279) 61078) ((-1053 . -617) 61026) ((-758 . -617) 60974) ((-756 . -617) 60922) ((-336 . -130) T) ((-282 . -593) 60904) ((-675 . -541) T) ((-876 . -1066) T) ((-841 . -1078) T) ((-446 . -617) 60852) ((-876 . -874) 60836) ((-372 . -444) T) ((-479 . -1066) T) ((-677 . -624) 60823) ((-914 . -302) 60761) ((-211 . -1066) T) ((-309 . -891) 60740) ((-306 . -891) T) ((-306 . -796) NIL) ((-383 . -697) T) ((-841 . -23) T) ((-116 . -624) 60727) ((-466 . -143) 60706) ((-411 . -404) 60690) ((-466 . -145) 60669) ((-110 . -481) 60651) ((-2 . -593) 60633) ((-1124 . -19) 60615) ((-1124 . -584) 60590) ((-634 . -21) T) ((-634 . -25) T) ((-574 . -1110) T) ((-1079 . -279) 60567) ((-329 . -25) T) ((-329 . -21) T) ((-486 . -356) T) ((-1240 . -38) 60537) ((-1108 . -1179) T) ((-610 . -584) 60512) ((-1053 . -25) T) ((-1053 . -21) T) ((-521 . -768) T) ((-521 . -771) T) ((-117 . -1183) T) ((-934 . -1025) T) ((-601 . -541) T) ((-758 . -25) T) ((-758 . -21) T) ((-756 . -21) T) ((-756 . -25) T) ((-712 . -1025) T) ((-692 . -1025) T) ((-646 . -1024) 60496) ((-508 . -1049) T) ((-453 . -25) T) ((-117 . -541) T) ((-453 . -21) T) ((-446 . -25) T) ((-446 . -21) T) ((-1108 . -1009) 60392) ((-793 . -283) 60371) ((-799 . -1066) T) ((-937 . -938) T) ((-646 . -111) 60350) ((-288 . -505) 60142) ((-1247 . -1024) 60126) ((-1245 . -1024) 60110) ((-1209 . -1164) 60076) ((-244 . -302) 60014) ((-243 . -302) 59952) ((-1192 . -101) 59930) ((-1125 . -594) NIL) ((-1125 . -593) 59912) ((-1209 . -1167) 59878) ((-1189 . -225) 59830) ((-1188 . -1164) 59796) ((-95 . -92) T) ((-1188 . -1167) 59762) ((-1108 . -370) 59746) ((-1086 . -796) T) ((-1086 . -891) T) ((-1079 . -584) 59723) ((-1046 . -594) 59707) ((-476 . -593) 59639) ((-791 . -281) 59616) ((-588 . -149) 59563) ((-411 . -1025) T) ((-479 . -694) 59513) ((-474 . -481) 59497) ((-320 . -823) 59476) ((-332 . -624) 59450) ((-50 . -21) T) ((-50 . -25) T) ((-211 . -694) 59400) ((-167 . -701) 59371) ((-172 . -624) 59303) ((-563 . -21) T) ((-563 . -25) T) ((-509 . -25) T) ((-509 . -21) T) ((-467 . -149) 59253) ((-1046 . -593) 59235) ((-1028 . -593) 59217) ((-964 . -101) T) ((-834 . -101) T) ((-775 . -404) 59181) ((-40 . -130) T) ((-675 . -356) T) ((-206 . -866) T) ((-677 . -770) T) ((-677 . -767) T) ((-562 . -1078) T) ((-549 . -1078) T) ((-486 . -1078) T) ((-677 . -703) T) ((-352 . -593) 59163) ((-346 . -593) 59145) ((-338 . -593) 59127) ((-65 . -389) T) ((-65 . -388) T) ((-107 . -594) 59057) ((-107 . -593) 59039) ((-205 . -866) T) ((-929 . -149) 59023) ((-1209 . -94) 58989) ((-747 . -130) T) ((-133 . -703) T) ((-116 . -703) T) ((-1209 . -35) 58955) ((-1022 . -481) 58939) ((-562 . -23) T) ((-549 . -23) T) ((-486 . -23) T) ((-1188 . -94) 58905) ((-1188 . -35) 58871) ((-1138 . -101) T) ((-1091 . -101) T) ((-827 . -101) T) ((-221 . -481) 58855) ((-1247 . -111) 58834) ((-1245 . -111) 58813) ((-44 . -1024) 58797) ((-1198 . -1201) 58781) ((-828 . -825) 58765) ((-1144 . -283) 58744) ((-110 . -279) 58719) ((-1108 . -871) 58678) ((-44 . -111) 58657) ((-1147 . -1220) T) ((-1132 . -593) 58623) ((-646 . -1018) T) ((-1124 . -594) NIL) ((-1124 . -593) 58605) ((-1030 . -590) 58580) ((-1030 . -1066) T) ((-965 . -593) 58546) ((-73 . -433) T) ((-73 . -388) T) ((-646 . -227) 58525) ((-150 . -1024) 58509) ((-556 . -539) 58493) ((-348 . -145) 58472) ((-348 . -143) 58423) ((-345 . -145) 58402) ((-679 . -1066) T) ((-345 . -143) 58353) ((-337 . -145) 58332) ((-337 . -143) 58283) ((-257 . -143) 58262) ((-257 . -145) 58241) ((-244 . -38) 58211) ((-241 . -145) 58190) ((-117 . -356) T) ((-241 . -143) 58169) ((-243 . -38) 58139) ((-150 . -111) 58118) ((-974 . -1009) 58006) ((-1133 . -821) NIL) ((-670 . -1183) T) ((-775 . -1025) T) ((-675 . -1078) T) ((-1247 . -1018) T) ((-1245 . -1018) T) ((-1122 . -1179) T) ((-974 . -370) 57983) ((-881 . -143) T) ((-881 . -145) 57965) ((-841 . -130) T) ((-791 . -1024) 57862) ((-670 . -541) T) ((-675 . -23) T) ((-623 . -593) 57794) ((-623 . -594) 57755) ((-610 . -594) NIL) ((-610 . -593) 57737) ((-479 . -170) T) ((-217 . -21) T) ((-211 . -170) T) ((-217 . -25) T) ((-466 . -1167) 57703) ((-466 . -1164) 57669) ((-267 . -593) 57651) ((-266 . -593) 57633) ((-265 . -593) 57615) ((-264 . -593) 57597) ((-263 . -593) 57579) ((-491 . -627) 57561) ((-262 . -593) 57543) ((-332 . -703) T) ((-261 . -593) 57525) ((-110 . -19) 57507) ((-172 . -703) T) ((-491 . -366) 57489) ((-206 . -593) 57471) ((-511 . -1115) 57455) ((-491 . -123) T) ((-110 . -584) 57430) ((-205 . -593) 57412) ((-466 . -35) 57378) ((-466 . -94) 57344) ((-203 . -593) 57326) ((-202 . -593) 57308) ((-201 . -593) 57290) ((-200 . -593) 57272) ((-197 . -593) 57254) ((-196 . -593) 57236) ((-195 . -593) 57218) ((-194 . -593) 57200) ((-193 . -593) 57182) ((-192 . -593) 57164) ((-191 . -593) 57146) ((-525 . -1069) 57098) ((-190 . -593) 57080) ((-189 . -593) 57062) ((-45 . -481) 56999) ((-188 . -593) 56981) ((-187 . -593) 56963) ((-1081 . -101) T) ((-791 . -111) 56853) ((-621 . -101) 56803) ((-474 . -279) 56780) ((-1079 . -593) 56511) ((-1067 . -1066) T) ((-1015 . -1179) T) ((-1248 . -1009) 56495) ((-601 . -1078) T) ((-1138 . -302) 56482) ((-1101 . -1066) T) ((-1091 . -302) 56469) ((-1062 . -1049) T) ((-1056 . -1049) T) ((-1040 . -1049) T) ((-1033 . -1049) T) ((-1007 . -1049) T) ((-990 . -1049) T) ((-117 . -1078) T) ((-795 . -101) T) ((-604 . -1049) T) ((-601 . -23) T) ((-1116 . -505) 56261) ((-475 . -1049) T) ((-974 . -871) 56213) ((-379 . -101) T) ((-317 . -101) T) ((-212 . -1049) T) ((-934 . -1066) T) ((-150 . -1018) T) ((-117 . -23) T) ((-708 . -404) 56197) ((-712 . -1066) T) ((-692 . -1066) T) ((-679 . -131) T) ((-445 . -1066) T) ((-400 . -1179) T) ((-309 . -423) 56181) ((-573 . -92) T) ((-998 . -594) 56142) ((-995 . -1183) T) ((-219 . -101) T) ((-998 . -593) 56104) ((-792 . -225) 56088) ((-995 . -541) T) ((-809 . -624) 56061) ((-347 . -1183) T) ((-468 . -593) 56023) ((-468 . -594) 55984) ((-455 . -594) 55945) ((-455 . -593) 55907) ((-400 . -855) 55891) ((-312 . -1024) 55726) ((-400 . -857) 55651) ((-816 . -1009) 55547) ((-479 . -505) NIL) ((-474 . -584) 55524) ((-347 . -541) T) ((-211 . -505) NIL) ((-843 . -444) T) ((-411 . -1066) T) ((-400 . -1009) 55388) ((-312 . -111) 55209) ((-670 . -356) T) ((-219 . -277) T) ((-48 . -1183) T) ((-791 . -1018) 55139) ((-562 . -130) T) ((-549 . -130) T) ((-486 . -130) T) ((-48 . -541) T) ((-1125 . -281) 55115) ((-1138 . -1117) 55093) ((-309 . -27) 55072) ((-1029 . -101) T) ((-791 . -227) 55024) ((-234 . -821) 55003) ((-923 . -101) T) ((-690 . -101) T) ((-288 . -481) 54940) ((-473 . -101) T) ((-708 . -1025) T) ((-592 . -593) 54922) ((-592 . -594) 54783) ((-400 . -370) 54767) ((-400 . -331) 54751) ((-1138 . -38) 54580) ((-1091 . -38) 54429) ((-827 . -38) 54399) ((-383 . -624) 54383) ((-621 . -302) 54321) ((-934 . -694) 54218) ((-712 . -694) 54188) ((-216 . -106) 54172) ((-45 . -279) 54097) ((-599 . -624) 54071) ((-305 . -1066) T) ((-282 . -1024) 54058) ((-110 . -593) 54040) ((-110 . -594) 54022) ((-445 . -694) 53992) ((-792 . -246) 53931) ((-665 . -1066) 53909) ((-535 . -1066) T) ((-1140 . -1025) T) ((-1139 . -1025) T) ((-1133 . -1025) T) ((-282 . -111) 53894) ((-1092 . -1025) T) ((-535 . -590) 53873) ((-95 . -593) 53839) ((-975 . -821) T) ((-221 . -663) 53797) ((-670 . -1078) T) ((-1173 . -717) 53773) ((-312 . -1018) T) ((-336 . -25) T) ((-336 . -21) T) ((-400 . -871) 53732) ((-67 . -1179) T) ((-809 . -770) 53711) ((-411 . -694) 53685) ((-775 . -1066) T) ((-809 . -767) 53664) ((-675 . -130) T) ((-689 . -891) 53643) ((-670 . -23) T) ((-479 . -283) T) ((-809 . -703) 53622) ((-312 . -227) 53574) ((-312 . -237) 53553) ((-211 . -283) T) ((-995 . -356) T) ((-1209 . -444) 53532) ((-1188 . -444) 53511) ((-347 . -322) 53488) ((-347 . -356) T) ((-1106 . -593) 53470) ((-45 . -1213) 53420) ((-842 . -101) T) ((-621 . -275) 53404) ((-675 . -1027) T) ((-1236 . -101) T) ((-469 . -624) 53369) ((-460 . -1066) T) ((-45 . -584) 53294) ((-1235 . -101) T) ((-1124 . -281) 53269) ((-40 . -617) 53208) ((-48 . -356) T) ((-1072 . -593) 53190) ((-1053 . -823) 53169) ((-610 . -281) 53144) ((-758 . -823) 53123) ((-756 . -823) 53102) ((-474 . -593) 52833) ((-234 . -404) 52802) ((-923 . -302) 52789) ((-446 . -823) 52768) ((-64 . -1179) T) ((-1030 . -505) 52612) ((-601 . -130) T) ((-473 . -302) 52599) ((-586 . -1066) T) ((-117 . -130) T) ((-647 . -1066) T) ((-282 . -1018) T) ((-178 . -1066) T) ((-159 . -1066) T) ((-154 . -1066) T) ((-152 . -1066) T) ((-445 . -738) T) ((-31 . -1049) T) ((-934 . -170) 52550) ((-941 . -92) T) ((-1046 . -1024) 52460) ((-599 . -770) 52439) ((-574 . -1066) T) ((-599 . -767) 52418) ((-599 . -703) T) ((-288 . -279) 52397) ((-287 . -1179) T) ((-1022 . -593) 52359) ((-1022 . -594) 52320) ((-995 . -1078) T) ((-167 . -101) T) ((-268 . -823) T) ((-1131 . -1066) T) ((-794 . -593) 52302) ((-1079 . -281) 52279) ((-1068 . -223) 52263) ((-974 . -300) T) ((-775 . -694) 52247) ((-352 . -1024) 52199) ((-347 . -1078) T) ((-346 . -1024) 52151) ((-407 . -593) 52133) ((-378 . -593) 52115) ((-338 . -1024) 52067) ((-221 . -593) 51999) ((-1046 . -111) 51895) ((-995 . -23) T) ((-107 . -1024) 51845) ((-869 . -101) T) ((-814 . -101) T) ((-784 . -101) T) ((-745 . -101) T) ((-653 . -101) T) ((-466 . -444) 51824) ((-411 . -170) T) ((-352 . -111) 51762) ((-346 . -111) 51700) ((-338 . -111) 51638) ((-244 . -225) 51607) ((-243 . -225) 51576) ((-347 . -23) T) ((-70 . -1179) T) ((-219 . -38) 51541) ((-107 . -111) 51475) ((-40 . -25) T) ((-40 . -21) T) ((-646 . -697) T) ((-167 . -277) 51453) ((-48 . -1078) T) ((-892 . -25) T) ((-747 . -25) T) ((-1116 . -481) 51390) ((-477 . -1066) T) ((-1249 . -624) 51364) ((-1198 . -101) T) ((-828 . -101) T) ((-234 . -1025) 51294) ((-1029 . -1117) T) ((-935 . -768) 51247) ((-374 . -624) 51231) ((-48 . -23) T) ((-935 . -771) 51184) ((-791 . -771) 51135) ((-791 . -768) 51086) ((-288 . -584) 51065) ((-469 . -703) T) ((-556 . -101) T) ((-842 . -302) 51022) ((-629 . -279) 51001) ((-112 . -637) T) ((-75 . -1179) T) ((-1029 . -38) 50988) ((-640 . -367) 50967) ((-923 . -38) 50816) ((-708 . -1066) T) ((-473 . -38) 50665) ((-85 . -1179) T) ((-556 . -277) T) ((-1189 . -821) NIL) ((-573 . -593) 50631) ((-1140 . -1066) T) ((-1139 . -1066) T) ((-1133 . -1066) T) ((-344 . -1009) 50608) ((-1046 . -1018) T) ((-975 . -1025) T) ((-45 . -593) 50590) ((-45 . -594) NIL) ((-885 . -1025) T) ((-793 . -593) 50572) ((-1113 . -101) 50550) ((-1046 . -237) 50501) ((-420 . -1025) T) ((-352 . -1018) T) ((-346 . -1018) T) ((-358 . -357) 50478) ((-338 . -1018) T) ((-244 . -232) 50457) ((-243 . -232) 50436) ((-109 . -357) 50410) ((-1046 . -227) 50335) ((-1092 . -1066) T) ((-287 . -871) 50294) ((-107 . -1018) T) ((-670 . -130) T) ((-411 . -505) 50136) ((-352 . -227) 50115) ((-352 . -237) T) ((-44 . -697) T) ((-346 . -227) 50094) ((-346 . -237) T) ((-338 . -227) 50073) ((-338 . -237) T) ((-167 . -302) 50038) ((-107 . -237) T) ((-107 . -227) T) ((-312 . -768) T) ((-841 . -21) T) ((-841 . -25) T) ((-400 . -300) T) ((-491 . -34) T) ((-110 . -281) 50013) ((-1079 . -1024) 49910) ((-842 . -1117) NIL) ((-323 . -593) 49892) ((-400 . -993) 49871) ((-1079 . -111) 49761) ((-667 . -1220) T) ((-429 . -1066) T) ((-1249 . -703) T) ((-62 . -593) 49743) ((-842 . -38) 49688) ((-514 . -1179) T) ((-582 . -149) 49672) ((-503 . -593) 49654) ((-1198 . -302) 49641) ((-708 . -694) 49490) ((-521 . -769) T) ((-521 . -770) T) ((-549 . -617) 49472) ((-486 . -617) 49432) ((-348 . -444) T) ((-345 . -444) T) ((-337 . -444) T) ((-257 . -444) 49383) ((-516 . -1066) T) ((-511 . -1066) 49333) ((-241 . -444) 49284) ((-1116 . -279) 49263) ((-1144 . -593) 49245) ((-665 . -505) 49178) ((-934 . -283) 49157) ((-535 . -505) 48949) ((-1138 . -225) 48933) ((-167 . -1117) 48912) ((-1237 . -593) 48894) ((-1140 . -694) 48791) ((-1139 . -694) 48632) ((-863 . -101) T) ((-1133 . -694) 48428) ((-1092 . -694) 48325) ((-1122 . -650) 48309) ((-348 . -395) 48260) ((-345 . -395) 48211) ((-337 . -395) 48162) ((-995 . -130) T) ((-775 . -505) 48074) ((-288 . -594) NIL) ((-288 . -593) 48056) ((-881 . -444) T) ((-935 . -361) 48009) ((-791 . -361) 47988) ((-501 . -500) 47967) ((-499 . -500) 47946) ((-479 . -279) NIL) ((-474 . -281) 47923) ((-411 . -283) T) ((-347 . -130) T) ((-211 . -279) NIL) ((-670 . -484) NIL) ((-98 . -1078) T) ((-167 . -38) 47751) ((-1209 . -944) 47713) ((-1113 . -302) 47651) ((-1188 . -944) 47620) ((-881 . -395) T) ((-1079 . -1018) 47550) ((-1211 . -541) T) ((-1116 . -584) 47529) ((-112 . -823) T) ((-1030 . -481) 47460) ((-562 . -21) T) ((-562 . -25) T) ((-549 . -21) T) ((-549 . -25) T) ((-486 . -25) T) ((-486 . -21) T) ((-1198 . -1117) 47438) ((-1079 . -227) 47390) ((-48 . -130) T) ((-1160 . -101) T) ((-234 . -1066) 47180) ((-842 . -393) 47157) ((-1054 . -101) T) ((-1042 . -101) T) ((-588 . -101) T) ((-467 . -101) T) ((-1198 . -38) 46986) ((-828 . -38) 46956) ((-708 . -170) 46867) ((-629 . -593) 46849) ((-622 . -1049) T) ((-556 . -38) 46836) ((-941 . -593) 46802) ((-929 . -101) 46752) ((-836 . -593) 46734) ((-836 . -594) 46656) ((-574 . -505) NIL) ((-1217 . -1025) T) ((-1210 . -1025) T) ((-1189 . -1025) T) ((-577 . -1025) T) ((-576 . -1025) T) ((-1253 . -1078) T) ((-1140 . -170) 46607) ((-1139 . -170) 46538) ((-1133 . -170) 46469) ((-1092 . -170) 46420) ((-975 . -1066) T) ((-942 . -1066) T) ((-885 . -1066) T) ((-1173 . -145) 46399) ((-775 . -773) 46383) ((-675 . -25) T) ((-675 . -21) T) ((-117 . -617) 46360) ((-677 . -857) 46342) ((-420 . -1066) T) ((-309 . -1183) 46321) ((-306 . -1183) T) ((-167 . -393) 46305) ((-1173 . -143) 46284) ((-466 . -944) 46246) ((-128 . -1066) T) ((-71 . -593) 46228) ((-107 . -771) T) ((-107 . -768) T) ((-309 . -541) 46207) ((-677 . -1009) 46189) ((-306 . -541) T) ((-1253 . -23) T) ((-133 . -1009) 46171) ((-474 . -1024) 46068) ((-45 . -281) 45993) ((-234 . -694) 45935) ((-508 . -101) T) ((-474 . -111) 45825) ((-1058 . -101) 45803) ((-1005 . -101) T) ((-621 . -804) 45782) ((-708 . -505) 45725) ((-1022 . -1024) 45709) ((-1101 . -92) T) ((-1030 . -279) 45684) ((-601 . -21) T) ((-601 . -25) T) ((-515 . -1066) T) ((-354 . -101) T) ((-315 . -101) T) ((-646 . -624) 45658) ((-378 . -1024) 45642) ((-1022 . -111) 45621) ((-792 . -404) 45605) ((-117 . -25) T) ((-88 . -593) 45587) ((-117 . -21) T) ((-588 . -302) 45382) ((-467 . -302) 45186) ((-1116 . -594) NIL) ((-378 . -111) 45165) ((-372 . -101) T) ((-208 . -593) 45147) ((-1116 . -593) 45129) ((-975 . -694) 45079) ((-1133 . -505) 44848) ((-885 . -694) 44800) ((-1092 . -505) 44770) ((-344 . -300) T) ((-1152 . -149) 44720) ((-929 . -302) 44658) ((-810 . -101) T) ((-420 . -694) 44642) ((-219 . -804) T) ((-803 . -101) T) ((-801 . -101) T) ((-471 . -149) 44592) ((-1209 . -1208) 44571) ((-1086 . -1183) T) ((-332 . -1009) 44538) ((-1209 . -1203) 44508) ((-1209 . -1206) 44492) ((-1188 . -1187) 44471) ((-79 . -593) 44453) ((-876 . -593) 44435) ((-1188 . -1203) 44412) ((-1086 . -541) T) ((-892 . -823) T) ((-747 . -823) T) ((-479 . -594) 44342) ((-479 . -593) 44324) ((-372 . -277) T) ((-648 . -823) T) ((-1188 . -1185) 44308) ((-1211 . -1078) T) ((-211 . -594) 44238) ((-211 . -593) 44220) ((-1030 . -584) 44195) ((-58 . -149) 44179) ((-507 . -149) 44163) ((-487 . -149) 44147) ((-352 . -1244) 44131) ((-346 . -1244) 44115) ((-338 . -1244) 44099) ((-309 . -356) 44078) ((-306 . -356) T) ((-474 . -1018) 44008) ((-670 . -617) 43990) ((-1247 . -624) 43964) ((-1245 . -624) 43938) ((-1211 . -23) T) ((-665 . -481) 43922) ((-63 . -593) 43904) ((-1079 . -771) 43855) ((-1079 . -768) 43806) ((-535 . -481) 43743) ((-646 . -34) T) ((-474 . -227) 43695) ((-288 . -281) 43674) ((-234 . -170) 43653) ((-792 . -1025) T) ((-44 . -624) 43611) ((-1046 . -361) 43562) ((-708 . -283) 43493) ((-511 . -505) 43426) ((-793 . -1024) 43377) ((-1053 . -143) 43356) ((-352 . -361) 43335) ((-346 . -361) 43314) ((-338 . -361) 43293) ((-1053 . -145) 43272) ((-842 . -225) 43249) ((-793 . -111) 43191) ((-758 . -143) 43170) ((-758 . -145) 43149) ((-257 . -920) 43116) ((-244 . -821) 43095) ((-241 . -920) 43040) ((-243 . -821) 43019) ((-756 . -143) 42998) ((-756 . -145) 42977) ((-150 . -624) 42951) ((-446 . -145) 42930) ((-446 . -143) 42909) ((-646 . -703) T) ((-799 . -593) 42891) ((-1217 . -1066) T) ((-1210 . -1066) T) ((-1189 . -1066) T) ((-1173 . -1167) 42857) ((-1173 . -1164) 42823) ((-1140 . -283) 42802) ((-1139 . -283) 42753) ((-1133 . -283) 42704) ((-1092 . -283) 42683) ((-332 . -871) 42664) ((-975 . -170) T) ((-885 . -170) T) ((-577 . -1066) T) ((-576 . -1066) T) ((-670 . -21) T) ((-670 . -25) T) ((-466 . -1206) 42648) ((-466 . -1203) 42618) ((-411 . -279) 42546) ((-309 . -1078) 42395) ((-306 . -1078) T) ((-1173 . -35) 42361) ((-1173 . -94) 42327) ((-83 . -593) 42309) ((-90 . -101) 42287) ((-1253 . -130) T) ((-563 . -143) T) ((-563 . -145) 42269) ((-509 . -145) 42251) ((-509 . -143) T) ((-309 . -23) 42103) ((-40 . -335) 42077) ((-306 . -23) T) ((-1124 . -627) 42059) ((-1240 . -1025) T) ((-1124 . -366) 42041) ((-791 . -624) 41889) ((-1062 . -101) T) ((-1056 . -101) T) ((-1040 . -101) T) ((-167 . -225) 41873) ((-1033 . -101) T) ((-1007 . -101) T) ((-990 . -101) T) ((-574 . -481) 41855) ((-604 . -101) T) ((-234 . -505) 41788) ((-475 . -101) T) ((-1247 . -703) T) ((-1245 . -703) T) ((-212 . -101) T) ((-1144 . -1024) 41671) ((-1144 . -111) 41540) ((-793 . -1018) T) ((-657 . -1049) T) ((-652 . -1049) T) ((-506 . -101) T) ((-501 . -101) T) ((-48 . -617) 41500) ((-499 . -101) T) ((-470 . -1049) T) ((-1237 . -1024) 41470) ((-137 . -1049) T) ((-136 . -1049) T) ((-132 . -1049) T) ((-1005 . -38) 41454) ((-793 . -227) T) ((-793 . -237) 41433) ((-1237 . -111) 41398) ((-1217 . -694) 41295) ((-535 . -279) 41274) ((-1210 . -694) 41115) ((-1198 . -225) 41099) ((-586 . -92) T) ((-1030 . -594) NIL) ((-1030 . -593) 41081) ((-647 . -92) T) ((-178 . -92) T) ((-159 . -92) T) ((-154 . -92) T) ((-152 . -92) T) ((-1189 . -694) 40877) ((-974 . -891) T) ((-679 . -593) 40846) ((-150 . -703) T) ((-1079 . -361) 40825) ((-975 . -505) NIL) ((-244 . -404) 40794) ((-243 . -404) 40763) ((-995 . -25) T) ((-995 . -21) T) ((-577 . -694) 40736) ((-576 . -694) 40633) ((-775 . -279) 40591) ((-126 . -101) 40569) ((-809 . -1009) 40465) ((-167 . -804) 40444) ((-312 . -624) 40341) ((-791 . -34) T) ((-691 . -101) T) ((-1086 . -1078) T) ((-128 . -505) NIL) ((-997 . -1179) T) ((-372 . -38) 40306) ((-347 . -25) T) ((-347 . -21) T) ((-160 . -101) T) ((-155 . -101) T) ((-348 . -1232) 40290) ((-345 . -1232) 40274) ((-337 . -1232) 40258) ((-167 . -342) 40237) ((-549 . -823) T) ((-486 . -823) T) ((-1086 . -23) T) ((-86 . -593) 40219) ((-677 . -300) T) ((-810 . -38) 40189) ((-803 . -38) 40159) ((-1211 . -130) T) ((-1116 . -281) 40138) ((-935 . -769) 40091) ((-935 . -770) 40044) ((-791 . -767) 40023) ((-116 . -300) T) ((-90 . -302) 39961) ((-651 . -34) T) ((-535 . -584) 39940) ((-48 . -25) T) ((-48 . -21) T) ((-791 . -770) 39891) ((-791 . -769) 39870) ((-677 . -993) T) ((-629 . -1024) 39854) ((-935 . -703) 39753) ((-791 . -703) 39663) ((-935 . -465) 39616) ((-474 . -771) 39567) ((-474 . -768) 39518) ((-881 . -1232) 39505) ((-1144 . -1018) T) ((-629 . -111) 39484) ((-1144 . -319) 39461) ((-1165 . -101) 39439) ((-1067 . -593) 39421) ((-677 . -534) T) ((-792 . -1066) T) ((-1237 . -1018) T) ((-406 . -1066) T) ((-1101 . -593) 39387) ((-244 . -1025) 39317) ((-243 . -1025) 39247) ((-282 . -624) 39234) ((-574 . -279) 39209) ((-665 . -663) 39167) ((-934 . -593) 39149) ((-843 . -101) T) ((-712 . -593) 39131) ((-692 . -593) 39113) ((-1217 . -170) 39064) ((-1210 . -170) 38995) ((-1189 . -170) 38926) ((-675 . -823) T) ((-975 . -283) T) ((-445 . -593) 38908) ((-605 . -703) T) ((-59 . -1066) 38886) ((-239 . -149) 38870) ((-885 . -283) T) ((-995 . -983) T) ((-605 . -465) T) ((-689 . -1183) 38849) ((-577 . -170) 38828) ((-576 . -170) 38779) ((-1225 . -823) 38758) ((-689 . -541) 38669) ((-400 . -891) T) ((-400 . -796) 38648) ((-312 . -770) T) ((-312 . -703) T) ((-411 . -593) 38630) ((-411 . -594) 38538) ((-621 . -1115) 38522) ((-110 . -627) 38504) ((-172 . -300) T) ((-126 . -302) 38442) ((-110 . -366) 38424) ((-391 . -1179) T) ((-309 . -130) 38295) ((-306 . -130) T) ((-68 . -388) T) ((-110 . -123) T) ((-511 . -481) 38279) ((-630 . -1078) T) ((-574 . -19) 38261) ((-60 . -433) T) ((-60 . -388) T) ((-800 . -1066) T) ((-574 . -584) 38236) ((-469 . -1009) 38196) ((-629 . -1018) T) ((-630 . -23) T) ((-1240 . -1066) T) ((-31 . -101) T) ((-792 . -694) 38045) ((-117 . -823) NIL) ((-1138 . -404) 38029) ((-1091 . -404) 38013) ((-827 . -404) 37997) ((-844 . -101) 37948) ((-1209 . -101) T) ((-1189 . -505) 37717) ((-516 . -92) T) ((-1165 . -302) 37655) ((-305 . -593) 37637) ((-1188 . -101) T) ((-1068 . -1066) T) ((-1140 . -279) 37622) ((-1139 . -279) 37607) ((-282 . -703) T) ((-107 . -880) NIL) ((-665 . -593) 37539) ((-665 . -594) 37500) ((-1046 . -624) 37410) ((-581 . -593) 37392) ((-535 . -594) NIL) ((-535 . -593) 37374) ((-1133 . -279) 37222) ((-479 . -1024) 37172) ((-688 . -444) T) ((-502 . -500) 37151) ((-498 . -500) 37130) ((-211 . -1024) 37080) ((-352 . -624) 37032) ((-346 . -624) 36984) ((-219 . -821) T) ((-338 . -624) 36936) ((-582 . -101) 36886) ((-474 . -361) 36865) ((-107 . -624) 36815) ((-479 . -111) 36749) ((-234 . -481) 36733) ((-336 . -145) 36715) ((-336 . -143) T) ((-167 . -363) 36686) ((-914 . -1223) 36670) ((-211 . -111) 36604) ((-843 . -302) 36569) ((-914 . -1066) 36519) ((-775 . -594) 36480) ((-775 . -593) 36462) ((-695 . -101) T) ((-324 . -1066) T) ((-1086 . -130) T) ((-691 . -38) 36432) ((-309 . -484) 36411) ((-491 . -1179) T) ((-1209 . -277) 36377) ((-1188 . -277) 36343) ((-320 . -149) 36327) ((-1030 . -281) 36302) ((-1240 . -694) 36272) ((-1125 . -34) T) ((-1249 . -1009) 36249) ((-460 . -593) 36231) ((-476 . -34) T) ((-374 . -1009) 36215) ((-1138 . -1025) T) ((-1091 . -1025) T) ((-827 . -1025) T) ((-1029 . -821) T) ((-792 . -170) 36126) ((-511 . -279) 36103) ((-128 . -481) 36085) ((-1217 . -283) 36064) ((-117 . -963) 36041) ((-1210 . -283) 35992) ((-1160 . -357) 35966) ((-1054 . -259) 35950) ((-647 . -593) 35916) ((-586 . -593) 35866) ((-466 . -101) T) ((-178 . -593) 35832) ((-159 . -593) 35798) ((-154 . -593) 35764) ((-358 . -1066) T) ((-244 . -1066) T) ((-243 . -1066) T) ((-152 . -593) 35730) ((-109 . -1066) T) ((-1189 . -283) 35681) ((-843 . -1117) 35659) ((-1140 . -973) 35625) ((-588 . -357) 35565) ((-1139 . -973) 35531) ((-588 . -223) 35478) ((-574 . -593) 35460) ((-574 . -594) NIL) ((-670 . -823) T) ((-467 . -223) 35410) ((-479 . -1018) T) ((-1133 . -973) 35376) ((-87 . -432) T) ((-87 . -388) T) ((-211 . -1018) T) ((-1092 . -973) 35342) ((-1046 . -703) T) ((-689 . -1078) T) ((-577 . -283) 35321) ((-576 . -283) 35300) ((-479 . -237) T) ((-479 . -227) T) ((-211 . -237) T) ((-211 . -227) T) ((-1131 . -593) 35282) ((-843 . -38) 35234) ((-352 . -703) T) ((-346 . -703) T) ((-338 . -703) T) ((-107 . -770) T) ((-107 . -767) T) ((-511 . -1213) 35218) ((-107 . -703) T) ((-689 . -23) T) ((-1253 . -25) T) ((-466 . -277) 35184) ((-1253 . -21) T) ((-1188 . -302) 35123) ((-1142 . -101) T) ((-40 . -143) 35095) ((-40 . -145) 35067) ((-511 . -584) 35044) ((-1079 . -624) 34892) ((-582 . -302) 34830) ((-45 . -627) 34780) ((-45 . -642) 34730) ((-45 . -366) 34680) ((-1124 . -34) T) ((-842 . -821) NIL) ((-630 . -130) T) ((-477 . -593) 34662) ((-234 . -279) 34639) ((-623 . -34) T) ((-610 . -34) T) ((-1053 . -444) 34590) ((-792 . -505) 34464) ((-758 . -444) 34395) ((-756 . -444) 34346) ((-446 . -444) 34297) ((-923 . -404) 34281) ((-708 . -593) 34263) ((-244 . -694) 34205) ((-243 . -694) 34147) ((-708 . -594) 34008) ((-473 . -404) 33992) ((-332 . -295) T) ((-515 . -92) T) ((-344 . -891) T) ((-971 . -101) 33970) ((-995 . -823) T) ((-59 . -505) 33903) ((-1188 . -1117) 33855) ((-975 . -279) NIL) ((-219 . -1025) T) ((-372 . -804) T) ((-1079 . -34) T) ((-1192 . -1059) 33839) ((-563 . -444) T) ((-509 . -444) T) ((-1192 . -1066) 33817) ((-1192 . -1061) 33774) ((-234 . -584) 33751) ((-1140 . -593) 33733) ((-1139 . -593) 33715) ((-1133 . -593) 33697) ((-1133 . -594) NIL) ((-1092 . -593) 33679) ((-128 . -279) 33654) ((-843 . -393) 33638) ((-525 . -101) T) ((-1209 . -38) 33479) ((-1188 . -38) 33293) ((-841 . -145) T) ((-563 . -395) T) ((-48 . -823) T) ((-509 . -395) T) ((-1221 . -101) T) ((-1211 . -21) T) ((-1211 . -25) T) ((-1079 . -767) 33272) ((-1079 . -770) 33223) ((-1079 . -769) 33202) ((-964 . -1066) T) ((-998 . -34) T) ((-834 . -1066) T) ((-1079 . -703) 33112) ((-640 . -101) T) ((-622 . -101) T) ((-535 . -281) 33091) ((-1152 . -101) T) ((-468 . -34) T) ((-455 . -34) T) ((-348 . -101) T) ((-345 . -101) T) ((-337 . -101) T) ((-257 . -101) T) ((-241 . -101) T) ((-469 . -300) T) ((-1029 . -1025) T) ((-923 . -1025) T) ((-309 . -617) 32997) ((-306 . -617) 32958) ((-473 . -1025) T) ((-471 . -101) T) ((-429 . -593) 32940) ((-1138 . -1066) T) ((-1091 . -1066) T) ((-827 . -1066) T) ((-1107 . -101) T) ((-792 . -283) 32871) ((-934 . -1024) 32754) ((-469 . -993) T) ((-128 . -19) 32736) ((-712 . -1024) 32706) ((-128 . -584) 32681) ((-445 . -1024) 32651) ((-1113 . -1087) 32635) ((-1068 . -505) 32568) ((-934 . -111) 32437) ((-881 . -101) T) ((-712 . -111) 32402) ((-516 . -593) 32368) ((-58 . -101) 32318) ((-511 . -594) 32279) ((-511 . -593) 32191) ((-510 . -101) 32169) ((-507 . -101) 32119) ((-488 . -101) 32097) ((-487 . -101) 32047) ((-445 . -111) 32010) ((-244 . -170) 31989) ((-243 . -170) 31968) ((-411 . -1024) 31942) ((-1173 . -944) 31904) ((-970 . -1078) T) ((-914 . -505) 31837) ((-479 . -771) T) ((-466 . -38) 31678) ((-411 . -111) 31645) ((-479 . -768) T) ((-971 . -302) 31583) ((-211 . -771) T) ((-211 . -768) T) ((-970 . -23) T) ((-689 . -130) T) ((-1188 . -393) 31553) ((-309 . -25) 31405) ((-167 . -404) 31389) ((-309 . -21) 31260) ((-306 . -25) T) ((-306 . -21) T) ((-836 . -361) T) ((-110 . -34) T) ((-474 . -624) 31108) ((-842 . -1025) T) ((-574 . -281) 31083) ((-562 . -145) T) ((-549 . -145) T) ((-486 . -145) T) ((-1138 . -694) 30912) ((-1091 . -694) 30761) ((-1086 . -617) 30743) ((-827 . -694) 30713) ((-646 . -1179) T) ((-1 . -101) T) ((-234 . -593) 30444) ((-1081 . -1066) T) ((-1198 . -404) 30428) ((-1152 . -302) 30232) ((-934 . -1018) T) ((-712 . -1018) T) ((-692 . -1018) T) ((-621 . -1066) 30182) ((-1022 . -624) 30166) ((-828 . -404) 30150) ((-502 . -101) T) ((-498 . -101) T) ((-241 . -302) 30137) ((-257 . -302) 30124) ((-934 . -319) 30103) ((-378 . -624) 30087) ((-471 . -302) 29891) ((-244 . -505) 29824) ((-646 . -1009) 29720) ((-243 . -505) 29653) ((-1107 . -302) 29579) ((-795 . -1066) T) ((-775 . -1024) 29563) ((-1217 . -279) 29548) ((-1210 . -279) 29533) ((-1189 . -279) 29381) ((-379 . -1066) T) ((-317 . -1066) T) ((-411 . -1018) T) ((-167 . -1025) T) ((-58 . -302) 29319) ((-775 . -111) 29298) ((-576 . -279) 29283) ((-510 . -302) 29221) ((-507 . -302) 29159) ((-488 . -302) 29097) ((-487 . -302) 29035) ((-411 . -227) 29014) ((-474 . -34) T) ((-975 . -594) 28944) ((-219 . -1066) T) ((-975 . -593) 28926) ((-942 . -593) 28908) ((-942 . -594) 28883) ((-885 . -593) 28865) ((-675 . -145) T) ((-677 . -891) T) ((-677 . -796) T) ((-420 . -593) 28847) ((-1086 . -21) T) ((-128 . -594) NIL) ((-128 . -593) 28829) ((-1086 . -25) T) ((-646 . -370) 28813) ((-116 . -891) T) ((-843 . -225) 28797) ((-77 . -1179) T) ((-126 . -125) 28781) ((-1022 . -34) T) ((-1247 . -1009) 28755) ((-1245 . -1009) 28712) ((-1198 . -1025) T) ((-828 . -1025) T) ((-474 . -767) 28691) ((-348 . -1117) 28670) ((-345 . -1117) 28649) ((-337 . -1117) 28628) ((-474 . -770) 28579) ((-474 . -769) 28558) ((-221 . -34) T) ((-474 . -703) 28468) ((-59 . -481) 28452) ((-556 . -1025) T) ((-1138 . -170) 28343) ((-1091 . -170) 28254) ((-1029 . -1066) T) ((-1053 . -920) 28199) ((-923 . -1066) T) ((-793 . -624) 28150) ((-758 . -920) 28119) ((-690 . -1066) T) ((-756 . -920) 28086) ((-507 . -275) 28070) ((-646 . -871) 28029) ((-473 . -1066) T) ((-446 . -920) 27996) ((-78 . -1179) T) ((-348 . -38) 27961) ((-345 . -38) 27926) ((-337 . -38) 27891) ((-257 . -38) 27740) ((-241 . -38) 27589) ((-881 . -1117) T) ((-601 . -145) 27568) ((-601 . -143) 27547) ((-515 . -593) 27513) ((-117 . -145) T) ((-117 . -143) NIL) ((-407 . -703) T) ((-775 . -1018) T) ((-336 . -444) T) ((-1217 . -973) 27479) ((-1210 . -973) 27445) ((-1189 . -973) 27411) ((-881 . -38) 27376) ((-219 . -694) 27341) ((-312 . -47) 27311) ((-40 . -402) 27283) ((-138 . -593) 27265) ((-970 . -130) T) ((-791 . -1179) T) ((-172 . -891) T) ((-336 . -395) T) ((-511 . -281) 27242) ((-791 . -1009) 27069) ((-45 . -34) T) ((-657 . -101) T) ((-652 . -101) T) ((-638 . -101) T) ((-630 . -21) T) ((-630 . -25) T) ((-1188 . -225) 27039) ((-1068 . -481) 27023) ((-470 . -101) T) ((-651 . -1179) T) ((-239 . -101) 26973) ((-137 . -101) T) ((-136 . -101) T) ((-132 . -101) T) ((-842 . -1066) T) ((-1144 . -624) 26898) ((-1029 . -694) 26885) ((-708 . -1024) 26728) ((-1138 . -505) 26675) ((-923 . -694) 26524) ((-1091 . -505) 26476) ((-1236 . -1066) T) ((-1235 . -1066) T) ((-473 . -694) 26325) ((-66 . -593) 26307) ((-708 . -111) 26136) ((-914 . -481) 26120) ((-1237 . -624) 26080) ((-793 . -703) T) ((-1140 . -1024) 25963) ((-1139 . -1024) 25798) ((-1133 . -1024) 25588) ((-1092 . -1024) 25471) ((-974 . -1183) T) ((-1060 . -101) 25449) ((-791 . -370) 25418) ((-974 . -541) T) ((-1140 . -111) 25287) ((-1139 . -111) 25108) ((-1133 . -111) 24877) ((-1092 . -111) 24746) ((-1071 . -1069) 24710) ((-372 . -821) T) ((-1217 . -593) 24692) ((-1210 . -593) 24674) ((-1189 . -593) 24656) ((-1189 . -594) NIL) ((-234 . -281) 24633) ((-40 . -444) T) ((-219 . -170) T) ((-167 . -1066) T) ((-670 . -145) T) ((-670 . -143) NIL) ((-577 . -593) 24615) ((-576 . -593) 24597) ((-869 . -1066) T) ((-814 . -1066) T) ((-784 . -1066) T) ((-745 . -1066) T) ((-634 . -825) 24581) ((-653 . -1066) T) ((-791 . -871) 24513) ((-40 . -395) NIL) ((-1086 . -637) T) ((-842 . -694) 24458) ((-244 . -481) 24442) ((-243 . -481) 24426) ((-689 . -617) 24374) ((-629 . -624) 24348) ((-288 . -34) T) ((-708 . -1018) T) ((-563 . -1232) 24335) ((-509 . -1232) 24312) ((-1198 . -1066) T) ((-1138 . -283) 24223) ((-1091 . -283) 24154) ((-1029 . -170) T) ((-828 . -1066) T) ((-923 . -170) 24065) ((-758 . -1201) 24049) ((-621 . -505) 23982) ((-76 . -593) 23964) ((-708 . -319) 23929) ((-1144 . -703) T) ((-556 . -1066) T) ((-473 . -170) 23840) ((-239 . -302) 23778) ((-128 . -281) 23753) ((-1108 . -1078) T) ((-69 . -593) 23735) ((-1237 . -703) T) ((-1140 . -1018) T) ((-1139 . -1018) T) ((-320 . -101) 23685) ((-1133 . -1018) T) ((-1108 . -23) T) ((-1092 . -1018) T) ((-90 . -1087) 23669) ((-837 . -1078) T) ((-1140 . -227) 23628) ((-1139 . -237) 23607) ((-1139 . -227) 23559) ((-1133 . -227) 23446) ((-1133 . -237) 23425) ((-312 . -871) 23331) ((-837 . -23) T) ((-167 . -694) 23159) ((-400 . -1183) T) ((-1067 . -361) T) ((-995 . -145) T) ((-974 . -356) T) ((-841 . -444) T) ((-914 . -279) 23136) ((-309 . -823) T) ((-306 . -823) NIL) ((-845 . -101) T) ((-689 . -25) T) ((-400 . -541) T) ((-689 . -21) T) ((-347 . -145) 23118) ((-347 . -143) T) ((-1113 . -1066) 23096) ((-445 . -697) T) ((-74 . -593) 23078) ((-114 . -823) T) ((-239 . -275) 23062) ((-234 . -1024) 22959) ((-80 . -593) 22941) ((-712 . -361) 22894) ((-1142 . -804) T) ((-714 . -229) 22878) ((-1125 . -1179) T) ((-139 . -229) 22860) ((-234 . -111) 22750) ((-1198 . -694) 22579) ((-48 . -145) T) ((-842 . -170) T) ((-828 . -694) 22549) ((-476 . -1179) T) ((-923 . -505) 22496) ((-629 . -703) T) ((-556 . -694) 22483) ((-1005 . -1025) T) ((-473 . -505) 22426) ((-914 . -19) 22410) ((-914 . -584) 22387) ((-792 . -594) NIL) ((-792 . -593) 22369) ((-975 . -1024) 22319) ((-406 . -593) 22301) ((-244 . -279) 22278) ((-243 . -279) 22255) ((-479 . -880) NIL) ((-309 . -29) 22225) ((-107 . -1179) T) ((-974 . -1078) T) ((-211 . -880) NIL) ((-885 . -1024) 22177) ((-1046 . -1009) 22073) ((-975 . -111) 22007) ((-714 . -671) 21991) ((-257 . -225) 21975) ((-420 . -1024) 21959) ((-372 . -1025) T) ((-974 . -23) T) ((-885 . -111) 21897) ((-670 . -1167) NIL) ((-479 . -624) 21847) ((-107 . -855) 21829) ((-107 . -857) 21811) ((-670 . -1164) NIL) ((-211 . -624) 21761) ((-352 . -1009) 21745) ((-346 . -1009) 21729) ((-320 . -302) 21667) ((-338 . -1009) 21651) ((-219 . -283) T) ((-420 . -111) 21630) ((-59 . -593) 21562) ((-167 . -170) T) ((-1086 . -823) T) ((-107 . -1009) 21522) ((-863 . -1066) T) ((-810 . -1025) T) ((-803 . -1025) T) ((-670 . -35) NIL) ((-670 . -94) NIL) ((-306 . -963) 21483) ((-181 . -101) T) ((-562 . -444) T) ((-549 . -444) T) ((-486 . -444) T) ((-400 . -356) T) ((-234 . -1018) 21413) ((-1116 . -34) T) ((-469 . -891) T) ((-970 . -617) 21361) ((-244 . -584) 21338) ((-243 . -584) 21315) ((-1046 . -370) 21299) ((-842 . -505) 21207) ((-234 . -227) 21159) ((-1124 . -1179) T) ((-800 . -593) 21141) ((-1248 . -1078) T) ((-1240 . -593) 21123) ((-1198 . -170) 21014) ((-107 . -370) 20996) ((-107 . -331) 20978) ((-1029 . -283) T) ((-923 . -283) 20909) ((-775 . -361) 20888) ((-623 . -1179) T) ((-610 . -1179) T) ((-473 . -283) 20819) ((-556 . -170) T) ((-320 . -275) 20803) ((-1248 . -23) T) ((-1173 . -101) T) ((-1160 . -1066) T) ((-1054 . -1066) T) ((-1042 . -1066) T) ((-82 . -593) 20785) ((-688 . -101) T) ((-348 . -342) 20764) ((-588 . -1066) T) ((-345 . -342) 20743) ((-337 . -342) 20722) ((-467 . -1066) T) ((-1152 . -223) 20672) ((-257 . -246) 20634) ((-1108 . -130) T) ((-588 . -590) 20610) ((-1046 . -871) 20543) ((-975 . -1018) T) ((-885 . -1018) T) ((-467 . -590) 20522) ((-1133 . -768) NIL) ((-1133 . -771) NIL) ((-1068 . -594) 20483) ((-471 . -223) 20433) ((-1068 . -593) 20415) ((-975 . -237) T) ((-975 . -227) T) ((-420 . -1018) T) ((-929 . -1066) 20365) ((-885 . -237) T) ((-837 . -130) T) ((-675 . -444) T) ((-816 . -1078) 20344) ((-107 . -871) NIL) ((-1173 . -277) 20310) ((-843 . -821) 20289) ((-1079 . -1179) T) ((-876 . -703) T) ((-167 . -505) 20201) ((-970 . -25) T) ((-876 . -465) T) ((-400 . -1078) T) ((-479 . -770) T) ((-479 . -767) T) ((-881 . -342) T) ((-479 . -703) T) ((-211 . -770) T) ((-211 . -767) T) ((-970 . -21) T) ((-211 . -703) T) ((-816 . -23) 20153) ((-312 . -300) 20132) ((-1006 . -229) 20078) ((-400 . -23) T) ((-914 . -594) 20039) ((-914 . -593) 19951) ((-621 . -481) 19935) ((-45 . -981) 19885) ((-596 . -938) T) ((-482 . -101) T) ((-324 . -593) 19867) ((-1079 . -1009) 19694) ((-574 . -627) 19676) ((-574 . -366) 19658) ((-336 . -1232) 19635) ((-998 . -1179) T) ((-842 . -283) T) ((-1198 . -505) 19582) ((-468 . -1179) T) ((-455 . -1179) T) ((-567 . -101) T) ((-1138 . -279) 19509) ((-601 . -444) 19488) ((-971 . -966) 19472) ((-1240 . -375) 19444) ((-508 . -1066) T) ((-117 . -444) T) ((-1159 . -101) T) ((-1058 . -1066) 19422) ((-1005 . -1066) T) ((-1081 . -92) T) ((-864 . -823) T) ((-344 . -1183) T) ((-1217 . -1024) 19305) ((-1079 . -370) 19274) ((-1210 . -1024) 19109) ((-1189 . -1024) 18899) ((-1217 . -111) 18768) ((-1210 . -111) 18589) ((-1189 . -111) 18358) ((-1173 . -302) 18345) ((-344 . -541) T) ((-358 . -593) 18327) ((-282 . -300) T) ((-577 . -1024) 18300) ((-576 . -1024) 18183) ((-354 . -1066) T) ((-315 . -1066) T) ((-244 . -593) 18144) ((-243 . -593) 18105) ((-974 . -130) T) ((-109 . -593) 18087) ((-613 . -23) T) ((-670 . -402) 18054) ((-587 . -23) T) ((-634 . -101) T) ((-577 . -111) 18025) ((-576 . -111) 17894) ((-372 . -1066) T) ((-329 . -101) T) ((-167 . -283) 17805) ((-1188 . -821) 17758) ((-691 . -1025) T) ((-1113 . -505) 17691) ((-1079 . -871) 17623) ((-810 . -1066) T) ((-803 . -1066) T) ((-801 . -1066) T) ((-96 . -101) T) ((-142 . -823) T) ((-592 . -855) 17607) ((-110 . -1179) T) ((-1053 . -101) T) ((-1030 . -34) T) ((-758 . -101) T) ((-756 . -101) T) ((-453 . -101) T) ((-446 . -101) T) ((-234 . -771) 17558) ((-234 . -768) 17509) ((-625 . -101) T) ((-1198 . -283) 17420) ((-640 . -612) 17404) ((-621 . -279) 17381) ((-1005 . -694) 17365) ((-556 . -283) T) ((-934 . -624) 17290) ((-1248 . -130) T) ((-712 . -624) 17250) ((-692 . -624) 17237) ((-268 . -101) T) ((-445 . -624) 17167) ((-50 . -101) T) ((-563 . -101) T) ((-509 . -101) T) ((-1217 . -1018) T) ((-1210 . -1018) T) ((-1189 . -1018) T) ((-1217 . -227) 17126) ((-315 . -694) 17108) ((-1210 . -237) 17087) ((-1210 . -227) 17039) ((-1189 . -227) 16926) ((-1189 . -237) 16905) ((-1173 . -38) 16802) ((-975 . -771) T) ((-577 . -1018) T) ((-576 . -1018) T) ((-975 . -768) T) ((-942 . -771) T) ((-942 . -768) T) ((-843 . -1025) T) ((-841 . -840) 16786) ((-108 . -593) 16768) ((-670 . -444) T) ((-372 . -694) 16733) ((-411 . -624) 16707) ((-689 . -823) 16686) ((-688 . -38) 16651) ((-576 . -227) 16610) ((-40 . -701) 16582) ((-344 . -322) 16559) ((-344 . -356) T) ((-1046 . -300) 16510) ((-287 . -1078) 16391) ((-1072 . -1179) T) ((-169 . -101) T) ((-1192 . -593) 16358) ((-816 . -130) 16310) ((-621 . -1213) 16294) ((-810 . -694) 16264) ((-803 . -694) 16234) ((-474 . -1179) T) ((-352 . -300) T) ((-346 . -300) T) ((-338 . -300) T) ((-621 . -584) 16211) ((-400 . -130) T) ((-511 . -642) 16195) ((-107 . -300) T) ((-287 . -23) 16078) ((-511 . -627) 16062) ((-670 . -395) NIL) ((-511 . -366) 16046) ((-284 . -593) 16028) ((-90 . -1066) 16006) ((-107 . -993) T) ((-549 . -141) T) ((-1225 . -149) 15990) ((-474 . -1009) 15817) ((-1211 . -143) 15778) ((-1211 . -145) 15739) ((-1022 . -1179) T) ((-964 . -593) 15721) ((-834 . -593) 15703) ((-792 . -1024) 15546) ((-1062 . -1066) T) ((-1056 . -1066) T) ((-1053 . -302) 15533) ((-1040 . -1066) T) ((-221 . -1179) T) ((-1033 . -1066) T) ((-1007 . -1066) T) ((-990 . -1066) T) ((-758 . -302) 15520) ((-756 . -302) 15507) ((-1236 . -92) T) ((-792 . -111) 15336) ((-1235 . -92) T) ((-604 . -1066) T) ((-1138 . -594) NIL) ((-1138 . -593) 15318) ((-446 . -302) 15305) ((-475 . -1066) T) ((-1091 . -593) 15287) ((-1091 . -594) 15035) ((-1005 . -170) T) ((-212 . -1066) T) ((-827 . -593) 15017) ((-914 . -281) 14994) ((-588 . -505) 14777) ((-794 . -1009) 14761) ((-467 . -505) 14553) ((-934 . -703) T) ((-712 . -703) T) ((-692 . -703) T) ((-344 . -1078) T) ((-1145 . -593) 14535) ((-217 . -101) T) ((-474 . -370) 14504) ((-506 . -1066) T) ((-501 . -1066) T) ((-499 . -1066) T) ((-775 . -624) 14478) ((-995 . -444) T) ((-929 . -505) 14411) ((-344 . -23) T) ((-613 . -130) T) ((-587 . -130) T) ((-347 . -444) T) ((-234 . -361) 14390) ((-372 . -170) T) ((-1209 . -1025) T) ((-1188 . -1025) T) ((-219 . -973) T) ((-675 . -380) T) ((-411 . -703) T) ((-677 . -1183) T) ((-1108 . -617) 14338) ((-562 . -840) 14322) ((-1125 . -1155) 14298) ((-677 . -541) T) ((-126 . -1066) 14276) ((-1240 . -1024) 14260) ((-691 . -1066) T) ((-474 . -871) 14192) ((-634 . -38) 14162) ((-347 . -395) T) ((-309 . -145) 14141) ((-309 . -143) 14120) ((-116 . -541) T) ((-306 . -145) 14076) ((-306 . -143) 14032) ((-48 . -444) T) ((-160 . -1066) T) ((-155 . -1066) T) ((-1125 . -106) 13979) ((-758 . -1117) 13957) ((-665 . -34) T) ((-1240 . -111) 13936) ((-535 . -34) T) ((-476 . -106) 13920) ((-244 . -281) 13897) ((-243 . -281) 13874) ((-842 . -279) 13825) ((-45 . -1179) T) ((-792 . -1018) T) ((-1144 . -47) 13802) ((-792 . -319) 13764) ((-1053 . -38) 13613) ((-792 . -227) 13592) ((-758 . -38) 13421) ((-756 . -38) 13270) ((-128 . -627) 13252) ((-446 . -38) 13101) ((-128 . -366) 13083) ((-1081 . -593) 13049) ((-1084 . -101) T) ((-621 . -594) 13010) ((-621 . -593) 12922) ((-563 . -1117) T) ((-509 . -1117) T) ((-1113 . -481) 12906) ((-1165 . -1066) 12884) ((-1108 . -25) T) ((-1108 . -21) T) ((-466 . -1025) T) ((-1189 . -768) NIL) ((-1189 . -771) NIL) ((-970 . -823) 12863) ((-795 . -593) 12845) ((-837 . -21) T) ((-837 . -25) T) ((-775 . -703) T) ((-172 . -1183) T) ((-563 . -38) 12810) ((-509 . -38) 12775) ((-379 . -593) 12757) ((-317 . -593) 12739) ((-167 . -279) 12697) ((-62 . -1179) T) ((-112 . -101) T) ((-843 . -1066) T) ((-172 . -541) T) ((-691 . -694) 12667) ((-287 . -130) 12550) ((-219 . -593) 12532) ((-219 . -594) 12462) ((-974 . -617) 12401) ((-1240 . -1018) T) ((-1086 . -145) T) ((-610 . -1155) 12376) ((-708 . -880) 12355) ((-574 . -34) T) ((-623 . -106) 12339) ((-610 . -106) 12285) ((-1198 . -279) 12212) ((-708 . -624) 12137) ((-288 . -1179) T) ((-1144 . -1009) 12033) ((-1133 . -880) NIL) ((-1029 . -594) 11948) ((-1029 . -593) 11930) ((-923 . -593) 11912) ((-336 . -101) T) ((-244 . -1024) 11809) ((-243 . -1024) 11706) ((-387 . -101) T) ((-31 . -1066) T) ((-923 . -594) 11567) ((-690 . -593) 11549) ((-1238 . -1172) 11518) ((-473 . -593) 11500) ((-473 . -594) 11361) ((-241 . -404) 11345) ((-257 . -404) 11329) ((-244 . -111) 11219) ((-243 . -111) 11109) ((-1140 . -624) 11034) ((-1139 . -624) 10931) ((-1133 . -624) 10783) ((-1092 . -624) 10708) ((-344 . -130) T) ((-81 . -433) T) ((-81 . -388) T) ((-974 . -25) T) ((-974 . -21) T) ((-844 . -1066) 10659) ((-843 . -694) 10611) ((-372 . -283) T) ((-167 . -973) 10563) ((-670 . -380) T) ((-970 . -968) 10547) ((-677 . -1078) T) ((-670 . -164) 10529) ((-1209 . -1066) T) ((-1188 . -1066) T) ((-309 . -1164) 10508) ((-309 . -1167) 10487) ((-1130 . -101) T) ((-309 . -930) 10466) ((-133 . -1078) T) ((-116 . -1078) T) ((-582 . -1223) 10450) ((-677 . -23) T) ((-582 . -1066) 10400) ((-90 . -505) 10333) ((-172 . -356) T) ((-309 . -94) 10312) ((-309 . -35) 10291) ((-588 . -481) 10225) ((-133 . -23) T) ((-116 . -23) T) ((-937 . -101) T) ((-695 . -1066) T) ((-467 . -481) 10162) ((-400 . -617) 10110) ((-629 . -1009) 10006) ((-929 . -481) 9990) ((-348 . -1025) T) ((-345 . -1025) T) ((-337 . -1025) T) ((-257 . -1025) T) ((-241 . -1025) T) ((-842 . -594) NIL) ((-842 . -593) 9972) ((-1248 . -21) T) ((-1236 . -593) 9938) ((-1235 . -593) 9904) ((-556 . -973) T) ((-708 . -703) T) ((-1248 . -25) T) ((-244 . -1018) 9834) ((-243 . -1018) 9764) ((-71 . -1179) T) ((-244 . -227) 9716) ((-243 . -227) 9668) ((-40 . -101) T) ((-881 . -1025) T) ((-1147 . -101) T) ((-1140 . -703) T) ((-1139 . -703) T) ((-1133 . -703) T) ((-1133 . -767) NIL) ((-1133 . -770) NIL) ((-925 . -101) T) ((-892 . -101) T) ((-1092 . -703) T) ((-747 . -101) T) ((-648 . -101) T) ((-466 . -1066) T) ((-332 . -1078) T) ((-172 . -1078) T) ((-312 . -891) 9647) ((-1209 . -694) 9488) ((-843 . -170) T) ((-1188 . -694) 9302) ((-816 . -21) 9254) ((-816 . -25) 9206) ((-239 . -1115) 9190) ((-126 . -505) 9123) ((-400 . -25) T) ((-400 . -21) T) ((-332 . -23) T) ((-167 . -594) 8891) ((-167 . -593) 8873) ((-172 . -23) T) ((-621 . -281) 8850) ((-511 . -34) T) ((-869 . -593) 8832) ((-88 . -1179) T) ((-814 . -593) 8814) ((-784 . -593) 8796) ((-745 . -593) 8778) ((-653 . -593) 8760) ((-234 . -624) 8608) ((-1142 . -1066) T) ((-1138 . -1024) 8431) ((-1116 . -1179) T) ((-1091 . -1024) 8274) ((-827 . -1024) 8258) ((-1138 . -111) 8067) ((-1091 . -111) 7896) ((-827 . -111) 7875) ((-1198 . -594) NIL) ((-1198 . -593) 7857) ((-336 . -1117) T) ((-828 . -593) 7839) ((-1042 . -279) 7818) ((-79 . -1179) T) ((-975 . -880) NIL) ((-588 . -279) 7794) ((-1165 . -505) 7727) ((-479 . -1179) T) ((-556 . -593) 7709) ((-467 . -279) 7688) ((-508 . -92) T) ((-211 . -1179) T) ((-1053 . -225) 7672) ((-282 . -891) T) ((-793 . -300) 7651) ((-841 . -101) T) ((-758 . -225) 7635) ((-975 . -624) 7585) ((-929 . -279) 7562) ((-885 . -624) 7514) ((-613 . -21) T) ((-613 . -25) T) ((-587 . -21) T) ((-336 . -38) 7479) ((-670 . -701) 7446) ((-479 . -855) 7428) ((-479 . -857) 7410) ((-466 . -694) 7251) ((-211 . -855) 7233) ((-63 . -1179) T) ((-211 . -857) 7215) ((-587 . -25) T) ((-420 . -624) 7189) ((-479 . -1009) 7149) ((-843 . -505) 7061) ((-211 . -1009) 7021) ((-234 . -34) T) ((-971 . -1066) 6999) ((-1209 . -170) 6930) ((-1188 . -170) 6861) ((-689 . -143) 6840) ((-689 . -145) 6819) ((-677 . -130) T) ((-135 . -457) 6796) ((-634 . -632) 6780) ((-1113 . -593) 6712) ((-116 . -130) T) ((-469 . -1183) T) ((-588 . -584) 6688) ((-467 . -584) 6667) ((-329 . -328) 6636) ((-525 . -1066) T) ((-469 . -541) T) ((-1138 . -1018) T) ((-1091 . -1018) T) ((-827 . -1018) T) ((-234 . -767) 6615) ((-234 . -770) 6566) ((-234 . -769) 6545) ((-1138 . -319) 6522) ((-234 . -703) 6432) ((-929 . -19) 6416) ((-479 . -370) 6398) ((-479 . -331) 6380) ((-1091 . -319) 6352) ((-347 . -1232) 6329) ((-211 . -370) 6311) ((-211 . -331) 6293) ((-929 . -584) 6270) ((-1138 . -227) T) ((-640 . -1066) T) ((-622 . -1066) T) ((-1221 . -1066) T) ((-1152 . -1066) T) ((-1053 . -246) 6207) ((-348 . -1066) T) ((-345 . -1066) T) ((-337 . -1066) T) ((-257 . -1066) T) ((-241 . -1066) T) ((-83 . -1179) T) ((-127 . -101) 6185) ((-121 . -101) 6163) ((-128 . -34) T) ((-1152 . -590) 6142) ((-471 . -1066) T) ((-1107 . -1066) T) ((-471 . -590) 6121) ((-244 . -771) 6072) ((-244 . -768) 6023) ((-243 . -771) 5974) ((-40 . -1117) NIL) ((-243 . -768) 5925) ((-1046 . -891) 5876) ((-975 . -770) T) ((-975 . -767) T) ((-975 . -703) T) ((-942 . -770) T) ((-885 . -703) T) ((-90 . -481) 5860) ((-479 . -871) NIL) ((-881 . -1066) T) ((-219 . -1024) 5825) ((-843 . -283) T) ((-211 . -871) NIL) ((-809 . -1078) 5804) ((-58 . -1066) 5754) ((-510 . -1066) 5732) ((-507 . -1066) 5682) ((-488 . -1066) 5660) ((-487 . -1066) 5610) ((-562 . -101) T) ((-549 . -101) T) ((-486 . -101) T) ((-466 . -170) 5541) ((-352 . -891) T) ((-346 . -891) T) ((-338 . -891) T) ((-219 . -111) 5497) ((-809 . -23) 5449) ((-420 . -703) T) ((-107 . -891) T) ((-40 . -38) 5394) ((-107 . -796) T) ((-563 . -342) T) ((-509 . -342) T) ((-1188 . -505) 5254) ((-309 . -444) 5233) ((-306 . -444) T) ((-810 . -279) 5212) ((-332 . -130) T) ((-172 . -130) T) ((-287 . -25) 5076) ((-287 . -21) 4959) ((-45 . -1155) 4938) ((-65 . -593) 4920) ((-863 . -593) 4902) ((-582 . -505) 4835) ((-45 . -106) 4785) ((-1068 . -418) 4769) ((-1068 . -361) 4748) ((-1030 . -1179) T) ((-1029 . -1024) 4735) ((-923 . -1024) 4578) ((-1226 . -101) T) ((-1225 . -101) 4528) ((-473 . -1024) 4371) ((-640 . -694) 4355) ((-1029 . -111) 4340) ((-923 . -111) 4169) ((-469 . -356) T) ((-348 . -694) 4121) ((-345 . -694) 4073) ((-337 . -694) 4025) ((-257 . -694) 3874) ((-241 . -694) 3723) ((-1217 . -624) 3648) ((-1189 . -880) NIL) ((-1062 . -92) T) ((-1056 . -92) T) ((-914 . -627) 3632) ((-1040 . -92) T) ((-473 . -111) 3461) ((-1033 . -92) T) ((-1007 . -92) T) ((-914 . -366) 3445) ((-242 . -101) T) ((-990 . -92) T) ((-73 . -593) 3427) ((-934 . -47) 3406) ((-599 . -1078) T) ((-1 . -1066) T) ((-687 . -101) T) ((-675 . -101) T) ((-1210 . -624) 3303) ((-604 . -92) T) ((-1160 . -593) 3285) ((-1054 . -593) 3267) ((-126 . -481) 3251) ((-475 . -92) T) ((-1042 . -593) 3233) ((-383 . -23) T) ((-86 . -1179) T) ((-212 . -92) T) ((-1189 . -624) 3085) ((-881 . -694) 3050) ((-599 . -23) T) ((-588 . -593) 3032) ((-588 . -594) NIL) ((-467 . -594) NIL) ((-467 . -593) 3014) ((-502 . -1066) T) ((-498 . -1066) T) ((-344 . -25) T) ((-344 . -21) T) ((-127 . -302) 2952) ((-121 . -302) 2890) ((-577 . -624) 2877) ((-219 . -1018) T) ((-576 . -624) 2802) ((-372 . -973) T) ((-219 . -237) T) ((-219 . -227) T) ((-929 . -594) 2763) ((-929 . -593) 2675) ((-841 . -38) 2662) ((-1209 . -283) 2613) ((-1188 . -283) 2564) ((-1086 . -444) T) ((-493 . -823) T) ((-309 . -1105) 2543) ((-970 . -145) 2522) ((-970 . -143) 2501) ((-486 . -302) 2488) ((-288 . -1155) 2467) ((-469 . -1078) T) ((-842 . -1024) 2412) ((-601 . -101) T) ((-1165 . -481) 2396) ((-244 . -361) 2375) ((-243 . -361) 2354) ((-288 . -106) 2304) ((-1029 . -1018) T) ((-117 . -101) T) ((-923 . -1018) T) ((-842 . -111) 2233) ((-469 . -23) T) ((-473 . -1018) T) ((-1029 . -227) T) ((-923 . -319) 2202) ((-473 . -319) 2159) ((-348 . -170) T) ((-345 . -170) T) ((-337 . -170) T) ((-257 . -170) 2070) ((-241 . -170) 1981) ((-934 . -1009) 1877) ((-712 . -1009) 1848) ((-508 . -593) 1814) ((-1071 . -101) T) ((-1058 . -593) 1781) ((-1005 . -593) 1763) ((-1217 . -703) T) ((-1210 . -703) T) ((-1189 . -767) NIL) ((-167 . -1024) 1673) ((-1189 . -770) NIL) ((-881 . -170) T) ((-1189 . -703) T) ((-1238 . -149) 1657) ((-974 . -335) 1631) ((-971 . -505) 1564) ((-816 . -823) 1543) ((-549 . -1117) T) ((-466 . -283) 1494) ((-577 . -703) T) ((-354 . -593) 1476) ((-315 . -593) 1458) ((-411 . -1009) 1354) ((-576 . -703) T) ((-400 . -823) 1305) ((-167 . -111) 1201) ((-809 . -130) 1153) ((-714 . -149) 1137) ((-1225 . -302) 1075) ((-479 . -300) T) ((-372 . -593) 1042) ((-511 . -981) 1026) ((-372 . -594) 940) ((-211 . -300) T) ((-139 . -149) 922) ((-691 . -279) 901) ((-479 . -993) T) ((-562 . -38) 888) ((-549 . -38) 875) ((-486 . -38) 840) ((-211 . -993) T) ((-842 . -1018) T) ((-810 . -593) 822) ((-803 . -593) 804) ((-801 . -593) 786) ((-792 . -880) 765) ((-1249 . -1078) T) ((-1198 . -1024) 588) ((-828 . -1024) 572) ((-842 . -237) T) ((-842 . -227) NIL) ((-665 . -1179) T) ((-1249 . -23) T) ((-792 . -624) 497) ((-535 . -1179) T) ((-411 . -331) 481) ((-556 . -1024) 468) ((-1198 . -111) 277) ((-677 . -617) 259) ((-828 . -111) 238) ((-374 . -23) T) ((-1152 . -505) 30) ((-638 . -1066) T) ((-657 . -1066) T) ((-652 . -1066) T)) \ No newline at end of file
+((($) . T))
+((((-835)) . T))
+((($) . T))
+(((-1253 . -170) T) ((-1253 . -703) T) ((-1253 . -1078) T) ((-1253 . -1025) T) ((-1253 . -1018) T) ((-1253 . -624) 144993) ((-1253 . -130) T) ((-1253 . -25) T) ((-1253 . -101) T) ((-1253 . -593) 144975) ((-1253 . -1067) T) ((-1253 . -23) T) ((-1253 . -21) T) ((-1253 . -1024) 144962) ((-1253 . -111) 144947) ((-1253 . -361) T) ((-1253 . -594) 144929) ((-1253 . -1117) T) ((-1249 . -1247) 144908) ((-1249 . -1009) 144885) ((-1249 . -1018) T) ((-1249 . -1025) T) ((-1249 . -1078) T) ((-1249 . -703) T) ((-1249 . -21) T) ((-1249 . -23) T) ((-1249 . -1067) T) ((-1249 . -593) 144867) ((-1249 . -101) T) ((-1249 . -25) T) ((-1249 . -130) T) ((-1249 . -624) 144841) ((-1249 . -1239) 144825) ((-1249 . -694) 144795) ((-1249 . -1024) 144779) ((-1249 . -111) 144758) ((-1249 . -38) 144728) ((-1249 . -1244) 144707) ((-1248 . -1018) T) ((-1248 . -1025) T) ((-1248 . -1078) T) ((-1248 . -703) T) ((-1248 . -21) T) ((-1248 . -23) T) ((-1248 . -1067) T) ((-1248 . -593) 144689) ((-1248 . -101) T) ((-1248 . -25) T) ((-1248 . -130) T) ((-1248 . -624) 144663) ((-1248 . -1239) 144647) ((-1248 . -694) 144617) ((-1248 . -1024) 144601) ((-1248 . -111) 144580) ((-1248 . -38) 144550) ((-1248 . -377) 144529) ((-1248 . -1009) 144513) ((-1246 . -1247) 144489) ((-1246 . -1009) 144463) ((-1246 . -1018) T) ((-1246 . -1025) T) ((-1246 . -1078) T) ((-1246 . -703) T) ((-1246 . -21) T) ((-1246 . -23) T) ((-1246 . -1067) T) ((-1246 . -593) 144445) ((-1246 . -101) T) ((-1246 . -25) T) ((-1246 . -130) T) ((-1246 . -624) 144419) ((-1246 . -1239) 144403) ((-1246 . -694) 144373) ((-1246 . -1024) 144357) ((-1246 . -111) 144336) ((-1246 . -38) 144306) ((-1246 . -1244) 144282) ((-1245 . -1247) 144261) ((-1245 . -1009) 144218) ((-1245 . -1018) T) ((-1245 . -1025) T) ((-1245 . -1078) T) ((-1245 . -703) T) ((-1245 . -21) T) ((-1245 . -23) T) ((-1245 . -1067) T) ((-1245 . -593) 144200) ((-1245 . -101) T) ((-1245 . -25) T) ((-1245 . -130) T) ((-1245 . -624) 144174) ((-1245 . -1239) 144158) ((-1245 . -694) 144128) ((-1245 . -1024) 144112) ((-1245 . -111) 144091) ((-1245 . -38) 144061) ((-1245 . -1244) 144040) ((-1245 . -377) 144012) ((-1240 . -377) 143984) ((-1240 . -1009) 143961) ((-1240 . -694) 143931) ((-1240 . -624) 143905) ((-1240 . -130) T) ((-1240 . -25) T) ((-1240 . -101) T) ((-1240 . -593) 143887) ((-1240 . -1067) T) ((-1240 . -23) T) ((-1240 . -21) T) ((-1240 . -1024) 143871) ((-1240 . -111) 143850) ((-1240 . -1247) 143829) ((-1240 . -1018) T) ((-1240 . -1025) T) ((-1240 . -1078) T) ((-1240 . -703) T) ((-1240 . -1239) 143813) ((-1240 . -38) 143783) ((-1240 . -1244) 143762) ((-1238 . -1173) 143731) ((-1238 . -593) 143693) ((-1238 . -149) 143677) ((-1238 . -34) T) ((-1238 . -1178) T) ((-1238 . -302) 143615) ((-1238 . -505) 143548) ((-1238 . -1067) T) ((-1238 . -101) T) ((-1238 . -481) 143532) ((-1238 . -594) 143493) ((-1238 . -947) 143462) ((-1237 . -1018) T) ((-1237 . -1025) T) ((-1237 . -1078) T) ((-1237 . -703) T) ((-1237 . -21) T) ((-1237 . -23) T) ((-1237 . -1067) T) ((-1237 . -593) 143444) ((-1237 . -101) T) ((-1237 . -25) T) ((-1237 . -130) T) ((-1237 . -624) 143404) ((-1237 . -38) 143374) ((-1237 . -111) 143339) ((-1237 . -1024) 143309) ((-1237 . -694) 143279) ((-1236 . -1049) T) ((-1236 . -593) 143245) ((-1236 . -1067) T) ((-1236 . -101) T) ((-1236 . -92) T) ((-1235 . -1049) T) ((-1235 . -593) 143211) ((-1235 . -1067) T) ((-1235 . -101) T) ((-1235 . -92) T) ((-1228 . -1067) T) ((-1228 . -593) 143193) ((-1228 . -101) T) ((-1227 . -1067) T) ((-1227 . -593) 143175) ((-1227 . -101) T) ((-1224 . -1223) 143159) ((-1224 . -365) 143143) ((-1224 . -823) 143122) ((-1224 . -149) 143106) ((-1224 . -34) T) ((-1224 . -1178) T) ((-1224 . -593) 143018) ((-1224 . -302) 142956) ((-1224 . -505) 142889) ((-1224 . -1067) 142839) ((-1224 . -101) 142789) ((-1224 . -481) 142773) ((-1224 . -594) 142734) ((-1224 . -584) 142711) ((-1224 . -279) 142688) ((-1224 . -281) 142665) ((-1224 . -627) 142649) ((-1224 . -19) 142633) ((-1221 . -1067) T) ((-1221 . -593) 142599) ((-1221 . -101) T) ((-1214 . -1217) 142583) ((-1214 . -227) 142542) ((-1214 . -624) 142467) ((-1214 . -130) T) ((-1214 . -25) T) ((-1214 . -101) T) ((-1214 . -593) 142449) ((-1214 . -1067) T) ((-1214 . -23) T) ((-1214 . -21) T) ((-1214 . -703) T) ((-1214 . -1078) T) ((-1214 . -1025) T) ((-1214 . -1018) T) ((-1214 . -279) 142434) ((-1214 . -871) 142347) ((-1214 . -944) 142316) ((-1214 . -38) 142213) ((-1214 . -111) 142082) ((-1214 . -1024) 141965) ((-1214 . -694) 141862) ((-1214 . -143) 141841) ((-1214 . -145) 141820) ((-1214 . -170) 141771) ((-1214 . -542) 141750) ((-1214 . -283) 141729) ((-1214 . -47) 141706) ((-1214 . -1203) 141683) ((-1214 . -35) 141649) ((-1214 . -94) 141615) ((-1214 . -277) 141581) ((-1214 . -484) 141547) ((-1214 . -1167) 141513) ((-1214 . -1164) 141479) ((-1214 . -973) 141445) ((-1211 . -319) 141389) ((-1211 . -1009) 141355) ((-1211 . -405) 141321) ((-1211 . -38) 141213) ((-1211 . -624) 141118) ((-1211 . -703) T) ((-1211 . -1078) T) ((-1211 . -1025) T) ((-1211 . -1018) T) ((-1211 . -111) 141010) ((-1211 . -1024) 140915) ((-1211 . -21) T) ((-1211 . -23) T) ((-1211 . -1067) T) ((-1211 . -593) 140897) ((-1211 . -101) T) ((-1211 . -25) T) ((-1211 . -130) T) ((-1211 . -694) 140789) ((-1211 . -143) 140750) ((-1211 . -145) 140711) ((-1211 . -170) T) ((-1211 . -542) T) ((-1211 . -283) T) ((-1211 . -47) 140655) ((-1210 . -1209) 140634) ((-1210 . -356) 140613) ((-1210 . -1183) 140592) ((-1210 . -892) 140571) ((-1210 . -542) 140522) ((-1210 . -170) 140453) ((-1210 . -694) 140294) ((-1210 . -38) 140135) ((-1210 . -444) 140114) ((-1210 . -300) 140093) ((-1210 . -624) 139990) ((-1210 . -703) T) ((-1210 . -1078) T) ((-1210 . -1025) T) ((-1210 . -1018) T) ((-1210 . -111) 139811) ((-1210 . -1024) 139646) ((-1210 . -21) T) ((-1210 . -23) T) ((-1210 . -1067) T) ((-1210 . -593) 139628) ((-1210 . -101) T) ((-1210 . -25) T) ((-1210 . -130) T) ((-1210 . -283) 139579) ((-1210 . -237) 139558) ((-1210 . -973) 139524) ((-1210 . -1164) 139490) ((-1210 . -1167) 139456) ((-1210 . -484) 139422) ((-1210 . -277) 139388) ((-1210 . -94) 139354) ((-1210 . -35) 139320) ((-1210 . -1203) 139290) ((-1210 . -47) 139260) ((-1210 . -145) 139239) ((-1210 . -143) 139218) ((-1210 . -944) 139180) ((-1210 . -871) 139086) ((-1210 . -279) 139071) ((-1210 . -227) 139023) ((-1210 . -1207) 139007) ((-1210 . -1009) 138991) ((-1205 . -1209) 138952) ((-1205 . -356) 138931) ((-1205 . -1183) 138910) ((-1205 . -892) 138889) ((-1205 . -542) 138840) ((-1205 . -170) 138771) ((-1205 . -694) 138612) ((-1205 . -38) 138453) ((-1205 . -444) 138432) ((-1205 . -300) 138411) ((-1205 . -624) 138308) ((-1205 . -703) T) ((-1205 . -1078) T) ((-1205 . -1025) T) ((-1205 . -1018) T) ((-1205 . -111) 138129) ((-1205 . -1024) 137964) ((-1205 . -21) T) ((-1205 . -23) T) ((-1205 . -1067) T) ((-1205 . -593) 137946) ((-1205 . -101) T) ((-1205 . -25) T) ((-1205 . -130) T) ((-1205 . -283) 137897) ((-1205 . -237) 137876) ((-1205 . -973) 137842) ((-1205 . -1164) 137808) ((-1205 . -1167) 137774) ((-1205 . -484) 137740) ((-1205 . -277) 137706) ((-1205 . -94) 137672) ((-1205 . -35) 137638) ((-1205 . -1203) 137608) ((-1205 . -47) 137578) ((-1205 . -145) 137557) ((-1205 . -143) 137536) ((-1205 . -944) 137498) ((-1205 . -871) 137404) ((-1205 . -279) 137389) ((-1205 . -227) 137341) ((-1205 . -1207) 137325) ((-1205 . -1009) 137260) ((-1193 . -1200) 137244) ((-1193 . -1117) 137222) ((-1193 . -594) NIL) ((-1193 . -302) 137209) ((-1193 . -505) 137156) ((-1193 . -319) 137133) ((-1193 . -1009) 137013) ((-1193 . -405) 136997) ((-1193 . -38) 136826) ((-1193 . -111) 136635) ((-1193 . -1024) 136458) ((-1193 . -624) 136383) ((-1193 . -694) 136212) ((-1193 . -143) 136191) ((-1193 . -145) 136170) ((-1193 . -47) 136147) ((-1193 . -370) 136131) ((-1193 . -617) 136079) ((-1193 . -823) 136058) ((-1193 . -871) 136001) ((-1193 . -857) NIL) ((-1193 . -881) 135980) ((-1193 . -1183) 135959) ((-1193 . -921) 135928) ((-1193 . -892) 135907) ((-1193 . -542) 135818) ((-1193 . -283) 135729) ((-1193 . -170) 135620) ((-1193 . -444) 135551) ((-1193 . -300) 135530) ((-1193 . -279) 135457) ((-1193 . -227) T) ((-1193 . -130) T) ((-1193 . -25) T) ((-1193 . -101) T) ((-1193 . -593) 135439) ((-1193 . -1067) T) ((-1193 . -23) T) ((-1193 . -21) T) ((-1193 . -703) T) ((-1193 . -1078) T) ((-1193 . -1025) T) ((-1193 . -1018) T) ((-1193 . -225) 135423) ((-1191 . -1060) 135407) ((-1191 . -1178) T) ((-1191 . -1067) 135385) ((-1191 . -593) 135352) ((-1191 . -101) 135330) ((-1191 . -1061) 135287) ((-1189 . -1188) 135266) ((-1189 . -973) 135232) ((-1189 . -1164) 135198) ((-1189 . -1167) 135164) ((-1189 . -484) 135130) ((-1189 . -277) 135096) ((-1189 . -94) 135062) ((-1189 . -35) 135028) ((-1189 . -1203) 135005) ((-1189 . -47) 134982) ((-1189 . -694) 134796) ((-1189 . -624) 134666) ((-1189 . -1024) 134474) ((-1189 . -111) 134263) ((-1189 . -38) 134077) ((-1189 . -944) 134046) ((-1189 . -279) 133966) ((-1189 . -1186) 133950) ((-1189 . -703) T) ((-1189 . -1078) T) ((-1189 . -1025) T) ((-1189 . -1018) T) ((-1189 . -21) T) ((-1189 . -23) T) ((-1189 . -1067) T) ((-1189 . -593) 133932) ((-1189 . -101) T) ((-1189 . -25) T) ((-1189 . -130) T) ((-1189 . -143) 133857) ((-1189 . -145) 133782) ((-1189 . -594) 133455) ((-1189 . -225) 133425) ((-1189 . -871) 133276) ((-1189 . -227) 133181) ((-1189 . -356) 133160) ((-1189 . -1183) 133139) ((-1189 . -892) 133118) ((-1189 . -542) 133069) ((-1189 . -170) 133000) ((-1189 . -444) 132979) ((-1189 . -300) 132958) ((-1189 . -283) 132909) ((-1189 . -237) 132888) ((-1189 . -331) 132858) ((-1189 . -505) 132718) ((-1189 . -302) 132657) ((-1189 . -370) 132627) ((-1189 . -617) 132535) ((-1189 . -393) 132505) ((-1189 . -1178) 132484) ((-1189 . -857) 132357) ((-1189 . -796) 132310) ((-1189 . -767) 132263) ((-1189 . -768) 132216) ((-1189 . -823) 132115) ((-1189 . -770) 132068) ((-1189 . -773) 132021) ((-1189 . -821) 131974) ((-1189 . -855) 131944) ((-1189 . -881) 131897) ((-1189 . -991) 131850) ((-1189 . -1009) 131636) ((-1189 . -1117) 131588) ((-1189 . -962) 131558) ((-1184 . -1188) 131519) ((-1184 . -973) 131485) ((-1184 . -1164) 131451) ((-1184 . -1167) 131417) ((-1184 . -484) 131383) ((-1184 . -277) 131349) ((-1184 . -94) 131315) ((-1184 . -35) 131281) ((-1184 . -1203) 131258) ((-1184 . -47) 131235) ((-1184 . -694) 131031) ((-1184 . -624) 130883) ((-1184 . -1024) 130673) ((-1184 . -111) 130442) ((-1184 . -38) 130238) ((-1184 . -944) 130207) ((-1184 . -279) 130055) ((-1184 . -1186) 130039) ((-1184 . -703) T) ((-1184 . -1078) T) ((-1184 . -1025) T) ((-1184 . -1018) T) ((-1184 . -21) T) ((-1184 . -23) T) ((-1184 . -1067) T) ((-1184 . -593) 130021) ((-1184 . -101) T) ((-1184 . -25) T) ((-1184 . -130) T) ((-1184 . -143) 129928) ((-1184 . -145) 129835) ((-1184 . -594) NIL) ((-1184 . -225) 129787) ((-1184 . -871) 129620) ((-1184 . -227) 129507) ((-1184 . -356) 129486) ((-1184 . -1183) 129465) ((-1184 . -892) 129444) ((-1184 . -542) 129395) ((-1184 . -170) 129326) ((-1184 . -444) 129305) ((-1184 . -300) 129284) ((-1184 . -283) 129235) ((-1184 . -237) 129214) ((-1184 . -331) 129166) ((-1184 . -505) 128935) ((-1184 . -302) 128820) ((-1184 . -370) 128772) ((-1184 . -617) 128724) ((-1184 . -393) 128676) ((-1184 . -1178) 128655) ((-1184 . -857) NIL) ((-1184 . -796) NIL) ((-1184 . -767) NIL) ((-1184 . -768) NIL) ((-1184 . -823) NIL) ((-1184 . -770) NIL) ((-1184 . -773) NIL) ((-1184 . -821) NIL) ((-1184 . -855) 128607) ((-1184 . -881) NIL) ((-1184 . -991) NIL) ((-1184 . -1009) 128573) ((-1184 . -1117) NIL) ((-1184 . -962) 128525) ((-1179 . -1049) T) ((-1179 . -593) 128491) ((-1179 . -1067) T) ((-1179 . -101) T) ((-1179 . -92) T) ((-1176 . -593) 128403) ((-1176 . -1067) 128381) ((-1176 . -101) 128359) ((-1171 . -717) 128335) ((-1171 . -35) 128301) ((-1171 . -94) 128267) ((-1171 . -277) 128233) ((-1171 . -484) 128199) ((-1171 . -1167) 128165) ((-1171 . -1164) 128131) ((-1171 . -973) 128097) ((-1171 . -47) 128066) ((-1171 . -38) 127963) ((-1171 . -694) 127860) ((-1171 . -283) 127839) ((-1171 . -542) 127818) ((-1171 . -111) 127687) ((-1171 . -1024) 127570) ((-1171 . -170) 127521) ((-1171 . -145) 127500) ((-1171 . -143) 127479) ((-1171 . -624) 127404) ((-1171 . -944) 127366) ((-1171 . -1018) T) ((-1171 . -1025) T) ((-1171 . -1078) T) ((-1171 . -703) T) ((-1171 . -21) T) ((-1171 . -23) T) ((-1171 . -1067) T) ((-1171 . -593) 127348) ((-1171 . -101) T) ((-1171 . -25) T) ((-1171 . -130) T) ((-1171 . -871) 127329) ((-1171 . -505) 127296) ((-1171 . -302) 127283) ((-1165 . -981) 127267) ((-1165 . -34) T) ((-1165 . -1178) T) ((-1165 . -593) 127199) ((-1165 . -302) 127137) ((-1165 . -505) 127070) ((-1165 . -1067) 127048) ((-1165 . -101) 127026) ((-1165 . -481) 127010) ((-1160 . -358) 126984) ((-1160 . -101) T) ((-1160 . -593) 126966) ((-1160 . -1067) T) ((-1158 . -1067) T) ((-1158 . -593) 126948) ((-1158 . -101) T) ((-1151 . -1155) 126927) ((-1151 . -223) 126877) ((-1151 . -106) 126827) ((-1151 . -302) 126631) ((-1151 . -505) 126423) ((-1151 . -481) 126360) ((-1151 . -149) 126310) ((-1151 . -594) NIL) ((-1151 . -229) 126260) ((-1151 . -590) 126239) ((-1151 . -281) 126218) ((-1151 . -279) 126197) ((-1151 . -101) T) ((-1151 . -1067) T) ((-1151 . -593) 126179) ((-1151 . -1178) T) ((-1151 . -34) T) ((-1151 . -584) 126158) ((-1147 . -1220) T) ((-1147 . -1067) T) ((-1147 . -593) 126140) ((-1147 . -101) T) ((-1146 . -593) 126122) ((-1145 . -593) 126104) ((-1144 . -319) 126081) ((-1144 . -1009) 125977) ((-1144 . -405) 125961) ((-1144 . -38) 125858) ((-1144 . -624) 125783) ((-1144 . -703) T) ((-1144 . -1078) T) ((-1144 . -1025) T) ((-1144 . -1018) T) ((-1144 . -111) 125652) ((-1144 . -1024) 125535) ((-1144 . -21) T) ((-1144 . -23) T) ((-1144 . -1067) T) ((-1144 . -593) 125517) ((-1144 . -101) T) ((-1144 . -25) T) ((-1144 . -130) T) ((-1144 . -694) 125414) ((-1144 . -143) 125393) ((-1144 . -145) 125372) ((-1144 . -170) 125323) ((-1144 . -542) 125302) ((-1144 . -283) 125281) ((-1144 . -47) 125258) ((-1142 . -823) T) ((-1142 . -101) T) ((-1142 . -593) 125240) ((-1142 . -1067) T) ((-1142 . -594) 125162) ((-1142 . -797) T) ((-1142 . -857) 125129) ((-1141 . -593) 125111) ((-1140 . -1217) 125095) ((-1140 . -227) 125054) ((-1140 . -624) 124979) ((-1140 . -130) T) ((-1140 . -25) T) ((-1140 . -101) T) ((-1140 . -593) 124961) ((-1140 . -1067) T) ((-1140 . -23) T) ((-1140 . -21) T) ((-1140 . -703) T) ((-1140 . -1078) T) ((-1140 . -1025) T) ((-1140 . -1018) T) ((-1140 . -279) 124946) ((-1140 . -871) 124859) ((-1140 . -944) 124828) ((-1140 . -38) 124725) ((-1140 . -111) 124594) ((-1140 . -1024) 124477) ((-1140 . -694) 124374) ((-1140 . -143) 124353) ((-1140 . -145) 124332) ((-1140 . -170) 124283) ((-1140 . -542) 124262) ((-1140 . -283) 124241) ((-1140 . -47) 124218) ((-1140 . -1203) 124195) ((-1140 . -35) 124161) ((-1140 . -94) 124127) ((-1140 . -277) 124093) ((-1140 . -484) 124059) ((-1140 . -1167) 124025) ((-1140 . -1164) 123991) ((-1140 . -973) 123957) ((-1139 . -1209) 123918) ((-1139 . -356) 123897) ((-1139 . -1183) 123876) ((-1139 . -892) 123855) ((-1139 . -542) 123806) ((-1139 . -170) 123737) ((-1139 . -694) 123578) ((-1139 . -38) 123419) ((-1139 . -444) 123398) ((-1139 . -300) 123377) ((-1139 . -624) 123274) ((-1139 . -703) T) ((-1139 . -1078) T) ((-1139 . -1025) T) ((-1139 . -1018) T) ((-1139 . -111) 123095) ((-1139 . -1024) 122930) ((-1139 . -21) T) ((-1139 . -23) T) ((-1139 . -1067) T) ((-1139 . -593) 122912) ((-1139 . -101) T) ((-1139 . -25) T) ((-1139 . -130) T) ((-1139 . -283) 122863) ((-1139 . -237) 122842) ((-1139 . -973) 122808) ((-1139 . -1164) 122774) ((-1139 . -1167) 122740) ((-1139 . -484) 122706) ((-1139 . -277) 122672) ((-1139 . -94) 122638) ((-1139 . -35) 122604) ((-1139 . -1203) 122574) ((-1139 . -47) 122544) ((-1139 . -145) 122523) ((-1139 . -143) 122502) ((-1139 . -944) 122464) ((-1139 . -871) 122370) ((-1139 . -279) 122355) ((-1139 . -227) 122307) ((-1139 . -1207) 122291) ((-1139 . -1009) 122226) ((-1136 . -1200) 122210) ((-1136 . -1117) 122188) ((-1136 . -594) NIL) ((-1136 . -302) 122175) ((-1136 . -505) 122122) ((-1136 . -319) 122099) ((-1136 . -1009) 121979) ((-1136 . -405) 121963) ((-1136 . -38) 121792) ((-1136 . -111) 121601) ((-1136 . -1024) 121424) ((-1136 . -624) 121349) ((-1136 . -694) 121178) ((-1136 . -143) 121157) ((-1136 . -145) 121136) ((-1136 . -47) 121113) ((-1136 . -370) 121097) ((-1136 . -617) 121045) ((-1136 . -823) 121024) ((-1136 . -871) 120967) ((-1136 . -857) NIL) ((-1136 . -881) 120946) ((-1136 . -1183) 120925) ((-1136 . -921) 120894) ((-1136 . -892) 120873) ((-1136 . -542) 120784) ((-1136 . -283) 120695) ((-1136 . -170) 120586) ((-1136 . -444) 120517) ((-1136 . -300) 120496) ((-1136 . -279) 120423) ((-1136 . -227) T) ((-1136 . -130) T) ((-1136 . -25) T) ((-1136 . -101) T) ((-1136 . -593) 120405) ((-1136 . -1067) T) ((-1136 . -23) T) ((-1136 . -21) T) ((-1136 . -703) T) ((-1136 . -1078) T) ((-1136 . -1025) T) ((-1136 . -1018) T) ((-1136 . -225) 120389) ((-1133 . -1188) 120350) ((-1133 . -973) 120316) ((-1133 . -1164) 120282) ((-1133 . -1167) 120248) ((-1133 . -484) 120214) ((-1133 . -277) 120180) ((-1133 . -94) 120146) ((-1133 . -35) 120112) ((-1133 . -1203) 120089) ((-1133 . -47) 120066) ((-1133 . -694) 119862) ((-1133 . -624) 119714) ((-1133 . -1024) 119504) ((-1133 . -111) 119273) ((-1133 . -38) 119069) ((-1133 . -944) 119038) ((-1133 . -279) 118886) ((-1133 . -1186) 118870) ((-1133 . -703) T) ((-1133 . -1078) T) ((-1133 . -1025) T) ((-1133 . -1018) T) ((-1133 . -21) T) ((-1133 . -23) T) ((-1133 . -1067) T) ((-1133 . -593) 118852) ((-1133 . -101) T) ((-1133 . -25) T) ((-1133 . -130) T) ((-1133 . -143) 118759) ((-1133 . -145) 118666) ((-1133 . -594) NIL) ((-1133 . -225) 118618) ((-1133 . -871) 118451) ((-1133 . -227) 118338) ((-1133 . -356) 118317) ((-1133 . -1183) 118296) ((-1133 . -892) 118275) ((-1133 . -542) 118226) ((-1133 . -170) 118157) ((-1133 . -444) 118136) ((-1133 . -300) 118115) ((-1133 . -283) 118066) ((-1133 . -237) 118045) ((-1133 . -331) 117997) ((-1133 . -505) 117766) ((-1133 . -302) 117651) ((-1133 . -370) 117603) ((-1133 . -617) 117555) ((-1133 . -393) 117507) ((-1133 . -1178) 117486) ((-1133 . -857) NIL) ((-1133 . -796) NIL) ((-1133 . -767) NIL) ((-1133 . -768) NIL) ((-1133 . -823) NIL) ((-1133 . -770) NIL) ((-1133 . -773) NIL) ((-1133 . -821) NIL) ((-1133 . -855) 117438) ((-1133 . -881) NIL) ((-1133 . -991) NIL) ((-1133 . -1009) 117404) ((-1133 . -1117) NIL) ((-1133 . -962) 117356) ((-1132 . -1049) T) ((-1132 . -593) 117322) ((-1132 . -1067) T) ((-1132 . -101) T) ((-1132 . -92) T) ((-1131 . -1067) T) ((-1131 . -593) 117304) ((-1131 . -101) T) ((-1130 . -1067) T) ((-1130 . -593) 117286) ((-1130 . -101) T) ((-1125 . -1155) 117262) ((-1125 . -223) 117209) ((-1125 . -106) 117156) ((-1125 . -302) 116951) ((-1125 . -505) 116734) ((-1125 . -481) 116668) ((-1125 . -149) 116615) ((-1125 . -594) NIL) ((-1125 . -229) 116562) ((-1125 . -590) 116538) ((-1125 . -281) 116514) ((-1125 . -279) 116490) ((-1125 . -101) T) ((-1125 . -1067) T) ((-1125 . -593) 116472) ((-1125 . -1178) T) ((-1125 . -34) T) ((-1125 . -584) 116448) ((-1124 . -1123) T) ((-1124 . -19) 116430) ((-1124 . -627) 116412) ((-1124 . -281) 116387) ((-1124 . -279) 116362) ((-1124 . -584) 116337) ((-1124 . -594) NIL) ((-1124 . -481) 116319) ((-1124 . -505) NIL) ((-1124 . -302) NIL) ((-1124 . -1178) T) ((-1124 . -34) T) ((-1124 . -149) 116301) ((-1124 . -823) T) ((-1124 . -365) 116283) ((-1124 . -1110) T) ((-1124 . -101) T) ((-1124 . -593) 116265) ((-1124 . -1067) T) ((-1124 . -797) T) ((-1119 . -650) 116249) ((-1119 . -627) 116233) ((-1119 . -281) 116210) ((-1119 . -279) 116187) ((-1119 . -584) 116164) ((-1119 . -594) 116125) ((-1119 . -481) 116109) ((-1119 . -101) 116087) ((-1119 . -1067) 116065) ((-1119 . -505) 115998) ((-1119 . -302) 115936) ((-1119 . -593) 115868) ((-1119 . -1178) T) ((-1119 . -34) T) ((-1119 . -149) 115852) ((-1119 . -1213) 115836) ((-1119 . -981) 115820) ((-1119 . -1115) 115804) ((-1116 . -1155) 115783) ((-1116 . -223) 115733) ((-1116 . -106) 115683) ((-1116 . -302) 115487) ((-1116 . -505) 115279) ((-1116 . -481) 115216) ((-1116 . -149) 115166) ((-1116 . -594) NIL) ((-1116 . -229) 115116) ((-1116 . -590) 115095) ((-1116 . -281) 115074) ((-1116 . -279) 115053) ((-1116 . -101) T) ((-1116 . -1067) T) ((-1116 . -593) 115035) ((-1116 . -1178) T) ((-1116 . -34) T) ((-1116 . -584) 115014) ((-1113 . -1087) 114998) ((-1113 . -481) 114982) ((-1113 . -101) 114960) ((-1113 . -1067) 114938) ((-1113 . -505) 114871) ((-1113 . -302) 114809) ((-1113 . -593) 114741) ((-1113 . -1178) T) ((-1113 . -34) T) ((-1113 . -106) 114725) ((-1112 . -1075) 114694) ((-1112 . -1173) 114663) ((-1112 . -593) 114625) ((-1112 . -149) 114609) ((-1112 . -34) T) ((-1112 . -1178) T) ((-1112 . -302) 114547) ((-1112 . -505) 114480) ((-1112 . -1067) T) ((-1112 . -101) T) ((-1112 . -481) 114464) ((-1112 . -594) 114425) ((-1112 . -947) 114394) ((-1112 . -1038) 114363) ((-1108 . -1089) 114308) ((-1108 . -481) 114292) ((-1108 . -505) 114225) ((-1108 . -302) 114163) ((-1108 . -1178) T) ((-1108 . -34) T) ((-1108 . -1021) 114103) ((-1108 . -1009) 113999) ((-1108 . -405) 113983) ((-1108 . -617) 113931) ((-1108 . -370) 113915) ((-1108 . -227) 113894) ((-1108 . -871) 113853) ((-1108 . -225) 113837) ((-1108 . -694) 113769) ((-1108 . -624) 113743) ((-1108 . -130) T) ((-1108 . -25) T) ((-1108 . -101) T) ((-1108 . -593) 113705) ((-1108 . -1067) T) ((-1108 . -23) T) ((-1108 . -21) T) ((-1108 . -1024) 113689) ((-1108 . -111) 113668) ((-1108 . -1018) T) ((-1108 . -1025) T) ((-1108 . -1078) T) ((-1108 . -703) T) ((-1108 . -38) 113628) ((-1108 . -594) 113589) ((-1107 . -981) 113560) ((-1107 . -34) T) ((-1107 . -1178) T) ((-1107 . -593) 113542) ((-1107 . -302) 113468) ((-1107 . -505) 113387) ((-1107 . -1067) T) ((-1107 . -101) T) ((-1107 . -481) 113358) ((-1106 . -1067) T) ((-1106 . -593) 113340) ((-1106 . -101) T) ((-1101 . -1103) T) ((-1101 . -1220) T) ((-1101 . -92) T) ((-1101 . -101) T) ((-1101 . -593) 113306) ((-1101 . -1067) T) ((-1101 . -1049) T) ((-1099 . -1100) 113290) ((-1099 . -101) T) ((-1099 . -593) 113272) ((-1099 . -1067) T) ((-1092 . -717) 113251) ((-1092 . -35) 113217) ((-1092 . -94) 113183) ((-1092 . -277) 113149) ((-1092 . -484) 113115) ((-1092 . -1167) 113081) ((-1092 . -1164) 113047) ((-1092 . -973) 113013) ((-1092 . -47) 112985) ((-1092 . -38) 112882) ((-1092 . -694) 112779) ((-1092 . -283) 112758) ((-1092 . -542) 112737) ((-1092 . -111) 112606) ((-1092 . -1024) 112489) ((-1092 . -170) 112440) ((-1092 . -145) 112419) ((-1092 . -143) 112398) ((-1092 . -624) 112323) ((-1092 . -944) 112290) ((-1092 . -1018) T) ((-1092 . -1025) T) ((-1092 . -1078) T) ((-1092 . -703) T) ((-1092 . -21) T) ((-1092 . -23) T) ((-1092 . -1067) T) ((-1092 . -593) 112272) ((-1092 . -101) T) ((-1092 . -25) T) ((-1092 . -130) T) ((-1092 . -871) 112256) ((-1092 . -505) 112226) ((-1092 . -302) 112213) ((-1091 . -921) 112180) ((-1091 . -1009) 112063) ((-1091 . -1183) 112042) ((-1091 . -881) 112021) ((-1091 . -857) 111880) ((-1091 . -871) 111864) ((-1091 . -823) 111843) ((-1091 . -505) 111795) ((-1091 . -444) 111746) ((-1091 . -617) 111694) ((-1091 . -370) 111678) ((-1091 . -47) 111650) ((-1091 . -38) 111499) ((-1091 . -694) 111348) ((-1091 . -283) 111279) ((-1091 . -542) 111210) ((-1091 . -111) 111039) ((-1091 . -1024) 110882) ((-1091 . -170) 110793) ((-1091 . -145) 110772) ((-1091 . -143) 110751) ((-1091 . -624) 110676) ((-1091 . -130) T) ((-1091 . -25) T) ((-1091 . -101) T) ((-1091 . -593) 110658) ((-1091 . -1067) T) ((-1091 . -23) T) ((-1091 . -21) T) ((-1091 . -1018) T) ((-1091 . -1025) T) ((-1091 . -1078) T) ((-1091 . -703) T) ((-1091 . -405) 110642) ((-1091 . -319) 110614) ((-1091 . -302) 110601) ((-1091 . -594) 110349) ((-1086 . -534) T) ((-1086 . -1183) T) ((-1086 . -1117) T) ((-1086 . -1009) 110331) ((-1086 . -594) 110246) ((-1086 . -991) T) ((-1086 . -857) 110228) ((-1086 . -821) T) ((-1086 . -773) T) ((-1086 . -770) T) ((-1086 . -823) T) ((-1086 . -768) T) ((-1086 . -767) T) ((-1086 . -796) T) ((-1086 . -617) 110210) ((-1086 . -892) T) ((-1086 . -542) T) ((-1086 . -283) T) ((-1086 . -170) T) ((-1086 . -694) 110197) ((-1086 . -1024) 110184) ((-1086 . -111) 110169) ((-1086 . -38) 110156) ((-1086 . -444) T) ((-1086 . -300) T) ((-1086 . -227) T) ((-1086 . -141) T) ((-1086 . -1018) T) ((-1086 . -1025) T) ((-1086 . -1078) T) ((-1086 . -703) T) ((-1086 . -21) T) ((-1086 . -23) T) ((-1086 . -1067) T) ((-1086 . -593) 110138) ((-1086 . -101) T) ((-1086 . -25) T) ((-1086 . -130) T) ((-1086 . -624) 110125) ((-1086 . -145) T) ((-1086 . -638) T) ((-1086 . -797) T) ((-1082 . -1049) T) ((-1082 . -593) 110091) ((-1082 . -1067) T) ((-1082 . -101) T) ((-1082 . -92) T) ((-1081 . -1067) T) ((-1081 . -593) 110073) ((-1081 . -101) T) ((-1079 . -232) 110052) ((-1079 . -1232) 110022) ((-1079 . -767) 110001) ((-1079 . -821) 109980) ((-1079 . -773) 109931) ((-1079 . -770) 109882) ((-1079 . -823) 109833) ((-1079 . -768) 109784) ((-1079 . -769) 109763) ((-1079 . -281) 109740) ((-1079 . -279) 109717) ((-1079 . -481) 109701) ((-1079 . -505) 109634) ((-1079 . -302) 109572) ((-1079 . -1178) T) ((-1079 . -34) T) ((-1079 . -584) 109549) ((-1079 . -1009) 109376) ((-1079 . -405) 109345) ((-1079 . -617) 109251) ((-1079 . -370) 109220) ((-1079 . -361) 109199) ((-1079 . -227) 109151) ((-1079 . -871) 109083) ((-1079 . -225) 109052) ((-1079 . -111) 108942) ((-1079 . -1024) 108839) ((-1079 . -170) 108818) ((-1079 . -593) 108549) ((-1079 . -694) 108491) ((-1079 . -624) 108339) ((-1079 . -130) 108209) ((-1079 . -23) 108079) ((-1079 . -21) 107989) ((-1079 . -1018) 107919) ((-1079 . -1025) 107849) ((-1079 . -1078) 107759) ((-1079 . -703) 107669) ((-1079 . -38) 107639) ((-1079 . -1067) 107429) ((-1079 . -101) 107219) ((-1079 . -25) 107070) ((-1072 . -389) T) ((-1072 . -1178) T) ((-1072 . -593) 107052) ((-1071 . -1070) 107016) ((-1071 . -101) T) ((-1071 . -593) 106998) ((-1071 . -1067) T) ((-1069 . -1070) 106950) ((-1069 . -101) T) ((-1069 . -593) 106932) ((-1069 . -1067) T) ((-1068 . -361) T) ((-1068 . -101) T) ((-1068 . -593) 106914) ((-1068 . -1067) T) ((-1063 . -419) 106898) ((-1063 . -1065) 106882) ((-1063 . -361) 106861) ((-1063 . -229) 106845) ((-1063 . -594) 106806) ((-1063 . -149) 106790) ((-1063 . -481) 106774) ((-1063 . -101) T) ((-1063 . -1067) T) ((-1063 . -505) 106707) ((-1063 . -302) 106645) ((-1063 . -593) 106627) ((-1063 . -1178) T) ((-1063 . -34) T) ((-1063 . -106) 106611) ((-1063 . -223) 106595) ((-1062 . -1049) T) ((-1062 . -593) 106561) ((-1062 . -1067) T) ((-1062 . -101) T) ((-1062 . -92) T) ((-1058 . -1178) T) ((-1058 . -1067) 106539) ((-1058 . -593) 106506) ((-1058 . -101) 106484) ((-1057 . -1049) T) ((-1057 . -593) 106450) ((-1057 . -1067) T) ((-1057 . -101) T) ((-1057 . -92) T) ((-1055 . -1060) 106434) ((-1055 . -1178) T) ((-1055 . -1067) 106412) ((-1055 . -593) 106379) ((-1055 . -101) 106357) ((-1055 . -1061) 106315) ((-1054 . -259) 106299) ((-1054 . -1009) 106283) ((-1054 . -1067) T) ((-1054 . -593) 106265) ((-1054 . -101) T) ((-1054 . -823) T) ((-1053 . -246) 106202) ((-1053 . -1009) 106029) ((-1053 . -594) NIL) ((-1053 . -319) 105990) ((-1053 . -405) 105974) ((-1053 . -38) 105823) ((-1053 . -111) 105652) ((-1053 . -1024) 105495) ((-1053 . -624) 105420) ((-1053 . -694) 105269) ((-1053 . -143) 105248) ((-1053 . -145) 105227) ((-1053 . -170) 105138) ((-1053 . -542) 105069) ((-1053 . -283) 105000) ((-1053 . -47) 104961) ((-1053 . -370) 104945) ((-1053 . -617) 104893) ((-1053 . -444) 104844) ((-1053 . -505) 104711) ((-1053 . -823) 104690) ((-1053 . -871) 104625) ((-1053 . -857) NIL) ((-1053 . -881) 104604) ((-1053 . -1183) 104583) ((-1053 . -921) 104528) ((-1053 . -302) 104515) ((-1053 . -227) 104494) ((-1053 . -130) T) ((-1053 . -25) T) ((-1053 . -101) T) ((-1053 . -593) 104476) ((-1053 . -1067) T) ((-1053 . -23) T) ((-1053 . -21) T) ((-1053 . -703) T) ((-1053 . -1078) T) ((-1053 . -1025) T) ((-1053 . -1018) T) ((-1053 . -225) 104460) ((-1051 . -593) 104442) ((-1048 . -823) T) ((-1048 . -101) T) ((-1048 . -593) 104424) ((-1048 . -1067) T) ((-1045 . -701) 104403) ((-1045 . -1009) 104299) ((-1045 . -405) 104283) ((-1045 . -617) 104231) ((-1045 . -370) 104215) ((-1045 . -363) 104194) ((-1045 . -145) 104173) ((-1045 . -694) 104041) ((-1045 . -624) 103951) ((-1045 . -1024) 103861) ((-1045 . -111) 103757) ((-1045 . -38) 103625) ((-1045 . -403) 103604) ((-1045 . -395) 103583) ((-1045 . -143) 103534) ((-1045 . -1117) 103513) ((-1045 . -343) 103492) ((-1045 . -361) 103443) ((-1045 . -237) 103394) ((-1045 . -283) 103345) ((-1045 . -300) 103296) ((-1045 . -444) 103247) ((-1045 . -542) 103198) ((-1045 . -892) 103149) ((-1045 . -1183) 103100) ((-1045 . -356) 103051) ((-1045 . -227) 102976) ((-1045 . -871) 102909) ((-1045 . -225) 102879) ((-1045 . -594) 102863) ((-1045 . -21) T) ((-1045 . -23) T) ((-1045 . -1067) T) ((-1045 . -593) 102845) ((-1045 . -101) T) ((-1045 . -25) T) ((-1045 . -130) T) ((-1045 . -1018) T) ((-1045 . -1025) T) ((-1045 . -1078) T) ((-1045 . -703) T) ((-1045 . -170) T) ((-1043 . -1067) T) ((-1043 . -593) 102827) ((-1043 . -101) T) ((-1043 . -279) 102806) ((-1042 . -1067) T) ((-1042 . -593) 102788) ((-1042 . -101) T) ((-1041 . -1067) T) ((-1041 . -593) 102770) ((-1041 . -101) T) ((-1041 . -279) 102749) ((-1041 . -1009) 102726) ((-1040 . -1049) T) ((-1040 . -593) 102692) ((-1040 . -1067) T) ((-1040 . -101) T) ((-1040 . -92) T) ((-1033 . -1049) T) ((-1033 . -593) 102658) ((-1033 . -1067) T) ((-1033 . -101) T) ((-1033 . -92) T) ((-1030 . -1155) 102633) ((-1030 . -223) 102579) ((-1030 . -106) 102525) ((-1030 . -302) 102376) ((-1030 . -505) 102220) ((-1030 . -481) 102151) ((-1030 . -149) 102097) ((-1030 . -594) NIL) ((-1030 . -229) 102043) ((-1030 . -590) 102018) ((-1030 . -281) 101993) ((-1030 . -279) 101968) ((-1030 . -101) T) ((-1030 . -1067) T) ((-1030 . -593) 101950) ((-1030 . -1178) T) ((-1030 . -34) T) ((-1030 . -584) 101925) ((-1029 . -534) T) ((-1029 . -1183) T) ((-1029 . -1117) T) ((-1029 . -1009) 101907) ((-1029 . -594) 101822) ((-1029 . -991) T) ((-1029 . -857) 101804) ((-1029 . -821) T) ((-1029 . -773) T) ((-1029 . -770) T) ((-1029 . -823) T) ((-1029 . -768) T) ((-1029 . -767) T) ((-1029 . -796) T) ((-1029 . -617) 101786) ((-1029 . -892) T) ((-1029 . -542) T) ((-1029 . -283) T) ((-1029 . -170) T) ((-1029 . -694) 101773) ((-1029 . -1024) 101760) ((-1029 . -111) 101745) ((-1029 . -38) 101732) ((-1029 . -444) T) ((-1029 . -300) T) ((-1029 . -227) T) ((-1029 . -141) T) ((-1029 . -1018) T) ((-1029 . -1025) T) ((-1029 . -1078) T) ((-1029 . -703) T) ((-1029 . -21) T) ((-1029 . -23) T) ((-1029 . -1067) T) ((-1029 . -593) 101714) ((-1029 . -101) T) ((-1029 . -25) T) ((-1029 . -130) T) ((-1029 . -624) 101701) ((-1029 . -145) T) ((-1028 . -1035) 101680) ((-1028 . -101) T) ((-1028 . -593) 101662) ((-1028 . -1067) T) ((-1022 . -1021) 101602) ((-1022 . -694) 101544) ((-1022 . -34) T) ((-1022 . -1178) T) ((-1022 . -302) 101482) ((-1022 . -505) 101415) ((-1022 . -481) 101399) ((-1022 . -624) 101383) ((-1022 . -130) T) ((-1022 . -25) T) ((-1022 . -101) T) ((-1022 . -593) 101345) ((-1022 . -1067) T) ((-1022 . -23) T) ((-1022 . -21) T) ((-1022 . -1024) 101329) ((-1022 . -111) 101308) ((-1022 . -1232) 101278) ((-1022 . -594) 101239) ((-1015 . -1038) 101168) ((-1015 . -947) 101097) ((-1015 . -594) 101039) ((-1015 . -481) 101004) ((-1015 . -101) T) ((-1015 . -1067) T) ((-1015 . -505) 100905) ((-1015 . -302) 100813) ((-1015 . -593) 100756) ((-1015 . -1178) T) ((-1015 . -34) T) ((-1015 . -149) 100721) ((-1015 . -1173) 100650) ((-1007 . -1049) T) ((-1007 . -593) 100616) ((-1007 . -1067) T) ((-1007 . -101) T) ((-1007 . -92) T) ((-1006 . -1155) 100591) ((-1006 . -223) 100537) ((-1006 . -106) 100483) ((-1006 . -302) 100334) ((-1006 . -505) 100178) ((-1006 . -481) 100109) ((-1006 . -149) 100055) ((-1006 . -594) NIL) ((-1006 . -229) 100001) ((-1006 . -590) 99976) ((-1006 . -281) 99951) ((-1006 . -279) 99926) ((-1006 . -101) T) ((-1006 . -1067) T) ((-1006 . -593) 99908) ((-1006 . -1178) T) ((-1006 . -34) T) ((-1006 . -584) 99883) ((-1005 . -170) T) ((-1005 . -703) T) ((-1005 . -1078) T) ((-1005 . -1025) T) ((-1005 . -1018) T) ((-1005 . -624) 99857) ((-1005 . -130) T) ((-1005 . -25) T) ((-1005 . -101) T) ((-1005 . -593) 99839) ((-1005 . -1067) T) ((-1005 . -23) T) ((-1005 . -21) T) ((-1005 . -1024) 99813) ((-1005 . -111) 99780) ((-1005 . -38) 99764) ((-1005 . -694) 99748) ((-998 . -1038) 99717) ((-998 . -947) 99686) ((-998 . -594) 99647) ((-998 . -481) 99631) ((-998 . -101) T) ((-998 . -1067) T) ((-998 . -505) 99564) ((-998 . -302) 99502) ((-998 . -593) 99464) ((-998 . -1178) T) ((-998 . -34) T) ((-998 . -149) 99448) ((-998 . -1173) 99417) ((-997 . -1178) T) ((-997 . -1067) 99395) ((-997 . -593) 99362) ((-997 . -101) 99340) ((-995 . -983) T) ((-995 . -973) T) ((-995 . -767) T) ((-995 . -768) T) ((-995 . -823) T) ((-995 . -770) T) ((-995 . -773) T) ((-995 . -821) T) ((-995 . -1009) 99220) ((-995 . -405) 99182) ((-995 . -237) T) ((-995 . -283) T) ((-995 . -300) T) ((-995 . -444) T) ((-995 . -38) 99119) ((-995 . -694) 99056) ((-995 . -542) T) ((-995 . -892) T) ((-995 . -1183) T) ((-995 . -356) T) ((-995 . -111) 98972) ((-995 . -1024) 98909) ((-995 . -170) T) ((-995 . -145) T) ((-995 . -624) 98846) ((-995 . -130) T) ((-995 . -25) T) ((-995 . -101) T) ((-995 . -593) 98828) ((-995 . -1067) T) ((-995 . -23) T) ((-995 . -21) T) ((-995 . -1018) T) ((-995 . -1025) T) ((-995 . -1078) T) ((-995 . -703) T) ((-990 . -1049) T) ((-990 . -593) 98794) ((-990 . -1067) T) ((-990 . -101) T) ((-990 . -92) T) ((-975 . -962) 98776) ((-975 . -1117) T) ((-975 . -1009) 98736) ((-975 . -594) 98666) ((-975 . -991) T) ((-975 . -881) NIL) ((-975 . -855) 98648) ((-975 . -821) T) ((-975 . -773) T) ((-975 . -770) T) ((-975 . -823) T) ((-975 . -768) T) ((-975 . -767) T) ((-975 . -796) T) ((-975 . -857) 98630) ((-975 . -1178) T) ((-975 . -393) 98612) ((-975 . -617) 98594) ((-975 . -370) 98576) ((-975 . -279) NIL) ((-975 . -302) NIL) ((-975 . -505) NIL) ((-975 . -331) 98558) ((-975 . -237) T) ((-975 . -111) 98492) ((-975 . -1024) 98442) ((-975 . -283) T) ((-975 . -694) 98392) ((-975 . -624) 98342) ((-975 . -38) 98292) ((-975 . -300) T) ((-975 . -444) T) ((-975 . -170) T) ((-975 . -542) T) ((-975 . -892) T) ((-975 . -1183) T) ((-975 . -356) T) ((-975 . -227) T) ((-975 . -871) NIL) ((-975 . -225) 98274) ((-975 . -145) T) ((-975 . -143) NIL) ((-975 . -130) T) ((-975 . -25) T) ((-975 . -101) T) ((-975 . -593) 98256) ((-975 . -1067) T) ((-975 . -23) T) ((-975 . -21) T) ((-975 . -1018) T) ((-975 . -1025) T) ((-975 . -1078) T) ((-975 . -703) T) ((-974 . -335) 98230) ((-974 . -170) T) ((-974 . -703) T) ((-974 . -1078) T) ((-974 . -1025) T) ((-974 . -1018) T) ((-974 . -624) 98175) ((-974 . -130) T) ((-974 . -25) T) ((-974 . -101) T) ((-974 . -593) 98157) ((-974 . -1067) T) ((-974 . -23) T) ((-974 . -21) T) ((-974 . -1024) 98102) ((-974 . -111) 98031) ((-974 . -594) 98015) ((-974 . -225) 97992) ((-974 . -871) 97944) ((-974 . -227) 97916) ((-974 . -356) T) ((-974 . -1183) T) ((-974 . -892) T) ((-974 . -542) T) ((-974 . -694) 97861) ((-974 . -38) 97806) ((-974 . -444) T) ((-974 . -300) T) ((-974 . -283) T) ((-974 . -237) T) ((-974 . -361) NIL) ((-974 . -343) NIL) ((-974 . -1117) NIL) ((-974 . -143) 97778) ((-974 . -395) NIL) ((-974 . -403) 97750) ((-974 . -145) 97722) ((-974 . -363) 97694) ((-974 . -370) 97671) ((-974 . -617) 97610) ((-974 . -405) 97587) ((-974 . -1009) 97475) ((-974 . -701) 97447) ((-971 . -966) 97431) ((-971 . -481) 97415) ((-971 . -101) 97393) ((-971 . -1067) 97371) ((-971 . -505) 97304) ((-971 . -302) 97242) ((-971 . -593) 97174) ((-971 . -1178) T) ((-971 . -34) T) ((-971 . -106) 97158) ((-967 . -969) 97142) ((-967 . -823) 97121) ((-967 . -1009) 97017) ((-967 . -405) 97001) ((-967 . -617) 96949) ((-967 . -370) 96933) ((-967 . -279) 96891) ((-967 . -302) 96856) ((-967 . -505) 96768) ((-967 . -331) 96752) ((-967 . -38) 96700) ((-967 . -111) 96582) ((-967 . -1024) 96478) ((-967 . -624) 96416) ((-967 . -694) 96364) ((-967 . -283) 96315) ((-967 . -237) 96294) ((-967 . -227) 96273) ((-967 . -871) 96232) ((-967 . -225) 96216) ((-967 . -594) 96177) ((-967 . -145) 96156) ((-967 . -143) 96135) ((-967 . -130) T) ((-967 . -25) T) ((-967 . -101) T) ((-967 . -593) 96117) ((-967 . -1067) T) ((-967 . -23) T) ((-967 . -21) T) ((-967 . -1018) T) ((-967 . -1025) T) ((-967 . -1078) T) ((-967 . -703) T) ((-965 . -1049) T) ((-965 . -593) 96083) ((-965 . -1067) T) ((-965 . -101) T) ((-965 . -92) T) ((-964 . -21) T) ((-964 . -23) T) ((-964 . -1067) T) ((-964 . -593) 96065) ((-964 . -101) T) ((-964 . -25) T) ((-964 . -130) T) ((-960 . -593) 96047) ((-957 . -1067) T) ((-957 . -593) 96029) ((-957 . -101) T) ((-942 . -773) T) ((-942 . -770) T) ((-942 . -823) T) ((-942 . -768) T) ((-942 . -23) T) ((-942 . -1067) T) ((-942 . -593) 96011) ((-942 . -101) T) ((-942 . -25) T) ((-942 . -130) T) ((-942 . -594) 95986) ((-941 . -1049) T) ((-941 . -593) 95952) ((-941 . -1067) T) ((-941 . -101) T) ((-941 . -92) T) ((-937 . -938) T) ((-937 . -101) T) ((-937 . -593) 95934) ((-937 . -1067) T) ((-936 . -593) 95916) ((-935 . -1067) T) ((-935 . -593) 95898) ((-935 . -101) T) ((-935 . -361) 95851) ((-935 . -703) 95750) ((-935 . -1078) 95649) ((-935 . -23) 95460) ((-935 . -25) 95271) ((-935 . -130) 95126) ((-935 . -465) 95079) ((-935 . -21) 95034) ((-935 . -769) 94987) ((-935 . -768) 94940) ((-935 . -823) 94839) ((-935 . -770) 94792) ((-935 . -773) 94745) ((-929 . -19) 94729) ((-929 . -627) 94713) ((-929 . -281) 94690) ((-929 . -279) 94667) ((-929 . -584) 94644) ((-929 . -594) 94605) ((-929 . -481) 94589) ((-929 . -101) 94539) ((-929 . -1067) 94489) ((-929 . -505) 94422) ((-929 . -302) 94360) ((-929 . -593) 94272) ((-929 . -1178) T) ((-929 . -34) T) ((-929 . -149) 94256) ((-929 . -823) 94235) ((-929 . -365) 94219) ((-927 . -319) 94198) ((-927 . -1009) 94094) ((-927 . -405) 94078) ((-927 . -38) 93975) ((-927 . -624) 93900) ((-927 . -703) T) ((-927 . -1078) T) ((-927 . -1025) T) ((-927 . -1018) T) ((-927 . -111) 93769) ((-927 . -1024) 93652) ((-927 . -21) T) ((-927 . -23) T) ((-927 . -1067) T) ((-927 . -593) 93634) ((-927 . -101) T) ((-927 . -25) T) ((-927 . -130) T) ((-927 . -694) 93531) ((-927 . -143) 93510) ((-927 . -145) 93489) ((-927 . -170) 93440) ((-927 . -542) 93419) ((-927 . -283) 93398) ((-927 . -47) 93377) ((-925 . -1067) T) ((-925 . -593) 93343) ((-925 . -101) T) ((-917 . -921) 93304) ((-917 . -1009) 93184) ((-917 . -1183) 93163) ((-917 . -881) 93142) ((-917 . -857) 93067) ((-917 . -871) 93048) ((-917 . -823) 93027) ((-917 . -505) 92974) ((-917 . -444) 92925) ((-917 . -617) 92873) ((-917 . -370) 92857) ((-917 . -47) 92826) ((-917 . -38) 92675) ((-917 . -694) 92524) ((-917 . -283) 92455) ((-917 . -542) 92386) ((-917 . -111) 92215) ((-917 . -1024) 92058) ((-917 . -170) 91969) ((-917 . -145) 91948) ((-917 . -143) 91927) ((-917 . -624) 91852) ((-917 . -130) T) ((-917 . -25) T) ((-917 . -101) T) ((-917 . -593) 91834) ((-917 . -1067) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -1018) T) ((-917 . -1025) T) ((-917 . -1078) T) ((-917 . -703) T) ((-917 . -405) 91818) ((-917 . -319) 91787) ((-917 . -302) 91774) ((-917 . -594) 91635) ((-914 . -951) 91619) ((-914 . -19) 91603) ((-914 . -627) 91587) ((-914 . -281) 91564) ((-914 . -279) 91541) ((-914 . -584) 91518) ((-914 . -594) 91479) ((-914 . -481) 91463) ((-914 . -101) 91413) ((-914 . -1067) 91363) ((-914 . -505) 91296) ((-914 . -302) 91234) ((-914 . -593) 91146) ((-914 . -1178) T) ((-914 . -34) T) ((-914 . -149) 91130) ((-914 . -823) 91109) ((-914 . -365) 91093) ((-914 . -1223) 91077) ((-898 . -945) T) ((-898 . -593) 91059) ((-896 . -926) T) ((-896 . -593) 91041) ((-890 . -770) T) ((-890 . -823) T) ((-890 . -1067) T) ((-890 . -593) 91023) ((-890 . -101) T) ((-890 . -25) T) ((-890 . -703) T) ((-890 . -1078) T) ((-885 . -356) T) ((-885 . -1183) T) ((-885 . -892) T) ((-885 . -542) T) ((-885 . -170) T) ((-885 . -694) 90975) ((-885 . -38) 90927) ((-885 . -444) T) ((-885 . -300) T) ((-885 . -624) 90879) ((-885 . -703) T) ((-885 . -1078) T) ((-885 . -1025) T) ((-885 . -1018) T) ((-885 . -111) 90817) ((-885 . -1024) 90769) ((-885 . -21) T) ((-885 . -23) T) ((-885 . -1067) T) ((-885 . -593) 90751) ((-885 . -101) T) ((-885 . -25) T) ((-885 . -130) T) ((-885 . -283) T) ((-885 . -237) T) ((-877 . -343) T) ((-877 . -1117) T) ((-877 . -361) T) ((-877 . -143) T) ((-877 . -356) T) ((-877 . -1183) T) ((-877 . -892) T) ((-877 . -542) T) ((-877 . -170) T) ((-877 . -694) 90716) ((-877 . -38) 90681) ((-877 . -444) T) ((-877 . -300) T) ((-877 . -111) 90637) ((-877 . -1024) 90602) ((-877 . -624) 90567) ((-877 . -283) T) ((-877 . -237) T) ((-877 . -395) T) ((-877 . -1018) T) ((-877 . -1025) T) ((-877 . -1078) T) ((-877 . -703) T) ((-877 . -21) T) ((-877 . -23) T) ((-877 . -1067) T) ((-877 . -593) 90549) ((-877 . -101) T) ((-877 . -25) T) ((-877 . -130) T) ((-877 . -227) T) ((-877 . -322) 90536) ((-877 . -145) 90518) ((-877 . -1009) 90505) ((-877 . -1232) 90492) ((-877 . -1243) 90479) ((-877 . -594) 90461) ((-876 . -1067) T) ((-876 . -593) 90443) ((-876 . -101) T) ((-873 . -875) 90427) ((-873 . -823) 90378) ((-873 . -703) T) ((-873 . -1067) T) ((-873 . -593) 90360) ((-873 . -101) T) ((-873 . -1078) T) ((-873 . -465) T) ((-872 . -119) 90344) ((-872 . -481) 90328) ((-872 . -101) 90306) ((-872 . -1067) 90284) ((-872 . -505) 90217) ((-872 . -302) 90155) ((-872 . -593) 90087) ((-872 . -1178) T) ((-872 . -34) T) ((-872 . -981) 90071) ((-869 . -1067) T) ((-869 . -593) 90053) ((-869 . -101) T) ((-864 . -823) T) ((-864 . -101) T) ((-864 . -593) 90035) ((-864 . -1067) T) ((-864 . -1009) 90012) ((-861 . -1067) T) ((-861 . -593) 89994) ((-861 . -101) T) ((-861 . -1009) 89962) ((-859 . -1067) T) ((-859 . -593) 89944) ((-859 . -101) T) ((-856 . -1067) T) ((-856 . -593) 89926) ((-856 . -101) T) ((-845 . -1067) T) ((-845 . -593) 89908) ((-845 . -101) T) ((-844 . -1178) T) ((-844 . -593) 89780) ((-844 . -1067) 89731) ((-844 . -101) 89682) ((-843 . -962) 89666) ((-843 . -1117) 89644) ((-843 . -1009) 89510) ((-843 . -594) 89318) ((-843 . -991) 89297) ((-843 . -881) 89276) ((-843 . -855) 89260) ((-843 . -821) 89239) ((-843 . -773) 89218) ((-843 . -770) 89197) ((-843 . -823) 89148) ((-843 . -768) 89127) ((-843 . -767) 89106) ((-843 . -796) 89085) ((-843 . -857) 89010) ((-843 . -1178) T) ((-843 . -393) 88994) ((-843 . -617) 88942) ((-843 . -370) 88926) ((-843 . -279) 88884) ((-843 . -302) 88849) ((-843 . -505) 88761) ((-843 . -331) 88745) ((-843 . -237) T) ((-843 . -111) 88683) ((-843 . -1024) 88635) ((-843 . -283) T) ((-843 . -694) 88587) ((-843 . -624) 88539) ((-843 . -38) 88491) ((-843 . -300) T) ((-843 . -444) T) ((-843 . -170) T) ((-843 . -542) T) ((-843 . -892) T) ((-843 . -1183) T) ((-843 . -356) T) ((-843 . -227) 88470) ((-843 . -871) 88429) ((-843 . -225) 88413) ((-843 . -145) 88392) ((-843 . -143) 88371) ((-843 . -130) T) ((-843 . -25) T) ((-843 . -101) T) ((-843 . -593) 88353) ((-843 . -1067) T) ((-843 . -23) T) ((-843 . -21) T) ((-843 . -1018) T) ((-843 . -1025) T) ((-843 . -1078) T) ((-843 . -703) T) ((-842 . -962) 88330) ((-842 . -1117) NIL) ((-842 . -1009) 88307) ((-842 . -594) NIL) ((-842 . -991) NIL) ((-842 . -881) NIL) ((-842 . -855) 88284) ((-842 . -821) NIL) ((-842 . -773) NIL) ((-842 . -770) NIL) ((-842 . -823) NIL) ((-842 . -768) NIL) ((-842 . -767) NIL) ((-842 . -796) NIL) ((-842 . -857) NIL) ((-842 . -1178) T) ((-842 . -393) 88261) ((-842 . -617) 88238) ((-842 . -370) 88215) ((-842 . -279) 88166) ((-842 . -302) 88123) ((-842 . -505) 88031) ((-842 . -331) 88008) ((-842 . -237) T) ((-842 . -111) 87937) ((-842 . -1024) 87882) ((-842 . -283) T) ((-842 . -694) 87827) ((-842 . -624) 87772) ((-842 . -38) 87717) ((-842 . -300) T) ((-842 . -444) T) ((-842 . -170) T) ((-842 . -542) T) ((-842 . -892) T) ((-842 . -1183) T) ((-842 . -356) T) ((-842 . -227) NIL) ((-842 . -871) NIL) ((-842 . -225) 87694) ((-842 . -145) T) ((-842 . -143) NIL) ((-842 . -130) T) ((-842 . -25) T) ((-842 . -101) T) ((-842 . -593) 87676) ((-842 . -1067) T) ((-842 . -23) T) ((-842 . -21) T) ((-842 . -1018) T) ((-842 . -1025) T) ((-842 . -1078) T) ((-842 . -703) T) ((-840 . -841) 87660) ((-840 . -892) T) ((-840 . -542) T) ((-840 . -283) T) ((-840 . -170) T) ((-840 . -694) 87647) ((-840 . -1024) 87634) ((-840 . -111) 87619) ((-840 . -38) 87606) ((-840 . -444) T) ((-840 . -300) T) ((-840 . -1018) T) ((-840 . -1025) T) ((-840 . -1078) T) ((-840 . -703) T) ((-840 . -21) T) ((-840 . -23) T) ((-840 . -1067) T) ((-840 . -593) 87588) ((-840 . -101) T) ((-840 . -25) T) ((-840 . -130) T) ((-840 . -624) 87575) ((-840 . -145) T) ((-837 . -1018) T) ((-837 . -1025) T) ((-837 . -1078) T) ((-837 . -703) T) ((-837 . -21) T) ((-837 . -23) T) ((-837 . -1067) T) ((-837 . -593) 87557) ((-837 . -101) T) ((-837 . -25) T) ((-837 . -130) T) ((-837 . -624) 87517) ((-837 . -38) 87487) ((-837 . -111) 87452) ((-837 . -1024) 87422) ((-837 . -694) 87392) ((-836 . -817) T) ((-836 . -823) T) ((-836 . -1067) T) ((-836 . -593) 87374) ((-836 . -101) T) ((-836 . -361) T) ((-836 . -594) 87296) ((-835 . -1067) T) ((-835 . -593) 87278) ((-835 . -101) T) ((-831 . -823) T) ((-831 . -101) T) ((-831 . -593) 87260) ((-831 . -1067) T) ((-828 . -825) 87244) ((-828 . -1009) 87140) ((-828 . -405) 87124) ((-828 . -694) 87094) ((-828 . -624) 87068) ((-828 . -130) T) ((-828 . -25) T) ((-828 . -101) T) ((-828 . -593) 87050) ((-828 . -1067) T) ((-828 . -23) T) ((-828 . -21) T) ((-828 . -1024) 87034) ((-828 . -111) 87013) ((-828 . -1018) T) ((-828 . -1025) T) ((-828 . -1078) T) ((-828 . -703) T) ((-828 . -38) 86983) ((-827 . -825) 86967) ((-827 . -1009) 86863) ((-827 . -405) 86847) ((-827 . -694) 86817) ((-827 . -624) 86791) ((-827 . -130) T) ((-827 . -25) T) ((-827 . -101) T) ((-827 . -593) 86773) ((-827 . -1067) T) ((-827 . -23) T) ((-827 . -21) T) ((-827 . -1024) 86757) ((-827 . -111) 86736) ((-827 . -1018) T) ((-827 . -1025) T) ((-827 . -1078) T) ((-827 . -703) T) ((-827 . -38) 86706) ((-815 . -1067) T) ((-815 . -593) 86688) ((-815 . -101) T) ((-815 . -405) 86672) ((-815 . -1009) 86568) ((-815 . -21) 86520) ((-815 . -23) 86472) ((-815 . -25) 86424) ((-815 . -130) 86376) ((-815 . -821) 86355) ((-815 . -624) 86328) ((-815 . -1025) 86307) ((-815 . -1018) 86286) ((-815 . -773) 86265) ((-815 . -770) 86244) ((-815 . -823) 86223) ((-815 . -768) 86202) ((-815 . -767) 86181) ((-815 . -1078) 86160) ((-815 . -703) 86139) ((-814 . -1067) T) ((-814 . -593) 86121) ((-814 . -101) T) ((-810 . -1018) T) ((-810 . -1025) T) ((-810 . -1078) T) ((-810 . -703) T) ((-810 . -21) T) ((-810 . -23) T) ((-810 . -1067) T) ((-810 . -593) 86103) ((-810 . -101) T) ((-810 . -25) T) ((-810 . -130) T) ((-810 . -624) 86063) ((-810 . -1009) 86032) ((-810 . -279) 86011) ((-810 . -145) 85990) ((-810 . -143) 85969) ((-810 . -38) 85939) ((-810 . -111) 85904) ((-810 . -1024) 85874) ((-810 . -694) 85844) ((-808 . -1067) T) ((-808 . -593) 85826) ((-808 . -101) T) ((-808 . -405) 85810) ((-808 . -1009) 85706) ((-808 . -21) 85658) ((-808 . -23) 85610) ((-808 . -25) 85562) ((-808 . -130) 85514) ((-808 . -821) 85493) ((-808 . -624) 85466) ((-808 . -1025) 85445) ((-808 . -1018) 85424) ((-808 . -773) 85403) ((-808 . -770) 85382) ((-808 . -823) 85361) ((-808 . -768) 85340) ((-808 . -767) 85319) ((-808 . -1078) 85298) ((-808 . -703) 85277) ((-804 . -685) 85261) ((-804 . -694) 85231) ((-804 . -624) 85205) ((-804 . -130) T) ((-804 . -25) T) ((-804 . -101) T) ((-804 . -593) 85187) ((-804 . -1067) T) ((-804 . -23) T) ((-804 . -21) T) ((-804 . -1024) 85171) ((-804 . -111) 85150) ((-804 . -1018) T) ((-804 . -1025) T) ((-804 . -1078) T) ((-804 . -703) T) ((-804 . -38) 85120) ((-804 . -227) 85099) ((-802 . -1067) T) ((-802 . -593) 85081) ((-802 . -101) T) ((-801 . -1067) T) ((-801 . -593) 85063) ((-801 . -101) T) ((-800 . -1067) T) ((-800 . -593) 85045) ((-800 . -101) T) ((-795 . -819) T) ((-795 . -823) T) ((-795 . -830) T) ((-795 . -1078) T) ((-795 . -101) T) ((-795 . -593) 85027) ((-795 . -1067) T) ((-795 . -703) T) ((-795 . -1009) 85011) ((-794 . -259) 84995) ((-794 . -1009) 84979) ((-794 . -1067) T) ((-794 . -593) 84961) ((-794 . -101) T) ((-794 . -823) T) ((-793 . -111) 84903) ((-793 . -1024) 84854) ((-793 . -21) T) ((-793 . -23) T) ((-793 . -1067) T) ((-793 . -593) 84836) ((-793 . -101) T) ((-793 . -25) T) ((-793 . -130) T) ((-793 . -624) 84787) ((-793 . -227) T) ((-793 . -703) T) ((-793 . -1078) T) ((-793 . -1025) T) ((-793 . -1018) T) ((-793 . -356) 84766) ((-793 . -1183) 84745) ((-793 . -892) 84724) ((-793 . -542) 84703) ((-793 . -170) 84682) ((-793 . -694) 84624) ((-793 . -38) 84566) ((-793 . -444) 84545) ((-793 . -300) 84524) ((-793 . -283) 84503) ((-793 . -237) 84482) ((-792 . -246) 84421) ((-792 . -1009) 84249) ((-792 . -594) NIL) ((-792 . -319) 84211) ((-792 . -405) 84195) ((-792 . -38) 84044) ((-792 . -111) 83873) ((-792 . -1024) 83716) ((-792 . -624) 83641) ((-792 . -694) 83490) ((-792 . -143) 83469) ((-792 . -145) 83448) ((-792 . -170) 83359) ((-792 . -542) 83290) ((-792 . -283) 83221) ((-792 . -47) 83183) ((-792 . -370) 83167) ((-792 . -617) 83115) ((-792 . -444) 83066) ((-792 . -505) 82934) ((-792 . -823) 82913) ((-792 . -871) 82849) ((-792 . -857) NIL) ((-792 . -881) 82828) ((-792 . -1183) 82807) ((-792 . -921) 82754) ((-792 . -302) 82741) ((-792 . -227) 82720) ((-792 . -130) T) ((-792 . -25) T) ((-792 . -101) T) ((-792 . -593) 82702) ((-792 . -1067) T) ((-792 . -23) T) ((-792 . -21) T) ((-792 . -703) T) ((-792 . -1078) T) ((-792 . -1025) T) ((-792 . -1018) T) ((-792 . -225) 82686) ((-791 . -232) 82665) ((-791 . -1232) 82635) ((-791 . -767) 82614) ((-791 . -821) 82593) ((-791 . -773) 82544) ((-791 . -770) 82495) ((-791 . -823) 82446) ((-791 . -768) 82397) ((-791 . -769) 82376) ((-791 . -281) 82353) ((-791 . -279) 82330) ((-791 . -481) 82314) ((-791 . -505) 82247) ((-791 . -302) 82185) ((-791 . -1178) T) ((-791 . -34) T) ((-791 . -584) 82162) ((-791 . -1009) 81989) ((-791 . -405) 81958) ((-791 . -617) 81864) ((-791 . -370) 81833) ((-791 . -361) 81812) ((-791 . -227) 81764) ((-791 . -871) 81696) ((-791 . -225) 81665) ((-791 . -111) 81555) ((-791 . -1024) 81452) ((-791 . -170) 81431) ((-791 . -593) 81162) ((-791 . -694) 81104) ((-791 . -624) 80952) ((-791 . -130) 80822) ((-791 . -23) 80692) ((-791 . -21) 80602) ((-791 . -1018) 80532) ((-791 . -1025) 80462) ((-791 . -1078) 80372) ((-791 . -703) 80282) ((-791 . -38) 80252) ((-791 . -1067) 80042) ((-791 . -101) 79832) ((-791 . -25) 79683) ((-784 . -1067) T) ((-784 . -593) 79665) ((-784 . -101) T) ((-774 . -772) 79649) ((-774 . -823) 79628) ((-774 . -1009) 79411) ((-774 . -405) 79375) ((-774 . -279) 79333) ((-774 . -302) 79298) ((-774 . -505) 79210) ((-774 . -331) 79194) ((-774 . -361) 79173) ((-774 . -594) 79134) ((-774 . -145) 79113) ((-774 . -143) 79092) ((-774 . -694) 79076) ((-774 . -624) 79050) ((-774 . -130) T) ((-774 . -25) T) ((-774 . -101) T) ((-774 . -593) 79032) ((-774 . -1067) T) ((-774 . -23) T) ((-774 . -21) T) ((-774 . -1024) 79016) ((-774 . -111) 78995) ((-774 . -1018) T) ((-774 . -1025) T) ((-774 . -1078) T) ((-774 . -703) T) ((-774 . -38) 78979) ((-757 . -1200) 78963) ((-757 . -1117) 78941) ((-757 . -594) NIL) ((-757 . -302) 78928) ((-757 . -505) 78875) ((-757 . -319) 78852) ((-757 . -1009) 78711) ((-757 . -405) 78695) ((-757 . -38) 78524) ((-757 . -111) 78333) ((-757 . -1024) 78156) ((-757 . -624) 78081) ((-757 . -694) 77910) ((-757 . -143) 77889) ((-757 . -145) 77868) ((-757 . -47) 77845) ((-757 . -370) 77829) ((-757 . -617) 77777) ((-757 . -823) 77756) ((-757 . -871) 77699) ((-757 . -857) NIL) ((-757 . -881) 77678) ((-757 . -1183) 77657) ((-757 . -921) 77626) ((-757 . -892) 77605) ((-757 . -542) 77516) ((-757 . -283) 77427) ((-757 . -170) 77318) ((-757 . -444) 77249) ((-757 . -300) 77228) ((-757 . -279) 77155) ((-757 . -227) T) ((-757 . -130) T) ((-757 . -25) T) ((-757 . -101) T) ((-757 . -593) 77116) ((-757 . -1067) T) ((-757 . -23) T) ((-757 . -21) T) ((-757 . -703) T) ((-757 . -1078) T) ((-757 . -1025) T) ((-757 . -1018) T) ((-757 . -225) 77100) ((-756 . -1032) 77067) ((-756 . -594) 76701) ((-756 . -302) 76688) ((-756 . -505) 76640) ((-756 . -319) 76612) ((-756 . -1009) 76469) ((-756 . -405) 76453) ((-756 . -38) 76302) ((-756 . -624) 76227) ((-756 . -703) T) ((-756 . -1078) T) ((-756 . -1025) T) ((-756 . -1018) T) ((-756 . -111) 76056) ((-756 . -1024) 75899) ((-756 . -21) T) ((-756 . -23) T) ((-756 . -1067) T) ((-756 . -593) 75813) ((-756 . -101) T) ((-756 . -25) T) ((-756 . -130) T) ((-756 . -694) 75662) ((-756 . -143) 75641) ((-756 . -145) 75620) ((-756 . -170) 75531) ((-756 . -542) 75462) ((-756 . -283) 75393) ((-756 . -47) 75365) ((-756 . -370) 75349) ((-756 . -617) 75297) ((-756 . -444) 75248) ((-756 . -823) 75227) ((-756 . -871) 75211) ((-756 . -857) 75070) ((-756 . -881) 75049) ((-756 . -1183) 75028) ((-756 . -921) 74995) ((-749 . -1067) T) ((-749 . -593) 74977) ((-749 . -101) T) ((-747 . -769) T) ((-747 . -130) T) ((-747 . -25) T) ((-747 . -101) T) ((-747 . -593) 74959) ((-747 . -1067) T) ((-747 . -23) T) ((-747 . -768) T) ((-747 . -823) T) ((-747 . -770) T) ((-747 . -773) T) ((-747 . -703) T) ((-747 . -1078) T) ((-745 . -1067) T) ((-745 . -593) 74941) ((-745 . -101) T) ((-713 . -714) 74925) ((-713 . -1065) 74909) ((-713 . -229) 74893) ((-713 . -594) 74854) ((-713 . -149) 74838) ((-713 . -481) 74822) ((-713 . -101) T) ((-713 . -1067) T) ((-713 . -505) 74755) ((-713 . -302) 74693) ((-713 . -593) 74675) ((-713 . -1178) T) ((-713 . -34) T) ((-713 . -106) 74659) ((-713 . -671) 74643) ((-712 . -1018) T) ((-712 . -1025) T) ((-712 . -1078) T) ((-712 . -703) T) ((-712 . -21) T) ((-712 . -23) T) ((-712 . -1067) T) ((-712 . -593) 74625) ((-712 . -101) T) ((-712 . -25) T) ((-712 . -130) T) ((-712 . -624) 74585) ((-712 . -1009) 74556) ((-712 . -145) 74535) ((-712 . -143) 74514) ((-712 . -38) 74484) ((-712 . -111) 74449) ((-712 . -1024) 74419) ((-712 . -694) 74389) ((-712 . -361) 74342) ((-708 . -921) 74295) ((-708 . -1009) 74171) ((-708 . -1183) 74150) ((-708 . -881) 74129) ((-708 . -857) NIL) ((-708 . -871) 74106) ((-708 . -823) 74085) ((-708 . -505) 74028) ((-708 . -444) 73979) ((-708 . -617) 73927) ((-708 . -370) 73911) ((-708 . -47) 73876) ((-708 . -38) 73725) ((-708 . -694) 73574) ((-708 . -283) 73505) ((-708 . -542) 73436) ((-708 . -111) 73265) ((-708 . -1024) 73108) ((-708 . -170) 73019) ((-708 . -145) 72998) ((-708 . -143) 72977) ((-708 . -624) 72902) ((-708 . -130) T) ((-708 . -25) T) ((-708 . -101) T) ((-708 . -593) 72884) ((-708 . -1067) T) ((-708 . -23) T) ((-708 . -21) T) ((-708 . -1018) T) ((-708 . -1025) T) ((-708 . -1078) T) ((-708 . -703) T) ((-708 . -405) 72868) ((-708 . -319) 72833) ((-708 . -302) 72820) ((-708 . -594) 72681) ((-695 . -465) T) ((-695 . -1078) T) ((-695 . -101) T) ((-695 . -593) 72663) ((-695 . -1067) T) ((-695 . -703) T) ((-692 . -1018) T) ((-692 . -1025) T) ((-692 . -1078) T) ((-692 . -703) T) ((-692 . -21) T) ((-692 . -23) T) ((-692 . -1067) T) ((-692 . -593) 72645) ((-692 . -101) T) ((-692 . -25) T) ((-692 . -130) T) ((-692 . -624) 72632) ((-691 . -1018) T) ((-691 . -1025) T) ((-691 . -1078) T) ((-691 . -703) T) ((-691 . -21) T) ((-691 . -23) T) ((-691 . -1067) T) ((-691 . -593) 72614) ((-691 . -101) T) ((-691 . -25) T) ((-691 . -130) T) ((-691 . -624) 72574) ((-691 . -1009) 72543) ((-691 . -279) 72522) ((-691 . -145) 72501) ((-691 . -143) 72480) ((-691 . -38) 72450) ((-691 . -111) 72415) ((-691 . -1024) 72385) ((-691 . -694) 72355) ((-690 . -823) T) ((-690 . -101) T) ((-690 . -593) 72337) ((-690 . -1067) T) ((-689 . -1200) 72321) ((-689 . -1117) 72299) ((-689 . -594) NIL) ((-689 . -302) 72286) ((-689 . -505) 72233) ((-689 . -319) 72210) ((-689 . -1009) 72090) ((-689 . -405) 72074) ((-689 . -38) 71903) ((-689 . -111) 71712) ((-689 . -1024) 71535) ((-689 . -624) 71460) ((-689 . -694) 71289) ((-689 . -143) 71268) ((-689 . -145) 71247) ((-689 . -47) 71224) ((-689 . -370) 71208) ((-689 . -617) 71156) ((-689 . -823) 71135) ((-689 . -871) 71078) ((-689 . -857) NIL) ((-689 . -881) 71057) ((-689 . -1183) 71036) ((-689 . -921) 71005) ((-689 . -892) 70984) ((-689 . -542) 70895) ((-689 . -283) 70806) ((-689 . -170) 70697) ((-689 . -444) 70628) ((-689 . -300) 70607) ((-689 . -279) 70534) ((-689 . -227) T) ((-689 . -130) T) ((-689 . -25) T) ((-689 . -101) T) ((-689 . -593) 70516) ((-689 . -1067) T) ((-689 . -23) T) ((-689 . -21) T) ((-689 . -703) T) ((-689 . -1078) T) ((-689 . -1025) T) ((-689 . -1018) T) ((-689 . -225) 70500) ((-689 . -361) 70479) ((-688 . -356) T) ((-688 . -1183) T) ((-688 . -892) T) ((-688 . -542) T) ((-688 . -170) T) ((-688 . -694) 70444) ((-688 . -38) 70409) ((-688 . -444) T) ((-688 . -300) T) ((-688 . -624) 70374) ((-688 . -703) T) ((-688 . -1078) T) ((-688 . -1025) T) ((-688 . -1018) T) ((-688 . -111) 70330) ((-688 . -1024) 70295) ((-688 . -21) T) ((-688 . -23) T) ((-688 . -1067) T) ((-688 . -593) 70277) ((-688 . -101) T) ((-688 . -25) T) ((-688 . -130) T) ((-688 . -283) T) ((-688 . -237) T) ((-687 . -1067) T) ((-687 . -593) 70259) ((-687 . -101) T) ((-679 . -131) T) ((-679 . -1067) T) ((-679 . -593) 70228) ((-679 . -101) T) ((-679 . -823) T) ((-677 . -380) T) ((-677 . -1009) 70210) ((-677 . -823) T) ((-677 . -38) 70197) ((-677 . -703) T) ((-677 . -1078) T) ((-677 . -1025) T) ((-677 . -1018) T) ((-677 . -111) 70182) ((-677 . -1024) 70169) ((-677 . -21) T) ((-677 . -23) T) ((-677 . -1067) T) ((-677 . -593) 70151) ((-677 . -101) T) ((-677 . -25) T) ((-677 . -130) T) ((-677 . -624) 70138) ((-677 . -694) 70125) ((-677 . -170) T) ((-677 . -283) T) ((-677 . -542) T) ((-677 . -534) T) ((-677 . -1183) T) ((-677 . -1117) T) ((-677 . -594) 70040) ((-677 . -991) T) ((-677 . -857) 70022) ((-677 . -821) T) ((-677 . -773) T) ((-677 . -770) T) ((-677 . -768) T) ((-677 . -767) T) ((-677 . -796) T) ((-677 . -617) 70004) ((-677 . -892) T) ((-677 . -444) T) ((-677 . -300) T) ((-677 . -227) T) ((-677 . -141) T) ((-677 . -145) T) ((-675 . -397) T) ((-675 . -145) T) ((-675 . -624) 69969) ((-675 . -130) T) ((-675 . -25) T) ((-675 . -101) T) ((-675 . -593) 69951) ((-675 . -1067) T) ((-675 . -23) T) ((-675 . -21) T) ((-675 . -703) T) ((-675 . -1078) T) ((-675 . -1025) T) ((-675 . -1018) T) ((-675 . -594) 69896) ((-675 . -356) T) ((-675 . -1183) T) ((-675 . -892) T) ((-675 . -542) T) ((-675 . -170) T) ((-675 . -694) 69861) ((-675 . -38) 69826) ((-675 . -444) T) ((-675 . -300) T) ((-675 . -111) 69782) ((-675 . -1024) 69747) ((-675 . -283) T) ((-675 . -237) T) ((-675 . -821) T) ((-675 . -773) T) ((-675 . -770) T) ((-675 . -823) T) ((-675 . -768) T) ((-675 . -767) T) ((-675 . -857) 69729) ((-675 . -973) T) ((-675 . -991) T) ((-675 . -1009) 69674) ((-675 . -1027) T) ((-675 . -380) T) ((-670 . -380) T) ((-670 . -1009) 69619) ((-670 . -823) T) ((-670 . -38) 69569) ((-670 . -703) T) ((-670 . -1078) T) ((-670 . -1025) T) ((-670 . -1018) T) ((-670 . -111) 69503) ((-670 . -1024) 69453) ((-670 . -21) T) ((-670 . -23) T) ((-670 . -1067) T) ((-670 . -593) 69435) ((-670 . -101) T) ((-670 . -25) T) ((-670 . -130) T) ((-670 . -624) 69385) ((-670 . -694) 69335) ((-670 . -170) T) ((-670 . -283) T) ((-670 . -542) T) ((-670 . -164) 69317) ((-670 . -35) NIL) ((-670 . -94) NIL) ((-670 . -277) NIL) ((-670 . -484) NIL) ((-670 . -1167) NIL) ((-670 . -1164) NIL) ((-670 . -973) NIL) ((-670 . -881) NIL) ((-670 . -594) 69225) ((-670 . -855) 69207) ((-670 . -361) NIL) ((-670 . -343) NIL) ((-670 . -1117) NIL) ((-670 . -395) NIL) ((-670 . -403) 69174) ((-670 . -363) 69141) ((-670 . -701) 69108) ((-670 . -405) 69090) ((-670 . -857) 69072) ((-670 . -1178) T) ((-670 . -393) 69054) ((-670 . -617) 69036) ((-670 . -370) 69018) ((-670 . -279) NIL) ((-670 . -302) NIL) ((-670 . -505) NIL) ((-670 . -331) 69000) ((-670 . -237) T) ((-670 . -1183) T) ((-670 . -356) T) ((-670 . -892) T) ((-670 . -444) T) ((-670 . -300) T) ((-670 . -227) NIL) ((-670 . -871) NIL) ((-670 . -225) 68982) ((-670 . -145) T) ((-670 . -143) NIL) ((-667 . -1220) T) ((-667 . -593) 68964) ((-665 . -662) 68922) ((-665 . -481) 68906) ((-665 . -101) 68884) ((-665 . -1067) 68862) ((-665 . -505) 68795) ((-665 . -302) 68733) ((-665 . -593) 68665) ((-665 . -1178) T) ((-665 . -34) T) ((-665 . -56) 68623) ((-665 . -594) 68584) ((-657 . -1049) T) ((-657 . -593) 68534) ((-657 . -1067) T) ((-657 . -101) T) ((-657 . -92) T) ((-653 . -823) T) ((-653 . -101) T) ((-653 . -593) 68516) ((-653 . -1067) T) ((-653 . -1009) 68500) ((-652 . -1049) T) ((-652 . -593) 68466) ((-652 . -1067) T) ((-652 . -101) T) ((-652 . -92) T) ((-651 . -481) 68450) ((-651 . -101) 68428) ((-651 . -1067) 68406) ((-651 . -505) 68339) ((-651 . -302) 68277) ((-651 . -593) 68209) ((-651 . -1178) T) ((-651 . -34) T) ((-648 . -823) T) ((-648 . -101) T) ((-648 . -593) 68191) ((-648 . -1067) T) ((-648 . -1009) 68175) ((-647 . -1049) T) ((-647 . -593) 68141) ((-647 . -1067) T) ((-647 . -101) T) ((-647 . -92) T) ((-646 . -1089) 68086) ((-646 . -481) 68070) ((-646 . -505) 68003) ((-646 . -302) 67941) ((-646 . -1178) T) ((-646 . -34) T) ((-646 . -1021) 67881) ((-646 . -1009) 67777) ((-646 . -405) 67761) ((-646 . -617) 67709) ((-646 . -370) 67693) ((-646 . -227) 67672) ((-646 . -871) 67631) ((-646 . -225) 67615) ((-646 . -694) 67599) ((-646 . -624) 67573) ((-646 . -130) T) ((-646 . -25) T) ((-646 . -101) T) ((-646 . -593) 67535) ((-646 . -1067) T) ((-646 . -23) T) ((-646 . -21) T) ((-646 . -1024) 67519) ((-646 . -111) 67498) ((-646 . -1018) T) ((-646 . -1025) T) ((-646 . -1078) T) ((-646 . -703) T) ((-646 . -38) 67458) ((-646 . -411) 67442) ((-646 . -721) 67426) ((-646 . -697) T) ((-646 . -738) T) ((-646 . -360) 67410) ((-640 . -367) 67389) ((-640 . -694) 67373) ((-640 . -624) 67357) ((-640 . -130) T) ((-640 . -25) T) ((-640 . -101) T) ((-640 . -593) 67339) ((-640 . -1067) T) ((-640 . -23) T) ((-640 . -21) T) ((-640 . -1024) 67323) ((-640 . -111) 67302) ((-640 . -613) 67286) ((-640 . -377) 67258) ((-640 . -1009) 67235) ((-632 . -634) 67219) ((-632 . -38) 67189) ((-632 . -624) 67163) ((-632 . -703) T) ((-632 . -1078) T) ((-632 . -1025) T) ((-632 . -1018) T) ((-632 . -111) 67142) ((-632 . -1024) 67126) ((-632 . -21) T) ((-632 . -23) T) ((-632 . -1067) T) ((-632 . -593) 67108) ((-632 . -101) T) ((-632 . -25) T) ((-632 . -130) T) ((-632 . -694) 67078) ((-632 . -405) 67062) ((-632 . -1009) 66958) ((-632 . -825) 66942) ((-632 . -279) 66903) ((-631 . -634) 66887) ((-631 . -38) 66857) ((-631 . -624) 66831) ((-631 . -703) T) ((-631 . -1078) T) ((-631 . -1025) T) ((-631 . -1018) T) ((-631 . -111) 66810) ((-631 . -1024) 66794) ((-631 . -21) T) ((-631 . -23) T) ((-631 . -1067) T) ((-631 . -593) 66776) ((-631 . -101) T) ((-631 . -25) T) ((-631 . -130) T) ((-631 . -694) 66746) ((-631 . -405) 66730) ((-631 . -1009) 66626) ((-631 . -825) 66610) ((-631 . -279) 66589) ((-630 . -634) 66573) ((-630 . -38) 66543) ((-630 . -624) 66517) ((-630 . -703) T) ((-630 . -1078) T) ((-630 . -1025) T) ((-630 . -1018) T) ((-630 . -111) 66496) ((-630 . -1024) 66480) ((-630 . -21) T) ((-630 . -23) T) ((-630 . -1067) T) ((-630 . -593) 66462) ((-630 . -101) T) ((-630 . -25) T) ((-630 . -130) T) ((-630 . -694) 66432) ((-630 . -405) 66416) ((-630 . -1009) 66312) ((-630 . -825) 66296) ((-630 . -279) 66275) ((-628 . -694) 66259) ((-628 . -624) 66243) ((-628 . -130) T) ((-628 . -25) T) ((-628 . -101) T) ((-628 . -593) 66225) ((-628 . -1067) T) ((-628 . -23) T) ((-628 . -21) T) ((-628 . -1024) 66209) ((-628 . -111) 66188) ((-628 . -767) 66167) ((-628 . -768) 66146) ((-628 . -823) 66125) ((-628 . -770) 66104) ((-628 . -773) 66083) ((-625 . -1067) T) ((-625 . -593) 66065) ((-625 . -101) T) ((-625 . -1009) 66049) ((-623 . -671) 66033) ((-623 . -106) 66017) ((-623 . -34) T) ((-623 . -1178) T) ((-623 . -593) 65949) ((-623 . -302) 65887) ((-623 . -505) 65820) ((-623 . -1067) 65798) ((-623 . -101) 65776) ((-623 . -481) 65760) ((-623 . -149) 65744) ((-623 . -594) 65705) ((-623 . -229) 65689) ((-622 . -1049) T) ((-622 . -593) 65642) ((-622 . -1067) T) ((-622 . -101) T) ((-622 . -92) T) ((-618 . -642) 65626) ((-618 . -1213) 65610) ((-618 . -981) 65594) ((-618 . -1115) 65578) ((-618 . -823) 65557) ((-618 . -365) 65541) ((-618 . -627) 65525) ((-618 . -281) 65502) ((-618 . -279) 65479) ((-618 . -584) 65456) ((-618 . -594) 65417) ((-618 . -481) 65401) ((-618 . -101) 65351) ((-618 . -1067) 65301) ((-618 . -505) 65234) ((-618 . -302) 65172) ((-618 . -593) 65084) ((-618 . -1178) T) ((-618 . -34) T) ((-618 . -149) 65068) ((-618 . -275) 65052) ((-618 . -797) 65031) ((-611 . -721) 65015) ((-611 . -697) T) ((-611 . -738) T) ((-611 . -111) 64994) ((-611 . -1024) 64978) ((-611 . -21) T) ((-611 . -23) T) ((-611 . -1067) T) ((-611 . -593) 64947) ((-611 . -101) T) ((-611 . -25) T) ((-611 . -130) T) ((-611 . -624) 64931) ((-611 . -694) 64915) ((-611 . -411) 64880) ((-611 . -360) 64812) ((-610 . -1155) 64787) ((-610 . -223) 64733) ((-610 . -106) 64679) ((-610 . -302) 64530) ((-610 . -505) 64374) ((-610 . -481) 64305) ((-610 . -149) 64251) ((-610 . -594) NIL) ((-610 . -229) 64197) ((-610 . -590) 64172) ((-610 . -281) 64147) ((-610 . -279) 64122) ((-610 . -101) T) ((-610 . -1067) T) ((-610 . -593) 64104) ((-610 . -1178) T) ((-610 . -34) T) ((-610 . -584) 64079) ((-605 . -465) T) ((-605 . -1078) T) ((-605 . -101) T) ((-605 . -593) 64061) ((-605 . -1067) T) ((-605 . -703) T) ((-604 . -1049) T) ((-604 . -593) 64027) ((-604 . -1067) T) ((-604 . -101) T) ((-604 . -92) T) ((-601 . -225) 64011) ((-601 . -871) 63970) ((-601 . -1018) T) ((-601 . -1025) T) ((-601 . -1078) T) ((-601 . -703) T) ((-601 . -21) T) ((-601 . -23) T) ((-601 . -1067) T) ((-601 . -593) 63952) ((-601 . -101) T) ((-601 . -25) T) ((-601 . -130) T) ((-601 . -624) 63939) ((-601 . -227) 63918) ((-601 . -542) T) ((-601 . -283) T) ((-601 . -170) T) ((-601 . -694) 63905) ((-601 . -1024) 63892) ((-601 . -111) 63877) ((-601 . -38) 63864) ((-601 . -594) 63841) ((-601 . -405) 63825) ((-601 . -1009) 63708) ((-601 . -145) 63687) ((-601 . -143) 63666) ((-601 . -300) 63645) ((-601 . -444) 63624) ((-601 . -892) 63603) ((-597 . -38) 63587) ((-597 . -624) 63561) ((-597 . -703) T) ((-597 . -1078) T) ((-597 . -1025) T) ((-597 . -1018) T) ((-597 . -111) 63540) ((-597 . -1024) 63524) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1067) T) ((-597 . -593) 63506) ((-597 . -101) T) ((-597 . -25) T) ((-597 . -130) T) ((-597 . -694) 63490) ((-597 . -821) 63469) ((-597 . -773) 63448) ((-597 . -770) 63427) ((-597 . -823) 63406) ((-597 . -768) 63385) ((-597 . -767) 63364) ((-596 . -938) T) ((-596 . -101) T) ((-596 . -593) 63346) ((-596 . -1067) T) ((-591 . -131) T) ((-591 . -1067) T) ((-591 . -593) 63328) ((-591 . -101) T) ((-591 . -823) T) ((-591 . -855) 63312) ((-591 . -594) 63173) ((-588 . -358) 63113) ((-588 . -101) T) ((-588 . -593) 63095) ((-588 . -1067) T) ((-588 . -1155) 63071) ((-588 . -223) 63018) ((-588 . -106) 62965) ((-588 . -302) 62760) ((-588 . -505) 62543) ((-588 . -481) 62477) ((-588 . -149) 62424) ((-588 . -594) NIL) ((-588 . -229) 62371) ((-588 . -590) 62347) ((-588 . -281) 62323) ((-588 . -279) 62299) ((-588 . -1178) T) ((-588 . -34) T) ((-588 . -584) 62275) ((-587 . -721) 62259) ((-587 . -697) T) ((-587 . -738) T) ((-587 . -111) 62238) ((-587 . -1024) 62222) ((-587 . -21) T) ((-587 . -23) T) ((-587 . -1067) T) ((-587 . -593) 62191) ((-587 . -101) T) ((-587 . -25) T) ((-587 . -130) T) ((-587 . -624) 62175) ((-587 . -694) 62159) ((-587 . -411) 62124) ((-587 . -360) 62056) ((-586 . -1049) T) ((-586 . -593) 62006) ((-586 . -1067) T) ((-586 . -101) T) ((-586 . -92) T) ((-585 . -593) 61973) ((-582 . -1223) 61957) ((-582 . -365) 61941) ((-582 . -823) 61920) ((-582 . -149) 61904) ((-582 . -34) T) ((-582 . -1178) T) ((-582 . -593) 61816) ((-582 . -302) 61754) ((-582 . -505) 61687) ((-582 . -1067) 61637) ((-582 . -101) 61587) ((-582 . -481) 61571) ((-582 . -594) 61532) ((-582 . -584) 61509) ((-582 . -279) 61486) ((-582 . -281) 61463) ((-582 . -627) 61447) ((-582 . -19) 61431) ((-581 . -593) 61413) ((-577 . -1018) T) ((-577 . -1025) T) ((-577 . -1078) T) ((-577 . -703) T) ((-577 . -21) T) ((-577 . -23) T) ((-577 . -1067) T) ((-577 . -593) 61395) ((-577 . -101) T) ((-577 . -25) T) ((-577 . -130) T) ((-577 . -624) 61382) ((-577 . -542) 61361) ((-577 . -283) 61340) ((-577 . -170) 61319) ((-577 . -694) 61292) ((-577 . -1024) 61265) ((-577 . -111) 61236) ((-577 . -38) 61209) ((-576 . -1203) 61186) ((-576 . -47) 61163) ((-576 . -38) 61060) ((-576 . -694) 60957) ((-576 . -283) 60936) ((-576 . -542) 60915) ((-576 . -111) 60784) ((-576 . -1024) 60667) ((-576 . -170) 60618) ((-576 . -145) 60597) ((-576 . -143) 60576) ((-576 . -624) 60501) ((-576 . -944) 60470) ((-576 . -871) 60383) ((-576 . -279) 60368) ((-576 . -1018) T) ((-576 . -1025) T) ((-576 . -1078) T) ((-576 . -703) T) ((-576 . -21) T) ((-576 . -23) T) ((-576 . -1067) T) ((-576 . -593) 60350) ((-576 . -101) T) ((-576 . -25) T) ((-576 . -130) T) ((-576 . -227) 60309) ((-574 . -1110) T) ((-574 . -365) 60291) ((-574 . -823) T) ((-574 . -149) 60273) ((-574 . -34) T) ((-574 . -1178) T) ((-574 . -593) 60255) ((-574 . -302) NIL) ((-574 . -505) NIL) ((-574 . -1067) T) ((-574 . -101) T) ((-574 . -481) 60237) ((-574 . -594) NIL) ((-574 . -584) 60212) ((-574 . -279) 60187) ((-574 . -281) 60162) ((-574 . -627) 60144) ((-574 . -19) 60126) ((-573 . -1049) T) ((-573 . -593) 60092) ((-573 . -1067) T) ((-573 . -101) T) ((-573 . -92) T) ((-565 . -694) 60067) ((-565 . -624) 60042) ((-565 . -130) T) ((-565 . -25) T) ((-565 . -101) T) ((-565 . -593) 60024) ((-565 . -1067) T) ((-565 . -23) T) ((-565 . -21) T) ((-565 . -1024) 59999) ((-565 . -111) 59967) ((-565 . -1009) 59951) ((-563 . -343) T) ((-563 . -1117) T) ((-563 . -361) T) ((-563 . -143) T) ((-563 . -356) T) ((-563 . -1183) T) ((-563 . -892) T) ((-563 . -542) T) ((-563 . -170) T) ((-563 . -694) 59916) ((-563 . -38) 59881) ((-563 . -444) T) ((-563 . -300) T) ((-563 . -111) 59837) ((-563 . -1024) 59802) ((-563 . -624) 59767) ((-563 . -283) T) ((-563 . -237) T) ((-563 . -395) T) ((-563 . -1018) T) ((-563 . -1025) T) ((-563 . -1078) T) ((-563 . -703) T) ((-563 . -21) T) ((-563 . -23) T) ((-563 . -1067) T) ((-563 . -593) 59749) ((-563 . -101) T) ((-563 . -25) T) ((-563 . -130) T) ((-563 . -227) T) ((-563 . -322) 59736) ((-563 . -145) 59718) ((-563 . -1009) 59705) ((-563 . -1232) 59692) ((-563 . -1243) 59679) ((-563 . -594) 59661) ((-562 . -841) 59645) ((-562 . -892) T) ((-562 . -542) T) ((-562 . -283) T) ((-562 . -170) T) ((-562 . -694) 59632) ((-562 . -1024) 59619) ((-562 . -111) 59604) ((-562 . -38) 59591) ((-562 . -444) T) ((-562 . -300) T) ((-562 . -1018) T) ((-562 . -1025) T) ((-562 . -1078) T) ((-562 . -703) T) ((-562 . -21) T) ((-562 . -23) T) ((-562 . -1067) T) ((-562 . -593) 59573) ((-562 . -101) T) ((-562 . -25) T) ((-562 . -130) T) ((-562 . -624) 59560) ((-562 . -145) T) ((-556 . -540) 59544) ((-556 . -35) T) ((-556 . -94) T) ((-556 . -277) T) ((-556 . -484) T) ((-556 . -1167) T) ((-556 . -1164) T) ((-556 . -1009) 59526) ((-556 . -973) T) ((-556 . -823) T) ((-556 . -542) T) ((-556 . -283) T) ((-556 . -170) T) ((-556 . -694) 59513) ((-556 . -624) 59500) ((-556 . -130) T) ((-556 . -25) T) ((-556 . -101) T) ((-556 . -593) 59482) ((-556 . -1067) T) ((-556 . -23) T) ((-556 . -21) T) ((-556 . -1024) 59469) ((-556 . -111) 59454) ((-556 . -1018) T) ((-556 . -1025) T) ((-556 . -1078) T) ((-556 . -703) T) ((-556 . -38) 59441) ((-556 . -444) T) ((-536 . -1155) 59420) ((-536 . -223) 59370) ((-536 . -106) 59320) ((-536 . -302) 59124) ((-536 . -505) 58916) ((-536 . -481) 58853) ((-536 . -149) 58803) ((-536 . -594) NIL) ((-536 . -229) 58753) ((-536 . -590) 58732) ((-536 . -281) 58711) ((-536 . -279) 58690) ((-536 . -101) T) ((-536 . -1067) T) ((-536 . -593) 58672) ((-536 . -1178) T) ((-536 . -34) T) ((-536 . -584) 58651) ((-535 . -534) T) ((-535 . -1183) T) ((-535 . -1117) T) ((-535 . -1009) 58633) ((-535 . -594) 58532) ((-535 . -991) T) ((-535 . -857) 58514) ((-535 . -821) T) ((-535 . -773) T) ((-535 . -770) T) ((-535 . -823) T) ((-535 . -768) T) ((-535 . -767) T) ((-535 . -796) T) ((-535 . -617) 58496) ((-535 . -892) T) ((-535 . -542) T) ((-535 . -283) T) ((-535 . -170) T) ((-535 . -694) 58483) ((-535 . -1024) 58470) ((-535 . -111) 58455) ((-535 . -38) 58442) ((-535 . -444) T) ((-535 . -300) T) ((-535 . -227) T) ((-535 . -141) T) ((-535 . -1018) T) ((-535 . -1025) T) ((-535 . -1078) T) ((-535 . -703) T) ((-535 . -21) T) ((-535 . -23) T) ((-535 . -1067) T) ((-535 . -593) 58424) ((-535 . -101) T) ((-535 . -25) T) ((-535 . -130) T) ((-535 . -624) 58411) ((-535 . -145) T) ((-535 . -797) T) ((-524 . -1070) 58363) ((-524 . -101) T) ((-524 . -593) 58345) ((-524 . -1067) T) ((-524 . -594) 58326) ((-521 . -769) T) ((-521 . -130) T) ((-521 . -25) T) ((-521 . -101) T) ((-521 . -593) 58308) ((-521 . -1067) T) ((-521 . -23) T) ((-521 . -768) T) ((-521 . -823) T) ((-521 . -770) T) ((-521 . -773) T) ((-521 . -500) 58285) ((-516 . -1049) T) ((-516 . -593) 58251) ((-516 . -1067) T) ((-516 . -101) T) ((-516 . -92) T) ((-515 . -1049) T) ((-515 . -593) 58217) ((-515 . -1067) T) ((-515 . -101) T) ((-515 . -92) T) ((-514 . -662) 58167) ((-514 . -481) 58151) ((-514 . -101) 58129) ((-514 . -1067) 58107) ((-514 . -505) 58040) ((-514 . -302) 57978) ((-514 . -593) 57910) ((-514 . -1178) T) ((-514 . -34) T) ((-514 . -56) 57860) ((-511 . -642) 57844) ((-511 . -1213) 57828) ((-511 . -981) 57812) ((-511 . -1115) 57796) ((-511 . -823) 57775) ((-511 . -365) 57759) ((-511 . -627) 57743) ((-511 . -281) 57720) ((-511 . -279) 57697) ((-511 . -584) 57674) ((-511 . -594) 57635) ((-511 . -481) 57619) ((-511 . -101) 57569) ((-511 . -1067) 57519) ((-511 . -505) 57452) ((-511 . -302) 57390) ((-511 . -593) 57302) ((-511 . -1178) T) ((-511 . -34) T) ((-511 . -149) 57286) ((-511 . -275) 57270) ((-510 . -56) 57244) ((-510 . -34) T) ((-510 . -1178) T) ((-510 . -593) 57176) ((-510 . -302) 57114) ((-510 . -505) 57047) ((-510 . -1067) 57025) ((-510 . -101) 57003) ((-510 . -481) 56987) ((-509 . -322) 56964) ((-509 . -227) T) ((-509 . -361) T) ((-509 . -1117) T) ((-509 . -343) T) ((-509 . -145) 56946) ((-509 . -624) 56891) ((-509 . -130) T) ((-509 . -25) T) ((-509 . -101) T) ((-509 . -593) 56873) ((-509 . -1067) T) ((-509 . -23) T) ((-509 . -21) T) ((-509 . -703) T) ((-509 . -1078) T) ((-509 . -1025) T) ((-509 . -1018) T) ((-509 . -356) T) ((-509 . -1183) T) ((-509 . -892) T) ((-509 . -542) T) ((-509 . -170) T) ((-509 . -694) 56818) ((-509 . -38) 56783) ((-509 . -444) T) ((-509 . -300) T) ((-509 . -111) 56712) ((-509 . -1024) 56657) ((-509 . -283) T) ((-509 . -237) T) ((-509 . -395) T) ((-509 . -143) T) ((-509 . -1009) 56634) ((-509 . -1232) 56611) ((-509 . -1243) 56588) ((-508 . -1049) T) ((-508 . -593) 56554) ((-508 . -1067) T) ((-508 . -101) T) ((-508 . -92) T) ((-507 . -19) 56538) ((-507 . -627) 56522) ((-507 . -281) 56499) ((-507 . -279) 56476) ((-507 . -584) 56453) ((-507 . -594) 56414) ((-507 . -481) 56398) ((-507 . -101) 56348) ((-507 . -1067) 56298) ((-507 . -505) 56231) ((-507 . -302) 56169) ((-507 . -593) 56081) ((-507 . -1178) T) ((-507 . -34) T) ((-507 . -149) 56065) ((-507 . -823) 56044) ((-507 . -365) 56028) ((-507 . -275) 56012) ((-506 . -316) 55991) ((-506 . -1009) 55975) ((-506 . -23) T) ((-506 . -1067) T) ((-506 . -593) 55957) ((-506 . -101) T) ((-506 . -25) T) ((-506 . -130) T) ((-503 . -769) T) ((-503 . -130) T) ((-503 . -25) T) ((-503 . -101) T) ((-503 . -593) 55939) ((-503 . -1067) T) ((-503 . -23) T) ((-503 . -768) T) ((-503 . -823) T) ((-503 . -770) T) ((-503 . -773) T) ((-503 . -500) 55918) ((-502 . -768) T) ((-502 . -823) T) ((-502 . -770) T) ((-502 . -25) T) ((-502 . -101) T) ((-502 . -593) 55900) ((-502 . -1067) T) ((-502 . -23) T) ((-502 . -500) 55879) ((-501 . -500) 55858) ((-501 . -101) T) ((-501 . -593) 55840) ((-501 . -1067) T) ((-499 . -23) T) ((-499 . -1067) T) ((-499 . -593) 55822) ((-499 . -101) T) ((-499 . -25) T) ((-499 . -500) 55801) ((-498 . -21) T) ((-498 . -23) T) ((-498 . -1067) T) ((-498 . -593) 55783) ((-498 . -101) T) ((-498 . -25) T) ((-498 . -130) T) ((-498 . -500) 55762) ((-497 . -1049) T) ((-497 . -593) 55712) ((-497 . -1067) T) ((-497 . -101) T) ((-497 . -92) T) ((-495 . -1067) T) ((-495 . -593) 55694) ((-495 . -101) T) ((-493 . -823) T) ((-493 . -101) T) ((-493 . -593) 55676) ((-493 . -1067) T) ((-491 . -123) T) ((-491 . -365) 55658) ((-491 . -823) T) ((-491 . -149) 55640) ((-491 . -34) T) ((-491 . -1178) T) ((-491 . -593) 55622) ((-491 . -302) NIL) ((-491 . -505) NIL) ((-491 . -1067) T) ((-491 . -481) 55604) ((-491 . -594) 55586) ((-491 . -584) 55561) ((-491 . -279) 55536) ((-491 . -281) 55511) ((-491 . -627) 55493) ((-491 . -19) 55475) ((-491 . -101) T) ((-491 . -638) T) ((-488 . -56) 55425) ((-488 . -34) T) ((-488 . -1178) T) ((-488 . -593) 55357) ((-488 . -302) 55295) ((-488 . -505) 55228) ((-488 . -1067) 55206) ((-488 . -101) 55184) ((-488 . -481) 55168) ((-487 . -19) 55152) ((-487 . -627) 55136) ((-487 . -281) 55113) ((-487 . -279) 55090) ((-487 . -584) 55067) ((-487 . -594) 55028) ((-487 . -481) 55012) ((-487 . -101) 54962) ((-487 . -1067) 54912) ((-487 . -505) 54845) ((-487 . -302) 54783) ((-487 . -593) 54695) ((-487 . -1178) T) ((-487 . -34) T) ((-487 . -149) 54679) ((-487 . -823) 54658) ((-487 . -365) 54642) ((-486 . -291) T) ((-486 . -1009) 54585) ((-486 . -1067) T) ((-486 . -593) 54567) ((-486 . -101) T) ((-486 . -823) T) ((-486 . -505) 54533) ((-486 . -302) 54520) ((-486 . -27) T) ((-486 . -973) T) ((-486 . -237) T) ((-486 . -111) 54476) ((-486 . -1024) 54441) ((-486 . -283) T) ((-486 . -694) 54406) ((-486 . -624) 54371) ((-486 . -130) T) ((-486 . -25) T) ((-486 . -23) T) ((-486 . -21) T) ((-486 . -1018) T) ((-486 . -1025) T) ((-486 . -1078) T) ((-486 . -703) T) ((-486 . -38) 54336) ((-486 . -300) T) ((-486 . -444) T) ((-486 . -170) T) ((-486 . -542) T) ((-486 . -892) T) ((-486 . -1183) T) ((-486 . -356) T) ((-486 . -617) 54296) ((-486 . -991) T) ((-486 . -594) 54241) ((-486 . -145) T) ((-486 . -227) T) ((-482 . -1067) T) ((-482 . -593) 54207) ((-482 . -101) T) ((-479 . -962) 54189) ((-479 . -1117) T) ((-479 . -1009) 54149) ((-479 . -594) 54079) ((-479 . -991) T) ((-479 . -881) NIL) ((-479 . -855) 54061) ((-479 . -821) T) ((-479 . -773) T) ((-479 . -770) T) ((-479 . -823) T) ((-479 . -768) T) ((-479 . -767) T) ((-479 . -796) T) ((-479 . -857) 54043) ((-479 . -1178) T) ((-479 . -393) 54025) ((-479 . -617) 54007) ((-479 . -370) 53989) ((-479 . -279) NIL) ((-479 . -302) NIL) ((-479 . -505) NIL) ((-479 . -331) 53971) ((-479 . -237) T) ((-479 . -111) 53905) ((-479 . -1024) 53855) ((-479 . -283) T) ((-479 . -694) 53805) ((-479 . -624) 53755) ((-479 . -38) 53705) ((-479 . -300) T) ((-479 . -444) T) ((-479 . -170) T) ((-479 . -542) T) ((-479 . -892) T) ((-479 . -1183) T) ((-479 . -356) T) ((-479 . -227) T) ((-479 . -871) NIL) ((-479 . -225) 53687) ((-479 . -145) T) ((-479 . -143) NIL) ((-479 . -130) T) ((-479 . -25) T) ((-479 . -101) T) ((-479 . -593) 53669) ((-479 . -1067) T) ((-479 . -23) T) ((-479 . -21) T) ((-479 . -1018) T) ((-479 . -1025) T) ((-479 . -1078) T) ((-479 . -703) T) ((-477 . -329) 53638) ((-477 . -130) T) ((-477 . -25) T) ((-477 . -101) T) ((-477 . -593) 53620) ((-477 . -1067) T) ((-477 . -23) T) ((-477 . -21) T) ((-476 . -939) 53604) ((-476 . -481) 53588) ((-476 . -101) 53566) ((-476 . -1067) 53544) ((-476 . -505) 53477) ((-476 . -302) 53415) ((-476 . -593) 53347) ((-476 . -1178) T) ((-476 . -34) T) ((-476 . -106) 53331) ((-475 . -1049) T) ((-475 . -593) 53297) ((-475 . -1067) T) ((-475 . -101) T) ((-475 . -92) T) ((-474 . -232) 53276) ((-474 . -1232) 53246) ((-474 . -767) 53225) ((-474 . -821) 53204) ((-474 . -773) 53155) ((-474 . -770) 53106) ((-474 . -823) 53057) ((-474 . -768) 53008) ((-474 . -769) 52987) ((-474 . -281) 52964) ((-474 . -279) 52941) ((-474 . -481) 52925) ((-474 . -505) 52858) ((-474 . -302) 52796) ((-474 . -1178) T) ((-474 . -34) T) ((-474 . -584) 52773) ((-474 . -1009) 52600) ((-474 . -405) 52569) ((-474 . -617) 52475) ((-474 . -370) 52444) ((-474 . -361) 52423) ((-474 . -227) 52375) ((-474 . -871) 52307) ((-474 . -225) 52276) ((-474 . -111) 52166) ((-474 . -1024) 52063) ((-474 . -170) 52042) ((-474 . -593) 51773) ((-474 . -694) 51715) ((-474 . -624) 51563) ((-474 . -130) 51433) ((-474 . -23) 51303) ((-474 . -21) 51213) ((-474 . -1018) 51143) ((-474 . -1025) 51073) ((-474 . -1078) 50983) ((-474 . -703) 50893) ((-474 . -38) 50863) ((-474 . -1067) 50653) ((-474 . -101) 50443) ((-474 . -25) 50294) ((-473 . -921) 50239) ((-473 . -1009) 50115) ((-473 . -1183) 50094) ((-473 . -881) 50073) ((-473 . -857) NIL) ((-473 . -871) 50050) ((-473 . -823) 50029) ((-473 . -505) 49972) ((-473 . -444) 49923) ((-473 . -617) 49871) ((-473 . -370) 49855) ((-473 . -47) 49812) ((-473 . -38) 49661) ((-473 . -694) 49510) ((-473 . -283) 49441) ((-473 . -542) 49372) ((-473 . -111) 49201) ((-473 . -1024) 49044) ((-473 . -170) 48955) ((-473 . -145) 48934) ((-473 . -143) 48913) ((-473 . -624) 48838) ((-473 . -130) T) ((-473 . -25) T) ((-473 . -101) T) ((-473 . -593) 48820) ((-473 . -1067) T) ((-473 . -23) T) ((-473 . -21) T) ((-473 . -1018) T) ((-473 . -1025) T) ((-473 . -1078) T) ((-473 . -703) T) ((-473 . -405) 48804) ((-473 . -319) 48761) ((-473 . -302) 48748) ((-473 . -594) 48609) ((-471 . -1155) 48588) ((-471 . -223) 48538) ((-471 . -106) 48488) ((-471 . -302) 48292) ((-471 . -505) 48084) ((-471 . -481) 48021) ((-471 . -149) 47971) ((-471 . -594) NIL) ((-471 . -229) 47921) ((-471 . -590) 47900) ((-471 . -281) 47879) ((-471 . -279) 47858) ((-471 . -101) T) ((-471 . -1067) T) ((-471 . -593) 47840) ((-471 . -1178) T) ((-471 . -34) T) ((-471 . -584) 47819) ((-470 . -1049) T) ((-470 . -593) 47785) ((-470 . -1067) T) ((-470 . -101) T) ((-470 . -92) T) ((-469 . -356) T) ((-469 . -1183) T) ((-469 . -892) T) ((-469 . -542) T) ((-469 . -170) T) ((-469 . -694) 47750) ((-469 . -38) 47715) ((-469 . -444) T) ((-469 . -300) T) ((-469 . -624) 47680) ((-469 . -703) T) ((-469 . -1078) T) ((-469 . -1025) T) ((-469 . -1018) T) ((-469 . -111) 47636) ((-469 . -1024) 47601) ((-469 . -21) T) ((-469 . -23) T) ((-469 . -1067) T) ((-469 . -593) 47553) ((-469 . -101) T) ((-469 . -25) T) ((-469 . -130) T) ((-469 . -283) T) ((-469 . -237) T) ((-469 . -145) T) ((-469 . -1009) 47513) ((-469 . -991) T) ((-469 . -594) 47435) ((-468 . -1173) 47404) ((-468 . -593) 47366) ((-468 . -149) 47350) ((-468 . -34) T) ((-468 . -1178) T) ((-468 . -302) 47288) ((-468 . -505) 47221) ((-468 . -1067) T) ((-468 . -101) T) ((-468 . -481) 47205) ((-468 . -594) 47166) ((-468 . -947) 47135) ((-467 . -1155) 47114) ((-467 . -223) 47064) ((-467 . -106) 47014) ((-467 . -302) 46818) ((-467 . -505) 46610) ((-467 . -481) 46547) ((-467 . -149) 46497) ((-467 . -594) NIL) ((-467 . -229) 46447) ((-467 . -590) 46426) ((-467 . -281) 46405) ((-467 . -279) 46384) ((-467 . -101) T) ((-467 . -1067) T) ((-467 . -593) 46366) ((-467 . -1178) T) ((-467 . -34) T) ((-467 . -584) 46345) ((-466 . -1207) 46329) ((-466 . -227) 46281) ((-466 . -279) 46266) ((-466 . -871) 46172) ((-466 . -944) 46134) ((-466 . -38) 45975) ((-466 . -111) 45796) ((-466 . -1024) 45631) ((-466 . -624) 45528) ((-466 . -694) 45369) ((-466 . -143) 45348) ((-466 . -145) 45327) ((-466 . -47) 45297) ((-466 . -1203) 45267) ((-466 . -35) 45233) ((-466 . -94) 45199) ((-466 . -277) 45165) ((-466 . -484) 45131) ((-466 . -1167) 45097) ((-466 . -1164) 45063) ((-466 . -973) 45029) ((-466 . -237) 45008) ((-466 . -283) 44959) ((-466 . -130) T) ((-466 . -25) T) ((-466 . -101) T) ((-466 . -593) 44941) ((-466 . -1067) T) ((-466 . -23) T) ((-466 . -21) T) ((-466 . -1018) T) ((-466 . -1025) T) ((-466 . -1078) T) ((-466 . -703) T) ((-466 . -300) 44920) ((-466 . -444) 44899) ((-466 . -170) 44830) ((-466 . -542) 44781) ((-466 . -892) 44760) ((-466 . -1183) 44739) ((-466 . -356) 44718) ((-460 . -1067) T) ((-460 . -593) 44700) ((-460 . -101) T) ((-455 . -947) 44669) ((-455 . -594) 44630) ((-455 . -481) 44614) ((-455 . -101) T) ((-455 . -1067) T) ((-455 . -505) 44547) ((-455 . -302) 44485) ((-455 . -593) 44447) ((-455 . -1178) T) ((-455 . -34) T) ((-455 . -149) 44431) ((-453 . -694) 44402) ((-453 . -624) 44373) ((-453 . -130) T) ((-453 . -25) T) ((-453 . -101) T) ((-453 . -593) 44355) ((-453 . -1067) T) ((-453 . -23) T) ((-453 . -21) T) ((-453 . -1024) 44326) ((-453 . -111) 44287) ((-446 . -921) 44254) ((-446 . -1009) 44130) ((-446 . -1183) 44109) ((-446 . -881) 44088) ((-446 . -857) NIL) ((-446 . -871) 44065) ((-446 . -823) 44044) ((-446 . -505) 43987) ((-446 . -444) 43938) ((-446 . -617) 43886) ((-446 . -370) 43870) ((-446 . -47) 43849) ((-446 . -38) 43698) ((-446 . -694) 43547) ((-446 . -283) 43478) ((-446 . -542) 43409) ((-446 . -111) 43238) ((-446 . -1024) 43081) ((-446 . -170) 42992) ((-446 . -145) 42971) ((-446 . -143) 42950) ((-446 . -624) 42875) ((-446 . -130) T) ((-446 . -25) T) ((-446 . -101) T) ((-446 . -593) 42857) ((-446 . -1067) T) ((-446 . -23) T) ((-446 . -21) T) ((-446 . -1018) T) ((-446 . -1025) T) ((-446 . -1078) T) ((-446 . -703) T) ((-446 . -405) 42841) ((-446 . -319) 42820) ((-446 . -302) 42807) ((-446 . -594) 42668) ((-445 . -411) 42638) ((-445 . -721) 42608) ((-445 . -697) T) ((-445 . -738) T) ((-445 . -111) 42571) ((-445 . -1024) 42541) ((-445 . -21) T) ((-445 . -23) T) ((-445 . -1067) T) ((-445 . -593) 42523) ((-445 . -101) T) ((-445 . -25) T) ((-445 . -130) T) ((-445 . -624) 42453) ((-445 . -694) 42423) ((-445 . -360) 42393) ((-431 . -1067) T) ((-431 . -593) 42375) ((-431 . -101) T) ((-430 . -358) 42349) ((-430 . -101) T) ((-430 . -593) 42331) ((-430 . -1067) T) ((-429 . -1067) T) ((-429 . -593) 42313) ((-429 . -101) T) ((-427 . -593) 42295) ((-422 . -38) 42279) ((-422 . -624) 42253) ((-422 . -703) T) ((-422 . -1078) T) ((-422 . -1025) T) ((-422 . -1018) T) ((-422 . -111) 42232) ((-422 . -1024) 42216) ((-422 . -21) T) ((-422 . -23) T) ((-422 . -1067) T) ((-422 . -593) 42198) ((-422 . -101) T) ((-422 . -25) T) ((-422 . -130) T) ((-422 . -694) 42182) ((-408 . -703) T) ((-408 . -1067) T) ((-408 . -593) 42164) ((-408 . -101) T) ((-408 . -1078) T) ((-406 . -465) T) ((-406 . -1078) T) ((-406 . -101) T) ((-406 . -593) 42146) ((-406 . -1067) T) ((-406 . -703) T) ((-400 . -962) 42130) ((-400 . -1117) 42108) ((-400 . -1009) 41974) ((-400 . -594) 41782) ((-400 . -991) 41761) ((-400 . -881) 41740) ((-400 . -855) 41724) ((-400 . -821) 41703) ((-400 . -773) 41682) ((-400 . -770) 41661) ((-400 . -823) 41612) ((-400 . -768) 41591) ((-400 . -767) 41570) ((-400 . -796) 41549) ((-400 . -857) 41474) ((-400 . -1178) T) ((-400 . -393) 41458) ((-400 . -617) 41406) ((-400 . -370) 41390) ((-400 . -279) 41348) ((-400 . -302) 41313) ((-400 . -505) 41225) ((-400 . -331) 41209) ((-400 . -237) T) ((-400 . -111) 41147) ((-400 . -1024) 41099) ((-400 . -283) T) ((-400 . -694) 41051) ((-400 . -624) 41003) ((-400 . -38) 40955) ((-400 . -300) T) ((-400 . -444) T) ((-400 . -170) T) ((-400 . -542) T) ((-400 . -892) T) ((-400 . -1183) T) ((-400 . -356) T) ((-400 . -227) 40934) ((-400 . -871) 40893) ((-400 . -225) 40877) ((-400 . -145) 40856) ((-400 . -143) 40835) ((-400 . -130) T) ((-400 . -25) T) ((-400 . -101) T) ((-400 . -593) 40817) ((-400 . -1067) T) ((-400 . -23) T) ((-400 . -21) T) ((-400 . -1018) T) ((-400 . -1025) T) ((-400 . -1078) T) ((-400 . -703) T) ((-400 . -797) 40770) ((-398 . -542) T) ((-398 . -283) T) ((-398 . -170) T) ((-398 . -694) 40744) ((-398 . -624) 40718) ((-398 . -130) T) ((-398 . -25) T) ((-398 . -101) T) ((-398 . -593) 40700) ((-398 . -1067) T) ((-398 . -23) T) ((-398 . -21) T) ((-398 . -1024) 40674) ((-398 . -111) 40641) ((-398 . -1018) T) ((-398 . -1025) T) ((-398 . -1078) T) ((-398 . -703) T) ((-398 . -38) 40615) ((-398 . -225) 40599) ((-398 . -871) 40558) ((-398 . -227) 40537) ((-398 . -331) 40521) ((-398 . -505) 40363) ((-398 . -302) 40302) ((-398 . -279) 40230) ((-398 . -405) 40214) ((-398 . -1009) 40110) ((-398 . -444) 40060) ((-398 . -991) 40039) ((-398 . -594) 39947) ((-398 . -1183) 39925) ((-392 . -1067) T) ((-392 . -593) 39907) ((-392 . -101) T) ((-392 . -594) 39884) ((-391 . -389) T) ((-391 . -1178) T) ((-391 . -593) 39866) ((-386 . -1067) T) ((-386 . -593) 39848) ((-386 . -101) T) ((-383 . -721) 39832) ((-383 . -697) T) ((-383 . -738) T) ((-383 . -111) 39811) ((-383 . -1024) 39795) ((-383 . -21) T) ((-383 . -23) T) ((-383 . -1067) T) ((-383 . -593) 39777) ((-383 . -101) T) ((-383 . -25) T) ((-383 . -130) T) ((-383 . -624) 39761) ((-383 . -694) 39745) ((-381 . -382) T) ((-381 . -101) T) ((-381 . -593) 39727) ((-381 . -1067) T) ((-379 . -703) T) ((-379 . -1067) T) ((-379 . -593) 39709) ((-379 . -101) T) ((-379 . -1078) T) ((-379 . -1009) 39693) ((-379 . -823) 39672) ((-375 . -377) 39651) ((-375 . -1009) 39635) ((-375 . -694) 39605) ((-375 . -624) 39589) ((-375 . -130) T) ((-375 . -25) T) ((-375 . -101) T) ((-375 . -593) 39571) ((-375 . -1067) T) ((-375 . -23) T) ((-375 . -21) T) ((-375 . -1024) 39555) ((-375 . -111) 39534) ((-374 . -111) 39513) ((-374 . -1024) 39497) ((-374 . -21) T) ((-374 . -23) T) ((-374 . -1067) T) ((-374 . -593) 39479) ((-374 . -101) T) ((-374 . -25) T) ((-374 . -130) T) ((-374 . -624) 39463) ((-374 . -500) 39442) ((-374 . -694) 39412) ((-371 . -397) T) ((-371 . -145) T) ((-371 . -624) 39377) ((-371 . -130) T) ((-371 . -25) T) ((-371 . -101) T) ((-371 . -593) 39344) ((-371 . -1067) T) ((-371 . -23) T) ((-371 . -21) T) ((-371 . -703) T) ((-371 . -1078) T) ((-371 . -1025) T) ((-371 . -1018) T) ((-371 . -594) 39258) ((-371 . -356) T) ((-371 . -1183) T) ((-371 . -892) T) ((-371 . -542) T) ((-371 . -170) T) ((-371 . -694) 39223) ((-371 . -38) 39188) ((-371 . -444) T) ((-371 . -300) T) ((-371 . -111) 39144) ((-371 . -1024) 39109) ((-371 . -283) T) ((-371 . -237) T) ((-371 . -821) T) ((-371 . -773) T) ((-371 . -770) T) ((-371 . -823) T) ((-371 . -768) T) ((-371 . -767) T) ((-371 . -857) 39091) ((-371 . -973) T) ((-371 . -991) T) ((-371 . -1009) 39051) ((-371 . -1027) T) ((-371 . -227) T) ((-371 . -797) T) ((-371 . -1164) T) ((-371 . -1167) T) ((-371 . -484) T) ((-371 . -277) T) ((-371 . -94) T) ((-371 . -35) T) ((-357 . -358) 39028) ((-357 . -101) T) ((-357 . -593) 39010) ((-357 . -1067) T) ((-354 . -465) T) ((-354 . -1078) T) ((-354 . -101) T) ((-354 . -593) 38992) ((-354 . -1067) T) ((-354 . -703) T) ((-354 . -1009) 38976) ((-352 . -322) 38960) ((-352 . -227) 38939) ((-352 . -361) 38918) ((-352 . -1117) 38897) ((-352 . -343) 38876) ((-352 . -145) 38855) ((-352 . -624) 38807) ((-352 . -130) T) ((-352 . -25) T) ((-352 . -101) T) ((-352 . -593) 38789) ((-352 . -1067) T) ((-352 . -23) T) ((-352 . -21) T) ((-352 . -703) T) ((-352 . -1078) T) ((-352 . -1025) T) ((-352 . -1018) T) ((-352 . -356) T) ((-352 . -1183) T) ((-352 . -892) T) ((-352 . -542) T) ((-352 . -170) T) ((-352 . -694) 38741) ((-352 . -38) 38706) ((-352 . -444) T) ((-352 . -300) T) ((-352 . -111) 38644) ((-352 . -1024) 38596) ((-352 . -283) T) ((-352 . -237) T) ((-352 . -395) 38547) ((-352 . -143) 38498) ((-352 . -1009) 38482) ((-352 . -1232) 38466) ((-352 . -1243) 38450) ((-348 . -322) 38434) ((-348 . -227) 38413) ((-348 . -361) 38392) ((-348 . -1117) 38371) ((-348 . -343) 38350) ((-348 . -145) 38329) ((-348 . -624) 38281) ((-348 . -130) T) ((-348 . -25) T) ((-348 . -101) T) ((-348 . -593) 38263) ((-348 . -1067) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -703) T) ((-348 . -1078) T) ((-348 . -1025) T) ((-348 . -1018) T) ((-348 . -356) T) ((-348 . -1183) T) ((-348 . -892) T) ((-348 . -542) T) ((-348 . -170) T) ((-348 . -694) 38215) ((-348 . -38) 38180) ((-348 . -444) T) ((-348 . -300) T) ((-348 . -111) 38118) ((-348 . -1024) 38070) ((-348 . -283) T) ((-348 . -237) T) ((-348 . -395) 38021) ((-348 . -143) 37972) ((-348 . -1009) 37956) ((-348 . -1232) 37940) ((-348 . -1243) 37924) ((-347 . -322) 37908) ((-347 . -227) 37887) ((-347 . -361) 37866) ((-347 . -1117) 37845) ((-347 . -343) 37824) ((-347 . -145) 37803) ((-347 . -624) 37755) ((-347 . -130) T) ((-347 . -25) T) ((-347 . -101) T) ((-347 . -593) 37737) ((-347 . -1067) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -703) T) ((-347 . -1078) T) ((-347 . -1025) T) ((-347 . -1018) T) ((-347 . -356) T) ((-347 . -1183) T) ((-347 . -892) T) ((-347 . -542) T) ((-347 . -170) T) ((-347 . -694) 37689) ((-347 . -38) 37654) ((-347 . -444) T) ((-347 . -300) T) ((-347 . -111) 37592) ((-347 . -1024) 37544) ((-347 . -283) T) ((-347 . -237) T) ((-347 . -395) 37495) ((-347 . -143) 37446) ((-347 . -1009) 37430) ((-347 . -1232) 37414) ((-347 . -1243) 37398) ((-346 . -322) 37382) ((-346 . -227) 37361) ((-346 . -361) 37340) ((-346 . -1117) 37319) ((-346 . -343) 37298) ((-346 . -145) 37277) ((-346 . -624) 37229) ((-346 . -130) T) ((-346 . -25) T) ((-346 . -101) T) ((-346 . -593) 37211) ((-346 . -1067) T) ((-346 . -23) T) ((-346 . -21) T) ((-346 . -703) T) ((-346 . -1078) T) ((-346 . -1025) T) ((-346 . -1018) T) ((-346 . -356) T) ((-346 . -1183) T) ((-346 . -892) T) ((-346 . -542) T) ((-346 . -170) T) ((-346 . -694) 37163) ((-346 . -38) 37128) ((-346 . -444) T) ((-346 . -300) T) ((-346 . -111) 37066) ((-346 . -1024) 37018) ((-346 . -283) T) ((-346 . -237) T) ((-346 . -395) 36969) ((-346 . -143) 36920) ((-346 . -1009) 36904) ((-346 . -1232) 36888) ((-346 . -1243) 36872) ((-345 . -322) 36849) ((-345 . -227) T) ((-345 . -361) T) ((-345 . -1117) T) ((-345 . -343) T) ((-345 . -145) 36831) ((-345 . -624) 36776) ((-345 . -130) T) ((-345 . -25) T) ((-345 . -101) T) ((-345 . -593) 36758) ((-345 . -1067) T) ((-345 . -23) T) ((-345 . -21) T) ((-345 . -703) T) ((-345 . -1078) T) ((-345 . -1025) T) ((-345 . -1018) T) ((-345 . -356) T) ((-345 . -1183) T) ((-345 . -892) T) ((-345 . -542) T) ((-345 . -170) T) ((-345 . -694) 36703) ((-345 . -38) 36668) ((-345 . -444) T) ((-345 . -300) T) ((-345 . -111) 36597) ((-345 . -1024) 36542) ((-345 . -283) T) ((-345 . -237) T) ((-345 . -395) T) ((-345 . -143) T) ((-345 . -1009) 36519) ((-345 . -1232) 36496) ((-345 . -1243) 36473) ((-339 . -322) 36457) ((-339 . -227) 36436) ((-339 . -361) 36415) ((-339 . -1117) 36394) ((-339 . -343) 36373) ((-339 . -145) 36352) ((-339 . -624) 36304) ((-339 . -130) T) ((-339 . -25) T) ((-339 . -101) T) ((-339 . -593) 36286) ((-339 . -1067) T) ((-339 . -23) T) ((-339 . -21) T) ((-339 . -703) T) ((-339 . -1078) T) ((-339 . -1025) T) ((-339 . -1018) T) ((-339 . -356) T) ((-339 . -1183) T) ((-339 . -892) T) ((-339 . -542) T) ((-339 . -170) T) ((-339 . -694) 36238) ((-339 . -38) 36203) ((-339 . -444) T) ((-339 . -300) T) ((-339 . -111) 36141) ((-339 . -1024) 36093) ((-339 . -283) T) ((-339 . -237) T) ((-339 . -395) 36044) ((-339 . -143) 35995) ((-339 . -1009) 35979) ((-339 . -1232) 35963) ((-339 . -1243) 35947) ((-338 . -322) 35931) ((-338 . -227) 35910) ((-338 . -361) 35889) ((-338 . -1117) 35868) ((-338 . -343) 35847) ((-338 . -145) 35826) ((-338 . -624) 35778) ((-338 . -130) T) ((-338 . -25) T) ((-338 . -101) T) ((-338 . -593) 35760) ((-338 . -1067) T) ((-338 . -23) T) ((-338 . -21) T) ((-338 . -703) T) ((-338 . -1078) T) ((-338 . -1025) T) ((-338 . -1018) T) ((-338 . -356) T) ((-338 . -1183) T) ((-338 . -892) T) ((-338 . -542) T) ((-338 . -170) T) ((-338 . -694) 35712) ((-338 . -38) 35677) ((-338 . -444) T) ((-338 . -300) T) ((-338 . -111) 35615) ((-338 . -1024) 35567) ((-338 . -283) T) ((-338 . -237) T) ((-338 . -395) 35518) ((-338 . -143) 35469) ((-338 . -1009) 35453) ((-338 . -1232) 35437) ((-338 . -1243) 35421) ((-337 . -322) 35398) ((-337 . -227) T) ((-337 . -361) T) ((-337 . -1117) T) ((-337 . -343) T) ((-337 . -145) 35380) ((-337 . -624) 35325) ((-337 . -130) T) ((-337 . -25) T) ((-337 . -101) T) ((-337 . -593) 35307) ((-337 . -1067) T) ((-337 . -23) T) ((-337 . -21) T) ((-337 . -703) T) ((-337 . -1078) T) ((-337 . -1025) T) ((-337 . -1018) T) ((-337 . -356) T) ((-337 . -1183) T) ((-337 . -892) T) ((-337 . -542) T) ((-337 . -170) T) ((-337 . -694) 35252) ((-337 . -38) 35217) ((-337 . -444) T) ((-337 . -300) T) ((-337 . -111) 35146) ((-337 . -1024) 35091) ((-337 . -283) T) ((-337 . -237) T) ((-337 . -395) T) ((-337 . -143) T) ((-337 . -1009) 35068) ((-337 . -1232) 35045) ((-337 . -1243) 35022) ((-333 . -322) 34999) ((-333 . -227) T) ((-333 . -361) T) ((-333 . -1117) T) ((-333 . -343) T) ((-333 . -145) 34981) ((-333 . -624) 34926) ((-333 . -130) T) ((-333 . -25) T) ((-333 . -101) T) ((-333 . -593) 34908) ((-333 . -1067) T) ((-333 . -23) T) ((-333 . -21) T) ((-333 . -703) T) ((-333 . -1078) T) ((-333 . -1025) T) ((-333 . -1018) T) ((-333 . -356) T) ((-333 . -1183) T) ((-333 . -892) T) ((-333 . -542) T) ((-333 . -170) T) ((-333 . -694) 34853) ((-333 . -38) 34818) ((-333 . -444) T) ((-333 . -300) T) ((-333 . -111) 34747) ((-333 . -1024) 34692) ((-333 . -283) T) ((-333 . -237) T) ((-333 . -395) T) ((-333 . -143) T) ((-333 . -1009) 34669) ((-333 . -1232) 34646) ((-333 . -1243) 34623) ((-332 . -291) T) ((-332 . -1009) 34590) ((-332 . -1067) T) ((-332 . -593) 34572) ((-332 . -101) T) ((-332 . -823) T) ((-332 . -505) 34538) ((-332 . -302) 34525) ((-332 . -38) 34509) ((-332 . -624) 34483) ((-332 . -703) T) ((-332 . -1078) T) ((-332 . -1025) T) ((-332 . -1018) T) ((-332 . -111) 34462) ((-332 . -1024) 34446) ((-332 . -21) T) ((-332 . -23) T) ((-332 . -25) T) ((-332 . -130) T) ((-332 . -694) 34430) ((-332 . -871) 34411) ((-326 . -329) 34380) ((-326 . -130) T) ((-326 . -25) T) ((-326 . -101) T) ((-326 . -593) 34362) ((-326 . -1067) T) ((-326 . -23) T) ((-326 . -21) T) ((-324 . -823) T) ((-324 . -101) T) ((-324 . -593) 34344) ((-324 . -1067) T) ((-323 . -1067) T) ((-323 . -593) 34326) ((-323 . -101) T) ((-320 . -19) 34310) ((-320 . -627) 34294) ((-320 . -281) 34271) ((-320 . -279) 34248) ((-320 . -584) 34225) ((-320 . -594) 34186) ((-320 . -481) 34170) ((-320 . -101) 34120) ((-320 . -1067) 34070) ((-320 . -505) 34003) ((-320 . -302) 33941) ((-320 . -593) 33853) ((-320 . -1178) T) ((-320 . -34) T) ((-320 . -149) 33837) ((-320 . -823) 33816) ((-320 . -365) 33800) ((-320 . -275) 33784) ((-317 . -316) 33761) ((-317 . -1009) 33745) ((-317 . -23) T) ((-317 . -1067) T) ((-317 . -593) 33727) ((-317 . -101) T) ((-317 . -25) T) ((-317 . -130) T) ((-315 . -21) T) ((-315 . -23) T) ((-315 . -1067) T) ((-315 . -593) 33709) ((-315 . -101) T) ((-315 . -25) T) ((-315 . -130) T) ((-315 . -694) 33691) ((-315 . -624) 33673) ((-315 . -1024) 33655) ((-315 . -111) 33630) ((-315 . -316) 33607) ((-315 . -1009) 33591) ((-315 . -823) 33570) ((-312 . -1207) 33554) ((-312 . -227) 33506) ((-312 . -279) 33491) ((-312 . -871) 33397) ((-312 . -944) 33359) ((-312 . -38) 33200) ((-312 . -111) 33021) ((-312 . -1024) 32856) ((-312 . -624) 32753) ((-312 . -694) 32594) ((-312 . -143) 32573) ((-312 . -145) 32552) ((-312 . -47) 32522) ((-312 . -1203) 32492) ((-312 . -35) 32458) ((-312 . -94) 32424) ((-312 . -277) 32390) ((-312 . -484) 32356) ((-312 . -1167) 32322) ((-312 . -1164) 32288) ((-312 . -973) 32254) ((-312 . -237) 32233) ((-312 . -283) 32184) ((-312 . -130) T) ((-312 . -25) T) ((-312 . -101) T) ((-312 . -593) 32166) ((-312 . -1067) T) ((-312 . -23) T) ((-312 . -21) T) ((-312 . -1018) T) ((-312 . -1025) T) ((-312 . -1078) T) ((-312 . -703) T) ((-312 . -300) 32145) ((-312 . -444) 32124) ((-312 . -170) 32055) ((-312 . -542) 32006) ((-312 . -892) 31985) ((-312 . -1183) 31964) ((-312 . -356) 31943) ((-312 . -768) T) ((-312 . -823) T) ((-312 . -770) T) ((-307 . -414) 31927) ((-307 . -1009) 31590) ((-307 . -594) 31451) ((-307 . -855) 31435) ((-307 . -871) 31401) ((-307 . -465) 31380) ((-307 . -405) 31364) ((-307 . -857) 31289) ((-307 . -1178) T) ((-307 . -393) 31273) ((-307 . -617) 31179) ((-307 . -370) 31148) ((-307 . -237) 31127) ((-307 . -111) 31023) ((-307 . -1024) 30933) ((-307 . -283) 30912) ((-307 . -694) 30822) ((-307 . -624) 30643) ((-307 . -38) 30553) ((-307 . -300) 30532) ((-307 . -444) 30511) ((-307 . -170) 30490) ((-307 . -542) 30469) ((-307 . -892) 30448) ((-307 . -1183) 30427) ((-307 . -356) 30406) ((-307 . -302) 30393) ((-307 . -505) 30359) ((-307 . -823) T) ((-307 . -291) T) ((-307 . -145) 30338) ((-307 . -143) 30317) ((-307 . -1018) 30207) ((-307 . -1025) 30097) ((-307 . -1078) 29946) ((-307 . -703) 29795) ((-307 . -130) 29666) ((-307 . -25) 29518) ((-307 . -101) T) ((-307 . -593) 29500) ((-307 . -1067) T) ((-307 . -23) 29352) ((-307 . -21) 29223) ((-307 . -29) 29193) ((-307 . -973) 29172) ((-307 . -27) 29151) ((-307 . -1164) 29130) ((-307 . -1167) 29109) ((-307 . -484) 29088) ((-307 . -277) 29067) ((-307 . -94) 29046) ((-307 . -35) 29025) ((-307 . -158) 29004) ((-307 . -141) 28983) ((-307 . -608) 28962) ((-307 . -931) 28941) ((-307 . -1105) 28920) ((-306 . -962) 28881) ((-306 . -1117) NIL) ((-306 . -1009) 28811) ((-306 . -594) NIL) ((-306 . -991) NIL) ((-306 . -881) NIL) ((-306 . -855) 28772) ((-306 . -821) NIL) ((-306 . -773) NIL) ((-306 . -770) NIL) ((-306 . -823) NIL) ((-306 . -768) NIL) ((-306 . -767) NIL) ((-306 . -796) NIL) ((-306 . -857) NIL) ((-306 . -1178) T) ((-306 . -393) 28733) ((-306 . -617) 28694) ((-306 . -370) 28655) ((-306 . -279) 28590) ((-306 . -302) 28531) ((-306 . -505) 28423) ((-306 . -331) 28384) ((-306 . -237) T) ((-306 . -111) 28297) ((-306 . -1024) 28226) ((-306 . -283) T) ((-306 . -694) 28155) ((-306 . -624) 28084) ((-306 . -38) 28013) ((-306 . -300) T) ((-306 . -444) T) ((-306 . -170) T) ((-306 . -542) T) ((-306 . -892) T) ((-306 . -1183) T) ((-306 . -356) T) ((-306 . -227) NIL) ((-306 . -871) NIL) ((-306 . -225) 27974) ((-306 . -145) 27930) ((-306 . -143) 27886) ((-306 . -130) T) ((-306 . -25) T) ((-306 . -101) T) ((-306 . -593) 27868) ((-306 . -1067) T) ((-306 . -23) T) ((-306 . -21) T) ((-306 . -1018) T) ((-306 . -1025) T) ((-306 . -1078) T) ((-306 . -703) T) ((-305 . -1049) T) ((-305 . -593) 27834) ((-305 . -1067) T) ((-305 . -101) T) ((-305 . -92) T) ((-304 . -1067) T) ((-304 . -593) 27816) ((-304 . -101) T) ((-288 . -1155) 27795) ((-288 . -223) 27745) ((-288 . -106) 27695) ((-288 . -302) 27499) ((-288 . -505) 27291) ((-288 . -481) 27228) ((-288 . -149) 27178) ((-288 . -594) NIL) ((-288 . -229) 27128) ((-288 . -590) 27107) ((-288 . -281) 27086) ((-288 . -279) 27065) ((-288 . -101) T) ((-288 . -1067) T) ((-288 . -593) 27047) ((-288 . -1178) T) ((-288 . -34) T) ((-288 . -584) 27026) ((-286 . -1178) T) ((-286 . -505) 26975) ((-286 . -1067) 26757) ((-286 . -593) 26498) ((-286 . -101) 26280) ((-286 . -25) 26144) ((-286 . -21) 26027) ((-286 . -23) 25910) ((-286 . -130) 25793) ((-286 . -1078) 25674) ((-286 . -703) 25576) ((-286 . -465) 25555) ((-286 . -1018) 25497) ((-286 . -1025) 25439) ((-286 . -624) 25299) ((-286 . -111) 25215) ((-286 . -1024) 25136) ((-286 . -694) 25078) ((-286 . -871) 25037) ((-286 . -1232) 25007) ((-284 . -593) 24989) ((-282 . -300) T) ((-282 . -444) T) ((-282 . -38) 24976) ((-282 . -703) T) ((-282 . -1078) T) ((-282 . -1025) T) ((-282 . -1018) T) ((-282 . -111) 24961) ((-282 . -1024) 24948) ((-282 . -21) T) ((-282 . -23) T) ((-282 . -1067) T) ((-282 . -593) 24930) ((-282 . -101) T) ((-282 . -25) T) ((-282 . -130) T) ((-282 . -624) 24917) ((-282 . -694) 24904) ((-282 . -170) T) ((-282 . -283) T) ((-282 . -542) T) ((-282 . -892) T) ((-273 . -593) 24886) ((-272 . -954) 24870) ((-271 . -954) 24854) ((-268 . -823) T) ((-268 . -101) T) ((-268 . -593) 24836) ((-268 . -1067) T) ((-267 . -812) T) ((-267 . -101) T) ((-267 . -593) 24818) ((-267 . -1067) T) ((-266 . -812) T) ((-266 . -101) T) ((-266 . -593) 24800) ((-266 . -1067) T) ((-265 . -812) T) ((-265 . -101) T) ((-265 . -593) 24782) ((-265 . -1067) T) ((-264 . -812) T) ((-264 . -101) T) ((-264 . -593) 24764) ((-264 . -1067) T) ((-263 . -812) T) ((-263 . -101) T) ((-263 . -593) 24746) ((-263 . -1067) T) ((-262 . -812) T) ((-262 . -101) T) ((-262 . -593) 24728) ((-262 . -1067) T) ((-261 . -812) T) ((-261 . -101) T) ((-261 . -593) 24710) ((-261 . -1067) T) ((-257 . -246) 24672) ((-257 . -1009) 24516) ((-257 . -594) 24264) ((-257 . -319) 24236) ((-257 . -405) 24220) ((-257 . -38) 24069) ((-257 . -111) 23898) ((-257 . -1024) 23741) ((-257 . -624) 23666) ((-257 . -694) 23515) ((-257 . -143) 23494) ((-257 . -145) 23473) ((-257 . -170) 23384) ((-257 . -542) 23315) ((-257 . -283) 23246) ((-257 . -47) 23218) ((-257 . -370) 23202) ((-257 . -617) 23150) ((-257 . -444) 23101) ((-257 . -505) 22986) ((-257 . -823) 22965) ((-257 . -871) 22911) ((-257 . -857) 22770) ((-257 . -881) 22749) ((-257 . -1183) 22728) ((-257 . -921) 22695) ((-257 . -302) 22682) ((-257 . -227) 22661) ((-257 . -130) T) ((-257 . -25) T) ((-257 . -101) T) ((-257 . -593) 22643) ((-257 . -1067) T) ((-257 . -23) T) ((-257 . -21) T) ((-257 . -703) T) ((-257 . -1078) T) ((-257 . -1025) T) ((-257 . -1018) T) ((-257 . -225) 22627) ((-254 . -1067) T) ((-254 . -593) 22609) ((-254 . -101) T) ((-244 . -232) 22588) ((-244 . -1232) 22558) ((-244 . -767) 22537) ((-244 . -821) 22516) ((-244 . -773) 22467) ((-244 . -770) 22418) ((-244 . -823) 22369) ((-244 . -768) 22320) ((-244 . -769) 22299) ((-244 . -281) 22276) ((-244 . -279) 22253) ((-244 . -481) 22237) ((-244 . -505) 22170) ((-244 . -302) 22108) ((-244 . -1178) T) ((-244 . -34) T) ((-244 . -584) 22085) ((-244 . -1009) 21912) ((-244 . -405) 21881) ((-244 . -617) 21787) ((-244 . -370) 21756) ((-244 . -361) 21735) ((-244 . -227) 21687) ((-244 . -871) 21619) ((-244 . -225) 21588) ((-244 . -111) 21478) ((-244 . -1024) 21375) ((-244 . -170) 21354) ((-244 . -593) 21315) ((-244 . -694) 21257) ((-244 . -624) 21092) ((-244 . -130) T) ((-244 . -23) T) ((-244 . -21) T) ((-244 . -1018) 21022) ((-244 . -1025) 20952) ((-244 . -1078) 20862) ((-244 . -703) 20772) ((-244 . -38) 20742) ((-244 . -1067) T) ((-244 . -101) T) ((-244 . -25) T) ((-243 . -232) 20721) ((-243 . -1232) 20691) ((-243 . -767) 20670) ((-243 . -821) 20649) ((-243 . -773) 20600) ((-243 . -770) 20551) ((-243 . -823) 20502) ((-243 . -768) 20453) ((-243 . -769) 20432) ((-243 . -281) 20409) ((-243 . -279) 20386) ((-243 . -481) 20370) ((-243 . -505) 20303) ((-243 . -302) 20241) ((-243 . -1178) T) ((-243 . -34) T) ((-243 . -584) 20218) ((-243 . -1009) 20045) ((-243 . -405) 20014) ((-243 . -617) 19920) ((-243 . -370) 19889) ((-243 . -361) 19868) ((-243 . -227) 19820) ((-243 . -871) 19752) ((-243 . -225) 19721) ((-243 . -111) 19611) ((-243 . -1024) 19508) ((-243 . -170) 19487) ((-243 . -593) 19448) ((-243 . -694) 19390) ((-243 . -624) 19212) ((-243 . -130) T) ((-243 . -23) T) ((-243 . -21) T) ((-243 . -1018) 19142) ((-243 . -1025) 19072) ((-243 . -1078) 18982) ((-243 . -703) 18892) ((-243 . -38) 18862) ((-243 . -1067) T) ((-243 . -101) T) ((-243 . -25) T) ((-242 . -1067) T) ((-242 . -593) 18844) ((-242 . -101) T) ((-241 . -921) 18789) ((-241 . -1009) 18665) ((-241 . -1183) 18644) ((-241 . -881) 18623) ((-241 . -857) NIL) ((-241 . -871) 18600) ((-241 . -823) 18579) ((-241 . -505) 18522) ((-241 . -444) 18473) ((-241 . -617) 18421) ((-241 . -370) 18405) ((-241 . -47) 18362) ((-241 . -38) 18211) ((-241 . -694) 18060) ((-241 . -283) 17991) ((-241 . -542) 17922) ((-241 . -111) 17751) ((-241 . -1024) 17594) ((-241 . -170) 17505) ((-241 . -145) 17484) ((-241 . -143) 17463) ((-241 . -624) 17388) ((-241 . -130) T) ((-241 . -25) T) ((-241 . -101) T) ((-241 . -593) 17370) ((-241 . -1067) T) ((-241 . -23) T) ((-241 . -21) T) ((-241 . -1018) T) ((-241 . -1025) T) ((-241 . -1078) T) ((-241 . -703) T) ((-241 . -405) 17354) ((-241 . -319) 17311) ((-241 . -302) 17298) ((-241 . -594) 17159) ((-239 . -642) 17143) ((-239 . -1213) 17127) ((-239 . -981) 17111) ((-239 . -1115) 17095) ((-239 . -823) 17074) ((-239 . -365) 17058) ((-239 . -627) 17042) ((-239 . -281) 17019) ((-239 . -279) 16996) ((-239 . -584) 16973) ((-239 . -594) 16934) ((-239 . -481) 16918) ((-239 . -101) 16868) ((-239 . -1067) 16818) ((-239 . -505) 16751) ((-239 . -302) 16689) ((-239 . -593) 16601) ((-239 . -1178) T) ((-239 . -34) T) ((-239 . -149) 16585) ((-239 . -275) 16569) ((-233 . -232) 16548) ((-233 . -1232) 16518) ((-233 . -767) 16497) ((-233 . -821) 16476) ((-233 . -773) 16427) ((-233 . -770) 16378) ((-233 . -823) 16329) ((-233 . -768) 16280) ((-233 . -769) 16259) ((-233 . -281) 16236) ((-233 . -279) 16213) ((-233 . -481) 16197) ((-233 . -505) 16130) ((-233 . -302) 16068) ((-233 . -1178) T) ((-233 . -34) T) ((-233 . -584) 16045) ((-233 . -1009) 15872) ((-233 . -405) 15841) ((-233 . -617) 15747) ((-233 . -370) 15716) ((-233 . -361) 15695) ((-233 . -227) 15647) ((-233 . -871) 15579) ((-233 . -225) 15548) ((-233 . -111) 15438) ((-233 . -1024) 15335) ((-233 . -170) 15314) ((-233 . -593) 15045) ((-233 . -694) 14987) ((-233 . -624) 14835) ((-233 . -130) 14705) ((-233 . -23) 14575) ((-233 . -21) 14485) ((-233 . -1018) 14415) ((-233 . -1025) 14345) ((-233 . -1078) 14255) ((-233 . -703) 14165) ((-233 . -38) 14135) ((-233 . -1067) 13925) ((-233 . -101) 13715) ((-233 . -25) 13566) ((-221 . -662) 13524) ((-221 . -481) 13508) ((-221 . -101) 13486) ((-221 . -1067) 13464) ((-221 . -505) 13397) ((-221 . -302) 13335) ((-221 . -593) 13267) ((-221 . -1178) T) ((-221 . -34) T) ((-221 . -56) 13225) ((-219 . -397) T) ((-219 . -145) T) ((-219 . -624) 13190) ((-219 . -130) T) ((-219 . -25) T) ((-219 . -101) T) ((-219 . -593) 13172) ((-219 . -1067) T) ((-219 . -23) T) ((-219 . -21) T) ((-219 . -703) T) ((-219 . -1078) T) ((-219 . -1025) T) ((-219 . -1018) T) ((-219 . -594) 13102) ((-219 . -356) T) ((-219 . -1183) T) ((-219 . -892) T) ((-219 . -542) T) ((-219 . -170) T) ((-219 . -694) 13067) ((-219 . -38) 13032) ((-219 . -444) T) ((-219 . -300) T) ((-219 . -111) 12988) ((-219 . -1024) 12953) ((-219 . -283) T) ((-219 . -237) T) ((-219 . -821) T) ((-219 . -773) T) ((-219 . -770) T) ((-219 . -823) T) ((-219 . -768) T) ((-219 . -767) T) ((-219 . -857) 12935) ((-219 . -973) T) ((-219 . -991) T) ((-219 . -1009) 12895) ((-219 . -1027) T) ((-219 . -227) T) ((-219 . -797) T) ((-219 . -1164) T) ((-219 . -1167) T) ((-219 . -484) T) ((-219 . -277) T) ((-219 . -94) T) ((-219 . -35) T) ((-217 . -599) 12872) ((-217 . -624) 12839) ((-217 . -703) T) ((-217 . -1078) T) ((-217 . -1025) T) ((-217 . -1018) T) ((-217 . -21) T) ((-217 . -23) T) ((-217 . -1067) T) ((-217 . -593) 12821) ((-217 . -101) T) ((-217 . -25) T) ((-217 . -130) T) ((-217 . -1009) 12798) ((-216 . -247) 12782) ((-216 . -1087) 12766) ((-216 . -106) 12750) ((-216 . -34) T) ((-216 . -1178) T) ((-216 . -593) 12682) ((-216 . -302) 12620) ((-216 . -505) 12553) ((-216 . -1067) 12531) ((-216 . -101) 12509) ((-216 . -481) 12493) ((-216 . -966) 12477) ((-212 . -1049) T) ((-212 . -593) 12443) ((-212 . -1067) T) ((-212 . -101) T) ((-212 . -92) T) ((-211 . -962) 12425) ((-211 . -1117) T) ((-211 . -1009) 12385) ((-211 . -594) 12315) ((-211 . -991) T) ((-211 . -881) NIL) ((-211 . -855) 12297) ((-211 . -821) T) ((-211 . -773) T) ((-211 . -770) T) ((-211 . -823) T) ((-211 . -768) T) ((-211 . -767) T) ((-211 . -796) T) ((-211 . -857) 12279) ((-211 . -1178) T) ((-211 . -393) 12261) ((-211 . -617) 12243) ((-211 . -370) 12225) ((-211 . -279) NIL) ((-211 . -302) NIL) ((-211 . -505) NIL) ((-211 . -331) 12207) ((-211 . -237) T) ((-211 . -111) 12141) ((-211 . -1024) 12091) ((-211 . -283) T) ((-211 . -694) 12041) ((-211 . -624) 11991) ((-211 . -38) 11941) ((-211 . -300) T) ((-211 . -444) T) ((-211 . -170) T) ((-211 . -542) T) ((-211 . -892) T) ((-211 . -1183) T) ((-211 . -356) T) ((-211 . -227) T) ((-211 . -871) NIL) ((-211 . -225) 11923) ((-211 . -145) T) ((-211 . -143) NIL) ((-211 . -130) T) ((-211 . -25) T) ((-211 . -101) T) ((-211 . -593) 11905) ((-211 . -1067) T) ((-211 . -23) T) ((-211 . -21) T) ((-211 . -1018) T) ((-211 . -1025) T) ((-211 . -1078) T) ((-211 . -703) T) ((-208 . -1067) T) ((-208 . -593) 11887) ((-208 . -101) T) ((-207 . -1067) T) ((-207 . -593) 11869) ((-207 . -101) T) ((-206 . -866) T) ((-206 . -101) T) ((-206 . -593) 11851) ((-206 . -1067) T) ((-205 . -866) T) ((-205 . -101) T) ((-205 . -593) 11833) ((-205 . -1067) T) ((-203 . -776) T) ((-203 . -101) T) ((-203 . -593) 11815) ((-203 . -1067) T) ((-202 . -776) T) ((-202 . -101) T) ((-202 . -593) 11797) ((-202 . -1067) T) ((-201 . -776) T) ((-201 . -101) T) ((-201 . -593) 11779) ((-201 . -1067) T) ((-200 . -776) T) ((-200 . -101) T) ((-200 . -593) 11761) ((-200 . -1067) T) ((-197 . -763) T) ((-197 . -101) T) ((-197 . -593) 11743) ((-197 . -1067) T) ((-196 . -763) T) ((-196 . -101) T) ((-196 . -593) 11725) ((-196 . -1067) T) ((-195 . -763) T) ((-195 . -101) T) ((-195 . -593) 11707) ((-195 . -1067) T) ((-194 . -763) T) ((-194 . -101) T) ((-194 . -593) 11689) ((-194 . -1067) T) ((-193 . -763) T) ((-193 . -101) T) ((-193 . -593) 11671) ((-193 . -1067) T) ((-192 . -763) T) ((-192 . -101) T) ((-192 . -593) 11653) ((-192 . -1067) T) ((-191 . -763) T) ((-191 . -101) T) ((-191 . -593) 11635) ((-191 . -1067) T) ((-190 . -763) T) ((-190 . -101) T) ((-190 . -593) 11617) ((-190 . -1067) T) ((-189 . -763) T) ((-189 . -101) T) ((-189 . -593) 11599) ((-189 . -1067) T) ((-188 . -763) T) ((-188 . -101) T) ((-188 . -593) 11581) ((-188 . -1067) T) ((-187 . -763) T) ((-187 . -101) T) ((-187 . -593) 11563) ((-187 . -1067) T) ((-181 . -1067) T) ((-181 . -593) 11545) ((-181 . -101) T) ((-178 . -1049) T) ((-178 . -593) 11511) ((-178 . -1067) T) ((-178 . -101) T) ((-178 . -92) T) ((-173 . -593) 11493) ((-172 . -38) 11425) ((-172 . -624) 11357) ((-172 . -703) T) ((-172 . -1078) T) ((-172 . -1025) T) ((-172 . -1018) T) ((-172 . -111) 11268) ((-172 . -1024) 11200) ((-172 . -21) T) ((-172 . -23) T) ((-172 . -1067) T) ((-172 . -593) 11182) ((-172 . -101) T) ((-172 . -25) T) ((-172 . -130) T) ((-172 . -694) 11114) ((-172 . -356) T) ((-172 . -1183) T) ((-172 . -892) T) ((-172 . -542) T) ((-172 . -170) T) ((-172 . -444) T) ((-172 . -300) T) ((-172 . -283) T) ((-172 . -237) T) ((-169 . -1067) T) ((-169 . -593) 11096) ((-169 . -101) T) ((-166 . -164) 11080) ((-166 . -35) 11058) ((-166 . -94) 11036) ((-166 . -277) 11014) ((-166 . -484) 10992) ((-166 . -1167) 10970) ((-166 . -1164) 10948) ((-166 . -973) 10900) ((-166 . -881) 10853) ((-166 . -594) 10615) ((-166 . -855) 10599) ((-166 . -823) 10578) ((-166 . -361) 10529) ((-166 . -343) 10508) ((-166 . -1117) 10487) ((-166 . -395) 10466) ((-166 . -403) 10437) ((-166 . -38) 10265) ((-166 . -111) 10161) ((-166 . -1024) 10071) ((-166 . -624) 9981) ((-166 . -694) 9809) ((-166 . -363) 9780) ((-166 . -701) 9751) ((-166 . -1009) 9647) ((-166 . -405) 9631) ((-166 . -857) 9556) ((-166 . -1178) T) ((-166 . -393) 9540) ((-166 . -617) 9488) ((-166 . -370) 9472) ((-166 . -279) 9430) ((-166 . -302) 9395) ((-166 . -505) 9307) ((-166 . -331) 9291) ((-166 . -237) 9242) ((-166 . -1183) 9147) ((-166 . -356) 9098) ((-166 . -892) 9029) ((-166 . -542) 8940) ((-166 . -283) 8851) ((-166 . -444) 8782) ((-166 . -300) 8713) ((-166 . -227) 8664) ((-166 . -871) 8623) ((-166 . -225) 8607) ((-166 . -170) T) ((-166 . -145) 8586) ((-166 . -1018) T) ((-166 . -1025) T) ((-166 . -1078) T) ((-166 . -703) T) ((-166 . -21) T) ((-166 . -23) T) ((-166 . -1067) T) ((-166 . -593) 8568) ((-166 . -101) T) ((-166 . -25) T) ((-166 . -130) T) ((-166 . -143) 8519) ((-166 . -797) 8498) ((-160 . -1049) T) ((-160 . -593) 8464) ((-160 . -1067) T) ((-160 . -101) T) ((-160 . -92) T) ((-159 . -1067) T) ((-159 . -593) 8446) ((-159 . -101) T) ((-155 . -25) T) ((-155 . -101) T) ((-155 . -593) 8428) ((-155 . -1067) T) ((-154 . -1049) T) ((-154 . -593) 8394) ((-154 . -1067) T) ((-154 . -101) T) ((-154 . -92) T) ((-152 . -1049) T) ((-152 . -593) 8360) ((-152 . -1067) T) ((-152 . -101) T) ((-152 . -92) T) ((-150 . -1018) T) ((-150 . -1025) T) ((-150 . -1078) T) ((-150 . -703) T) ((-150 . -21) T) ((-150 . -23) T) ((-150 . -1067) T) ((-150 . -593) 8342) ((-150 . -101) T) ((-150 . -25) T) ((-150 . -130) T) ((-150 . -624) 8316) ((-150 . -38) 8300) ((-150 . -111) 8279) ((-150 . -1024) 8263) ((-150 . -694) 8247) ((-150 . -1232) 8231) ((-142 . -817) T) ((-142 . -823) T) ((-142 . -1067) T) ((-142 . -593) 8213) ((-142 . -101) T) ((-142 . -361) T) ((-139 . -1067) T) ((-139 . -593) 8195) ((-139 . -101) T) ((-139 . -594) 8154) ((-139 . -419) 8136) ((-139 . -1065) 8118) ((-139 . -361) T) ((-139 . -229) 8100) ((-139 . -149) 8082) ((-139 . -481) 8064) ((-139 . -505) NIL) ((-139 . -302) NIL) ((-139 . -1178) T) ((-139 . -34) T) ((-139 . -106) 8046) ((-139 . -223) 8028) ((-138 . -593) 8010) ((-137 . -1049) T) ((-137 . -593) 7976) ((-137 . -1067) T) ((-137 . -101) T) ((-137 . -92) T) ((-136 . -1049) T) ((-136 . -593) 7942) ((-136 . -1067) T) ((-136 . -101) T) ((-136 . -92) T) ((-134 . -457) 7919) ((-134 . -1009) 7903) ((-134 . -1067) T) ((-134 . -593) 7885) ((-134 . -101) T) ((-134 . -462) 7840) ((-133 . -823) T) ((-133 . -101) T) ((-133 . -593) 7822) ((-133 . -1067) T) ((-133 . -23) T) ((-133 . -25) T) ((-133 . -703) T) ((-133 . -1078) T) ((-133 . -1009) 7804) ((-132 . -1049) T) ((-132 . -593) 7770) ((-132 . -1067) T) ((-132 . -101) T) ((-132 . -92) T) ((-129 . -19) 7752) ((-129 . -627) 7734) ((-129 . -281) 7709) ((-129 . -279) 7684) ((-129 . -584) 7659) ((-129 . -594) NIL) ((-129 . -481) 7641) ((-129 . -101) T) ((-129 . -1067) T) ((-129 . -505) NIL) ((-129 . -302) NIL) ((-129 . -593) 7623) ((-129 . -1178) T) ((-129 . -34) T) ((-129 . -149) 7605) ((-129 . -823) T) ((-129 . -365) 7587) ((-128 . -823) T) ((-128 . -101) T) ((-128 . -593) 7554) ((-128 . -1067) T) ((-127 . -125) 7538) ((-127 . -981) 7522) ((-127 . -34) T) ((-127 . -1178) T) ((-127 . -593) 7454) ((-127 . -302) 7392) ((-127 . -505) 7325) ((-127 . -1067) 7303) ((-127 . -101) 7281) ((-127 . -481) 7265) ((-127 . -119) 7249) ((-126 . -125) 7233) ((-126 . -981) 7217) ((-126 . -34) T) ((-126 . -1178) T) ((-126 . -593) 7149) ((-126 . -302) 7087) ((-126 . -505) 7020) ((-126 . -1067) 6998) ((-126 . -101) 6976) ((-126 . -481) 6960) ((-126 . -119) 6944) ((-121 . -125) 6928) ((-121 . -981) 6912) ((-121 . -34) T) ((-121 . -1178) T) ((-121 . -593) 6844) ((-121 . -302) 6782) ((-121 . -505) 6715) ((-121 . -1067) 6693) ((-121 . -101) 6671) ((-121 . -481) 6655) ((-121 . -119) 6639) ((-117 . -962) 6616) ((-117 . -1117) NIL) ((-117 . -1009) 6593) ((-117 . -594) NIL) ((-117 . -991) NIL) ((-117 . -881) NIL) ((-117 . -855) 6570) ((-117 . -821) NIL) ((-117 . -773) NIL) ((-117 . -770) NIL) ((-117 . -823) NIL) ((-117 . -768) NIL) ((-117 . -767) NIL) ((-117 . -796) NIL) ((-117 . -857) NIL) ((-117 . -1178) T) ((-117 . -393) 6547) ((-117 . -617) 6524) ((-117 . -370) 6501) ((-117 . -279) 6452) ((-117 . -302) 6409) ((-117 . -505) 6317) ((-117 . -331) 6294) ((-117 . -237) T) ((-117 . -111) 6223) ((-117 . -1024) 6168) ((-117 . -283) T) ((-117 . -694) 6113) ((-117 . -624) 6058) ((-117 . -38) 6003) ((-117 . -300) T) ((-117 . -444) T) ((-117 . -170) T) ((-117 . -542) T) ((-117 . -892) T) ((-117 . -1183) T) ((-117 . -356) T) ((-117 . -227) NIL) ((-117 . -871) NIL) ((-117 . -225) 5980) ((-117 . -145) T) ((-117 . -143) NIL) ((-117 . -130) T) ((-117 . -25) T) ((-117 . -101) T) ((-117 . -593) 5962) ((-117 . -1067) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1018) T) ((-117 . -1025) T) ((-117 . -1078) T) ((-117 . -703) T) ((-116 . -841) 5946) ((-116 . -892) T) ((-116 . -542) T) ((-116 . -283) T) ((-116 . -170) T) ((-116 . -694) 5933) ((-116 . -1024) 5920) ((-116 . -111) 5905) ((-116 . -38) 5892) ((-116 . -444) T) ((-116 . -300) T) ((-116 . -1018) T) ((-116 . -1025) T) ((-116 . -1078) T) ((-116 . -703) T) ((-116 . -21) T) ((-116 . -23) T) ((-116 . -1067) T) ((-116 . -593) 5874) ((-116 . -101) T) ((-116 . -25) T) ((-116 . -130) T) ((-116 . -624) 5861) ((-116 . -145) T) ((-113 . -823) T) ((-113 . -101) T) ((-113 . -593) 5843) ((-113 . -1067) T) ((-112 . -817) T) ((-112 . -823) T) ((-112 . -1067) T) ((-112 . -593) 5825) ((-112 . -101) T) ((-112 . -361) T) ((-112 . -638) T) ((-112 . -938) T) ((-112 . -594) 5807) ((-110 . -123) T) ((-110 . -365) 5789) ((-110 . -823) T) ((-110 . -149) 5771) ((-110 . -34) T) ((-110 . -1178) T) ((-110 . -593) 5753) ((-110 . -302) NIL) ((-110 . -505) NIL) ((-110 . -1067) T) ((-110 . -481) 5735) ((-110 . -594) 5717) ((-110 . -584) 5692) ((-110 . -279) 5667) ((-110 . -281) 5642) ((-110 . -627) 5624) ((-110 . -19) 5606) ((-110 . -101) T) ((-110 . -638) T) ((-109 . -358) 5580) ((-109 . -101) T) ((-109 . -593) 5562) ((-109 . -1067) T) ((-108 . -593) 5544) ((-107 . -962) 5526) ((-107 . -1117) T) ((-107 . -1009) 5486) ((-107 . -594) 5416) ((-107 . -991) T) ((-107 . -881) NIL) ((-107 . -855) 5398) ((-107 . -821) T) ((-107 . -773) T) ((-107 . -770) T) ((-107 . -823) T) ((-107 . -768) T) ((-107 . -767) T) ((-107 . -796) T) ((-107 . -857) 5380) ((-107 . -1178) T) ((-107 . -393) 5362) ((-107 . -617) 5344) ((-107 . -370) 5326) ((-107 . -279) NIL) ((-107 . -302) NIL) ((-107 . -505) NIL) ((-107 . -331) 5308) ((-107 . -237) T) ((-107 . -111) 5242) ((-107 . -1024) 5192) ((-107 . -283) T) ((-107 . -694) 5142) ((-107 . -624) 5092) ((-107 . -38) 5042) ((-107 . -300) T) ((-107 . -444) T) ((-107 . -170) T) ((-107 . -542) T) ((-107 . -892) T) ((-107 . -1183) T) ((-107 . -356) T) ((-107 . -227) T) ((-107 . -871) NIL) ((-107 . -225) 5024) ((-107 . -145) T) ((-107 . -143) NIL) ((-107 . -130) T) ((-107 . -25) T) ((-107 . -101) T) ((-107 . -593) 5006) ((-107 . -1067) T) ((-107 . -23) T) ((-107 . -21) T) ((-107 . -1018) T) ((-107 . -1025) T) ((-107 . -1078) T) ((-107 . -703) T) ((-104 . -1067) T) ((-104 . -593) 4988) ((-104 . -101) T) ((-102 . -125) 4972) ((-102 . -981) 4956) ((-102 . -34) T) ((-102 . -1178) T) ((-102 . -593) 4888) ((-102 . -302) 4826) ((-102 . -505) 4759) ((-102 . -1067) 4737) ((-102 . -101) 4715) ((-102 . -481) 4699) ((-102 . -119) 4683) ((-98 . -465) T) ((-98 . -1078) T) ((-98 . -101) T) ((-98 . -593) 4665) ((-98 . -1067) T) ((-98 . -703) T) ((-98 . -279) 4644) ((-96 . -1067) T) ((-96 . -593) 4626) ((-96 . -101) T) ((-95 . -1049) T) ((-95 . -593) 4592) ((-95 . -1067) T) ((-95 . -101) T) ((-95 . -92) T) ((-90 . -1087) 4576) ((-90 . -481) 4560) ((-90 . -101) 4538) ((-90 . -1067) 4516) ((-90 . -505) 4449) ((-90 . -302) 4387) ((-90 . -593) 4319) ((-90 . -1178) T) ((-90 . -34) T) ((-90 . -106) 4303) ((-88 . -390) T) ((-88 . -593) 4285) ((-88 . -1178) T) ((-88 . -389) T) ((-87 . -378) T) ((-87 . -593) 4267) ((-87 . -1178) T) ((-87 . -389) T) ((-86 . -432) T) ((-86 . -593) 4249) ((-86 . -1178) T) ((-86 . -389) T) ((-85 . -433) T) ((-85 . -593) 4231) ((-85 . -1178) T) ((-85 . -389) T) ((-84 . -378) T) ((-84 . -593) 4213) ((-84 . -1178) T) ((-84 . -389) T) ((-83 . -378) T) ((-83 . -593) 4195) ((-83 . -1178) T) ((-83 . -389) T) ((-82 . -433) T) ((-82 . -593) 4177) ((-82 . -1178) T) ((-82 . -389) T) ((-81 . -433) T) ((-81 . -593) 4159) ((-81 . -1178) T) ((-81 . -389) T) ((-80 . -433) T) ((-80 . -593) 4141) ((-80 . -1178) T) ((-80 . -389) T) ((-79 . -433) T) ((-79 . -593) 4123) ((-79 . -1178) T) ((-79 . -389) T) ((-78 . -433) T) ((-78 . -593) 4105) ((-78 . -1178) T) ((-78 . -389) T) ((-77 . -390) T) ((-77 . -593) 4087) ((-77 . -1178) T) ((-77 . -389) T) ((-76 . -433) T) ((-76 . -593) 4069) ((-76 . -1178) T) ((-76 . -389) T) ((-75 . -433) T) ((-75 . -593) 4051) ((-75 . -1178) T) ((-75 . -389) T) ((-74 . -390) T) ((-74 . -593) 4033) ((-74 . -1178) T) ((-74 . -389) T) ((-73 . -433) T) ((-73 . -593) 4015) ((-73 . -1178) T) ((-73 . -389) T) ((-72 . -376) T) ((-72 . -593) 3997) ((-72 . -1178) T) ((-72 . -389) T) ((-71 . -389) T) ((-71 . -1178) T) ((-71 . -593) 3979) ((-70 . -433) T) ((-70 . -593) 3961) ((-70 . -1178) T) ((-70 . -389) T) ((-69 . -376) T) ((-69 . -593) 3943) ((-69 . -1178) T) ((-69 . -389) T) ((-68 . -389) T) ((-68 . -1178) T) ((-68 . -593) 3925) ((-67 . -376) T) ((-67 . -593) 3907) ((-67 . -1178) T) ((-67 . -389) T) ((-66 . -376) T) ((-66 . -593) 3889) ((-66 . -1178) T) ((-66 . -389) T) ((-65 . -390) T) ((-65 . -593) 3871) ((-65 . -1178) T) ((-65 . -389) T) ((-64 . -378) T) ((-64 . -593) 3853) ((-64 . -1178) T) ((-64 . -389) T) ((-63 . -433) T) ((-63 . -593) 3835) ((-63 . -1178) T) ((-63 . -389) T) ((-62 . -389) T) ((-62 . -1178) T) ((-62 . -593) 3817) ((-61 . -433) T) ((-61 . -593) 3799) ((-61 . -1178) T) ((-61 . -389) T) ((-60 . -390) T) ((-60 . -593) 3781) ((-60 . -1178) T) ((-60 . -389) T) ((-59 . -56) 3743) ((-59 . -34) T) ((-59 . -1178) T) ((-59 . -593) 3675) ((-59 . -302) 3613) ((-59 . -505) 3546) ((-59 . -1067) 3524) ((-59 . -101) 3502) ((-59 . -481) 3486) ((-57 . -19) 3470) ((-57 . -627) 3454) ((-57 . -281) 3431) ((-57 . -279) 3408) ((-57 . -584) 3385) ((-57 . -594) 3346) ((-57 . -481) 3330) ((-57 . -101) 3280) ((-57 . -1067) 3230) ((-57 . -505) 3163) ((-57 . -302) 3101) ((-57 . -593) 3013) ((-57 . -1178) T) ((-57 . -34) T) ((-57 . -149) 2997) ((-57 . -823) 2976) ((-57 . -365) 2960) ((-51 . -1067) T) ((-51 . -593) 2942) ((-51 . -101) T) ((-50 . -599) 2926) ((-50 . -624) 2900) ((-50 . -703) T) ((-50 . -1078) T) ((-50 . -1025) T) ((-50 . -1018) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1067) T) ((-50 . -593) 2882) ((-50 . -101) T) ((-50 . -25) T) ((-50 . -130) T) ((-50 . -1009) 2866) ((-49 . -1067) T) ((-49 . -593) 2848) ((-49 . -101) T) ((-48 . -291) T) ((-48 . -1009) 2791) ((-48 . -1067) T) ((-48 . -593) 2773) ((-48 . -101) T) ((-48 . -823) T) ((-48 . -505) 2739) ((-48 . -302) 2726) ((-48 . -27) T) ((-48 . -973) T) ((-48 . -237) T) ((-48 . -111) 2682) ((-48 . -1024) 2647) ((-48 . -283) T) ((-48 . -694) 2612) ((-48 . -624) 2577) ((-48 . -130) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1018) T) ((-48 . -1025) T) ((-48 . -1078) T) ((-48 . -703) T) ((-48 . -38) 2542) ((-48 . -300) T) ((-48 . -444) T) ((-48 . -170) T) ((-48 . -542) T) ((-48 . -892) T) ((-48 . -1183) T) ((-48 . -356) T) ((-48 . -617) 2502) ((-48 . -991) T) ((-48 . -594) 2447) ((-48 . -145) T) ((-48 . -227) T) ((-45 . -36) 2426) ((-45 . -584) 2351) ((-45 . -302) 2155) ((-45 . -505) 1947) ((-45 . -481) 1884) ((-45 . -279) 1809) ((-45 . -281) 1734) ((-45 . -590) 1713) ((-45 . -229) 1663) ((-45 . -106) 1613) ((-45 . -223) 1563) ((-45 . -1155) 1542) ((-45 . -275) 1492) ((-45 . -149) 1442) ((-45 . -34) T) ((-45 . -1178) T) ((-45 . -593) 1424) ((-45 . -1067) T) ((-45 . -101) T) ((-45 . -594) NIL) ((-45 . -627) 1374) ((-45 . -365) 1324) ((-45 . -823) NIL) ((-45 . -1115) 1274) ((-45 . -981) 1224) ((-45 . -1213) 1174) ((-45 . -642) 1124) ((-44 . -411) 1108) ((-44 . -721) 1092) ((-44 . -697) T) ((-44 . -738) T) ((-44 . -111) 1071) ((-44 . -1024) 1055) ((-44 . -21) T) ((-44 . -23) T) ((-44 . -1067) T) ((-44 . -593) 1037) ((-44 . -101) T) ((-44 . -25) T) ((-44 . -130) T) ((-44 . -624) 995) ((-44 . -694) 979) ((-44 . -360) 963) ((-40 . -335) 937) ((-40 . -170) T) ((-40 . -703) T) ((-40 . -1078) T) ((-40 . -1025) T) ((-40 . -1018) T) ((-40 . -624) 882) ((-40 . -130) T) ((-40 . -25) T) ((-40 . -101) T) ((-40 . -593) 864) ((-40 . -1067) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1024) 809) ((-40 . -111) 738) ((-40 . -594) 722) ((-40 . -225) 699) ((-40 . -871) 651) ((-40 . -227) 623) ((-40 . -356) T) ((-40 . -1183) T) ((-40 . -892) T) ((-40 . -542) T) ((-40 . -694) 568) ((-40 . -38) 513) ((-40 . -444) T) ((-40 . -300) T) ((-40 . -283) T) ((-40 . -237) T) ((-40 . -361) NIL) ((-40 . -343) NIL) ((-40 . -1117) NIL) ((-40 . -143) 485) ((-40 . -395) NIL) ((-40 . -403) 457) ((-40 . -145) 429) ((-40 . -363) 401) ((-40 . -370) 378) ((-40 . -617) 317) ((-40 . -405) 294) ((-40 . -1009) 182) ((-40 . -701) 154) ((-31 . -1049) T) ((-31 . -593) 120) ((-31 . -1067) T) ((-31 . -101) T) ((-31 . -92) T) ((-30 . -926) T) ((-30 . -593) 102) ((0 . |EnumerationCategory|) T) ((0 . -593) 84) ((0 . -1067) T) ((0 . -101) T) ((-1 . -1067) T) ((-1 . -593) 66) ((-1 . -101) T) ((-2 . |RecordCategory|) T) ((-2 . -593) 48) ((-2 . -1067) T) ((-2 . -101) T) ((-3 . |UnionCategory|) T) ((-3 . -593) 30) ((-3 . -1067) T) ((-3 . -101) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index da168a38..86f2c6fd 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,1120 +1,993 @@
-(30 . 3431185326)
+(30 . 3431436951)
(4339 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
- |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
- |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&|
- |AbelianSemiGroup| |AlgebraicallyClosedField&|
- |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&|
- |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AddAst|
- |AlgebraicFunction| |Aggregate&| |Aggregate|
- |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&|
- |Algebra| |AlgFactor| |AlgebraicFunctionField|
+ |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&|
+ |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup|
+ |AlgebraicallyClosedField&| |AlgebraicallyClosedField|
+ |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace|
+ |PlaneAlgebraicCurvePlot| |AddAst| |AlgebraicFunction| |Aggregate&|
+ |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate|
+ |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField|
|AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage|
- |AlgebraGivenByStructuralConstants| |AssociationList|
- |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber|
- |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any|
- |ApplyUnivariateSkewPolynomial| |ApplyRules|
+ |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&|
+ |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any|
+ |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules|
|TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory|
- |OneDimensionalArrayFunctions2| |OneDimensionalArray|
- |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24|
- |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35|
- |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74|
- |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations|
- |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory|
- |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory|
- |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism|
- |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree|
- |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate|
- |BinaryExpansion| |Binding| |BinaryFile| |Bits| |BiModule| |Boolean|
- |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots|
- |BalancedPAdicInteger| |BalancedPAdicRational|
- |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate|
- |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate|
- |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament|
- |BinaryTree| |ByteArray| |Byte| |CancellationAbelianMonoid|
- |CachableSet| |CapsuleAst| |CardinalNumber|
- |CartesianTensorFunctions2| |CartesianTensor| |CaseAst| |CategoryAst|
+ |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray|
+ |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30|
+ |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55|
+ |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9|
+ |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&|
+ |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&|
+ |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons|
+ |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&|
+ |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions|
+ |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |BinaryFile| |Bits|
+ |BiModule| |Boolean| |BasicOperator| |BasicOperatorFunctions1|
+ |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational|
+ |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests|
+ |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&|
+ |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |Byte| |ByteArray|
+ |CancellationAbelianMonoid| |CachableSet| |CapsuleAst| |CardinalNumber|
+ |CartesianTensor| |CartesianTensorFunctions2| |CaseAst| |CategoryAst|
|Category| |CharacterClass| |CommonDenominator|
|CombinatorialFunctionCategory| |Character| |CharacteristicNonZero|
- |CharacteristicPolynomialPackage| |CharacteristicZero|
- |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation|
- |Collection&| |Collection| |CliffordAlgebra|
- |TwoDimensionalPlotClipping| |CollectAst| |ComplexRootPackage|
- |ColonAst| |Color| |CombinatorialFunction|
- |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |CommaAst|
- |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory|
- |ComplexCategory&| |ComplexCategory| |ComplexFactorization|
- |ComplexFunctions2| |Complex| |ComplexPattern|
- |SubSpaceComponentProperty| |CommutativeRing| |Conduit|
- |ContinuedFraction| |Contour| |CoordinateSystems|
+ |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable|
+ |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection|
+ |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst|
+ |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction|
+ |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator|
+ |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory|
+ |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |Complex|
+ |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty|
+ |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems|
|CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch|
- |CRApackage| |CoerceAst| |ComplexRootFindingPackage|
- |CyclicStreamTools| |ConstructorCall|
- |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage|
- |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage|
- |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType|
- |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType|
- |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType|
- |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType|
- |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage|
- |d03eefAnnaType| |d03fafAnnaType| |DataBuffer| |Database|
- |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion|
- |DefinitionAst| |ElementaryFunctionDefiniteIntegration|
- |RationalFunctionDefiniteIntegration| |DegreeReductionPackage|
- |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat|
- |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&|
- |Dictionary| |DifferentialExtension&| |DifferentialExtension|
+ |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools|
+ |ConstructorCall| |ComplexTrigonometricManipulations|
+ |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage|
+ |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType|
+ |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType|
+ |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType|
+ |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType|
+ |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType|
+ |d03fafAnnaType| |DataBuffer| |Database| |DoubleResultantPackage|
+ |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst|
+ |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration|
+ |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools|
+ |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix|
+ |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension|
|DifferentialRing&| |DifferentialRing| |DictionaryOperations&|
- |DictionaryOperations| |DiophantineSolutionPackage|
- |DirectProductCategory&| |DirectProductCategory|
- |DirectProductFunctions2| |DirectProduct| |DisplayPackage|
- |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList|
- |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
+ |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&|
+ |DirectProductCategory| |DirectProduct| |DirectProductFunctions2|
+ |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate|
+ |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
|Domain| |DirectProductMatrixModule| |DirectProductModule|
|DifferentialPolynomialCategory&| |DifferentialPolynomialCategory|
- |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions|
- |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex|
- |DrawNumericHack| |TopLevelDrawFunctions|
- |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0|
- |DrawOptionFunctions1| |DrawOption|
- |DifferentialSparseMultivariatePolynomial|
+ |DequeueAggregate| |TopLevelDrawFunctions|
+ |TopLevelDrawFunctionsForCompiledFunctions|
+ |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack|
+ |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0|
+ |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial|
|DifferentialVariableCategory&| |DifferentialVariableCategory|
|e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType|
|e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|
- |ExtAlgBasis| |ElementaryFunction|
- |ElementaryFunctionStructurePackage|
+ |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage|
|ElementaryFunctionsUnivariateLaurentSeries|
|ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression|
|ExtensibleLinearAggregate&| |ExtensibleLinearAggregate|
|ElementaryFunctionCategory&| |ElementaryFunctionCategory|
- |EllipticFunctionsUnivariateTaylorSeries| |Eltable|
- |EltableAggregate&| |EltableAggregate| |EuclideanModularRing|
- |EntireRing| |Environment| |EigenPackage| |EquationFunctions2|
- |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1|
- |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1|
- |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace|
- |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2|
- |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain|
- |Evalable&| |Evalable| |EvaluateCycleIndicators| |ExitAst| |Exit|
- |ExponentialExpansion| |ExpressionFunctions2|
- |ExpressionToUnivariatePowerSeries| |Expression|
- |ExpressionSpaceODESolver| |ExpressionTubePlot|
- |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions|
- |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory|
- |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
- |FiniteAbelianMonoidRing| |FlexibleArray|
- |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField|
- |FortranCode| |FourierComponent| |FortranCodePackage1|
- |FiniteDivisorFunctions2| |FiniteDivisorCategory&|
- |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&|
- |FullyEvalableOver| |FortranExpression|
- |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&|
- |FunctionFieldCategory| |FiniteFieldCyclicGroup|
- |FiniteFieldCyclicGroupExtensionByPolynomial|
+ |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&|
+ |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment|
+ |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions|
+ |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1|
+ |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage|
+ |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage|
+ |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&|
+ |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit|
+ |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2|
+ |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver|
+ |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries|
+ |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup|
+ |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
+ |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&|
+ |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent|
+ |FortranCodePackage1| |FiniteDivisor| |FiniteDivisorFunctions2|
+ |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&|
+ |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&|
+ |FunctionFieldCategory| |FunctionFieldCategoryFunctions2|
+ |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial|
|FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions|
- |FiniteFieldHomomorphisms| |FiniteFieldCategory&|
- |FiniteFieldCategory| |FunctionFieldIntegralBasis|
- |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial|
- |FiniteFieldNormalBasisExtension| |FiniteField|
- |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2|
- |FiniteFieldPolynomialPackage|
+ |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory|
+ |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis|
+ |FiniteFieldNormalBasisExtensionByPolynomial|
+ |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial|
+ |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2|
|FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension|
- |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File|
- |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra|
- |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra|
- |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&|
- |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort|
- |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver|
- |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1|
- |FreeModuleCat| |FortranMatrixCategory|
- |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid|
- |FortranMachineTypeCategory| |FileName| |FileNameCategory|
- |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite|
- |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory|
- |FortranFunctionCategory| |FortranPackage| |FortranProgram|
- |FullPartialFractionExpansion| |FullyPatternMatchable|
- |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic|
- |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2|
- |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra|
- |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2|
- |FractionalIdeal| |FramedModule|
+ |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory|
+ |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite|
+ |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&|
+ |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra|
+ |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&|
+ |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage|
+ |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory|
+ |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoid|
+ |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie|
+ |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat|
+ |ScriptFormulaFormat1| |FortranPackage| |FortranProgramCategory|
+ |FortranFunctionCategory| |FortranProgram| |FullPartialFractionExpansion|
+ |FullyPatternMatchable| |FieldOfPrimeCharacteristic&|
+ |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem|
+ |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2|
+ |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo|
+ |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule|
|FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&|
- |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities|
- |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2|
- |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2|
- |FiniteSetAggregate&| |FiniteSetAggregate|
- |FunctionSpaceComplexIntegration| |FourierSeries|
- |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace|
+ |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&|
+ |FunctionSpace| |FunctionSpaceFunctions2|
+ |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries|
+ |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2|
+ |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration|
|FunctionalSpecialFunction| |FunctionSpacePrimitiveElement|
|FunctionSpaceReduce| |FortranScalarType|
- |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate|
- |FortranType| |FunctionCalled| |FortranVectorCategory|
- |FortranVectorFunctionCategory| |GaloisGroupFactorizer|
- |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities|
- |GaloisGroupUtilities| |GaussianFactorizationPackage|
+ |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate|
+ |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory|
+ |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities|
+ |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities|
+ |GaussianFactorizationPackage| |GroebnerPackage|
|EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage|
- |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain|
- |GenericNonAssociativeAlgebra|
- |GeneralDistributedMultivariatePolynomial| |GenExEuclid|
- |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
+ |GroebnerInternalPackage| |GcdDomain&| |GcdDomain|
+ |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial|
+ |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
|GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage|
- |GeneralModulePolynomial| |GosperSummationMethod|
- |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode|
- |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule|
- |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries|
- |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HasAst| |HashTable|
- |HallBasis| |HomogeneousDistributedMultivariatePolynomial|
- |HomogeneousDirectProduct| |HeadAst| |Heap|
- |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion|
+ |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet|
+ |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage|
+ |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group|
+ |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet|
+ |Pi| |HasAst| |HashTable| |HallBasis|
+ |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct|
+ |HeadAst| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion|
|HomogeneousAggregate&| |HomogeneousAggregate| |Hostname|
- |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory|
- |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray|
+ |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor|
+ |InnerAlgebraicNumber| |IndexedOneDimensionalArray|
|IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases|
- |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools|
- |IndexCard| |InnerCommonDenominator| |PolynomialIdeals|
- |IdealDecompositionPackage| |Identifier|
- |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid|
- |IndexedDirectProductCategory|
- |IndexedDirectProductOrderedAbelianMonoid|
- |IndexedDirectProductOrderedAbelianMonoidSup|
- |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable|
- |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst|
- |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList|
- |InnerMatrixLinearAlgebraFunctions|
- |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst|
- |InAst| |InputByteConduit&| |InputByteConduit|
+ |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard|
+ |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage|
+ |Identifier| |IndexedDirectProductAbelianGroup|
+ |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory|
+ |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid|
+ |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable|
+ |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| |InnerFiniteField|
+ |InnerIndexedTwoDimensionalArray| |IndexedList|
+ |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions|
+ |IndexedMatrix| |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit|
|InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents|
- |InnerNumericEigenPackage| |Infinity| |InputFormFunctions1|
- |InputForm| |InfiniteProductCharacteristicZero|
- |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact|
- |InfiniteProductFiniteField| |InfiniteProductPrimeField|
- |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem|
- |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits|
- |IntervalCategory| |IntegralDomain&| |IntegralDomain|
- |ElementaryIntegration| |IntegerFactorizationPackage|
+ |InnerNumericEigenPackage| |Infinity| |InputForm| |InputFormFunctions1|
+ |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage|
+ |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField|
+ |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&|
+ |IntegerNumberSystem| |Integer| |InnerTable| |AlgebraicIntegration|
+ |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&|
+ |IntegralDomain| |ElementaryIntegration| |IntegerFactorizationPackage|
|IntegrationFunctionsTable| |GenusZeroIntegration|
|IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration|
- |TranscendentalHermiteIntegration| |Integer|
- |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration|
- |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions|
- |RationalFunctionIntegration| |Interval|
+ |TranscendentalHermiteIntegration| |AnnaNumericalIntegrationPackage|
+ |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration|
+ |IntegerRetractions| |RationalFunctionIntegration| |Interval|
|IntegerSolveLinearPolynomialEquation| |IntegrationTools|
- |TranscendentalIntegration| |InverseLaplaceTransform|
- |InputOutputByteConduit| |InnerPAdicInteger| |InnerPrimeField|
- |InternalPrintPackage| |IntegrationResultToFunction|
- |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots|
- |IrredPolyOverFiniteField| |IntegrationResultRFToFunction|
- |IrrRepSymNatPackage|
- |InternalRationalUnivariateRepresentationPackage| |IsAst|
- |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries|
- |InnerTaylorSeries| |InfiniteTupleFunctions2|
- |InfiniteTupleFunctions3| |InnerTrigonometricManipulations|
- |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate|
- |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile|
- |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel|
- |CoercibleTo| |ConvertibleTo| |Kovacic| |KleeneTrivalentLogic|
- |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform|
- |LaurentPolynomial| |LazardSetSolvingPackage|
- |LeadingCoefDetermination| |LetAst| |LieExponentials|
- |LexTriangularPackage| |LiouvillianFunctionCategory|
- |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&|
- |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage|
- |RationalFunctionLimitPackage| |LinearDependence|
- |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2|
- |ListFunctions3| |List| |Literal| |ListMultiDictionary| |LeftModule|
- |ListMonoidOps| |LinearAggregate&| |LinearAggregate|
- |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1|
+ |TranscendentalIntegration| |InverseLaplaceTransform| |InputOutputByteConduit|
+ |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage|
+ |IntegrationResult| |IntegrationResultFunctions2|
+ |IntegrationResultToFunction| |IntegerRoots| |IrredPolyOverFiniteField|
+ |IntegrationResultRFToFunction| |IrrRepSymNatPackage|
+ |InternalRationalUnivariateRepresentationPackage| |IsAst| |IndexedString|
+ |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries|
+ |InfiniteTupleFunctions2| |InfiniteTupleFunctions3|
+ |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector|
+ |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst|
+ |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&|
+ |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo|
+ |Kovacic| |KleeneTrivalentLogic| |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra|
+ |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage|
+ |LeadingCoefDetermination| |LetAst| |LieExponentials| |LexTriangularPackage|
+ |LiouvillianFunction| |LiouvillianFunctionCategory| |LinGroebnerPackage|
+ |Library| |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra|
+ |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence|
+ |LinearlyExplicitRingOver| |List| |ListFunctions2| |ListToMap|
+ |ListFunctions3| |Literal| |ListMultiDictionary| |LeftModule| |ListMonoidOps|
+ |LinearAggregate&| |LinearAggregate| |Localize| |ElementaryFunctionLODESolver|
+ |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1|
|LinearOrdinaryDifferentialOperator2|
|LinearOrdinaryDifferentialOperatorCategory&|
|LinearOrdinaryDifferentialOperatorCategory|
|LinearOrdinaryDifferentialOperatorFactorizer|
- |LinearOrdinaryDifferentialOperator|
- |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize|
+ |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic|
|LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&|
- |ListAggregate| |LinearSystemMatrixPackage1|
- |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage|
- |LieSquareMatrix| |ConstructAst| |LyndonWord| |LazyStreamAggregate&|
- |LazyStreamAggregate| |ThreeDimensionalMatrix| |MacroAst| |Magma|
- |MappingPackageInternalHacks1| |MappingPackageInternalHacks2|
- |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1|
- |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2|
- |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions|
+ |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1|
+ |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord|
+ |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix|
+ |MacroAst| |Magma| |MappingPackageInternalHacks1|
+ |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingAst|
+ |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategory&|
+ |MatrixCategory| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions|
|Matrix| |StorageEfficientMatrixOperations| |Maybe|
- |MultiVariableCalculusFunctions| |MatrixCommonDenominator|
- |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer|
- |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize|
- |MachineFloat| |ModularHermitianRowReduction| |MachineInteger|
- |MakeBinaryCompiledFunction| |MakeCachableSet|
- |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord|
- |MakeUnaryCompiledFunction| |MultivariateLifting|
- |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField|
- |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&|
- |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&|
- |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&|
- |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2|
- |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial|
- |MPolyCatRationalFunctionFactorizer| |MRationalFactorize|
- |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset|
- |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory|
- |MultivariateFactorize| |MultivariateSquareFree|
- |NonAssociativeAlgebra&| |NonAssociativeAlgebra|
+ |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex|
+ |MultiDictionary| |ModularDistinctDegreeFactorizer|
+ |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat|
+ |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction|
+ |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord|
+ |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator|
+ |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial|
+ |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&|
+ |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&|
+ |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools|
+ |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer|
+ |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer|
+ |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset|
+ |MultisetAggregate| |MoreSystemCommands| |MergeThing|
+ |MultivariateTaylorSeriesCategory| |MultivariateFactorize|
+ |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra|
|NagPolynomialRootsPackage| |NagRootFindingPackage|
|NagSeriesSummationPackage| |NagIntegrationPackage|
|NagOrdinaryDifferentialEquationsPackage|
|NagPartialDifferentialEquationsPackage| |NagInterpolationPackage|
- |NagFittingPackage| |NagOptimisationPackage|
- |NagMatrixOperationsPackage| |NagEigenPackage|
- |NagLinearEquationSolvingPackage| |NagLapack|
- |NagSpecialFunctionsPackage| |NAGLinkSupportPackage|
- |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&|
- |NonAssociativeRing| |NumericComplexEigenPackage|
- |NumericContinuedFraction| |NonCommutativeOperatorDivision|
- |NumberFieldIntegralBasis| |NumericalIntegrationProblem|
- |NonLinearSolvePackage| |NonNegativeInteger|
- |NonLinearFirstOrderODESolver| |NoneFunctions1| |None|
- |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage|
- |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial|
- |NewSparseUnivariatePolynomialFunctions2|
- |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions|
- |NormalizedTriangularSetCategory| |Numeric| |NumberFormats|
- |NumericalIntegrationCategory|
+ |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage|
+ |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack|
+ |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&|
+ |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing|
+ |NumericComplexEigenPackage| |NumericContinuedFraction|
+ |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis|
+ |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger|
+ |NonLinearFirstOrderODESolver| |None| |NoneFunctions1|
+ |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef|
+ |NumericRealEigenPackage| |NewSparseMultivariatePolynomial|
+ |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2|
+ |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory|
+ |Numeric| |NumberFormats| |NumericalIntegrationCategory|
|NumericalOrdinaryDifferentialEquations| |NumericalQuadrature|
|NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid|
- |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup|
- |OrderedCancellationAbelianMonoid| |OctonionCategory&|
- |OctonionCategory| |OctonionCategoryFunctions2| |Octonion|
- |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE|
- |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable|
- |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage|
- |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem|
- |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE|
- |SystemODESolver| |ODETools| |OrderedDirectProduct|
- |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing|
- |OrderlyDifferentialVariable| |OrderedFreeMonoid|
- |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice|
- |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError|
- |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath|
- |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage|
- |OnePointCompletionFunctions2| |OnePointCompletion| |Operator|
- |OperationsQuery| |NumericalOptimizationCategory|
+ |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OctonionCategory&|
+ |OctonionCategory| |OrderedCancellationAbelianMonoid| |Octonion|
+ |OctonionCategoryFunctions2| |OrdinaryDifferentialEquationsSolverCategory|
+ |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable|
+ |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE|
+ |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE|
+ |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools|
+ |OrderedDirectProduct| |OrderlyDifferentialPolynomial|
+ |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid|
+ |OrderedIntegralDomain| |OpenMath| |OpenMathConnection| |OpenMathDevice|
+ |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath|
+ |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate|
+ |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2|
+ |Operator| |OperationsQuery| |NumericalOptimizationCategory|
|AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem|
- |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite|
- |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing|
- |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&|
- |UnivariateSkewPolynomialCategory|
- |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial|
- |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions|
- |OrderedSemiGroup| |OrdSetInts| |OutputByteConduit&|
- |OutputByteConduit| |OutputForm| |OutputPackage| |OrderedVariableList|
- |OrdinaryWeightedPolynomials| |PadeApproximants|
- |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger|
- |PAdicRational| |PAdicRationalConstructor| |Pair| |Palette|
- |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2|
- |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2|
- |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2|
- |ParametricSurface| |PartitionsAndPermutations| |Patternable|
- |PatternMatchListResult| |PatternMatchable| |PatternMatch|
- |PatternMatchResultFunctions2| |PatternMatchResult|
- |PatternFunctions1| |PatternFunctions2| |Pattern|
- |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition|
- |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition|
- |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem|
- |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree|
- |Permanent| |PermutationCategory| |PermutationGroup| |Permutation|
- |PolynomialFactorizationByRecursion|
+ |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite|
+ |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&|
+ |OrderedSet| |UnivariateSkewPolynomialCategory&|
+ |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps|
+ |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial|
+ |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts|
+ |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputForm|
+ |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants|
+ |PadeApproximantPackage| |PAdicInteger| |PAdicIntegerCategory| |PAdicRational|
+ |PAdicRationalConstructor| |Pair| |Palette| |PolynomialAN2Expression|
+ |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve|
+ |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |Parser|
+ |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations|
+ |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch|
+ |PatternMatchResult| |PatternMatchResultFunctions2| |Pattern|
+ |PatternFunctions1| |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis|
+ |PolynomialComposition| |PartialDifferentialEquationsSolverCategory|
+ |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage|
+ |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing|
+ |PendantTree| |Permutation| |Permanent| |PermutationCategory|
+ |PermutationGroup| |PrimeField| |PolynomialFactorizationByRecursion|
|PolynomialFactorizationByRecursionUnivariate|
|PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit|
- |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational|
- |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage|
- |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner|
- |PiCoercions| |PrincipalIdealDomain| |PositiveInteger|
- |PolynomialInterpolationAlgorithms| |PolynomialInterpolation|
- |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot|
- |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions|
- |PatternMatchPushDown| |PatternMatchFunctionSpace|
+ |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools|
+ |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage|
+ |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions|
+ |PrincipalIdealDomain| |PolynomialInterpolation|
+ |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot|
+ |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions|
+ |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace|
|PatternMatchIntegerNumberSystem| |PatternMatchKernel|
|PatternMatchListAggregate| |PatternMatchPolynomialCategory|
- |FunctionSpaceAttachPredicates| |AttachPredicates|
- |PatternMatchQuotientFieldCategory| |PatternMatchSymbol|
- |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point|
- |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2|
- |PolynomialToUnivariatePolynomial| |PolynomialCategory&|
- |PolynomialCategory| |PolynomialCategoryQuotientFunctions|
- |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots|
- |PortNumber| |PlottablePlaneCurveCategory|
- |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2|
- |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement|
- |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product|
- |Property| |PropositionalFormula| |PropositionalLogic|
- |PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst|
- |Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
- |PlottableSpaceCurveCategory| |PolynomialSetCategory&|
- |PolynomialSetCategory| |PolynomialSetUtilitiesPackage|
- |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory|
- |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions|
- |PushVariables| |PAdicWildFunctionFieldIntegralBasis|
- |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage|
- |QueryEquation| |QuotientFieldCategoryFunctions2|
- |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm|
- |QuasiquoteAst| |QueueAggregate| |QuaternionCategory&|
- |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion|
- |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField|
- |RadixExpansion| |RadixUtilities| |RandomNumberSource|
- |RationalFactorize| |RationalRetractions| |RecursiveAggregate&|
- |RecursiveAggregate| |RealClosedField&| |RealClosedField|
- |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE|
- |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor|
- |ReduceAst| |RealZeroPackage| |RealZeroPackageQ| |RealConstant|
- |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference|
- |RegularTriangularSet| |RepresentationPackage1|
- |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage|
+ |AttachPredicates| |FunctionSpaceAttachPredicates|
+ |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools|
+ |PolynomialNumberTheoryFunctions| |Point| |PolToPol|
+ |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2|
+ |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory|
+ |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting|
+ |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing|
+ |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2|
+ |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage|
+ |PrintPackage| |Product| |Property| |PropositionalFormula|
+ |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence|
+ |PretendAst| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
+ |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory|
+ |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm|
+ |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage|
+ |PartialTranscendentalFunctions| |PushVariables|
+ |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2|
+ |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&|
+ |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm|
+ |QuasiquoteAst| |QueueAggregate| |Quaternion| |QuaternionCategory&|
+ |QuaternionCategory| |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&|
+ |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities|
+ |RandomNumberSource| |RationalFactorize| |RationalRetractions|
+ |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&|
+ |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem|
+ |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions|
+ |ReducedDivisor| |ReduceAst| |RealConstant| |RealZeroPackage|
+ |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder|
+ |Reference| |RegularTriangularSet| |RadicalEigenPackage|
+ |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling|
|RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result|
|ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage|
- |RandomFloatDistributions| |RationalFunctionFactor|
- |RationalFunctionFactorizer| |RationalFunction| |RegularChain|
- |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation|
- |RectangularMatrixCategory&| |RectangularMatrixCategory|
- |RectangularMatrix| |RectangularMatrixCategoryFunctions2|
- |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem|
- |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable|
- |RecursivePolynomialCategory&| |RecursivePolynomialCategory|
+ |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor|
+ |RationalFunctionFactorizer| |RegularChain| |RandomIntegerDistributions|
+ |Ring&| |Ring| |RationalInterpolation| |RectangularMatrixCategory&|
+ |RectangularMatrixCategory| |RectangularMatrix|
+ |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&|
+ |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral|
+ |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory|
|RepeatAst| |RealRootCharacterizationCategory&|
|RealRootCharacterizationCategory| |RegularSetDecompositionPackage|
|RegularTriangularSetCategory&| |RegularTriangularSetCategory|
- |RegularTriangularSetGcdPackage| |RestrictAst| |RuleCalled|
- |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage|
- |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension|
- |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet|
- |SpadSyntaxCategory| |SortedCache| |Scope|
+ |RegularTriangularSetGcdPackage| |RestrictAst| |RewriteRule| |RuleCalled|
+ |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension|
+ |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor|
+ |SingletonAsOrderedSet| |SpadSyntaxCategory| |SortedCache| |Scope|
|StructuralConstantsPackage| |SequentialDifferentialPolynomial|
- |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst|
- |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory|
- |Segment| |SegmentExpansionCategory| |SequenceAst| |SetAggregate&|
- |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN|
- |Set| |SExpressionCategory| |SExpression| |SExpressionOf|
- |SimpleFortranProgram| |SquareFreeQuasiComponentPackage|
- |SquareFreeRegularTriangularSetGcdPackage|
- |SquareFreeRegularTriangularSetCategory|
- |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup|
- |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |SignatureAst|
- |ElementaryFunctionSign| |RationalFunctionSign| |Signature|
- |SimplifyAlgebraicNumberConvertPackage| |SingleInteger|
- |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory|
- |SmithNormalForm| |SparseMultivariatePolynomial|
- |SparseMultivariateTaylorSeries|
- |SquareFreeNormalizedTriangularSetCategory|
- |PolynomialSolveByFormulas| |RadicalSolvePackage|
- |TransSolvePackageService| |TransSolvePackage| |SortPackage|
- |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser|
+ |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentAst|
+ |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory|
+ |SegmentExpansionCategory| |SequenceAst| |Set| |SetAggregate&| |SetAggregate|
+ |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression|
+ |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram|
+ |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage|
+ |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions|
+ |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage|
+ |Signature| |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign|
+ |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate|
+ |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm|
+ |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries|
+ |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas|
+ |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage|
+ |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser|
|SpadAstExports| |SpecialOutputPackage| |SpecialFunctionCategory|
|SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&|
|StringAggregate| |SquareFreeRegularSetDecompositionPackage|
- |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&|
- |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct|
- |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream|
- |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations|
- |StreamTranscendentalFunctionsNonCommutative|
- |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace|
- |SuchThat| |SuchThatAst| |SparseUnivariateLaurentSeries|
- |FunctionSpaceSum| |RationalFunctionSum|
- |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer|
- |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries|
+ |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate|
+ |SparseTable| |StepThrough| |StreamInfiniteProduct| |Stream|
+ |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StringCategory|
+ |String| |StringTable| |StreamTaylorSeriesOperations|
+ |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative|
+ |SubResultantPackage| |SubSpace| |SuchThat| |SuchThatAst|
+ |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum|
+ |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2|
+ |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries|
|SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions|
|SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax|
- |SystemSolvePackage| |System| |TableauxBumpers| |Tableau| |Table|
+ |SystemSolvePackage| |System| |TableauxBumpers| |Table| |Tableau|
|TangentExpansions| |TableAggregate&| |TableAggregate|
- |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1|
- |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace|
- |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory|
- |Tree| |TrigonometricFunctionCategory&|
- |TrigonometricFunctionCategory| |TrigonometricManipulations|
- |TriangularMatrixOperations| |TranscendentalManipulations|
- |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries|
- |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |TypeAst| |Type|
- |UserDefinedPartialOrdering| |UserDefinedVariableOrdering|
+ |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| |TexFormat1|
+ |TextFile| |ToolsForSign| |TopLevelThreeSpace|
+ |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree|
+ |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory|
+ |TrigonometricManipulations| |TriangularMatrixOperations|
+ |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&|
+ |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize|
+ |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering|
|UniqueFactorizationDomain&| |UniqueFactorizationDomain|
- |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory|
+ |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2|
+ |UnivariateLaurentSeriesCategory|
|UnivariateLaurentSeriesConstructorCategory&|
|UnivariateLaurentSeriesConstructorCategory|
- |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries|
- |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment|
- |UnivariatePolynomialFunctions2|
- |UnivariatePolynomialCommonDenominator|
+ |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment|
+ |UniversalSegmentFunctions2| |UnivariatePolynomial|
+ |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator|
|UnivariatePolynomialDecompositionPackage|
|UnivariatePolynomialDivisionPackage|
- |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial|
- |UnivariatePolynomialCategoryFunctions2|
- |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory|
+ |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&|
+ |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2|
|UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory|
- |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2|
- |UnivariatePuiseuxSeriesCategory|
+ |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries|
+ |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory|
|UnivariatePuiseuxSeriesConstructorCategory&|
|UnivariatePuiseuxSeriesConstructorCategory|
- |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries|
- |UnivariatePuiseuxSeriesWithExponentialSingularity|
- |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate|
+ |UnivariatePuiseuxSeriesConstructor|
+ |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&|
+ |UnaryRecursiveAggregate| |UnivariateTaylorSeries|
|UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&|
- |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries|
- |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable|
- |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector|
- |TwoDimensionalViewport| |ThreeDimensionalViewport|
- |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&|
- |VectorSpace| |WeierstrassPreparation|
- |WildFunctionFieldIntegralBasis| |WhereAst| |WhileAst|
- |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra|
- |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra|
- |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat|
- |XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
+ |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver|
+ |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory|
+ |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport|
+ |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&|
+ |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis|
+ |WhereAst| |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet|
+ |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&|
+ |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial|
+ |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
- |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |writeBytes!| |supDimElseRittWu?| |fractionPart|
- |comment| |getZechTable| |invmod| |lo| |viewDeltaYDefault|
- |acschIfCan| |reducedContinuedFraction| |iisec| |showTypeInOutput|
- |obj| |s17aff| |nonSingularModel| |OMencodingBinary| |cAcot| |incr|
- |failed?| |prepareSubResAlgo| |positiveRemainder| |cCosh|
- |subResultantChain| |uncouplingMatrices| |f01rdf| |cache| |f02akf|
- |symbolIfCan| |index?| |duplicates?| |hi| |patternMatch| |notOperand|
- |usingTable?| |checkRur| |OMUnknownCD?| |incrementKthElement|
- |argumentList!| |lifting| |overlabel| |monomials| |startTableGcd!|
- |coord| |cothIfCan| |showIntensityFunctions| |rischNormalize|
- |BasicMethod| |stronglyReduce| |char| |d01alf| |expIfCan| |shift|
- |gcdcofactprim| |cosSinInfo| |region| |mapUp!| |d03faf|
- |leftRegularRepresentation| |realSolve| |elseBranch| |fortran| |depth|
- |graphs| |readBytes!| |cyclicCopy| |size?|
- |functionIsContinuousAtEndPoints| |ref|
- |solveLinearPolynomialEquationByFractions| |primitiveElement|
- |patternVariable| |lighting| |palgLODE| |expextendedint| |d01amf|
- |edf2ef| |numberOfIrreduciblePoly| |completeSmith| |nthr|
- |topPredicate| |UpTriBddDenomInv| ~ |c06frf| |scripted?| |tail|
- |extension| |nullary?| |integralDerivationMatrix| |divide| |clikeUniv|
- |xn| |midpoints| |invertible?| |bracket| |printingInfo?| |part?|
- |float| |fortranInteger| |safeFloor| |shade| |open| |leftTrace|
- |showFortranOutputStack| |nil?| |setrest!| |realEigenvectors|
- |orOperands| |createZechTable| |asecIfCan| |genericLeftTrace|
- |divisors| |derivationCoordinates| |padicallyExpand| |zeroVector|
- |OMcloseConn| |powerAssociative?| |updatF| |c06gbf| |asimpson|
- |hexDigit?| |solve1| |mainExpression| |musserTrials| |eulerE|
- |lazyPseudoQuotient| |indicialEquations| |subTriSet?| |leftZero|
- |explimitedint| |d01akf| |youngGroup| |reducedForm| |head| |linear|
- |iiasin| |numer| |factor1| |coerceP| |nextNormalPrimitivePoly|
- |limitedIntegrate| |hasSolution?| |rightTrace| |rowEchelonLocal|
- |polar| |nonQsign| |tubePlot| |denom| |mapUnivariate| |rootNormalize|
- |recur| |curryLeft| |leftExactQuotient| |coth2trigh| |generate|
- |startTableInvSet!| |polynomial| |bernoulli| |selectfirst|
- |rootProduct| |minPoly| |rightTraceMatrix| |permutationGroup| |cross|
- F |iisqrt2| |cAcos| |logIfCan| |pi| |genericLeftMinimalPolynomial|
- |regime| |generalPosition| |contract| |create| |algint| |erf|
- |incrementBy| |numFunEvals3D| |OMgetAtp| |rewriteIdealWithRemainder|
- |infinity| |indiceSubResultant| |stFunc2| |union| |SturmHabicht|
- |linearDependence| |gcdPolynomial| |subCase?| |split| |script|
- |purelyAlgebraicLeadingMonomial?| |expand| |internalAugment| |write!|
- |complexNormalize| |sncndn| |lyndonIfCan| |sequence| |laplace|
- |lyndon| |internal?| |solveRetract| |filterWhile| |mantissa| |empty|
- |isPlus| |status| |fintegrate| |lepol| |graphCurves| |eigenvector|
- |infieldint| |e02def| |dilog| |quoByVar| |OMgetAttr| |filterUntil|
- |leftRank| |primaryDecomp| |viewZoomDefault| |kernel| |roman|
- |alternatingGroup| |terms| |stirling2| |qPot| |extendedResultant|
- |tex| |sin| |options| |implies?| |select| |draw| |block| |OMputEndApp|
- |OMserve| |level| |Nul| |rubiksGroup| |multiEuclidean| |leftUnit|
- |result| |evaluateInverse| |cos| |setright!| |iicos| |meatAxe|
- |whileLoop| |resize| |partialDenominators| |rightExactQuotient|
- |newReduc| |coHeight| |numberOfComposites| |tan|
- |solveLinearPolynomialEquation| |lagrange| |finiteBasis|
- |primlimintfrac| |indicialEquation| |optimize| |expintfldpoly| |Ci|
- |iterationVar| |extendedIntegrate| NOT |ScanFloatIgnoreSpacesIfCan|
- |string| |cot| |factorSFBRlcUnit| |quasiRegular?| |dom| |nilFactor|
- |pquo| |integrate| |rightMult| |chiSquare1| |factorList| |e01bgf| OR
- |shuffle| |sec| |fTable| |pointPlot| |makeObject| |minordet|
- |att2Result| |binomThmExpt| |exponents| |plotPolar| |has?| |maxIndex|
- AND |minimumExponent| |csc| |selectAndPolynomials| |algebraicOf|
- |pointColorDefault| |mkPrim| |getOrder| |dn| |cscIfCan|
- |rationalPoints| |makeRecord| |d02cjf| |asin| |cot2trig| |moebius|
- |setValue!| |iiacoth| |semiResultantEuclidean2|
- |inverseIntegralMatrixAtInfinity| |coef|
- |standardBasisOfCyclicSubmodule| |refine| |isPower| |closedCurve|
- |preprocess| |acos| |Si| |imagi| |simplifyExp| |leftOne|
- |createLowComplexityTable| |is?| |headReduced?| |thetaCoord| |randomR|
- |atan| |merge| |digits| |generalTwoFactor| |nand| |separateDegrees|
- |safeCeiling| |listConjugateBases| |mainCharacterization|
- |radicalEigenvector| |title| |d02bbf| |areEquivalent?| |fixedDivisor|
- |acot| |associatorDependence| |diagonalMatrix| |sumOfSquares| |iilog|
- |zeroMatrix| |pushup| |c05adf| |writeByteIfCan!| |rangeIsFinite|
- |OMgetBind| |OMputBind| |selectIntegrationRoutines| |asec|
- |removeRedundantFactorsInPols| |evenInfiniteProduct| |alternative?|
- |numeric| |viewport3D| |rightNorm| |eulerPhi| |green| |hue| |dfRange|
- |d03eef| |integralLastSubResultant| |acsc| |product| |orbits|
- |dmp2rfi| |iroot| |radical| |makeSeries| |c06ekf| |f02axf| |e|
- |functionIsFracPolynomial?| |moebiusMu| |mapmult| |selectPDERoutines|
- |sinh| |numberOfFractionalTerms| |patternMatchTimes| |setAdaptive|
- |tanIfCan| |acothIfCan| |companionBlocks| |triangularSystems|
- |factorsOfCyclicGroupSize| |matrixConcat3D| |cosh| |sin2csc|
- |collectUpper| |enterPointData| |splitSquarefree| |antiAssociative?|
- |relationsIdeal| |lexico| |mightHaveRoots| |Ei| |f04atf| |tree| *
- |OMputAttr| |tanh| |simplifyPower| |copyInto!| |removeCoshSq|
- |setsubMatrix!| |rationalPower| |OMputInteger| |mainVariables|
- |graeffe| |OMUnknownSymbol?| |errorInfo| |coth| |factorsOfDegree|
- |OMgetEndAttr| |OMbindTCP| |matrixGcd| |cycleSplit!|
- |removeRedundantFactorsInContents| |rootOf| |schwerpunkt| |rotatez|
- |elements| |sech| |pack!| |lex| |debug| |totalDegree| |derivative|
- |augment| |factorial| |linearMatrix| |fortranComplex|
- |semiLastSubResultantEuclidean| |optional?| |csch| |reducedSystem|
- |qqq| D |nullSpace| |getMultiplicationTable| |transcendenceDegree|
- |wronskianMatrix| |sample| |interval| |s17adf| |asinh| |insert!|
- |setRealSteps| |lazyPseudoRemainder| |li| |calcRanges| |innerSolve|
- |removeSuperfluousCases| |reverseLex| |roughUnitIdeal?| |setPosition|
- |edf2df| |unrankImproperPartitions0| |acosh| |compactFraction|
- |characteristic| |listLoops| |multinomial| |gderiv|
- |differentialVariables| |f01qef| |primitive?| |numberOfComponents|
- |setelt!| |atanh| |applyRules| |port| |nthExponent| |divisorCascade|
- |Is| |entries| |createRandomElement| |factorAndSplit| |ldf2lst|
- |node?| |permutationRepresentation| |acoth|
- |createLowComplexityNormalBasis| |nullity| |unknown| |OMputObject|
- |cyclicSubmodule| |supRittWu?| |tryFunctionalDecomposition?| |tValues|
- |mapCoef| |pushdterm| |addPoint2| |Gamma| |asech| |pile| |orbit|
- |viewPosDefault| |coercePreimagesImages| |extendIfCan|
- |hypergeometric0F1| |genericLeftDiscriminant| |bag| |roughSubIdeal?|
- |defineProperty| |jordanAlgebra?| |setref| |s21bdf| |triangular?|
- |outlineRender| |c02agf| |setAdaptive3D| |scaleRoots| |normDeriv2|
- |multiple| |characteristicSerie| |leftTraceMatrix|
- |stoseInvertible?sqfreg| |mdeg| |subResultantsChain|
- |invertibleElseSplit?| |build| |child| |alphanumeric?| |hyperelliptic|
- |applyQuote| |degreeSubResultantEuclidean| |mainVariable|
- |clearTheSymbolTable| |entry| |deleteRoutine!| |d02ejf| |intersect|
- |OMsetEncoding| |hasPredicate?| |critMTonD1| |redPol| |dequeue!|
- |redPo| |toseLastSubResultant| |zeroDim?| |print| |LazardQuotient|
- |partition| |empty?| |qelt| |true| |maxPoints3D| |cycleTail| |cyclic|
- |tanh2trigh| |complete| |expt| |taylorQuoByVar| |bsolve| |symmetric?|
- |largest| |and| |collectQuasiMonic| |exteriorDifferential| |cAsech|
- |readByteIfCan!| |ruleset| |makeEq| |cyclicEntries| |perfectNthRoot|
- |stoseSquareFreePart| |orthonormalBasis| |xRange| |idealSimplify|
- |tanAn| |exponential1| |f01qcf| |legendreP| |OMputError| |loopPoints|
- |integerBound| |c05nbf| |hasTopPredicate?| |yRange|
- |lazyIrreducibleFactors| |geometric| |palgintegrate| |swapRows!|
- |dmpToHdmp| |SturmHabichtMultiple| |objects| |Beta|
- |leastAffineMultiple| |finite?| |setClosed| |getOperands| |zRange|
- SEGMENT |rotate| |basisOfLeftNucloid| |mat| |linearlyDependent?|
- |FormatArabic| |suchThat| |base| |rightExtendedGcd| |map!| |c06gcf|
- |multiset| |wholeRadix| |createMultiplicationMatrix| |setTopPredicate|
- |iidsum| |lazyEvaluate| |factorSquareFreePolynomial| |symbol?|
- |removeCosSq| |delete!| |UP2ifCan| |qsetelt!| |qualifier|
- |integralCoordinates| |anticoord| |df2st|
- |removeIrreducibleRedundantFactors| |sinhcosh| |setleft!| |gcdcofact|
- |prefix| |polygon?| |binary| |modularGcd| |s17akf| |antiCommutator|
- |recolor| |quatern| |c06ebf| |po| |dec| |color| |OMencodingXML|
- |setchildren!| |expint| |legendre| |janko2| |baseRDEsys| |taylorIfCan|
- |selectSumOfSquaresRoutines| |mapdiv| |tanQ| |getConstant| |subMatrix|
- |commutator| |squareFreePart| |push!| |generators| |setRow!|
- |unmakeSUP| |find| |approximants| |imaginary| |neglist|
- |repeatUntilLoop| |subHeight| |paraboloidal| |pointSizeDefault| |lllp|
- |condition| |cubic| |dimensions| |super| |move| |content| |llprop|
- |acsch| |conical| |children| |top!| |yellow| |rk4a| |conjugates|
- |besselI| |hclf| |d01anf| |PDESolve| |branchPoint?| |torsion?|
- |numericIfCan| |gcdprim| |normInvertible?| |degreeSubResultant|
- |tanh2coth| |concat| |middle| |distance| |bumprow| |someBasis|
- |radicalRoots| |deref| |members| |indicialEquationAtInfinity| |dmpToP|
- |factorSquareFree| |changeThreshhold| |alphabetic| |int| |e01sff|
- |upperCase| |sturmSequence| |contains?| |makeYoungTableau| |cap|
- |c02aff| |algebraicCoefficients?| |monicModulo|
- |subResultantGcdEuclidean| |cos2sec| |symmetricProduct| |newTypeLists|
- |prologue| |previous| |tower| |genericRightTrace| |maximumExponent|
- |subSet| |stirling1| |hconcat| |chebyshevT| |irreducible?| |hdmpToDmp|
- |e04gcf| |atanhIfCan| |inv| |tubePointsDefault| |sorted?| |aCubic|
- |separateFactors| |weight| |property| |reduction| |sinhIfCan| |limit|
- |buildSyntax| |ground?| |dimensionOfIrreducibleRepresentation|
- |f04arf| |scalarMatrix| |eisensteinIrreducible?|
- |generalInfiniteProduct| |solveid| |spherical| |subPolSet?|
- |printInfo!| |ground| |moduloP| |leftRankPolynomial| |operator|
- |radicalOfLeftTraceForm| |seriesToOutputForm|
- |solveLinearPolynomialEquationByRecursion| |makeViewport2D|
- |continuedFraction| |setStatus!| |primitivePart!| |setButtonValue|
- |smith| |unary?| |qroot| |leadingMonomial| |infLex?|
- |halfExtendedResultant1| |strongGenerators| |printStats!| |front|
- |inconsistent?| |hostPlatform| |units| |flexible?| |s17agf| |exquo|
- |LowTriBddDenomInv| |doubleDisc| |cycleLength| |leadingCoefficient|
- |null?| |complexNumeric| |setleaves!| |pleskenSplit| |besselY| |sin?|
- |csch2sinh| |comparison| |corrPoly| |localReal?| |numerator|
- |getProperties| |div| |leadingCoefficientRicDE| |primitiveMonomials|
- |setColumn!| |reflect| |moduleSum| |retractable?| |range| |kernels|
- |denomLODE| |nextsousResultant2| |quo| |primPartElseUnitCanonical!|
- |startStats!| |reductum| |infinite?| |equivOperands|
- |sizePascalTriangle| |element?| |isAbsolutelyIrreducible?| |output|
- |parabolic| |constantKernel| |order| |numberOfNormalPoly| |leftGcd|
- |useSingleFactorBound| |univariate| |showTheRoutinesTable| |contours|
- |logGamma| |formula| |putGraph| |mulmod| |trim| |compile| |cAsinh|
- |symmetricGroup| |graphState| |rem| |variable?| |minPoints|
- |lazyPseudoDivide| |yCoordinates| |target| |df2ef| |code| |f02agf|
- |minColIndex| |tan2trig| |normalise| |summation| |karatsubaOnce|
- |ratPoly| |ReduceOrder| |seriesSolve| |sPol| |quotient|
- |listYoungTableaus| |tensorProduct| |radicalEigenvalues| |outputFixed|
- |groebgen| |times!| |univariatePolynomialsGcds| |factor| |htrigs| BY
- |measure2Result| |s01eaf| |raisePolynomial| |pr2dmp| |represents|
- |writeLine!| |genericRightNorm| |ksec| |drawToScale| |viewPhiDefault|
- |s19aaf| |sqrt| |goodPoint| |complexRoots| |multiEuclideanTree|
- |commutative?| |unitNormal| |cCoth| |nrows| |nextNormalPoly|
- |irreducibleFactors| |pushuconst| |s17aef| |real| |acotIfCan|
- |critBonD| |linearPolynomials| |any?| |lifting1| |palgextint0|
- |positiveSolve| |ncols| |pointColor| |nextPrimitivePoly|
- |splitConstant| |ode| |complexIntegrate| |imag| |setProperty| |escape|
- |singularAtInfinity?| |absolutelyIrreducible?| |typeLists| |delete|
- |unaryFunction| |directProduct| |adaptive| |coerceS| |toseInvertible?|
- |critpOrder| |univcase| |rootSplit| |signAround| |extendedint|
- |minPol| |irreducibleRepresentation| |polCase| |validExponential|
- |basisOfRightAnnihilator| |modularGcdPrimitive| |cot2tan|
- |unitsColorDefault| |push| |rightAlternative?| |s13acf| |diag| |lhs|
- |definingEquations| |tan2cot| |insertBottom!| |leftRecip| |dAndcExp|
- |frst| |destruct| |autoReduced?| |constantOperator| |df2fi|
- |padicFraction| |realZeros| |rhs| |genus| |curve?| |headRemainder|
- |decrease| |over| |totalfract| |OMreceive| |clipWithRanges|
- |moreAlgebraic?| |matrixDimensions| |selectMultiDimensionalRoutines|
- |unitNormalize| |listOfMonoms| |particularSolution| |perfectNthPower?|
- |traverse| |polyRicDE| |extractProperty| |antiCommutative?| |tablePow|
- |pToDmp| |binomial| |fortranLiteral| |rowEchelon|
- |nextLatticePermutation| |elColumn2!| |setStatus| |bitTruth|
- |henselFact| |addmod| |minrank| |interpretString| |quasiComponent|
- |rewriteIdealWithQuasiMonicGenerators| |simplify| |localUnquote|
- |HenselLift| |increase| |node| |convergents| |cylindrical| |monomial|
- |expressIdealMember| |bindings| |fortranLogical| |lexTriangular|
- |polyred| |list?| |numberOfChildren| |resultant| |setelt|
- |oblateSpheroidal| |realElementary| |combineFeatureCompatibility|
- |initial| |multivariate| |listRepresentation| |supersub| |axes|
- |domainOf| |divergence| |c06gqf| |completeEchelonBasis|
- |mainCoefficients| |s17def| |scanOneDimSubspaces| |basisOfCenter|
- |pmComplexintegrate| |variables| |selectOrPolynomials| |member?|
- |bubbleSort!| |nary?| |reindex| |cycleEntry| |createPrimitivePoly|
- |figureUnits| |iiabs| |copy| |OMconnectTCP| |rdHack1| |intensity|
- |euclideanNormalForm| |atoms| |idealiserMatrix| |LyndonBasis|
- |FormatRoman| |e02daf| |currentScope| |substring?| |outputAsScript|
- |oneDimensionalArray| |genericRightTraceForm| |fortranTypeOf|
- |OMputAtp| |string?| |log10| |leftQuotient|
- |indiceSubResultantEuclidean| |hspace| |maxRowIndex| |getGraph|
- |truncate| |drawComplexVectorField| |unparse| |normalElement| |imagE|
- |seed| |match?| |bitand| |hexDigit| |sortConstraints| |tanhIfCan|
- |top| |wordInStrongGenerators| |acscIfCan| |suffix?| |autoCoerce|
- |and?| |solid| |rst| |fixedPoints| |iitan| |crest| |bitior| |blue|
- |clipBoolean| |changeNameToObjf| |continue| |harmonic| |cCsc|
- |mergeDifference| |prindINFO| |optpair| |halfExtendedSubResultantGcd1|
- |laurentIfCan| |taylor| |semiResultantEuclideannaif| |width|
- |leftAlternative?| |cardinality| |stronglyReduced?| |fglmIfCan|
- |LyndonWordsList1| |e01saf| |prefix?| |inspect| |mainMonomials|
- |rightDiscriminant| |OMconnOutDevice| |rightPower| |laurent|
- |basisOfRightNucloid| |dihedral| |fullPartialFraction| |makeCrit|
- |upperCase!| |inGroundField?| |doublyTransitive?| |maxColIndex|
- |clipPointsDefault| |wholePart| |critM| |puiseux| |curveColorPalette|
- |getIdentifier| |linSolve| |s17dlf| |getRef| |withPredicates| |iiperm|
- |jacobi| |readLineIfCan!| |sdf2lst| |plenaryPower| |iicsch| |zerosOf|
- |singular?| |stoseLastSubResultant| |s19acf| |chebyshevU|
- |subtractIfCan| |leastPower| |movedPoints| |f07adf| = |equation|
- |rationalFunction| |associatedEquations| |initTable!| |ipow|
- |irreducibleFactor| |minPoints3D| |OMParseError?| |lazyPquo|
- |fortranCompilerName| |pop!| |zCoord| |poisson| |logical?| |repSq|
- |genericRightDiscriminant| |e01sbf| |genericLeftTraceForm| |e01bff|
- |unitCanonical| |hdmpToP| |blankSeparate| < |padecf| |row| |optional|
- |operators| |badNum| |minGbasis| |increment| |infix?| |resetBadValues|
- |say| |symbolTableOf| |OMputEndBind| > |pair?| |plot| |monomial?|
- |mask| |transpose| |hermiteH| |monicCompleteDecompose| |collect|
- |asinIfCan| |iipow| |elliptic?| <= |minRowIndex| |setImagSteps|
- |leftFactorIfCan| |callForm?| |implies| |thenBranch| |dark|
- |distdfact| |wordsForStrongGenerators| |s13aaf| |getMatch| >=
- |stFunc1| |d01apf| |B1solve| |shellSort| |isList|
- |resultantEuclideannaif| |hcrf| |leaf?| |cycles| |noLinearFactor?|
- |palginfieldint| |ratpart| |squareFreePolynomial| |nullary| |xor|
- |interReduce| |countRealRoots| |sayLength| |connect|
- |totalDifferential| |pointLists| |every?| |prime?|
- |viewWriteAvailable| |currentSubProgram| |match| |byte|
- |shanksDiscLogAlgorithm| |unit?| |resultantReduitEuclidean|
- |rationalPoint?| |name| |skewSFunction| |trapezoidal| |rroot|
- |eigenMatrix| + |setMinPoints3D| |nextsubResultant2| |fracPart|
- |quadraticNorm| |bivariatePolynomials| |diagonals| |cAtanh| |body|
- |exptMod| |lowerCase| |reset| |wholeRagits| |roughBase?| -
- |allRootsOf| |viewSizeDefault| |ocf2ocdf| |parabolicCylindrical|
- |hitherPlane| |totalLex| |sh| |basisOfLeftNucleus| |binaryTree| |cExp|
- |firstDenom| |divideIfCan| / |rombergo| |removeZero| |constructorName|
- |generateIrredPoly| |equality| |sumOfDivisors| |sumSquares| |f02awf|
- |wreath| |rationalApproximation| |showArrayValues| |write|
- |outputArgs| |nextPartition| |mainValue| |setEpilogue!|
- |createNormalPrimitivePoly| |rightZero| |meshPar1Var| |qinterval|
- |components| |ratDenom| |red| |save| |perfectSquare?| |conjugate|
- |definingPolynomial| |e02bbf| |showClipRegion| |elRow2!|
- |algebraicDecompose| |e02gaf| |screenResolution3D| |lift|
- |mainMonomial| |insertTop!| |expintegrate| |selectPolynomials|
- |constantOpIfCan| |s18def| |objectOf| |removeSinSq| |mapGen|
- |ScanArabic| |complexEigenvalues| |reduce| |squareFreeLexTriangular|
- |cCos| |purelyAlgebraic?| |heap| |complexLimit| |flagFactor|
- |subscriptedVariables| |quadratic?| |constantToUnaryFunction|
- |leftMinimalPolynomial| |subNodeOf?| |completeEval|
- |toseInvertibleSet| |tableForDiscreteLogarithm| |imagk| |s18aef|
- |socf2socdf| |makeSin| |multMonom| |OMsupportsCD?| |stopTableInvSet!|
- |f02bbf| |integralBasis| |prolateSpheroidal| |completeHensel|
- |OMputString| |sinIfCan| |monicRightFactorIfCan| |lastSubResultant|
- |constant| |heapSort| |numberOfCycles| |discreteLog| LODO2FUN
- |chineseRemainder| |countRealRootsMultiple| |minimize|
- |identityMatrix| |center| |cTanh| |prepareDecompose|
- |balancedFactorisation| |halfExtendedResultant2| |squareFreePrim|
- |semiResultantEuclidean1| |leviCivitaSymbol| |makeSUP| |primes|
- |s21bbf| |OMputEndError| |adjoint|
- |removeRoughlyRedundantFactorsInPol| |mapDown!| |squareFreeFactors|
- |invertibleSet| |insert| |ddFact| |rename| |iisech| |primintegrate|
- |infix| |outputGeneral| |antisymmetricTensors| |functionIsOscillatory|
- |nil| |mainPrimitivePart| |OMconnInDevice| |showRegion| |setfirst!|
- |lazyGintegrate| |extract!| |t| |clearCache| |commonDenominator|
- |genericPosition| |rectangularMatrix| |btwFact| |f01bsf|
- |monicDecomposeIfCan| |mainContent| |inR?| |linkToFortran| |exprToXXP|
- |transcendent?| |rotate!| |radicalSolve| |copy!| |divideExponents|
- |sizeLess?| |reduceBasisAtInfinity| |shiftRoots| |eq|
- |showScalarValues| |setTex!| |biRank| |flexibleArray| |OMgetSymbol|
- |delta| |cotIfCan| |retract| |pointData| |approximate|
- |subQuasiComponent?| Y |c06fqf| |iter| |An| |OMlistCDs| |OMgetEndBind|
- |maxrow| |modularFactor| |e01bef| |roughEqualIdeals?| |mathieu22|
- |modifyPointData| |diagonal| |localIntegralBasis| |drawStyle| |latex|
- |weierstrass| |SturmHabichtCoefficients| |close| |clipParametric|
- |exprHasWeightCosWXorSinWX| |setprevious!| |GospersMethod| |eval|
- |setFieldInfo| |powern| |setVariableOrder| |nextSublist| |f04asf|
- |algebraicVariables| |cLog| |crushedSet| |cAcoth| |rootPoly|
- |nonLinearPart| |display| |ode1| |unit| |factorByRecursion| |e02aef|
- |returns| |leftFactor| |leadingIndex| |mapSolve| |deriv| |kind|
- |simpleBounds?| |nativeModuleExtension| |omError| |component|
- |cosIfCan| |retractIfCan| |minset| |clearDenominator| |limitPlus|
- |decreasePrecision| |exp| |op| |maxdeg| |enterInCache| |iiasech|
- |lookup| |lambda| |cAcsch| |leftExtendedGcd| |dim| |lazyPrem|
- |ListOfTerms| |besselK| |Frobenius| |eq?| |oddInfiniteProduct|
- |addiag| |bipolar| |d01asf| |Aleph| |mappingAst| |resetVariableOrder|
- |input| |initiallyReduce| |leftDiscriminant| |tab1|
- |ellipticCylindrical| |external?| |showSummary| |isobaric?|
- |OMgetEndBVar| |exists?| |factorFraction| |fortranCharacter| |library|
- |sparsityIF| |quadraticForm| |iiexp| |OMgetString| |fixedPoint|
- |normalize| |createGenericMatrix| |f01maf| |Vectorise| |f02wef|
- |showAttributes| |pastel| |swap| |e02zaf| |zeroOf| |mix|
- |multiplyExponents| |singRicDE| |resultantEuclidean| |properties|
- |OMgetEndError| |host| |stoseIntegralLastSubResultant| |headAst|
- |transform| |ptree| |LagrangeInterpolation| |alphanumeric|
- |OMlistSymbols| |translate| |solid?| |term| |getVariableOrder|
- |linear?| |set| |equiv| |removeSuperfluousQuasiComponents| |lp|
- |eigenvalues| |boundOfCauchy| |accuracyIF| |rk4qc| |generalSqFr| |map|
- |point| |diagonal?| |gethi| |nsqfree| |selectOptimizationRoutines|
- |atom?| |debug3D| |binaryTournament| |copies| |separate| |bit?|
- |solve| |getStream| |OMencodingSGML| |rightRegularRepresentation|
- |setFormula!| |e02agf| |approxNthRoot| |normal?| |complexNumericIfCan|
- |topFortranOutputStack| |structuralConstants| |iicosh| |sum| |bitCoef|
- |numberOfDivisors| |predicate| |update| |series| |weakBiRank|
- |numberOfHues| |second| |drawCurves| |prinb| |charpol| |rdregime|
- |xCoord| |randnum| |outputSpacing| |aspFilename| |s18adf| |third|
- |vark| |splitDenominator| |f2df| |prinpolINFO| |firstUncouplingMatrix|
- |convert| |goto| |e04jaf| |negative?| |iExquo| |ricDsolve|
- |setMinPoints| |e01daf| |f02adf| |leadingExponent| |OMgetFloat|
- |selectNonFiniteRoutines| |minimumDegree|
- |removeRoughlyRedundantFactorsInPols| |localAbs| |interpret| |s18aff|
- |semicolonSeparate| |min| |iiacot| |stiffnessAndStabilityOfODEIF|
- |integralMatrix| |bipolarCylindrical| |iiatanh| |evenlambert| |d01fcf|
- |revert| |arguments| |phiCoord| |bringDown| |d02raf| |triangSolve|
- |packageCall| |constantIfCan| |laguerreL| |getCode| |infiniteProduct|
- |leftPower| |position| |leadingIdeal| |cAcsc| |show| |factors| |queue|
- |frobenius| |printHeader| |equiv?| |forLoop| |d01ajf|
- |groebnerFactorize| |showAll?| |OMputEndAtp| |bumptab1| |backOldPos|
- |monomialIntegrate| |inrootof| |in?| |antisymmetric?| |void|
- |parameters| |infinityNorm| |trace| |alternating| UTS2UP
- |intcompBasis| |mathieu23| |adaptive3D?| |mainVariable?| |shiftLeft|
- |mainSquareFreePart| |totolex| |f04faf| |setErrorBound| |tube|
- |ratDsolve| |nthFlag| |asechIfCan| |baseRDE| |realRoots| |algebraic?|
- |expenseOfEvaluation| |physicalLength!| |ceiling| |mathieu11|
- |splitNodeOf!| |semiSubResultantGcdEuclidean2| |compBound| |leftMult|
- |swap!| |s17ajf| |leftCharacteristicPolynomial| |setScreenResolution|
- |clearTable!| |child?| |f07fef| |OMgetEndObject| |mkIntegral| |psolve|
- |superHeight| |internalIntegrate0| |coefficient| |minus!| |f02xef|
- |binarySearchTree| |expandTrigProducts| |atanIfCan| |monomRDE| GF2FG
- |mapBivariate| |curve| |s19adf| |octon| |nextIrreduciblePoly|
- |consnewpol| |surface| |interpolate| |replaceKthElement|
- |startPolynomial| |closedCurve?| |makeVariable| |physicalLength|
- |d02gaf| |ramifiedAtInfinity?| |internalSubQuasiComponent?| |modulus|
- |degreePartition| |notelem| |linGenPos| |elem?| |simpsono| |romberg|
- |extend| |expr| |imagI| |iCompose| |rur| |abelianGroup| |slash|
- |postfix| |rightUnits| |univariatePolynomial| |s17dhf| |OMgetError|
- |nodeOf?| |regularRepresentation| |showTheIFTable| |parts|
- |returnType!| |removeDuplicates!| |normalDenom| |npcoef|
- |complementaryBasis| |resultantnaif| |univariatePolynomials|
- |eigenvectors| |trailingCoefficient| |integralMatrixAtInfinity|
- |rewriteIdealWithHeadRemainder| |subspace| |mapMatrixIfCan| |compdegd|
- |branchIfCan| |ord| |solveLinear| |resetAttributeButtons| |light|
- |variable| |vspace| |getDatabase| |quartic| |subst|
- |complexEigenvectors| |ODESolve| |secIfCan| |kovacic| |merge!|
- |loadNativeModule| |iterators| |homogeneous?|
- |setLegalFortranSourceExtensions| |acoshIfCan| |iibinom| |elementary|
- |modifyPoint| |printCode| |upDateBranches| |rootSimp|
- |sylvesterMatrix| |commaSeparate| |palglimint| |identification|
- |viewDefaults| |screenResolution| |oddintegers| |dequeue| |chvar|
- |deepCopy| |error| |next| |e04fdf| |OMputBVar| |plusInfinity| |low|
- |uniform| |ode2| |bottom!| |logpart| |adaptive?| |assert|
- |knownInfBasis| |magnitude| |lieAdmissible?| |OMreadFile| F2FG
- |minusInfinity| |rightQuotient| |init| |odd?|
- |removeRoughlyRedundantFactorsInContents| |reverse| |s17dcf| |c06fuf|
- |OMsend| |binding| |degree| |select!| |monicLeftDivide| |insertMatch|
- |iiatan| |imagK| |rewriteSetWithReduction| |findBinding| |scan|
- |mathieu12| |basisOfLeftAnnihilator| |positive?| |datalist|
- |badValues| |iiacsch| |e02bef| |powmod| FG2F |discriminant|
- |listBranches| |endSubProgram| |ScanFloatIgnoreSpaces| |module|
- |concat!| |getSyntaxFormsFromFile| |iteratedInitials| |lSpaceBasis|
- |complexSolve| |rischDEsys| |determinant| |pointColorPalette|
- |PollardSmallFactor| |sup| |repeating| |traceMatrix| |reduceLODE|
- |linearlyDependentOverZ?| |type| |rightRemainder|
- |commutativeEquality| |e02adf| |f04qaf| |setPredicates|
- |beauzamyBound| |fortranCarriageReturn| |real?| |colorFunction|
- |myDegree| |hermite| |normFactors| |LazardQuotient2| |conditionP|
- |computeCycleEntry| |cAcosh| |rank| |f02aff| |imagj| |rightLcm|
- |fractRagits| |aLinear| |dimension| |segment| |initiallyReduced?|
- |findCycle| |integers| |extractIfCan| |setMaxPoints| |OMwrite|
- |lexGroebner| |lastSubResultantEuclidean| |varselect| |schema|
- |removeSinhSq| |generalizedContinuumHypothesisAssumed?| |leftNorm|
- |f02bjf| |noKaratsuba| |mathieu24| |pToHdmp| |monic?| |euler|
- |possiblyInfinite?| |eyeDistance| |OMputEndAttr| |OMunhandledSymbol|
- |epilogue| |iflist2Result| |pole?| |rationalIfCan| |clip| |fill!|
- |userOrdered?| |lfextendedint| |sub| |s17ahf| |deepestInitial|
- |groebner| |coshIfCan| |zero?| |dimensionsOf| |OMsupportsSymbol?|
- |algSplitSimple| |rischDE| |iFTable| |cons| |airyBi| |lazy?| |iisin|
- |tableau| |power!| |firstNumer| |dihedralGroup| |partialNumerators|
- |doubleComplex?| |lists| |collectUnder| |linearPart| |s14aaf|
- |euclideanGroebner| |nlde| |virtualDegree| |oddlambert| |aQuadratic|
- |createPrimitiveElement| |inverseLaplace| |sort| |factorGroebnerBasis|
- |unitVector| |leadingTerm| |radPoly| |internalLastSubResultant|
- |tanNa| |makeTerm| |lyndon?| |upperCase?| |representationType|
- |definingInequation| |stopMusserTrials| |unvectorise| |directSum|
- |mesh| |parametersOf| |primextintfrac| |viewDeltaXDefault|
- |arrayStack| |redpps| |generalLambert| |points| |palgint| |droot|
- |stoseInvertible?| |nextPrimitiveNormalPoly| |primlimitedint|
- |exprToGenUPS| |setOfMinN| |source| |univariate?| |primeFrobenius|
- |getOperator| |selectODEIVPRoutines| |numberOfImproperPartitions|
- |vedf2vef| |rational?| |float?| |besselJ| |iicot| |belong?|
- |precision| |denomRicDE| |partitions| |random| |rightGcd|
- |expandPower| |sechIfCan| |recoverAfterFail| |mr| |OMputApp|
- |viewWriteDefault| |e02ajf| |factorset| |froot| |remainder|
- |createNormalElement| |OMreadStr| |specialTrigs| |e02akf|
- |rightCharacteristicPolynomial| |null| |parseString| |f04maf|
- |OMmakeConn| |lflimitedint| |s13adf| |f01qdf| |s18dcf| |f02ajf| |case|
- |andOperands| |contractSolve| |prefixRagits| |algDsolve|
- |completeHermite| |bright| |symbolTable| |digamma| |parent|
- |uniform01| |Zero| |mirror| |symmetricPower| |KrullNumber| |sts2stst|
- |semiSubResultantGcdEuclidean1| |tanSum| |brillhartTrials|
- |kroneckerDelta| |checkForZero| |pseudoDivide| |rk4| |One|
- |complexZeros| |linearAssociatedExp| |universe|
- |branchPointAtInfinity?| |taylorRep| |pushFortranOutputStack|
- |ramified?| |swapColumns!| |ridHack1| |opeval| |changeMeasure|
- |nthCoef| |popFortranOutputStack| |stosePrepareSubResAlgo| |rspace|
- |varList| |inf| |s15adf| |OMgetEndApp| |internalSubPolSet?| |innerint|
- |curveColor| |gbasis| |e01sef| |makingStats?| |mindegTerm| |fmecg|
- |outputAsFortran| |lambert| |exprToUPS| |sizeMultiplication| |palgRDE|
- |explogs2trigs| |constantRight| |tRange| |readIfCan!| |d03edf|
- |leftDivide| |bezoutDiscriminant| |iprint| |categories| |parametric?|
- |coefficients| |rootRadius| |constantLeft| |compiledFunction|
- |currentCategoryFrame| |selectsecond| |nextColeman| |key|
- |var1StepsDefault| |changeBase| |elt| |generalizedEigenvectors|
- |explicitlyFinite?| |critB| |ScanRoman| |outputMeasure| |divideIfCan!|
- |fortranReal| |superscript| |pmintegrate| |getCurve| |palgint0|
- |numberOfComputedEntries| |zeroSquareMatrix| |prem| |filename|
- |clearTheFTable| |innerEigenvectors| |sequences| |exQuo|
- |integerIfCan| |trueEqual| |palgRDE0| GE |mainKernel|
- |genericRightMinimalPolynomial| |setPoly| |subresultantVector| |prime|
- |not?| |controlPanel| |digit| |useEisensteinCriterion|
- |insertionSort!| GT |any| |computeCycleLength| |operation| |quickSort|
- |computeBasis| |overbar| |redmat| |parse| |iiasinh| |groebner?|
- |ef2edf| |coefChoose| LE |viewThetaDefault| |cSech| |paren|
- |semiDiscriminantEuclidean| |closeComponent| |algintegrate|
- |primPartElseUnitCanonical| |zeroDimPrimary?| |lfextlimint| LT |label|
- |diff| |outputList| |possiblyNewVariety?| |twoFactor|
- |createNormalPoly| |probablyZeroDim?| |s21bcf| |variationOfParameters|
- |charthRoot| |signatureAst| |complex| |transcendentalDecompose|
- |numerators| |option?| |e02baf| |or?| |OMopenFile|
- |extendedSubResultantGcd| |reciprocalPolynomial| |ran| |curryRight|
- |basis| |getMeasure| |printStatement| |f02fjf|
- |semiDegreeSubResultantEuclidean| |makeFR| |normal01| |sincos|
- |digit?| |identity| |setProperties!| |fullDisplay| |goodnessOfFit|
- |birth| |lquo| |routines| |quasiMonic?| |returnTypeOf| |iifact|
- |primextendedint| |f07aef| |plus| |OMputEndObject|
- |numberOfPrimitivePoly| |vector| |firstSubsetGray| |drawComplex|
- |trunc| |fortranDoubleComplex| |keys| |var1Steps| |innerSolve1|
- |distFact| |perspective| |numberOfMonomials| |differentiate|
- |limitedint| |iiacos| |generic?| UP2UTS |doubleRank| |bivariate?|
- |lowerCase?| |credPol| |currentEnv| |cycleRagits| |lfintegrate|
- |measure| |quote| |coleman| |groebSolve| |normalizedDivide| |basicSet|
- |iiacsc| |pdf2df| |e01baf| |monomRDEsys| |newLine| |imports| |s20acf|
- |lazyPremWithDefault| |realEigenvalues| |times| |OMputEndBVar|
- |lowerCase!| |minIndex| |decimal| |c06eaf| |argscript| |search|
- |meshFun2Var| |index| |f01brf| |univariateSolve| |RittWuCompare|
- |invmultisect| |unravel| |fillPascalTriangle| |bandedHessian|
- |addPoint| |readable?| |shallowExpand| |setCondition!|
- |normalizeIfCan| |quotientByP| |isMult| |s14abf| |simplifyLog|
- |graphStates| |option| |call| |predicates| |symFunc| |squareFree|
- |basisOfNucleus| |numericalIntegration| |subscript| |iidprod| |arity|
- |iicsc| |stiffnessAndStabilityFactor| |appendPoint| |conjug|
- |stopTable!| |list| |monom| |makeop| |pair| |pascalTriangle| |back|
- |number?| |complex?| |complement| |pow| |car| |SturmHabichtSequence|
- |satisfy?| |rquo| |constDsolve| |basisOfCentroid| |prinshINFO|
- |coerceL| |singularitiesOf| |pushdown| |diophantineSystem| |cdr|
- |internalZeroSetSplit| |declare| |setEmpty!| |shallowCopy|
- |lfinfieldint| |testModulus| |stopTableGcd!| |arg1| |common|
- |anfactor| |nextPrime| |setDifference| |e02ddf| |close!|
- |solveLinearlyOverQ| |checkPrecision| |tab| |fractRadix|
- |HermiteIntegrate| |changeWeightLevel| |arg2| |function|
- |setIntersection| |setOrder| |nthFactor| |yCoord| |prevPrime|
- |weighted| |max| |cyclotomic| |outputFloating| |exponent| |untab|
- |cartesian| |addBadValue| |reify| |setUnion| |morphism| |ignore?|
- |identitySquareMatrix| |rightRank| |numberOfVariables| |cCsch|
- |rightTrim| |leaves| |conditions| |apply| |pseudoQuotient|
- |extractPoint| |listOfLists| |associative?| |numberOfFactors|
- |critMonD1| |colorDef| |bat1| |viewpoint| |leftTrim| |abs| |iiacosh|
- |iiGamma| |perfectSqrt| |clearTheIFTable| |OMclose|
- |linearAssociatedLog| |brillhartIrreducible?| |LiePoly| |e04ucf|
- |trapezoidalo| |principalIdeal| |size| |getButtonValue| |pureLex|
- |intermediateResultsIF| |conditionsForIdempotents| |e02dcf|
- |toseSquareFreePart| |reseed| |cAtan| |s19abf| |idealiser|
- |extractIndex| |lintgcd| |extendedEuclidean| |cRationalPower| |nodes|
- |log| |trace2PowMod| |explicitEntries?| |jacobian| |sylvesterSequence|
- |rules| |split!| |polarCoordinates| |expandLog| |internalIntegrate|
- |numFunEvals| |makeSketch| |polynomialZeros| |simpson| |first|
- |increasePrecision| |clipSurface| |listexp| |rangePascalTriangle|
- |messagePrint| |factorSquareFreeByRecursion| |inverseIntegralMatrix|
- |qfactor| |pattern| |rest| |extensionDegree| |var2Steps| |s14baf|
- |pushucoef| |normalizedAssociate| |rule| |Lazard|
- |stoseInternalLastSubResultant| |reorder| |key?| |substitute| |f02aef|
- |setLabelValue| |createMultiplicationTable| |setPrologue!|
- |numberOfOperations| |makeCos| |submod| |polyRDE| |removeDuplicates|
- |hasHi| |OMputSymbol| |reduceByQuasiMonic| |modTree| |OMputVariable|
- |certainlySubVariety?| |stripCommentsAndBlanks|
- |integralBasisAtInfinity| |zeroSetSplitIntoTriangularSystems| |e04naf|
- |torsionIfCan| |expenseOfEvaluationIF| |polygon| |bombieriNorm|
- |OMopenString| |insertRoot!| |exprex| |stoseInvertibleSetreg| |f04mcf|
- |/\\| |lcm| |elliptic| |changeVar| |relerror| |message|
- |constantCoefficientRicDE| |decompose| |d02kef| |rightScalarTimes!|
- |\\/| |OMgetApp| |presuper| |chainSubResultants| |squareMatrix|
- |resetNew| |addMatchRestricted| |selectFiniteRoutines| |id| |rowEch|
- |showAllElements| |RemainderList| |append| |principal?| |f2st|
- |errorKind| |toroidal| |trigs| |permanent| |exprHasLogarithmicWeights|
- |writable?| |gcd| |startTable!| |maxrank| |showTheSymbolTable|
- |palgLODE0| |s21baf| |table| |inverse| |f01ref| |hasoln| |false|
- |iiasec| |discriminantEuclidean| |infRittWu?| |se2rfi| |fixPredicate|
- |setProperty!| |new| |pomopo!| |removeSquaresIfCan| |isOp|
- |extractSplittingLeaf| |rotatey| |pdf2ef| |f01rcf| |setvalue!|
- |polygamma| |character?| |cup| |symmetricDifference| |curry| |stFuncN|
- |alphabetic?| |s17dgf| |mindeg| |printInfo| |setAttributeButtonStep|
- |test| |lowerPolynomial| |LiePolyIfCan| |bivariateSLPEBR|
- |subResultantGcd| |zero| |clearFortranOutputStack| |deepestTail|
- |comp| |shufflein| |invertIfCan| |#| |getMultiplicationMatrix|
- |distribute| |palglimint0| |infieldIntegrate| |quoted?| |inc| |entry?|
- |cyclicGroup| |putColorInfo| |setMaxPoints3D| |endOfFile?| |OMgetType|
- |createThreeSpace| |And| |generalizedEigenvector| |laplacian|
- |composite| |hessian| |factorOfDegree| |rootOfIrreduciblePoly|
- |OMgetBVar| |direction| |open?| |Or| |root?| |binaryFunction|
- |addPointLast| |lazyIntegrate| |twist| |e02bcf| |OMencodingUnknown|
- |rCoord| |symmetricTensors| |Not| |sqfree| |rootsOf| |imagJ| |remove|
- |stack| |polyPart| |factorials| |multisect| |removeZeroes|
- |changeName| |getBadValues| |bitLength| |mkcomm| |leftRemainder|
- |normalizeAtInfinity| |pdct| |prod| |zeroDimensional?|
- |quasiMonicPolynomials| |last| |resultantReduit| |weights|
- |shiftRight| |tanintegrate| ~= |partialFraction| |nthRootIfCan|
- |assoc| |left| |balancedBinaryTree| |UnVectorise| |zeroSetSplit|
- |e04dgf| |characteristicSet| |saturate| |f01mcf| |coerce| |csc2sin|
- |right| |composites| |cycleElt| |term?| |separant| |double?|
- |construct| RF2UTS |intPatternMatch| |pseudoRemainder| |slex|
- |setProperties| |reducedDiscriminant| |elRow1!| |bandedJacobian|
- |LyndonWordsList| |trivialIdeal?| |roughBasicSet| |lfunc|
- |cyclotomicDecomposition| |rational| |divisor| |s18acf|
- |symmetricSquare| |SFunction| |rightFactorIfCan| |ravel| |aromberg|
- |systemSizeIF| |vertConcat| |leftScalarTimes!| |d01bbf| |Lazard2|
- |reshape| |assign| |inRadical?| |cAsec| |testDim| |updateStatus!| **
- |read!| |integralAtInfinity?| |inverseColeman| |central?| |tubeRadius|
- |lllip| |square?| |dominantTerm| |outputForm| |rootKerSimp| |log2|
- |semiIndiceSubResultantEuclidean| |toScale| |useEisensteinCriterion?|
- |internalDecompose| |sign| |duplicates| |bfEntry|
- |unprotectedRemoveRedundantFactors| |rootBound| EQ |edf2efi|
- |useNagFunctions| |ffactor| |ptFunc| |mainForm| |bfKeys| |charClass|
- |e02dff| |subresultantSequence| |rightUnit| |pade| |d01gbf|
- |maxPoints| |d01gaf| |ranges| |rightRecip| |makeFloatFunction|
- |subNode?| |generic| |indices| |normalDeriv| |normalized?| |nthRoot|
- |squareTop| |root| |f04jgf| |printTypes| |c06ecf| |readLine!|
- |deleteProperty!| |updatD| |flatten| |e01bhf| |radix| |acosIfCan|
- |symbol| |sn| |matrix| |s20adf| |numericalOptimization| |externalList|
- |denominators| |trigs2explogs| |finiteBound| |headReduce|
- |OMgetVariable| |expression| |reopen!| |rightFactorCandidate|
- |countable?| |zoom| |generalizedContinuumHypothesisAssumed| |bits|
- |coerceImages| |rk4f| |chiSquare| |integer| |totalGroebner|
- |splitLinear| |tryFunctionalDecomposition| |gradient| |permutation|
- |s17acf| |groebnerIdeal| |reducedQPowers| |quasiAlgebraicSet|
- |relativeApprox| |complexExpand| |recip| |compound?| |showTheFTable|
- |enumerate| |isQuotient| |evaluate| |nextItem| |constant?| |signature|
- |integer?| |cTan| |one?| |hash| |axesColorDefault| |e04mbf| |typeList|
- |mergeFactors| |singleFactorBound| |compose|
- |noncommutativeJordanAlgebra?| |cn| |count| |cPower|
- |unrankImproperPartitions1| |extractClosed| |makeMulti| |power|
- |meshPar2Var| |createPrimitiveNormalPoly|
- |semiResultantReduitEuclidean| |exactQuotient!| |not| |systemCommand|
- |check| |genericLeftNorm| |gramschmidt| |fortranDouble| |midpoint|
- |f04axf| |cschIfCan| |round| |newSubProgram| |scale| |expPot|
- |vconcat| |cyclicEqual?| |fixedPointExquo| |mpsode| |bezoutMatrix|
- |dioSolve| |gcdPrimitive| |double| |generalizedInverse| |freeOf?|
- |minimalPolynomial| |computeInt| |complexElementary| |mkAnswer| |nor|
- |height| |quadratic| |makeViewport3D| |bumptab| |kmax| |normal|
- |characteristicPolynomial| |reduced?| |tubeRadiusDefault|
- |quasiRegular| |iisinh| |fprindINFO| |computePowers| |triangulate|
- |outerProduct| |fortranLiteralLine| |leader| |d01aqf| |associates?|
- |csubst| |cyclotomicFactorization| |rarrow| |rightMinimalPolynomial|
- |mapExponents| |e02ahf| |floor| |OMgetObject| |even?| |subset?|
- |rootPower| |df2mf| |restorePrecision| |algebraicSort| |coth2tanh|
- |initials| |directory| |dflist| |mapExpon| |medialSet|
- |partialQuotients| |sumOfKthPowerDivisors| |overlap| |doubleResultant|
- |optAttributes| |iisqrt3| |fractionFreeGauss!| |rightDivide| |point?|
- |leadingSupport| |monomialIntPoly| |iomode| |jacobiIdentity?| |cSin|
- |internalInfRittWu?| |highCommonTerms| |getProperty| |euclideanSize|
- |cCot| |repeating?| |palgextint| |nothing| |approxSqrt| |makeUnit|
- |const| |declare!| |LyndonCoordinates| |primeFactor| |column|
- |extractBottom!| |OMputFloat| |fortranLinkerArgs| |sort!| |laguerre|
- |cond| |high| |cyclePartition| |rightOne| |setScreenResolution3D|
- |cycle| |rename!| |basisOfMiddleNucleus| |coordinate| |norm| |brace|
- |karatsuba| |factorPolynomial| |symmetricRemainder| |c06gsf|
- |powerSum| |getlo| |replace| |integral?| |OMReadError?| |normalForm|
- |position!| |aQuartic| |f04adf| |leastMonomial| |linears|
- |stoseInvertibleSet| |f02abf| |box| |cyclicParents| |lineColorDefault|
- |sec2cos| |dot| |c05pbf| |difference| |basisOfRightNucleus|
- |createIrreduciblePoly| |lastSubResultantElseSplit| |rowEchLocal|
- |viewport2D| |stop| |cSec| |failed| |zag| |f04mbf| |wordInGenerators|
- |exprHasAlgebraicWeight| |argument| |graphImage| |randomLC|
- |mainDefiningPolynomial| |space| |value| |impliesOperands| |nthExpon|
- |coordinates| |tracePowMod| |rightRankPolynomial| |plus!| |sqfrFactor|
- |inHallBasis?| |iitanh| |mvar| |ldf2vmf| |associator|
- |purelyTranscendental?| |unexpand| |karatsubaDivide|
- |jordanAdmissible?| |coerceListOfPairs| |decomposeFunc| |deepExpand|
- |overset?| |stoseInvertibleSetsqfreg| |intChoose| |whatInfinity|
- |makeResult| |bernoulliB| |vectorise| |cyclic?| |monicDivide|
- |choosemon| |monicRightDivide| |f02aaf| |ParCond| |complexForm|
- |permutations| |airyAi| |sech2cosh| |lazyVariations| |exponential|
- |quotedOperators| |wrregime| |isTimes| |more?| |critT| |remove!| |or|
- |bounds| |categoryFrame| |getPickedPoints| |length|
- |removeRedundantFactors| |integral| |primitivePart| |hex|
- |initializeGroupForWordProblem| |exactQuotient| |c06fpf|
- |rootDirectory| |scripts| |isExpt| |laurentRep| |powers| |Hausdorff|
- |multiple?| |zeroDimPrime?| |var2StepsDefault| |s15aef|
- |halfExtendedSubResultantGcd2| |linearAssociatedOrder| |presub|
- |hMonic| |create3Space| |removeConstantTerm| |primintfldpoly| |maxint|
- |tubePoints| |cosh2sech| |e04ycf| |OMgetEndAtp| |bezoutResultant|
- |explicitlyEmpty?| |closed?| |integralRepresents|
- |rewriteSetByReducingWithParticularGenerators| |lazyResidueClass|
- |extractTop!| |generator| |getGoodPrime| |enqueue!|
- |doubleFloatFormat| |setnext!| |f07fdf| |dictionary| |cfirst|
- |diagonalProduct| |lprop| |scalarTypeOf| |makeGraphImage|
- |exponentialOrder| |OMgetInteger| |rotatex| |useSingleFactorBound?|
- |delay| |leftUnits| |leftLcm| |argumentListOf| |iicoth| |pol|
- |leadingBasisTerm| |shrinkable| |getExplanations| |safetyMargin|
- |mesh?| |reverse!| |asinhIfCan| |OMread| |d02gbf| |setlast!|
- |associatedSystem| |ParCondList| |basisOfCommutingElements|
- |sturmVariationsOf| |linearDependenceOverZ| |nthFractionalTerm|
- |radicalSimplify| |lieAlgebra?| |fibonacci| |scopes| |denominator|
- |less?| |cSinh| |BumInSepFFE| |processTemplate| |exp1| |horizConcat|
- |fi2df| |ideal| |setClipValue| |stoseInvertible?reg|
- |multiplyCoefficients| |d02bhf| |style| |mapUnivariateIfCan|
- |pushNewContour| |edf2fi| |nextSubsetGray| |problemPoints|
- |atrapezoidal| |sinh2csch| |radicalEigenvectors| |addMatch| |e02bdf|
- |solveInField| |outputAsTex| |cAsin| |makeprod| |bat| |nil| |infinite|
- |arbitraryExponent| |approximate| |complex| |shallowMutable|
- |canonical| |noetherian| |central| |partiallyOrderedSet|
- |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
- |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown|
- |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate|
- |shallowlyMutable| |commutative|) \ No newline at end of file
+ |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record|
+ |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |size?|
+ |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom|
+ |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank|
+ |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements|
+ |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus|
+ |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter|
+ |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid|
+ |radicalOfLeftTraceForm| |showTypeInOutput| |obj| |dom| |objectOf| |domainOf|
+ |any| |applyRules| |localUnquote| |setColumn!| |setRow!| |oneDimensionalArray|
+ |associatedSystem| |uncouplingMatrices| |associatedEquations| |arrayStack|
+ |setButtonValue| |setAttributeButtonStep| |resetAttributeButtons|
+ |getButtonValue| |decrease| |increase| |morphism| |balancedFactorisation|
+ |mapDown!| |mapUp!| |setleaves!| |balancedBinaryTree| |sylvesterMatrix|
+ |bezoutMatrix| |bezoutResultant| |bezoutDiscriminant| |bfEntry| |bfKeys|
+ |inspect| |extract!| |bag| |binding| |position!| |test| |setProperties|
+ |setProperty| |deleteProperty!| |has?| |input| |comparison| |equality| |nary?|
+ |unary?| |nullary?| |arity| |properties| |derivative| |constantOperator|
+ |constantOpIfCan| |integerBound| |setright!| |setleft!|
+ |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!|
+ |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree|
+ |bitior| |bitand| |byte| |subtractIfCan| |setPosition|
+ |generalizedContinuumHypothesisAssumed|
+ |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel|
+ |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |kind| |alphanumeric|
+ |alphabetic| |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?|
+ |upperCase?| |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord|
+ |mkIntegral| |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates|
+ |find| |e| |clipParametric| |clipWithRanges| |numberOfHues| |blue| |green|
+ |yellow| |red| |iifact| |iibinom| |iiperm| |iipow| |iidsum| |iidprod| |ipow|
+ |factorial| |multinomial| |permutation| |stirling1| |stirling2| |summation|
+ |factorials| |mkcomm| |polarCoordinates| |complex| |imaginary| |solid|
+ |solid?| |denominators| |numerators| |convergents| |approximants|
+ |reducedForm| |partialQuotients| |partialDenominators| |partialNumerators|
+ |reducedContinuedFraction| |push| |bindings| |cartesian| |polar| |cylindrical|
+ |spherical| |parabolic| |parabolicCylindrical| |paraboloidal|
+ |ellipticCylindrical| |prolateSpheroidal| |oblateSpheroidal| |bipolar|
+ |bipolarCylindrical| |toroidal| |conical| |modTree| |multiEuclideanTree|
+ |complexZeros| |divisorCascade| |graeffe| |pleskenSplit|
+ |reciprocalPolynomial| |rootRadius| |schwerpunkt| |setErrorBound|
+ |startPolynomial| |cycleElt| |computeCycleLength| |computeCycleEntry|
+ |arguments| |constructorName| |coerceP| |powerSum| |elementary| |alternating|
+ |cyclic| |dihedral| |cap| |cup| |wreath| |SFunction| |skewSFunction|
+ |cyclotomicDecomposition| |cyclotomicFactorization| |rangeIsFinite|
+ |functionIsContinuousAtEndPoints| |functionIsOscillatory| |changeName|
+ |exprHasWeightCosWXorSinWX| |exprHasAlgebraicWeight|
+ |exprHasLogarithmicWeights| |combineFeatureCompatibility| |sparsityIF|
+ |stiffnessAndStabilityFactor| |stiffnessAndStabilityOfODEIF| |systemSizeIF|
+ |expenseOfEvaluationIF| |accuracyIF| |intermediateResultsIF|
+ |subscriptedVariables| |central?| |elliptic?| |doubleResultant| |distdfact|
+ |separateDegrees| |trace2PowMod| |tracePowMod| |irreducible?| |decimal|
+ |innerint| |exteriorDifferential| |totalDifferential| |homogeneous?|
+ |leadingBasisTerm| |ignore?| |computeInt| |checkForZero| |doubleFloatFormat|
+ |logGamma| |hypergeometric0F1| |rotatez| |rotatey| |rotatex| |identity|
+ |dictionary| |dioSolve| |directProduct| |newLine| |copies| |say| |sayLength|
+ |setnext!| |setprevious!| |next| |previous| |datalist|
+ |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify| |separant| |initial|
+ |leader| |isobaric?| |weights| |differentialVariables| |extractBottom!|
+ |extractTop!| |insertBottom!| |insertTop!| |bottom!| |top!| |dequeue|
+ |makeObject| |recolor| |drawComplex| |drawComplexVectorField| |setRealSteps|
+ |setImagSteps| |setClipValue| |draw| |option?| |range| |colorFunction|
+ |curveColor| |pointColor| |clip| |clipBoolean| |style| |toScale|
+ |pointColorPalette| |curveColorPalette| |var1Steps| |var2Steps| |space|
+ |tubePoints| |tubeRadius| |option| |weight| |makeVariable| |finiteBound|
+ |sortConstraints| |sumOfSquares| |splitLinear| |simpleBounds?| |linearMatrix|
+ |linearPart| |nonLinearPart| |quadratic?| |changeNameToObjf| |optAttributes|
+ |Nul| |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| |iicos| |iitan|
+ |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc|
+ |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh|
+ |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs| |localReal?|
+ |rischNormalize| |realElementary| |validExponential| |rootNormalize| |tanQ|
+ |callForm?| |getIdentifier| |getConstant| |type| |select!| |delete!| |sn| |cn|
+ |dn| |sncndn| |qsetelt!| |categoryFrame| |currentEnv| |setProperties!|
+ |getProperties| |setProperty!| |getProperty| |scopes| |eigenvalues|
+ |eigenvector| |generalizedEigenvector| |generalizedEigenvectors|
+ |eigenvectors| |factorAndSplit| |rightOne| |leftOne| |rightZero| |leftZero|
+ |swap| |error| |minPoly| |freeOf?| |operators| |tower| |kernels| |mainKernel|
+ |distribute| |subst| |functionIsFracPolynomial?| |problemPoints| |zerosOf|
+ |singularitiesOf| |polynomialZeros| |f2df| |ef2edf| |ocf2ocdf| |socf2socdf|
+ |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation| |numberOfOperations| |edf2efi|
+ |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef| |vedf2vef| |df2st| |f2st|
+ |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure| |measure2Result|
+ |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef| |fi2df| |mat| |neglist|
+ |multiEuclidean| |extendedEuclidean| |euclideanSize| |sizeLess?|
+ |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction| |tubePlot|
+ |exponentialOrder| |completeEval| |lowerPolynomial| |raisePolynomial|
+ |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef| |binomThmExpt|
+ |pomopo!| |mapExponents| |linearAssociatedLog| |linearAssociatedOrder|
+ |linearAssociatedExp| |createNormalElement| |setLabelValue| |getCode|
+ |printCode| |code| |operation| |common| |printStatement| |save| |stop| |block|
+ |cond| |returns| |call| |comment| |continue| |goto| |repeatUntilLoop|
+ |whileLoop| |forLoop| |sin?| |zeroVector| |zeroSquareMatrix|
+ |identitySquareMatrix| |lSpaceBasis| |finiteBasis| |principal?| |divisor|
+ |useNagFunctions| |rationalPoints| |nonSingularModel| |algSplitSimple|
+ |hyperelliptic| |elliptic| |integralDerivationMatrix| |integralRepresents|
+ |integralCoordinates| |yCoordinates| |inverseIntegralMatrixAtInfinity|
+ |integralMatrixAtInfinity| |inverseIntegralMatrix| |integralMatrix|
+ |reduceBasisAtInfinity| |normalizeAtInfinity| |complementaryBasis| |integral?|
+ |integralAtInfinity?| |integralBasisAtInfinity| |ramified?|
+ |ramifiedAtInfinity?| |singular?| |singularAtInfinity?| |branchPoint?|
+ |branchPointAtInfinity?| |rationalPoint?| |absolutelyIrreducible?| |genus|
+ |getZechTable| |createZechTable| |createMultiplicationTable|
+ |createMultiplicationMatrix| |createLowComplexityTable|
+ |createLowComplexityNormalBasis| |representationType| |createPrimitiveElement|
+ |tableForDiscreteLogarithm| |factorsOfCyclicGroupSize| |sizeMultiplication|
+ |getMultiplicationMatrix| |getMultiplicationTable| |primitive?|
+ |numberOfIrreduciblePoly| |numberOfPrimitivePoly| |numberOfNormalPoly|
+ |createIrreduciblePoly| |createPrimitivePoly| |createNormalPoly|
+ |createNormalPrimitivePoly| |createPrimitiveNormalPoly| |nextIrreduciblePoly|
+ |nextPrimitivePoly| |nextNormalPoly| |nextNormalPrimitivePoly|
+ |nextPrimitiveNormalPoly| |leastAffineMultiple| |reducedQPowers|
+ |rootOfIrreduciblePoly| |write!| |read!| |iomode| |close!| |reopen!| |open|
+ |rightUnit| |leftUnit| |rightMinimalPolynomial| |leftMinimalPolynomial|
+ |associatorDependence| |lieAlgebra?| |jordanAlgebra?|
+ |noncommutativeJordanAlgebra?| |jordanAdmissible?| |lieAdmissible?|
+ |jacobiIdentity?| |powerAssociative?| |alternative?| |flexible?|
+ |rightAlternative?| |leftAlternative?| |antiAssociative?| |associative?|
+ |antiCommutative?| |commutative?| |rightCharacteristicPolynomial|
+ |leftCharacteristicPolynomial| |rightNorm| |leftNorm| |rightTrace| |leftTrace|
+ |someBasis| |sort!| |copyInto!| |sorted?| |LiePoly| |quickSort| |heapSort|
+ |shellSort| |outputSpacing| |outputGeneral| |outputFixed| |outputFloating|
+ |exp1| |log10| |log2| |rationalApproximation| |relerror| |complexSolve|
+ |complexRoots| |realRoots| |leadingTerm| |writable?| |readable?| |exists?|
+ |extension| |directory| |filename| |shallowExpand| |deepExpand|
+ |clearFortranOutputStack| |showFortranOutputStack| |popFortranOutputStack|
+ |pushFortranOutputStack| |topFortranOutputStack| |setFormula!| |formula|
+ |linkToFortran| |setLegalFortranSourceExtensions| |fracPart| |polyPart|
+ |fullPartialFraction| |primeFrobenius| |discreteLog| |decreasePrecision|
+ |increasePrecision| |bits| |unitNormalize| |unit| |flagFactor| |sqfrFactor|
+ |primeFactor| |nthFlag| |nthExponent| |irreducibleFactor| |nilFactor|
+ |regularRepresentation| |traceMatrix| |randomLC| |minimize| |module|
+ |rightRegularRepresentation| |leftRegularRepresentation| |rightTraceMatrix|
+ |leftTraceMatrix| |rightDiscriminant| |leftDiscriminant| |represents|
+ |mergeFactors| |isMult| |applyQuote| |ground| |ground?| |exprToXXP|
+ |exprToUPS| |exprToGenUPS| |localAbs| |universe| |complement| |cardinality|
+ |internalIntegrate0| |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown|
+ |newReduc| |logical?| |character?| |doubleComplex?| |complex?| |double?|
+ |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter|
+ |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger|
+ |fortranDouble| |fortranReal| |external?| |scalarTypeOf|
+ |fortranCarriageReturn| |fortranLiteral| |fortranLiteralLine|
+ |processTemplate| |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors|
+ |modularFactor| |useSingleFactorBound?| |useSingleFactorBound|
+ |useEisensteinCriterion?| |useEisensteinCriterion| |eisensteinIrreducible?|
+ |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact|
+ |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm|
+ |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree|
+ |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle|
+ |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares|
+ |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis|
+ |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB|
+ |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD|
+ |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO|
+ |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm|
+ |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm|
+ |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm|
+ |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial|
+ |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial|
+ |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow|
+ |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build|
+ |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray|
+ |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits|
+ |putColorInfo| |appendPoint| |component| |ranges| |pointLists|
+ |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc|
+ |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact|
+ |gcdcofactprim| |lintgcd| |hex| |parts| |count| |every?| |any?| |map!| |host|
+ |trueEqual| |factorList| |listConjugateBases| |matrixGcd| |divideIfCan!|
+ |leastPower| |idealiser| |idealiserMatrix| |moduleSum| |mapUnivariate|
+ |mapUnivariateIfCan| |mapMatrixIfCan| |mapBivariate| |fullDisplay|
+ |relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal|
+ |backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?|
+ |element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp|
+ |contract| |leadingSupport| |shrinkable| |physicalLength!| |physicalLength|
+ |flexibleArray| |elseBranch| |thenBranch| |generalizedInverse| |imports|
+ |sequence| |iterationVar| |readBytes!| |readByteIfCan!| |setFieldInfo| |pol|
+ |xn| |dAndcExp| |repSq| |expPot| |qPot| |lookup| |normal?| |basis|
+ |normalElement| |minimalPolynomial| |increment| |incrementBy| |charpol|
+ |solve1| |innerEigenvectors| |compile| |declare| |parseString| |unparse|
+ |flatten| |lambda| |binary| |packageCall| |interpret| |innerSolve1|
+ |innerSolve| |makeEq| |modularGcdPrimitive| |modularGcd| |reduction|
+ |signAround| |invmod| |powmod| |mulmod| |submod| |addmod| |mask| |dec| |inc|
+ |symmetricRemainder| |positiveRemainder| |bit?| |algint| |algintegrate|
+ |palgintegrate| |palginfieldint| |bitLength| |bitCoef| |bitTruth| |contains?|
+ |inf| |qinterval| |interval| |unit?| |associates?| |unitCanonical|
+ |unitNormal| |lfextendedint| |lflimitedint| |lfinfieldint| |lfintegrate|
+ |lfextlimint| |BasicMethod| |PollardSmallFactor| |showTheFTable|
+ |clearTheFTable| |fTable| |showAttributes| |entry| |palgint0| |palgextint0|
+ |palglimint0| |palgRDE0| |palgLODE0| |chineseRemainder| |divisors| |eulerPhi|
+ |fibonacci| |harmonic| |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors|
+ |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint|
+ |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate|
+ |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate|
+ |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax|
+ |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate|
+ |expintegrate| |tanintegrate| |primextendedint| |expextendedint|
+ |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac|
+ |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly|
+ |inverseLaplace| |iprint| |elem?| |notelem| |logpart| |ratpart| |mkAnswer|
+ |perfectNthPower?| |perfectNthRoot| |approxNthRoot| |perfectSquare?|
+ |perfectSqrt| |approxSqrt| |generateIrredPoly| |complexExpand|
+ |complexIntegrate| |dimensionOfIrreducibleRepresentation|
+ |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh|
+ |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc|
+ |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos|
+ |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose|
+ |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| GF2FG FG2F F2FG
+ |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?|
+ |indices| |index?| |entries| |categories| |search| |key?| |symbolIfCan|
+ |kernel| |argument| |constantKernel| |constantIfCan| |kovacic| |true|
+ |unknown| |false| |laplace| |trailingCoefficient| |normalizeIfCan| |polCase|
+ |distFact| |identification| |LyndonCoordinates| |LyndonBasis|
+ |zeroDimensional?| |fglmIfCan| |groebner| |lexTriangular|
+ |squareFreeLexTriangular| |belong?| |erf| |dilog| |li| |Ci| |Si| |Ei|
+ |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| |coord| |anticoord|
+ |intcompBasis| |choosemon| |transform| |pack!| |library| |complexLimit|
+ |limit| |linearlyDependent?| |linearDependence| |solveLinear| |reducedSystem|
+ |setDifference| |setIntersection| |setUnion| |append| |null| |nil|
+ |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality|
+ |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |makeMulti| |makeTerm|
+ |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1|
+ |symmetricProduct| |symmetricPower| |directSum|
+ |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve|
+ |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?|
+ |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?|
+ |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D|
+ |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp|
+ |mappingAst| |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag|
+ |curryRight| |curryLeft| |constantRight| |constantLeft| |twist|
+ |setsubMatrix!| |subMatrix| |swapColumns!| |swapRows!| |vertConcat|
+ |horizConcat| |squareTop| |elRow1!| |elRow2!| |elColumn2!|
+ |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| |minus!| |leftScalarTimes!|
+ |rightScalarTimes!| |times!| |power!| |nothing| |gradient| |divergence|
+ |laplacian| |hessian| |bandedHessian| |jacobian| |bandedJacobian| |duplicates|
+ |removeDuplicates!| |linears| |ddFact| |separateFactors| |exptMod|
+ |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |minimumExponent|
+ |maximumExponent| |precision| |mantissa| |rowEch| |rowEchLocal|
+ |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction|
+ |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction|
+ |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius|
+ |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index|
+ |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower|
+ |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom|
+ |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst|
+ |numberOfMonomials| |members| |multiset| |systemCommand| |mergeDifference|
+ |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose|
+ |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf|
+ |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf|
+ |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf|
+ |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf|
+ |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf|
+ |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff|
+ |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf|
+ |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf|
+ |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf|
+ |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf|
+ |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef|
+ |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff|
+ |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf|
+ |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf|
+ |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf|
+ |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf|
+ |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf|
+ |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf|
+ |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf|
+ |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf|
+ |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf|
+ |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator|
+ |complexEigenvalues| |complexEigenvectors| |shift| |normalizedAssociate|
+ |normalize| |outputArgs| |normInvertible?| |normFactors| |npcoef| |listexp|
+ |characteristicPolynomial| |realEigenvalues| |realEigenvectors|
+ |halfExtendedResultant2| |halfExtendedResultant1| |extendedResultant|
+ |subResultantsChain| |lazyPseudoQuotient| |lazyPseudoRemainder| |bernoulliB|
+ |eulerE| |numeric| |complexNumeric| |numericIfCan| |complexNumericIfCan|
+ |FormatArabic| |ScanArabic| |FormatRoman| |ScanRoman| |ScanFloatIgnoreSpaces|
+ |ScanFloatIgnoreSpacesIfCan| |numericalIntegration| |rk4| |rk4a| |rk4qc|
+ |rk4f| |aromberg| |asimpson| |atrapezoidal| |romberg| |simpson| |trapezoidal|
+ |rombergo| |simpsono| |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj|
+ |imagi| |octon| |ODESolve| |constDsolve| |showTheIFTable| |clearTheIFTable|
+ |keys| |iFTable| |showIntensityFunctions| |expint| |diff| |algDsolve|
+ |denomLODE| |indicialEquations| |indicialEquation| |denomRicDE|
+ |leadingCoefficientRicDE| |constantCoefficientRicDE| |changeVar| |ratDsolve|
+ |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve|
+ |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters|
+ |factors| |nthFactor| |nthExpon| |overlap| |hcrf| |hclf| |lexico| |OMmakeConn|
+ |OMcloseConn| |OMconnInDevice| |OMconnOutDevice| |OMconnectTCP| |OMbindTCP|
+ |OMopenFile| |OMopenString| |OMclose| |OMsetEncoding| |OMputApp| |OMputAtp|
+ |OMputAttr| |OMputBind| |OMputBVar| |OMputError| |OMputObject| |OMputEndApp|
+ |OMputEndAtp| |OMputEndAttr| |OMputEndBind| |OMputEndBVar| |OMputEndError|
+ |OMputEndObject| |OMputInteger| |OMputFloat| |OMputVariable| |OMputString|
+ |OMputSymbol| |OMgetApp| |OMgetAtp| |OMgetAttr| |OMgetBind| |OMgetBVar|
+ |OMgetError| |OMgetObject| |OMgetEndApp| |OMgetEndAtp| |OMgetEndAttr|
+ |OMgetEndBind| |OMgetEndBVar| |OMgetEndError| |OMgetEndObject| |OMgetInteger|
+ |OMgetFloat| |OMgetVariable| |OMgetString| |OMgetSymbol| |OMgetType|
+ |OMencodingBinary| |OMencodingSGML| |OMencodingXML| |OMencodingUnknown|
+ |omError| |errorInfo| |errorKind| |OMReadError?| |OMUnknownSymbol?|
+ |OMUnknownCD?| |OMParseError?| |OMwrite| |po| |op| |OMread| |OMreadFile|
+ |OMreadStr| |OMlistCDs| |OMlistSymbols| |OMsupportsCD?| |OMsupportsSymbol?|
+ |OMunhandledSymbol| |OMreceive| |OMsend| |OMserve| |infinity| |makeop|
+ |opeval| |evaluateInverse| |evaluate| |conjug| |adjoint| |getDatabase|
+ |numericalOptimization| |optimize| |goodnessOfFit| |whatInfinity| |infinite?|
+ |finite?| |minusInfinity| |plusInfinity| |pureLex| |totalLex| |reverseLex|
+ |leftLcm| |rightExtendedGcd| |rightGcd| |rightExactQuotient| |rightRemainder|
+ |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd| |leftExactQuotient|
+ |leftRemainder| |leftQuotient| |times| |apply| |monicLeftDivide|
+ |monicRightDivide| |leftDivide| |rightDivide| |hermiteH| |laguerreL|
+ |legendreP| |outputList| |writeBytes!| |writeByteIfCan!| |quo| |rem| |div| >=
+ > ~= |blankSeparate| |semicolonSeparate| |commaSeparate| |pile| |paren|
+ |bracket| |prod| |overlabel| |overbar| |prime| |quote| |supersub| |presuper|
+ |presub| |super| |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label|
+ |infix?| |postfix| |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace|
+ |hspace| |superHeight| |subHeight| |height| |width| |messagePrint| |message|
+ |padecf| |pade| |root| |quotientByP| |moduloP| |modulus| |digits|
+ |continuedFraction| |pair| |light| |pastel| |bright| |dim| |dark|
+ |getSyntaxFormsFromFile| |surface| |coordinate| |partitions| |conjugates|
+ |shuffle| |shufflein| |sequences| |permutations| |lists| |atoms| |makeResult|
+ |is?| |Is| |addMatchRestricted| |insertMatch| |addMatch| |getMatch| |failed|
+ |failed?| |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?|
+ |topPredicate| |setTopPredicate| |patternVariable| |withPredicates|
+ |setPredicates| |predicates| |hasPredicate?| |optional?| |multiple?|
+ |generic?| |quoted?| |inR?| |isList| |isQuotient| |isOp| |Zero| |satisfy?|
+ |addBadValue| |badValues| |retractable?| |ListOfTerms| |One| |PDESolve|
+ |leftFactor| |rightFactorCandidate| |measure| D |ptree| |coerceImages|
+ |fixedPoints| |odd?| |even?| |numberOfCycles| |cyclePartition|
+ |coerceListOfPairs| |coercePreimagesImages| |listRepresentation| |permanent|
+ |cycles| |cycle| |initializeGroupForWordProblem| <= < |movedPoints|
+ |wordInGenerators| |wordInStrongGenerators| |orbits| |orbit|
+ |permutationGroup| |wordsForStrongGenerators| |strongGenerators| |base|
+ |generators| |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion|
+ |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit|
+ |charthRoot| |conditionP| |solveLinearPolynomialEquation|
+ |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial|
+ |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix|
+ |doubleDisc| |polyred| |padicFraction| |padicallyExpand|
+ |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom|
+ |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup|
+ |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11|
+ |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup|
+ |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember|
+ |principalIdeal| |LagrangeInterpolation| |psolve| |wrregime| |rdregime|
+ |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList| |redpps| |B1solve|
+ |factorset| |maxrank| |minrank| |minset| |nextSublist| |overset?| |ParCond|
+ |redmat| |regime| |sqfree| |inconsistent?| |debug| |numFunEvals| |setAdaptive|
+ |adaptive?| |setScreenResolution| |screenResolution| |setMaxPoints|
+ |maxPoints| |setMinPoints| |minPoints| |parametric?| |plotPolar| |debug3D|
+ |numFunEvals3D| |setAdaptive3D| |adaptive3D?| |setScreenResolution3D|
+ |screenResolution3D| |setMaxPoints3D| |maxPoints3D| |setMinPoints3D|
+ |minPoints3D| |tValues| |tRange| |plot| |pointPlot| |calcRanges| |assert|
+ |optional| |multiple| |fixPredicate| |patternMatch| |patternMatchTimes|
+ |bernoulli| |chebyshevT| |chebyshevU| |cyclotomic| |euler| |fixedDivisor|
+ |laguerre| |legendre| |dmpToHdmp| |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP|
+ |pToDmp| |sylvesterSequence| |sturmSequence| |boundOfCauchy|
+ |sturmVariationsOf| |lazyVariations| |content| |primitiveMonomials|
+ |totalDegree| |minimumDegree| |monomials| |isPlus| |isTimes| |isExpt|
+ |isPower| |rroot| |qroot| |froot| |nthr| |port| |firstUncouplingMatrix|
+ |integral| |primitiveElement| |nextPrime| |prevPrime| |primes| |print|
+ |selectsecond| |selectfirst| |makeprod| |property| |equivOperands| |equiv?|
+ |impliesOperands| |implies?| |orOperands| |or?| |andOperands| |and?|
+ |notOperand| |not?| |variable?| |term| |term?| |equiv| |implies| |or| |and|
+ |merge!| |resultantEuclidean| |semiResultantEuclidean2|
+ |semiResultantEuclidean1| |indiceSubResultant| |indiceSubResultantEuclidean|
+ |semiIndiceSubResultantEuclidean| |degreeSubResultant|
+ |degreeSubResultantEuclidean| |semiDegreeSubResultantEuclidean|
+ |lastSubResultantEuclidean| |semiLastSubResultantEuclidean|
+ |subResultantGcdEuclidean| |semiSubResultantGcdEuclidean2|
+ |semiSubResultantGcdEuclidean1| |discriminantEuclidean|
+ |semiDiscriminantEuclidean| |chainSubResultants| |schema| |resultantReduit|
+ |resultantReduitEuclidean| |semiResultantReduitEuclidean| |divide| |Lazard|
+ |Lazard2| |nextsousResultant2| |resultantnaif| |resultantEuclideannaif|
+ |semiResultantEuclideannaif| |pdct| |powers| |partition| |complete| |pole?|
+ |monomial| |leadingMonomial| |zRange| |yRange| |xRange| |listBranches|
+ |triangular?| |rewriteIdealWithRemainder| |rewriteIdealWithHeadRemainder|
+ |remainder| |headRemainder| |roughUnitIdeal?| |roughEqualIdeals?|
+ |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort| |collectUpper| |collect|
+ |collectUnder| |mainVariable?| |mainVariables| |removeSquaresIfCan|
+ |unprotectedRemoveRedundantFactors| |removeRedundantFactors|
+ |certainlySubVariety?| |possiblyNewVariety?| |probablyZeroDim?|
+ |selectPolynomials| |selectOrPolynomials| |selectAndPolynomials|
+ |quasiMonicPolynomials| |univariate?| |univariatePolynomials| |linear?|
+ |linearPolynomials| |bivariate?| |bivariatePolynomials|
+ |removeRoughlyRedundantFactorsInPols| |removeRoughlyRedundantFactorsInPol|
+ |interReduce| |roughBasicSet| |crushedSet|
+ |rewriteSetByReducingWithParticularGenerators|
+ |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors|
+ |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents|
+ |removeRedundantFactorsInContents| |removeRedundantFactorsInPols|
+ |irreducibleFactors| |lazyIrreducibleFactors|
+ |removeIrreducibleRedundantFactors| |normalForm| |changeBase|
+ |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord|
+ |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan|
+ |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan|
+ |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan|
+ |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan|
+ |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup|
+ |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations|
+ |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator|
+ |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!|
+ |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue|
+ |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits|
+ |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?|
+ |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance|
+ |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial|
+ |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE|
+ |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |operator| |midpoint|
+ |midpoints| |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| =
+ |setref| |deref| |ref| |radicalEigenvectors| |radicalEigenvector|
+ |radicalEigenvalues| |eigenMatrix| |normalise| |gramschmidt|
+ |orthonormalBasis| |antisymmetricTensors| |createGenericMatrix|
+ |symmetricTensors| |tensorProduct| |permutationRepresentation|
+ |completeEchelonBasis| |createRandomElement| |cyclicSubmodule|
+ |standardBasisOfCyclicSubmodule| |areEquivalent?| |isAbsolutelyIrreducible?|
+ |meatAxe| |scanOneDimSubspaces| |double| |expt| |lift| |showArrayValues|
+ |showScalarValues| |solveRetract| |variables| |mainVariable| |univariate|
+ |multivariate| |uniform01| |normal01| |exponential1| |chiSquare1| |normal|
+ |exponential| |chiSquare| F |t| |factorFraction| |uniform| |binomial|
+ |poisson| |geometric| |ridHack1| |interpolate| |nullSpace| |nullity| |rank|
+ |rowEchelon| |column| |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex|
+ |maxRowIndex| |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?|
+ |square?| |matrix| |rectangularMatrix| |characteristic| |round| |fractionPart|
+ |wholePart| |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size|
+ |right| |left| |roman| |recoverAfterFail| |showTheRoutinesTable|
+ |deleteRoutine!| |getExplanations| |getMeasure| |changeMeasure|
+ |changeThreshhold| |selectMultiDimensionalRoutines| |selectNonFiniteRoutines|
+ |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines|
+ |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines|
+ |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent|
+ |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient|
+ |subResultantChain| |halfExtendedSubResultantGcd2|
+ |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!|
+ |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical|
+ |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide|
+ |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?|
+ |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial|
+ |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial|
+ |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |iterators|
+ |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?|
+ |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit|
+ |invertibleSet| |invertible?| |invertibleElseSplit?|
+ |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?|
+ |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo|
+ |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant|
+ |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |expression|
+ |quotedOperators| |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create|
+ |clearCache| |cache| |enterInCache| |currentCategoryFrame| |currentScope|
+ |pushNewContour| |findBinding| |contours| |structuralConstants| |coordinates|
+ |bounds| |equation| |incr| |high| |low| |hi| |lo| BY |body| |union| |subset?|
+ |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |latex|
+ |hash| |delta| |member?| |enumerate| |setOfMinN| |elements|
+ |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer|
+ |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?|
+ |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!| |supDimElseRittWu?|
+ |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?|
+ |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?|
+ |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?|
+ |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!|
+ |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!|
+ |stosePrepareSubResAlgo| |stoseInternalLastSubResultant|
+ |stoseIntegralLastSubResultant| |stoseLastSubResultant|
+ |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg|
+ |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet|
+ |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus|
+ |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition|
+ |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0|
+ |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence|
+ |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots|
+ |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature|
+ |signatureAst| |Or| |And| |Not| |xor| |not| |min| |max| ~ |/\\| |\\/| |depth|
+ |top| |pop!| |push!| |minordet| |determinant| |diagonalProduct| |trace|
+ |diagonal| |diagonalMatrix| |scalarMatrix| |hermite| |completeHermite| |smith|
+ |completeSmith| |diophantineSystem| |csubst| |particularSolution| |mapSolve|
+ |linear| |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic|
+ |aQuartic| |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc|
+ |unvectorise| |bubbleSort!| |insertionSort!| |check| |objects| |lprop|
+ |llprop| |lllp| |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon|
+ |closedCurve?| |closedCurve| |curve?| |curve| |point?| |enterPointData|
+ |composites| |components| |numberOfComposites| |numberOfComponents|
+ |create3Space| |parse| |outputAsFortran| |outputAsScript| |outputAsTex| |abs|
+ |Beta| |digamma| |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK|
+ |airyAi| |airyBi| |subNode?| |infLex?| |setEmpty!| |setStatus!|
+ |setCondition!| |setValue!| |copy| |status| |value| |empty?| |splitNodeOf!|
+ |remove!| |remove| |subNodeOf?| |nodeOf?| |result| |conditions|
+ |updateStatus!| |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim|
+ |leftTrim| |trim| |split| |position| |replace| |match?| |match| |substring?|
+ |suffix?| |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase|
+ |KrullNumber| |numberOfVariables| |algebraicDecompose|
+ |transcendentalDecompose| |internalDecompose| |decompose| |upDateBranches|
+ |printInfo| |preprocess| |internalZeroSetSplit| |internalAugment| |stack|
+ |possiblyInfinite?| |explicitlyFinite?| |nextItem| |init| |infiniteProduct|
+ |evenInfiniteProduct| |oddInfiniteProduct| |generalInfiniteProduct|
+ |filterUntil| |filterWhile| |generate| |showAll?| |showAllElements| |output|
+ |cons| |delay| |findCycle| |repeating?| |repeating| |exquo| |recip| |integers|
+ |oddintegers| |int| |mapmult| |deriv| |gderiv| |compose| |addiag|
+ |lazyIntegrate| |nlde| |powern| |mapdiv| |lazyGintegrate| |power| |sincos|
+ |sinhcosh| |asin| |acos| |atan| |acot| |asec| |acsc| |sinh| |cosh| |tanh|
+ |coth| |sech| |csch| |asinh| |acosh| |atanh| |acoth| |asech| |acsch|
+ |subresultantVector| |primitivePart| |pointData| |parent| |level|
+ |extractProperty| |extractClosed| |extractIndex| |extractPoint| |traverse|
+ |defineProperty| |closeComponent| |modifyPoint| |addPointLast| |addPoint2|
+ |addPoint| |merge| |deepCopy| |shallowCopy| |numberOfChildren| |children|
+ |child| |birth| |internal?| |root?| |leaf?| |rhs| |lhs| |construct|
+ |predicate| |sum| |outputForm| NOT AND EQ OR GE LE GT LT |sample| |list|
+ |string| |argscript| |superscript| |subscript| |script| |scripts| |scripted?|
+ |name| |resetNew| |symFunc| |symbolTableOf| |argumentListOf| |returnTypeOf|
+ |printHeader| |returnType!| |argumentList!| |endSubProgram|
+ |currentSubProgram| |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable|
+ |symbolTable| |printTypes| |newTypeLists| |typeLists| |externalList|
+ |typeList| |parametersOf| |fortranTypeOf| |declare!| |empty| |case|
+ |compound?| |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce|
+ |solve| |triangularSystems| |rootDirectory| |hostPlatform|
+ |nativeModuleExtension| |loadNativeModule| |bumprow| |bumptab| |bumptab1|
+ |untab| |bat1| |bat| |tab1| |tab| |lex| |slex| |inverse| |maxrow| |mr|
+ |tableau| |listOfLists| |tanSum| |tanAn| |tanNa| |table| |initTable!|
+ |printInfo!| |startStats!| |printStats!| |clearTable!| |usingTable?|
+ |printingInfo?| |makingStats?| |extractIfCan| |insert!| |interpretString|
+ |stripCommentsAndBlanks| |setPrologue!| |setTex!| |setEpilogue!| |prologue|
+ |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!|
+ |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi|
+ |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?|
+ |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary|
+ |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv|
+ |LowTriBddDenomInv| |simplify| |htrigs| |simplifyExp| |simplifyLog|
+ |expandPower| |expandLog| |cos2sec| |cosh2sech| |cot2trig| |coth2trigh|
+ |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| |sinh2csch| |tan2trig|
+ |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| |coth2tanh| |removeCosSq|
+ |removeSinSq| |removeCoshSq| |removeSinhSq| |expandTrigProducts| |fintegrate|
+ |coefficient| |coHeight| |extendIfCan| |algebraicVariables|
+ |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| |reduceByQuasiMonic|
+ |collectQuasiMonic| |removeZero| |initiallyReduce| |headReduce|
+ |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| |initiallyReduced?|
+ |headReduced?| |stronglyReduced?| |reduced?| |normalized?| |quasiComponent|
+ |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| |closed?| |open?|
+ |setClosed| |tube| |point| |unitVector| |cosSinInfo| |loopPoints| |select|
+ |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| |getOrder| |less?|
+ |userOrdered?| |largest| |more?| |setVariableOrder| |getVariableOrder|
+ |resetVariableOrder| |prime?| |rationalFunction| |taylorIfCan| |taylor|
+ |removeZeroes| |taylorRep| |factor| |factorSquareFree| |henselFact| |hasHi|
+ |segment| SEGMENT |fmecg| |commonDenominator| |clearDenominator|
+ |splitDenominator| |monicRightFactorIfCan| |rightFactorIfCan|
+ |leftFactorIfCan| |monicDecomposeIfCan| |monicCompleteDecompose| |divideIfCan|
+ |noKaratsuba| |karatsubaOnce| |karatsuba| |separate| |pseudoDivide|
+ |pseudoQuotient| |composite| |subResultantGcd| |resultant| |discriminant|
+ |pseudoRemainder| |shiftLeft| |shiftRight| |karatsubaDivide| |monicDivide|
+ |divideExponents| |unmakeSUP| |makeSUP| |vectorise| |eval| |extend|
+ |approximate| |truncate| |order| |center| |terms| |squareFreePart|
+ |BumInSepFFE| |multiplyExponents| |laurentIfCan| |laurent| |laurentRep|
+ |rationalPower| |puiseux| |dominantTerm| |limitPlus| |split!| |setlast!|
+ |setrest!| |setelt| |setfirst!| |cycleSplit!| |concat!| |cycleTail|
+ |cycleLength| |cycleEntry| |third| |second| |tail| |last| |rest| |elt| |first|
+ |concat| |invmultisect| |multisect| |revert| |generalLambert| |evenlambert|
+ |oddlambert| |lambert| |lagrange| |differentiate| |univariatePolynomial|
+ |integrate| ** |polynomial| |multiplyCoefficients| |quoByVar| |coefficients|
+ |series| |stFunc1| |stFunc2| |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode|
+ |mpsode| UP2UTS UTS2UP LODO2FUN RF2UTS |variable| |magnitude| |length| |cross|
+ |outerProduct| |dot| - |zero| + |vector| |scan| |reduce| |graphCurves|
+ |drawCurves| |update| |show| |scale| |connect| |region| |points| |units|
+ |getGraph| |putGraph| |graphs| |graphStates| |graphState| |makeViewport2D|
+ |viewport2D| |getPickedPoints| |key| |close| |write| |colorDef| |reset|
+ |intensity| |lighting| |clipSurface| |showClipRegion| |showRegion|
+ |hitherPlane| |eyeDistance| |perspective| |translate| |zoom| |rotate|
+ |drawStyle| |outlineRender| |diagonals| |axes| |controlPanel| |viewpoint|
+ |dimensions| |title| |resize| |move| |options| |modifyPointData| |subspace|
+ |makeViewport3D| |viewport3D| |viewDeltaYDefault| |viewDeltaXDefault|
+ |viewZoomDefault| |viewPhiDefault| |viewThetaDefault| |pointColorDefault|
+ |lineColorDefault| |axesColorDefault| |unitsColorDefault| |pointSizeDefault|
+ |viewPosDefault| |viewSizeDefault| |viewDefaults| |viewWriteDefault|
+ |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault| |tubePointsDefault|
+ |tubeRadiusDefault| |void| |dimension| |crest| |cfirst| |sts2stst| |clikeUniv|
+ |weierstrass| |qqq| |integralBasis| |localIntegralBasis| |qualifier|
+ |mainExpression| |condition| |changeWeightLevel| |characteristicSerie|
+ |characteristicSet| |medialSet| |Hausdorff| |Frobenius| |transcendenceDegree|
+ |extensionDegree| |inGroundField?| |transcendent?| |algebraic?| |varList| |sh|
+ |mirror| |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product|
+ |LiePolyIfCan| |trunc| |degree| / |quasiRegular| |quasiRegular?| |constant|
+ |constant?| |coef| |mindeg| |maxdeg| |#| |coerce| |map| |reductum| *
+ |RemainderList| |unexpand| |expand| Y |triangSolve| |univariateSolve|
+ |realSolve| |positiveSolve| |squareFree| |convert| |linearlyDependentOverZ?|
+ |linearDependenceOverZ| |solveLinearlyOverQ| |nil| |infinite|
+ |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical|
+ |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision|
+ |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
+ |additiveValuation| |unitsKnown| |canonicalUnitNormal|
+ |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 9670e499..e844e742 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5152 +1,5152 @@
-(3173945 . 3431185350)
-((-1993 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-4106 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-2253 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-1192 (-549)) |#2|) 34)) (-4273 (($ $) 59)) (-2558 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2882 (((-549) (-1 (-112) |#2|) $) 22) (((-549) |#2| $) NIL) (((-549) |#2| $ (-549)) 73)) (-2990 (((-621 |#2|) $) 13)) (-1586 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-1865 (($ (-1 |#2| |#2|) $) 29)) (-2796 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2614 (($ |#2| $ (-549)) NIL) (($ $ $ (-549)) 50)) (-1917 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2470 (((-112) (-1 (-112) |#2|) $) 21)) (-3340 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) NIL) (($ $ (-1192 (-549))) 49)) (-2166 (($ $ (-549)) 56) (($ $ (-1192 (-549))) 55)) (-3997 (((-747) (-1 (-112) |#2|) $) 26) (((-747) |#2| $) NIL)) (-1665 (($ $ $ (-549)) 52)) (-2281 (($ $) 51)) (-3853 (($ (-621 |#2|)) 53)) (-1951 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-621 $)) 62)) (-3845 (((-834) $) 69)) (-2150 (((-112) (-1 (-112) |#2|) $) 20)) (-2388 (((-112) $ $) 72)) (-2411 (((-112) $ $) 75)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -2388 ((-112) |#1| |#1|)) (-15 -3845 ((-834) |#1|)) (-15 -2411 ((-112) |#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4273 (|#1| |#1|)) (-15 -1665 (|#1| |#1| |#1| (-549))) (-15 -1993 ((-112) |#1|)) (-15 -1586 (|#1| |#1| |#1|)) (-15 -2882 ((-549) |#2| |#1| (-549))) (-15 -2882 ((-549) |#2| |#1|)) (-15 -2882 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -1993 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1586 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2253 (|#2| |#1| (-1192 (-549)) |#2|)) (-15 -2614 (|#1| |#1| |#1| (-549))) (-15 -2614 (|#1| |#2| |#1| (-549))) (-15 -2166 (|#1| |#1| (-1192 (-549)))) (-15 -2166 (|#1| |#1| (-549))) (-15 -3340 (|#1| |#1| (-1192 (-549)))) (-15 -2796 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1951 (|#1| (-621 |#1|))) (-15 -1951 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -3853 (|#1| (-621 |#2|))) (-15 -1917 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3340 (|#2| |#1| (-549))) (-15 -3340 (|#2| |#1| (-549) |#2|)) (-15 -2253 (|#2| |#1| (-549) |#2|)) (-15 -3997 ((-747) |#2| |#1|)) (-15 -2990 ((-621 |#2|) |#1|)) (-15 -3997 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2470 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2150 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1865 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2281 (|#1| |#1|))) (-19 |#2|) (-1179)) (T -18))
+(3163817 . 3431436972)
+((-1843 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-1841 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4130 ((|#2| $ (-535) |#2|) NIL) ((|#2| $ (-1191 (-535)) |#2|) 34)) (-2368 (($ $) 59)) (-4185 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3761 (((-535) (-1 (-112) |#2|) $) 22) (((-535) |#2| $) NIL) (((-535) |#2| $ (-535)) 73)) (-2063 (((-618 |#2|) $) 13)) (-3855 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2067 (($ (-1 |#2| |#2|) $) 29)) (-4301 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2373 (($ |#2| $ (-535)) NIL) (($ $ $ (-535)) 50)) (-1395 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2065 (((-112) (-1 (-112) |#2|) $) 21)) (-4142 ((|#2| $ (-535) |#2|) NIL) ((|#2| $ (-535)) NIL) (($ $ (-1191 (-535))) 49)) (-2374 (($ $ (-535)) 56) (($ $ (-1191 (-535))) 55)) (-2064 (((-747) (-1 (-112) |#2|) $) 26) (((-747) |#2| $) NIL)) (-1842 (($ $ $ (-535)) 52)) (-3742 (($ $) 51)) (-3867 (($ (-618 |#2|)) 53)) (-4144 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-618 $)) 62)) (-4300 (((-835) $) 69)) (-2066 (((-112) (-1 (-112) |#2|) $) 20)) (-3375 (((-112) $ $) 72)) (-3006 (((-112) $ $) 75)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -3375 ((-112) |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -1842 (|#1| |#1| |#1| (-535))) (-15 -1843 ((-112) |#1|)) (-15 -3855 (|#1| |#1| |#1|)) (-15 -3761 ((-535) |#2| |#1| (-535))) (-15 -3761 ((-535) |#2| |#1|)) (-15 -3761 ((-535) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3855 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4130 (|#2| |#1| (-1191 (-535)) |#2|)) (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -2374 (|#1| |#1| (-1191 (-535)))) (-15 -2374 (|#1| |#1| (-535))) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -1395 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4142 (|#2| |#1| (-535))) (-15 -4142 (|#2| |#1| (-535) |#2|)) (-15 -4130 (|#2| |#1| (-535) |#2|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2063 ((-618 |#2|) |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1|))) (-19 |#2|) (-1178)) (T -18))
NIL
-(-10 -8 (-15 -2388 ((-112) |#1| |#1|)) (-15 -3845 ((-834) |#1|)) (-15 -2411 ((-112) |#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4273 (|#1| |#1|)) (-15 -1665 (|#1| |#1| |#1| (-549))) (-15 -1993 ((-112) |#1|)) (-15 -1586 (|#1| |#1| |#1|)) (-15 -2882 ((-549) |#2| |#1| (-549))) (-15 -2882 ((-549) |#2| |#1|)) (-15 -2882 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -1993 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1586 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2253 (|#2| |#1| (-1192 (-549)) |#2|)) (-15 -2614 (|#1| |#1| |#1| (-549))) (-15 -2614 (|#1| |#2| |#1| (-549))) (-15 -2166 (|#1| |#1| (-1192 (-549)))) (-15 -2166 (|#1| |#1| (-549))) (-15 -3340 (|#1| |#1| (-1192 (-549)))) (-15 -2796 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1951 (|#1| (-621 |#1|))) (-15 -1951 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -3853 (|#1| (-621 |#2|))) (-15 -1917 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3340 (|#2| |#1| (-549))) (-15 -3340 (|#2| |#1| (-549) |#2|)) (-15 -2253 (|#2| |#1| (-549) |#2|)) (-15 -3997 ((-747) |#2| |#1|)) (-15 -2990 ((-621 |#2|) |#1|)) (-15 -3997 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2470 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2150 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1865 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2281 (|#1| |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-2932 (((-1230) $ (-549) (-549)) 40 (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-4106 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1323 (((-112) $ (-747)) 8)) (-2253 ((|#1| $ (-549) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) 58 (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-4273 (($ $) 90 (|has| $ (-6 -4337)))) (-3063 (($ $) 100)) (-3675 (($ $) 78 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#1| $) 77 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) 51)) (-2882 (((-549) (-1 (-112) |#1|) $) 97) (((-549) |#1| $) 96 (|has| |#1| (-1066))) (((-549) |#1| $ (-549)) 95 (|has| |#1| (-1066)))) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3743 (($ (-747) |#1|) 69)) (-4202 (((-112) $ (-747)) 9)) (-3485 (((-549) $) 43 (|has| (-549) (-823)))) (-2862 (($ $ $) 87 (|has| |#1| (-823)))) (-1586 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 44 (|has| (-549) (-823)))) (-3574 (($ $ $) 86 (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2614 (($ |#1| $ (-549)) 60) (($ $ $ (-549)) 59)) (-3927 (((-621 (-549)) $) 46)) (-1286 (((-112) (-549) $) 47)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-3645 ((|#1| $) 42 (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3158 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) 48)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ (-549) |#1|) 50) ((|#1| $ (-549)) 49) (($ $ (-1192 (-549))) 63)) (-2166 (($ $ (-549)) 62) (($ $ (-1192 (-549))) 61)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1665 (($ $ $ (-549)) 91 (|has| $ (-6 -4337)))) (-2281 (($ $) 13)) (-2844 (((-525) $) 79 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 70)) (-1951 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 83 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-2436 (((-112) $ $) 85 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 82 (|has| |#1| (-823)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-19 |#1|) (-138) (-1179)) (T -19))
+(-10 -8 (-15 -3375 ((-112) |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -1842 (|#1| |#1| |#1| (-535))) (-15 -1843 ((-112) |#1|)) (-15 -3855 (|#1| |#1| |#1|)) (-15 -3761 ((-535) |#2| |#1| (-535))) (-15 -3761 ((-535) |#2| |#1|)) (-15 -3761 ((-535) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3855 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4130 (|#2| |#1| (-1191 (-535)) |#2|)) (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -2374 (|#1| |#1| (-1191 (-535)))) (-15 -2374 (|#1| |#1| (-535))) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -1395 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4142 (|#2| |#1| (-535))) (-15 -4142 (|#2| |#1| (-535) |#2|)) (-15 -4130 (|#2| |#1| (-535) |#2|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2063 ((-618 |#2|) |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2368 (($ $) 90 (|has| $ (-6 -4337)))) (-2369 (($ $) 100)) (-1394 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 51)) (-3761 (((-535) (-1 (-112) |#1|) $) 97) (((-535) |#1| $) 96 (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) 95 (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 87 (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 86 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 42 (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2297 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) |#1|) 50) ((|#1| $ (-535)) 49) (($ $ (-1191 (-535))) 63)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 91 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 70)) (-4144 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 83 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 82 (|has| |#1| (-823)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-19 |#1|) (-138) (-1178)) (T -19))
NIL
-(-13 (-366 |t#1|) (-10 -7 (-6 -4337)))
-(((-34) . T) ((-101) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823))) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-627 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1066) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823))) ((-1179) . T))
-((-2384 (((-3 $ "failed") $ $) 12)) (-2499 (($ $) NIL) (($ $ $) 9)) (* (($ (-892) $) NIL) (($ (-747) $) 16) (($ (-549) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-549) |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -2384 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|))) (-21)) (T -20))
+(-13 (-365 |t#1|) (-10 -7 (-6 -4337)))
+(((-34) . T) ((-101) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1067) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1178) . T))
+((-1363 (((-3 $ "failed") $ $) 12)) (-4180 (($ $) NIL) (($ $ $) 9)) (* (($ (-890) $) NIL) (($ (-747) $) 16) (($ (-535) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -1363 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-549) |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -2384 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20)))
+(-10 -8 (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -1363 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20)))
(((-21) (-138)) (T -21))
-((-2499 (*1 *1 *1) (-4 *1 (-21))) (-2499 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-549)))))
-(-13 (-130) (-10 -8 (-15 -2499 ($ $)) (-15 -2499 ($ $ $)) (-15 * ($ (-549) $))))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3166 (((-112) $) 10)) (-1705 (($) 15)) (* (($ (-892) $) 14) (($ (-747) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-747) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -1705 (|#1|)) (-15 * (|#1| (-892) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-747) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -1705 (|#1|)) (-15 * (|#1| (-892) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-1705 (($) 17 T CONST)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15)))
+((-4180 (*1 *1 *1) (-4 *1 (-21))) (-4180 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-535)))))
+(-13 (-130) (-10 -8 (-15 -4180 ($ $)) (-15 -4180 ($ $ $)) (-15 * ($ (-535) $))))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-3522 (((-112) $) 10)) (-3879 (($) 15)) (* (($ (-890) $) 14) (($ (-747) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-747) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 -3879 (|#1|)) (-15 * (|#1| (-890) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-747) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 -3879 (|#1|)) (-15 * (|#1| (-890) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15)))
(((-23) (-138)) (T -23))
-((-3275 (*1 *1) (-4 *1 (-23))) (-1705 (*1 *1) (-4 *1 (-23))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-747)))))
-(-13 (-25) (-10 -8 (-15 (-3275) ($) -2588) (-15 -1705 ($) -2588) (-15 -3166 ((-112) $)) (-15 * ($ (-747) $))))
-(((-25) . T) ((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((* (($ (-892) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-892) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-892) |#1|)))
-((-3833 (((-112) $ $) 7)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2388 (((-112) $ $) 6)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13)))
+((-2979 (*1 *1) (-4 *1 (-23))) (-3879 (*1 *1) (-4 *1 (-23))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-747)))))
+(-13 (-25) (-10 -8 (-15 (-2979) ($) -4294) (-15 -3879 ($) -4294) (-15 -3522 ((-112) $)) (-15 * ($ (-747) $))))
+(((-25) . T) ((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((* (($ (-890) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-890) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-890) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13)))
(((-25) (-138)) (T -25))
-((-2485 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-892)))))
-(-13 (-1066) (-10 -8 (-15 -2485 ($ $ $)) (-15 * ($ (-892) $))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-2379 (((-621 $) (-923 $)) 29) (((-621 $) (-1138 $)) 16) (((-621 $) (-1138 $) (-1142)) 20)) (-2767 (($ (-923 $)) 27) (($ (-1138 $)) 11) (($ (-1138 $) (-1142)) 54)) (-3810 (((-621 $) (-923 $)) 30) (((-621 $) (-1138 $)) 18) (((-621 $) (-1138 $) (-1142)) 19)) (-1681 (($ (-923 $)) 28) (($ (-1138 $)) 13) (($ (-1138 $) (-1142)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2379 ((-621 |#1|) (-1138 |#1|) (-1142))) (-15 -2379 ((-621 |#1|) (-1138 |#1|))) (-15 -2379 ((-621 |#1|) (-923 |#1|))) (-15 -2767 (|#1| (-1138 |#1|) (-1142))) (-15 -2767 (|#1| (-1138 |#1|))) (-15 -2767 (|#1| (-923 |#1|))) (-15 -3810 ((-621 |#1|) (-1138 |#1|) (-1142))) (-15 -3810 ((-621 |#1|) (-1138 |#1|))) (-15 -3810 ((-621 |#1|) (-923 |#1|))) (-15 -1681 (|#1| (-1138 |#1|) (-1142))) (-15 -1681 (|#1| (-1138 |#1|))) (-15 -1681 (|#1| (-923 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -2379 ((-621 |#1|) (-1138 |#1|) (-1142))) (-15 -2379 ((-621 |#1|) (-1138 |#1|))) (-15 -2379 ((-621 |#1|) (-923 |#1|))) (-15 -2767 (|#1| (-1138 |#1|) (-1142))) (-15 -2767 (|#1| (-1138 |#1|))) (-15 -2767 (|#1| (-923 |#1|))) (-15 -3810 ((-621 |#1|) (-1138 |#1|) (-1142))) (-15 -3810 ((-621 |#1|) (-1138 |#1|))) (-15 -3810 ((-621 |#1|) (-923 |#1|))) (-15 -1681 (|#1| (-1138 |#1|) (-1142))) (-15 -1681 (|#1| (-1138 |#1|))) (-15 -1681 (|#1| (-923 |#1|))))
-((-3833 (((-112) $ $) 7)) (-2379 (((-621 $) (-923 $)) 77) (((-621 $) (-1138 $)) 76) (((-621 $) (-1138 $) (-1142)) 75)) (-2767 (($ (-923 $)) 80) (($ (-1138 $)) 79) (($ (-1138 $) (-1142)) 78)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 70)) (-3513 (((-411 $) $) 69)) (-2134 (($ $) 89)) (-2647 (((-112) $ $) 57)) (-1705 (($) 17 T CONST)) (-3810 (((-621 $) (-923 $)) 83) (((-621 $) (-1138 $)) 82) (((-621 $) (-1138 $) (-1142)) 81)) (-1681 (($ (-923 $)) 86) (($ (-1138 $)) 85) (($ (-1138 $) (-1142)) 84)) (-2094 (($ $ $) 53)) (-3976 (((-3 $ "failed") $) 32)) (-2066 (($ $ $) 54)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-2471 (((-112) $) 68)) (-3987 (((-112) $) 30)) (-3930 (($ $ (-549)) 88)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 67)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-2120 (((-411 $) $) 71)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-4091 (((-747) $) 56)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ $) 62)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66) (($ $ (-400 (-549))) 87)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64)))
+((-4182 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-890)))))
+(-13 (-1067) (-10 -8 (-15 -4182 ($ $ $)) (-15 * ($ (-890) $))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-1662 (((-618 $) (-917 $)) 29) (((-618 $) (-1136 $)) 16) (((-618 $) (-1136 $) (-1142)) 20)) (-1258 (($ (-917 $)) 27) (($ (-1136 $)) 11) (($ (-1136 $) (-1142)) 54)) (-1259 (((-618 $) (-917 $)) 30) (((-618 $) (-1136 $)) 18) (((-618 $) (-1136 $) (-1142)) 19)) (-3517 (($ (-917 $)) 28) (($ (-1136 $)) 13) (($ (-1136 $) (-1142)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -1662 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1662 ((-618 |#1|) (-1136 |#1|))) (-15 -1662 ((-618 |#1|) (-917 |#1|))) (-15 -1258 (|#1| (-1136 |#1|) (-1142))) (-15 -1258 (|#1| (-1136 |#1|))) (-15 -1258 (|#1| (-917 |#1|))) (-15 -1259 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1259 ((-618 |#1|) (-1136 |#1|))) (-15 -1259 ((-618 |#1|) (-917 |#1|))) (-15 -3517 (|#1| (-1136 |#1|) (-1142))) (-15 -3517 (|#1| (-1136 |#1|))) (-15 -3517 (|#1| (-917 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -1662 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1662 ((-618 |#1|) (-1136 |#1|))) (-15 -1662 ((-618 |#1|) (-917 |#1|))) (-15 -1258 (|#1| (-1136 |#1|) (-1142))) (-15 -1258 (|#1| (-1136 |#1|))) (-15 -1258 (|#1| (-917 |#1|))) (-15 -1259 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1259 ((-618 |#1|) (-1136 |#1|))) (-15 -1259 ((-618 |#1|) (-917 |#1|))) (-15 -3517 (|#1| (-1136 |#1|) (-1142))) (-15 -3517 (|#1| (-1136 |#1|))) (-15 -3517 (|#1| (-917 |#1|))))
+((-2887 (((-112) $ $) 7)) (-1662 (((-618 $) (-917 $)) 77) (((-618 $) (-1136 $)) 76) (((-618 $) (-1136 $) (-1142)) 75)) (-1258 (($ (-917 $)) 80) (($ (-1136 $)) 79) (($ (-1136 $) (-1142)) 78)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-3358 (($ $) 89)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-1259 (((-618 $) (-917 $)) 83) (((-618 $) (-1136 $)) 82) (((-618 $) (-1136 $) (-1142)) 81)) (-3517 (($ (-917 $)) 86) (($ (-1136 $)) 85) (($ (-1136 $) (-1142)) 84)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4069 (((-112) $) 68)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 88)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 62)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66) (($ $ (-400 (-535))) 87)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64)))
(((-27) (-138)) (T -27))
-((-1681 (*1 *1 *2) (-12 (-5 *2 (-923 *1)) (-4 *1 (-27)))) (-1681 (*1 *1 *2) (-12 (-5 *2 (-1138 *1)) (-4 *1 (-27)))) (-1681 (*1 *1 *2 *3) (-12 (-5 *2 (-1138 *1)) (-5 *3 (-1142)) (-4 *1 (-27)))) (-3810 (*1 *2 *3) (-12 (-5 *3 (-923 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1)))) (-3810 (*1 *2 *3) (-12 (-5 *3 (-1138 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-1138 *1)) (-5 *4 (-1142)) (-4 *1 (-27)) (-5 *2 (-621 *1)))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-923 *1)) (-4 *1 (-27)))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-1138 *1)) (-4 *1 (-27)))) (-2767 (*1 *1 *2 *3) (-12 (-5 *2 (-1138 *1)) (-5 *3 (-1142)) (-4 *1 (-27)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-923 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-1138 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-1138 *1)) (-5 *4 (-1142)) (-4 *1 (-27)) (-5 *2 (-621 *1)))))
-(-13 (-356) (-973) (-10 -8 (-15 -1681 ($ (-923 $))) (-15 -1681 ($ (-1138 $))) (-15 -1681 ($ (-1138 $) (-1142))) (-15 -3810 ((-621 $) (-923 $))) (-15 -3810 ((-621 $) (-1138 $))) (-15 -3810 ((-621 $) (-1138 $) (-1142))) (-15 -2767 ($ (-923 $))) (-15 -2767 ($ (-1138 $))) (-15 -2767 ($ (-1138 $) (-1142))) (-15 -2379 ((-621 $) (-923 $))) (-15 -2379 ((-621 $) (-1138 $))) (-15 -2379 ((-621 $) (-1138 $) (-1142)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-973) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1183) . T))
-((-2379 (((-621 $) (-923 $)) NIL) (((-621 $) (-1138 $)) NIL) (((-621 $) (-1138 $) (-1142)) 50) (((-621 $) $) 19) (((-621 $) $ (-1142)) 41)) (-2767 (($ (-923 $)) NIL) (($ (-1138 $)) NIL) (($ (-1138 $) (-1142)) 52) (($ $) 17) (($ $ (-1142)) 37)) (-3810 (((-621 $) (-923 $)) NIL) (((-621 $) (-1138 $)) NIL) (((-621 $) (-1138 $) (-1142)) 48) (((-621 $) $) 15) (((-621 $) $ (-1142)) 43)) (-1681 (($ (-923 $)) NIL) (($ (-1138 $)) NIL) (($ (-1138 $) (-1142)) NIL) (($ $) 12) (($ $ (-1142)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2379 ((-621 |#1|) |#1| (-1142))) (-15 -2767 (|#1| |#1| (-1142))) (-15 -2379 ((-621 |#1|) |#1|)) (-15 -2767 (|#1| |#1|)) (-15 -3810 ((-621 |#1|) |#1| (-1142))) (-15 -1681 (|#1| |#1| (-1142))) (-15 -3810 ((-621 |#1|) |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -2379 ((-621 |#1|) (-1138 |#1|) (-1142))) (-15 -2379 ((-621 |#1|) (-1138 |#1|))) (-15 -2379 ((-621 |#1|) (-923 |#1|))) (-15 -2767 (|#1| (-1138 |#1|) (-1142))) (-15 -2767 (|#1| (-1138 |#1|))) (-15 -2767 (|#1| (-923 |#1|))) (-15 -3810 ((-621 |#1|) (-1138 |#1|) (-1142))) (-15 -3810 ((-621 |#1|) (-1138 |#1|))) (-15 -3810 ((-621 |#1|) (-923 |#1|))) (-15 -1681 (|#1| (-1138 |#1|) (-1142))) (-15 -1681 (|#1| (-1138 |#1|))) (-15 -1681 (|#1| (-923 |#1|)))) (-29 |#2|) (-13 (-823) (-541))) (T -28))
-NIL
-(-10 -8 (-15 -2379 ((-621 |#1|) |#1| (-1142))) (-15 -2767 (|#1| |#1| (-1142))) (-15 -2379 ((-621 |#1|) |#1|)) (-15 -2767 (|#1| |#1|)) (-15 -3810 ((-621 |#1|) |#1| (-1142))) (-15 -1681 (|#1| |#1| (-1142))) (-15 -3810 ((-621 |#1|) |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -2379 ((-621 |#1|) (-1138 |#1|) (-1142))) (-15 -2379 ((-621 |#1|) (-1138 |#1|))) (-15 -2379 ((-621 |#1|) (-923 |#1|))) (-15 -2767 (|#1| (-1138 |#1|) (-1142))) (-15 -2767 (|#1| (-1138 |#1|))) (-15 -2767 (|#1| (-923 |#1|))) (-15 -3810 ((-621 |#1|) (-1138 |#1|) (-1142))) (-15 -3810 ((-621 |#1|) (-1138 |#1|))) (-15 -3810 ((-621 |#1|) (-923 |#1|))) (-15 -1681 (|#1| (-1138 |#1|) (-1142))) (-15 -1681 (|#1| (-1138 |#1|))) (-15 -1681 (|#1| (-923 |#1|))))
-((-3833 (((-112) $ $) 7)) (-2379 (((-621 $) (-923 $)) 77) (((-621 $) (-1138 $)) 76) (((-621 $) (-1138 $) (-1142)) 75) (((-621 $) $) 123) (((-621 $) $ (-1142)) 121)) (-2767 (($ (-923 $)) 80) (($ (-1138 $)) 79) (($ (-1138 $) (-1142)) 78) (($ $) 124) (($ $ (-1142)) 122)) (-3166 (((-112) $) 16)) (-2271 (((-621 (-1142)) $) 198)) (-2082 (((-400 (-1138 $)) $ (-592 $)) 230 (|has| |#1| (-541)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-1980 (((-621 (-592 $)) $) 161)) (-2384 (((-3 $ "failed") $ $) 19)) (-3014 (($ $ (-621 (-592 $)) (-621 $)) 151) (($ $ (-621 (-287 $))) 150) (($ $ (-287 $)) 149)) (-1912 (($ $) 70)) (-3513 (((-411 $) $) 69)) (-2134 (($ $) 89)) (-2647 (((-112) $ $) 57)) (-1705 (($) 17 T CONST)) (-3810 (((-621 $) (-923 $)) 83) (((-621 $) (-1138 $)) 82) (((-621 $) (-1138 $) (-1142)) 81) (((-621 $) $) 127) (((-621 $) $ (-1142)) 125)) (-1681 (($ (-923 $)) 86) (($ (-1138 $)) 85) (($ (-1138 $) (-1142)) 84) (($ $) 128) (($ $ (-1142)) 126)) (-2713 (((-3 (-923 |#1|) "failed") $) 248 (|has| |#1| (-1018))) (((-3 (-400 (-923 |#1|)) "failed") $) 232 (|has| |#1| (-541))) (((-3 |#1| "failed") $) 194) (((-3 (-549) "failed") $) 192 (|has| |#1| (-1009 (-549)))) (((-3 (-1142) "failed") $) 185) (((-3 (-592 $) "failed") $) 136) (((-3 (-400 (-549)) "failed") $) 120 (-1536 (-12 (|has| |#1| (-1009 (-549))) (|has| |#1| (-541))) (|has| |#1| (-1009 (-400 (-549))))))) (-2658 (((-923 |#1|) $) 249 (|has| |#1| (-1018))) (((-400 (-923 |#1|)) $) 233 (|has| |#1| (-541))) ((|#1| $) 195) (((-549) $) 191 (|has| |#1| (-1009 (-549)))) (((-1142) $) 186) (((-592 $) $) 137) (((-400 (-549)) $) 119 (-1536 (-12 (|has| |#1| (-1009 (-549))) (|has| |#1| (-541))) (|has| |#1| (-1009 (-400 (-549))))))) (-2094 (($ $ $) 53)) (-1698 (((-665 |#1|) (-665 $)) 238 (|has| |#1| (-1018))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 237 (|has| |#1| (-1018))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 118 (-1536 (-1820 (|has| |#1| (-1018)) (|has| |#1| (-617 (-549)))) (-1820 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))))) (((-665 (-549)) (-665 $)) 117 (-1536 (-1820 (|has| |#1| (-1018)) (|has| |#1| (-617 (-549)))) (-1820 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))))) (-3976 (((-3 $ "failed") $) 32)) (-2066 (($ $ $) 54)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-2471 (((-112) $) 68)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 190 (|has| |#1| (-857 (-372)))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 189 (|has| |#1| (-857 (-549))))) (-3390 (($ (-621 $)) 155) (($ $) 154)) (-2415 (((-621 (-114)) $) 162)) (-2015 (((-114) (-114)) 163)) (-3987 (((-112) $) 30)) (-3061 (((-112) $) 183 (|has| $ (-1009 (-549))))) (-2053 (($ $) 215 (|has| |#1| (-1018)))) (-1393 (((-1091 |#1| (-592 $)) $) 214 (|has| |#1| (-1018)))) (-3930 (($ $ (-549)) 88)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-1417 (((-1138 $) (-592 $)) 180 (|has| $ (-1018)))) (-2862 (($ $ $) 134)) (-3574 (($ $ $) 133)) (-2796 (($ (-1 $ $) (-592 $)) 169)) (-3364 (((-3 (-592 $) "failed") $) 159)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-2063 (((-621 (-592 $)) $) 160)) (-1477 (($ (-114) (-621 $)) 168) (($ (-114) $) 167)) (-4201 (((-3 (-621 $) "failed") $) 209 (|has| |#1| (-1078)))) (-1572 (((-3 (-2 (|:| |val| $) (|:| -3577 (-549))) "failed") $) 218 (|has| |#1| (-1018)))) (-1462 (((-3 (-621 $) "failed") $) 211 (|has| |#1| (-25)))) (-3505 (((-3 (-2 (|:| -1569 (-549)) (|:| |var| (-592 $))) "failed") $) 212 (|has| |#1| (-25)))) (-4219 (((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $ (-1142)) 217 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $ (-114)) 216 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $) 210 (|has| |#1| (-1078)))) (-1581 (((-112) $ (-1142)) 166) (((-112) $ (-114)) 165)) (-1991 (($ $) 67)) (-4035 (((-747) $) 158)) (-3988 (((-1086) $) 10)) (-2002 (((-112) $) 196)) (-2012 ((|#1| $) 197)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-4029 (((-112) $ (-1142)) 171) (((-112) $ $) 170)) (-2120 (((-411 $) $) 71)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-4062 (((-112) $) 182 (|has| $ (-1009 (-549))))) (-2685 (($ $ (-1142) (-747) (-1 $ $)) 222 (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ (-621 $))) 221 (|has| |#1| (-1018))) (($ $ (-621 (-1142)) (-621 (-747)) (-621 (-1 $ (-621 $)))) 220 (|has| |#1| (-1018))) (($ $ (-621 (-1142)) (-621 (-747)) (-621 (-1 $ $))) 219 (|has| |#1| (-1018))) (($ $ (-621 (-114)) (-621 $) (-1142)) 208 (|has| |#1| (-594 (-525)))) (($ $ (-114) $ (-1142)) 207 (|has| |#1| (-594 (-525)))) (($ $) 206 (|has| |#1| (-594 (-525)))) (($ $ (-621 (-1142))) 205 (|has| |#1| (-594 (-525)))) (($ $ (-1142)) 204 (|has| |#1| (-594 (-525)))) (($ $ (-114) (-1 $ $)) 179) (($ $ (-114) (-1 $ (-621 $))) 178) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) 177) (($ $ (-621 (-114)) (-621 (-1 $ $))) 176) (($ $ (-1142) (-1 $ $)) 175) (($ $ (-1142) (-1 $ (-621 $))) 174) (($ $ (-621 (-1142)) (-621 (-1 $ (-621 $)))) 173) (($ $ (-621 (-1142)) (-621 (-1 $ $))) 172) (($ $ (-621 $) (-621 $)) 143) (($ $ $ $) 142) (($ $ (-287 $)) 141) (($ $ (-621 (-287 $))) 140) (($ $ (-621 (-592 $)) (-621 $)) 139) (($ $ (-592 $) $) 138)) (-4091 (((-747) $) 56)) (-3340 (($ (-114) (-621 $)) 148) (($ (-114) $ $ $ $) 147) (($ (-114) $ $ $) 146) (($ (-114) $ $) 145) (($ (-114) $) 144)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55)) (-3776 (($ $ $) 157) (($ $) 156)) (-3455 (($ $ (-1142)) 246 (|has| |#1| (-1018))) (($ $ (-621 (-1142))) 245 (|has| |#1| (-1018))) (($ $ (-1142) (-747)) 244 (|has| |#1| (-1018))) (($ $ (-621 (-1142)) (-621 (-747))) 243 (|has| |#1| (-1018)))) (-4288 (($ $) 225 (|has| |#1| (-541)))) (-1404 (((-1091 |#1| (-592 $)) $) 224 (|has| |#1| (-541)))) (-2539 (($ $) 181 (|has| $ (-1018)))) (-2844 (((-525) $) 252 (|has| |#1| (-594 (-525)))) (($ (-411 $)) 223 (|has| |#1| (-541))) (((-863 (-372)) $) 188 (|has| |#1| (-594 (-863 (-372))))) (((-863 (-549)) $) 187 (|has| |#1| (-594 (-863 (-549)))))) (-2538 (($ $ $) 251 (|has| |#1| (-465)))) (-1911 (($ $ $) 250 (|has| |#1| (-465)))) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63) (($ (-923 |#1|)) 247 (|has| |#1| (-1018))) (($ (-400 (-923 |#1|))) 231 (|has| |#1| (-541))) (($ (-400 (-923 (-400 |#1|)))) 229 (|has| |#1| (-541))) (($ (-923 (-400 |#1|))) 228 (|has| |#1| (-541))) (($ (-400 |#1|)) 227 (|has| |#1| (-541))) (($ (-1091 |#1| (-592 $))) 213 (|has| |#1| (-1018))) (($ |#1|) 193) (($ (-1142)) 184) (($ (-592 $)) 135)) (-3407 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-1723 (((-747)) 28)) (-4136 (($ (-621 $)) 153) (($ $) 152)) (-3234 (((-112) (-114)) 164)) (-4053 (((-112) $ $) 37)) (-1788 (($ (-1142) (-621 $)) 203) (($ (-1142) $ $ $ $) 202) (($ (-1142) $ $ $) 201) (($ (-1142) $ $) 200) (($ (-1142) $) 199)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-1142)) 242 (|has| |#1| (-1018))) (($ $ (-621 (-1142))) 241 (|has| |#1| (-1018))) (($ $ (-1142) (-747)) 240 (|has| |#1| (-1018))) (($ $ (-621 (-1142)) (-621 (-747))) 239 (|has| |#1| (-1018)))) (-2448 (((-112) $ $) 131)) (-2424 (((-112) $ $) 130)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 132)) (-2411 (((-112) $ $) 129)) (-2512 (($ $ $) 62) (($ (-1091 |#1| (-592 $)) (-1091 |#1| (-592 $))) 226 (|has| |#1| (-541)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66) (($ $ (-400 (-549))) 87)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-170))) (($ |#1| $) 234 (|has| |#1| (-170)))))
-(((-29 |#1|) (-138) (-13 (-823) (-541))) (T -29))
-((-1681 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-541))))) (-3810 (*1 *2 *1) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *2 (-621 *1)) (-4 *1 (-29 *3)))) (-1681 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-541))))) (-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-621 *1)) (-4 *1 (-29 *4)))) (-2767 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-541))))) (-2379 (*1 *2 *1) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *2 (-621 *1)) (-4 *1 (-29 *3)))) (-2767 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-541))))) (-2379 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-621 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-423 |t#1|) (-10 -8 (-15 -1681 ($ $)) (-15 -3810 ((-621 $) $)) (-15 -1681 ($ $ (-1142))) (-15 -3810 ((-621 $) $ (-1142))) (-15 -2767 ($ $)) (-15 -2379 ((-621 $) $)) (-15 -2767 ($ $ (-1142))) (-15 -2379 ((-621 $) $ (-1142)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-594 (-863 (-372))) |has| |#1| (-594 (-863 (-372)))) ((-594 (-863 (-549))) |has| |#1| (-594 (-863 (-549)))) ((-237) . T) ((-283) . T) ((-300) . T) ((-302 $) . T) ((-295) . T) ((-356) . T) ((-370 |#1|) |has| |#1| (-1018)) ((-393 |#1|) . T) ((-404 |#1|) . T) ((-423 |#1|) . T) ((-444) . T) ((-465) |has| |#1| (-465)) ((-505 (-592 $) $) . T) ((-505 $ $) . T) ((-541) . T) ((-624 #0#) . T) ((-624 |#1|) |has| |#1| (-170)) ((-624 $) . T) ((-617 (-549)) -12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) ((-617 |#1|) |has| |#1| (-1018)) ((-694 #0#) . T) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) . T) ((-703) . T) ((-823) . T) ((-871 (-1142)) |has| |#1| (-1018)) ((-857 (-372)) |has| |#1| (-857 (-372))) ((-857 (-549)) |has| |#1| (-857 (-549))) ((-855 |#1|) . T) ((-891) . T) ((-973) . T) ((-1009 (-400 (-549))) -1536 (|has| |#1| (-1009 (-400 (-549)))) (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549))))) ((-1009 (-400 (-923 |#1|))) |has| |#1| (-541)) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 (-592 $)) . T) ((-1009 (-923 |#1|)) |has| |#1| (-1018)) ((-1009 (-1142)) . T) ((-1009 |#1|) . T) ((-1024 #0#) . T) ((-1024 |#1|) |has| |#1| (-170)) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1179) . T) ((-1183) . T))
-((-1842 (((-1060 (-219)) $) NIL)) (-1831 (((-1060 (-219)) $) NIL)) (-1571 (($ $ (-219)) 125)) (-3642 (($ (-923 (-549)) (-1142) (-1142) (-1060 (-400 (-549))) (-1060 (-400 (-549)))) 83)) (-3087 (((-621 (-621 (-914 (-219)))) $) 137)) (-3845 (((-834) $) 149)))
-(((-30) (-13 (-926) (-10 -8 (-15 -3642 ($ (-923 (-549)) (-1142) (-1142) (-1060 (-400 (-549))) (-1060 (-400 (-549))))) (-15 -1571 ($ $ (-219)))))) (T -30))
-((-3642 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-923 (-549))) (-5 *3 (-1142)) (-5 *4 (-1060 (-400 (-549)))) (-5 *1 (-30)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30)))))
-(-13 (-926) (-10 -8 (-15 -3642 ($ (-923 (-549)) (-1142) (-1142) (-1060 (-400 (-549))) (-1060 (-400 (-549))))) (-15 -1571 ($ $ (-219)))))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2493 (((-1101) $) 11)) (-1863 (((-1101) $) 9)) (-2388 (((-112) $ $) NIL)))
-(((-31) (-13 (-1049) (-10 -8 (-15 -1863 ((-1101) $)) (-15 -2493 ((-1101) $))))) (T -31))
-((-1863 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-31)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-31)))))
-(-13 (-1049) (-10 -8 (-15 -1863 ((-1101) $)) (-15 -2493 ((-1101) $))))
-((-1681 ((|#2| (-1138 |#2|) (-1142)) 43)) (-2015 (((-114) (-114)) 56)) (-1417 (((-1138 |#2|) (-592 |#2|)) 133 (|has| |#1| (-1009 (-549))))) (-1629 ((|#2| |#1| (-549)) 122 (|has| |#1| (-1009 (-549))))) (-2899 ((|#2| (-1138 |#2|) |#2|) 30)) (-3217 (((-834) (-621 |#2|)) 85)) (-2539 ((|#2| |#2|) 129 (|has| |#1| (-1009 (-549))))) (-3234 (((-112) (-114)) 18)) (** ((|#2| |#2| (-400 (-549))) 96 (|has| |#1| (-1009 (-549))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -1681 (|#2| (-1138 |#2|) (-1142))) (-15 -2015 ((-114) (-114))) (-15 -3234 ((-112) (-114))) (-15 -2899 (|#2| (-1138 |#2|) |#2|)) (-15 -3217 ((-834) (-621 |#2|))) (IF (|has| |#1| (-1009 (-549))) (PROGN (-15 ** (|#2| |#2| (-400 (-549)))) (-15 -1417 ((-1138 |#2|) (-592 |#2|))) (-15 -2539 (|#2| |#2|)) (-15 -1629 (|#2| |#1| (-549)))) |%noBranch|)) (-13 (-823) (-541)) (-423 |#1|)) (T -32))
-((-1629 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-4 *2 (-423 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1009 *4)) (-4 *3 (-13 (-823) (-541))))) (-2539 (*1 *2 *2) (-12 (-4 *3 (-1009 (-549))) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-32 *3 *2)) (-4 *2 (-423 *3)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-423 *4)) (-4 *4 (-1009 (-549))) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-1138 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-549))) (-4 *4 (-1009 (-549))) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-32 *4 *2)) (-4 *2 (-423 *4)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-423 *4)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-834)) (-5 *1 (-32 *4 *5)))) (-2899 (*1 *2 *3 *2) (-12 (-5 *3 (-1138 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-32 *4 *2)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-423 *4)))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-32 *3 *4)) (-4 *4 (-423 *3)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-1138 *2)) (-5 *4 (-1142)) (-4 *2 (-423 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-823) (-541))))))
-(-10 -7 (-15 -1681 (|#2| (-1138 |#2|) (-1142))) (-15 -2015 ((-114) (-114))) (-15 -3234 ((-112) (-114))) (-15 -2899 (|#2| (-1138 |#2|) |#2|)) (-15 -3217 ((-834) (-621 |#2|))) (IF (|has| |#1| (-1009 (-549))) (PROGN (-15 ** (|#2| |#2| (-400 (-549)))) (-15 -1417 ((-1138 |#2|) (-592 |#2|))) (-15 -2539 (|#2| |#2|)) (-15 -1629 (|#2| |#1| (-549)))) |%noBranch|))
-((-1323 (((-112) $ (-747)) 16)) (-1705 (($) 10)) (-4202 (((-112) $ (-747)) 15)) (-4289 (((-112) $ (-747)) 14)) (-2732 (((-112) $ $) 8)) (-1807 (((-112) $) 13)))
-(((-33 |#1|) (-10 -8 (-15 -1705 (|#1|)) (-15 -1323 ((-112) |#1| (-747))) (-15 -4202 ((-112) |#1| (-747))) (-15 -4289 ((-112) |#1| (-747))) (-15 -1807 ((-112) |#1|)) (-15 -2732 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -1705 (|#1|)) (-15 -1323 ((-112) |#1| (-747))) (-15 -4202 ((-112) |#1| (-747))) (-15 -4289 ((-112) |#1| (-747))) (-15 -1807 ((-112) |#1|)) (-15 -2732 ((-112) |#1| |#1|)))
-((-1323 (((-112) $ (-747)) 8)) (-1705 (($) 7 T CONST)) (-4202 (((-112) $ (-747)) 9)) (-4289 (((-112) $ (-747)) 10)) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-2281 (($ $) 13)) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
+((-3517 (*1 *1 *2) (-12 (-5 *2 (-917 *1)) (-4 *1 (-27)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-27)))) (-3517 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 *1)) (-5 *3 (-1142)) (-4 *1 (-27)))) (-1259 (*1 *2 *3) (-12 (-5 *3 (-917 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) (-1259 (*1 *2 *3) (-12 (-5 *3 (-1136 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) (-1259 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *1)) (-5 *4 (-1142)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) (-1258 (*1 *1 *2) (-12 (-5 *2 (-917 *1)) (-4 *1 (-27)))) (-1258 (*1 *1 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-27)))) (-1258 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 *1)) (-5 *3 (-1142)) (-4 *1 (-27)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-917 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-1136 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *1)) (-5 *4 (-1142)) (-4 *1 (-27)) (-5 *2 (-618 *1)))))
+(-13 (-356) (-973) (-10 -8 (-15 -3517 ($ (-917 $))) (-15 -3517 ($ (-1136 $))) (-15 -3517 ($ (-1136 $) (-1142))) (-15 -1259 ((-618 $) (-917 $))) (-15 -1259 ((-618 $) (-1136 $))) (-15 -1259 ((-618 $) (-1136 $) (-1142))) (-15 -1258 ($ (-917 $))) (-15 -1258 ($ (-1136 $))) (-15 -1258 ($ (-1136 $) (-1142))) (-15 -1662 ((-618 $) (-917 $))) (-15 -1662 ((-618 $) (-1136 $))) (-15 -1662 ((-618 $) (-1136 $) (-1142)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-973) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T))
+((-1662 (((-618 $) (-917 $)) NIL) (((-618 $) (-1136 $)) NIL) (((-618 $) (-1136 $) (-1142)) 50) (((-618 $) $) 19) (((-618 $) $ (-1142)) 41)) (-1258 (($ (-917 $)) NIL) (($ (-1136 $)) NIL) (($ (-1136 $) (-1142)) 52) (($ $) 17) (($ $ (-1142)) 37)) (-1259 (((-618 $) (-917 $)) NIL) (((-618 $) (-1136 $)) NIL) (((-618 $) (-1136 $) (-1142)) 48) (((-618 $) $) 15) (((-618 $) $ (-1142)) 43)) (-3517 (($ (-917 $)) NIL) (($ (-1136 $)) NIL) (($ (-1136 $) (-1142)) NIL) (($ $) 12) (($ $ (-1142)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -1662 ((-618 |#1|) |#1| (-1142))) (-15 -1258 (|#1| |#1| (-1142))) (-15 -1662 ((-618 |#1|) |#1|)) (-15 -1258 (|#1| |#1|)) (-15 -1259 ((-618 |#1|) |#1| (-1142))) (-15 -3517 (|#1| |#1| (-1142))) (-15 -1259 ((-618 |#1|) |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -1662 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1662 ((-618 |#1|) (-1136 |#1|))) (-15 -1662 ((-618 |#1|) (-917 |#1|))) (-15 -1258 (|#1| (-1136 |#1|) (-1142))) (-15 -1258 (|#1| (-1136 |#1|))) (-15 -1258 (|#1| (-917 |#1|))) (-15 -1259 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1259 ((-618 |#1|) (-1136 |#1|))) (-15 -1259 ((-618 |#1|) (-917 |#1|))) (-15 -3517 (|#1| (-1136 |#1|) (-1142))) (-15 -3517 (|#1| (-1136 |#1|))) (-15 -3517 (|#1| (-917 |#1|)))) (-29 |#2|) (-13 (-823) (-542))) (T -28))
+NIL
+(-10 -8 (-15 -1662 ((-618 |#1|) |#1| (-1142))) (-15 -1258 (|#1| |#1| (-1142))) (-15 -1662 ((-618 |#1|) |#1|)) (-15 -1258 (|#1| |#1|)) (-15 -1259 ((-618 |#1|) |#1| (-1142))) (-15 -3517 (|#1| |#1| (-1142))) (-15 -1259 ((-618 |#1|) |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -1662 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1662 ((-618 |#1|) (-1136 |#1|))) (-15 -1662 ((-618 |#1|) (-917 |#1|))) (-15 -1258 (|#1| (-1136 |#1|) (-1142))) (-15 -1258 (|#1| (-1136 |#1|))) (-15 -1258 (|#1| (-917 |#1|))) (-15 -1259 ((-618 |#1|) (-1136 |#1|) (-1142))) (-15 -1259 ((-618 |#1|) (-1136 |#1|))) (-15 -1259 ((-618 |#1|) (-917 |#1|))) (-15 -3517 (|#1| (-1136 |#1|) (-1142))) (-15 -3517 (|#1| (-1136 |#1|))) (-15 -3517 (|#1| (-917 |#1|))))
+((-2887 (((-112) $ $) 7)) (-1662 (((-618 $) (-917 $)) 77) (((-618 $) (-1136 $)) 76) (((-618 $) (-1136 $) (-1142)) 75) (((-618 $) $) 123) (((-618 $) $ (-1142)) 121)) (-1258 (($ (-917 $)) 80) (($ (-1136 $)) 79) (($ (-1136 $) (-1142)) 78) (($ $) 124) (($ $ (-1142)) 122)) (-3522 (((-112) $) 16)) (-3405 (((-618 (-1142)) $) 198)) (-3407 (((-400 (-1136 $)) $ (-591 $)) 230 (|has| |#1| (-542)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1655 (((-618 (-591 $)) $) 161)) (-1363 (((-3 $ "failed") $ $) 19)) (-1659 (($ $ (-618 (-591 $)) (-618 $)) 151) (($ $ (-618 (-286 $))) 150) (($ $ (-286 $)) 149)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-3358 (($ $) 89)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-1259 (((-618 $) (-917 $)) 83) (((-618 $) (-1136 $)) 82) (((-618 $) (-1136 $) (-1142)) 81) (((-618 $) $) 127) (((-618 $) $ (-1142)) 125)) (-3517 (($ (-917 $)) 86) (($ (-1136 $)) 85) (($ (-1136 $) (-1142)) 84) (($ $) 128) (($ $ (-1142)) 126)) (-3491 (((-3 (-917 |#1|) #1="failed") $) 248 (|has| |#1| (-1018))) (((-3 (-400 (-917 |#1|)) #1#) $) 232 (|has| |#1| (-542))) (((-3 |#1| #1#) $) 194) (((-3 (-535) #1#) $) 192 (|has| |#1| (-1009 (-535)))) (((-3 (-1142) #1#) $) 185) (((-3 (-591 $) #1#) $) 136) (((-3 (-400 (-535)) #1#) $) 120 (-3874 (-12 (|has| |#1| (-1009 (-535))) (|has| |#1| (-542))) (|has| |#1| (-1009 (-400 (-535))))))) (-3490 (((-917 |#1|) $) 249 (|has| |#1| (-1018))) (((-400 (-917 |#1|)) $) 233 (|has| |#1| (-542))) ((|#1| $) 195) (((-535) $) 191 (|has| |#1| (-1009 (-535)))) (((-1142) $) 186) (((-591 $) $) 137) (((-400 (-535)) $) 119 (-3874 (-12 (|has| |#1| (-1009 (-535))) (|has| |#1| (-542))) (|has| |#1| (-1009 (-400 (-535))))))) (-2883 (($ $ $) 53)) (-2353 (((-665 |#1|) (-665 $)) 238 (|has| |#1| (-1018))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 237 (|has| |#1| (-1018))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 118 (-3874 (-3179 (|has| |#1| (-1018)) (|has| |#1| (-617 (-535)))) (-3179 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))))) (((-665 (-535)) (-665 $)) 117 (-3874 (-3179 (|has| |#1| (-1018)) (|has| |#1| (-617 (-535)))) (-3179 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))))) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4069 (((-112) $) 68)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 190 (|has| |#1| (-857 (-371)))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 189 (|has| |#1| (-857 (-535))))) (-2892 (($ (-618 $)) 155) (($ $) 154)) (-1654 (((-618 (-113)) $) 162)) (-3368 (((-113) (-113)) 163)) (-2493 (((-112) $) 30)) (-2994 (((-112) $) 183 (|has| $ (-1009 (-535))))) (-3317 (($ $) 215 (|has| |#1| (-1018)))) (-3319 (((-1091 |#1| (-591 $)) $) 214 (|has| |#1| (-1018)))) (-3332 (($ $ (-535)) 88)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 50)) (-1652 (((-1136 $) (-591 $)) 180 (|has| $ (-1018)))) (-3660 (($ $ $) 134)) (-3661 (($ $ $) 133)) (-4301 (($ (-1 $ $) (-591 $)) 169)) (-1657 (((-3 (-591 $) "failed") $) 159)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-1656 (((-618 (-591 $)) $) 160)) (-2308 (($ (-113) (-618 $)) 168) (($ (-113) $) 167)) (-3144 (((-3 (-618 $) #3="failed") $) 209 (|has| |#1| (-1078)))) (-3146 (((-3 (-2 (|:| |val| $) (|:| -2484 (-535))) #3#) $) 218 (|has| |#1| (-1018)))) (-3143 (((-3 (-618 $) #3#) $) 211 (|has| |#1| (-25)))) (-1908 (((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 $))) #3#) $) 212 (|has| |#1| (-25)))) (-3145 (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) #3#) $ (-1142)) 217 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) #3#) $ (-113)) 216 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) #3#) $) 210 (|has| |#1| (-1078)))) (-2952 (((-112) $ (-1142)) 166) (((-112) $ (-113)) 165)) (-2725 (($ $) 67)) (-2922 (((-747) $) 158)) (-3577 (((-1086) $) 10)) (-1911 (((-112) $) 196)) (-1910 ((|#1| $) 197)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-1653 (((-112) $ (-1142)) 171) (((-112) $ $) 170)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-2995 (((-112) $) 182 (|has| $ (-1009 (-535))))) (-4110 (($ $ (-1142) (-747) (-1 $ $)) 222 (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ (-618 $))) 221 (|has| |#1| (-1018))) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ (-618 $)))) 220 (|has| |#1| (-1018))) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ $))) 219 (|has| |#1| (-1018))) (($ $ (-618 (-113)) (-618 $) (-1142)) 208 (|has| |#1| (-594 (-524)))) (($ $ (-113) $ (-1142)) 207 (|has| |#1| (-594 (-524)))) (($ $) 206 (|has| |#1| (-594 (-524)))) (($ $ (-618 (-1142))) 205 (|has| |#1| (-594 (-524)))) (($ $ (-1142)) 204 (|has| |#1| (-594 (-524)))) (($ $ (-113) (-1 $ $)) 179) (($ $ (-113) (-1 $ (-618 $))) 178) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) 177) (($ $ (-618 (-113)) (-618 (-1 $ $))) 176) (($ $ (-1142) (-1 $ $)) 175) (($ $ (-1142) (-1 $ (-618 $))) 174) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) 173) (($ $ (-618 (-1142)) (-618 (-1 $ $))) 172) (($ $ (-618 $) (-618 $)) 143) (($ $ $ $) 142) (($ $ (-286 $)) 141) (($ $ (-618 (-286 $))) 140) (($ $ (-618 (-591 $)) (-618 $)) 139) (($ $ (-591 $) $) 138)) (-1699 (((-747) $) 56)) (-4142 (($ (-113) (-618 $)) 148) (($ (-113) $ $ $ $) 147) (($ (-113) $ $ $) 146) (($ (-113) $ $) 145) (($ (-113) $) 144)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-1658 (($ $ $) 157) (($ $) 156)) (-4153 (($ $ (-1142)) 246 (|has| |#1| (-1018))) (($ $ (-618 (-1142))) 245 (|has| |#1| (-1018))) (($ $ (-1142) (-747)) 244 (|has| |#1| (-1018))) (($ $ (-618 (-1142)) (-618 (-747))) 243 (|has| |#1| (-1018)))) (-3316 (($ $) 225 (|has| |#1| (-542)))) (-3318 (((-1091 |#1| (-591 $)) $) 224 (|has| |#1| (-542)))) (-3519 (($ $) 181 (|has| $ (-1018)))) (-4313 (((-524) $) 252 (|has| |#1| (-594 (-524)))) (($ (-398 $)) 223 (|has| |#1| (-542))) (((-861 (-371)) $) 188 (|has| |#1| (-594 (-861 (-371))))) (((-861 (-535)) $) 187 (|has| |#1| (-594 (-861 (-535)))))) (-3330 (($ $ $) 251 (|has| |#1| (-465)))) (-2677 (($ $ $) 250 (|has| |#1| (-465)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63) (($ (-917 |#1|)) 247 (|has| |#1| (-1018))) (($ (-400 (-917 |#1|))) 231 (|has| |#1| (-542))) (($ (-400 (-917 (-400 |#1|)))) 229 (|has| |#1| (-542))) (($ (-917 (-400 |#1|))) 228 (|has| |#1| (-542))) (($ (-400 |#1|)) 227 (|has| |#1| (-542))) (($ (-1091 |#1| (-591 $))) 213 (|has| |#1| (-1018))) (($ |#1|) 193) (($ (-1142)) 184) (($ (-591 $)) 135)) (-3023 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-2909 (($ (-618 $)) 153) (($ $) 152)) (-2329 (((-112) (-113)) 164)) (-2170 (((-112) $ $) 37)) (-1909 (($ (-1142) (-618 $)) 203) (($ (-1142) $ $ $ $) 202) (($ (-1142) $ $ $) 201) (($ (-1142) $ $) 200) (($ (-1142) $) 199)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1142)) 242 (|has| |#1| (-1018))) (($ $ (-618 (-1142))) 241 (|has| |#1| (-1018))) (($ $ (-1142) (-747)) 240 (|has| |#1| (-1018))) (($ $ (-618 (-1142)) (-618 (-747))) 239 (|has| |#1| (-1018)))) (-2885 (((-112) $ $) 131)) (-2886 (((-112) $ $) 130)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 132)) (-3006 (((-112) $ $) 129)) (-4291 (($ $ $) 62) (($ (-1091 |#1| (-591 $)) (-1091 |#1| (-591 $))) 226 (|has| |#1| (-542)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66) (($ $ (-400 (-535))) 87)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-170))) (($ |#1| $) 234 (|has| |#1| (-170)))))
+(((-29 |#1|) (-138) (-13 (-823) (-542))) (T -29))
+((-3517 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-542))))) (-1259 (*1 *2 *1) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *2 (-618 *1)) (-4 *1 (-29 *3)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-542))))) (-1259 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-618 *1)) (-4 *1 (-29 *4)))) (-1258 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-542))))) (-1662 (*1 *2 *1) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *2 (-618 *1)) (-4 *1 (-29 *3)))) (-1258 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-542))))) (-1662 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-618 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-414 |t#1|) (-10 -8 (-15 -3517 ($ $)) (-15 -1259 ((-618 $) $)) (-15 -3517 ($ $ (-1142))) (-15 -1259 ((-618 $) $ (-1142))) (-15 -1258 ($ $)) (-15 -1662 ((-618 $) $)) (-15 -1258 ($ $ (-1142))) (-15 -1662 ((-618 $) $ (-1142)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-594 (-861 (-371))) |has| |#1| (-594 (-861 (-371)))) ((-594 (-861 (-535))) |has| |#1| (-594 (-861 (-535)))) ((-237) . T) ((-283) . T) ((-300) . T) ((-302 $) . T) ((-291) . T) ((-356) . T) ((-370 |#1|) |has| |#1| (-1018)) ((-393 |#1|) . T) ((-405 |#1|) . T) ((-414 |#1|) . T) ((-444) . T) ((-465) |has| |#1| (-465)) ((-505 (-591 $) $) . T) ((-505 $ $) . T) ((-542) . T) ((-624 #1#) . T) ((-624 |#1|) |has| |#1| (-170)) ((-624 $) . T) ((-617 (-535)) -12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) ((-617 |#1|) |has| |#1| (-1018)) ((-694 #1#) . T) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) . T) ((-703) . T) ((-823) . T) ((-871 (-1142)) |has| |#1| (-1018)) ((-857 (-371)) |has| |#1| (-857 (-371))) ((-857 (-535)) |has| |#1| (-857 (-535))) ((-855 |#1|) . T) ((-892) . T) ((-973) . T) ((-1009 (-400 (-535))) -3874 (|has| |#1| (-1009 (-400 (-535)))) (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535))))) ((-1009 (-400 (-917 |#1|))) |has| |#1| (-542)) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 (-591 $)) . T) ((-1009 (-917 |#1|)) |has| |#1| (-1018)) ((-1009 (-1142)) . T) ((-1009 |#1|) . T) ((-1024 #1#) . T) ((-1024 |#1|) |has| |#1| (-170)) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1178) . T) ((-1183) . T))
+((-3217 (((-1055 (-219)) $) NIL)) (-3218 (((-1055 (-219)) $) NIL)) (-3452 (($ $ (-219)) 125)) (-1260 (($ (-917 (-535)) (-1142) (-1142) (-1055 (-400 (-535))) (-1055 (-400 (-535)))) 83)) (-3219 (((-618 (-618 (-914 (-219)))) $) 137)) (-4300 (((-835) $) 149)))
+(((-30) (-13 (-926) (-10 -8 (-15 -1260 ($ (-917 (-535)) (-1142) (-1142) (-1055 (-400 (-535))) (-1055 (-400 (-535))))) (-15 -3452 ($ $ (-219)))))) (T -30))
+((-1260 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-917 (-535))) (-5 *3 (-1142)) (-5 *4 (-1055 (-400 (-535)))) (-5 *1 (-30)))) (-3452 (*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30)))))
+(-13 (-926) (-10 -8 (-15 -1260 ($ (-917 (-535)) (-1142) (-1142) (-1055 (-400 (-535))) (-1055 (-400 (-535))))) (-15 -3452 ($ $ (-219)))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-1101) $) 11)) (-3015 (((-1101) $) 9)) (-3375 (((-112) $ $) NIL)))
+(((-31) (-13 (-1049) (-10 -8 (-15 -3015 ((-1101) $)) (-15 -3567 ((-1101) $))))) (T -31))
+((-3015 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-31)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-31)))))
+(-13 (-1049) (-10 -8 (-15 -3015 ((-1101) $)) (-15 -3567 ((-1101) $))))
+((-3517 ((|#2| (-1136 |#2|) (-1142)) 43)) (-3368 (((-113) (-113)) 56)) (-1652 (((-1136 |#2|) (-591 |#2|)) 133 (|has| |#1| (-1009 (-535))))) (-1263 ((|#2| |#1| (-535)) 122 (|has| |#1| (-1009 (-535))))) (-1261 ((|#2| (-1136 |#2|) |#2|) 30)) (-1262 (((-835) (-618 |#2|)) 85)) (-3519 ((|#2| |#2|) 129 (|has| |#1| (-1009 (-535))))) (-2329 (((-112) (-113)) 18)) (** ((|#2| |#2| (-400 (-535))) 96 (|has| |#1| (-1009 (-535))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3517 (|#2| (-1136 |#2|) (-1142))) (-15 -3368 ((-113) (-113))) (-15 -2329 ((-112) (-113))) (-15 -1261 (|#2| (-1136 |#2|) |#2|)) (-15 -1262 ((-835) (-618 |#2|))) (IF (|has| |#1| (-1009 (-535))) (PROGN (-15 ** (|#2| |#2| (-400 (-535)))) (-15 -1652 ((-1136 |#2|) (-591 |#2|))) (-15 -3519 (|#2| |#2|)) (-15 -1263 (|#2| |#1| (-535)))) |%noBranch|)) (-13 (-823) (-542)) (-414 |#1|)) (T -32))
+((-1263 (*1 *2 *3 *4) (-12 (-5 *4 (-535)) (-4 *2 (-414 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1009 *4)) (-4 *3 (-13 (-823) (-542))))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-1009 (-535))) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-32 *3 *2)) (-4 *2 (-414 *3)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-591 *5)) (-4 *5 (-414 *4)) (-4 *4 (-1009 (-535))) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-1136 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-535))) (-4 *4 (-1009 (-535))) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-32 *4 *2)) (-4 *2 (-414 *4)))) (-1262 (*1 *2 *3) (-12 (-5 *3 (-618 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-835)) (-5 *1 (-32 *4 *5)))) (-1261 (*1 *2 *3 *2) (-12 (-5 *3 (-1136 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-32 *4 *2)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-414 *4)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-32 *3 *4)) (-4 *4 (-414 *3)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *2)) (-5 *4 (-1142)) (-4 *2 (-414 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-823) (-542))))))
+(-10 -7 (-15 -3517 (|#2| (-1136 |#2|) (-1142))) (-15 -3368 ((-113) (-113))) (-15 -2329 ((-112) (-113))) (-15 -1261 (|#2| (-1136 |#2|) |#2|)) (-15 -1262 ((-835) (-618 |#2|))) (IF (|has| |#1| (-1009 (-535))) (PROGN (-15 ** (|#2| |#2| (-400 (-535)))) (-15 -1652 ((-1136 |#2|) (-591 |#2|))) (-15 -3519 (|#2| |#2|)) (-15 -1263 (|#2| |#1| (-535)))) |%noBranch|))
+((-1264 (((-112) $ (-747)) 16)) (-3879 (($) 10)) (-4065 (((-112) $ (-747)) 15)) (-4062 (((-112) $ (-747)) 14)) (-1265 (((-112) $ $) 8)) (-3745 (((-112) $) 13)))
+(((-33 |#1|) (-10 -8 (-15 -3879 (|#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747))) (-15 -3745 ((-112) |#1|)) (-15 -1265 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -3879 (|#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747))) (-15 -3745 ((-112) |#1|)) (-15 -1265 ((-112) |#1| |#1|)))
+((-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-4065 (((-112) $ (-747)) 9)) (-4062 (((-112) $ (-747)) 10)) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-3742 (($ $) 13)) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
(((-34) (-138)) (T -34))
-((-2732 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2281 (*1 *1 *1) (-4 *1 (-34))) (-1461 (*1 *1) (-4 *1 (-34))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4289 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) (-4202 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) (-1323 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) (-1705 (*1 *1) (-4 *1 (-34))) (-3774 (*1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-34)) (-5 *2 (-747)))))
-(-13 (-1179) (-10 -8 (-15 -2732 ((-112) $ $)) (-15 -2281 ($ $)) (-15 -1461 ($)) (-15 -1807 ((-112) $)) (-15 -4289 ((-112) $ (-747))) (-15 -4202 ((-112) $ (-747))) (-15 -1323 ((-112) $ (-747))) (-15 -1705 ($) -2588) (IF (|has| $ (-6 -4336)) (-15 -3774 ((-747) $)) |%noBranch|)))
-(((-1179) . T))
-((-1732 (($ $) 11)) (-1708 (($ $) 10)) (-1757 (($ $) 9)) (-1933 (($ $) 8)) (-1744 (($ $) 7)) (-1721 (($ $) 6)))
+((-1265 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3742 (*1 *1 *1) (-4 *1 (-34))) (-3911 (*1 *1) (-4 *1 (-34))) (-3745 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4062 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) (-4065 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) (-1264 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) (-3879 (*1 *1) (-4 *1 (-34))) (-4299 (*1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-34)) (-5 *2 (-747)))))
+(-13 (-1178) (-10 -8 (-15 -1265 ((-112) $ $)) (-15 -3742 ($ $)) (-15 -3911 ($)) (-15 -3745 ((-112) $)) (-15 -4062 ((-112) $ (-747))) (-15 -4065 ((-112) $ (-747))) (-15 -1264 ((-112) $ (-747))) (-15 -3879 ($) -4294) (IF (|has| $ (-6 -4336)) (-15 -4299 ((-747) $)) |%noBranch|)))
+(((-1178) . T))
+((-3835 (($ $) 11)) (-3833 (($ $) 10)) (-3837 (($ $) 9)) (-3838 (($ $) 8)) (-3836 (($ $) 7)) (-3834 (($ $) 6)))
(((-35) (-138)) (T -35))
-((-1732 (*1 *1 *1) (-4 *1 (-35))) (-1708 (*1 *1 *1) (-4 *1 (-35))) (-1757 (*1 *1 *1) (-4 *1 (-35))) (-1933 (*1 *1 *1) (-4 *1 (-35))) (-1744 (*1 *1 *1) (-4 *1 (-35))) (-1721 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -1721 ($ $)) (-15 -1744 ($ $)) (-15 -1933 ($ $)) (-15 -1757 ($ $)) (-15 -1708 ($ $)) (-15 -1732 ($ $))))
-((-3833 (((-112) $ $) 19 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-4160 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 125)) (-2838 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 148)) (-1342 (($ $) 146)) (-3732 (($) 72) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 71)) (-2932 (((-1230) $ |#1| |#1|) 99 (|has| $ (-6 -4337))) (((-1230) $ (-549) (-549)) 178 (|has| $ (-6 -4337)))) (-3637 (($ $ (-549)) 159 (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-4106 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 200 (|has| $ (-6 -4337))) (($ $) 199 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)) (|has| $ (-6 -4337))))) (-3193 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-1323 (((-112) $ (-747)) 8)) (-3751 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 134 (|has| $ (-6 -4337)))) (-1362 (($ $ $) 155 (|has| $ (-6 -4337)))) (-4277 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 157 (|has| $ (-6 -4337)))) (-2627 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 153 (|has| $ (-6 -4337)))) (-2253 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 189 (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-1192 (-549)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 160 (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ "last" (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 158 (|has| $ (-6 -4337))) (($ $ "rest" $) 156 (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ "first" (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 154 (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ "value" (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 133 (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) 132 (|has| $ (-6 -4337)))) (-3069 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 45 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 216)) (-1488 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 55 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 175 (|has| $ (-6 -4336)))) (-2828 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 147)) (-3489 (((-3 |#2| "failed") |#1| $) 61)) (-1705 (($) 7 T CONST)) (-4273 (($ $) 201 (|has| $ (-6 -4337)))) (-3063 (($ $) 211)) (-3655 (($ $ (-747)) 142) (($ $) 140)) (-2992 (($ $) 214 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-3675 (($ $) 58 (-1536 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336))) (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))))) (-4204 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 46 (|has| $ (-6 -4336))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 220) (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 215 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 54 (|has| $ (-6 -4336))) (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 174 (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 56 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 53 (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 52 (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 176 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 173 (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 172 (|has| $ (-6 -4336)))) (-1878 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 190 (|has| $ (-6 -4337)))) (-1808 ((|#2| $ |#1|) 88) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549)) 188)) (-3149 (((-112) $) 192)) (-2882 (((-549) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 208) (((-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 207 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))) (((-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549)) 206 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-2990 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 30 (|has| $ (-6 -4336))) (((-621 |#2|) $) 79 (|has| $ (-6 -4336))) (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 114 (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) 123)) (-1742 (((-112) $ $) 131 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-3743 (($ (-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 169)) (-4202 (((-112) $ (-747)) 9)) (-3485 ((|#1| $) 96 (|has| |#1| (-823))) (((-549) $) 180 (|has| (-549) (-823)))) (-2862 (($ $ $) 198 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-3019 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-1586 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-1958 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 29 (|has| $ (-6 -4336))) (((-621 |#2|) $) 80 (|has| $ (-6 -4336))) (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 115 (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1066)) (|has| $ (-6 -4336)))) (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336))))) (-1548 ((|#1| $) 95 (|has| |#1| (-823))) (((-549) $) 181 (|has| (-549) (-823)))) (-3574 (($ $ $) 197 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 34 (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4337))) (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 110 (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 109)) (-3524 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 225)) (-4289 (((-112) $ (-747)) 10)) (-3590 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 128)) (-2456 (((-112) $) 124)) (-2677 (((-1124) $) 22 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-3828 (($ $ (-747)) 145) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 143)) (-3449 (((-621 |#1|) $) 63)) (-3665 (((-112) |#1| $) 64)) (-2349 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 39)) (-1709 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 40) (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549)) 219) (($ $ $ (-549)) 218)) (-2614 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549)) 162) (($ $ $ (-549)) 161)) (-3927 (((-621 |#1|) $) 93) (((-621 (-549)) $) 183)) (-1286 (((-112) |#1| $) 92) (((-112) (-549) $) 184)) (-3988 (((-1086) $) 21 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-3645 ((|#2| $) 97 (|has| |#1| (-823))) (($ $ (-747)) 139) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 137)) (-1917 (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 51) (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 171)) (-3158 (($ $ |#2|) 98 (|has| $ (-6 -4337))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 179 (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 41)) (-3342 (((-112) $) 191)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 32 (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 112 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))))) 26 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 25 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 24 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 23 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 (-287 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 121 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 120 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 119 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))))) 118 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066)))) (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 182 (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-1738 (((-621 |#2|) $) 91) (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 185)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 187) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549)) 186) (($ $ (-1192 (-549))) 165) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ "first") 138) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ "value") 126)) (-1953 (((-549) $ $) 129)) (-4252 (($) 49) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 48)) (-1876 (($ $ (-549)) 222) (($ $ (-1192 (-549))) 221)) (-2166 (($ $ (-549)) 164) (($ $ (-1192 (-549))) 163)) (-4187 (((-112) $) 127)) (-1811 (($ $) 151)) (-1679 (($ $) 152 (|has| $ (-6 -4337)))) (-2041 (((-747) $) 150)) (-2277 (($ $) 149)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 31 (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (((-747) |#2| $) 81 (-12 (|has| |#2| (-1066)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 113 (|has| $ (-6 -4336)))) (-1665 (($ $ $ (-549)) 202 (|has| $ (-6 -4337)))) (-2281 (($ $) 13)) (-2844 (((-525) $) 59 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525)))))) (-3853 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 50) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 170)) (-3091 (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 224) (($ $ $) 223)) (-1951 (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 168) (($ (-621 $)) 167) (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 136) (($ $ $) 135)) (-3845 (((-834) $) 18 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834)))))) (-1935 (((-621 $) $) 122)) (-2937 (((-112) $ $) 130 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-1765 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 42)) (-3836 (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") |#1| $) 108)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 33 (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 111 (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) 195 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-2424 (((-112) $ $) 194 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-2388 (((-112) $ $) 20 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-2436 (((-112) $ $) 196 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-2411 (((-112) $ $) 193 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-36 |#1| |#2|) (-138) (-1066) (-1066)) (T -36))
-((-3836 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-5 *2 (-2 (|:| -3337 *3) (|:| -1792 *4))))))
-(-13 (-1155 |t#1| |t#2|) (-642 (-2 (|:| -3337 |t#1|) (|:| -1792 |t#2|))) (-10 -8 (-15 -3836 ((-3 (-2 (|:| -3337 |t#1|) (|:| -1792 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-106 #0=(-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T) ((-101) -1536 (|has| |#2| (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823))) ((-593 (-834)) -1536 (|has| |#2| (-1066)) (|has| |#2| (-593 (-834))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834)))) ((-149 #1=(-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T) ((-594 (-525)) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))) ((-223 #0#) . T) ((-229 #0#) . T) ((-279 #2=(-549) #1#) . T) ((-279 |#1| |#2|) . T) ((-281 #2# #1#) . T) ((-281 |#1| |#2|) . T) ((-302 #1#) -12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((-275 #1#) . T) ((-366 #1#) . T) ((-481 #1#) . T) ((-481 |#2|) . T) ((-584 #2# #1#) . T) ((-584 |#1| |#2|) . T) ((-505 #1# #1#) -12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((-590 |#1| |#2|) . T) ((-627 #1#) . T) ((-642 #1#) . T) ((-823) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)) ((-981 #1#) . T) ((-1066) -1536 (|has| |#2| (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823))) ((-1115 #1#) . T) ((-1155 |#1| |#2|) . T) ((-1179) . T) ((-1213 #1#) . T))
-((-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -3845 (|#1| |#2|)) (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|))) (-38 |#2|) (-170)) (T -37))
-NIL
-(-10 -8 (-15 -3845 (|#1| |#2|)) (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+((-3835 (*1 *1 *1) (-4 *1 (-35))) (-3833 (*1 *1 *1) (-4 *1 (-35))) (-3837 (*1 *1 *1) (-4 *1 (-35))) (-3838 (*1 *1 *1) (-4 *1 (-35))) (-3836 (*1 *1 *1) (-4 *1 (-35))) (-3834 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -3834 ($ $)) (-15 -3836 ($ $)) (-15 -3838 ($ $)) (-15 -3837 ($ $)) (-15 -3833 ($ $)) (-15 -3835 ($ $))))
+((-2887 (((-112) $ $) 19 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3744 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 125)) (-4137 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 148)) (-4139 (($ $) 146)) (-3943 (($) 72) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 71)) (-2296 (((-1230) $ |#1| |#1|) 99 (|has| $ (-6 -4337))) (((-1230) $ (-535) (-535)) 178 (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) 159 (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-1841 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 200 (|has| $ (-6 -4337))) (($ $) 199 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-1264 (((-112) $ (-747)) 8)) (-3346 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 134 (|has| $ (-6 -4337)))) (-4129 (($ $ $) 155 (|has| $ (-6 -4337)))) (-4128 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 157 (|has| $ (-6 -4337)))) (-4131 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 153 (|has| $ (-6 -4337)))) (-4130 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 189 (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-1191 (-535)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 160 (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #1="last" (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 158 (|has| $ (-6 -4337))) (($ $ #2="rest" $) 156 (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #3="first" (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 154 (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #4="value" (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 133 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 132 (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 45 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 216)) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 55 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 175 (|has| $ (-6 -4336)))) (-4138 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 147)) (-2305 (((-3 |#2| #5="failed") |#1| $) 61)) (-3879 (($) 7 T CONST)) (-2368 (($ $) 201 (|has| $ (-6 -4337)))) (-2369 (($ $) 211)) (-4141 (($ $ (-747)) 142) (($ $) 140)) (-2446 (($ $) 214 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-1394 (($ $) 58 (-3874 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336))) (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 46 (|has| $ (-6 -4336))) (((-3 |#2| #5#) |#1| $) 62) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 220) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 215 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 54 (|has| $ (-6 -4336))) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 177 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 174 (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 56 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 53 (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 52 (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 176 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 173 (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 172 (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 190 (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) 88) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) 188)) (-3784 (((-112) $) 192)) (-3761 (((-535) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 208) (((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 207 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) (((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) 206 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 30 (|has| $ (-6 -4336))) (((-618 |#2|) $) 79 (|has| $ (-6 -4336))) (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 114 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 123)) (-3348 (((-112) $ $) 131 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-3960 (($ (-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 169)) (-4065 (((-112) $ (-747)) 9)) (-2298 ((|#1| $) 96 (|has| |#1| (-823))) (((-535) $) 180 (|has| (-535) (-823)))) (-3660 (($ $ $) 198 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3180 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3855 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 29 (|has| $ (-6 -4336))) (((-618 |#2|) $) 80 (|has| $ (-6 -4336))) (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 115 (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336)))) (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336))))) (-2299 ((|#1| $) 95 (|has| |#1| (-823))) (((-535) $) 181 (|has| (-535) (-823)))) (-3661 (($ $ $) 197 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 34 (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4337))) (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 110 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 109)) (-3880 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 225)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 128)) (-3864 (((-112) $) 124)) (-3576 (((-1124) $) 22 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-4140 (($ $ (-747)) 145) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 143)) (-2735 (((-618 |#1|) $) 63)) (-2306 (((-112) |#1| $) 64)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 39)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 40) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) 219) (($ $ $ (-535)) 218)) (-2373 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) 162) (($ $ $ (-535)) 161)) (-2301 (((-618 |#1|) $) 93) (((-618 (-535)) $) 183)) (-2302 (((-112) |#1| $) 92) (((-112) (-535) $) 184)) (-3577 (((-1086) $) 21 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-4143 ((|#2| $) 97 (|has| |#1| (-823))) (($ $ (-747)) 139) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 137)) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 51) (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #6#) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 171)) (-2297 (($ $ |#2|) 98 (|has| $ (-6 -4337))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 179 (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 41)) (-3785 (((-112) $) 191)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 32 (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 112 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) 26 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 25 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 24 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 23 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 121 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 120 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 119 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) 118 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 182 (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-2303 (((-618 |#2|) $) 91) (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 185)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 187) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) 186) (($ $ (-1191 (-535))) 165) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #1#) 144) (($ $ #2#) 141) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #3#) 138) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #4#) 126)) (-3350 (((-535) $ $) 129)) (-1518 (($) 49) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 48)) (-1627 (($ $ (-535)) 222) (($ $ (-1191 (-535))) 221)) (-2374 (($ $ (-535)) 164) (($ $ (-1191 (-535))) 163)) (-3979 (((-112) $) 127)) (-4134 (($ $) 151)) (-4132 (($ $) 152 (|has| $ (-6 -4337)))) (-4135 (((-747) $) 150)) (-4136 (($ $) 149)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 31 (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-747) |#2| $) 81 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 116 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 113 (|has| $ (-6 -4336)))) (-1842 (($ $ $ (-535)) 202 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524)))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 50) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 170)) (-4133 (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 224) (($ $ $) 223)) (-4144 (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 168) (($ (-618 $)) 167) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 136) (($ $ $) 135)) (-4300 (((-835) $) 18 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835)))))) (-3859 (((-618 $) $) 122)) (-3349 (((-112) $ $) 130 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 42)) (-1266 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") |#1| $) 108)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 33 (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 111 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 195 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-2886 (((-112) $ $) 194 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3375 (((-112) $ $) 20 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3005 (((-112) $ $) 196 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3006 (((-112) $ $) 193 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-36 |#1| |#2|) (-138) (-1067) (-1067)) (T -36))
+((-1266 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-2 (|:| -4203 *3) (|:| -2184 *4))))))
+(-13 (-1155 |t#1| |t#2|) (-642 (-2 (|:| -4203 |t#1|) (|:| -2184 |t#2|))) (-10 -8 (-15 -1266 ((-3 (-2 (|:| -4203 |t#1|) (|:| -2184 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-106 #1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((-101) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)) (|has| |#2| (-1067))) ((-593 (-835)) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-1067)) (|has| |#2| (-593 (-835)))) ((-149 #2=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((-594 (-524)) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))) ((-223 #1#) . T) ((-229 #1#) . T) ((-279 #3=(-535) #2#) . T) ((-279 |#1| |#2|) . T) ((-281 #3# #2#) . T) ((-281 |#1| |#2|) . T) ((-302 #2#) -12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-275 #2#) . T) ((-365 #2#) . T) ((-481 #2#) . T) ((-481 |#2|) . T) ((-584 #3# #2#) . T) ((-584 |#1| |#2|) . T) ((-505 #2# #2#) -12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-590 |#1| |#2|) . T) ((-627 #2#) . T) ((-642 #2#) . T) ((-823) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)) ((-981 #2#) . T) ((-1067) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)) (|has| |#2| (-1067))) ((-1115 #2#) . T) ((-1155 |#1| |#2|) . T) ((-1178) . T) ((-1213 #2#) . T))
+((-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-38 |#2|) (-170)) (T -37))
+NIL
+(-10 -8 (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
(((-38 |#1|) (-138) (-170)) (T -38))
-((-3845 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170)))))
-(-13 (-1018) (-694 |t#1|) (-10 -8 (-15 -3845 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-1445 (((-411 |#1|) |#1|) 41)) (-2120 (((-411 |#1|) |#1|) 30) (((-411 |#1|) |#1| (-621 (-48))) 33)) (-2361 (((-112) |#1|) 56)))
-(((-39 |#1|) (-10 -7 (-15 -2120 ((-411 |#1|) |#1| (-621 (-48)))) (-15 -2120 ((-411 |#1|) |#1|)) (-15 -1445 ((-411 |#1|) |#1|)) (-15 -2361 ((-112) |#1|))) (-1201 (-48))) (T -39))
-((-2361 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1201 (-48))))) (-1445 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1201 (-48))))) (-2120 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1201 (-48))))) (-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-48))) (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1201 (-48))))))
-(-10 -7 (-15 -2120 ((-411 |#1|) |#1| (-621 (-48)))) (-15 -2120 ((-411 |#1|) |#1|)) (-15 -1445 ((-411 |#1|) |#1|)) (-15 -2361 ((-112) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2098 (((-2 (|:| |num| (-1225 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-2408 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2477 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-3102 (((-665 (-400 |#2|)) (-1225 $)) NIL) (((-665 (-400 |#2|))) NIL)) (-2905 (((-400 |#2|) $) NIL)) (-2572 (((-1152 (-892) (-747)) (-549)) NIL (|has| (-400 |#2|) (-342)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3513 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-2647 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3615 (((-747)) NIL (|has| (-400 |#2|) (-361)))) (-2163 (((-112)) NIL)) (-2380 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (|has| (-400 |#2|) (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-400 |#2|) (-1009 (-400 (-549))))) (((-3 (-400 |#2|) "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| (-400 |#2|) (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| (-400 |#2|) (-1009 (-400 (-549))))) (((-400 |#2|) $) NIL)) (-2127 (($ (-1225 (-400 |#2|)) (-1225 $)) NIL) (($ (-1225 (-400 |#2|))) 57) (($ (-1225 |#2|) |#2|) 125)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-342)))) (-2094 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2988 (((-665 (-400 |#2|)) $ (-1225 $)) NIL) (((-665 (-400 |#2|)) $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| (-400 |#2|) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| (-400 |#2|) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-400 |#2|))) (|:| |vec| (-1225 (-400 |#2|)))) (-665 $) (-1225 $)) NIL) (((-665 (-400 |#2|)) (-665 $)) NIL)) (-2648 (((-1225 $) (-1225 $)) NIL)) (-2558 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-3976 (((-3 $ "failed") $) NIL)) (-1559 (((-621 (-621 |#1|))) NIL (|has| |#1| (-361)))) (-2479 (((-112) |#1| |#1|) NIL)) (-3122 (((-892)) NIL)) (-3238 (($) NIL (|has| (-400 |#2|) (-361)))) (-2966 (((-112)) NIL)) (-3294 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2066 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| (-400 |#2|) (-356)))) (-4212 (($ $) NIL)) (-1327 (($) NIL (|has| (-400 |#2|) (-342)))) (-1729 (((-112) $) NIL (|has| (-400 |#2|) (-342)))) (-3225 (($ $ (-747)) NIL (|has| (-400 |#2|) (-342))) (($ $) NIL (|has| (-400 |#2|) (-342)))) (-2471 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-2078 (((-892) $) NIL (|has| (-400 |#2|) (-342))) (((-809 (-892)) $) NIL (|has| (-400 |#2|) (-342)))) (-3987 (((-112) $) NIL)) (-1730 (((-747)) NIL)) (-3823 (((-1225 $) (-1225 $)) 102)) (-4117 (((-400 |#2|) $) NIL)) (-1272 (((-621 (-923 |#1|)) (-1142)) NIL (|has| |#1| (-356)))) (-3982 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-342)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| (-400 |#2|) (-356)))) (-4030 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-2723 (((-892) $) NIL (|has| (-400 |#2|) (-361)))) (-2546 ((|#3| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2677 (((-1124) $) NIL)) (-3053 (((-1230) (-747)) 79)) (-1568 (((-665 (-400 |#2|))) 51)) (-3652 (((-665 (-400 |#2|))) 44)) (-1991 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4242 (($ (-1225 |#2|) |#2|) 126)) (-3000 (((-665 (-400 |#2|))) 45)) (-2865 (((-665 (-400 |#2|))) 43)) (-1345 (((-2 (|:| |num| (-665 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1880 (((-2 (|:| |num| (-1225 |#2|)) (|:| |den| |#2|)) $) 64)) (-3683 (((-1225 $)) 42)) (-2581 (((-1225 $)) 41)) (-3888 (((-112) $) NIL)) (-4126 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3060 (($) NIL (|has| (-400 |#2|) (-342)) CONST)) (-3491 (($ (-892)) NIL (|has| (-400 |#2|) (-361)))) (-1787 (((-3 |#2| "failed")) NIL)) (-3988 (((-1086) $) NIL)) (-2203 (((-747)) NIL)) (-4246 (($) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| (-400 |#2|) (-356)))) (-3726 (($ (-621 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL (|has| (-400 |#2|) (-342)))) (-2120 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-2038 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| (-400 |#2|) (-356)))) (-4091 (((-747) $) NIL (|has| (-400 |#2|) (-356)))) (-3340 ((|#1| $ |#1| |#1|) NIL)) (-3697 (((-3 |#2| "failed")) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3086 (((-400 |#2|) (-1225 $)) NIL) (((-400 |#2|)) 39)) (-2591 (((-747) $) NIL (|has| (-400 |#2|) (-342))) (((-3 (-747) "failed") $ $) NIL (|has| (-400 |#2|) (-342)))) (-3455 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-747)) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-1369 (((-665 (-400 |#2|)) (-1225 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-2539 ((|#3|) 50)) (-3191 (($) NIL (|has| (-400 |#2|) (-342)))) (-4163 (((-1225 (-400 |#2|)) $ (-1225 $)) NIL) (((-665 (-400 |#2|)) (-1225 $) (-1225 $)) NIL) (((-1225 (-400 |#2|)) $) 58) (((-665 (-400 |#2|)) (-1225 $)) 103)) (-2844 (((-1225 (-400 |#2|)) $) NIL) (($ (-1225 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| (-400 |#2|) (-342)))) (-2995 (((-1225 $) (-1225 $)) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-549))) NIL (-1536 (|has| (-400 |#2|) (-1009 (-400 (-549)))) (|has| (-400 |#2|) (-356)))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3407 (($ $) NIL (|has| (-400 |#2|) (-342))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-4041 ((|#3| $) NIL)) (-1723 (((-747)) NIL)) (-3291 (((-112)) 37)) (-1944 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-3420 (((-1225 $)) 93)) (-4053 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3169 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2164 (((-112)) NIL)) (-3275 (($) 16 T CONST)) (-3287 (($) 26 T CONST)) (-1700 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-747)) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-549)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-549))) NIL (|has| (-400 |#2|) (-356)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -3053 ((-1230) (-747))))) (-356) (-1201 |#1|) (-1201 (-400 |#2|)) |#3|) (T -40))
-((-3053 (*1 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-4 *5 (-1201 *4)) (-5 *2 (-1230)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1201 (-400 *5))) (-14 *7 *6))))
-(-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -3053 ((-1230) (-747)))))
-((-2174 ((|#2| |#2|) 48)) (-3030 ((|#2| |#2|) 120 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-549)))))) (-1416 ((|#2| |#2|) 87 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-549)))))) (-4064 ((|#2| |#2|) 88 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-549)))))) (-3896 ((|#2| (-114) |#2| (-747)) 116 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-549)))))) (-2108 (((-1138 |#2|) |#2|) 45)) (-2534 ((|#2| |#2| (-621 (-592 |#2|))) 18) ((|#2| |#2| (-621 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -2174 (|#2| |#2|)) (-15 -2534 (|#2| |#2|)) (-15 -2534 (|#2| |#2| |#2|)) (-15 -2534 (|#2| |#2| (-621 |#2|))) (-15 -2534 (|#2| |#2| (-621 (-592 |#2|)))) (-15 -2108 ((-1138 |#2|) |#2|)) (IF (|has| |#1| (-823)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1009 (-549))) (IF (|has| |#2| (-423 |#1|)) (PROGN (-15 -4064 (|#2| |#2|)) (-15 -1416 (|#2| |#2|)) (-15 -3030 (|#2| |#2|)) (-15 -3896 (|#2| (-114) |#2| (-747)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-541) (-13 (-356) (-295) (-10 -8 (-15 -1393 ((-1091 |#1| (-592 $)) $)) (-15 -1404 ((-1091 |#1| (-592 $)) $)) (-15 -3845 ($ (-1091 |#1| (-592 $))))))) (T -41))
-((-3896 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-747)) (-4 *5 (-444)) (-4 *5 (-823)) (-4 *5 (-1009 (-549))) (-4 *5 (-541)) (-5 *1 (-41 *5 *2)) (-4 *2 (-423 *5)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1393 ((-1091 *5 (-592 $)) $)) (-15 -1404 ((-1091 *5 (-592 $)) $)) (-15 -3845 ($ (-1091 *5 (-592 $))))))))) (-3030 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-549))) (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1393 ((-1091 *3 (-592 $)) $)) (-15 -1404 ((-1091 *3 (-592 $)) $)) (-15 -3845 ($ (-1091 *3 (-592 $))))))))) (-1416 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-549))) (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1393 ((-1091 *3 (-592 $)) $)) (-15 -1404 ((-1091 *3 (-592 $)) $)) (-15 -3845 ($ (-1091 *3 (-592 $))))))))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-549))) (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1393 ((-1091 *3 (-592 $)) $)) (-15 -1404 ((-1091 *3 (-592 $)) $)) (-15 -3845 ($ (-1091 *3 (-592 $))))))))) (-2108 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-1138 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-356) (-295) (-10 -8 (-15 -1393 ((-1091 *4 (-592 $)) $)) (-15 -1404 ((-1091 *4 (-592 $)) $)) (-15 -3845 ($ (-1091 *4 (-592 $))))))))) (-2534 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-592 *2))) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1393 ((-1091 *4 (-592 $)) $)) (-15 -1404 ((-1091 *4 (-592 $)) $)) (-15 -3845 ($ (-1091 *4 (-592 $))))))) (-4 *4 (-541)) (-5 *1 (-41 *4 *2)))) (-2534 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1393 ((-1091 *4 (-592 $)) $)) (-15 -1404 ((-1091 *4 (-592 $)) $)) (-15 -3845 ($ (-1091 *4 (-592 $))))))) (-4 *4 (-541)) (-5 *1 (-41 *4 *2)))) (-2534 (*1 *2 *2 *2) (-12 (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1393 ((-1091 *3 (-592 $)) $)) (-15 -1404 ((-1091 *3 (-592 $)) $)) (-15 -3845 ($ (-1091 *3 (-592 $))))))))) (-2534 (*1 *2 *2) (-12 (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1393 ((-1091 *3 (-592 $)) $)) (-15 -1404 ((-1091 *3 (-592 $)) $)) (-15 -3845 ($ (-1091 *3 (-592 $))))))))) (-2174 (*1 *2 *2) (-12 (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1393 ((-1091 *3 (-592 $)) $)) (-15 -1404 ((-1091 *3 (-592 $)) $)) (-15 -3845 ($ (-1091 *3 (-592 $))))))))))
-(-10 -7 (-15 -2174 (|#2| |#2|)) (-15 -2534 (|#2| |#2|)) (-15 -2534 (|#2| |#2| |#2|)) (-15 -2534 (|#2| |#2| (-621 |#2|))) (-15 -2534 (|#2| |#2| (-621 (-592 |#2|)))) (-15 -2108 ((-1138 |#2|) |#2|)) (IF (|has| |#1| (-823)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1009 (-549))) (IF (|has| |#2| (-423 |#1|)) (PROGN (-15 -4064 (|#2| |#2|)) (-15 -1416 (|#2| |#2|)) (-15 -3030 (|#2| |#2|)) (-15 -3896 (|#2| (-114) |#2| (-747)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2120 (((-411 (-1138 |#3|)) (-1138 |#3|) (-621 (-48))) 23) (((-411 |#3|) |#3| (-621 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2120 ((-411 |#3|) |#3| (-621 (-48)))) (-15 -2120 ((-411 (-1138 |#3|)) (-1138 |#3|) (-621 (-48))))) (-823) (-769) (-920 (-48) |#2| |#1|)) (T -42))
-((-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-48))) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *7 (-920 (-48) *6 *5)) (-5 *2 (-411 (-1138 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1138 *7)))) (-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-48))) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *2 (-411 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-920 (-48) *6 *5)))))
-(-10 -7 (-15 -2120 ((-411 |#3|) |#3| (-621 (-48)))) (-15 -2120 ((-411 (-1138 |#3|)) (-1138 |#3|) (-621 (-48)))))
-((-2826 (((-747) |#2|) 65)) (-3586 (((-747) |#2|) 68)) (-2016 (((-621 |#2|)) 33)) (-1474 (((-747) |#2|) 67)) (-3460 (((-747) |#2|) 64)) (-2653 (((-747) |#2|) 66)) (-2355 (((-621 (-665 |#1|))) 60)) (-4143 (((-621 |#2|)) 55)) (-2181 (((-621 |#2|) |#2|) 43)) (-3514 (((-621 |#2|)) 57)) (-4115 (((-621 |#2|)) 56)) (-1858 (((-621 (-665 |#1|))) 48)) (-2507 (((-621 |#2|)) 54)) (-3078 (((-621 |#2|) |#2|) 42)) (-4280 (((-621 |#2|)) 50)) (-3539 (((-621 (-665 |#1|))) 61)) (-2269 (((-621 |#2|)) 59)) (-3420 (((-1225 |#2|) (-1225 |#2|)) 84 (|has| |#1| (-300)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -1474 ((-747) |#2|)) (-15 -3586 ((-747) |#2|)) (-15 -3460 ((-747) |#2|)) (-15 -2826 ((-747) |#2|)) (-15 -2653 ((-747) |#2|)) (-15 -4280 ((-621 |#2|))) (-15 -3078 ((-621 |#2|) |#2|)) (-15 -2181 ((-621 |#2|) |#2|)) (-15 -2507 ((-621 |#2|))) (-15 -4143 ((-621 |#2|))) (-15 -4115 ((-621 |#2|))) (-15 -3514 ((-621 |#2|))) (-15 -2269 ((-621 |#2|))) (-15 -1858 ((-621 (-665 |#1|)))) (-15 -2355 ((-621 (-665 |#1|)))) (-15 -3539 ((-621 (-665 |#1|)))) (-15 -2016 ((-621 |#2|))) (IF (|has| |#1| (-300)) (-15 -3420 ((-1225 |#2|) (-1225 |#2|))) |%noBranch|)) (-541) (-410 |#1|)) (T -43))
-((-3420 (*1 *2 *2) (-12 (-5 *2 (-1225 *4)) (-4 *4 (-410 *3)) (-4 *3 (-300)) (-4 *3 (-541)) (-5 *1 (-43 *3 *4)))) (-2016 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-3539 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 (-665 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2355 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 (-665 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-1858 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 (-665 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2269 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-3514 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-4115 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-4143 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2507 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2181 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-3078 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-4280 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2653 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-2826 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-3586 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-1474 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))))
-(-10 -7 (-15 -1474 ((-747) |#2|)) (-15 -3586 ((-747) |#2|)) (-15 -3460 ((-747) |#2|)) (-15 -2826 ((-747) |#2|)) (-15 -2653 ((-747) |#2|)) (-15 -4280 ((-621 |#2|))) (-15 -3078 ((-621 |#2|) |#2|)) (-15 -2181 ((-621 |#2|) |#2|)) (-15 -2507 ((-621 |#2|))) (-15 -4143 ((-621 |#2|))) (-15 -4115 ((-621 |#2|))) (-15 -3514 ((-621 |#2|))) (-15 -2269 ((-621 |#2|))) (-15 -1858 ((-621 (-665 |#1|)))) (-15 -2355 ((-621 (-665 |#1|)))) (-15 -3539 ((-621 (-665 |#1|)))) (-15 -2016 ((-621 |#2|))) (IF (|has| |#1| (-300)) (-15 -3420 ((-1225 |#2|) (-1225 |#2|))) |%noBranch|))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2699 (((-3 $ "failed")) NIL (|has| |#1| (-541)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2818 (((-1225 (-665 |#1|)) (-1225 $)) NIL) (((-1225 (-665 |#1|))) 24)) (-1955 (((-1225 $)) 51)) (-1705 (($) NIL T CONST)) (-2983 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) NIL (|has| |#1| (-541)))) (-3917 (((-3 $ "failed")) NIL (|has| |#1| (-541)))) (-1418 (((-665 |#1|) (-1225 $)) NIL) (((-665 |#1|)) NIL)) (-1399 ((|#1| $) NIL)) (-2811 (((-665 |#1|) $ (-1225 $)) NIL) (((-665 |#1|) $) NIL)) (-3923 (((-3 $ "failed") $) NIL (|has| |#1| (-541)))) (-4165 (((-1138 (-923 |#1|))) NIL (|has| |#1| (-356)))) (-2353 (($ $ (-892)) NIL)) (-1618 ((|#1| $) NIL)) (-4057 (((-1138 |#1|) $) NIL (|has| |#1| (-541)))) (-2351 ((|#1| (-1225 $)) NIL) ((|#1|) NIL)) (-3254 (((-1138 |#1|) $) NIL)) (-2186 (((-112)) 87)) (-2127 (($ (-1225 |#1|) (-1225 $)) NIL) (($ (-1225 |#1|)) NIL)) (-3976 (((-3 $ "failed") $) 14 (|has| |#1| (-541)))) (-3122 (((-892)) 52)) (-1373 (((-112)) NIL)) (-2377 (($ $ (-892)) NIL)) (-3995 (((-112)) NIL)) (-4285 (((-112)) NIL)) (-3055 (((-112)) 89)) (-4263 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) NIL (|has| |#1| (-541)))) (-1497 (((-3 $ "failed")) NIL (|has| |#1| (-541)))) (-1779 (((-665 |#1|) (-1225 $)) NIL) (((-665 |#1|)) NIL)) (-1359 ((|#1| $) NIL)) (-1315 (((-665 |#1|) $ (-1225 $)) NIL) (((-665 |#1|) $) NIL)) (-2193 (((-3 $ "failed") $) NIL (|has| |#1| (-541)))) (-2014 (((-1138 (-923 |#1|))) NIL (|has| |#1| (-356)))) (-2881 (($ $ (-892)) NIL)) (-3142 ((|#1| $) NIL)) (-2568 (((-1138 |#1|) $) NIL (|has| |#1| (-541)))) (-2742 ((|#1| (-1225 $)) NIL) ((|#1|) NIL)) (-2934 (((-1138 |#1|) $) NIL)) (-2342 (((-112)) 86)) (-2677 (((-1124) $) NIL)) (-1768 (((-112)) 93)) (-4176 (((-112)) 92)) (-4086 (((-112)) 94)) (-3988 (((-1086) $) NIL)) (-2036 (((-112)) 88)) (-3340 ((|#1| $ (-549)) 54)) (-4163 (((-1225 |#1|) $ (-1225 $)) 48) (((-665 |#1|) (-1225 $) (-1225 $)) NIL) (((-1225 |#1|) $) 28) (((-665 |#1|) (-1225 $)) NIL)) (-2844 (((-1225 |#1|) $) NIL) (($ (-1225 |#1|)) NIL)) (-3619 (((-621 (-923 |#1|)) (-1225 $)) NIL) (((-621 (-923 |#1|))) NIL)) (-1911 (($ $ $) NIL)) (-2138 (((-112)) 84)) (-3845 (((-834) $) 69) (($ (-1225 |#1|)) 22)) (-3420 (((-1225 $)) 45)) (-1600 (((-621 (-1225 |#1|))) NIL (|has| |#1| (-541)))) (-4172 (($ $ $ $) NIL)) (-3596 (((-112)) 82)) (-3592 (($ (-665 |#1|) $) 18)) (-1892 (($ $ $) NIL)) (-2221 (((-112)) 85)) (-1654 (((-112)) 83)) (-1615 (((-112)) 81)) (-3275 (($) NIL T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1108 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-410 |#1|) (-624 (-1108 |#2| |#1|)) (-10 -8 (-15 -3845 ($ (-1225 |#1|))))) (-356) (-892) (-621 (-1142)) (-1225 (-665 |#1|))) (T -44))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-356)) (-14 *6 (-1225 (-665 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))))))
-(-13 (-410 |#1|) (-624 (-1108 |#2| |#1|)) (-10 -8 (-15 -3845 ($ (-1225 |#1|)))))
-((-3833 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-4160 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-2838 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-1342 (($ $) NIL)) (-3732 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2932 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337))) (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-3637 (($ $ (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-4106 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823))))) (-3193 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-1323 (((-112) $ (-747)) NIL)) (-3751 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4337)))) (-1362 (($ $ $) 27 (|has| $ (-6 -4337)))) (-4277 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4337)))) (-2627 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 29 (|has| $ (-6 -4337)))) (-2253 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-1192 (-549)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ "last" (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4337))) (($ $ "rest" $) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ "first" (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ "value" (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) NIL (|has| $ (-6 -4337)))) (-3069 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL)) (-1488 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2828 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-3489 (((-3 |#2| "failed") |#1| $) 37)) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-3655 (($ $ (-747)) NIL) (($ $) 24)) (-2992 (($ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-4204 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL) (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4337)))) (-1808 ((|#2| $ |#1|) NIL) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549)) NIL)) (-3149 (((-112) $) NIL)) (-2882 (((-549) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL) (((-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))) (((-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549)) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-2990 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 18 (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336))) (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 18 (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) NIL)) (-1742 (((-112) $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-3743 (($ (-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 ((|#1| $) NIL (|has| |#1| (-823))) (((-549) $) 32 (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-3019 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-1586 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-1958 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336))) (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066)))) (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-1548 ((|#1| $) NIL (|has| |#1| (-823))) (((-549) $) 34 (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL)) (-3524 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-3590 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL)) (-2456 (((-112) $) NIL)) (-2677 (((-1124) $) 42 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3828 (($ $ (-747)) NIL) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-3449 (((-621 |#1|) $) 20)) (-3665 (((-112) |#1| $) NIL)) (-2349 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL) (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2614 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3927 (((-621 |#1|) $) NIL) (((-621 (-549)) $) NIL)) (-1286 (((-112) |#1| $) NIL) (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3645 ((|#2| $) NIL (|has| |#1| (-823))) (($ $ (-747)) NIL) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 23)) (-1917 (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL) (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL)) (-3158 (($ $ |#2|) NIL (|has| $ (-6 -4337))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-3342 (((-112) $) NIL)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066)))) (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-1738 (((-621 |#2|) $) NIL) (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 17)) (-1807 (((-112) $) 16)) (-1461 (($) 13)) (-3340 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ (-549)) NIL) (($ $ (-1192 (-549))) NIL) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ "first") NIL) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $ "value") NIL)) (-1953 (((-549) $ $) NIL)) (-4252 (($) 12) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-1876 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-2166 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-4187 (((-112) $) NIL)) (-1811 (($ $) NIL)) (-1679 (($ $) NIL (|has| $ (-6 -4337)))) (-2041 (((-747) $) NIL)) (-2277 (($ $) NIL)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3091 (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL) (($ $ $) NIL)) (-1951 (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL) (($ (-621 $)) NIL) (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 25) (($ $ $) NIL)) (-3845 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-1935 (((-621 $) $) NIL)) (-2937 (((-112) $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-1765 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3836 (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") |#1| $) 44)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-2424 (((-112) $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-2388 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-2436 (((-112) $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-2411 (((-112) $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-823)))) (-3774 (((-747) $) 22 (|has| $ (-6 -4336)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1066) (-1066)) (T -45))
+((-4300 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170)))))
+(-13 (-1018) (-694 |t#1|) (-10 -8 (-15 -4300 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-3760 (((-398 |#1|) |#1|) 41)) (-4075 (((-398 |#1|) |#1|) 30) (((-398 |#1|) |#1| (-618 (-48))) 33)) (-1267 (((-112) |#1|) 56)))
+(((-39 |#1|) (-10 -7 (-15 -4075 ((-398 |#1|) |#1| (-618 (-48)))) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3760 ((-398 |#1|) |#1|)) (-15 -1267 ((-112) |#1|))) (-1200 (-48))) (T -39))
+((-1267 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48))))) (-3760 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48))))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48))))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-48))) (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48))))))
+(-10 -7 (-15 -4075 ((-398 |#1|) |#1| (-618 (-48)))) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3760 ((-398 |#1|) |#1|)) (-15 -1267 ((-112) |#1|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1758 (((-2 (|:| |num| (-1224 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-2171 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2169 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-1896 (((-665 (-400 |#2|)) (-1224 $)) NIL) (((-665 (-400 |#2|))) NIL)) (-3672 (((-400 |#2|) $) NIL)) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-400 |#2|) (-343)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4312 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1700 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3454 (((-747)) NIL (|has| (-400 |#2|) (-361)))) (-1772 (((-112)) NIL)) (-1771 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| (-400 |#2|) (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| (-400 |#2|) (-1009 (-400 (-535))))) (((-3 (-400 |#2|) #1#) $) NIL)) (-3490 (((-535) $) NIL (|has| (-400 |#2|) (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| (-400 |#2|) (-1009 (-400 (-535))))) (((-400 |#2|) $) NIL)) (-1906 (($ (-1224 (-400 |#2|)) (-1224 $)) NIL) (($ (-1224 (-400 |#2|))) 57) (($ (-1224 |#2|) |#2|) 125)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-343)))) (-2883 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1895 (((-665 (-400 |#2|)) $ (-1224 $)) NIL) (((-665 (-400 |#2|)) $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-400 |#2|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-400 |#2|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-400 |#2|))) (|:| |vec| (-1224 (-400 |#2|)))) (-665 $) (-1224 $)) NIL) (((-665 (-400 |#2|)) (-665 $)) NIL)) (-1763 (((-1224 $) (-1224 $)) NIL)) (-4185 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-3804 (((-3 $ "failed") $) NIL)) (-1750 (((-618 (-618 |#1|))) NIL (|has| |#1| (-361)))) (-1775 (((-112) |#1| |#1|) NIL)) (-3427 (((-890)) NIL)) (-3315 (($) NIL (|has| (-400 |#2|) (-361)))) (-1770 (((-112)) NIL)) (-1769 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2882 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| (-400 |#2|) (-356)))) (-3840 (($ $) NIL)) (-3154 (($) NIL (|has| (-400 |#2|) (-343)))) (-1791 (((-112) $) NIL (|has| (-400 |#2|) (-343)))) (-1881 (($ $ (-747)) NIL (|has| (-400 |#2|) (-343))) (($ $) NIL (|has| (-400 |#2|) (-343)))) (-4069 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-4114 (((-890) $) NIL (|has| (-400 |#2|) (-343))) (((-808 (-890)) $) NIL (|has| (-400 |#2|) (-343)))) (-2493 (((-112) $) NIL)) (-3719 (((-747)) NIL)) (-1764 (((-1224 $) (-1224 $)) 102)) (-3450 (((-400 |#2|) $) NIL)) (-1751 (((-618 (-917 |#1|)) (-1142)) NIL (|has| |#1| (-356)))) (-3786 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-343)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| (-400 |#2|) (-356)))) (-2125 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-2121 (((-890) $) NIL (|has| (-400 |#2|) (-361)))) (-3401 ((|#3| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3576 (((-1124) $) NIL)) (-1268 (((-1230) (-747)) 79)) (-1759 (((-665 (-400 |#2|))) 51)) (-1761 (((-665 (-400 |#2|))) 44)) (-2725 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-1756 (($ (-1224 |#2|) |#2|) 126)) (-1760 (((-665 (-400 |#2|))) 45)) (-1762 (((-665 (-400 |#2|))) 43)) (-1755 (((-2 (|:| |num| (-665 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1757 (((-2 (|:| |num| (-1224 |#2|)) (|:| |den| |#2|)) $) 64)) (-1768 (((-1224 $)) 42)) (-4261 (((-1224 $)) 41)) (-1767 (((-112) $) NIL)) (-1766 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3787 (($) NIL (|has| (-400 |#2|) (-343)) CONST)) (-2483 (($ (-890)) NIL (|has| (-400 |#2|) (-361)))) (-1753 (((-3 |#2| #3="failed")) NIL)) (-3577 (((-1086) $) NIL)) (-1777 (((-747)) NIL)) (-2492 (($) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| (-400 |#2|) (-356)))) (-3478 (($ (-618 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-400 |#2|) (-343)))) (-4075 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3803 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1699 (((-747) $) NIL (|has| (-400 |#2|) (-356)))) (-4142 ((|#1| $ |#1| |#1|) NIL)) (-1754 (((-3 |#2| #3#)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-4100 (((-400 |#2|) (-1224 $)) NIL) (((-400 |#2|)) 39)) (-1882 (((-747) $) NIL (|has| (-400 |#2|) (-343))) (((-3 (-747) "failed") $ $) NIL (|has| (-400 |#2|) (-343)))) (-4153 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-618 (-1142))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-747)) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-2491 (((-665 (-400 |#2|)) (-1224 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-3519 ((|#3|) 50)) (-1785 (($) NIL (|has| (-400 |#2|) (-343)))) (-3558 (((-1224 (-400 |#2|)) $ (-1224 $)) NIL) (((-665 (-400 |#2|)) (-1224 $) (-1224 $)) NIL) (((-1224 (-400 |#2|)) $) 58) (((-665 (-400 |#2|)) (-1224 $)) 103)) (-4313 (((-1224 (-400 |#2|)) $) NIL) (($ (-1224 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| (-400 |#2|) (-343)))) (-1765 (((-1224 $) (-1224 $)) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-535))) NIL (-3874 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1009 (-400 (-535)))))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3023 (($ $) NIL (|has| (-400 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-2689 ((|#3| $) NIL)) (-3444 (((-747)) NIL)) (-1774 (((-112)) 37)) (-1773 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-2123 (((-1224 $)) 93)) (-2170 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-1752 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1776 (((-112)) NIL)) (-2979 (($) 16 T CONST)) (-2985 (($) 26 T CONST)) (-2990 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-618 (-1142))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-747)) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-535)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-535))) NIL (|has| (-400 |#2|) (-356)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -1268 ((-1230) (-747))))) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) |#3|) (T -40))
+((-1268 (*1 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-4 *5 (-1200 *4)) (-5 *2 (-1230)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1200 (-400 *5))) (-14 *7 *6))))
+(-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -1268 ((-1230) (-747)))))
+((-1269 ((|#2| |#2|) 48)) (-1274 ((|#2| |#2|) 120 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-535)))))) (-1273 ((|#2| |#2|) 87 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-535)))))) (-1272 ((|#2| |#2|) 88 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-535)))))) (-1275 ((|#2| (-113) |#2| (-747)) 116 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-535)))))) (-1271 (((-1136 |#2|) |#2|) 45)) (-1270 ((|#2| |#2| (-618 (-591 |#2|))) 18) ((|#2| |#2| (-618 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -1269 (|#2| |#2|)) (-15 -1270 (|#2| |#2|)) (-15 -1270 (|#2| |#2| |#2|)) (-15 -1270 (|#2| |#2| (-618 |#2|))) (-15 -1270 (|#2| |#2| (-618 (-591 |#2|)))) (-15 -1271 ((-1136 |#2|) |#2|)) (IF (|has| |#1| (-823)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1009 (-535))) (IF (|has| |#2| (-414 |#1|)) (PROGN (-15 -1272 (|#2| |#2|)) (-15 -1273 (|#2| |#2|)) (-15 -1274 (|#2| |#2|)) (-15 -1275 (|#2| (-113) |#2| (-747)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-542) (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 |#1| (-591 $)) $)) (-15 -3318 ((-1091 |#1| (-591 $)) $)) (-15 -4300 ($ (-1091 |#1| (-591 $))))))) (T -41))
+((-1275 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-747)) (-4 *5 (-444)) (-4 *5 (-823)) (-4 *5 (-1009 (-535))) (-4 *5 (-542)) (-5 *1 (-41 *5 *2)) (-4 *2 (-414 *5)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *5 (-591 $)) $)) (-15 -3318 ((-1091 *5 (-591 $)) $)) (-15 -4300 ($ (-1091 *5 (-591 $))))))))) (-1274 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-535))) (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) (-15 -3318 ((-1091 *3 (-591 $)) $)) (-15 -4300 ($ (-1091 *3 (-591 $))))))))) (-1273 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-535))) (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) (-15 -3318 ((-1091 *3 (-591 $)) $)) (-15 -4300 ($ (-1091 *3 (-591 $))))))))) (-1272 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-535))) (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) (-15 -3318 ((-1091 *3 (-591 $)) $)) (-15 -4300 ($ (-1091 *3 (-591 $))))))))) (-1271 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-1136 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *4 (-591 $)) $)) (-15 -3318 ((-1091 *4 (-591 $)) $)) (-15 -4300 ($ (-1091 *4 (-591 $))))))))) (-1270 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-591 *2))) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *4 (-591 $)) $)) (-15 -3318 ((-1091 *4 (-591 $)) $)) (-15 -4300 ($ (-1091 *4 (-591 $))))))) (-4 *4 (-542)) (-5 *1 (-41 *4 *2)))) (-1270 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *4 (-591 $)) $)) (-15 -3318 ((-1091 *4 (-591 $)) $)) (-15 -4300 ($ (-1091 *4 (-591 $))))))) (-4 *4 (-542)) (-5 *1 (-41 *4 *2)))) (-1270 (*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) (-15 -3318 ((-1091 *3 (-591 $)) $)) (-15 -4300 ($ (-1091 *3 (-591 $))))))))) (-1270 (*1 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) (-15 -3318 ((-1091 *3 (-591 $)) $)) (-15 -4300 ($ (-1091 *3 (-591 $))))))))) (-1269 (*1 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $)) (-15 -3318 ((-1091 *3 (-591 $)) $)) (-15 -4300 ($ (-1091 *3 (-591 $))))))))))
+(-10 -7 (-15 -1269 (|#2| |#2|)) (-15 -1270 (|#2| |#2|)) (-15 -1270 (|#2| |#2| |#2|)) (-15 -1270 (|#2| |#2| (-618 |#2|))) (-15 -1270 (|#2| |#2| (-618 (-591 |#2|)))) (-15 -1271 ((-1136 |#2|) |#2|)) (IF (|has| |#1| (-823)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1009 (-535))) (IF (|has| |#2| (-414 |#1|)) (PROGN (-15 -1272 (|#2| |#2|)) (-15 -1273 (|#2| |#2|)) (-15 -1274 (|#2| |#2|)) (-15 -1275 (|#2| (-113) |#2| (-747)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-4075 (((-398 (-1136 |#3|)) (-1136 |#3|) (-618 (-48))) 23) (((-398 |#3|) |#3| (-618 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4075 ((-398 |#3|) |#3| (-618 (-48)))) (-15 -4075 ((-398 (-1136 |#3|)) (-1136 |#3|) (-618 (-48))))) (-823) (-769) (-921 (-48) |#2| |#1|)) (T -42))
+((-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-48))) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *7 (-921 (-48) *6 *5)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1136 *7)))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-48))) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *2 (-398 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-921 (-48) *6 *5)))))
+(-10 -7 (-15 -4075 ((-398 |#3|) |#3| (-618 (-48)))) (-15 -4075 ((-398 (-1136 |#3|)) (-1136 |#3|) (-618 (-48)))))
+((-1279 (((-747) |#2|) 65)) (-1277 (((-747) |#2|) 68)) (-1292 (((-618 |#2|)) 33)) (-1276 (((-747) |#2|) 67)) (-1278 (((-747) |#2|) 64)) (-1280 (((-747) |#2|) 66)) (-1290 (((-618 (-665 |#1|))) 60)) (-1285 (((-618 |#2|)) 55)) (-1283 (((-618 |#2|) |#2|) 43)) (-1287 (((-618 |#2|)) 57)) (-1286 (((-618 |#2|)) 56)) (-1289 (((-618 (-665 |#1|))) 48)) (-1284 (((-618 |#2|)) 54)) (-1282 (((-618 |#2|) |#2|) 42)) (-1281 (((-618 |#2|)) 50)) (-1291 (((-618 (-665 |#1|))) 61)) (-1288 (((-618 |#2|)) 59)) (-2123 (((-1224 |#2|) (-1224 |#2|)) 84 (|has| |#1| (-300)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1276 ((-747) |#2|)) (-15 -1277 ((-747) |#2|)) (-15 -1278 ((-747) |#2|)) (-15 -1279 ((-747) |#2|)) (-15 -1280 ((-747) |#2|)) (-15 -1281 ((-618 |#2|))) (-15 -1282 ((-618 |#2|) |#2|)) (-15 -1283 ((-618 |#2|) |#2|)) (-15 -1284 ((-618 |#2|))) (-15 -1285 ((-618 |#2|))) (-15 -1286 ((-618 |#2|))) (-15 -1287 ((-618 |#2|))) (-15 -1288 ((-618 |#2|))) (-15 -1289 ((-618 (-665 |#1|)))) (-15 -1290 ((-618 (-665 |#1|)))) (-15 -1291 ((-618 (-665 |#1|)))) (-15 -1292 ((-618 |#2|))) (IF (|has| |#1| (-300)) (-15 -2123 ((-1224 |#2|) (-1224 |#2|))) |%noBranch|)) (-542) (-411 |#1|)) (T -43))
+((-2123 (*1 *2 *2) (-12 (-5 *2 (-1224 *4)) (-4 *4 (-411 *3)) (-4 *3 (-300)) (-4 *3 (-542)) (-5 *1 (-43 *3 *4)))) (-1292 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1291 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 (-665 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1290 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 (-665 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1289 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 (-665 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1288 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1287 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1286 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1285 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1284 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1283 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1282 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1281 (*1 *2) (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1280 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1279 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1278 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1277 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1276 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))))
+(-10 -7 (-15 -1276 ((-747) |#2|)) (-15 -1277 ((-747) |#2|)) (-15 -1278 ((-747) |#2|)) (-15 -1279 ((-747) |#2|)) (-15 -1280 ((-747) |#2|)) (-15 -1281 ((-618 |#2|))) (-15 -1282 ((-618 |#2|) |#2|)) (-15 -1283 ((-618 |#2|) |#2|)) (-15 -1284 ((-618 |#2|))) (-15 -1285 ((-618 |#2|))) (-15 -1286 ((-618 |#2|))) (-15 -1287 ((-618 |#2|))) (-15 -1288 ((-618 |#2|))) (-15 -1289 ((-618 (-665 |#1|)))) (-15 -1290 ((-618 (-665 |#1|)))) (-15 -1291 ((-618 (-665 |#1|)))) (-15 -1292 ((-618 |#2|))) (IF (|has| |#1| (-300)) (-15 -2123 ((-1224 |#2|) (-1224 |#2|))) |%noBranch|))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3557 (((-1224 (-665 |#1|)) (-1224 $)) NIL) (((-1224 (-665 |#1|))) 24)) (-1840 (((-1224 $)) 51)) (-3879 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (|has| |#1| (-542)))) (-1814 (((-3 $ #1#)) NIL (|has| |#1| (-542)))) (-1902 (((-665 |#1|) (-1224 $)) NIL) (((-665 |#1|)) NIL)) (-1838 ((|#1| $) NIL)) (-1900 (((-665 |#1|) $ (-1224 $)) NIL) (((-665 |#1|) $) NIL)) (-2487 (((-3 $ #1#) $) NIL (|has| |#1| (-542)))) (-2017 (((-1136 (-917 |#1|))) NIL (|has| |#1| (-356)))) (-2490 (($ $ (-890)) NIL)) (-1836 ((|#1| $) NIL)) (-1816 (((-1136 |#1|) $) NIL (|has| |#1| (-542)))) (-1904 ((|#1| (-1224 $)) NIL) ((|#1|) NIL)) (-1834 (((-1136 |#1|) $) NIL)) (-1828 (((-112)) 87)) (-1906 (($ (-1224 |#1|) (-1224 $)) NIL) (($ (-1224 |#1|)) NIL)) (-3804 (((-3 $ #1#) $) 14 (|has| |#1| (-542)))) (-3427 (((-890)) 52)) (-1825 (((-112)) NIL)) (-2515 (($ $ (-890)) NIL)) (-1821 (((-112)) NIL)) (-1819 (((-112)) NIL)) (-1823 (((-112)) 89)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (|has| |#1| (-542)))) (-1815 (((-3 $ #1#)) NIL (|has| |#1| (-542)))) (-1903 (((-665 |#1|) (-1224 $)) NIL) (((-665 |#1|)) NIL)) (-1839 ((|#1| $) NIL)) (-1901 (((-665 |#1|) $ (-1224 $)) NIL) (((-665 |#1|) $) NIL)) (-2488 (((-3 $ #1#) $) NIL (|has| |#1| (-542)))) (-2021 (((-1136 (-917 |#1|))) NIL (|has| |#1| (-356)))) (-2489 (($ $ (-890)) NIL)) (-1837 ((|#1| $) NIL)) (-1817 (((-1136 |#1|) $) NIL (|has| |#1| (-542)))) (-1905 ((|#1| (-1224 $)) NIL) ((|#1|) NIL)) (-1835 (((-1136 |#1|) $) NIL)) (-1829 (((-112)) 86)) (-3576 (((-1124) $) NIL)) (-1820 (((-112)) 93)) (-1822 (((-112)) 92)) (-1824 (((-112)) 94)) (-3577 (((-1086) $) NIL)) (-1827 (((-112)) 88)) (-4142 ((|#1| $ (-535)) 54)) (-3558 (((-1224 |#1|) $ (-1224 $)) 48) (((-665 |#1|) (-1224 $) (-1224 $)) NIL) (((-1224 |#1|) $) 28) (((-665 |#1|) (-1224 $)) NIL)) (-4313 (((-1224 |#1|) $) NIL) (($ (-1224 |#1|)) NIL)) (-2009 (((-618 (-917 |#1|)) (-1224 $)) NIL) (((-618 (-917 |#1|))) NIL)) (-2677 (($ $ $) NIL)) (-1833 (((-112)) 84)) (-4300 (((-835) $) 69) (($ (-1224 |#1|)) 22)) (-2123 (((-1224 $)) 45)) (-1818 (((-618 (-1224 |#1|))) NIL (|has| |#1| (-542)))) (-2678 (($ $ $ $) NIL)) (-1831 (((-112)) 82)) (-2871 (($ (-665 |#1|) $) 18)) (-2676 (($ $ $) NIL)) (-1832 (((-112)) 85)) (-1830 (((-112)) 83)) (-1826 (((-112)) 81)) (-2979 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1108 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-411 |#1|) (-624 (-1108 |#2| |#1|)) (-10 -8 (-15 -4300 ($ (-1224 |#1|))))) (-356) (-890) (-618 (-1142)) (-1224 (-665 |#1|))) (T -44))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-356)) (-14 *6 (-1224 (-665 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))))))
+(-13 (-411 |#1|) (-624 (-1108 |#2| |#1|)) (-10 -8 (-15 -4300 ($ (-1224 |#1|)))))
+((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3744 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-4137 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-4139 (($ $) NIL)) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337))) (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-1841 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823))))) (-3230 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-3346 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337)))) (-4129 (($ $ $) 27 (|has| $ (-6 -4337)))) (-4128 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337)))) (-4131 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 29 (|has| $ (-6 -4337)))) (-4130 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-1191 (-535)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #1="last" (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #3="first" (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #4="value" (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4138 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2305 (((-3 |#2| #5="failed") |#1| $) 37)) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-4141 (($ $ (-747)) NIL) (($ $) 24)) (-2446 (($ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #5#) |#1| $) 48) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) NIL)) (-3784 (((-112) $) NIL)) (-3761 (((-535) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) (((-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 18 (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336))) (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 18 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-3960 (($ (-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823))) (((-535) $) 32 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3180 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3855 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336))) (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823))) (((-535) $) 34 (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-3880 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3351 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-3864 (((-112) $) NIL)) (-3576 (((-1124) $) 42 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4140 (($ $ (-747)) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2735 (((-618 |#1|) $) 20)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2373 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 |#1|) $) NIL) (((-618 (-535)) $) NIL)) (-2302 (((-112) |#1| $) NIL) (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823))) (($ $ (-747)) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 23)) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) #6#) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3785 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-2303 (((-618 |#2|) $) NIL) (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 17)) (-3745 (((-112) $) 16)) (-3911 (($) 13)) (-4142 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ (-535)) NIL) (($ $ (-1191 (-535))) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #3#) NIL) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $ #4#) NIL)) (-3350 (((-535) $ $) NIL)) (-1518 (($) 12) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-1627 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-3979 (((-112) $) NIL)) (-4134 (($ $) NIL)) (-4132 (($ $) NIL (|has| $ (-6 -4337)))) (-4135 (((-747) $) NIL)) (-4136 (($ $) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4133 (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL) (($ $ $) NIL)) (-4144 (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL) (($ (-618 $)) NIL) (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 25) (($ $ $) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-1266 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") |#1| $) 44)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3005 (((-112) $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-823)))) (-4299 (((-747) $) 22 (|has| $ (-6 -4336)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1067) (-1067)) (T -45))
NIL
(-36 |#1| |#2|)
-((-2427 (((-112) $) 12)) (-2796 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-400 (-549)) $) 25) (($ $ (-400 (-549))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -2427 ((-112) |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|))) (-47 |#2| |#3|) (-1018) (-768)) (T -46))
+((-4280 (((-112) $) 12)) (-4301 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-400 (-535)) $) 25) (($ $ (-400 (-535))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -4280 ((-112) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) (-47 |#2| |#3|) (-1018) (-768)) (T -46))
NIL
-(-10 -8 (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -2427 ((-112) |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2408 (($ $) 50 (|has| |#1| (-541)))) (-2477 (((-112) $) 52 (|has| |#1| (-541)))) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2069 (($ $) 58)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2427 (((-112) $) 60)) (-2244 (($ |#1| |#2|) 59)) (-2796 (($ (-1 |#1| |#1|) $) 61)) (-2027 (($ $) 63)) (-2042 ((|#1| $) 64)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-2038 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-3068 ((|#2| $) 62)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541))) (($ |#1|) 45 (|has| |#1| (-170)))) (-2944 ((|#1| $ |#2|) 57)) (-3407 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 51 (|has| |#1| (-541)))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+(-10 -8 (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -4280 ((-112) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-4280 (((-112) $) 60)) (-3214 (($ |#1| |#2|) 59)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-4290 ((|#2| $) 62)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4023 ((|#1| $ |#2|) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535)))))))
(((-47 |#1| |#2|) (-138) (-1018) (-768)) (T -47))
-((-2042 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-2027 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) (-2427 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-112)))) (-2244 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-2069 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-2944 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-2512 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-356)))))
-(-13 (-1018) (-111 |t#1| |t#1|) (-10 -8 (-15 -2042 (|t#1| $)) (-15 -2027 ($ $)) (-15 -3068 (|t#2| $)) (-15 -2796 ($ (-1 |t#1| |t#1|) $)) (-15 -2427 ((-112) $)) (-15 -2244 ($ |t#1| |t#2|)) (-15 -2069 ($ $)) (-15 -2944 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-356)) (-15 -2512 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-541)) (-6 (-541)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-549)))) (-6 (-38 (-400 (-549)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-283) |has| |#1| (-541)) ((-541) |has| |#1| (-541)) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-2379 (((-621 $) (-1138 $) (-1142)) NIL) (((-621 $) (-1138 $)) NIL) (((-621 $) (-923 $)) NIL)) (-2767 (($ (-1138 $) (-1142)) NIL) (($ (-1138 $)) NIL) (($ (-923 $)) NIL)) (-3166 (((-112) $) 11)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-1980 (((-621 (-592 $)) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3014 (($ $ (-287 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2134 (($ $) NIL)) (-2647 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-3810 (((-621 $) (-1138 $) (-1142)) NIL) (((-621 $) (-1138 $)) NIL) (((-621 $) (-923 $)) NIL)) (-1681 (($ (-1138 $) (-1142)) NIL) (($ (-1138 $)) NIL) (($ (-923 $)) NIL)) (-2713 (((-3 (-592 $) "failed") $) NIL) (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL)) (-2658 (((-592 $) $) NIL) (((-549) $) NIL) (((-400 (-549)) $) NIL)) (-2094 (($ $ $) NIL)) (-1698 (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL) (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -1859 (-665 (-400 (-549)))) (|:| |vec| (-1225 (-400 (-549))))) (-665 $) (-1225 $)) NIL) (((-665 (-400 (-549))) (-665 $)) NIL)) (-2558 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3390 (($ $) NIL) (($ (-621 $)) NIL)) (-2415 (((-621 (-114)) $) NIL)) (-2015 (((-114) (-114)) NIL)) (-3987 (((-112) $) 14)) (-3061 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-1393 (((-1091 (-549) (-592 $)) $) NIL)) (-3930 (($ $ (-549)) NIL)) (-4117 (((-1138 $) (-1138 $) (-592 $)) NIL) (((-1138 $) (-1138 $) (-621 (-592 $))) NIL) (($ $ (-592 $)) NIL) (($ $ (-621 (-592 $))) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-1417 (((-1138 $) (-592 $)) NIL (|has| $ (-1018)))) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2796 (($ (-1 $ $) (-592 $)) NIL)) (-3364 (((-3 (-592 $) "failed") $) NIL)) (-3696 (($ (-621 $)) NIL) (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-2063 (((-621 (-592 $)) $) NIL)) (-1477 (($ (-114) $) NIL) (($ (-114) (-621 $)) NIL)) (-1581 (((-112) $ (-114)) NIL) (((-112) $ (-1142)) NIL)) (-1991 (($ $) NIL)) (-4035 (((-747) $) NIL)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ (-621 $)) NIL) (($ $ $) NIL)) (-4029 (((-112) $ $) NIL) (((-112) $ (-1142)) NIL)) (-2120 (((-411 $) $) NIL)) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4062 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-2685 (($ $ (-592 $) $) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-621 (-1142)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-1142)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-1142) (-1 $ (-621 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-621 (-114)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-114) (-1 $ (-621 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4091 (((-747) $) NIL)) (-3340 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-621 $)) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3776 (($ $) NIL) (($ $ $) NIL)) (-3455 (($ $ (-747)) NIL) (($ $) NIL)) (-1404 (((-1091 (-549) (-592 $)) $) NIL)) (-2539 (($ $) NIL (|has| $ (-1018)))) (-2844 (((-372) $) NIL) (((-219) $) NIL) (((-167 (-372)) $) NIL)) (-3845 (((-834) $) NIL) (($ (-592 $)) NIL) (($ (-400 (-549))) NIL) (($ $) NIL) (($ (-549)) NIL) (($ (-1091 (-549) (-592 $))) NIL)) (-1723 (((-747)) NIL)) (-4136 (($ $) NIL) (($ (-621 $)) NIL)) (-3234 (((-112) (-114)) NIL)) (-4053 (((-112) $ $) NIL)) (-3275 (($) 7 T CONST)) (-3287 (($) 12 T CONST)) (-1700 (($ $ (-747)) NIL) (($ $) NIL)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 16)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL)) (-2499 (($ $ $) 15) (($ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-400 (-549))) NIL) (($ $ (-549)) NIL) (($ $ (-747)) NIL) (($ $ (-892)) NIL)) (* (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL) (($ $ $) NIL) (($ (-549) $) NIL) (($ (-747) $) NIL) (($ (-892) $) NIL)))
-(((-48) (-13 (-295) (-27) (-1009 (-549)) (-1009 (-400 (-549))) (-617 (-549)) (-993) (-617 (-400 (-549))) (-145) (-594 (-167 (-372))) (-227) (-10 -8 (-15 -3845 ($ (-1091 (-549) (-592 $)))) (-15 -1393 ((-1091 (-549) (-592 $)) $)) (-15 -1404 ((-1091 (-549) (-592 $)) $)) (-15 -2558 ($ $)) (-15 -4117 ((-1138 $) (-1138 $) (-592 $))) (-15 -4117 ((-1138 $) (-1138 $) (-621 (-592 $)))) (-15 -4117 ($ $ (-592 $))) (-15 -4117 ($ $ (-621 (-592 $))))))) (T -48))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1091 (-549) (-592 (-48)))) (-5 *1 (-48)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-1091 (-549) (-592 (-48)))) (-5 *1 (-48)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-1091 (-549) (-592 (-48)))) (-5 *1 (-48)))) (-2558 (*1 *1 *1) (-5 *1 (-48))) (-4117 (*1 *2 *2 *3) (-12 (-5 *2 (-1138 (-48))) (-5 *3 (-592 (-48))) (-5 *1 (-48)))) (-4117 (*1 *2 *2 *3) (-12 (-5 *2 (-1138 (-48))) (-5 *3 (-621 (-592 (-48)))) (-5 *1 (-48)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-48))) (-5 *1 (-48)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-592 (-48)))) (-5 *1 (-48)))))
-(-13 (-295) (-27) (-1009 (-549)) (-1009 (-400 (-549))) (-617 (-549)) (-993) (-617 (-400 (-549))) (-145) (-594 (-167 (-372))) (-227) (-10 -8 (-15 -3845 ($ (-1091 (-549) (-592 $)))) (-15 -1393 ((-1091 (-549) (-592 $)) $)) (-15 -1404 ((-1091 (-549) (-592 $)) $)) (-15 -2558 ($ $)) (-15 -4117 ((-1138 $) (-1138 $) (-592 $))) (-15 -4117 ((-1138 $) (-1138 $) (-621 (-592 $)))) (-15 -4117 ($ $ (-592 $))) (-15 -4117 ($ $ (-621 (-592 $))))))
-((-3833 (((-112) $ $) NIL)) (-2903 (((-621 (-1142)) $) 17)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 7)) (-2493 (((-1147) $) 18)) (-2388 (((-112) $ $) NIL)))
-(((-49) (-13 (-1066) (-10 -8 (-15 -2903 ((-621 (-1142)) $)) (-15 -2493 ((-1147) $))))) (T -49))
-((-2903 (*1 *2 *1) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-49)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-49)))))
-(-13 (-1066) (-10 -8 (-15 -2903 ((-621 (-1142)) $)) (-15 -2493 ((-1147) $))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 61)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2061 (((-112) $) 20)) (-2713 (((-3 |#1| "failed") $) 23)) (-2658 ((|#1| $) 24)) (-2069 (($ $) 28)) (-3976 (((-3 $ "failed") $) NIL)) (-3987 (((-112) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-2042 ((|#1| $) 21)) (-4268 (($ $) 50)) (-2677 (((-1124) $) NIL)) (-3022 (((-112) $) 30)) (-3988 (((-1086) $) NIL)) (-4246 (($ (-747)) 48)) (-2718 (($ (-621 (-549))) 49)) (-3068 (((-747) $) 31)) (-3845 (((-834) $) 64) (($ (-549)) 45) (($ |#1|) 43)) (-2944 ((|#1| $ $) 19)) (-1723 (((-747)) 47)) (-3275 (($) 32 T CONST)) (-3287 (($) 14 T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 40)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-50 |#1| |#2|) (-13 (-598 |#1|) (-1009 |#1|) (-10 -8 (-15 -2042 (|#1| $)) (-15 -4268 ($ $)) (-15 -2069 ($ $)) (-15 -2944 (|#1| $ $)) (-15 -4246 ($ (-747))) (-15 -2718 ($ (-621 (-549)))) (-15 -3022 ((-112) $)) (-15 -2061 ((-112) $)) (-15 -3068 ((-747) $)) (-15 -2796 ($ (-1 |#1| |#1|) $)))) (-1018) (-621 (-1142))) (T -50))
-((-2042 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-621 (-1142))))) (-4268 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-621 (-1142))))) (-2069 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-621 (-1142))))) (-2944 (*1 *2 *1 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-621 (-1142))))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-621 (-1142))))) (-2718 (*1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-621 (-1142))))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-621 (-1142))))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-621 (-1142))))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-621 (-1142))))) (-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-50 *3 *4)) (-14 *4 (-621 (-1142))))))
-(-13 (-598 |#1|) (-1009 |#1|) (-10 -8 (-15 -2042 (|#1| $)) (-15 -4268 ($ $)) (-15 -2069 ($ $)) (-15 -2944 (|#1| $ $)) (-15 -4246 ($ (-747))) (-15 -2718 ($ (-621 (-549)))) (-15 -3022 ((-112) $)) (-15 -2061 ((-112) $)) (-15 -3068 ((-747) $)) (-15 -2796 ($ (-1 |#1| |#1|) $))))
-((-2061 (((-112) (-52)) 13)) (-2713 (((-3 |#1| "failed") (-52)) 21)) (-2658 ((|#1| (-52)) 22)) (-3845 (((-52) |#1|) 18)))
-(((-51 |#1|) (-10 -7 (-15 -3845 ((-52) |#1|)) (-15 -2713 ((-3 |#1| "failed") (-52))) (-15 -2061 ((-112) (-52))) (-15 -2658 (|#1| (-52)))) (-1179)) (T -51))
-((-2658 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1179)))) (-2061 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1179)))) (-2713 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1179)))) (-3845 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1179)))))
-(-10 -7 (-15 -3845 ((-52) |#1|)) (-15 -2713 ((-3 |#1| "failed") (-52))) (-15 -2061 ((-112) (-52))) (-15 -2658 (|#1| (-52))))
-((-3833 (((-112) $ $) NIL)) (-1269 (((-1124) (-112)) 25)) (-2553 (((-834) $) 24)) (-1270 (((-750) $) 12)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2262 (((-834) $) 16)) (-1528 (((-1070) $) 14)) (-3845 (((-834) $) 32)) (-3375 (($ (-1070) (-750)) 33)) (-2388 (((-112) $ $) 18)))
-(((-52) (-13 (-1066) (-10 -8 (-15 -3375 ($ (-1070) (-750))) (-15 -2262 ((-834) $)) (-15 -2553 ((-834) $)) (-15 -1528 ((-1070) $)) (-15 -1270 ((-750) $)) (-15 -1269 ((-1124) (-112)))))) (T -52))
-((-3375 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-750)) (-5 *1 (-52)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-52)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-52)))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-52)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-750)) (-5 *1 (-52)))) (-1269 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1124)) (-5 *1 (-52)))))
-(-13 (-1066) (-10 -8 (-15 -3375 ($ (-1070) (-750))) (-15 -2262 ((-834) $)) (-15 -2553 ((-834) $)) (-15 -1528 ((-1070) $)) (-15 -1270 ((-750) $)) (-15 -1269 ((-1124) (-112)))))
-((-3592 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3592 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1018) (-624 |#1|) (-825 |#1|)) (T -53))
-((-3592 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-624 *5)) (-4 *5 (-1018)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-825 *5)))))
-(-10 -7 (-15 -3592 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-2238 ((|#3| |#3| (-621 (-1142))) 35)) (-1733 ((|#3| (-621 (-1042 |#1| |#2| |#3|)) |#3| (-892)) 22) ((|#3| (-621 (-1042 |#1| |#2| |#3|)) |#3|) 20)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1733 (|#3| (-621 (-1042 |#1| |#2| |#3|)) |#3|)) (-15 -1733 (|#3| (-621 (-1042 |#1| |#2| |#3|)) |#3| (-892))) (-15 -2238 (|#3| |#3| (-621 (-1142))))) (-1066) (-13 (-1018) (-857 |#1|) (-823) (-594 (-863 |#1|))) (-13 (-423 |#2|) (-857 |#1|) (-594 (-863 |#1|)))) (T -54))
-((-2238 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-1142))) (-4 *4 (-1066)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))))) (-1733 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-621 (-1042 *5 *6 *2))) (-5 *4 (-892)) (-4 *5 (-1066)) (-4 *6 (-13 (-1018) (-857 *5) (-823) (-594 (-863 *5)))) (-4 *2 (-13 (-423 *6) (-857 *5) (-594 (-863 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1733 (*1 *2 *3 *2) (-12 (-5 *3 (-621 (-1042 *4 *5 *2))) (-4 *4 (-1066)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4)))) (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -1733 (|#3| (-621 (-1042 |#1| |#2| |#3|)) |#3|)) (-15 -1733 (|#3| (-621 (-1042 |#1| |#2| |#3|)) |#3| (-892))) (-15 -2238 (|#3| |#3| (-621 (-1142)))))
-((-1323 (((-112) $ (-747)) 23)) (-1915 (($ $ (-549) |#3|) 46)) (-2058 (($ $ (-549) |#4|) 50)) (-2413 ((|#3| $ (-549)) 59)) (-2990 (((-621 |#2|) $) 30)) (-4202 (((-112) $ (-747)) 25)) (-2273 (((-112) |#2| $) 54)) (-1865 (($ (-1 |#2| |#2|) $) 37)) (-2796 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-4289 (((-112) $ (-747)) 24)) (-3158 (($ $ |#2|) 34)) (-2470 (((-112) (-1 (-112) |#2|) $) 19)) (-3340 ((|#2| $ (-549) (-549)) NIL) ((|#2| $ (-549) (-549) |#2|) 27)) (-3997 (((-747) (-1 (-112) |#2|) $) 28) (((-747) |#2| $) 56)) (-2281 (($ $) 33)) (-4102 ((|#4| $ (-549)) 62)) (-3845 (((-834) $) 68)) (-2150 (((-112) (-1 (-112) |#2|) $) 18)) (-2388 (((-112) $ $) 53)) (-3774 (((-747) $) 26)))
-(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3845 ((-834) |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2796 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1865 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2058 (|#1| |#1| (-549) |#4|)) (-15 -1915 (|#1| |#1| (-549) |#3|)) (-15 -2990 ((-621 |#2|) |#1|)) (-15 -4102 (|#4| |#1| (-549))) (-15 -2413 (|#3| |#1| (-549))) (-15 -3340 (|#2| |#1| (-549) (-549) |#2|)) (-15 -3340 (|#2| |#1| (-549) (-549))) (-15 -3158 (|#1| |#1| |#2|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -2273 ((-112) |#2| |#1|)) (-15 -3997 ((-747) |#2| |#1|)) (-15 -3997 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2470 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2150 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3774 ((-747) |#1|)) (-15 -1323 ((-112) |#1| (-747))) (-15 -4202 ((-112) |#1| (-747))) (-15 -4289 ((-112) |#1| (-747))) (-15 -2281 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1179) (-366 |#2|) (-366 |#2|)) (T -55))
-NIL
-(-10 -8 (-15 -3845 ((-834) |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2796 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1865 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2058 (|#1| |#1| (-549) |#4|)) (-15 -1915 (|#1| |#1| (-549) |#3|)) (-15 -2990 ((-621 |#2|) |#1|)) (-15 -4102 (|#4| |#1| (-549))) (-15 -2413 (|#3| |#1| (-549))) (-15 -3340 (|#2| |#1| (-549) (-549) |#2|)) (-15 -3340 (|#2| |#1| (-549) (-549))) (-15 -3158 (|#1| |#1| |#2|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -2273 ((-112) |#2| |#1|)) (-15 -3997 ((-747) |#2| |#1|)) (-15 -3997 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2470 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2150 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3774 ((-747) |#1|)) (-15 -1323 ((-112) |#1| (-747))) (-15 -4202 ((-112) |#1| (-747))) (-15 -4289 ((-112) |#1| (-747))) (-15 -2281 (|#1| |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) 8)) (-2253 ((|#1| $ (-549) (-549) |#1|) 44)) (-1915 (($ $ (-549) |#2|) 42)) (-2058 (($ $ (-549) |#3|) 41)) (-1705 (($) 7 T CONST)) (-2413 ((|#2| $ (-549)) 46)) (-1878 ((|#1| $ (-549) (-549) |#1|) 43)) (-1808 ((|#1| $ (-549) (-549)) 48)) (-2990 (((-621 |#1|) $) 30)) (-2141 (((-747) $) 51)) (-3743 (($ (-747) (-747) |#1|) 57)) (-2154 (((-747) $) 50)) (-4202 (((-112) $ (-747)) 9)) (-2437 (((-549) $) 55)) (-2103 (((-549) $) 53)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2303 (((-549) $) 54)) (-2362 (((-549) $) 52)) (-1865 (($ (-1 |#1| |#1|) $) 34)) (-2796 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-3158 (($ $ |#1|) 56)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ (-549) (-549)) 49) ((|#1| $ (-549) (-549) |#1|) 47)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-4102 ((|#3| $ (-549)) 45)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-56 |#1| |#2| |#3|) (-138) (-1179) (-366 |t#1|) (-366 |t#1|)) (T -56))
-((-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3743 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-747)) (-4 *3 (-1179)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3158 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1179)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-549)))) (-2303 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-549)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-549)))) (-2362 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-549)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-747)))) (-2154 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-747)))) (-3340 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-1179)))) (-1808 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-1179)))) (-3340 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1179)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) (-2413 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1179)) (-4 *5 (-366 *4)) (-4 *2 (-366 *4)))) (-4102 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1179)) (-4 *5 (-366 *4)) (-4 *2 (-366 *4)))) (-2990 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-621 *3)))) (-2253 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1179)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) (-1878 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1179)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) (-1915 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-549)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1179)) (-4 *3 (-366 *4)) (-4 *5 (-366 *4)))) (-2058 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-549)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1179)) (-4 *5 (-366 *4)) (-4 *3 (-366 *4)))) (-1865 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2796 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2796 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))))
-(-13 (-481 |t#1|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -3743 ($ (-747) (-747) |t#1|)) (-15 -3158 ($ $ |t#1|)) (-15 -2437 ((-549) $)) (-15 -2303 ((-549) $)) (-15 -2103 ((-549) $)) (-15 -2362 ((-549) $)) (-15 -2141 ((-747) $)) (-15 -2154 ((-747) $)) (-15 -3340 (|t#1| $ (-549) (-549))) (-15 -1808 (|t#1| $ (-549) (-549))) (-15 -3340 (|t#1| $ (-549) (-549) |t#1|)) (-15 -2413 (|t#2| $ (-549))) (-15 -4102 (|t#3| $ (-549))) (-15 -2990 ((-621 |t#1|) $)) (-15 -2253 (|t#1| $ (-549) (-549) |t#1|)) (-15 -1878 (|t#1| $ (-549) (-549) |t#1|)) (-15 -1915 ($ $ (-549) |t#2|)) (-15 -2058 ($ $ (-549) |t#3|)) (-15 -2796 ($ (-1 |t#1| |t#1|) $)) (-15 -1865 ($ (-1 |t#1| |t#1|) $)) (-15 -2796 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2796 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-3076 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2558 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-2796 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13)))
-(((-57 |#1| |#2|) (-10 -7 (-15 -3076 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2558 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2796 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1179) (-1179)) (T -57))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2558 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1179)) (-4 *2 (-1179)) (-5 *1 (-57 *5 *2)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1179)) (-4 *5 (-1179)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))))
-(-10 -7 (-15 -3076 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2558 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2796 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4106 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#1| $ (-549) |#1|) 11 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) NIL (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) NIL)) (-2882 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1066))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1066)))) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2294 (($ (-621 |#1|)) 13) (($ (-747) |#1|) 14)) (-3743 (($ (-747) |#1|) 9)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-1586 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2614 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3645 ((|#1| $) NIL (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3158 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) 7)) (-3340 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-2166 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) NIL)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2294 ($ (-621 |#1|))) (-15 -2294 ($ (-747) |#1|)))) (-1179)) (T -58))
-((-2294 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-58 *3)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-58 *3)) (-4 *3 (-1179)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -2294 ($ (-621 |#1|))) (-15 -2294 ($ (-747) |#1|))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1915 (($ $ (-549) (-58 |#1|)) NIL)) (-2058 (($ $ (-549) (-58 |#1|)) NIL)) (-1705 (($) NIL T CONST)) (-2413 (((-58 |#1|) $ (-549)) NIL)) (-1878 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1808 ((|#1| $ (-549) (-549)) NIL)) (-2990 (((-621 |#1|) $) NIL)) (-2141 (((-747) $) NIL)) (-3743 (($ (-747) (-747) |#1|) NIL)) (-2154 (((-747) $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-2437 (((-549) $) NIL)) (-2103 (((-549) $) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2303 (((-549) $) NIL)) (-2362 (((-549) $) NIL)) (-1865 (($ (-1 |#1| |#1|) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3158 (($ $ |#1|) NIL)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-4102 (((-58 |#1|) $ (-549)) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4337))) (-1179)) (T -59))
-NIL
-(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4337)))
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 74) (((-3 $ "failed") (-1225 (-309 (-549)))) 63) (((-3 $ "failed") (-1225 (-923 (-372)))) 94) (((-3 $ "failed") (-1225 (-923 (-549)))) 84) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 52) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 39)) (-2658 (($ (-1225 (-309 (-372)))) 70) (($ (-1225 (-309 (-549)))) 59) (($ (-1225 (-923 (-372)))) 90) (($ (-1225 (-923 (-549)))) 80) (($ (-1225 (-400 (-923 (-372))))) 48) (($ (-1225 (-400 (-923 (-549))))) 32)) (-3315 (((-1230) $) 120)) (-3845 (((-834) $) 113) (($ (-621 (-323))) 103) (($ (-323)) 97) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 101) (($ (-1225 (-332 (-3853 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3853) (-675)))) 31)))
-(((-60 |#1|) (-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3853) (-675))))))) (-1142)) (T -60))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-332 (-3853 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3853) (-675)))) (-5 *1 (-60 *3)) (-14 *3 (-1142)))))
-(-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3853) (-675)))))))
-((-3315 (((-1230) $) 53) (((-1230)) 54)) (-3845 (((-834) $) 50)))
-(((-61 |#1|) (-13 (-388) (-10 -7 (-15 -3315 ((-1230))))) (-1142)) (T -61))
-((-3315 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-61 *3)) (-14 *3 (-1142)))))
-(-13 (-388) (-10 -7 (-15 -3315 ((-1230)))))
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 144) (((-3 $ "failed") (-1225 (-309 (-549)))) 134) (((-3 $ "failed") (-1225 (-923 (-372)))) 164) (((-3 $ "failed") (-1225 (-923 (-549)))) 154) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 123) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 111)) (-2658 (($ (-1225 (-309 (-372)))) 140) (($ (-1225 (-309 (-549)))) 130) (($ (-1225 (-923 (-372)))) 160) (($ (-1225 (-923 (-549)))) 150) (($ (-1225 (-400 (-923 (-372))))) 119) (($ (-1225 (-400 (-923 (-549))))) 104)) (-3315 (((-1230) $) 97)) (-3845 (((-834) $) 91) (($ (-621 (-323))) 29) (($ (-323)) 34) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 32) (($ (-1225 (-332 (-3853) (-3853 (QUOTE XC)) (-675)))) 89)))
-(((-62 |#1|) (-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853) (-3853 (QUOTE XC)) (-675))))))) (-1142)) (T -62))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-332 (-3853) (-3853 (QUOTE XC)) (-675)))) (-5 *1 (-62 *3)) (-14 *3 (-1142)))))
-(-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853) (-3853 (QUOTE XC)) (-675)))))))
-((-2713 (((-3 $ "failed") (-309 (-372))) 41) (((-3 $ "failed") (-309 (-549))) 46) (((-3 $ "failed") (-923 (-372))) 50) (((-3 $ "failed") (-923 (-549))) 54) (((-3 $ "failed") (-400 (-923 (-372)))) 36) (((-3 $ "failed") (-400 (-923 (-549)))) 29)) (-2658 (($ (-309 (-372))) 39) (($ (-309 (-549))) 44) (($ (-923 (-372))) 48) (($ (-923 (-549))) 52) (($ (-400 (-923 (-372)))) 34) (($ (-400 (-923 (-549)))) 26)) (-3315 (((-1230) $) 76)) (-3845 (((-834) $) 69) (($ (-621 (-323))) 61) (($ (-323)) 66) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 64) (($ (-332 (-3853 (QUOTE X)) (-3853) (-675))) 25)))
-(((-63 |#1|) (-13 (-389) (-10 -8 (-15 -3845 ($ (-332 (-3853 (QUOTE X)) (-3853) (-675)))))) (-1142)) (T -63))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-332 (-3853 (QUOTE X)) (-3853) (-675))) (-5 *1 (-63 *3)) (-14 *3 (-1142)))))
-(-13 (-389) (-10 -8 (-15 -3845 ($ (-332 (-3853 (QUOTE X)) (-3853) (-675))))))
-((-2713 (((-3 $ "failed") (-665 (-309 (-372)))) 109) (((-3 $ "failed") (-665 (-309 (-549)))) 97) (((-3 $ "failed") (-665 (-923 (-372)))) 131) (((-3 $ "failed") (-665 (-923 (-549)))) 120) (((-3 $ "failed") (-665 (-400 (-923 (-372))))) 85) (((-3 $ "failed") (-665 (-400 (-923 (-549))))) 71)) (-2658 (($ (-665 (-309 (-372)))) 105) (($ (-665 (-309 (-549)))) 93) (($ (-665 (-923 (-372)))) 127) (($ (-665 (-923 (-549)))) 116) (($ (-665 (-400 (-923 (-372))))) 81) (($ (-665 (-400 (-923 (-549))))) 64)) (-3315 (((-1230) $) 139)) (-3845 (((-834) $) 133) (($ (-621 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 31) (($ (-665 (-332 (-3853) (-3853 (QUOTE X) (QUOTE HESS)) (-675)))) 54)))
-(((-64 |#1|) (-13 (-377) (-10 -8 (-15 -3845 ($ (-665 (-332 (-3853) (-3853 (QUOTE X) (QUOTE HESS)) (-675))))))) (-1142)) (T -64))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3853) (-3853 (QUOTE X) (QUOTE HESS)) (-675)))) (-5 *1 (-64 *3)) (-14 *3 (-1142)))))
-(-13 (-377) (-10 -8 (-15 -3845 ($ (-665 (-332 (-3853) (-3853 (QUOTE X) (QUOTE HESS)) (-675)))))))
-((-2713 (((-3 $ "failed") (-309 (-372))) 59) (((-3 $ "failed") (-309 (-549))) 64) (((-3 $ "failed") (-923 (-372))) 68) (((-3 $ "failed") (-923 (-549))) 72) (((-3 $ "failed") (-400 (-923 (-372)))) 54) (((-3 $ "failed") (-400 (-923 (-549)))) 47)) (-2658 (($ (-309 (-372))) 57) (($ (-309 (-549))) 62) (($ (-923 (-372))) 66) (($ (-923 (-549))) 70) (($ (-400 (-923 (-372)))) 52) (($ (-400 (-923 (-549)))) 44)) (-3315 (((-1230) $) 81)) (-3845 (((-834) $) 75) (($ (-621 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 31) (($ (-332 (-3853) (-3853 (QUOTE XC)) (-675))) 39)))
-(((-65 |#1|) (-13 (-389) (-10 -8 (-15 -3845 ($ (-332 (-3853) (-3853 (QUOTE XC)) (-675)))))) (-1142)) (T -65))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-332 (-3853) (-3853 (QUOTE XC)) (-675))) (-5 *1 (-65 *3)) (-14 *3 (-1142)))))
-(-13 (-389) (-10 -8 (-15 -3845 ($ (-332 (-3853) (-3853 (QUOTE XC)) (-675))))))
-((-3315 (((-1230) $) 63)) (-3845 (((-834) $) 57) (($ (-665 (-675))) 49) (($ (-621 (-323))) 48) (($ (-323)) 55) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 53)))
+((-3508 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-3215 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-112)))) (-3214 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-4023 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-4291 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-356)))))
+(-13 (-1018) (-111 |t#1| |t#1|) (-10 -8 (-15 -3508 (|t#1| $)) (-15 -3215 ($ $)) (-15 -4290 (|t#2| $)) (-15 -4301 ($ (-1 |t#1| |t#1|) $)) (-15 -4280 ((-112) $)) (-15 -3214 ($ |t#1| |t#2|)) (-15 -4302 ($ $)) (-15 -4023 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-356)) (-15 -4291 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-542)) (-6 (-542)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-535)))) (-6 (-38 (-400 (-535)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-283) |has| |#1| (-542)) ((-542) |has| |#1| (-542)) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-1662 (((-618 $) (-1136 $) (-1142)) NIL) (((-618 $) (-1136 $)) NIL) (((-618 $) (-917 $)) NIL)) (-1258 (($ (-1136 $) (-1142)) NIL) (($ (-1136 $)) NIL) (($ (-917 $)) NIL)) (-3522 (((-112) $) 11)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1655 (((-618 (-591 $)) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3358 (($ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-1259 (((-618 $) (-1136 $) (-1142)) NIL) (((-618 $) (-1136 $)) NIL) (((-618 $) (-917 $)) NIL)) (-3517 (($ (-1136 $) (-1142)) NIL) (($ (-1136 $)) NIL) (($ (-917 $)) NIL)) (-3491 (((-3 (-591 $) #1="failed") $) NIL) (((-3 (-535) #1#) $) NIL) (((-3 (-400 (-535)) #1#) $) NIL)) (-3490 (((-591 $) $) NIL) (((-535) $) NIL) (((-400 (-535)) $) NIL)) (-2883 (($ $ $) NIL)) (-2353 (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-400 (-535)))) (|:| |vec| (-1224 (-400 (-535))))) (-665 $) (-1224 $)) NIL) (((-665 (-400 (-535))) (-665 $)) NIL)) (-4185 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2892 (($ $) NIL) (($ (-618 $)) NIL)) (-1654 (((-618 (-113)) $) NIL)) (-3368 (((-113) (-113)) NIL)) (-2493 (((-112) $) 14)) (-2994 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-3319 (((-1091 (-535) (-591 $)) $) NIL)) (-3332 (($ $ (-535)) NIL)) (-3450 (((-1136 $) (-1136 $) (-591 $)) NIL) (((-1136 $) (-1136 $) (-618 (-591 $))) NIL) (($ $ (-591 $)) NIL) (($ $ (-618 (-591 $))) NIL)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL)) (-1652 (((-1136 $) (-591 $)) NIL (|has| $ (-1018)))) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 $ $) (-591 $)) NIL)) (-1657 (((-3 (-591 $) "failed") $) NIL)) (-2008 (($ (-618 $)) NIL) (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-1656 (((-618 (-591 $)) $) NIL)) (-2308 (($ (-113) $) NIL) (($ (-113) (-618 $)) NIL)) (-2952 (((-112) $ (-113)) NIL) (((-112) $ (-1142)) NIL)) (-2725 (($ $) NIL)) (-2922 (((-747) $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ (-618 $)) NIL) (($ $ $) NIL)) (-1653 (((-112) $ $) NIL) (((-112) $ (-1142)) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2995 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-4110 (($ $ (-591 $) $) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-1142) (-1 $ (-618 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-618 (-113)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-113) (-1 $ (-618 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1699 (((-747) $) NIL)) (-4142 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-618 $)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1658 (($ $) NIL) (($ $ $) NIL)) (-4153 (($ $ (-747)) NIL) (($ $) NIL)) (-3318 (((-1091 (-535) (-591 $)) $) NIL)) (-3519 (($ $) NIL (|has| $ (-1018)))) (-4313 (((-371) $) NIL) (((-219) $) NIL) (((-166 (-371)) $) NIL)) (-4300 (((-835) $) NIL) (($ (-591 $)) NIL) (($ (-400 (-535))) NIL) (($ $) NIL) (($ (-535)) NIL) (($ (-1091 (-535) (-591 $))) NIL)) (-3444 (((-747)) NIL)) (-2909 (($ $) NIL) (($ (-618 $)) NIL)) (-2329 (((-112) (-113)) NIL)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 7 T CONST)) (-2985 (($) 12 T CONST)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 16)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL)) (-4180 (($ $ $) 15) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-400 (-535))) NIL) (($ $ (-535)) NIL) (($ $ (-747)) NIL) (($ $ (-890)) NIL)) (* (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL) (($ $ $) NIL) (($ (-535) $) NIL) (($ (-747) $) NIL) (($ (-890) $) NIL)))
+(((-48) (-13 (-291) (-27) (-1009 (-535)) (-1009 (-400 (-535))) (-617 (-535)) (-991) (-617 (-400 (-535))) (-145) (-594 (-166 (-371))) (-227) (-10 -8 (-15 -4300 ($ (-1091 (-535) (-591 $)))) (-15 -3319 ((-1091 (-535) (-591 $)) $)) (-15 -3318 ((-1091 (-535) (-591 $)) $)) (-15 -4185 ($ $)) (-15 -3450 ((-1136 $) (-1136 $) (-591 $))) (-15 -3450 ((-1136 $) (-1136 $) (-618 (-591 $)))) (-15 -3450 ($ $ (-591 $))) (-15 -3450 ($ $ (-618 (-591 $))))))) (T -48))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1091 (-535) (-591 (-48)))) (-5 *1 (-48)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-48)))) (-5 *1 (-48)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-48)))) (-5 *1 (-48)))) (-4185 (*1 *1 *1) (-5 *1 (-48))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-1136 (-48))) (-5 *3 (-591 (-48))) (-5 *1 (-48)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-1136 (-48))) (-5 *3 (-618 (-591 (-48)))) (-5 *1 (-48)))) (-3450 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-48))) (-5 *1 (-48)))) (-3450 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-591 (-48)))) (-5 *1 (-48)))))
+(-13 (-291) (-27) (-1009 (-535)) (-1009 (-400 (-535))) (-617 (-535)) (-991) (-617 (-400 (-535))) (-145) (-594 (-166 (-371))) (-227) (-10 -8 (-15 -4300 ($ (-1091 (-535) (-591 $)))) (-15 -3319 ((-1091 (-535) (-591 $)) $)) (-15 -3318 ((-1091 (-535) (-591 $)) $)) (-15 -4185 ($ $)) (-15 -3450 ((-1136 $) (-1136 $) (-591 $))) (-15 -3450 ((-1136 $) (-1136 $) (-618 (-591 $)))) (-15 -3450 ($ $ (-591 $))) (-15 -3450 ($ $ (-618 (-591 $))))))
+((-2887 (((-112) $ $) NIL)) (-2055 (((-618 (-1142)) $) 17)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 7)) (-3567 (((-1147) $) 18)) (-3375 (((-112) $ $) NIL)))
+(((-49) (-13 (-1067) (-10 -8 (-15 -2055 ((-618 (-1142)) $)) (-15 -3567 ((-1147) $))))) (T -49))
+((-2055 (*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-49)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-49)))))
+(-13 (-1067) (-10 -8 (-15 -2055 ((-618 (-1142)) $)) (-15 -3567 ((-1147) $))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 61)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2983 (((-112) $) 20)) (-3491 (((-3 |#1| "failed") $) 23)) (-3490 ((|#1| $) 24)) (-4302 (($ $) 28)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3508 ((|#1| $) 21)) (-1507 (($ $) 50)) (-3576 (((-1124) $) NIL)) (-1506 (((-112) $) 30)) (-3577 (((-1086) $) NIL)) (-2492 (($ (-747)) 48)) (-4286 (($ (-618 (-535))) 49)) (-4290 (((-747) $) 31)) (-4300 (((-835) $) 64) (($ (-535)) 45) (($ |#1|) 43)) (-4023 ((|#1| $ $) 19)) (-3444 (((-747)) 47)) (-2979 (($) 32 T CONST)) (-2985 (($) 14 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 40)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-50 |#1| |#2|) (-13 (-599 |#1|) (-1009 |#1|) (-10 -8 (-15 -3508 (|#1| $)) (-15 -1507 ($ $)) (-15 -4302 ($ $)) (-15 -4023 (|#1| $ $)) (-15 -2492 ($ (-747))) (-15 -4286 ($ (-618 (-535)))) (-15 -1506 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -4290 ((-747) $)) (-15 -4301 ($ (-1 |#1| |#1|) $)))) (-1018) (-618 (-1142))) (T -50))
+((-3508 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-618 (-1142))))) (-1507 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-618 (-1142))))) (-4302 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-618 (-1142))))) (-4023 (*1 *2 *1 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-618 (-1142))))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-618 (-1142))))) (-4286 (*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-618 (-1142))))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-618 (-1142))))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-618 (-1142))))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-618 (-1142))))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-50 *3 *4)) (-14 *4 (-618 (-1142))))))
+(-13 (-599 |#1|) (-1009 |#1|) (-10 -8 (-15 -3508 (|#1| $)) (-15 -1507 ($ $)) (-15 -4302 ($ $)) (-15 -4023 (|#1| $ $)) (-15 -2492 ($ (-747))) (-15 -4286 ($ (-618 (-535)))) (-15 -1506 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -4290 ((-747) $)) (-15 -4301 ($ (-1 |#1| |#1|) $))))
+((-2887 (((-112) $ $) NIL)) (-1293 (((-1124) (-112)) 25)) (-1296 (((-835) $) 24)) (-1294 (((-749) $) 12)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1297 (((-835) $) 16)) (-1295 (((-1069) $) 14)) (-4300 (((-835) $) 32)) (-1298 (($ (-1069) (-749)) 33)) (-3375 (((-112) $ $) 18)))
+(((-51) (-13 (-1067) (-10 -8 (-15 -1298 ($ (-1069) (-749))) (-15 -1297 ((-835) $)) (-15 -1296 ((-835) $)) (-15 -1295 ((-1069) $)) (-15 -1294 ((-749) $)) (-15 -1293 ((-1124) (-112)))))) (T -51))
+((-1298 (*1 *1 *2 *3) (-12 (-5 *2 (-1069)) (-5 *3 (-749)) (-5 *1 (-51)))) (-1297 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-51)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-51)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-51)))) (-1294 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-51)))) (-1293 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1124)) (-5 *1 (-51)))))
+(-13 (-1067) (-10 -8 (-15 -1298 ($ (-1069) (-749))) (-15 -1297 ((-835) $)) (-15 -1296 ((-835) $)) (-15 -1295 ((-1069) $)) (-15 -1294 ((-749) $)) (-15 -1293 ((-1124) (-112)))))
+((-2983 (((-112) (-51)) 13)) (-3491 (((-3 |#1| "failed") (-51)) 21)) (-3490 ((|#1| (-51)) 22)) (-4300 (((-51) |#1|) 18)))
+(((-52 |#1|) (-10 -7 (-15 -4300 ((-51) |#1|)) (-15 -3491 ((-3 |#1| "failed") (-51))) (-15 -2983 ((-112) (-51))) (-15 -3490 (|#1| (-51)))) (-1178)) (T -52))
+((-3490 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1178)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1178)))) (-3491 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1178)))) (-4300 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1178)))))
+(-10 -7 (-15 -4300 ((-51) |#1|)) (-15 -3491 ((-3 |#1| "failed") (-51))) (-15 -2983 ((-112) (-51))) (-15 -3490 (|#1| (-51))))
+((-2871 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2871 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1018) (-624 |#1|) (-825 |#1|)) (T -53))
+((-2871 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-624 *5)) (-4 *5 (-1018)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-825 *5)))))
+(-10 -7 (-15 -2871 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1300 ((|#3| |#3| (-618 (-1142))) 35)) (-1299 ((|#3| (-618 (-1041 |#1| |#2| |#3|)) |#3| (-890)) 22) ((|#3| (-618 (-1041 |#1| |#2| |#3|)) |#3|) 20)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1299 (|#3| (-618 (-1041 |#1| |#2| |#3|)) |#3|)) (-15 -1299 (|#3| (-618 (-1041 |#1| |#2| |#3|)) |#3| (-890))) (-15 -1300 (|#3| |#3| (-618 (-1142))))) (-1067) (-13 (-1018) (-857 |#1|) (-823) (-594 (-861 |#1|))) (-13 (-414 |#2|) (-857 |#1|) (-594 (-861 |#1|)))) (T -54))
+((-1300 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))))) (-1299 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-618 (-1041 *5 *6 *2))) (-5 *4 (-890)) (-4 *5 (-1067)) (-4 *6 (-13 (-1018) (-857 *5) (-823) (-594 (-861 *5)))) (-4 *2 (-13 (-414 *6) (-857 *5) (-594 (-861 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1299 (*1 *2 *3 *2) (-12 (-5 *3 (-618 (-1041 *4 *5 *2))) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -1299 (|#3| (-618 (-1041 |#1| |#2| |#3|)) |#3|)) (-15 -1299 (|#3| (-618 (-1041 |#1| |#2| |#3|)) |#3| (-890))) (-15 -1300 (|#3| |#3| (-618 (-1142)))))
+((-1264 (((-112) $ (-747)) 23)) (-1302 (($ $ (-535) |#3|) 46)) (-1301 (($ $ (-535) |#4|) 50)) (-3430 ((|#3| $ (-535)) 59)) (-2063 (((-618 |#2|) $) 30)) (-4065 (((-112) $ (-747)) 25)) (-3579 (((-112) |#2| $) 54)) (-2067 (($ (-1 |#2| |#2|) $) 37)) (-4301 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-4062 (((-112) $ (-747)) 24)) (-2297 (($ $ |#2|) 34)) (-2065 (((-112) (-1 (-112) |#2|) $) 19)) (-4142 ((|#2| $ (-535) (-535)) NIL) ((|#2| $ (-535) (-535) |#2|) 27)) (-2064 (((-747) (-1 (-112) |#2|) $) 28) (((-747) |#2| $) 56)) (-3742 (($ $) 33)) (-3429 ((|#4| $ (-535)) 62)) (-4300 (((-835) $) 68)) (-2066 (((-112) (-1 (-112) |#2|) $) 18)) (-3375 (((-112) $ $) 53)) (-4299 (((-747) $) 26)))
+(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1301 (|#1| |#1| (-535) |#4|)) (-15 -1302 (|#1| |#1| (-535) |#3|)) (-15 -2063 ((-618 |#2|) |#1|)) (-15 -3429 (|#4| |#1| (-535))) (-15 -3430 (|#3| |#1| (-535))) (-15 -4142 (|#2| |#1| (-535) (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) (-535))) (-15 -2297 (|#1| |#1| |#2|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -3579 ((-112) |#2| |#1|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747))) (-15 -3742 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1178) (-365 |#2|) (-365 |#2|)) (T -55))
+NIL
+(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1301 (|#1| |#1| (-535) |#4|)) (-15 -1302 (|#1| |#1| (-535) |#3|)) (-15 -2063 ((-618 |#2|) |#1|)) (-15 -3429 (|#4| |#1| (-535))) (-15 -3430 (|#3| |#1| (-535))) (-15 -4142 (|#2| |#1| (-535) (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) (-535))) (-15 -2297 (|#1| |#1| |#2|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -3579 ((-112) |#2| |#1|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747))) (-15 -3742 (|#1| |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) (-535) |#1|) 44)) (-1302 (($ $ (-535) |#2|) 42)) (-1301 (($ $ (-535) |#3|) 41)) (-3879 (($) 7 T CONST)) (-3430 ((|#2| $ (-535)) 46)) (-1632 ((|#1| $ (-535) (-535) |#1|) 43)) (-3431 ((|#1| $ (-535) (-535)) 48)) (-2063 (((-618 |#1|) $) 30)) (-3433 (((-747) $) 51)) (-3960 (($ (-747) (-747) |#1|) 57)) (-3432 (((-747) $) 50)) (-4065 (((-112) $ (-747)) 9)) (-3437 (((-535) $) 55)) (-3435 (((-535) $) 53)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3436 (((-535) $) 54)) (-3434 (((-535) $) 52)) (-2067 (($ (-1 |#1| |#1|) $) 34)) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) 56)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) (-535)) 49) ((|#1| $ (-535) (-535) |#1|) 47)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-3429 ((|#3| $ (-535)) 45)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-56 |#1| |#2| |#3|) (-138) (-1178) (-365 |t#1|) (-365 |t#1|)) (T -56))
+((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3960 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-747)) (-4 *3 (-1178)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2297 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1178)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-535)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-535)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-535)))) (-3434 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-535)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-747)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-747)))) (-4142 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-1178)))) (-3431 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-1178)))) (-4142 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1178)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1178)) (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) (-3429 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1178)) (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) (-2063 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-618 *3)))) (-4130 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1178)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-1632 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1178)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-1302 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-535)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1178)) (-4 *3 (-365 *4)) (-4 *5 (-365 *4)))) (-1301 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-535)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1178)) (-4 *5 (-365 *4)) (-4 *3 (-365 *4)))) (-2067 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4301 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4301 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))))
+(-13 (-481 |t#1|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -3960 ($ (-747) (-747) |t#1|)) (-15 -2297 ($ $ |t#1|)) (-15 -3437 ((-535) $)) (-15 -3436 ((-535) $)) (-15 -3435 ((-535) $)) (-15 -3434 ((-535) $)) (-15 -3433 ((-747) $)) (-15 -3432 ((-747) $)) (-15 -4142 (|t#1| $ (-535) (-535))) (-15 -3431 (|t#1| $ (-535) (-535))) (-15 -4142 (|t#1| $ (-535) (-535) |t#1|)) (-15 -3430 (|t#2| $ (-535))) (-15 -3429 (|t#3| $ (-535))) (-15 -2063 ((-618 |t#1|) $)) (-15 -4130 (|t#1| $ (-535) (-535) |t#1|)) (-15 -1632 (|t#1| $ (-535) (-535) |t#1|)) (-15 -1302 ($ $ (-535) |t#2|)) (-15 -1301 ($ $ (-535) |t#3|)) (-15 -4301 ($ (-1 |t#1| |t#1|) $)) (-15 -2067 ($ (-1 |t#1| |t#1|) $)) (-15 -4301 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4301 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) |#1|) 11 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-1303 (($ (-618 |#1|)) 13) (($ (-747) |#1|) 14)) (-3960 (($ (-747) |#1|) 9)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 7)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1303 ($ (-618 |#1|))) (-15 -1303 ($ (-747) |#1|)))) (-1178)) (T -57))
+((-1303 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-57 *3)))) (-1303 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-57 *3)) (-4 *3 (-1178)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -1303 ($ (-618 |#1|))) (-15 -1303 ($ (-747) |#1|))))
+((-4184 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-4185 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-4301 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -4184 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4301 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1178) (-1178)) (T -58))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-57 *6)) (-5 *1 (-58 *5 *6)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) (-5 *1 (-58 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1178)) (-4 *5 (-1178)) (-5 *2 (-57 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -4184 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4301 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) (-535) |#1|) NIL)) (-1302 (($ $ (-535) (-57 |#1|)) NIL)) (-1301 (($ $ (-535) (-57 |#1|)) NIL)) (-3879 (($) NIL T CONST)) (-3430 (((-57 |#1|) $ (-535)) NIL)) (-1632 ((|#1| $ (-535) (-535) |#1|) NIL)) (-3431 ((|#1| $ (-535) (-535)) NIL)) (-2063 (((-618 |#1|) $) NIL)) (-3433 (((-747) $) NIL)) (-3960 (($ (-747) (-747) |#1|) NIL)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3437 (((-535) $) NIL)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3436 (((-535) $) NIL)) (-3434 (((-535) $) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) (-535)) NIL) ((|#1| $ (-535) (-535) |#1|) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-3429 (((-57 |#1|) $ (-535)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-59 |#1|) (-13 (-56 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4337))) (-1178)) (T -59))
+NIL
+(-13 (-56 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4337)))
+((-3491 (((-3 $ #1="failed") (-307 (-371))) 41) (((-3 $ #1#) (-307 (-535))) 46) (((-3 $ #1#) (-917 (-371))) 50) (((-3 $ #1#) (-917 (-535))) 54) (((-3 $ #1#) (-400 (-917 (-371)))) 36) (((-3 $ #1#) (-400 (-917 (-535)))) 29)) (-3490 (($ (-307 (-371))) 39) (($ (-307 (-535))) 44) (($ (-917 (-371))) 48) (($ (-917 (-535))) 52) (($ (-400 (-917 (-371)))) 34) (($ (-400 (-917 (-535)))) 26)) (-3722 (((-1230) $) 76)) (-4300 (((-835) $) 69) (($ (-618 (-323))) 61) (($ (-323)) 66) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 64) (($ (-332 (-3867 (QUOTE X)) (-3867) (-675))) 25)))
+(((-60 |#1|) (-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867 (QUOTE X)) (-3867) (-675)))))) (-1142)) (T -60))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-332 (-3867 (QUOTE X)) (-3867) (-675))) (-5 *1 (-60 *3)) (-14 *3 (-1142)))))
+(-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867 (QUOTE X)) (-3867) (-675))))))
+((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 74) (((-3 $ #1#) (-1224 (-307 (-535)))) 63) (((-3 $ #1#) (-1224 (-917 (-371)))) 94) (((-3 $ #1#) (-1224 (-917 (-535)))) 84) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 52) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 39)) (-3490 (($ (-1224 (-307 (-371)))) 70) (($ (-1224 (-307 (-535)))) 59) (($ (-1224 (-917 (-371)))) 90) (($ (-1224 (-917 (-535)))) 80) (($ (-1224 (-400 (-917 (-371))))) 48) (($ (-1224 (-400 (-917 (-535))))) 32)) (-3722 (((-1230) $) 120)) (-4300 (((-835) $) 113) (($ (-618 (-323))) 103) (($ (-323)) 97) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 101) (($ (-1224 (-332 (-3867 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3867) (-675)))) 31)))
+(((-61 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3867) (-675))))))) (-1142)) (T -61))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3867) (-675)))) (-5 *1 (-61 *3)) (-14 *3 (-1142)))))
+(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3867) (-675)))))))
+((-3722 (((-1230) $) 53) (((-1230)) 54)) (-4300 (((-835) $) 50)))
+(((-62 |#1|) (-13 (-389) (-10 -7 (-15 -3722 ((-1230))))) (-1142)) (T -62))
+((-3722 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-62 *3)) (-14 *3 (-1142)))))
+(-13 (-389) (-10 -7 (-15 -3722 ((-1230)))))
+((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 144) (((-3 $ #1#) (-1224 (-307 (-535)))) 134) (((-3 $ #1#) (-1224 (-917 (-371)))) 164) (((-3 $ #1#) (-1224 (-917 (-535)))) 154) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 123) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 111)) (-3490 (($ (-1224 (-307 (-371)))) 140) (($ (-1224 (-307 (-535)))) 130) (($ (-1224 (-917 (-371)))) 160) (($ (-1224 (-917 (-535)))) 150) (($ (-1224 (-400 (-917 (-371))))) 119) (($ (-1224 (-400 (-917 (-535))))) 104)) (-3722 (((-1230) $) 97)) (-4300 (((-835) $) 91) (($ (-618 (-323))) 29) (($ (-323)) 34) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 32) (($ (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675)))) 89)))
+(((-63 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675))))))) (-1142)) (T -63))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675)))) (-5 *1 (-63 *3)) (-14 *3 (-1142)))))
+(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-665 (-307 (-371)))) 109) (((-3 $ #1#) (-665 (-307 (-535)))) 97) (((-3 $ #1#) (-665 (-917 (-371)))) 131) (((-3 $ #1#) (-665 (-917 (-535)))) 120) (((-3 $ #1#) (-665 (-400 (-917 (-371))))) 85) (((-3 $ #1#) (-665 (-400 (-917 (-535))))) 71)) (-3490 (($ (-665 (-307 (-371)))) 105) (($ (-665 (-307 (-535)))) 93) (($ (-665 (-917 (-371)))) 127) (($ (-665 (-917 (-535)))) 116) (($ (-665 (-400 (-917 (-371))))) 81) (($ (-665 (-400 (-917 (-535))))) 64)) (-3722 (((-1230) $) 139)) (-4300 (((-835) $) 133) (($ (-618 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 31) (($ (-665 (-332 (-3867) (-3867 (QUOTE X) (QUOTE HESS)) (-675)))) 54)))
+(((-64 |#1|) (-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867) (-3867 (QUOTE X) (QUOTE HESS)) (-675))))))) (-1142)) (T -64))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3867) (-3867 (QUOTE X) (QUOTE HESS)) (-675)))) (-5 *1 (-64 *3)) (-14 *3 (-1142)))))
+(-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867) (-3867 (QUOTE X) (QUOTE HESS)) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-307 (-371))) 59) (((-3 $ #1#) (-307 (-535))) 64) (((-3 $ #1#) (-917 (-371))) 68) (((-3 $ #1#) (-917 (-535))) 72) (((-3 $ #1#) (-400 (-917 (-371)))) 54) (((-3 $ #1#) (-400 (-917 (-535)))) 47)) (-3490 (($ (-307 (-371))) 57) (($ (-307 (-535))) 62) (($ (-917 (-371))) 66) (($ (-917 (-535))) 70) (($ (-400 (-917 (-371)))) 52) (($ (-400 (-917 (-535)))) 44)) (-3722 (((-1230) $) 81)) (-4300 (((-835) $) 75) (($ (-618 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 31) (($ (-332 (-3867) (-3867 (QUOTE XC)) (-675))) 39)))
+(((-65 |#1|) (-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867) (-3867 (QUOTE XC)) (-675)))))) (-1142)) (T -65))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-332 (-3867) (-3867 (QUOTE XC)) (-675))) (-5 *1 (-65 *3)) (-14 *3 (-1142)))))
+(-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867) (-3867 (QUOTE XC)) (-675))))))
+((-3722 (((-1230) $) 63)) (-4300 (((-835) $) 57) (($ (-665 (-675))) 49) (($ (-618 (-323))) 48) (($ (-323)) 55) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 53)))
(((-66 |#1|) (-376) (-1142)) (T -66))
NIL
(-376)
-((-3315 (((-1230) $) 64)) (-3845 (((-834) $) 58) (($ (-665 (-675))) 50) (($ (-621 (-323))) 49) (($ (-323)) 52) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 55)))
+((-3722 (((-1230) $) 64)) (-4300 (((-835) $) 58) (($ (-665 (-675))) 50) (($ (-618 (-323))) 49) (($ (-323)) 52) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 55)))
(((-67 |#1|) (-376) (-1142)) (T -67))
NIL
(-376)
-((-3315 (((-1230) $) NIL) (((-1230)) 32)) (-3845 (((-834) $) NIL)))
-(((-68 |#1|) (-13 (-388) (-10 -7 (-15 -3315 ((-1230))))) (-1142)) (T -68))
-((-3315 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-68 *3)) (-14 *3 (-1142)))))
-(-13 (-388) (-10 -7 (-15 -3315 ((-1230)))))
-((-3315 (((-1230) $) 73)) (-3845 (((-834) $) 67) (($ (-665 (-675))) 59) (($ (-621 (-323))) 61) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 58)))
+((-3722 (((-1230) $) NIL) (((-1230)) 32)) (-4300 (((-835) $) NIL)))
+(((-68 |#1|) (-13 (-389) (-10 -7 (-15 -3722 ((-1230))))) (-1142)) (T -68))
+((-3722 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-68 *3)) (-14 *3 (-1142)))))
+(-13 (-389) (-10 -7 (-15 -3722 ((-1230)))))
+((-3722 (((-1230) $) 73)) (-4300 (((-835) $) 67) (($ (-665 (-675))) 59) (($ (-618 (-323))) 61) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 58)))
(((-69 |#1|) (-376) (-1142)) (T -69))
NIL
(-376)
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 103) (((-3 $ "failed") (-1225 (-309 (-549)))) 92) (((-3 $ "failed") (-1225 (-923 (-372)))) 123) (((-3 $ "failed") (-1225 (-923 (-549)))) 113) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 81) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 68)) (-2658 (($ (-1225 (-309 (-372)))) 99) (($ (-1225 (-309 (-549)))) 88) (($ (-1225 (-923 (-372)))) 119) (($ (-1225 (-923 (-549)))) 109) (($ (-1225 (-400 (-923 (-372))))) 77) (($ (-1225 (-400 (-923 (-549))))) 61)) (-3315 (((-1230) $) 136)) (-3845 (((-834) $) 130) (($ (-621 (-323))) 125) (($ (-323)) 128) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 53) (($ (-1225 (-332 (-3853 (QUOTE X)) (-3853 (QUOTE -2662)) (-675)))) 54)))
-(((-70 |#1|) (-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE X)) (-3853 (QUOTE -2662)) (-675))))))) (-1142)) (T -70))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-332 (-3853 (QUOTE X)) (-3853 (QUOTE -2662)) (-675)))) (-5 *1 (-70 *3)) (-14 *3 (-1142)))))
-(-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE X)) (-3853 (QUOTE -2662)) (-675)))))))
-((-3315 (((-1230) $) 32) (((-1230)) 31)) (-3845 (((-834) $) 35)))
-(((-71 |#1|) (-13 (-388) (-10 -7 (-15 -3315 ((-1230))))) (-1142)) (T -71))
-((-3315 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-71 *3)) (-14 *3 (-1142)))))
-(-13 (-388) (-10 -7 (-15 -3315 ((-1230)))))
-((-3315 (((-1230) $) 63)) (-3845 (((-834) $) 57) (($ (-665 (-675))) 49) (($ (-621 (-323))) 51) (($ (-323)) 54) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 48)))
+((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 103) (((-3 $ #1#) (-1224 (-307 (-535)))) 92) (((-3 $ #1#) (-1224 (-917 (-371)))) 123) (((-3 $ #1#) (-1224 (-917 (-535)))) 113) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 81) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 68)) (-3490 (($ (-1224 (-307 (-371)))) 99) (($ (-1224 (-307 (-535)))) 88) (($ (-1224 (-917 (-371)))) 119) (($ (-1224 (-917 (-535)))) 109) (($ (-1224 (-400 (-917 (-371))))) 77) (($ (-1224 (-400 (-917 (-535))))) 61)) (-3722 (((-1230) $) 136)) (-4300 (((-835) $) 130) (($ (-618 (-323))) 125) (($ (-323)) 128) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 53) (($ (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))) 54)))
+(((-70 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675))))))) (-1142)) (T -70))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))) (-5 *1 (-70 *3)) (-14 *3 (-1142)))))
+(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))))))
+((-3722 (((-1230) $) 32) (((-1230)) 31)) (-4300 (((-835) $) 35)))
+(((-71 |#1|) (-13 (-389) (-10 -7 (-15 -3722 ((-1230))))) (-1142)) (T -71))
+((-3722 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-71 *3)) (-14 *3 (-1142)))))
+(-13 (-389) (-10 -7 (-15 -3722 ((-1230)))))
+((-3722 (((-1230) $) 63)) (-4300 (((-835) $) 57) (($ (-665 (-675))) 49) (($ (-618 (-323))) 51) (($ (-323)) 54) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 48)))
(((-72 |#1|) (-376) (-1142)) (T -72))
NIL
(-376)
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 125) (((-3 $ "failed") (-1225 (-309 (-549)))) 115) (((-3 $ "failed") (-1225 (-923 (-372)))) 145) (((-3 $ "failed") (-1225 (-923 (-549)))) 135) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 105) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 93)) (-2658 (($ (-1225 (-309 (-372)))) 121) (($ (-1225 (-309 (-549)))) 111) (($ (-1225 (-923 (-372)))) 141) (($ (-1225 (-923 (-549)))) 131) (($ (-1225 (-400 (-923 (-372))))) 101) (($ (-1225 (-400 (-923 (-549))))) 86)) (-3315 (((-1230) $) 78)) (-3845 (((-834) $) 27) (($ (-621 (-323))) 68) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 71) (($ (-1225 (-332 (-3853) (-3853 (QUOTE X)) (-675)))) 65)))
-(((-73 |#1|) (-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853) (-3853 (QUOTE X)) (-675))))))) (-1142)) (T -73))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-332 (-3853) (-3853 (QUOTE X)) (-675)))) (-5 *1 (-73 *3)) (-14 *3 (-1142)))))
-(-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853) (-3853 (QUOTE X)) (-675)))))))
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 130) (((-3 $ "failed") (-1225 (-309 (-549)))) 119) (((-3 $ "failed") (-1225 (-923 (-372)))) 150) (((-3 $ "failed") (-1225 (-923 (-549)))) 140) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 108) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 95)) (-2658 (($ (-1225 (-309 (-372)))) 126) (($ (-1225 (-309 (-549)))) 115) (($ (-1225 (-923 (-372)))) 146) (($ (-1225 (-923 (-549)))) 136) (($ (-1225 (-400 (-923 (-372))))) 104) (($ (-1225 (-400 (-923 (-549))))) 88)) (-3315 (((-1230) $) 79)) (-3845 (((-834) $) 71) (($ (-621 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) NIL) (($ (-1225 (-332 (-3853 (QUOTE X) (QUOTE EPS)) (-3853 (QUOTE -2662)) (-675)))) 66)))
-(((-74 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE X) (QUOTE EPS)) (-3853 (QUOTE -2662)) (-675))))))) (-1142) (-1142) (-1142)) (T -74))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-332 (-3853 (QUOTE X) (QUOTE EPS)) (-3853 (QUOTE -2662)) (-675)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1142)) (-14 *4 (-1142)) (-14 *5 (-1142)))))
-(-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE X) (QUOTE EPS)) (-3853 (QUOTE -2662)) (-675)))))))
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 134) (((-3 $ "failed") (-1225 (-309 (-549)))) 123) (((-3 $ "failed") (-1225 (-923 (-372)))) 154) (((-3 $ "failed") (-1225 (-923 (-549)))) 144) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 112) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 99)) (-2658 (($ (-1225 (-309 (-372)))) 130) (($ (-1225 (-309 (-549)))) 119) (($ (-1225 (-923 (-372)))) 150) (($ (-1225 (-923 (-549)))) 140) (($ (-1225 (-400 (-923 (-372))))) 108) (($ (-1225 (-400 (-923 (-549))))) 92)) (-3315 (((-1230) $) 83)) (-3845 (((-834) $) 75) (($ (-621 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) NIL) (($ (-1225 (-332 (-3853 (QUOTE EPS)) (-3853 (QUOTE YA) (QUOTE YB)) (-675)))) 70)))
-(((-75 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE EPS)) (-3853 (QUOTE YA) (QUOTE YB)) (-675))))))) (-1142) (-1142) (-1142)) (T -75))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-332 (-3853 (QUOTE EPS)) (-3853 (QUOTE YA) (QUOTE YB)) (-675)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1142)) (-14 *4 (-1142)) (-14 *5 (-1142)))))
-(-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE EPS)) (-3853 (QUOTE YA) (QUOTE YB)) (-675)))))))
-((-2713 (((-3 $ "failed") (-309 (-372))) 82) (((-3 $ "failed") (-309 (-549))) 87) (((-3 $ "failed") (-923 (-372))) 91) (((-3 $ "failed") (-923 (-549))) 95) (((-3 $ "failed") (-400 (-923 (-372)))) 77) (((-3 $ "failed") (-400 (-923 (-549)))) 70)) (-2658 (($ (-309 (-372))) 80) (($ (-309 (-549))) 85) (($ (-923 (-372))) 89) (($ (-923 (-549))) 93) (($ (-400 (-923 (-372)))) 75) (($ (-400 (-923 (-549)))) 67)) (-3315 (((-1230) $) 62)) (-3845 (((-834) $) 50) (($ (-621 (-323))) 46) (($ (-323)) 56) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 54) (($ (-332 (-3853) (-3853 (QUOTE X)) (-675))) 47)))
-(((-76 |#1|) (-13 (-389) (-10 -8 (-15 -3845 ($ (-332 (-3853) (-3853 (QUOTE X)) (-675)))))) (-1142)) (T -76))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-332 (-3853) (-3853 (QUOTE X)) (-675))) (-5 *1 (-76 *3)) (-14 *3 (-1142)))))
-(-13 (-389) (-10 -8 (-15 -3845 ($ (-332 (-3853) (-3853 (QUOTE X)) (-675))))))
-((-2713 (((-3 $ "failed") (-309 (-372))) 46) (((-3 $ "failed") (-309 (-549))) 51) (((-3 $ "failed") (-923 (-372))) 55) (((-3 $ "failed") (-923 (-549))) 59) (((-3 $ "failed") (-400 (-923 (-372)))) 41) (((-3 $ "failed") (-400 (-923 (-549)))) 34)) (-2658 (($ (-309 (-372))) 44) (($ (-309 (-549))) 49) (($ (-923 (-372))) 53) (($ (-923 (-549))) 57) (($ (-400 (-923 (-372)))) 39) (($ (-400 (-923 (-549)))) 31)) (-3315 (((-1230) $) 80)) (-3845 (((-834) $) 74) (($ (-621 (-323))) 66) (($ (-323)) 71) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 69) (($ (-332 (-3853) (-3853 (QUOTE X)) (-675))) 30)))
-(((-77 |#1|) (-13 (-389) (-10 -8 (-15 -3845 ($ (-332 (-3853) (-3853 (QUOTE X)) (-675)))))) (-1142)) (T -77))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-332 (-3853) (-3853 (QUOTE X)) (-675))) (-5 *1 (-77 *3)) (-14 *3 (-1142)))))
-(-13 (-389) (-10 -8 (-15 -3845 ($ (-332 (-3853) (-3853 (QUOTE X)) (-675))))))
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 89) (((-3 $ "failed") (-1225 (-309 (-549)))) 78) (((-3 $ "failed") (-1225 (-923 (-372)))) 109) (((-3 $ "failed") (-1225 (-923 (-549)))) 99) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 67) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 54)) (-2658 (($ (-1225 (-309 (-372)))) 85) (($ (-1225 (-309 (-549)))) 74) (($ (-1225 (-923 (-372)))) 105) (($ (-1225 (-923 (-549)))) 95) (($ (-1225 (-400 (-923 (-372))))) 63) (($ (-1225 (-400 (-923 (-549))))) 47)) (-3315 (((-1230) $) 125)) (-3845 (((-834) $) 119) (($ (-621 (-323))) 112) (($ (-323)) 37) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 115) (($ (-1225 (-332 (-3853) (-3853 (QUOTE XC)) (-675)))) 38)))
-(((-78 |#1|) (-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853) (-3853 (QUOTE XC)) (-675))))))) (-1142)) (T -78))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-332 (-3853) (-3853 (QUOTE XC)) (-675)))) (-5 *1 (-78 *3)) (-14 *3 (-1142)))))
-(-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853) (-3853 (QUOTE XC)) (-675)))))))
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 142) (((-3 $ "failed") (-1225 (-309 (-549)))) 132) (((-3 $ "failed") (-1225 (-923 (-372)))) 162) (((-3 $ "failed") (-1225 (-923 (-549)))) 152) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 122) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 110)) (-2658 (($ (-1225 (-309 (-372)))) 138) (($ (-1225 (-309 (-549)))) 128) (($ (-1225 (-923 (-372)))) 158) (($ (-1225 (-923 (-549)))) 148) (($ (-1225 (-400 (-923 (-372))))) 118) (($ (-1225 (-400 (-923 (-549))))) 103)) (-3315 (((-1230) $) 96)) (-3845 (((-834) $) 90) (($ (-621 (-323))) 81) (($ (-323)) 88) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 86) (($ (-1225 (-332 (-3853) (-3853 (QUOTE X)) (-675)))) 82)))
-(((-79 |#1|) (-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853) (-3853 (QUOTE X)) (-675))))))) (-1142)) (T -79))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-332 (-3853) (-3853 (QUOTE X)) (-675)))) (-5 *1 (-79 *3)) (-14 *3 (-1142)))))
-(-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853) (-3853 (QUOTE X)) (-675)))))))
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 78) (((-3 $ "failed") (-1225 (-309 (-549)))) 67) (((-3 $ "failed") (-1225 (-923 (-372)))) 98) (((-3 $ "failed") (-1225 (-923 (-549)))) 88) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 56) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 43)) (-2658 (($ (-1225 (-309 (-372)))) 74) (($ (-1225 (-309 (-549)))) 63) (($ (-1225 (-923 (-372)))) 94) (($ (-1225 (-923 (-549)))) 84) (($ (-1225 (-400 (-923 (-372))))) 52) (($ (-1225 (-400 (-923 (-549))))) 36)) (-3315 (((-1230) $) 124)) (-3845 (((-834) $) 118) (($ (-621 (-323))) 109) (($ (-323)) 115) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 113) (($ (-1225 (-332 (-3853) (-3853 (QUOTE X)) (-675)))) 35)))
-(((-80 |#1|) (-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853) (-3853 (QUOTE X)) (-675))))))) (-1142)) (T -80))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-332 (-3853) (-3853 (QUOTE X)) (-675)))) (-5 *1 (-80 *3)) (-14 *3 (-1142)))))
-(-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853) (-3853 (QUOTE X)) (-675)))))))
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 95) (((-3 $ "failed") (-1225 (-309 (-549)))) 84) (((-3 $ "failed") (-1225 (-923 (-372)))) 115) (((-3 $ "failed") (-1225 (-923 (-549)))) 105) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 73) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 60)) (-2658 (($ (-1225 (-309 (-372)))) 91) (($ (-1225 (-309 (-549)))) 80) (($ (-1225 (-923 (-372)))) 111) (($ (-1225 (-923 (-549)))) 101) (($ (-1225 (-400 (-923 (-372))))) 69) (($ (-1225 (-400 (-923 (-549))))) 53)) (-3315 (((-1230) $) 45)) (-3845 (((-834) $) 39) (($ (-621 (-323))) 29) (($ (-323)) 32) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 35) (($ (-1225 (-332 (-3853 (QUOTE X) (QUOTE -2662)) (-3853) (-675)))) 30)))
-(((-81 |#1|) (-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE X) (QUOTE -2662)) (-3853) (-675))))))) (-1142)) (T -81))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-332 (-3853 (QUOTE X) (QUOTE -2662)) (-3853) (-675)))) (-5 *1 (-81 *3)) (-14 *3 (-1142)))))
-(-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE X) (QUOTE -2662)) (-3853) (-675)))))))
-((-2713 (((-3 $ "failed") (-665 (-309 (-372)))) 115) (((-3 $ "failed") (-665 (-309 (-549)))) 104) (((-3 $ "failed") (-665 (-923 (-372)))) 137) (((-3 $ "failed") (-665 (-923 (-549)))) 126) (((-3 $ "failed") (-665 (-400 (-923 (-372))))) 93) (((-3 $ "failed") (-665 (-400 (-923 (-549))))) 80)) (-2658 (($ (-665 (-309 (-372)))) 111) (($ (-665 (-309 (-549)))) 100) (($ (-665 (-923 (-372)))) 133) (($ (-665 (-923 (-549)))) 122) (($ (-665 (-400 (-923 (-372))))) 89) (($ (-665 (-400 (-923 (-549))))) 73)) (-3315 (((-1230) $) 63)) (-3845 (((-834) $) 50) (($ (-621 (-323))) 57) (($ (-323)) 46) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 55) (($ (-665 (-332 (-3853 (QUOTE X) (QUOTE -2662)) (-3853) (-675)))) 47)))
-(((-82 |#1|) (-13 (-377) (-10 -8 (-15 -3845 ($ (-665 (-332 (-3853 (QUOTE X) (QUOTE -2662)) (-3853) (-675))))))) (-1142)) (T -82))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3853 (QUOTE X) (QUOTE -2662)) (-3853) (-675)))) (-5 *1 (-82 *3)) (-14 *3 (-1142)))))
-(-13 (-377) (-10 -8 (-15 -3845 ($ (-665 (-332 (-3853 (QUOTE X) (QUOTE -2662)) (-3853) (-675)))))))
-((-2713 (((-3 $ "failed") (-665 (-309 (-372)))) 112) (((-3 $ "failed") (-665 (-309 (-549)))) 100) (((-3 $ "failed") (-665 (-923 (-372)))) 134) (((-3 $ "failed") (-665 (-923 (-549)))) 123) (((-3 $ "failed") (-665 (-400 (-923 (-372))))) 88) (((-3 $ "failed") (-665 (-400 (-923 (-549))))) 74)) (-2658 (($ (-665 (-309 (-372)))) 108) (($ (-665 (-309 (-549)))) 96) (($ (-665 (-923 (-372)))) 130) (($ (-665 (-923 (-549)))) 119) (($ (-665 (-400 (-923 (-372))))) 84) (($ (-665 (-400 (-923 (-549))))) 67)) (-3315 (((-1230) $) 59)) (-3845 (((-834) $) 53) (($ (-621 (-323))) 47) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 44) (($ (-665 (-332 (-3853 (QUOTE X)) (-3853) (-675)))) 45)))
-(((-83 |#1|) (-13 (-377) (-10 -8 (-15 -3845 ($ (-665 (-332 (-3853 (QUOTE X)) (-3853) (-675))))))) (-1142)) (T -83))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3853 (QUOTE X)) (-3853) (-675)))) (-5 *1 (-83 *3)) (-14 *3 (-1142)))))
-(-13 (-377) (-10 -8 (-15 -3845 ($ (-665 (-332 (-3853 (QUOTE X)) (-3853) (-675)))))))
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 104) (((-3 $ "failed") (-1225 (-309 (-549)))) 93) (((-3 $ "failed") (-1225 (-923 (-372)))) 124) (((-3 $ "failed") (-1225 (-923 (-549)))) 114) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 82) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 69)) (-2658 (($ (-1225 (-309 (-372)))) 100) (($ (-1225 (-309 (-549)))) 89) (($ (-1225 (-923 (-372)))) 120) (($ (-1225 (-923 (-549)))) 110) (($ (-1225 (-400 (-923 (-372))))) 78) (($ (-1225 (-400 (-923 (-549))))) 62)) (-3315 (((-1230) $) 46)) (-3845 (((-834) $) 40) (($ (-621 (-323))) 49) (($ (-323)) 36) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 52) (($ (-1225 (-332 (-3853 (QUOTE X)) (-3853) (-675)))) 37)))
-(((-84 |#1|) (-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE X)) (-3853) (-675))))))) (-1142)) (T -84))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-332 (-3853 (QUOTE X)) (-3853) (-675)))) (-5 *1 (-84 *3)) (-14 *3 (-1142)))))
-(-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE X)) (-3853) (-675)))))))
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 79) (((-3 $ "failed") (-1225 (-309 (-549)))) 68) (((-3 $ "failed") (-1225 (-923 (-372)))) 99) (((-3 $ "failed") (-1225 (-923 (-549)))) 89) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 57) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 44)) (-2658 (($ (-1225 (-309 (-372)))) 75) (($ (-1225 (-309 (-549)))) 64) (($ (-1225 (-923 (-372)))) 95) (($ (-1225 (-923 (-549)))) 85) (($ (-1225 (-400 (-923 (-372))))) 53) (($ (-1225 (-400 (-923 (-549))))) 37)) (-3315 (((-1230) $) 125)) (-3845 (((-834) $) 119) (($ (-621 (-323))) 110) (($ (-323)) 116) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 114) (($ (-1225 (-332 (-3853 (QUOTE X)) (-3853 (QUOTE -2662)) (-675)))) 36)))
-(((-85 |#1|) (-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE X)) (-3853 (QUOTE -2662)) (-675))))))) (-1142)) (T -85))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-332 (-3853 (QUOTE X)) (-3853 (QUOTE -2662)) (-675)))) (-5 *1 (-85 *3)) (-14 *3 (-1142)))))
-(-13 (-433) (-10 -8 (-15 -3845 ($ (-1225 (-332 (-3853 (QUOTE X)) (-3853 (QUOTE -2662)) (-675)))))))
-((-2713 (((-3 $ "failed") (-665 (-309 (-372)))) 113) (((-3 $ "failed") (-665 (-309 (-549)))) 101) (((-3 $ "failed") (-665 (-923 (-372)))) 135) (((-3 $ "failed") (-665 (-923 (-549)))) 124) (((-3 $ "failed") (-665 (-400 (-923 (-372))))) 89) (((-3 $ "failed") (-665 (-400 (-923 (-549))))) 75)) (-2658 (($ (-665 (-309 (-372)))) 109) (($ (-665 (-309 (-549)))) 97) (($ (-665 (-923 (-372)))) 131) (($ (-665 (-923 (-549)))) 120) (($ (-665 (-400 (-923 (-372))))) 85) (($ (-665 (-400 (-923 (-549))))) 68)) (-3315 (((-1230) $) 59)) (-3845 (((-834) $) 53) (($ (-621 (-323))) 43) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 48) (($ (-665 (-332 (-3853 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3853) (-675)))) 44)))
-(((-86 |#1|) (-13 (-377) (-10 -8 (-15 -3845 ($ (-665 (-332 (-3853 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3853) (-675))))))) (-1142)) (T -86))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3853 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3853) (-675)))) (-5 *1 (-86 *3)) (-14 *3 (-1142)))))
-(-13 (-377) (-10 -8 (-15 -3845 ($ (-665 (-332 (-3853 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3853) (-675)))))))
-((-3315 (((-1230) $) 44)) (-3845 (((-834) $) 38) (($ (-1225 (-675))) 92) (($ (-621 (-323))) 30) (($ (-323)) 35) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 33)))
-(((-87 |#1|) (-432) (-1142)) (T -87))
+((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 125) (((-3 $ #1#) (-1224 (-307 (-535)))) 115) (((-3 $ #1#) (-1224 (-917 (-371)))) 145) (((-3 $ #1#) (-1224 (-917 (-535)))) 135) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 105) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 93)) (-3490 (($ (-1224 (-307 (-371)))) 121) (($ (-1224 (-307 (-535)))) 111) (($ (-1224 (-917 (-371)))) 141) (($ (-1224 (-917 (-535)))) 131) (($ (-1224 (-400 (-917 (-371))))) 101) (($ (-1224 (-400 (-917 (-535))))) 86)) (-3722 (((-1230) $) 78)) (-4300 (((-835) $) 27) (($ (-618 (-323))) 68) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 71) (($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))) 65)))
+(((-73 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675))))))) (-1142)) (T -73))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))) (-5 *1 (-73 *3)) (-14 *3 (-1142)))))
+(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-307 (-371))) 46) (((-3 $ #1#) (-307 (-535))) 51) (((-3 $ #1#) (-917 (-371))) 55) (((-3 $ #1#) (-917 (-535))) 59) (((-3 $ #1#) (-400 (-917 (-371)))) 41) (((-3 $ #1#) (-400 (-917 (-535)))) 34)) (-3490 (($ (-307 (-371))) 44) (($ (-307 (-535))) 49) (($ (-917 (-371))) 53) (($ (-917 (-535))) 57) (($ (-400 (-917 (-371)))) 39) (($ (-400 (-917 (-535)))) 31)) (-3722 (((-1230) $) 80)) (-4300 (((-835) $) 74) (($ (-618 (-323))) 66) (($ (-323)) 71) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 69) (($ (-332 (-3867) (-3867 (QUOTE X)) (-675))) 30)))
+(((-74 |#1|) (-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867) (-3867 (QUOTE X)) (-675)))))) (-1142)) (T -74))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-332 (-3867) (-3867 (QUOTE X)) (-675))) (-5 *1 (-74 *3)) (-14 *3 (-1142)))))
+(-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867) (-3867 (QUOTE X)) (-675))))))
+((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 130) (((-3 $ #1#) (-1224 (-307 (-535)))) 119) (((-3 $ #1#) (-1224 (-917 (-371)))) 150) (((-3 $ #1#) (-1224 (-917 (-535)))) 140) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 108) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 95)) (-3490 (($ (-1224 (-307 (-371)))) 126) (($ (-1224 (-307 (-535)))) 115) (($ (-1224 (-917 (-371)))) 146) (($ (-1224 (-917 (-535)))) 136) (($ (-1224 (-400 (-917 (-371))))) 104) (($ (-1224 (-400 (-917 (-535))))) 88)) (-3722 (((-1230) $) 79)) (-4300 (((-835) $) 71) (($ (-618 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) NIL) (($ (-1224 (-332 (-3867 (QUOTE X) (QUOTE EPS)) (-3867 (QUOTE -4307)) (-675)))) 66)))
+(((-75 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X) (QUOTE EPS)) (-3867 (QUOTE -4307)) (-675))))))) (-1142) (-1142) (-1142)) (T -75))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE X) (QUOTE EPS)) (-3867 (QUOTE -4307)) (-675)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1142)) (-14 *4 (-1142)) (-14 *5 (-1142)))))
+(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X) (QUOTE EPS)) (-3867 (QUOTE -4307)) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 134) (((-3 $ #1#) (-1224 (-307 (-535)))) 123) (((-3 $ #1#) (-1224 (-917 (-371)))) 154) (((-3 $ #1#) (-1224 (-917 (-535)))) 144) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 112) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 99)) (-3490 (($ (-1224 (-307 (-371)))) 130) (($ (-1224 (-307 (-535)))) 119) (($ (-1224 (-917 (-371)))) 150) (($ (-1224 (-917 (-535)))) 140) (($ (-1224 (-400 (-917 (-371))))) 108) (($ (-1224 (-400 (-917 (-535))))) 92)) (-3722 (((-1230) $) 83)) (-4300 (((-835) $) 75) (($ (-618 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) NIL) (($ (-1224 (-332 (-3867 (QUOTE EPS)) (-3867 (QUOTE YA) (QUOTE YB)) (-675)))) 70)))
+(((-76 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE EPS)) (-3867 (QUOTE YA) (QUOTE YB)) (-675))))))) (-1142) (-1142) (-1142)) (T -76))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE EPS)) (-3867 (QUOTE YA) (QUOTE YB)) (-675)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1142)) (-14 *4 (-1142)) (-14 *5 (-1142)))))
+(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE EPS)) (-3867 (QUOTE YA) (QUOTE YB)) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-307 (-371))) 82) (((-3 $ #1#) (-307 (-535))) 87) (((-3 $ #1#) (-917 (-371))) 91) (((-3 $ #1#) (-917 (-535))) 95) (((-3 $ #1#) (-400 (-917 (-371)))) 77) (((-3 $ #1#) (-400 (-917 (-535)))) 70)) (-3490 (($ (-307 (-371))) 80) (($ (-307 (-535))) 85) (($ (-917 (-371))) 89) (($ (-917 (-535))) 93) (($ (-400 (-917 (-371)))) 75) (($ (-400 (-917 (-535)))) 67)) (-3722 (((-1230) $) 62)) (-4300 (((-835) $) 50) (($ (-618 (-323))) 46) (($ (-323)) 56) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 54) (($ (-332 (-3867) (-3867 (QUOTE X)) (-675))) 47)))
+(((-77 |#1|) (-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867) (-3867 (QUOTE X)) (-675)))))) (-1142)) (T -77))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-332 (-3867) (-3867 (QUOTE X)) (-675))) (-5 *1 (-77 *3)) (-14 *3 (-1142)))))
+(-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867) (-3867 (QUOTE X)) (-675))))))
+((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 89) (((-3 $ #1#) (-1224 (-307 (-535)))) 78) (((-3 $ #1#) (-1224 (-917 (-371)))) 109) (((-3 $ #1#) (-1224 (-917 (-535)))) 99) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 67) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 54)) (-3490 (($ (-1224 (-307 (-371)))) 85) (($ (-1224 (-307 (-535)))) 74) (($ (-1224 (-917 (-371)))) 105) (($ (-1224 (-917 (-535)))) 95) (($ (-1224 (-400 (-917 (-371))))) 63) (($ (-1224 (-400 (-917 (-535))))) 47)) (-3722 (((-1230) $) 125)) (-4300 (((-835) $) 119) (($ (-618 (-323))) 112) (($ (-323)) 37) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 115) (($ (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675)))) 38)))
+(((-78 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675))))))) (-1142)) (T -78))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675)))) (-5 *1 (-78 *3)) (-14 *3 (-1142)))))
+(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE XC)) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 142) (((-3 $ #1#) (-1224 (-307 (-535)))) 132) (((-3 $ #1#) (-1224 (-917 (-371)))) 162) (((-3 $ #1#) (-1224 (-917 (-535)))) 152) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 122) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 110)) (-3490 (($ (-1224 (-307 (-371)))) 138) (($ (-1224 (-307 (-535)))) 128) (($ (-1224 (-917 (-371)))) 158) (($ (-1224 (-917 (-535)))) 148) (($ (-1224 (-400 (-917 (-371))))) 118) (($ (-1224 (-400 (-917 (-535))))) 103)) (-3722 (((-1230) $) 96)) (-4300 (((-835) $) 90) (($ (-618 (-323))) 81) (($ (-323)) 88) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 86) (($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))) 82)))
+(((-79 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675))))))) (-1142)) (T -79))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))) (-5 *1 (-79 *3)) (-14 *3 (-1142)))))
+(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 78) (((-3 $ #1#) (-1224 (-307 (-535)))) 67) (((-3 $ #1#) (-1224 (-917 (-371)))) 98) (((-3 $ #1#) (-1224 (-917 (-535)))) 88) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 56) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 43)) (-3490 (($ (-1224 (-307 (-371)))) 74) (($ (-1224 (-307 (-535)))) 63) (($ (-1224 (-917 (-371)))) 94) (($ (-1224 (-917 (-535)))) 84) (($ (-1224 (-400 (-917 (-371))))) 52) (($ (-1224 (-400 (-917 (-535))))) 36)) (-3722 (((-1230) $) 124)) (-4300 (((-835) $) 118) (($ (-618 (-323))) 109) (($ (-323)) 115) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 113) (($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))) 35)))
+(((-80 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675))))))) (-1142)) (T -80))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))) (-5 *1 (-80 *3)) (-14 *3 (-1142)))))
+(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867) (-3867 (QUOTE X)) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 79) (((-3 $ #1#) (-1224 (-307 (-535)))) 68) (((-3 $ #1#) (-1224 (-917 (-371)))) 99) (((-3 $ #1#) (-1224 (-917 (-535)))) 89) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 57) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 44)) (-3490 (($ (-1224 (-307 (-371)))) 75) (($ (-1224 (-307 (-535)))) 64) (($ (-1224 (-917 (-371)))) 95) (($ (-1224 (-917 (-535)))) 85) (($ (-1224 (-400 (-917 (-371))))) 53) (($ (-1224 (-400 (-917 (-535))))) 37)) (-3722 (((-1230) $) 125)) (-4300 (((-835) $) 119) (($ (-618 (-323))) 110) (($ (-323)) 116) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 114) (($ (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))) 36)))
+(((-81 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675))))))) (-1142)) (T -81))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))) (-5 *1 (-81 *3)) (-14 *3 (-1142)))))
+(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 95) (((-3 $ #1#) (-1224 (-307 (-535)))) 84) (((-3 $ #1#) (-1224 (-917 (-371)))) 115) (((-3 $ #1#) (-1224 (-917 (-535)))) 105) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 73) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 60)) (-3490 (($ (-1224 (-307 (-371)))) 91) (($ (-1224 (-307 (-535)))) 80) (($ (-1224 (-917 (-371)))) 111) (($ (-1224 (-917 (-535)))) 101) (($ (-1224 (-400 (-917 (-371))))) 69) (($ (-1224 (-400 (-917 (-535))))) 53)) (-3722 (((-1230) $) 45)) (-4300 (((-835) $) 39) (($ (-618 (-323))) 29) (($ (-323)) 32) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 35) (($ (-1224 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675)))) 30)))
+(((-82 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675))))))) (-1142)) (T -82))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675)))) (-5 *1 (-82 *3)) (-14 *3 (-1142)))))
+(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-665 (-307 (-371)))) 115) (((-3 $ #1#) (-665 (-307 (-535)))) 104) (((-3 $ #1#) (-665 (-917 (-371)))) 137) (((-3 $ #1#) (-665 (-917 (-535)))) 126) (((-3 $ #1#) (-665 (-400 (-917 (-371))))) 93) (((-3 $ #1#) (-665 (-400 (-917 (-535))))) 80)) (-3490 (($ (-665 (-307 (-371)))) 111) (($ (-665 (-307 (-535)))) 100) (($ (-665 (-917 (-371)))) 133) (($ (-665 (-917 (-535)))) 122) (($ (-665 (-400 (-917 (-371))))) 89) (($ (-665 (-400 (-917 (-535))))) 73)) (-3722 (((-1230) $) 63)) (-4300 (((-835) $) 50) (($ (-618 (-323))) 57) (($ (-323)) 46) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 55) (($ (-665 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675)))) 47)))
+(((-83 |#1|) (-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675))))))) (-1142)) (T -83))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675)))) (-5 *1 (-83 *3)) (-14 *3 (-1142)))))
+(-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867 (QUOTE X) (QUOTE -4307)) (-3867) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-665 (-307 (-371)))) 112) (((-3 $ #1#) (-665 (-307 (-535)))) 100) (((-3 $ #1#) (-665 (-917 (-371)))) 134) (((-3 $ #1#) (-665 (-917 (-535)))) 123) (((-3 $ #1#) (-665 (-400 (-917 (-371))))) 88) (((-3 $ #1#) (-665 (-400 (-917 (-535))))) 74)) (-3490 (($ (-665 (-307 (-371)))) 108) (($ (-665 (-307 (-535)))) 96) (($ (-665 (-917 (-371)))) 130) (($ (-665 (-917 (-535)))) 119) (($ (-665 (-400 (-917 (-371))))) 84) (($ (-665 (-400 (-917 (-535))))) 67)) (-3722 (((-1230) $) 59)) (-4300 (((-835) $) 53) (($ (-618 (-323))) 47) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 44) (($ (-665 (-332 (-3867 (QUOTE X)) (-3867) (-675)))) 45)))
+(((-84 |#1|) (-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867 (QUOTE X)) (-3867) (-675))))))) (-1142)) (T -84))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3867 (QUOTE X)) (-3867) (-675)))) (-5 *1 (-84 *3)) (-14 *3 (-1142)))))
+(-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867 (QUOTE X)) (-3867) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-1224 (-307 (-371)))) 104) (((-3 $ #1#) (-1224 (-307 (-535)))) 93) (((-3 $ #1#) (-1224 (-917 (-371)))) 124) (((-3 $ #1#) (-1224 (-917 (-535)))) 114) (((-3 $ #1#) (-1224 (-400 (-917 (-371))))) 82) (((-3 $ #1#) (-1224 (-400 (-917 (-535))))) 69)) (-3490 (($ (-1224 (-307 (-371)))) 100) (($ (-1224 (-307 (-535)))) 89) (($ (-1224 (-917 (-371)))) 120) (($ (-1224 (-917 (-535)))) 110) (($ (-1224 (-400 (-917 (-371))))) 78) (($ (-1224 (-400 (-917 (-535))))) 62)) (-3722 (((-1230) $) 46)) (-4300 (((-835) $) 40) (($ (-618 (-323))) 49) (($ (-323)) 36) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 52) (($ (-1224 (-332 (-3867 (QUOTE X)) (-3867) (-675)))) 37)))
+(((-85 |#1|) (-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X)) (-3867) (-675))))))) (-1142)) (T -85))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-332 (-3867 (QUOTE X)) (-3867) (-675)))) (-5 *1 (-85 *3)) (-14 *3 (-1142)))))
+(-13 (-433) (-10 -8 (-15 -4300 ($ (-1224 (-332 (-3867 (QUOTE X)) (-3867) (-675)))))))
+((-3722 (((-1230) $) 44)) (-4300 (((-835) $) 38) (($ (-1224 (-675))) 92) (($ (-618 (-323))) 30) (($ (-323)) 35) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 33)))
+(((-86 |#1|) (-432) (-1142)) (T -86))
NIL
(-432)
-((-2713 (((-3 $ "failed") (-309 (-372))) 47) (((-3 $ "failed") (-309 (-549))) 52) (((-3 $ "failed") (-923 (-372))) 56) (((-3 $ "failed") (-923 (-549))) 60) (((-3 $ "failed") (-400 (-923 (-372)))) 42) (((-3 $ "failed") (-400 (-923 (-549)))) 35)) (-2658 (($ (-309 (-372))) 45) (($ (-309 (-549))) 50) (($ (-923 (-372))) 54) (($ (-923 (-549))) 58) (($ (-400 (-923 (-372)))) 40) (($ (-400 (-923 (-549)))) 32)) (-3315 (((-1230) $) 90)) (-3845 (((-834) $) 84) (($ (-621 (-323))) 78) (($ (-323)) 81) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 76) (($ (-332 (-3853 (QUOTE X)) (-3853 (QUOTE -2662)) (-675))) 31)))
-(((-88 |#1|) (-13 (-389) (-10 -8 (-15 -3845 ($ (-332 (-3853 (QUOTE X)) (-3853 (QUOTE -2662)) (-675)))))) (-1142)) (T -88))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-332 (-3853 (QUOTE X)) (-3853 (QUOTE -2662)) (-675))) (-5 *1 (-88 *3)) (-14 *3 (-1142)))))
-(-13 (-389) (-10 -8 (-15 -3845 ($ (-332 (-3853 (QUOTE X)) (-3853 (QUOTE -2662)) (-675))))))
-((-1281 (((-1225 (-665 |#1|)) (-665 |#1|)) 54)) (-4278 (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 (-621 (-892))))) |#2| (-892)) 44)) (-2391 (((-2 (|:| |minor| (-621 (-892))) (|:| -2650 |#2|) (|:| |minors| (-621 (-621 (-892)))) (|:| |ops| (-621 |#2|))) |#2| (-892)) 65 (|has| |#1| (-356)))))
-(((-89 |#1| |#2|) (-10 -7 (-15 -4278 ((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 (-621 (-892))))) |#2| (-892))) (-15 -1281 ((-1225 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-356)) (-15 -2391 ((-2 (|:| |minor| (-621 (-892))) (|:| -2650 |#2|) (|:| |minors| (-621 (-621 (-892)))) (|:| |ops| (-621 |#2|))) |#2| (-892))) |%noBranch|)) (-541) (-632 |#1|)) (T -89))
-((-2391 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *5 (-541)) (-5 *2 (-2 (|:| |minor| (-621 (-892))) (|:| -2650 *3) (|:| |minors| (-621 (-621 (-892)))) (|:| |ops| (-621 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-892)) (-4 *3 (-632 *5)))) (-1281 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-1225 (-665 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-665 *4)) (-4 *5 (-632 *4)))) (-4278 (*1 *2 *3 *4) (-12 (-4 *5 (-541)) (-5 *2 (-2 (|:| -1859 (-665 *5)) (|:| |vec| (-1225 (-621 (-892)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-892)) (-4 *3 (-632 *5)))))
-(-10 -7 (-15 -4278 ((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 (-621 (-892))))) |#2| (-892))) (-15 -1281 ((-1225 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-356)) (-15 -2391 ((-2 (|:| |minor| (-621 (-892))) (|:| -2650 |#2|) (|:| |minors| (-621 (-621 (-892)))) (|:| |ops| (-621 |#2|))) |#2| (-892))) |%noBranch|))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2316 ((|#1| $) 35)) (-1323 (((-112) $ (-747)) NIL)) (-1705 (($) NIL T CONST)) (-1913 ((|#1| |#1| $) 30)) (-2399 ((|#1| $) 28)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2349 ((|#1| $) NIL)) (-1709 (($ |#1| $) 31)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2629 ((|#1| $) 29)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 16)) (-1461 (($) 39)) (-1319 (((-747) $) 26)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) 15)) (-3845 (((-834) $) 25 (|has| |#1| (-593 (-834))))) (-1765 (($ (-621 |#1|)) NIL)) (-3212 (($ (-621 |#1|)) 37)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 13 (|has| |#1| (-1066)))) (-3774 (((-747) $) 10 (|has| $ (-6 -4336)))))
-(((-90 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -3212 ($ (-621 |#1|))))) (-1066)) (T -90))
-((-3212 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-90 *3)))))
-(-13 (-1087 |#1|) (-10 -8 (-15 -3212 ($ (-621 |#1|)))))
-((-3845 (((-834) $) 13) (((-1147) $) 8) (($ (-1147)) 9)))
-(((-91 |#1|) (-10 -8 (-15 -3845 (|#1| (-1147))) (-15 -3845 ((-1147) |#1|)) (-15 -3845 ((-834) |#1|))) (-92)) (T -91))
-NIL
-(-10 -8 (-15 -3845 (|#1| (-1147))) (-15 -3845 ((-1147) |#1|)) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (((-1147) $) 15) (($ (-1147)) 14)) (-2388 (((-112) $ $) 6)))
+((-3491 (((-3 $ #1="failed") (-665 (-307 (-371)))) 113) (((-3 $ #1#) (-665 (-307 (-535)))) 101) (((-3 $ #1#) (-665 (-917 (-371)))) 135) (((-3 $ #1#) (-665 (-917 (-535)))) 124) (((-3 $ #1#) (-665 (-400 (-917 (-371))))) 89) (((-3 $ #1#) (-665 (-400 (-917 (-535))))) 75)) (-3490 (($ (-665 (-307 (-371)))) 109) (($ (-665 (-307 (-535)))) 97) (($ (-665 (-917 (-371)))) 131) (($ (-665 (-917 (-535)))) 120) (($ (-665 (-400 (-917 (-371))))) 85) (($ (-665 (-400 (-917 (-535))))) 68)) (-3722 (((-1230) $) 59)) (-4300 (((-835) $) 53) (($ (-618 (-323))) 43) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 48) (($ (-665 (-332 (-3867 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3867) (-675)))) 44)))
+(((-87 |#1|) (-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3867) (-675))))))) (-1142)) (T -87))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3867 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3867) (-675)))) (-5 *1 (-87 *3)) (-14 *3 (-1142)))))
+(-13 (-378) (-10 -8 (-15 -4300 ($ (-665 (-332 (-3867 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3867) (-675)))))))
+((-3491 (((-3 $ #1="failed") (-307 (-371))) 47) (((-3 $ #1#) (-307 (-535))) 52) (((-3 $ #1#) (-917 (-371))) 56) (((-3 $ #1#) (-917 (-535))) 60) (((-3 $ #1#) (-400 (-917 (-371)))) 42) (((-3 $ #1#) (-400 (-917 (-535)))) 35)) (-3490 (($ (-307 (-371))) 45) (($ (-307 (-535))) 50) (($ (-917 (-371))) 54) (($ (-917 (-535))) 58) (($ (-400 (-917 (-371)))) 40) (($ (-400 (-917 (-535)))) 32)) (-3722 (((-1230) $) 90)) (-4300 (((-835) $) 84) (($ (-618 (-323))) 78) (($ (-323)) 81) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 76) (($ (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675))) 31)))
+(((-88 |#1|) (-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675)))))) (-1142)) (T -88))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675))) (-5 *1 (-88 *3)) (-14 *3 (-1142)))))
+(-13 (-390) (-10 -8 (-15 -4300 ($ (-332 (-3867 (QUOTE X)) (-3867 (QUOTE -4307)) (-675))))))
+((-1305 (((-1224 (-665 |#1|)) (-665 |#1|)) 54)) (-1304 (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 (-618 (-890))))) |#2| (-890)) 44)) (-1306 (((-2 (|:| |minor| (-618 (-890))) (|:| -3600 |#2|) (|:| |minors| (-618 (-618 (-890)))) (|:| |ops| (-618 |#2|))) |#2| (-890)) 65 (|has| |#1| (-356)))))
+(((-89 |#1| |#2|) (-10 -7 (-15 -1304 ((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 (-618 (-890))))) |#2| (-890))) (-15 -1305 ((-1224 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-356)) (-15 -1306 ((-2 (|:| |minor| (-618 (-890))) (|:| -3600 |#2|) (|:| |minors| (-618 (-618 (-890)))) (|:| |ops| (-618 |#2|))) |#2| (-890))) |%noBranch|)) (-542) (-634 |#1|)) (T -89))
+((-1306 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |minor| (-618 (-890))) (|:| -3600 *3) (|:| |minors| (-618 (-618 (-890)))) (|:| |ops| (-618 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-634 *5)))) (-1305 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-1224 (-665 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-665 *4)) (-4 *5 (-634 *4)))) (-1304 (*1 *2 *3 *4) (-12 (-4 *5 (-542)) (-5 *2 (-2 (|:| -1695 (-665 *5)) (|:| |vec| (-1224 (-618 (-890)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-634 *5)))))
+(-10 -7 (-15 -1304 ((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 (-618 (-890))))) |#2| (-890))) (-15 -1305 ((-1224 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-356)) (-15 -1306 ((-2 (|:| |minor| (-618 (-890))) (|:| -3600 |#2|) (|:| |minors| (-618 (-618 (-890)))) (|:| |ops| (-618 |#2|))) |#2| (-890))) |%noBranch|))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3666 ((|#1| $) 35)) (-1264 (((-112) $ (-747)) NIL)) (-3879 (($) NIL T CONST)) (-3668 ((|#1| |#1| $) 30)) (-3667 ((|#1| $) 28)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1326 ((|#1| $) NIL)) (-3953 (($ |#1| $) 31)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-1327 ((|#1| $) 29)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 16)) (-3911 (($) 39)) (-3665 (((-747) $) 26)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 15)) (-4300 (((-835) $) 25 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) NIL)) (-1307 (($ (-618 |#1|)) 37)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 13 (|has| |#1| (-1067)))) (-4299 (((-747) $) 10 (|has| $ (-6 -4336)))))
+(((-90 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -1307 ($ (-618 |#1|))))) (-1067)) (T -90))
+((-1307 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-90 *3)))))
+(-13 (-1087 |#1|) (-10 -8 (-15 -1307 ($ (-618 |#1|)))))
+((-4300 (((-835) $) 13) (((-1147) $) 8) (($ (-1147)) 9)))
+(((-91 |#1|) (-10 -8 (-15 -4300 (|#1| (-1147))) (-15 -4300 ((-1147) |#1|)) (-15 -4300 ((-835) |#1|))) (-92)) (T -91))
+NIL
+(-10 -8 (-15 -4300 (|#1| (-1147))) (-15 -4300 ((-1147) |#1|)) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (((-1147) $) 15) (($ (-1147)) 14)) (-3375 (((-112) $ $) 6)))
(((-92) (-138)) (T -92))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-4 *1 (-92)))))
-(-13 (-1066) (-593 (-1147)) (-10 -8 (-15 -3845 ($ (-1147)))))
-(((-101) . T) ((-593 (-834)) . T) ((-593 (-1147)) . T) ((-1066) . T))
-((-1612 (($ $) 10)) (-1625 (($ $) 12)))
-(((-93 |#1|) (-10 -8 (-15 -1625 (|#1| |#1|)) (-15 -1612 (|#1| |#1|))) (-94)) (T -93))
-NIL
-(-10 -8 (-15 -1625 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)))
-((-1585 (($ $) 11)) (-1562 (($ $) 10)) (-1612 (($ $) 9)) (-1625 (($ $) 8)) (-1599 (($ $) 7)) (-1575 (($ $) 6)))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-4 *1 (-92)))))
+(-13 (-1067) (-593 (-1147)) (-10 -8 (-15 -4300 ($ (-1147)))))
+(((-101) . T) ((-593 (-835)) . T) ((-593 (-1147)) . T) ((-1067) . T))
+((-3825 (($ $) 10)) (-3826 (($ $) 12)))
+(((-93 |#1|) (-10 -8 (-15 -3826 (|#1| |#1|)) (-15 -3825 (|#1| |#1|))) (-94)) (T -93))
+NIL
+(-10 -8 (-15 -3826 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)))
+((-3823 (($ $) 11)) (-3821 (($ $) 10)) (-3825 (($ $) 9)) (-3826 (($ $) 8)) (-3824 (($ $) 7)) (-3822 (($ $) 6)))
(((-94) (-138)) (T -94))
-((-1585 (*1 *1 *1) (-4 *1 (-94))) (-1562 (*1 *1 *1) (-4 *1 (-94))) (-1612 (*1 *1 *1) (-4 *1 (-94))) (-1625 (*1 *1 *1) (-4 *1 (-94))) (-1599 (*1 *1 *1) (-4 *1 (-94))) (-1575 (*1 *1 *1) (-4 *1 (-94))))
-(-13 (-10 -8 (-15 -1575 ($ $)) (-15 -1599 ($ $)) (-15 -1625 ($ $)) (-15 -1612 ($ $)) (-15 -1562 ($ $)) (-15 -1585 ($ $))))
-((-3833 (((-112) $ $) NIL)) (-2480 (((-1101) $) 9)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-95) (-13 (-1049) (-10 -8 (-15 -2480 ((-1101) $))))) (T -95))
-((-2480 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-95)))))
-(-13 (-1049) (-10 -8 (-15 -2480 ((-1101) $))))
-((-3833 (((-112) $ $) NIL)) (-2023 (((-372) (-1124) (-372)) 42) (((-372) (-1124) (-1124) (-372)) 41)) (-3762 (((-372) (-372)) 33)) (-3008 (((-1230)) 36)) (-2677 (((-1124) $) NIL)) (-2240 (((-372) (-1124) (-1124)) 46) (((-372) (-1124)) 48)) (-3988 (((-1086) $) NIL)) (-3616 (((-372) (-1124) (-1124)) 47)) (-2206 (((-372) (-1124) (-1124)) 49) (((-372) (-1124)) 50)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-96) (-13 (-1066) (-10 -7 (-15 -2240 ((-372) (-1124) (-1124))) (-15 -2240 ((-372) (-1124))) (-15 -2206 ((-372) (-1124) (-1124))) (-15 -2206 ((-372) (-1124))) (-15 -3616 ((-372) (-1124) (-1124))) (-15 -3008 ((-1230))) (-15 -3762 ((-372) (-372))) (-15 -2023 ((-372) (-1124) (-372))) (-15 -2023 ((-372) (-1124) (-1124) (-372))) (-6 -4336)))) (T -96))
-((-2240 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-96)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-96)))) (-2206 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-96)))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-96)))) (-3616 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-96)))) (-3008 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-96)))) (-3762 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-96)))) (-2023 (*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1124)) (-5 *1 (-96)))) (-2023 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1124)) (-5 *1 (-96)))))
-(-13 (-1066) (-10 -7 (-15 -2240 ((-372) (-1124) (-1124))) (-15 -2240 ((-372) (-1124))) (-15 -2206 ((-372) (-1124) (-1124))) (-15 -2206 ((-372) (-1124))) (-15 -3616 ((-372) (-1124) (-1124))) (-15 -3008 ((-1230))) (-15 -3762 ((-372) (-372))) (-15 -2023 ((-372) (-1124) (-372))) (-15 -2023 ((-372) (-1124) (-1124) (-372))) (-6 -4336)))
+((-3823 (*1 *1 *1) (-4 *1 (-94))) (-3821 (*1 *1 *1) (-4 *1 (-94))) (-3825 (*1 *1 *1) (-4 *1 (-94))) (-3826 (*1 *1 *1) (-4 *1 (-94))) (-3824 (*1 *1 *1) (-4 *1 (-94))) (-3822 (*1 *1 *1) (-4 *1 (-94))))
+(-13 (-10 -8 (-15 -3822 ($ $)) (-15 -3824 ($ $)) (-15 -3826 ($ $)) (-15 -3825 ($ $)) (-15 -3821 ($ $)) (-15 -3823 ($ $))))
+((-2887 (((-112) $ $) NIL)) (-3888 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-95) (-13 (-1049) (-10 -8 (-15 -3888 ((-1101) $))))) (T -95))
+((-3888 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-95)))))
+(-13 (-1049) (-10 -8 (-15 -3888 ((-1101) $))))
+((-2887 (((-112) $ $) NIL)) (-1308 (((-371) (-1124) (-371)) 42) (((-371) (-1124) (-1124) (-371)) 41)) (-1309 (((-371) (-371)) 33)) (-1310 (((-1230)) 36)) (-3576 (((-1124) $) NIL)) (-1313 (((-371) (-1124) (-1124)) 46) (((-371) (-1124)) 48)) (-3577 (((-1086) $) NIL)) (-1311 (((-371) (-1124) (-1124)) 47)) (-1312 (((-371) (-1124) (-1124)) 49) (((-371) (-1124)) 50)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-96) (-13 (-1067) (-10 -7 (-15 -1313 ((-371) (-1124) (-1124))) (-15 -1313 ((-371) (-1124))) (-15 -1312 ((-371) (-1124) (-1124))) (-15 -1312 ((-371) (-1124))) (-15 -1311 ((-371) (-1124) (-1124))) (-15 -1310 ((-1230))) (-15 -1309 ((-371) (-371))) (-15 -1308 ((-371) (-1124) (-371))) (-15 -1308 ((-371) (-1124) (-1124) (-371))) (-6 -4336)))) (T -96))
+((-1313 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1313 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1312 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1312 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1311 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1310 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-96)))) (-1309 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-96)))) (-1308 (*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1124)) (-5 *1 (-96)))) (-1308 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1124)) (-5 *1 (-96)))))
+(-13 (-1067) (-10 -7 (-15 -1313 ((-371) (-1124) (-1124))) (-15 -1313 ((-371) (-1124))) (-15 -1312 ((-371) (-1124) (-1124))) (-15 -1312 ((-371) (-1124))) (-15 -1311 ((-371) (-1124) (-1124))) (-15 -1310 ((-1230))) (-15 -1309 ((-371) (-371))) (-15 -1308 ((-371) (-1124) (-371))) (-15 -1308 ((-371) (-1124) (-1124) (-371))) (-6 -4336)))
NIL
(((-97) (-138)) (T -97))
NIL
(-13 (-10 -7 (-6 -4336) (-6 (-4338 "*")) (-6 -4337) (-6 -4333) (-6 -4331) (-6 -4330) (-6 -4329) (-6 -4334) (-6 -4328) (-6 -4327) (-6 -4326) (-6 -4325) (-6 -4324) (-6 -4332) (-6 -4335) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4323)))
-((-3833 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) NIL)) (-3987 (((-112) $) NIL)) (-3583 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-549))) 22)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 14)) (-3988 (((-1086) $) NIL)) (-3340 ((|#1| $ |#1|) 11)) (-2538 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-3845 (((-834) $) 20)) (-3287 (($) 8 T CONST)) (-2388 (((-112) $ $) 10)) (-2512 (($ $ $) NIL)) (** (($ $ (-892)) 27) (($ $ (-747)) NIL) (($ $ (-549)) 16)) (* (($ $ $) 28)))
-(((-98 |#1|) (-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -3583 ($ (-1 |#1| |#1|))) (-15 -3583 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3583 ($ (-1 |#1| |#1| (-549)))))) (-1018)) (T -98))
-((-3583 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) (-3583 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) (-3583 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-549))) (-4 *3 (-1018)) (-5 *1 (-98 *3)))))
-(-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -3583 ($ (-1 |#1| |#1|))) (-15 -3583 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3583 ($ (-1 |#1| |#1| (-549))))))
-((-2600 (((-411 |#2|) |#2| (-621 |#2|)) 10) (((-411 |#2|) |#2| |#2|) 11)))
-(((-99 |#1| |#2|) (-10 -7 (-15 -2600 ((-411 |#2|) |#2| |#2|)) (-15 -2600 ((-411 |#2|) |#2| (-621 |#2|)))) (-13 (-444) (-145)) (-1201 |#1|)) (T -99))
-((-2600 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-1201 *5)) (-4 *5 (-13 (-444) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-99 *5 *3)))) (-2600 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1201 *4)))))
-(-10 -7 (-15 -2600 ((-411 |#2|) |#2| |#2|)) (-15 -2600 ((-411 |#2|) |#2| (-621 |#2|))))
-((-3833 (((-112) $ $) 10)))
-(((-100 |#1|) (-10 -8 (-15 -3833 ((-112) |#1| |#1|))) (-101)) (T -100))
-NIL
-(-10 -8 (-15 -3833 ((-112) |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-2388 (((-112) $ $) 6)))
+((-2887 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-1314 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-535))) 22)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 14)) (-3577 (((-1086) $) NIL)) (-4142 ((|#1| $ |#1|) 11)) (-3330 (($ $ $) NIL)) (-2677 (($ $ $) NIL)) (-4300 (((-835) $) 20)) (-2985 (($) 8 T CONST)) (-3375 (((-112) $ $) 10)) (-4291 (($ $ $) NIL)) (** (($ $ (-890)) 27) (($ $ (-747)) NIL) (($ $ (-535)) 16)) (* (($ $ $) 28)))
+(((-98 |#1|) (-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -1314 ($ (-1 |#1| |#1|))) (-15 -1314 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1314 ($ (-1 |#1| |#1| (-535)))))) (-1018)) (T -98))
+((-1314 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) (-1314 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-535))) (-4 *3 (-1018)) (-5 *1 (-98 *3)))))
+(-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -1314 ($ (-1 |#1| |#1|))) (-15 -1314 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1314 ($ (-1 |#1| |#1| (-535))))))
+((-1315 (((-398 |#2|) |#2| (-618 |#2|)) 10) (((-398 |#2|) |#2| |#2|) 11)))
+(((-99 |#1| |#2|) (-10 -7 (-15 -1315 ((-398 |#2|) |#2| |#2|)) (-15 -1315 ((-398 |#2|) |#2| (-618 |#2|)))) (-13 (-444) (-145)) (-1200 |#1|)) (T -99))
+((-1315 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-13 (-444) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-99 *5 *3)))) (-1315 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1200 *4)))))
+(-10 -7 (-15 -1315 ((-398 |#2|) |#2| |#2|)) (-15 -1315 ((-398 |#2|) |#2| (-618 |#2|))))
+((-2887 (((-112) $ $) 10)))
+(((-100 |#1|) (-10 -8 (-15 -2887 ((-112) |#1| |#1|))) (-101)) (T -100))
+NIL
+(-10 -8 (-15 -2887 ((-112) |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3375 (((-112) $ $) 6)))
(((-101) (-138)) (T -101))
-((-3833 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-2388 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -2388 ((-112) $ $)) (-15 -3833 ((-112) $ $))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-4160 ((|#1| $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-3751 ((|#1| $ |#1|) 13 (|has| $ (-6 -4337)))) (-1501 (($ $ $) NIL (|has| $ (-6 -4337)))) (-1885 (($ $ $) NIL (|has| $ (-6 -4337)))) (-2045 (($ $ (-621 |#1|)) 15)) (-2253 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ "left" $) NIL (|has| $ (-6 -4337))) (($ $ "right" $) NIL (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) NIL (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-3847 (($ $) 11)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) NIL)) (-1742 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2241 (($ $ |#1| $) 17)) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1313 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-2611 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-621 |#1|) |#1| |#1| |#1|)) 35)) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-3837 (($ $) 10)) (-3590 (((-621 |#1|) $) NIL)) (-2456 (((-112) $) 12)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 9)) (-1461 (($) 16)) (-3340 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1953 (((-549) $ $) NIL)) (-4187 (((-112) $) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) NIL)) (-2937 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3838 (($ (-747) |#1|) 19)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -3838 ($ (-747) |#1|)) (-15 -2045 ($ $ (-621 |#1|))) (-15 -1313 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1313 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2611 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2611 ($ $ |#1| (-1 (-621 |#1|) |#1| |#1| |#1|))))) (-1066)) (T -102))
-((-3838 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-102 *3)) (-4 *3 (-1066)))) (-2045 (*1 *1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-102 *3)))) (-1313 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1066)))) (-1313 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-102 *3)))) (-2611 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1066)) (-5 *1 (-102 *2)))) (-2611 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-621 *2) *2 *2 *2)) (-4 *2 (-1066)) (-5 *1 (-102 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -3838 ($ (-747) |#1|)) (-15 -2045 ($ $ (-621 |#1|))) (-15 -1313 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1313 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2611 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2611 ($ $ |#1| (-1 (-621 |#1|) |#1| |#1| |#1|)))))
-((-3031 ((|#3| |#2| |#2|) 29)) (-4239 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4338 "*"))))) (-4024 ((|#3| |#2| |#2|) 30)) (-3326 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4338 "*"))))))
-(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3031 (|#3| |#2| |#2|)) (-15 -4024 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4338 "*"))) (PROGN (-15 -4239 (|#1| |#2| |#2|)) (-15 -3326 (|#1| |#2|))) |%noBranch|)) (-1018) (-1201 |#1|) (-663 |#1| |#4| |#5|) (-366 |#1|) (-366 |#1|)) (T -103))
-((-3326 (*1 *2 *3) (-12 (|has| *2 (-6 (-4338 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2)) (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1201 *2)) (-4 *4 (-663 *2 *5 *6)))) (-4239 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4338 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2)) (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1201 *2)) (-4 *4 (-663 *2 *5 *6)))) (-4024 (*1 *2 *3 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-663 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1201 *4)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)))) (-3031 (*1 *2 *3 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-663 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1201 *4)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)))))
-(-10 -7 (-15 -3031 (|#3| |#2| |#2|)) (-15 -4024 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4338 "*"))) (PROGN (-15 -4239 (|#1| |#2| |#2|)) (-15 -3326 (|#1| |#2|))) |%noBranch|))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-3913 (((-621 (-1142))) 33)) (-3904 (((-2 (|:| |zeros| (-1122 (-219))) (|:| |ones| (-1122 (-219))) (|:| |singularities| (-1122 (-219)))) (-1142)) 35)) (-2388 (((-112) $ $) NIL)))
-(((-104) (-13 (-1066) (-10 -7 (-15 -3913 ((-621 (-1142)))) (-15 -3904 ((-2 (|:| |zeros| (-1122 (-219))) (|:| |ones| (-1122 (-219))) (|:| |singularities| (-1122 (-219)))) (-1142))) (-6 -4336)))) (T -104))
-((-3913 (*1 *2) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-104)))) (-3904 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-2 (|:| |zeros| (-1122 (-219))) (|:| |ones| (-1122 (-219))) (|:| |singularities| (-1122 (-219))))) (-5 *1 (-104)))))
-(-13 (-1066) (-10 -7 (-15 -3913 ((-621 (-1142)))) (-15 -3904 ((-2 (|:| |zeros| (-1122 (-219))) (|:| |ones| (-1122 (-219))) (|:| |singularities| (-1122 (-219)))) (-1142))) (-6 -4336)))
-((-1765 (($ (-621 |#2|)) 11)))
-(((-105 |#1| |#2|) (-10 -8 (-15 -1765 (|#1| (-621 |#2|)))) (-106 |#2|) (-1179)) (T -105))
-NIL
-(-10 -8 (-15 -1765 (|#1| (-621 |#2|))))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) 8)) (-1705 (($) 7 T CONST)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2349 ((|#1| $) 39)) (-1709 (($ |#1| $) 40)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-2629 ((|#1| $) 41)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1765 (($ (-621 |#1|)) 42)) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-106 |#1|) (-138) (-1179)) (T -106))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-4 *1 (-106 *3)))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1179)))) (-1709 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1179)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1179)))))
-(-13 (-481 |t#1|) (-10 -8 (-6 -4337) (-15 -1765 ($ (-621 |t#1|))) (-15 -2629 (|t#1| $)) (-15 -1709 ($ |t#1| $)) (-15 -2349 (|t#1| $))))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2364 (((-549) $) NIL (|has| (-549) (-300)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL (|has| (-549) (-796)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL) (((-3 (-1142) "failed") $) NIL (|has| (-549) (-1009 (-1142)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-549) (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| (-549) (-1009 (-549))))) (-2658 (((-549) $) NIL) (((-1142) $) NIL (|has| (-549) (-1009 (-1142)))) (((-400 (-549)) $) NIL (|has| (-549) (-1009 (-549)))) (((-549) $) NIL (|has| (-549) (-1009 (-549))))) (-2094 (($ $ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL) (((-665 (-549)) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| (-549) (-534)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3079 (((-112) $) NIL (|has| (-549) (-796)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-549) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-549) (-857 (-372))))) (-3987 (((-112) $) NIL)) (-2053 (($ $) NIL)) (-1393 (((-549) $) NIL)) (-3982 (((-3 $ "failed") $) NIL (|has| (-549) (-1117)))) (-2847 (((-112) $) NIL (|has| (-549) (-796)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2862 (($ $ $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| (-549) (-823)))) (-2796 (($ (-1 (-549) (-549)) $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| (-549) (-1117)) CONST)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1260 (($ $) NIL (|has| (-549) (-300))) (((-400 (-549)) $) NIL)) (-4060 (((-549) $) NIL (|has| (-549) (-534)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2685 (($ $ (-621 (-549)) (-621 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-302 (-549)))) (($ $ (-287 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-287 (-549)))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-1142)) (-621 (-549))) NIL (|has| (-549) (-505 (-1142) (-549)))) (($ $ (-1142) (-549)) NIL (|has| (-549) (-505 (-1142) (-549))))) (-4091 (((-747) $) NIL)) (-3340 (($ $ (-549)) NIL (|has| (-549) (-279 (-549) (-549))))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3455 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1142)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-4288 (($ $) NIL)) (-1404 (((-549) $) NIL)) (-2844 (((-863 (-549)) $) NIL (|has| (-549) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-549) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-549) (-594 (-525)))) (((-372) $) NIL (|has| (-549) (-993))) (((-219) $) NIL (|has| (-549) (-993)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-549) (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) 8) (($ (-549)) NIL) (($ (-1142)) NIL (|has| (-549) (-1009 (-1142)))) (((-400 (-549)) $) NIL) (((-975 2) $) 10)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-549) (-880))) (|has| (-549) (-143))))) (-1723 (((-747)) NIL)) (-2926 (((-549) $) NIL (|has| (-549) (-534)))) (-1889 (($ (-400 (-549))) 9)) (-4053 (((-112) $ $) NIL)) (-3603 (($ $) NIL (|has| (-549) (-796)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1142)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2424 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2411 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2512 (($ $ $) NIL) (($ (-549) (-549)) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL)))
-(((-107) (-13 (-963 (-549)) (-10 -8 (-15 -3845 ((-400 (-549)) $)) (-15 -3845 ((-975 2) $)) (-15 -1260 ((-400 (-549)) $)) (-15 -1889 ($ (-400 (-549))))))) (T -107))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-107)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-975 2)) (-5 *1 (-107)))) (-1260 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-107)))) (-1889 (*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-107)))))
-(-13 (-963 (-549)) (-10 -8 (-15 -3845 ((-400 (-549)) $)) (-15 -3845 ((-975 2) $)) (-15 -1260 ((-400 (-549)) $)) (-15 -1889 ($ (-400 (-549))))))
-((-2772 (((-621 (-936)) $) 14)) (-2480 (((-1142) $) 10)) (-3845 (((-834) $) 23)) (-3067 (($ (-1142) (-621 (-936))) 15)))
-(((-108) (-13 (-593 (-834)) (-10 -8 (-15 -2480 ((-1142) $)) (-15 -2772 ((-621 (-936)) $)) (-15 -3067 ($ (-1142) (-621 (-936))))))) (T -108))
-((-2480 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-108)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-621 (-936))) (-5 *1 (-108)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-936))) (-5 *1 (-108)))))
-(-13 (-593 (-834)) (-10 -8 (-15 -2480 ((-1142) $)) (-15 -2772 ((-621 (-936)) $)) (-15 -3067 ($ (-1142) (-621 (-936))))))
-((-3833 (((-112) $ $) NIL)) (-1450 (((-1086) $ (-1086)) 24)) (-3955 (($ $ (-1124)) 17)) (-3323 (((-3 (-1086) "failed") $) 23)) (-3887 (((-1086) $) 21)) (-4129 (((-1086) $ (-1086)) 26)) (-2882 (((-1086) $) 25)) (-1358 (($ (-381)) NIL) (($ (-381) (-1124)) 16)) (-2480 (((-381) $) NIL)) (-2677 (((-1124) $) NIL)) (-4085 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-3559 (($ $) 18)) (-2388 (((-112) $ $) NIL)))
-(((-109) (-13 (-357 (-381) (-1086)) (-10 -8 (-15 -3323 ((-3 (-1086) "failed") $)) (-15 -2882 ((-1086) $)) (-15 -4129 ((-1086) $ (-1086)))))) (T -109))
-((-3323 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086)) (-5 *1 (-109)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-109)))) (-4129 (*1 *2 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-109)))))
-(-13 (-357 (-381) (-1086)) (-10 -8 (-15 -3323 ((-3 (-1086) "failed") $)) (-15 -2882 ((-1086) $)) (-15 -4129 ((-1086) $ (-1086)))))
-((-3833 (((-112) $ $) NIL)) (-1339 (($ $) NIL)) (-2463 (($ $ $) NIL)) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) $) NIL (|has| (-112) (-823))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4106 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-823)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-3193 (($ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-2253 (((-112) $ (-1192 (-549)) (-112)) NIL (|has| $ (-6 -4337))) (((-112) $ (-549) (-112)) NIL (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066))))) (-3812 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066))))) (-2558 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066))))) (-1878 (((-112) $ (-549) (-112)) NIL (|has| $ (-6 -4337)))) (-1808 (((-112) $ (-549)) NIL)) (-2882 (((-549) (-112) $ (-549)) NIL (|has| (-112) (-1066))) (((-549) (-112) $) NIL (|has| (-112) (-1066))) (((-549) (-1 (-112) (-112)) $) NIL)) (-2990 (((-621 (-112)) $) NIL (|has| $ (-6 -4336)))) (-4205 (($ $ $) NIL)) (-4007 (($ $) NIL)) (-4034 (($ $ $) NIL)) (-3743 (($ (-747) (-112)) 8)) (-1589 (($ $ $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL)) (-1586 (($ $ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1958 (((-621 (-112)) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL)) (-1865 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-2614 (($ $ $ (-549)) NIL) (($ (-112) $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL)) (-3645 (((-112) $) NIL (|has| (-549) (-823)))) (-1917 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3158 (($ $ (-112)) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-112)) (-621 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066)))) (($ $ (-287 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066)))) (($ $ (-621 (-287 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066))))) (-1738 (((-621 (-112)) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 (($ $ (-1192 (-549))) NIL) (((-112) $ (-549)) NIL) (((-112) $ (-549) (-112)) NIL)) (-2166 (($ $ (-1192 (-549))) NIL) (($ $ (-549)) NIL)) (-3997 (((-747) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066)))) (((-747) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-112) (-594 (-525))))) (-3853 (($ (-621 (-112))) NIL)) (-1951 (($ (-621 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3845 (((-834) $) NIL)) (-3960 (($ (-747) (-112)) 9)) (-2150 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-1820 (($ $ $) NIL)) (-3705 (($ $ $) NIL)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-3695 (($ $ $) NIL)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -3960 ($ (-747) (-112)))))) (T -110))
-((-3960 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -3960 ($ (-747) (-112)))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+((-2887 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-3375 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -3375 ((-112) $ $)) (-15 -2887 ((-112) $ $))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) 13 (|has| $ (-6 -4337)))) (-1348 (($ $ $) NIL (|has| $ (-6 -4337)))) (-1349 (($ $ $) NIL (|has| $ (-6 -4337)))) (-1318 (($ $ (-618 |#1|)) 15)) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #2="left" $) NIL (|has| $ (-6 -4337))) (($ $ #3="right" $) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3455 (($ $) 11)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1357 (($ $ |#1| $) 17)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1317 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1316 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-618 |#1|) |#1| |#1| |#1|)) 35)) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3456 (($ $) 10)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) 12)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 9)) (-3911 (($) 16)) (-4142 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3350 (((-535) $ $) NIL)) (-3979 (((-112) $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1319 (($ (-747) |#1|) 19)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -1319 ($ (-747) |#1|)) (-15 -1318 ($ $ (-618 |#1|))) (-15 -1317 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1317 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1316 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1316 ($ $ |#1| (-1 (-618 |#1|) |#1| |#1| |#1|))))) (-1067)) (T -102))
+((-1319 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-102 *3)) (-4 *3 (-1067)))) (-1318 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-102 *3)))) (-1317 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1067)))) (-1317 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-102 *3)))) (-1316 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-102 *2)))) (-1316 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-618 *2) *2 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-102 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -1319 ($ (-747) |#1|)) (-15 -1318 ($ $ (-618 |#1|))) (-15 -1317 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1317 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1316 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1316 ($ $ |#1| (-1 (-618 |#1|) |#1| |#1| |#1|)))))
+((-1320 ((|#3| |#2| |#2|) 29)) (-1322 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4338 #1="*"))))) (-1321 ((|#3| |#2| |#2|) 30)) (-1323 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4338 #1#))))))
+(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1320 (|#3| |#2| |#2|)) (-15 -1321 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4338 "*"))) (PROGN (-15 -1322 (|#1| |#2| |#2|)) (-15 -1323 (|#1| |#2|))) |%noBranch|)) (-1018) (-1200 |#1|) (-662 |#1| |#4| |#5|) (-365 |#1|) (-365 |#1|)) (T -103))
+((-1323 (*1 *2 *3) (-12 (|has| *2 (-6 (-4338 #1="*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1200 *2)) (-4 *4 (-662 *2 *5 *6)))) (-1322 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4338 #1#))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1200 *2)) (-4 *4 (-662 *2 *5 *6)))) (-1321 (*1 *2 *3 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-662 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1200 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)))) (-1320 (*1 *2 *3 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-662 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1200 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)))))
+(-10 -7 (-15 -1320 (|#3| |#2| |#2|)) (-15 -1321 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4338 "*"))) (PROGN (-15 -1322 (|#1| |#2| |#2|)) (-15 -1323 (|#1| |#2|))) |%noBranch|))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-1325 (((-618 (-1142))) 33)) (-1324 (((-2 (|:| |zeros| (-1119 (-219))) (|:| |ones| (-1119 (-219))) (|:| |singularities| (-1119 (-219)))) (-1142)) 35)) (-3375 (((-112) $ $) NIL)))
+(((-104) (-13 (-1067) (-10 -7 (-15 -1325 ((-618 (-1142)))) (-15 -1324 ((-2 (|:| |zeros| (-1119 (-219))) (|:| |ones| (-1119 (-219))) (|:| |singularities| (-1119 (-219)))) (-1142))) (-6 -4336)))) (T -104))
+((-1325 (*1 *2) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-104)))) (-1324 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-2 (|:| |zeros| (-1119 (-219))) (|:| |ones| (-1119 (-219))) (|:| |singularities| (-1119 (-219))))) (-5 *1 (-104)))))
+(-13 (-1067) (-10 -7 (-15 -1325 ((-618 (-1142)))) (-15 -1324 ((-2 (|:| |zeros| (-1119 (-219))) (|:| |ones| (-1119 (-219))) (|:| |singularities| (-1119 (-219)))) (-1142))) (-6 -4336)))
+((-1328 (($ (-618 |#2|)) 11)))
+(((-105 |#1| |#2|) (-10 -8 (-15 -1328 (|#1| (-618 |#2|)))) (-106 |#2|) (-1178)) (T -105))
+NIL
+(-10 -8 (-15 -1328 (|#1| (-618 |#2|))))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-106 |#1|) (-138) (-1178)) (T -106))
+((-1328 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-4 *1 (-106 *3)))) (-1327 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1178)))) (-3953 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1178)))) (-1326 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1178)))))
+(-13 (-481 |t#1|) (-10 -8 (-6 -4337) (-15 -1328 ($ (-618 |t#1|))) (-15 -1327 (|t#1| $)) (-15 -3953 ($ |t#1| $)) (-15 -1326 (|t#1| $))))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-535) $) NIL (|has| (-535) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-535) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| (-535) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-535) (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| (-535) (-1009 (-535))))) (-3490 (((-535) $) NIL) (((-1142) $) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-535) (-1009 (-535)))) (((-535) $) NIL (|has| (-535) (-1009 (-535))))) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-535) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| (-535) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-535) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-535) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-535) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| (-535) (-1117)))) (-3521 (((-112) $) NIL (|has| (-535) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-535) (-823)))) (-4301 (($ (-1 (-535) (-535)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-535) (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-535) (-300))) (((-400 (-535)) $) NIL)) (-3448 (((-535) $) NIL (|has| (-535) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-535)) (-618 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-535) (-535)) NIL (|has| (-535) (-302 (-535)))) (($ $ (-286 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-286 (-535)))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-1142)) (-618 (-535))) NIL (|has| (-535) (-505 (-1142) (-535)))) (($ $ (-1142) (-535)) NIL (|has| (-535) (-505 (-1142) (-535))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-535)) NIL (|has| (-535) (-279 (-535) (-535))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-535) $) NIL)) (-4313 (((-861 (-535)) $) NIL (|has| (-535) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-535) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-535) (-594 (-524)))) (((-371) $) NIL (|has| (-535) (-991))) (((-219) $) NIL (|has| (-535) (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-535) (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) 8) (($ (-535)) NIL) (($ (-1142)) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL) (((-975 2) $) 10)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-535) (-881))) (|has| (-535) (-143))))) (-3444 (((-747)) NIL)) (-3449 (((-535) $) NIL (|has| (-535) (-534)))) (-2137 (($ (-400 (-535))) 9)) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL (|has| (-535) (-796)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-535) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-535) (-823)))) (-4291 (($ $ $) NIL) (($ (-535) (-535)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-535) $) NIL) (($ $ (-535)) NIL)))
+(((-107) (-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -4300 ((-975 2) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -2137 ($ (-400 (-535))))))) (T -107))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-107)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-975 2)) (-5 *1 (-107)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-107)))) (-2137 (*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-107)))))
+(-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -4300 ((-975 2) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -2137 ($ (-400 (-535))))))
+((-1343 (((-618 (-936)) $) 14)) (-3888 (((-1142) $) 10)) (-4300 (((-835) $) 23)) (-1329 (($ (-1142) (-618 (-936))) 15)))
+(((-108) (-13 (-593 (-835)) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -1343 ((-618 (-936)) $)) (-15 -1329 ($ (-1142) (-618 (-936))))))) (T -108))
+((-3888 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-108)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-618 (-936))) (-5 *1 (-108)))) (-1329 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-936))) (-5 *1 (-108)))))
+(-13 (-593 (-835)) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -1343 ((-618 (-936)) $)) (-15 -1329 ($ (-1142) (-618 (-936))))))
+((-2887 (((-112) $ $) NIL)) (-1808 (((-1086) $ (-1086)) 24)) (-1812 (($ $ (-1124)) 17)) (-3965 (((-3 (-1086) "failed") $) 23)) (-1809 (((-1086) $) 21)) (-1330 (((-1086) $ (-1086)) 26)) (-3761 (((-1086) $) 25)) (-1813 (($ (-381)) NIL) (($ (-381) (-1124)) 16)) (-3888 (((-381) $) NIL)) (-3576 (((-1124) $) NIL)) (-1810 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-1811 (($ $) 18)) (-3375 (((-112) $ $) NIL)))
+(((-109) (-13 (-358 (-381) (-1086)) (-10 -8 (-15 -3965 ((-3 (-1086) "failed") $)) (-15 -3761 ((-1086) $)) (-15 -1330 ((-1086) $ (-1086)))))) (T -109))
+((-3965 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086)) (-5 *1 (-109)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-109)))) (-1330 (*1 *2 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-109)))))
+(-13 (-358 (-381) (-1086)) (-10 -8 (-15 -3965 ((-3 (-1086) "failed") $)) (-15 -3761 ((-1086) $)) (-15 -1330 ((-1086) $ (-1086)))))
+((-2887 (((-112) $ $) NIL)) (-3662 (($ $) NIL)) (-3658 (($ $ $) NIL)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) $) NIL (|has| (-112) (-823))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-823)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-3230 (($ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4130 (((-112) $ (-1191 (-535)) (-112)) NIL (|has| $ (-6 -4337))) (((-112) $ (-535) (-112)) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-3748 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-4185 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-1632 (((-112) $ (-535) (-112)) NIL (|has| $ (-6 -4337)))) (-3431 (((-112) $ (-535)) NIL)) (-3761 (((-535) (-112) $ (-535)) NIL (|has| (-112) (-1067))) (((-535) (-112) $) NIL (|has| (-112) (-1067))) (((-535) (-1 (-112) (-112)) $) NIL)) (-2063 (((-618 (-112)) $) NIL (|has| $ (-6 -4336)))) (-3178 (($ $ $) NIL)) (-3659 (($ $) NIL)) (-1355 (($ $ $) NIL)) (-3960 (($ (-747) (-112)) 8)) (-1356 (($ $ $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL)) (-3855 (($ $ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2502 (((-618 (-112)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL)) (-2067 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-2373 (($ $ $ (-535)) NIL) (($ (-112) $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-112) $) NIL (|has| (-535) (-823)))) (-1395 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2297 (($ $ (-112)) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-112)) (-618 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-286 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-618 (-286 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-2303 (((-618 (-112)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 (($ $ (-1191 (-535))) NIL) (((-112) $ (-535)) NIL) (((-112) $ (-535) (-112)) NIL)) (-2374 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-2064 (((-747) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067)))) (((-747) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-112) (-594 (-524))))) (-3867 (($ (-618 (-112))) NIL)) (-4144 (($ (-618 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4300 (((-835) $) NIL)) (-1885 (($ (-747) (-112)) 9)) (-2066 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-3179 (($ $ $) NIL)) (-3664 (($ $ $) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-3663 (($ $ $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -1885 ($ (-747) (-112)))))) (T -110))
+((-1885 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -1885 ($ (-747) (-112)))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
(((-111 |#1| |#2|) (-138) (-1018) (-1018)) (T -111))
NIL
(-13 (-624 |t#1|) (-1024 |t#2|) (-10 -7 (-6 -4331) (-6 -4330)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-1024 |#2|) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-1339 (($ $) 10)) (-2463 (($ $ $) 15)) (-1809 (($) 7 T CONST)) (-3763 (($ $) 6)) (-3615 (((-747)) 24)) (-3238 (($) 30)) (-4205 (($ $ $) 13)) (-4007 (($ $) 9)) (-4034 (($ $ $) 16)) (-1589 (($ $ $) 17)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2723 (((-892) $) 29)) (-2677 (((-1124) $) NIL)) (-3491 (($ (-892)) 28)) (-2441 (($ $ $) 20)) (-3988 (((-1086) $) NIL)) (-3736 (($) 8 T CONST)) (-2788 (($ $ $) 21)) (-2844 (((-525) $) 36)) (-3845 (((-834) $) 39)) (-1820 (($ $ $) 11)) (-3705 (($ $ $) 14)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 19)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 22)) (-3695 (($ $ $) 12)))
-(((-112) (-13 (-817) (-637) (-938) (-594 (-525)) (-10 -8 (-15 -1809 ($) -2588) (-15 -3736 ($) -2588) (-15 -2463 ($ $ $)) (-15 -1589 ($ $ $)) (-15 -4034 ($ $ $)) (-15 -3763 ($ $))))) (T -112))
-((-1809 (*1 *1) (-5 *1 (-112))) (-3736 (*1 *1) (-5 *1 (-112))) (-2463 (*1 *1 *1 *1) (-5 *1 (-112))) (-1589 (*1 *1 *1 *1) (-5 *1 (-112))) (-4034 (*1 *1 *1 *1) (-5 *1 (-112))) (-3763 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-817) (-637) (-938) (-594 (-525)) (-10 -8 (-15 -1809 ($) -2588) (-15 -3736 ($) -2588) (-15 -2463 ($ $ $)) (-15 -1589 ($ $ $)) (-15 -4034 ($ $ $)) (-15 -3763 ($ $))))
-((-3981 (((-3 (-1 |#1| (-621 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-621 |#1|))) 11) (((-3 |#1| "failed") (-114) (-621 |#1|)) 21)) (-1690 (((-3 (-621 (-1 |#1| (-621 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-621 (-1 |#1| (-621 |#1|)))) 26)) (-2198 (((-114) |#1|) 56 (|has| |#1| (-823)))) (-2551 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-823)))))
-(((-113 |#1|) (-10 -7 (-15 -3981 ((-3 |#1| "failed") (-114) (-621 |#1|))) (-15 -3981 ((-114) (-114) (-1 |#1| (-621 |#1|)))) (-15 -3981 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3981 ((-3 (-1 |#1| (-621 |#1|)) "failed") (-114))) (-15 -1690 ((-114) (-114) (-621 (-1 |#1| (-621 |#1|))))) (-15 -1690 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1690 ((-3 (-621 (-1 |#1| (-621 |#1|))) "failed") (-114))) (IF (|has| |#1| (-823)) (PROGN (-15 -2198 ((-114) |#1|)) (-15 -2551 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1066)) (T -113))
-((-2551 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1066)) (-4 *2 (-823)) (-5 *1 (-113 *2)))) (-2198 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-823)) (-4 *3 (-1066)))) (-1690 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-621 (-1 *4 (-621 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1066)))) (-1690 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1066)) (-5 *1 (-113 *4)))) (-1690 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-621 (-1 *4 (-621 *4)))) (-4 *4 (-1066)) (-5 *1 (-113 *4)))) (-3981 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-621 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1066)))) (-3981 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1066)) (-5 *1 (-113 *4)))) (-3981 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-621 *4))) (-4 *4 (-1066)) (-5 *1 (-113 *4)))) (-3981 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-621 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1066)))))
-(-10 -7 (-15 -3981 ((-3 |#1| "failed") (-114) (-621 |#1|))) (-15 -3981 ((-114) (-114) (-1 |#1| (-621 |#1|)))) (-15 -3981 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3981 ((-3 (-1 |#1| (-621 |#1|)) "failed") (-114))) (-15 -1690 ((-114) (-114) (-621 (-1 |#1| (-621 |#1|))))) (-15 -1690 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1690 ((-3 (-621 (-1 |#1| (-621 |#1|))) "failed") (-114))) (IF (|has| |#1| (-823)) (PROGN (-15 -2198 ((-114) |#1|)) (-15 -2551 ((-3 |#1| "failed") (-114)))) |%noBranch|))
-((-3833 (((-112) $ $) NIL)) (-1996 (((-747) $) 72) (($ $ (-747)) 30)) (-2025 (((-112) $) 32)) (-2161 (($ $ (-1124) (-750)) 26)) (-3858 (($ $ (-45 (-1124) (-750))) 15)) (-1997 (((-3 (-750) "failed") $ (-1124)) 25)) (-2772 (((-45 (-1124) (-750)) $) 14)) (-2015 (($ (-1142)) 17) (($ (-1142) (-747)) 22)) (-1344 (((-112) $) 31)) (-2275 (((-112) $) 33)) (-2480 (((-1142) $) 8)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-1581 (((-112) $ (-1142)) 10)) (-2740 (($ $ (-1 (-525) (-621 (-525)))) 52) (((-3 (-1 (-525) (-621 (-525))) "failed") $) 56)) (-3988 (((-1086) $) NIL)) (-1547 (((-112) $ (-1124)) 29)) (-2517 (($ $ (-1 (-112) $ $)) 35)) (-2697 (((-3 (-1 (-834) (-621 (-834))) "failed") $) 54) (($ $ (-1 (-834) (-621 (-834)))) 41) (($ $ (-1 (-834) (-834))) 43)) (-3937 (($ $ (-1124)) 45)) (-2281 (($ $) 63)) (-2050 (($ $ (-1 (-112) $ $)) 36)) (-3845 (((-834) $) 48)) (-3052 (($ $ (-1124)) 27)) (-3518 (((-3 (-747) "failed") $) 58)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 71)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 79)))
-(((-114) (-13 (-823) (-10 -8 (-15 -2480 ((-1142) $)) (-15 -2772 ((-45 (-1124) (-750)) $)) (-15 -2281 ($ $)) (-15 -2015 ($ (-1142))) (-15 -2015 ($ (-1142) (-747))) (-15 -3518 ((-3 (-747) "failed") $)) (-15 -1344 ((-112) $)) (-15 -2025 ((-112) $)) (-15 -2275 ((-112) $)) (-15 -1996 ((-747) $)) (-15 -1996 ($ $ (-747))) (-15 -2517 ($ $ (-1 (-112) $ $))) (-15 -2050 ($ $ (-1 (-112) $ $))) (-15 -2697 ((-3 (-1 (-834) (-621 (-834))) "failed") $)) (-15 -2697 ($ $ (-1 (-834) (-621 (-834))))) (-15 -2697 ($ $ (-1 (-834) (-834)))) (-15 -2740 ($ $ (-1 (-525) (-621 (-525))))) (-15 -2740 ((-3 (-1 (-525) (-621 (-525))) "failed") $)) (-15 -1581 ((-112) $ (-1142))) (-15 -1547 ((-112) $ (-1124))) (-15 -3052 ($ $ (-1124))) (-15 -3937 ($ $ (-1124))) (-15 -1997 ((-3 (-750) "failed") $ (-1124))) (-15 -2161 ($ $ (-1124) (-750))) (-15 -3858 ($ $ (-45 (-1124) (-750))))))) (T -114))
-((-2480 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-114)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-45 (-1124) (-750))) (-5 *1 (-114)))) (-2281 (*1 *1 *1) (-5 *1 (-114))) (-2015 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-114)))) (-2015 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *1 (-114)))) (-3518 (*1 *2 *1) (|partial| -12 (-5 *2 (-747)) (-5 *1 (-114)))) (-1344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2275 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-114)))) (-1996 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-114)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2050 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2697 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-834) (-621 (-834)))) (-5 *1 (-114)))) (-2697 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-834) (-621 (-834)))) (-5 *1 (-114)))) (-2697 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-834) (-834))) (-5 *1 (-114)))) (-2740 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-525) (-621 (-525)))) (-5 *1 (-114)))) (-2740 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-525) (-621 (-525)))) (-5 *1 (-114)))) (-1581 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1547 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3052 (*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-114)))) (-3937 (*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-114)))) (-1997 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1124)) (-5 *2 (-750)) (-5 *1 (-114)))) (-2161 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-750)) (-5 *1 (-114)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1124) (-750))) (-5 *1 (-114)))))
-(-13 (-823) (-10 -8 (-15 -2480 ((-1142) $)) (-15 -2772 ((-45 (-1124) (-750)) $)) (-15 -2281 ($ $)) (-15 -2015 ($ (-1142))) (-15 -2015 ($ (-1142) (-747))) (-15 -3518 ((-3 (-747) "failed") $)) (-15 -1344 ((-112) $)) (-15 -2025 ((-112) $)) (-15 -2275 ((-112) $)) (-15 -1996 ((-747) $)) (-15 -1996 ($ $ (-747))) (-15 -2517 ($ $ (-1 (-112) $ $))) (-15 -2050 ($ $ (-1 (-112) $ $))) (-15 -2697 ((-3 (-1 (-834) (-621 (-834))) "failed") $)) (-15 -2697 ($ $ (-1 (-834) (-621 (-834))))) (-15 -2697 ($ $ (-1 (-834) (-834)))) (-15 -2740 ($ $ (-1 (-525) (-621 (-525))))) (-15 -2740 ((-3 (-1 (-525) (-621 (-525))) "failed") $)) (-15 -1581 ((-112) $ (-1142))) (-15 -1547 ((-112) $ (-1124))) (-15 -3052 ($ $ (-1124))) (-15 -3937 ($ $ (-1124))) (-15 -1997 ((-3 (-750) "failed") $ (-1124))) (-15 -2161 ($ $ (-1124) (-750))) (-15 -3858 ($ $ (-45 (-1124) (-750))))))
-((-1839 (((-549) |#2|) 37)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -1839 ((-549) |#2|))) (-13 (-356) (-1009 (-400 (-549)))) (-1201 |#1|)) (T -115))
-((-1839 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-1009 (-400 *2)))) (-5 *2 (-549)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1201 *4)))))
-(-10 -7 (-15 -1839 ((-549) |#2|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $ (-549)) NIL)) (-2647 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-3932 (($ (-1138 (-549)) (-549)) NIL)) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3504 (($ $) NIL)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2078 (((-747) $) NIL)) (-3987 (((-112) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2968 (((-549)) NIL)) (-2013 (((-549) $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2975 (($ $ (-549)) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-1587 (((-1122 (-549)) $) NIL)) (-1814 (($ $) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL)) (-1723 (((-747)) NIL)) (-4053 (((-112) $ $) NIL)) (-2660 (((-549) $ (-549)) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL)))
-(((-116 |#1|) (-840 |#1|) (-549)) (T -116))
-NIL
-(-840 |#1|)
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2364 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-300)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-116 |#1|) (-880)))) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| (-116 |#1|) (-880)))) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL (|has| (-116 |#1|) (-796)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1142) "failed") $) NIL (|has| (-116 |#1|) (-1009 (-1142)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-116 |#1|) (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| (-116 |#1|) (-1009 (-549))))) (-2658 (((-116 |#1|) $) NIL) (((-1142) $) NIL (|has| (-116 |#1|) (-1009 (-1142)))) (((-400 (-549)) $) NIL (|has| (-116 |#1|) (-1009 (-549)))) (((-549) $) NIL (|has| (-116 |#1|) (-1009 (-549))))) (-3817 (($ $) NIL) (($ (-549) $) NIL)) (-2094 (($ $ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| (-116 |#1|) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| (-116 |#1|) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-116 |#1|))) (|:| |vec| (-1225 (-116 |#1|)))) (-665 $) (-1225 $)) NIL) (((-665 (-116 |#1|)) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| (-116 |#1|) (-534)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3079 (((-112) $) NIL (|has| (-116 |#1|) (-796)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-116 |#1|) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-116 |#1|) (-857 (-372))))) (-3987 (((-112) $) NIL)) (-2053 (($ $) NIL)) (-1393 (((-116 |#1|) $) NIL)) (-3982 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1117)))) (-2847 (((-112) $) NIL (|has| (-116 |#1|) (-796)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2862 (($ $ $) NIL (|has| (-116 |#1|) (-823)))) (-3574 (($ $ $) NIL (|has| (-116 |#1|) (-823)))) (-2796 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| (-116 |#1|) (-1117)) CONST)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1260 (($ $) NIL (|has| (-116 |#1|) (-300)))) (-4060 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-534)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-116 |#1|) (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-116 |#1|) (-880)))) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2685 (($ $ (-621 (-116 |#1|)) (-621 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-287 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-621 (-287 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-621 (-1142)) (-621 (-116 |#1|))) NIL (|has| (-116 |#1|) (-505 (-1142) (-116 |#1|)))) (($ $ (-1142) (-116 |#1|)) NIL (|has| (-116 |#1|) (-505 (-1142) (-116 |#1|))))) (-4091 (((-747) $) NIL)) (-3340 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-279 (-116 |#1|) (-116 |#1|))))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3455 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1142)) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-747)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-4288 (($ $) NIL)) (-1404 (((-116 |#1|) $) NIL)) (-2844 (((-863 (-549)) $) NIL (|has| (-116 |#1|) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-116 |#1|) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-116 |#1|) (-594 (-525)))) (((-372) $) NIL (|has| (-116 |#1|) (-993))) (((-219) $) NIL (|has| (-116 |#1|) (-993)))) (-2020 (((-172 (-400 (-549))) $) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-116 |#1|)) NIL) (($ (-1142)) NIL (|has| (-116 |#1|) (-1009 (-1142))))) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-880))) (|has| (-116 |#1|) (-143))))) (-1723 (((-747)) NIL)) (-2926 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-534)))) (-4053 (((-112) $ $) NIL)) (-2660 (((-400 (-549)) $ (-549)) NIL)) (-3603 (($ $) NIL (|has| (-116 |#1|) (-796)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1142)) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-747)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-2424 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-2411 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-2512 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-963 (-116 |#1|)) (-10 -8 (-15 -2660 ((-400 (-549)) $ (-549))) (-15 -2020 ((-172 (-400 (-549))) $)) (-15 -3817 ($ $)) (-15 -3817 ($ (-549) $)))) (-549)) (T -117))
-((-2660 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-549)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-549)))) (-5 *1 (-117 *3)) (-14 *3 (-549)))) (-3817 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-549)))) (-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-963 (-116 |#1|)) (-10 -8 (-15 -2660 ((-400 (-549)) $ (-549))) (-15 -2020 ((-172 (-400 (-549))) $)) (-15 -3817 ($ $)) (-15 -3817 ($ (-549) $))))
-((-2253 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3630 (((-621 $) $) 27)) (-1742 (((-112) $ $) 32)) (-2273 (((-112) |#2| $) 36)) (-3590 (((-621 |#2|) $) 22)) (-2456 (((-112) $) 16)) (-3340 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4187 (((-112) $) 45)) (-3845 (((-834) $) 41)) (-1935 (((-621 $) $) 28)) (-2388 (((-112) $ $) 34)) (-3774 (((-747) $) 43)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -3845 ((-834) |#1|)) (-15 -2253 (|#1| |#1| "right" |#1|)) (-15 -2253 (|#1| |#1| "left" |#1|)) (-15 -3340 (|#1| |#1| "right")) (-15 -3340 (|#1| |#1| "left")) (-15 -2253 (|#2| |#1| "value" |#2|)) (-15 -1742 ((-112) |#1| |#1|)) (-15 -3590 ((-621 |#2|) |#1|)) (-15 -4187 ((-112) |#1|)) (-15 -3340 (|#2| |#1| "value")) (-15 -2456 ((-112) |#1|)) (-15 -3630 ((-621 |#1|) |#1|)) (-15 -1935 ((-621 |#1|) |#1|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -2273 ((-112) |#2| |#1|)) (-15 -3774 ((-747) |#1|))) (-119 |#2|) (-1179)) (T -118))
-NIL
-(-10 -8 (-15 -3845 ((-834) |#1|)) (-15 -2253 (|#1| |#1| "right" |#1|)) (-15 -2253 (|#1| |#1| "left" |#1|)) (-15 -3340 (|#1| |#1| "right")) (-15 -3340 (|#1| |#1| "left")) (-15 -2253 (|#2| |#1| "value" |#2|)) (-15 -1742 ((-112) |#1| |#1|)) (-15 -3590 ((-621 |#2|) |#1|)) (-15 -4187 ((-112) |#1|)) (-15 -3340 (|#2| |#1| "value")) (-15 -2456 ((-112) |#1|)) (-15 -3630 ((-621 |#1|) |#1|)) (-15 -1935 ((-621 |#1|) |#1|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -2273 ((-112) |#2| |#1|)) (-15 -3774 ((-747) |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-4160 ((|#1| $) 48)) (-1323 (((-112) $ (-747)) 8)) (-3751 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-1501 (($ $ $) 52 (|has| $ (-6 -4337)))) (-1885 (($ $ $) 54 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4337))) (($ $ "left" $) 55 (|has| $ (-6 -4337))) (($ $ "right" $) 53 (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) 41 (|has| $ (-6 -4337)))) (-1705 (($) 7 T CONST)) (-3847 (($ $) 57)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) 50)) (-1742 (((-112) $ $) 42 (|has| |#1| (-1066)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-3837 (($ $) 59)) (-3590 (((-621 |#1|) $) 45)) (-2456 (((-112) $) 49)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1953 (((-549) $ $) 44)) (-4187 (((-112) $) 46)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) 51)) (-2937 (((-112) $ $) 43 (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-119 |#1|) (-138) (-1179)) (T -119))
-((-3837 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1179)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1179)))) (-3847 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1179)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1179)))) (-2253 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4337)) (-4 *1 (-119 *3)) (-4 *3 (-1179)))) (-1885 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-119 *2)) (-4 *2 (-1179)))) (-2253 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4337)) (-4 *1 (-119 *3)) (-4 *3 (-1179)))) (-1501 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-119 *2)) (-4 *2 (-1179)))))
-(-13 (-981 |t#1|) (-10 -8 (-15 -3837 ($ $)) (-15 -3340 ($ $ "left")) (-15 -3847 ($ $)) (-15 -3340 ($ $ "right")) (IF (|has| $ (-6 -4337)) (PROGN (-15 -2253 ($ $ "left" $)) (-15 -1885 ($ $ $)) (-15 -2253 ($ $ "right" $)) (-15 -1501 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-981 |#1|) . T) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-2458 (((-112) |#1|) 24)) (-3282 (((-747) (-747)) 23) (((-747)) 22)) (-3610 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
-(((-120 |#1|) (-10 -7 (-15 -3610 ((-112) |#1|)) (-15 -3610 ((-112) |#1| (-112))) (-15 -3282 ((-747))) (-15 -3282 ((-747) (-747))) (-15 -2458 ((-112) |#1|))) (-1201 (-549))) (T -120))
-((-2458 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1201 (-549))))) (-3282 (*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1201 (-549))))) (-3282 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1201 (-549))))) (-3610 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1201 (-549))))) (-3610 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1201 (-549))))))
-(-10 -7 (-15 -3610 ((-112) |#1|)) (-15 -3610 ((-112) |#1| (-112))) (-15 -3282 ((-747))) (-15 -3282 ((-747) (-747))) (-15 -2458 ((-112) |#1|)))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-4160 ((|#1| $) 15)) (-1445 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1323 (((-112) $ (-747)) NIL)) (-3751 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-1501 (($ $ $) 18 (|has| $ (-6 -4337)))) (-1885 (($ $ $) 20 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ "left" $) NIL (|has| $ (-6 -4337))) (($ $ "right" $) NIL (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) NIL (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-3847 (($ $) 17)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) NIL)) (-1742 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2241 (($ $ |#1| $) 23)) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-3837 (($ $) 19)) (-3590 (((-621 |#1|) $) NIL)) (-2456 (((-112) $) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3691 (($ |#1| $) 24)) (-1709 (($ |#1| $) 10)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 14)) (-1461 (($) 8)) (-3340 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1953 (((-549) $ $) NIL)) (-4187 (((-112) $) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) NIL)) (-2937 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2947 (($ (-621 |#1|)) 12)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -2947 ($ (-621 |#1|))) (-15 -1709 ($ |#1| $)) (-15 -3691 ($ |#1| $)) (-15 -1445 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-823)) (T -121))
-((-2947 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-121 *3)))) (-1709 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823)))) (-3691 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823)))) (-1445 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-823)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -2947 ($ (-621 |#1|))) (-15 -1709 ($ |#1| $)) (-15 -3691 ($ |#1| $)) (-15 -1445 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-1339 (($ $) 13)) (-4007 (($ $) 11)) (-4034 (($ $ $) 23)) (-1589 (($ $ $) 21)) (-3705 (($ $ $) 19)) (-3695 (($ $ $) 17)))
-(((-122 |#1|) (-10 -8 (-15 -4034 (|#1| |#1| |#1|)) (-15 -1589 (|#1| |#1| |#1|)) (-15 -4007 (|#1| |#1|)) (-15 -1339 (|#1| |#1|)) (-15 -3695 (|#1| |#1| |#1|)) (-15 -3705 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -4034 (|#1| |#1| |#1|)) (-15 -1589 (|#1| |#1| |#1|)) (-15 -4007 (|#1| |#1|)) (-15 -1339 (|#1| |#1|)) (-15 -3695 (|#1| |#1| |#1|)) (-15 -3705 (|#1| |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-1339 (($ $) 103)) (-2463 (($ $ $) 25)) (-2932 (((-1230) $ (-549) (-549)) 66 (|has| $ (-6 -4337)))) (-1993 (((-112) $) 98 (|has| (-112) (-823))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-4106 (($ $) 102 (-12 (|has| (-112) (-823)) (|has| $ (-6 -4337)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4337)))) (-3193 (($ $) 97 (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1323 (((-112) $ (-747)) 37)) (-2253 (((-112) $ (-1192 (-549)) (-112)) 88 (|has| $ (-6 -4337))) (((-112) $ (-549) (-112)) 54 (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4336)))) (-1705 (($) 38 T CONST)) (-4273 (($ $) 100 (|has| $ (-6 -4337)))) (-3063 (($ $) 90)) (-3675 (($ $) 68 (-12 (|has| (-112) (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4336))) (($ (-112) $) 69 (-12 (|has| (-112) (-1066)) (|has| $ (-6 -4336))))) (-2558 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1066)) (|has| $ (-6 -4336))))) (-1878 (((-112) $ (-549) (-112)) 53 (|has| $ (-6 -4337)))) (-1808 (((-112) $ (-549)) 55)) (-2882 (((-549) (-112) $ (-549)) 95 (|has| (-112) (-1066))) (((-549) (-112) $) 94 (|has| (-112) (-1066))) (((-549) (-1 (-112) (-112)) $) 93)) (-2990 (((-621 (-112)) $) 45 (|has| $ (-6 -4336)))) (-4205 (($ $ $) 26)) (-4007 (($ $) 30)) (-4034 (($ $ $) 28)) (-3743 (($ (-747) (-112)) 77)) (-1589 (($ $ $) 29)) (-4202 (((-112) $ (-747)) 36)) (-3485 (((-549) $) 63 (|has| (-549) (-823)))) (-2862 (($ $ $) 13)) (-1586 (($ $ $) 96 (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1958 (((-621 (-112)) $) 46 (|has| $ (-6 -4336)))) (-2273 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 62 (|has| (-549) (-823)))) (-3574 (($ $ $) 14)) (-1865 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4289 (((-112) $ (-747)) 35)) (-2677 (((-1124) $) 9)) (-2614 (($ $ $ (-549)) 87) (($ (-112) $ (-549)) 86)) (-3927 (((-621 (-549)) $) 60)) (-1286 (((-112) (-549) $) 59)) (-3988 (((-1086) $) 10)) (-3645 (((-112) $) 64 (|has| (-549) (-823)))) (-1917 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3158 (($ $ (-112)) 65 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-112)) (-621 (-112))) 52 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066)))) (($ $ (-287 (-112))) 50 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066)))) (($ $ (-621 (-287 (-112)))) 49 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066))))) (-2732 (((-112) $ $) 31)) (-3781 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066))))) (-1738 (((-621 (-112)) $) 58)) (-1807 (((-112) $) 34)) (-1461 (($) 33)) (-3340 (($ $ (-1192 (-549))) 83) (((-112) $ (-549)) 57) (((-112) $ (-549) (-112)) 56)) (-2166 (($ $ (-1192 (-549))) 85) (($ $ (-549)) 84)) (-3997 (((-747) (-112) $) 47 (-12 (|has| (-112) (-1066)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4336)))) (-1665 (($ $ $ (-549)) 99 (|has| $ (-6 -4337)))) (-2281 (($ $) 32)) (-2844 (((-525) $) 67 (|has| (-112) (-594 (-525))))) (-3853 (($ (-621 (-112))) 76)) (-1951 (($ (-621 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-3845 (((-834) $) 11)) (-2150 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4336)))) (-1820 (($ $ $) 27)) (-3705 (($ $ $) 105)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)) (-3695 (($ $ $) 104)) (-3774 (((-747) $) 39 (|has| $ (-6 -4336)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-1024 |#2|) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3662 (($ $) 10)) (-3658 (($ $ $) 15)) (-2313 (($) 7 T CONST)) (-1331 (($ $) 6)) (-3454 (((-747)) 24)) (-3315 (($) 30)) (-3178 (($ $ $) 13)) (-3659 (($ $) 9)) (-1355 (($ $ $) 16)) (-1356 (($ $ $) 17)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-2121 (((-890) $) 29)) (-3576 (((-1124) $) NIL)) (-2483 (($ (-890)) 28)) (-3177 (($ $ $) 20)) (-3577 (((-1086) $) NIL)) (-2315 (($) 8 T CONST)) (-3176 (($ $ $) 21)) (-4313 (((-524) $) 36)) (-4300 (((-835) $) 39)) (-3179 (($ $ $) 11)) (-3664 (($ $ $) 14)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 19)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 22)) (-3663 (($ $ $) 12)))
+(((-112) (-13 (-817) (-638) (-938) (-594 (-524)) (-10 -8 (-15 -2313 ($) -4294) (-15 -2315 ($) -4294) (-15 -3658 ($ $ $)) (-15 -1356 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -1331 ($ $))))) (T -112))
+((-2313 (*1 *1) (-5 *1 (-112))) (-2315 (*1 *1) (-5 *1 (-112))) (-3658 (*1 *1 *1 *1) (-5 *1 (-112))) (-1356 (*1 *1 *1 *1) (-5 *1 (-112))) (-1355 (*1 *1 *1 *1) (-5 *1 (-112))) (-1331 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-817) (-638) (-938) (-594 (-524)) (-10 -8 (-15 -2313 ($) -4294) (-15 -2315 ($) -4294) (-15 -3658 ($ $ $)) (-15 -1356 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -1331 ($ $))))
+((-2887 (((-112) $ $) NIL)) (-1572 (((-747) $) 72) (($ $ (-747)) 30)) (-1340 (((-112) $) 32)) (-1333 (($ $ (-1124) (-749)) 26)) (-1332 (($ $ (-45 (-1124) (-749))) 15)) (-3162 (((-3 (-749) "failed") $ (-1124)) 25)) (-1343 (((-45 (-1124) (-749)) $) 14)) (-3368 (($ (-1142)) 17) (($ (-1142) (-747)) 22)) (-1341 (((-112) $) 31)) (-1339 (((-112) $) 33)) (-3888 (((-1142) $) 8)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2952 (((-112) $ (-1142)) 10)) (-1336 (($ $ (-1 (-524) (-618 (-524)))) 52) (((-3 (-1 (-524) (-618 (-524))) "failed") $) 56)) (-3577 (((-1086) $) NIL)) (-1335 (((-112) $ (-1124)) 29)) (-1338 (($ $ (-1 (-112) $ $)) 35)) (-3963 (((-3 (-1 (-835) (-618 (-835))) "failed") $) 54) (($ $ (-1 (-835) (-618 (-835)))) 41) (($ $ (-1 (-835) (-835))) 43)) (-1334 (($ $ (-1124)) 45)) (-3742 (($ $) 63)) (-1337 (($ $ (-1 (-112) $ $)) 36)) (-4300 (((-835) $) 48)) (-3113 (($ $ (-1124)) 27)) (-1342 (((-3 (-747) "failed") $) 58)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 71)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 79)))
+(((-113) (-13 (-823) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -1343 ((-45 (-1124) (-749)) $)) (-15 -3742 ($ $)) (-15 -3368 ($ (-1142))) (-15 -3368 ($ (-1142) (-747))) (-15 -1342 ((-3 (-747) "failed") $)) (-15 -1341 ((-112) $)) (-15 -1340 ((-112) $)) (-15 -1339 ((-112) $)) (-15 -1572 ((-747) $)) (-15 -1572 ($ $ (-747))) (-15 -1338 ($ $ (-1 (-112) $ $))) (-15 -1337 ($ $ (-1 (-112) $ $))) (-15 -3963 ((-3 (-1 (-835) (-618 (-835))) "failed") $)) (-15 -3963 ($ $ (-1 (-835) (-618 (-835))))) (-15 -3963 ($ $ (-1 (-835) (-835)))) (-15 -1336 ($ $ (-1 (-524) (-618 (-524))))) (-15 -1336 ((-3 (-1 (-524) (-618 (-524))) "failed") $)) (-15 -2952 ((-112) $ (-1142))) (-15 -1335 ((-112) $ (-1124))) (-15 -3113 ($ $ (-1124))) (-15 -1334 ($ $ (-1124))) (-15 -3162 ((-3 (-749) "failed") $ (-1124))) (-15 -1333 ($ $ (-1124) (-749))) (-15 -1332 ($ $ (-45 (-1124) (-749))))))) (T -113))
+((-3888 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-113)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-45 (-1124) (-749))) (-5 *1 (-113)))) (-3742 (*1 *1 *1) (-5 *1 (-113))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-113)))) (-3368 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *1 (-113)))) (-1342 (*1 *2 *1) (|partial| -12 (-5 *2 (-747)) (-5 *1 (-113)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-113)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-113)))) (-1338 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-3963 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-835) (-618 (-835)))) (-5 *1 (-113)))) (-3963 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-835) (-618 (-835)))) (-5 *1 (-113)))) (-3963 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-835) (-835))) (-5 *1 (-113)))) (-1336 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-524) (-618 (-524)))) (-5 *1 (-113)))) (-1336 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-524) (-618 (-524)))) (-5 *1 (-113)))) (-2952 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-113)))) (-1335 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-113)))) (-1334 (*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-113)))) (-3162 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1124)) (-5 *2 (-749)) (-5 *1 (-113)))) (-1333 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-749)) (-5 *1 (-113)))) (-1332 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1124) (-749))) (-5 *1 (-113)))))
+(-13 (-823) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -1343 ((-45 (-1124) (-749)) $)) (-15 -3742 ($ $)) (-15 -3368 ($ (-1142))) (-15 -3368 ($ (-1142) (-747))) (-15 -1342 ((-3 (-747) "failed") $)) (-15 -1341 ((-112) $)) (-15 -1340 ((-112) $)) (-15 -1339 ((-112) $)) (-15 -1572 ((-747) $)) (-15 -1572 ($ $ (-747))) (-15 -1338 ($ $ (-1 (-112) $ $))) (-15 -1337 ($ $ (-1 (-112) $ $))) (-15 -3963 ((-3 (-1 (-835) (-618 (-835))) "failed") $)) (-15 -3963 ($ $ (-1 (-835) (-618 (-835))))) (-15 -3963 ($ $ (-1 (-835) (-835)))) (-15 -1336 ($ $ (-1 (-524) (-618 (-524))))) (-15 -1336 ((-3 (-1 (-524) (-618 (-524))) "failed") $)) (-15 -2952 ((-112) $ (-1142))) (-15 -1335 ((-112) $ (-1124))) (-15 -3113 ($ $ (-1124))) (-15 -1334 ($ $ (-1124))) (-15 -3162 ((-3 (-749) "failed") $ (-1124))) (-15 -1333 ($ $ (-1124) (-749))) (-15 -1332 ($ $ (-45 (-1124) (-749))))))
+((-2843 (((-3 (-1 |#1| (-618 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-618 |#1|))) 11) (((-3 |#1| "failed") (-113) (-618 |#1|)) 21)) (-1344 (((-3 (-618 (-1 |#1| (-618 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-618 (-1 |#1| (-618 |#1|)))) 26)) (-1345 (((-113) |#1|) 56 (|has| |#1| (-823)))) (-1346 (((-3 |#1| "failed") (-113)) 50 (|has| |#1| (-823)))))
+(((-114 |#1|) (-10 -7 (-15 -2843 ((-3 |#1| "failed") (-113) (-618 |#1|))) (-15 -2843 ((-113) (-113) (-1 |#1| (-618 |#1|)))) (-15 -2843 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2843 ((-3 (-1 |#1| (-618 |#1|)) "failed") (-113))) (-15 -1344 ((-113) (-113) (-618 (-1 |#1| (-618 |#1|))))) (-15 -1344 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1344 ((-3 (-618 (-1 |#1| (-618 |#1|))) "failed") (-113))) (IF (|has| |#1| (-823)) (PROGN (-15 -1345 ((-113) |#1|)) (-15 -1346 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1067)) (T -114))
+((-1346 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1067)) (-4 *2 (-823)) (-5 *1 (-114 *2)))) (-1345 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-823)) (-4 *3 (-1067)))) (-1344 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-618 (-1 *4 (-618 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1067)))) (-1344 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1067)) (-5 *1 (-114 *4)))) (-1344 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-618 (-1 *4 (-618 *4)))) (-4 *4 (-1067)) (-5 *1 (-114 *4)))) (-2843 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-618 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1067)))) (-2843 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1067)) (-5 *1 (-114 *4)))) (-2843 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-618 *4))) (-4 *4 (-1067)) (-5 *1 (-114 *4)))) (-2843 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-618 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1067)))))
+(-10 -7 (-15 -2843 ((-3 |#1| "failed") (-113) (-618 |#1|))) (-15 -2843 ((-113) (-113) (-1 |#1| (-618 |#1|)))) (-15 -2843 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2843 ((-3 (-1 |#1| (-618 |#1|)) "failed") (-113))) (-15 -1344 ((-113) (-113) (-618 (-1 |#1| (-618 |#1|))))) (-15 -1344 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1344 ((-3 (-618 (-1 |#1| (-618 |#1|))) "failed") (-113))) (IF (|has| |#1| (-823)) (PROGN (-15 -1345 ((-113) |#1|)) (-15 -1346 ((-3 |#1| "failed") (-113)))) |%noBranch|))
+((-1347 (((-535) |#2|) 37)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -1347 ((-535) |#2|))) (-13 (-356) (-1009 (-400 (-535)))) (-1200 |#1|)) (T -115))
+((-1347 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-1009 (-400 *2)))) (-5 *2 (-535)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1200 *4)))))
+(-10 -7 (-15 -1347 ((-535) |#2|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $ (-535)) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2928 (($ (-1136 (-535)) (-535)) NIL)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2929 (($ $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4114 (((-747) $) NIL)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2931 (((-535)) NIL)) (-2930 (((-535) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4111 (($ $ (-535)) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-2932 (((-1119 (-535)) $) NIL)) (-3212 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL)) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL)) (-4112 (((-535) $ (-535)) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL)))
+(((-116 |#1|) (-841 |#1|) (-535)) (T -116))
+NIL
+(-841 |#1|)
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-116 |#1|) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-116 |#1|) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-116 |#1|) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| (-116 |#1|) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-116 |#1|) (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| (-116 |#1|) (-1009 (-535))))) (-3490 (((-116 |#1|) $) NIL) (((-1142) $) NIL (|has| (-116 |#1|) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-116 |#1|) (-1009 (-535)))) (((-535) $) NIL (|has| (-116 |#1|) (-1009 (-535))))) (-4073 (($ $) NIL) (($ (-535) $) NIL)) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-116 |#1|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-116 |#1|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-116 |#1|))) (|:| |vec| (-1224 (-116 |#1|)))) (-665 $) (-1224 $)) NIL) (((-665 (-116 |#1|)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-116 |#1|) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| (-116 |#1|) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-116 |#1|) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-116 |#1|) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-116 |#1|) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1117)))) (-3521 (((-112) $) NIL (|has| (-116 |#1|) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-116 |#1|) (-823)))) (-3661 (($ $ $) NIL (|has| (-116 |#1|) (-823)))) (-4301 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-116 |#1|) (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-116 |#1|) (-300)))) (-3448 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-116 |#1|) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-116 |#1|) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-116 |#1|)) (-618 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-286 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-618 (-286 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-618 (-1142)) (-618 (-116 |#1|))) NIL (|has| (-116 |#1|) (-505 (-1142) (-116 |#1|)))) (($ $ (-1142) (-116 |#1|)) NIL (|has| (-116 |#1|) (-505 (-1142) (-116 |#1|))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-279 (-116 |#1|) (-116 |#1|))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1142)) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-747)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-116 |#1|) $) NIL)) (-4313 (((-861 (-535)) $) NIL (|has| (-116 |#1|) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-116 |#1|) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-116 |#1|) (-594 (-524)))) (((-371) $) NIL (|has| (-116 |#1|) (-991))) (((-219) $) NIL (|has| (-116 |#1|) (-991)))) (-2933 (((-172 (-400 (-535))) $) NIL)) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-116 |#1|)) NIL) (($ (-1142)) NIL (|has| (-116 |#1|) (-1009 (-1142))))) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-881))) (|has| (-116 |#1|) (-143))))) (-3444 (((-747)) NIL)) (-3449 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-534)))) (-2170 (((-112) $ $) NIL)) (-4112 (((-400 (-535)) $ (-535)) NIL)) (-3725 (($ $) NIL (|has| (-116 |#1|) (-796)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1142)) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-116 |#1|) (-871 (-1142)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-747)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-4291 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-962 (-116 |#1|)) (-10 -8 (-15 -4112 ((-400 (-535)) $ (-535))) (-15 -2933 ((-172 (-400 (-535))) $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $)))) (-535)) (T -117))
+((-4112 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-535)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-535)))) (-5 *1 (-117 *3)) (-14 *3 (-535)))) (-4073 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-535)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-962 (-116 |#1|)) (-10 -8 (-15 -4112 ((-400 (-535)) $ (-535))) (-15 -2933 ((-172 (-400 (-535))) $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $))))
+((-4130 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3352 (((-618 $) $) 27)) (-3348 (((-112) $ $) 32)) (-3579 (((-112) |#2| $) 36)) (-3351 (((-618 |#2|) $) 22)) (-3864 (((-112) $) 16)) (-4142 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3979 (((-112) $) 45)) (-4300 (((-835) $) 41)) (-3859 (((-618 $) $) 28)) (-3375 (((-112) $ $) 34)) (-4299 (((-747) $) 43)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -4130 (|#1| |#1| "right" |#1|)) (-15 -4130 (|#1| |#1| "left" |#1|)) (-15 -4142 (|#1| |#1| "right")) (-15 -4142 (|#1| |#1| "left")) (-15 -4130 (|#2| |#1| #1="value" |#2|)) (-15 -3348 ((-112) |#1| |#1|)) (-15 -3351 ((-618 |#2|) |#1|)) (-15 -3979 ((-112) |#1|)) (-15 -4142 (|#2| |#1| #1#)) (-15 -3864 ((-112) |#1|)) (-15 -3352 ((-618 |#1|) |#1|)) (-15 -3859 ((-618 |#1|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -3579 ((-112) |#2| |#1|)) (-15 -4299 ((-747) |#1|))) (-119 |#2|) (-1178)) (T -118))
+NIL
+(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -4130 (|#1| |#1| "right" |#1|)) (-15 -4130 (|#1| |#1| "left" |#1|)) (-15 -4142 (|#1| |#1| "right")) (-15 -4142 (|#1| |#1| "left")) (-15 -4130 (|#2| |#1| #1="value" |#2|)) (-15 -3348 ((-112) |#1| |#1|)) (-15 -3351 ((-618 |#2|) |#1|)) (-15 -3979 ((-112) |#1|)) (-15 -4142 (|#2| |#1| #1#)) (-15 -3864 ((-112) |#1|)) (-15 -3352 ((-618 |#1|) |#1|)) (-15 -3859 ((-618 |#1|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -3579 ((-112) |#2| |#1|)) (-15 -4299 ((-747) |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-1348 (($ $ $) 52 (|has| $ (-6 -4337)))) (-1349 (($ $ $) 54 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337))) (($ $ "left" $) 55 (|has| $ (-6 -4337))) (($ $ "right" $) 53 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-3879 (($) 7 T CONST)) (-3455 (($ $) 57)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3456 (($ $) 59)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47) (($ $ "left") 58) (($ $ "right") 56)) (-3350 (((-535) $ $) 44)) (-3979 (((-112) $) 46)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-119 |#1|) (-138) (-1178)) (T -119))
+((-3456 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1178)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1178)))) (-3455 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1178)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1178)))) (-4130 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4337)) (-4 *1 (-119 *3)) (-4 *3 (-1178)))) (-1349 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-119 *2)) (-4 *2 (-1178)))) (-4130 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4337)) (-4 *1 (-119 *3)) (-4 *3 (-1178)))) (-1348 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-119 *2)) (-4 *2 (-1178)))))
+(-13 (-981 |t#1|) (-10 -8 (-15 -3456 ($ $)) (-15 -4142 ($ $ "left")) (-15 -3455 ($ $)) (-15 -4142 ($ $ "right")) (IF (|has| $ (-6 -4337)) (PROGN (-15 -4130 ($ $ "left" $)) (-15 -1349 ($ $ $)) (-15 -4130 ($ $ "right" $)) (-15 -1348 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-1352 (((-112) |#1|) 24)) (-1351 (((-747) (-747)) 23) (((-747)) 22)) (-1350 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
+(((-120 |#1|) (-10 -7 (-15 -1350 ((-112) |#1|)) (-15 -1350 ((-112) |#1| (-112))) (-15 -1351 ((-747))) (-15 -1351 ((-747) (-747))) (-15 -1352 ((-112) |#1|))) (-1200 (-535))) (T -120))
+((-1352 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))) (-1351 (*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))) (-1351 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))) (-1350 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))) (-1350 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))))
+(-10 -7 (-15 -1350 ((-112) |#1|)) (-15 -1350 ((-112) |#1| (-112))) (-15 -1351 ((-747))) (-15 -1351 ((-747) (-747))) (-15 -1352 ((-112) |#1|)))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) 15)) (-3760 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-1348 (($ $ $) 18 (|has| $ (-6 -4337)))) (-1349 (($ $ $) 20 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #2="left" $) NIL (|has| $ (-6 -4337))) (($ $ #3="right" $) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3455 (($ $) 17)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1357 (($ $ |#1| $) 23)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3456 (($ $) 19)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1353 (($ |#1| $) 24)) (-3953 (($ |#1| $) 10)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 14)) (-3911 (($) 8)) (-4142 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3350 (((-535) $ $) NIL)) (-3979 (((-112) $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1354 (($ (-618 |#1|)) 12)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -1354 ($ (-618 |#1|))) (-15 -3953 ($ |#1| $)) (-15 -1353 ($ |#1| $)) (-15 -3760 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-823)) (T -121))
+((-1354 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-121 *3)))) (-3953 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823)))) (-1353 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823)))) (-3760 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-823)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -1354 ($ (-618 |#1|))) (-15 -3953 ($ |#1| $)) (-15 -1353 ($ |#1| $)) (-15 -3760 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-3662 (($ $) 13)) (-3659 (($ $) 11)) (-1355 (($ $ $) 23)) (-1356 (($ $ $) 21)) (-3664 (($ $ $) 19)) (-3663 (($ $ $) 17)))
+(((-122 |#1|) (-10 -8 (-15 -1355 (|#1| |#1| |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3662 (|#1| |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -3664 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -1355 (|#1| |#1| |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3662 (|#1| |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -3664 (|#1| |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3662 (($ $) 103)) (-3658 (($ $ $) 25)) (-2296 (((-1230) $ (-535) (-535)) 66 (|has| $ (-6 -4337)))) (-1843 (((-112) $) 98 (|has| (-112) (-823))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-1841 (($ $) 102 (-12 (|has| (-112) (-823)) (|has| $ (-6 -4337)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4337)))) (-3230 (($ $) 97 (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1264 (((-112) $ (-747)) 37)) (-4130 (((-112) $ (-1191 (-535)) (-112)) 88 (|has| $ (-6 -4337))) (((-112) $ (-535) (-112)) 54 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4336)))) (-3879 (($) 38 T CONST)) (-2368 (($ $) 100 (|has| $ (-6 -4337)))) (-2369 (($ $) 90)) (-1394 (($ $) 68 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4336))) (($ (-112) $) 69 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4336))))) (-4185 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4336))))) (-1632 (((-112) $ (-535) (-112)) 53 (|has| $ (-6 -4337)))) (-3431 (((-112) $ (-535)) 55)) (-3761 (((-535) (-112) $ (-535)) 95 (|has| (-112) (-1067))) (((-535) (-112) $) 94 (|has| (-112) (-1067))) (((-535) (-1 (-112) (-112)) $) 93)) (-2063 (((-618 (-112)) $) 45 (|has| $ (-6 -4336)))) (-3178 (($ $ $) 26)) (-3659 (($ $) 30)) (-1355 (($ $ $) 28)) (-3960 (($ (-747) (-112)) 77)) (-1356 (($ $ $) 29)) (-4065 (((-112) $ (-747)) 36)) (-2298 (((-535) $) 63 (|has| (-535) (-823)))) (-3660 (($ $ $) 13)) (-3855 (($ $ $) 96 (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2502 (((-618 (-112)) $) 46 (|has| $ (-6 -4336)))) (-3579 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 62 (|has| (-535) (-823)))) (-3661 (($ $ $) 14)) (-2067 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4062 (((-112) $ (-747)) 35)) (-3576 (((-1124) $) 9)) (-2373 (($ $ $ (-535)) 87) (($ (-112) $ (-535)) 86)) (-2301 (((-618 (-535)) $) 60)) (-2302 (((-112) (-535) $) 59)) (-3577 (((-1086) $) 10)) (-4143 (((-112) $) 64 (|has| (-535) (-823)))) (-1395 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2297 (($ $ (-112)) 65 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-112)) (-618 (-112))) 52 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-286 (-112))) 50 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-618 (-286 (-112)))) 49 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))))) (-1265 (((-112) $ $) 31)) (-2300 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-2303 (((-618 (-112)) $) 58)) (-3745 (((-112) $) 34)) (-3911 (($) 33)) (-4142 (($ $ (-1191 (-535))) 83) (((-112) $ (-535)) 57) (((-112) $ (-535) (-112)) 56)) (-2374 (($ $ (-1191 (-535))) 85) (($ $ (-535)) 84)) (-2064 (((-747) (-112) $) 47 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4336)))) (-1842 (($ $ $ (-535)) 99 (|has| $ (-6 -4337)))) (-3742 (($ $) 32)) (-4313 (((-524) $) 67 (|has| (-112) (-594 (-524))))) (-3867 (($ (-618 (-112))) 76)) (-4144 (($ (-618 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4300 (((-835) $) 11)) (-2066 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4336)))) (-3179 (($ $ $) 27)) (-3664 (($ $ $) 105)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-3663 (($ $ $) 104)) (-4299 (((-747) $) 39 (|has| $ (-6 -4336)))))
(((-123) (-138)) (T -123))
-((-4007 (*1 *1 *1) (-4 *1 (-123))) (-1589 (*1 *1 *1 *1) (-4 *1 (-123))) (-4034 (*1 *1 *1 *1) (-4 *1 (-123))) (-1820 (*1 *1 *1 *1) (-4 *1 (-123))) (-4205 (*1 *1 *1 *1) (-4 *1 (-123))) (-2463 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-823) (-637) (-19 (-112)) (-10 -8 (-15 -4007 ($ $)) (-15 -1589 ($ $ $)) (-15 -4034 ($ $ $)) (-15 -1820 ($ $ $)) (-15 -4205 ($ $ $)) (-15 -2463 ($ $ $))))
-(((-34) . T) ((-101) . T) ((-593 (-834)) . T) ((-149 #0=(-112)) . T) ((-594 (-525)) |has| (-112) (-594 (-525))) ((-279 #1=(-549) #0#) . T) ((-281 #1# #0#) . T) ((-302 #0#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066))) ((-366 #0#) . T) ((-481 #0#) . T) ((-584 #1# #0#) . T) ((-505 #0# #0#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066))) ((-627 #0#) . T) ((-637) . T) ((-19 #0#) . T) ((-823) . T) ((-1066) . T) ((-1179) . T))
-((-1865 (($ (-1 |#2| |#2|) $) 22)) (-2281 (($ $) 16)) (-3774 (((-747) $) 24)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -1865 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3774 ((-747) |#1|)) (-15 -2281 (|#1| |#1|))) (-125 |#2|) (-1066)) (T -124))
-NIL
-(-10 -8 (-15 -1865 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3774 ((-747) |#1|)) (-15 -2281 (|#1| |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-4160 ((|#1| $) 48)) (-1323 (((-112) $ (-747)) 8)) (-3751 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-1501 (($ $ $) 52 (|has| $ (-6 -4337)))) (-1885 (($ $ $) 54 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4337))) (($ $ "left" $) 55 (|has| $ (-6 -4337))) (($ $ "right" $) 53 (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) 41 (|has| $ (-6 -4337)))) (-1705 (($) 7 T CONST)) (-3847 (($ $) 57)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) 50)) (-1742 (((-112) $ $) 42 (|has| |#1| (-1066)))) (-2241 (($ $ |#1| $) 60)) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-3837 (($ $) 59)) (-3590 (((-621 |#1|) $) 45)) (-2456 (((-112) $) 49)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1953 (((-549) $ $) 44)) (-4187 (((-112) $) 46)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) 51)) (-2937 (((-112) $ $) 43 (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-125 |#1|) (-138) (-1066)) (T -125))
-((-2241 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1066)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -2241 ($ $ |t#1| $))))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-119 |#1|) . T) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-981 |#1|) . T) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-4160 ((|#1| $) 15)) (-1323 (((-112) $ (-747)) NIL)) (-3751 ((|#1| $ |#1|) 19 (|has| $ (-6 -4337)))) (-1501 (($ $ $) 20 (|has| $ (-6 -4337)))) (-1885 (($ $ $) 18 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ "left" $) NIL (|has| $ (-6 -4337))) (($ $ "right" $) NIL (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) NIL (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-3847 (($ $) 21)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) NIL)) (-1742 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2241 (($ $ |#1| $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-3837 (($ $) NIL)) (-3590 (((-621 |#1|) $) NIL)) (-2456 (((-112) $) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-1709 (($ |#1| $) 10)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 14)) (-1461 (($) 8)) (-3340 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1953 (((-549) $ $) NIL)) (-4187 (((-112) $) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) 17)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) NIL)) (-2937 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2804 (($ (-621 |#1|)) 12)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4337) (-15 -2804 ($ (-621 |#1|))) (-15 -1709 ($ |#1| $)))) (-823)) (T -126))
-((-2804 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-126 *3)))) (-1709 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-823)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4337) (-15 -2804 ($ (-621 |#1|))) (-15 -1709 ($ |#1| $))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-4160 ((|#1| $) 24)) (-1323 (((-112) $ (-747)) NIL)) (-3751 ((|#1| $ |#1|) 26 (|has| $ (-6 -4337)))) (-1501 (($ $ $) 30 (|has| $ (-6 -4337)))) (-1885 (($ $ $) 28 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ "left" $) NIL (|has| $ (-6 -4337))) (($ $ "right" $) NIL (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) NIL (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-3847 (($ $) 20)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) NIL)) (-1742 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2241 (($ $ |#1| $) 15)) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-3837 (($ $) 19)) (-3590 (((-621 |#1|) $) NIL)) (-2456 (((-112) $) 21)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 18)) (-1461 (($) 11)) (-3340 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1953 (((-549) $ $) NIL)) (-4187 (((-112) $) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) NIL)) (-2937 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2508 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 10 (|has| |#1| (-1066)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2508 ($ |#1|)) (-15 -2508 ($ $ |#1| $)))) (-1066)) (T -127))
-((-2508 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1066)))) (-2508 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1066)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -2508 ($ |#1|)) (-15 -2508 ($ $ |#1| $))))
-((-3833 (((-112) $ $) NIL (|has| (-129) (-1066)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-823)))) (-4106 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-129) (-823))))) (-3193 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-823)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 (((-129) $ (-549) (-129)) NIL (|has| $ (-6 -4337))) (((-129) $ (-1192 (-549)) (-129)) NIL (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-129) (-1066))))) (-3812 (($ (-129) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-129) (-1066)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-129) (-1066)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4336))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4336)))) (-1878 (((-129) $ (-549) (-129)) NIL (|has| $ (-6 -4337)))) (-1808 (((-129) $ (-549)) NIL)) (-2882 (((-549) (-1 (-112) (-129)) $) NIL) (((-549) (-129) $) NIL (|has| (-129) (-1066))) (((-549) (-129) $ (-549)) NIL (|has| (-129) (-1066)))) (-2990 (((-621 (-129)) $) NIL (|has| $ (-6 -4336)))) (-3743 (($ (-747) (-129)) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| (-129) (-823)))) (-1586 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-823)))) (-1958 (((-621 (-129)) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-129) (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| (-129) (-823)))) (-1865 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| (-129) (-1066)))) (-2614 (($ (-129) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (|has| (-129) (-1066)))) (-3645 (((-129) $) NIL (|has| (-549) (-823)))) (-1917 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3158 (($ $ (-129)) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-129)))) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1066)))) (($ $ (-287 (-129))) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1066)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1066)))) (($ $ (-621 (-129)) (-621 (-129))) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-129) (-1066))))) (-1738 (((-621 (-129)) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 (((-129) $ (-549) (-129)) NIL) (((-129) $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-2166 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-3997 (((-747) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4336))) (((-747) (-129) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-129) (-1066))))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-129) (-594 (-525))))) (-3853 (($ (-621 (-129))) NIL)) (-1951 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3845 (((-834) $) NIL (|has| (-129) (-593 (-834))))) (-2150 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| (-129) (-823)))) (-2424 (((-112) $ $) NIL (|has| (-129) (-823)))) (-2388 (((-112) $ $) NIL (|has| (-129) (-1066)))) (-2436 (((-112) $ $) NIL (|has| (-129) (-823)))) (-2411 (((-112) $ $) NIL (|has| (-129) (-823)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-128) (-19 (-129))) (T -128))
-NIL
-(-19 (-129))
-((-3833 (((-112) $ $) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 12) (((-747) $) 9) (($ (-747)) 8)) (-2475 (($ (-747)) 7)) (-2327 (($ $ $) 17)) (-2312 (($ $ $) 16)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 14)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 15)))
-(((-129) (-13 (-823) (-593 (-747)) (-10 -8 (-15 -2475 ($ (-747))) (-15 -3845 ($ (-747))) (-15 -2312 ($ $ $)) (-15 -2327 ($ $ $))))) (T -129))
-((-2475 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-129)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-129)))) (-2312 (*1 *1 *1 *1) (-5 *1 (-129))) (-2327 (*1 *1 *1 *1) (-5 *1 (-129))))
-(-13 (-823) (-593 (-747)) (-10 -8 (-15 -2475 ($ (-747))) (-15 -3845 ($ (-747))) (-15 -2312 ($ $ $)) (-15 -2327 ($ $ $))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15)))
+((-3659 (*1 *1 *1) (-4 *1 (-123))) (-1356 (*1 *1 *1 *1) (-4 *1 (-123))) (-1355 (*1 *1 *1 *1) (-4 *1 (-123))) (-3179 (*1 *1 *1 *1) (-4 *1 (-123))) (-3178 (*1 *1 *1 *1) (-4 *1 (-123))) (-3658 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-823) (-638) (-19 (-112)) (-10 -8 (-15 -3659 ($ $)) (-15 -1356 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3179 ($ $ $)) (-15 -3178 ($ $ $)) (-15 -3658 ($ $ $))))
+(((-34) . T) ((-101) . T) ((-593 (-835)) . T) ((-149 #1=(-112)) . T) ((-594 (-524)) |has| (-112) (-594 (-524))) ((-279 #2=(-535) #1#) . T) ((-281 #2# #1#) . T) ((-302 #1#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))) ((-365 #1#) . T) ((-481 #1#) . T) ((-584 #2# #1#) . T) ((-505 #1# #1#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))) ((-627 #1#) . T) ((-638) . T) ((-19 #1#) . T) ((-823) . T) ((-1067) . T) ((-1178) . T))
+((-2067 (($ (-1 |#2| |#2|) $) 22)) (-3742 (($ $) 16)) (-4299 (((-747) $) 24)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -3742 (|#1| |#1|))) (-125 |#2|) (-1067)) (T -124))
+NIL
+(-10 -8 (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -3742 (|#1| |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-1348 (($ $ $) 52 (|has| $ (-6 -4337)))) (-1349 (($ $ $) 54 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337))) (($ $ #2="left" $) 55 (|has| $ (-6 -4337))) (($ $ #3="right" $) 53 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-3879 (($) 7 T CONST)) (-3455 (($ $) 57)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-1357 (($ $ |#1| $) 60)) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3456 (($ $) 59)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47) (($ $ #2#) 58) (($ $ #3#) 56)) (-3350 (((-535) $ $) 44)) (-3979 (((-112) $) 46)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-125 |#1|) (-138) (-1067)) (T -125))
+((-1357 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1067)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -1357 ($ $ |t#1| $))))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-119 |#1|) . T) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) 15)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) 19 (|has| $ (-6 -4337)))) (-1348 (($ $ $) 20 (|has| $ (-6 -4337)))) (-1349 (($ $ $) 18 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #2="left" $) NIL (|has| $ (-6 -4337))) (($ $ #3="right" $) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3455 (($ $) 21)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1357 (($ $ |#1| $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3456 (($ $) NIL)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3953 (($ |#1| $) 10)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 14)) (-3911 (($) 8)) (-4142 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3350 (((-535) $ $) NIL)) (-3979 (((-112) $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 17)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1358 (($ (-618 |#1|)) 12)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4337) (-15 -1358 ($ (-618 |#1|))) (-15 -3953 ($ |#1| $)))) (-823)) (T -126))
+((-1358 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-126 *3)))) (-3953 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-823)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4337) (-15 -1358 ($ (-618 |#1|))) (-15 -3953 ($ |#1| $))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) 24)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) 26 (|has| $ (-6 -4337)))) (-1348 (($ $ $) 30 (|has| $ (-6 -4337)))) (-1349 (($ $ $) 28 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #2="left" $) NIL (|has| $ (-6 -4337))) (($ $ #3="right" $) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3455 (($ $) 20)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1357 (($ $ |#1| $) 15)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3456 (($ $) 19)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) 21)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 18)) (-3911 (($) 11)) (-4142 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3350 (((-535) $ $) NIL)) (-3979 (((-112) $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1359 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 10 (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1359 ($ |#1|)) (-15 -1359 ($ $ |#1| $)))) (-1067)) (T -127))
+((-1359 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1067)))) (-1359 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1067)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -1359 ($ |#1|)) (-15 -1359 ($ $ |#1| $))))
+((-2887 (((-112) $ $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 12) (((-747) $) 9) (($ (-747)) 8)) (-1362 (($ (-747)) 7)) (-1360 (($ $ $) 17)) (-1361 (($ $ $) 16)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 14)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 15)))
+(((-128) (-13 (-823) (-593 (-747)) (-10 -8 (-15 -1362 ($ (-747))) (-15 -4300 ($ (-747))) (-15 -1361 ($ $ $)) (-15 -1360 ($ $ $))))) (T -128))
+((-1362 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-128)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-128)))) (-1361 (*1 *1 *1 *1) (-5 *1 (-128))) (-1360 (*1 *1 *1 *1) (-5 *1 (-128))))
+(-13 (-823) (-593 (-747)) (-10 -8 (-15 -1362 ($ (-747))) (-15 -4300 ($ (-747))) (-15 -1361 ($ $ $)) (-15 -1360 ($ $ $))))
+((-2887 (((-112) $ $) NIL (|has| (-128) (-1067)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-823)))) (-1841 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-128) (-823))))) (-3230 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 (((-128) $ (-535) (-128)) NIL (|has| $ (-6 -4337))) (((-128) $ (-1191 (-535)) (-128)) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-128) (-1067))))) (-3748 (($ (-128) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-128) (-1067)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-128) (-1067)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4336))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4336)))) (-1632 (((-128) $ (-535) (-128)) NIL (|has| $ (-6 -4337)))) (-3431 (((-128) $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) (-128)) $) NIL) (((-535) (-128) $) NIL (|has| (-128) (-1067))) (((-535) (-128) $ (-535)) NIL (|has| (-128) (-1067)))) (-2063 (((-618 (-128)) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) (-128)) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| (-128) (-823)))) (-3855 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-823)))) (-2502 (((-618 (-128)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-128) (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-128) (-823)))) (-2067 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| (-128) (-1067)))) (-2373 (($ (-128) $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| (-128) (-1067)))) (-4143 (((-128) $) NIL (|has| (-535) (-823)))) (-1395 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2297 (($ $ (-128)) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-128)))) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1067)))) (($ $ (-286 (-128))) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1067)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1067)))) (($ $ (-618 (-128)) (-618 (-128))) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-128) (-1067))))) (-2303 (((-618 (-128)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 (((-128) $ (-535) (-128)) NIL) (((-128) $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4336))) (((-747) (-128) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-128) (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-128) (-594 (-524))))) (-3867 (($ (-618 (-128))) NIL)) (-4144 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| (-128) (-593 (-835))))) (-2066 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| (-128) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-128) (-823)))) (-3375 (((-112) $ $) NIL (|has| (-128) (-1067)))) (-3005 (((-112) $ $) NIL (|has| (-128) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-128) (-823)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-129) (-19 (-128))) (T -129))
+NIL
+(-19 (-128))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15)))
(((-130) (-138)) (T -130))
-((-2384 (*1 *1 *1 *1) (|partial| -4 *1 (-130))))
-(-13 (-23) (-10 -8 (-15 -2384 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3833 (((-112) $ $) 7)) (-1718 (((-1230) $ (-747)) 19)) (-2882 (((-747) $) 20)) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)))
+((-1363 (*1 *1 *1 *1) (|partial| -4 *1 (-130))))
+(-13 (-23) (-10 -8 (-15 -1363 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2887 (((-112) $ $) 7)) (-1364 (((-1230) $ (-747)) 19)) (-3761 (((-747) $) 20)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)))
(((-131) (-138)) (T -131))
-((-2882 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-747)))) (-1718 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-747)) (-5 *2 (-1230)))))
-(-13 (-823) (-10 -8 (-15 -2882 ((-747) $)) (-15 -1718 ((-1230) $ (-747)))))
-(((-101) . T) ((-593 (-834)) . T) ((-823) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 18) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2493 (((-621 (-1101)) $) 10)) (-2388 (((-112) $ $) NIL)))
-(((-132) (-13 (-1049) (-10 -8 (-15 -2493 ((-621 (-1101)) $))))) (T -132))
-((-2493 (*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-132)))))
-(-13 (-1049) (-10 -8 (-15 -2493 ((-621 (-1101)) $))))
-((-3833 (((-112) $ $) 34)) (-3166 (((-112) $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-747) "failed") $) 40)) (-2658 (((-747) $) 38)) (-3976 (((-3 $ "failed") $) NIL)) (-3987 (((-112) $) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) 27)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3141 (((-112)) 41)) (-3959 (((-112) (-112)) 43)) (-1852 (((-112) $) 24)) (-3957 (((-112) $) 37)) (-3845 (((-834) $) 22) (($ (-747)) 14)) (-3275 (($) 11 T CONST)) (-3287 (($) 12 T CONST)) (-2737 (($ (-747)) 15)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 25)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 26)) (-2499 (((-3 $ "failed") $ $) 30)) (-2485 (($ $ $) 28)) (** (($ $ (-747)) NIL) (($ $ (-892)) NIL) (($ $ $) 36)) (* (($ (-747) $) 33) (($ (-892) $) NIL) (($ $ $) 31)))
-(((-133) (-13 (-823) (-23) (-703) (-1009 (-747)) (-10 -8 (-6 (-4338 "*")) (-15 -2499 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2737 ($ (-747))) (-15 -1852 ((-112) $)) (-15 -3957 ((-112) $)) (-15 -3141 ((-112))) (-15 -3959 ((-112) (-112)))))) (T -133))
-((-2499 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-2737 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-133)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3141 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(-13 (-823) (-23) (-703) (-1009 (-747)) (-10 -8 (-6 (-4338 "*")) (-15 -2499 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2737 ($ (-747))) (-15 -1852 ((-112) $)) (-15 -3957 ((-112) $)) (-15 -3141 ((-112))) (-15 -3959 ((-112) (-112)))))
-((-3880 (((-135 |#1| |#2| |#4|) (-621 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-2796 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18)))
-(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3880 ((-135 |#1| |#2| |#4|) (-621 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2796 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-549) (-747) (-170) (-170)) (T -134))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549)) (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-3880 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549)) (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3880 ((-135 |#1| |#2| |#4|) (-621 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2796 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|))))
-((-3833 (((-112) $ $) NIL)) (-3496 (($ (-621 |#3|)) 40)) (-2429 (($ $) 99) (($ $ (-549) (-549)) 98)) (-1705 (($) 17)) (-2713 (((-3 |#3| "failed") $) 60)) (-2658 ((|#3| $) NIL)) (-2276 (($ $ (-621 (-549))) 100)) (-3873 (((-621 |#3|) $) 36)) (-3122 (((-747) $) 44)) (-1626 (($ $ $) 93)) (-2604 (($) 43)) (-2677 (((-1124) $) NIL)) (-3283 (($) 16)) (-3988 (((-1086) $) NIL)) (-3340 ((|#3| $) 46) ((|#3| $ (-549)) 47) ((|#3| $ (-549) (-549)) 48) ((|#3| $ (-549) (-549) (-549)) 49) ((|#3| $ (-549) (-549) (-549) (-549)) 50) ((|#3| $ (-621 (-549))) 52)) (-3068 (((-747) $) 45)) (-1429 (($ $ (-549) $ (-549)) 94) (($ $ (-549) (-549)) 96)) (-3845 (((-834) $) 67) (($ |#3|) 68) (($ (-234 |#2| |#3|)) 75) (($ (-1108 |#2| |#3|)) 78) (($ (-621 |#3|)) 53) (($ (-621 $)) 58)) (-3275 (($) 69 T CONST)) (-3287 (($) 70 T CONST)) (-2388 (((-112) $ $) 80)) (-2499 (($ $) 86) (($ $ $) 84)) (-2485 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-549)) 89) (($ (-549) $) 88) (($ $ $) 95)))
-(((-135 |#1| |#2| |#3|) (-13 (-457 |#3| (-747)) (-462 (-549) (-747)) (-10 -8 (-15 -3845 ($ (-234 |#2| |#3|))) (-15 -3845 ($ (-1108 |#2| |#3|))) (-15 -3845 ($ (-621 |#3|))) (-15 -3845 ($ (-621 $))) (-15 -3122 ((-747) $)) (-15 -3340 (|#3| $)) (-15 -3340 (|#3| $ (-549))) (-15 -3340 (|#3| $ (-549) (-549))) (-15 -3340 (|#3| $ (-549) (-549) (-549))) (-15 -3340 (|#3| $ (-549) (-549) (-549) (-549))) (-15 -3340 (|#3| $ (-621 (-549)))) (-15 -1626 ($ $ $)) (-15 * ($ $ $)) (-15 -1429 ($ $ (-549) $ (-549))) (-15 -1429 ($ $ (-549) (-549))) (-15 -2429 ($ $)) (-15 -2429 ($ $ (-549) (-549))) (-15 -2276 ($ $ (-621 (-549)))) (-15 -3283 ($)) (-15 -2604 ($)) (-15 -3873 ((-621 |#3|) $)) (-15 -3496 ($ (-621 |#3|))) (-15 -1705 ($)))) (-549) (-747) (-170)) (T -135))
-((-1626 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747)) (-4 *4 (-170)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-234 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1108 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-621 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-747)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-747)) (-4 *5 (-170)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 *2) (-4 *5 (-170)))) (-3340 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-549)) (-14 *4 (-747)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-3340 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-3340 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-3340 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-621 (-549))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-549)) (-14 *5 (-747)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747)) (-4 *4 (-170)))) (-1429 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) (-4 *5 (-170)))) (-1429 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) (-4 *5 (-170)))) (-2429 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747)) (-4 *4 (-170)))) (-2429 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) (-4 *5 (-170)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-747)) (-4 *5 (-170)))) (-3283 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747)) (-4 *4 (-170)))) (-2604 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747)) (-4 *4 (-170)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-621 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-747)) (-4 *5 (-170)))) (-3496 (*1 *1 *2) (-12 (-5 *2 (-621 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-747)))) (-1705 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747)) (-4 *4 (-170)))))
-(-13 (-457 |#3| (-747)) (-462 (-549) (-747)) (-10 -8 (-15 -3845 ($ (-234 |#2| |#3|))) (-15 -3845 ($ (-1108 |#2| |#3|))) (-15 -3845 ($ (-621 |#3|))) (-15 -3845 ($ (-621 $))) (-15 -3122 ((-747) $)) (-15 -3340 (|#3| $)) (-15 -3340 (|#3| $ (-549))) (-15 -3340 (|#3| $ (-549) (-549))) (-15 -3340 (|#3| $ (-549) (-549) (-549))) (-15 -3340 (|#3| $ (-549) (-549) (-549) (-549))) (-15 -3340 (|#3| $ (-621 (-549)))) (-15 -1626 ($ $ $)) (-15 * ($ $ $)) (-15 -1429 ($ $ (-549) $ (-549))) (-15 -1429 ($ $ (-549) (-549))) (-15 -2429 ($ $)) (-15 -2429 ($ $ (-549) (-549))) (-15 -2276 ($ $ (-621 (-549)))) (-15 -3283 ($)) (-15 -2604 ($)) (-15 -3873 ((-621 |#3|) $)) (-15 -3496 ($ (-621 |#3|))) (-15 -1705 ($))))
-((-3833 (((-112) $ $) NIL)) (-2202 (((-1101) $) 11)) (-2189 (((-1101) $) 9)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-136) (-13 (-1049) (-10 -8 (-15 -2189 ((-1101) $)) (-15 -2202 ((-1101) $))))) (T -136))
-((-2189 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-136)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-136)))))
-(-13 (-1049) (-10 -8 (-15 -2189 ((-1101) $)) (-15 -2202 ((-1101) $))))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-2707 (((-1142) $) 10)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2493 (((-621 (-1101)) $) 12)) (-2388 (((-112) $ $) NIL)))
-(((-137) (-13 (-1049) (-10 -8 (-15 -2707 ((-1142) $)) (-15 -2493 ((-621 (-1101)) $))))) (T -137))
-((-2707 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-137)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-137)))))
-(-13 (-1049) (-10 -8 (-15 -2707 ((-1142) $)) (-15 -2493 ((-621 (-1101)) $))))
-((-3845 (((-834) $) 7)))
-(((-138) (-593 (-834))) (T -138))
-NIL
-(-593 (-834))
-((-3833 (((-112) $ $) NIL)) (-1966 (($) 15 T CONST)) (-3290 (($) NIL (|has| (-142) (-361)))) (-1440 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-3755 (($ $ $) NIL)) (-4063 (((-112) $ $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-3615 (((-747)) NIL (|has| (-142) (-361)))) (-2787 (($) NIL) (($ (-621 (-142))) NIL)) (-3069 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-4204 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336))) (($ (-142) $) 51 (|has| $ (-6 -4336)))) (-3812 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-2558 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-3238 (($) NIL (|has| (-142) (-361)))) (-2990 (((-621 (-142)) $) 60 (|has| $ (-6 -4336)))) (-1353 (((-112) $ $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-2862 (((-142) $) NIL (|has| (-142) (-823)))) (-1958 (((-621 (-142)) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-3574 (((-142) $) NIL (|has| (-142) (-823)))) (-1865 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-142) (-142)) $) 55)) (-2495 (($) 16 T CONST)) (-2723 (((-892) $) NIL (|has| (-142) (-361)))) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-1795 (($ $ $) 29)) (-2349 (((-142) $) 52)) (-1709 (($ (-142) $) 50)) (-3491 (($ (-892)) NIL (|has| (-142) (-361)))) (-2313 (($) 14 T CONST)) (-3988 (((-1086) $) NIL)) (-1917 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2629 (((-142) $) 53)) (-2470 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-142)) (-621 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-287 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-621 (-287 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) 48)) (-3371 (($) 13 T CONST)) (-4142 (($ $ $) 31) (($ $ (-142)) NIL)) (-4252 (($ (-621 (-142))) NIL) (($) NIL)) (-3997 (((-747) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066)))) (((-747) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-1124) $) 36) (((-525) $) NIL (|has| (-142) (-594 (-525)))) (((-621 (-142)) $) 34)) (-3853 (($ (-621 (-142))) NIL)) (-3532 (($ $) 32 (|has| (-142) (-361)))) (-3845 (((-834) $) 46)) (-3914 (($ (-1124)) 12) (($ (-621 (-142))) 43)) (-2343 (((-747) $) NIL)) (-4118 (($) 49) (($ (-621 (-142))) NIL)) (-1765 (($ (-621 (-142))) NIL)) (-2150 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-2780 (($) 19 T CONST)) (-1963 (($) 18 T CONST)) (-2388 (((-112) $ $) 22)) (-3774 (((-747) $) 47 (|has| $ (-6 -4336)))))
-(((-139) (-13 (-1066) (-594 (-1124)) (-418 (-142)) (-594 (-621 (-142))) (-10 -8 (-15 -3914 ($ (-1124))) (-15 -3914 ($ (-621 (-142)))) (-15 -3371 ($) -2588) (-15 -2313 ($) -2588) (-15 -1966 ($) -2588) (-15 -2495 ($) -2588) (-15 -1963 ($) -2588) (-15 -2780 ($) -2588)))) (T -139))
-((-3914 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-139)))) (-3914 (*1 *1 *2) (-12 (-5 *2 (-621 (-142))) (-5 *1 (-139)))) (-3371 (*1 *1) (-5 *1 (-139))) (-2313 (*1 *1) (-5 *1 (-139))) (-1966 (*1 *1) (-5 *1 (-139))) (-2495 (*1 *1) (-5 *1 (-139))) (-1963 (*1 *1) (-5 *1 (-139))) (-2780 (*1 *1) (-5 *1 (-139))))
-(-13 (-1066) (-594 (-1124)) (-418 (-142)) (-594 (-621 (-142))) (-10 -8 (-15 -3914 ($ (-1124))) (-15 -3914 ($ (-621 (-142)))) (-15 -3371 ($) -2588) (-15 -2313 ($) -2588) (-15 -1966 ($) -2588) (-15 -2495 ($) -2588) (-15 -1963 ($) -2588) (-15 -2780 ($) -2588)))
-((-2840 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2632 ((|#1| |#3|) 9)) (-2715 ((|#3| |#3|) 15)))
-(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -2632 (|#1| |#3|)) (-15 -2715 (|#3| |#3|)) (-15 -2840 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-541) (-963 |#1|) (-366 |#2|)) (T -140))
-((-2840 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-963 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-366 *5)))) (-2715 (*1 *2 *2) (-12 (-4 *3 (-541)) (-4 *4 (-963 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-366 *4)))) (-2632 (*1 *2 *3) (-12 (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-366 *4)))))
-(-10 -7 (-15 -2632 (|#1| |#3|)) (-15 -2715 (|#3| |#3|)) (-15 -2840 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3969 (($ $ $) 8)) (-1692 (($ $) 7)) (-2224 (($ $ $) 6)))
+((-3761 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-747)))) (-1364 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-747)) (-5 *2 (-1230)))))
+(-13 (-823) (-10 -8 (-15 -3761 ((-747) $)) (-15 -1364 ((-1230) $ (-747)))))
+(((-101) . T) ((-593 (-835)) . T) ((-823) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 18) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-618 (-1101)) $) 10)) (-3375 (((-112) $ $) NIL)))
+(((-132) (-13 (-1049) (-10 -8 (-15 -3567 ((-618 (-1101)) $))))) (T -132))
+((-3567 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-132)))))
+(-13 (-1049) (-10 -8 (-15 -3567 ((-618 (-1101)) $))))
+((-2887 (((-112) $ $) 34)) (-3522 (((-112) $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-747) "failed") $) 40)) (-3490 (((-747) $) 38)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) 27)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1366 (((-112)) 41)) (-1365 (((-112) (-112)) 43)) (-2852 (((-112) $) 24)) (-1367 (((-112) $) 37)) (-4300 (((-835) $) 22) (($ (-747)) 14)) (-2979 (($) 11 T CONST)) (-2985 (($) 12 T CONST)) (-1368 (($ (-747)) 15)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 25)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 26)) (-4180 (((-3 $ "failed") $ $) 30)) (-4182 (($ $ $) 28)) (** (($ $ (-747)) NIL) (($ $ (-890)) NIL) (($ $ $) 36)) (* (($ (-747) $) 33) (($ (-890) $) NIL) (($ $ $) 31)))
+(((-133) (-13 (-823) (-23) (-703) (-1009 (-747)) (-10 -8 (-6 (-4338 "*")) (-15 -4180 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1368 ($ (-747))) (-15 -2852 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -1366 ((-112))) (-15 -1365 ((-112) (-112)))))) (T -133))
+((-4180 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-1368 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-133)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1366 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1365 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(-13 (-823) (-23) (-703) (-1009 (-747)) (-10 -8 (-6 (-4338 "*")) (-15 -4180 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1368 ($ (-747))) (-15 -2852 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -1366 ((-112))) (-15 -1365 ((-112) (-112)))))
+((-2887 (((-112) $ $) NIL)) (-1369 (($ (-618 |#3|)) 40)) (-3756 (($ $) 99) (($ $ (-535) (-535)) 98)) (-3879 (($) 17)) (-3491 (((-3 |#3| "failed") $) 60)) (-3490 ((|#3| $) NIL)) (-1373 (($ $ (-618 (-535))) 100)) (-1370 (((-618 |#3|) $) 36)) (-3427 (((-747) $) 44)) (-4287 (($ $ $) 93)) (-1371 (($) 43)) (-3576 (((-1124) $) NIL)) (-1372 (($) 16)) (-3577 (((-1086) $) NIL)) (-4142 ((|#3| $) 46) ((|#3| $ (-535)) 47) ((|#3| $ (-535) (-535)) 48) ((|#3| $ (-535) (-535) (-535)) 49) ((|#3| $ (-535) (-535) (-535) (-535)) 50) ((|#3| $ (-618 (-535))) 52)) (-4290 (((-747) $) 45)) (-2100 (($ $ (-535) $ (-535)) 94) (($ $ (-535) (-535)) 96)) (-4300 (((-835) $) 67) (($ |#3|) 68) (($ (-233 |#2| |#3|)) 75) (($ (-1108 |#2| |#3|)) 78) (($ (-618 |#3|)) 53) (($ (-618 $)) 58)) (-2979 (($) 69 T CONST)) (-2985 (($) 70 T CONST)) (-3375 (((-112) $ $) 80)) (-4180 (($ $) 86) (($ $ $) 84)) (-4182 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-535)) 89) (($ (-535) $) 88) (($ $ $) 95)))
+(((-134 |#1| |#2| |#3|) (-13 (-457 |#3| (-747)) (-462 (-535) (-747)) (-10 -8 (-15 -4300 ($ (-233 |#2| |#3|))) (-15 -4300 ($ (-1108 |#2| |#3|))) (-15 -4300 ($ (-618 |#3|))) (-15 -4300 ($ (-618 $))) (-15 -3427 ((-747) $)) (-15 -4142 (|#3| $)) (-15 -4142 (|#3| $ (-535))) (-15 -4142 (|#3| $ (-535) (-535))) (-15 -4142 (|#3| $ (-535) (-535) (-535))) (-15 -4142 (|#3| $ (-535) (-535) (-535) (-535))) (-15 -4142 (|#3| $ (-618 (-535)))) (-15 -4287 ($ $ $)) (-15 * ($ $ $)) (-15 -2100 ($ $ (-535) $ (-535))) (-15 -2100 ($ $ (-535) (-535))) (-15 -3756 ($ $)) (-15 -3756 ($ $ (-535) (-535))) (-15 -1373 ($ $ (-618 (-535)))) (-15 -1372 ($)) (-15 -1371 ($)) (-15 -1370 ((-618 |#3|) $)) (-15 -1369 ($ (-618 |#3|))) (-15 -3879 ($)))) (-535) (-747) (-170)) (T -134))
+((-4287 (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-233 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1108 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 (-747)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 (-747)) (-4 *5 (-170)))) (-3427 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 *2) (-4 *5 (-170)))) (-4142 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-535)) (-14 *4 (-747)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-4142 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-4142 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-4142 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-618 (-535))) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 (-535)) (-14 *5 (-747)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) (-2100 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) (-4 *5 (-170)))) (-2100 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) (-4 *5 (-170)))) (-3756 (*1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) (-3756 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) (-4 *5 (-170)))) (-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 (-747)) (-4 *5 (-170)))) (-1372 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) (-1371 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-618 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 (-747)) (-4 *5 (-170)))) (-1369 (*1 *1 *2) (-12 (-5 *2 (-618 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 (-747)))) (-3879 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))))
+(-13 (-457 |#3| (-747)) (-462 (-535) (-747)) (-10 -8 (-15 -4300 ($ (-233 |#2| |#3|))) (-15 -4300 ($ (-1108 |#2| |#3|))) (-15 -4300 ($ (-618 |#3|))) (-15 -4300 ($ (-618 $))) (-15 -3427 ((-747) $)) (-15 -4142 (|#3| $)) (-15 -4142 (|#3| $ (-535))) (-15 -4142 (|#3| $ (-535) (-535))) (-15 -4142 (|#3| $ (-535) (-535) (-535))) (-15 -4142 (|#3| $ (-535) (-535) (-535) (-535))) (-15 -4142 (|#3| $ (-618 (-535)))) (-15 -4287 ($ $ $)) (-15 * ($ $ $)) (-15 -2100 ($ $ (-535) $ (-535))) (-15 -2100 ($ $ (-535) (-535))) (-15 -3756 ($ $)) (-15 -3756 ($ $ (-535) (-535))) (-15 -1373 ($ $ (-618 (-535)))) (-15 -1372 ($)) (-15 -1371 ($)) (-15 -1370 ((-618 |#3|) $)) (-15 -1369 ($ (-618 |#3|))) (-15 -3879 ($))))
+((-2496 (((-134 |#1| |#2| |#4|) (-618 |#4|) (-134 |#1| |#2| |#3|)) 14)) (-4301 (((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)) 18)))
+(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 ((-134 |#1| |#2| |#4|) (-618 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4301 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) (-535) (-747) (-170) (-170)) (T -135))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-535)) (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-535)) (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2496 ((-134 |#1| |#2| |#4|) (-618 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4301 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|))))
+((-2887 (((-112) $ $) NIL)) (-3865 (((-1101) $) 11)) (-3866 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-136) (-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $))))) (T -136))
+((-3866 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-136)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-136)))))
+(-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-1374 (((-1142) $) 10)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-618 (-1101)) $) 12)) (-3375 (((-112) $ $) NIL)))
+(((-137) (-13 (-1049) (-10 -8 (-15 -1374 ((-1142) $)) (-15 -3567 ((-618 (-1101)) $))))) (T -137))
+((-1374 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-137)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-137)))))
+(-13 (-1049) (-10 -8 (-15 -1374 ((-1142) $)) (-15 -3567 ((-618 (-1101)) $))))
+((-4300 (((-835) $) 7)))
+(((-138) (-593 (-835))) (T -138))
+NIL
+(-593 (-835))
+((-2887 (((-112) $ $) NIL)) (-3769 (($) 15 T CONST)) (-1916 (($) NIL (|has| (-142) (-361)))) (-3568 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-3570 (($ $ $) NIL)) (-3569 (((-112) $ $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| (-142) (-361)))) (-3573 (($) NIL) (($ (-618 (-142))) NIL)) (-1626 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-3747 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336))) (($ (-142) $) 51 (|has| $ (-6 -4336)))) (-3748 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-4185 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-3315 (($) NIL (|has| (-142) (-361)))) (-2063 (((-618 (-142)) $) 60 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3660 (((-142) $) NIL (|has| (-142) (-823)))) (-2502 (((-618 (-142)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-3661 (((-142) $) NIL (|has| (-142) (-823)))) (-2067 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-142) (-142)) $) 55)) (-3771 (($) 16 T CONST)) (-2121 (((-890) $) NIL (|has| (-142) (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3572 (($ $ $) 29)) (-1326 (((-142) $) 52)) (-3953 (($ (-142) $) 50)) (-2483 (($ (-890)) NIL (|has| (-142) (-361)))) (-1377 (($) 14 T CONST)) (-3577 (((-1086) $) NIL)) (-1395 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-1327 (((-142) $) 53)) (-2065 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-142)) (-618 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-618 (-286 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 48)) (-1378 (($) 13 T CONST)) (-3571 (($ $ $) 31) (($ $ (-142)) NIL)) (-1518 (($ (-618 (-142))) NIL) (($) NIL)) (-2064 (((-747) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067)))) (((-747) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-1124) $) 36) (((-524) $) NIL (|has| (-142) (-594 (-524)))) (((-618 (-142)) $) 34)) (-3867 (($ (-618 (-142))) NIL)) (-1917 (($ $) 32 (|has| (-142) (-361)))) (-4300 (((-835) $) 46)) (-1379 (($ (-1124)) 12) (($ (-618 (-142))) 43)) (-1918 (((-747) $) NIL)) (-3574 (($) 49) (($ (-618 (-142))) NIL)) (-1328 (($ (-618 (-142))) NIL)) (-2066 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-1375 (($) 19 T CONST)) (-1376 (($) 18 T CONST)) (-3375 (((-112) $ $) 22)) (-4299 (((-747) $) 47 (|has| $ (-6 -4336)))))
+(((-139) (-13 (-1067) (-594 (-1124)) (-419 (-142)) (-594 (-618 (-142))) (-10 -8 (-15 -1379 ($ (-1124))) (-15 -1379 ($ (-618 (-142)))) (-15 -1378 ($) -4294) (-15 -1377 ($) -4294) (-15 -3769 ($) -4294) (-15 -3771 ($) -4294) (-15 -1376 ($) -4294) (-15 -1375 ($) -4294)))) (T -139))
+((-1379 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-139)))) (-1379 (*1 *1 *2) (-12 (-5 *2 (-618 (-142))) (-5 *1 (-139)))) (-1378 (*1 *1) (-5 *1 (-139))) (-1377 (*1 *1) (-5 *1 (-139))) (-3769 (*1 *1) (-5 *1 (-139))) (-3771 (*1 *1) (-5 *1 (-139))) (-1376 (*1 *1) (-5 *1 (-139))) (-1375 (*1 *1) (-5 *1 (-139))))
+(-13 (-1067) (-594 (-1124)) (-419 (-142)) (-594 (-618 (-142))) (-10 -8 (-15 -1379 ($ (-1124))) (-15 -1379 ($ (-618 (-142)))) (-15 -1378 ($) -4294) (-15 -1377 ($) -4294) (-15 -3769 ($) -4294) (-15 -3771 ($) -4294) (-15 -1376 ($) -4294) (-15 -1375 ($) -4294)))
+((-4084 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4082 ((|#1| |#3|) 9)) (-4083 ((|#3| |#3|) 15)))
+(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -4082 (|#1| |#3|)) (-15 -4083 (|#3| |#3|)) (-15 -4084 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-542) (-962 |#1|) (-365 |#2|)) (T -140))
+((-4084 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-365 *5)))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-542)) (-4 *4 (-962 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-365 *4)))) (-4082 (*1 *2 *3) (-12 (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-365 *4)))))
+(-10 -7 (-15 -4082 (|#1| |#3|)) (-15 -4083 (|#3| |#3|)) (-15 -4084 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1413 (($ $ $) 8)) (-1411 (($ $) 7)) (-3420 (($ $ $) 6)))
(((-141) (-138)) (T -141))
-((-3969 (*1 *1 *1 *1) (-4 *1 (-141))) (-1692 (*1 *1 *1) (-4 *1 (-141))) (-2224 (*1 *1 *1 *1) (-4 *1 (-141))))
-(-13 (-10 -8 (-15 -2224 ($ $ $)) (-15 -1692 ($ $)) (-15 -3969 ($ $ $))))
-((-3833 (((-112) $ $) NIL)) (-3202 (((-112) $) 30)) (-1966 (($ $) 43)) (-4159 (($) 17)) (-3615 (((-747)) 10)) (-3238 (($) 16)) (-3468 (($) 18)) (-3006 (((-747) $) 14)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-3462 (((-112) $) 32)) (-2495 (($ $) 44)) (-2723 (((-892) $) 15)) (-2677 (((-1124) $) 38)) (-3491 (($ (-892)) 13)) (-1377 (((-112) $) 28)) (-3988 (((-1086) $) NIL)) (-2162 (($) 19)) (-3428 (((-112) $) 26)) (-3845 (((-834) $) 21)) (-1306 (($ (-747)) 11) (($ (-1124)) 42)) (-1786 (((-112) $) 36)) (-3758 (((-112) $) 34)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 7)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 8)))
-(((-142) (-13 (-817) (-10 -8 (-15 -3006 ((-747) $)) (-15 -1306 ($ (-747))) (-15 -1306 ($ (-1124))) (-15 -4159 ($)) (-15 -3468 ($)) (-15 -2162 ($)) (-15 -1966 ($ $)) (-15 -2495 ($ $)) (-15 -3428 ((-112) $)) (-15 -1377 ((-112) $)) (-15 -3758 ((-112) $)) (-15 -3202 ((-112) $)) (-15 -3462 ((-112) $)) (-15 -1786 ((-112) $))))) (T -142))
-((-3006 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-142)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-142)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-142)))) (-4159 (*1 *1) (-5 *1 (-142))) (-3468 (*1 *1) (-5 *1 (-142))) (-2162 (*1 *1) (-5 *1 (-142))) (-1966 (*1 *1 *1) (-5 *1 (-142))) (-2495 (*1 *1 *1) (-5 *1 (-142))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3758 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3462 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(-13 (-817) (-10 -8 (-15 -3006 ((-747) $)) (-15 -1306 ($ (-747))) (-15 -1306 ($ (-1124))) (-15 -4159 ($)) (-15 -3468 ($)) (-15 -2162 ($)) (-15 -1966 ($ $)) (-15 -2495 ($ $)) (-15 -3428 ((-112) $)) (-15 -1377 ((-112) $)) (-15 -3758 ((-112) $)) (-15 -3202 ((-112) $)) (-15 -3462 ((-112) $)) (-15 -1786 ((-112) $))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ (-549)) 27)) (-3407 (((-3 $ "failed") $) 33)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-1413 (*1 *1 *1 *1) (-4 *1 (-141))) (-1411 (*1 *1 *1) (-4 *1 (-141))) (-3420 (*1 *1 *1 *1) (-4 *1 (-141))))
+(-13 (-10 -8 (-15 -3420 ($ $ $)) (-15 -1411 ($ $)) (-15 -1413 ($ $ $))))
+((-2887 (((-112) $ $) NIL)) (-1382 (((-112) $) 30)) (-3769 (($ $) 43)) (-1568 (($) 17)) (-3454 (((-747)) 10)) (-3315 (($) 16)) (-2898 (($) 18)) (-1388 (((-747) $) 14)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-1381 (((-112) $) 32)) (-3771 (($ $) 44)) (-2121 (((-890) $) 15)) (-3576 (((-1124) $) 38)) (-2483 (($ (-890)) 13)) (-1384 (((-112) $) 28)) (-3577 (((-1086) $) NIL)) (-1386 (($) 19)) (-1385 (((-112) $) 26)) (-4300 (((-835) $) 21)) (-1387 (($ (-747)) 11) (($ (-1124)) 42)) (-1380 (((-112) $) 36)) (-1383 (((-112) $) 34)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 7)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 8)))
+(((-142) (-13 (-817) (-10 -8 (-15 -1388 ((-747) $)) (-15 -1387 ($ (-747))) (-15 -1387 ($ (-1124))) (-15 -1568 ($)) (-15 -2898 ($)) (-15 -1386 ($)) (-15 -3769 ($ $)) (-15 -3771 ($ $)) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $)) (-15 -1383 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -1381 ((-112) $)) (-15 -1380 ((-112) $))))) (T -142))
+((-1388 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-142)))) (-1387 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-142)))) (-1387 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-142)))) (-1568 (*1 *1) (-5 *1 (-142))) (-2898 (*1 *1) (-5 *1 (-142))) (-1386 (*1 *1) (-5 *1 (-142))) (-3769 (*1 *1 *1) (-5 *1 (-142))) (-3771 (*1 *1 *1) (-5 *1 (-142))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(-13 (-817) (-10 -8 (-15 -1388 ((-747) $)) (-15 -1387 ($ (-747))) (-15 -1387 ($ (-1124))) (-15 -1568 ($)) (-15 -2898 ($)) (-15 -1386 ($)) (-15 -3769 ($ $)) (-15 -3771 ($ $)) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $)) (-15 -1383 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -1381 ((-112) $)) (-15 -1380 ((-112) $))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3023 (((-3 $ "failed") $) 33)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-143) (-138)) (T -143))
-((-3407 (*1 *1 *1) (|partial| -4 *1 (-143))))
-(-13 (-1018) (-10 -8 (-15 -3407 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-4041 ((|#1| (-665 |#1|) |#1|) 19)))
-(((-144 |#1|) (-10 -7 (-15 -4041 (|#1| (-665 |#1|) |#1|))) (-170)) (T -144))
-((-4041 (*1 *2 *3 *2) (-12 (-5 *3 (-665 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))))
-(-10 -7 (-15 -4041 (|#1| (-665 |#1|) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ (-549)) 27)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-3023 (*1 *1 *1) (|partial| -4 *1 (-143))))
+(-13 (-1018) (-10 -8 (-15 -3023 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2689 ((|#1| (-665 |#1|) |#1|) 19)))
+(((-144 |#1|) (-10 -7 (-15 -2689 (|#1| (-665 |#1|) |#1|))) (-170)) (T -144))
+((-2689 (*1 *2 *3 *2) (-12 (-5 *3 (-665 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))))
+(-10 -7 (-15 -2689 (|#1| (-665 |#1|) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-145) (-138)) (T -145))
NIL
(-13 (-1018))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-2695 (((-2 (|:| -3577 (-747)) (|:| -1569 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-747)) 70)) (-3197 (((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-747))) "failed") |#3|) 52)) (-2940 (((-2 (|:| -1569 (-400 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-2135 ((|#1| |#3| |#3|) 40)) (-2685 ((|#3| |#3| (-400 |#2|) (-400 |#2|)) 19)) (-3039 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-747))) |#3| |#3|) 49)))
-(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -2940 ((-2 (|:| -1569 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3197 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-747))) "failed") |#3|)) (-15 -2695 ((-2 (|:| -3577 (-747)) (|:| -1569 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-747))) (-15 -2135 (|#1| |#3| |#3|)) (-15 -2685 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -3039 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-747))) |#3| |#3|))) (-1183) (-1201 |#1|) (-1201 (-400 |#2|))) (T -146))
-((-3039 (*1 *2 *3 *3) (-12 (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) (|:| |c2| (-400 *5)) (|:| |deg| (-747)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1201 (-400 *5))))) (-2685 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1201 *3)))) (-2135 (*1 *2 *3 *3) (-12 (-4 *4 (-1201 *2)) (-4 *2 (-1183)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1201 (-400 *4))))) (-2695 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *6)) (-4 *5 (-1183)) (-4 *6 (-1201 *5)) (-5 *2 (-2 (|:| -3577 (-747)) (|:| -1569 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-747)) (-4 *7 (-1201 *3)))) (-3197 (*1 *2 *3) (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-747)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1201 (-400 *5))))) (-2940 (*1 *2 *3) (-12 (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-5 *2 (-2 (|:| -1569 (-400 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1201 (-400 *5))))))
-(-10 -7 (-15 -2940 ((-2 (|:| -1569 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3197 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-747))) "failed") |#3|)) (-15 -2695 ((-2 (|:| -3577 (-747)) (|:| -1569 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-747))) (-15 -2135 (|#1| |#3| |#3|)) (-15 -2685 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -3039 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-747))) |#3| |#3|)))
-((-1512 (((-3 (-621 (-1138 |#2|)) "failed") (-621 (-1138 |#2|)) (-1138 |#2|)) 32)))
-(((-147 |#1| |#2|) (-10 -7 (-15 -1512 ((-3 (-621 (-1138 |#2|)) "failed") (-621 (-1138 |#2|)) (-1138 |#2|)))) (-534) (-164 |#1|)) (T -147))
-((-1512 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-1138 *5))) (-5 *3 (-1138 *5)) (-4 *5 (-164 *4)) (-4 *4 (-534)) (-5 *1 (-147 *4 *5)))))
-(-10 -7 (-15 -1512 ((-3 (-621 (-1138 |#2|)) "failed") (-621 (-1138 |#2|)) (-1138 |#2|))))
-((-1488 (($ (-1 (-112) |#2|) $) 29)) (-3675 (($ $) 36)) (-3812 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-2558 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1917 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2470 (((-112) (-1 (-112) |#2|) $) 16)) (-3997 (((-747) (-1 (-112) |#2|) $) 14) (((-747) |#2| $) NIL)) (-2150 (((-112) (-1 (-112) |#2|) $) 15)) (-3774 (((-747) $) 11)))
-(((-148 |#1| |#2|) (-10 -8 (-15 -3675 (|#1| |#1|)) (-15 -3812 (|#1| |#2| |#1|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3812 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1917 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3997 ((-747) |#2| |#1|)) (-15 -3997 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2470 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2150 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3774 ((-747) |#1|))) (-149 |#2|) (-1179)) (T -148))
-NIL
-(-10 -8 (-15 -3675 (|#1| |#1|)) (-15 -3812 (|#1| |#2| |#1|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3812 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1917 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3997 ((-747) |#2| |#1|)) (-15 -3997 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2470 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2150 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3774 ((-747) |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) 8)) (-1488 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-3675 (($ $) 41 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336))) (($ |#1| $) 42 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-2844 (((-525) $) 40 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 49)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-149 |#1|) (-138) (-1179)) (T -149))
-((-3853 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-4 *1 (-149 *3)))) (-1917 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1179)))) (-2558 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1179)))) (-2558 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1179)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *3)) (-4 *3 (-1179)))) (-1488 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *3)) (-4 *3 (-1179)))) (-2558 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1066)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1179)))) (-3812 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1179)) (-4 *2 (-1066)))) (-3675 (*1 *1 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1179)) (-4 *2 (-1066)))))
-(-13 (-481 |t#1|) (-10 -8 (-15 -3853 ($ (-621 |t#1|))) (-15 -1917 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4336)) (PROGN (-15 -2558 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2558 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3812 ($ (-1 (-112) |t#1|) $)) (-15 -1488 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1066)) (PROGN (-15 -2558 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3812 ($ |t#1| $)) (-15 -3675 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) 86)) (-3987 (((-112) $) NIL)) (-2244 (($ |#2| (-621 (-892))) 56)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1634 (($ (-892)) 47)) (-3128 (((-133)) 23)) (-3845 (((-834) $) 69) (($ (-549)) 45) (($ |#2|) 46)) (-2944 ((|#2| $ (-621 (-892))) 59)) (-1723 (((-747)) 20)) (-3275 (($) 40 T CONST)) (-3287 (($) 43 T CONST)) (-2388 (((-112) $ $) 26)) (-2512 (($ $ |#2|) NIL)) (-2499 (($ $) 34) (($ $ $) 32)) (-2485 (($ $ $) 30)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-150 |#1| |#2| |#3|) (-13 (-1018) (-38 |#2|) (-1232 |#2|) (-10 -8 (-15 -1634 ($ (-892))) (-15 -2244 ($ |#2| (-621 (-892)))) (-15 -2944 (|#2| $ (-621 (-892)))) (-15 -3976 ((-3 $ "failed") $)))) (-892) (-356) (-964 |#1| |#2|)) (T -150))
-((-3976 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-892)) (-4 *3 (-356)) (-14 *4 (-964 *2 *3)))) (-1634 (*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-356)) (-14 *5 (-964 *3 *4)))) (-2244 (*1 *1 *2 *3) (-12 (-5 *3 (-621 (-892))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-892)) (-4 *2 (-356)) (-14 *5 (-964 *4 *2)))) (-2944 (*1 *2 *1 *3) (-12 (-5 *3 (-621 (-892))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-892)) (-14 *5 (-964 *4 *2)))))
-(-13 (-1018) (-38 |#2|) (-1232 |#2|) (-10 -8 (-15 -1634 ($ (-892))) (-15 -2244 ($ |#2| (-621 (-892)))) (-15 -2944 (|#2| $ (-621 (-892)))) (-15 -3976 ((-3 $ "failed") $))))
-((-2210 (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-621 (-621 (-914 (-219)))) (-219) (-219) (-219) (-219)) 38)) (-2681 (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-898) (-400 (-549)) (-400 (-549))) 63) (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-898)) 64)) (-3157 (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-621 (-621 (-914 (-219))))) 67) (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-621 (-914 (-219)))) 66) (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-898) (-400 (-549)) (-400 (-549))) 58) (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-898)) 59)))
-(((-151) (-10 -7 (-15 -3157 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-898))) (-15 -3157 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-898) (-400 (-549)) (-400 (-549)))) (-15 -2681 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-898))) (-15 -2681 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-898) (-400 (-549)) (-400 (-549)))) (-15 -2210 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-621 (-621 (-914 (-219)))) (-219) (-219) (-219) (-219))) (-15 -3157 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-621 (-914 (-219))))) (-15 -3157 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-621 (-621 (-914 (-219)))))))) (T -151))
-((-3157 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)) (-5 *3 (-621 (-621 (-914 (-219))))))) (-3157 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)) (-5 *3 (-621 (-914 (-219)))))) (-2210 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-219)) (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 *4)))) (|:| |xValues| (-1060 *4)) (|:| |yValues| (-1060 *4)))) (-5 *1 (-151)) (-5 *3 (-621 (-621 (-914 *4)))))) (-2681 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-898)) (-5 *4 (-400 (-549))) (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)))) (-3157 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-898)) (-5 *4 (-400 (-549))) (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)))))
-(-10 -7 (-15 -3157 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-898))) (-15 -3157 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-898) (-400 (-549)) (-400 (-549)))) (-15 -2681 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-898))) (-15 -2681 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-898) (-400 (-549)) (-400 (-549)))) (-15 -2210 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-621 (-621 (-914 (-219)))) (-219) (-219) (-219) (-219))) (-15 -3157 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-621 (-914 (-219))))) (-15 -3157 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-621 (-621 (-914 (-219)))))))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3021 (((-621 (-1101)) $) 15)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 24) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2493 (((-1101) $) 9)) (-2388 (((-112) $ $) NIL)))
-(((-152) (-13 (-1049) (-10 -8 (-15 -3021 ((-621 (-1101)) $)) (-15 -2493 ((-1101) $))))) (T -152))
-((-3021 (*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-152)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-152)))))
-(-13 (-1049) (-10 -8 (-15 -3021 ((-621 (-1101)) $)) (-15 -2493 ((-1101) $))))
-((-3288 (((-621 (-167 |#2|)) |#1| |#2|) 45)))
-(((-153 |#1| |#2|) (-10 -7 (-15 -3288 ((-621 (-167 |#2|)) |#1| |#2|))) (-1201 (-167 (-549))) (-13 (-356) (-821))) (T -153))
-((-3288 (*1 *2 *3 *4) (-12 (-5 *2 (-621 (-167 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1201 (-167 (-549)))) (-4 *4 (-13 (-356) (-821))))))
-(-10 -7 (-15 -3288 ((-621 (-167 |#2|)) |#1| |#2|)))
-((-3833 (((-112) $ $) NIL)) (-2202 (((-1178) $) 12)) (-2189 (((-1101) $) 9)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-154) (-13 (-1049) (-10 -8 (-15 -2189 ((-1101) $)) (-15 -2202 ((-1178) $))))) (T -154))
-((-2189 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-154)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-154)))))
-(-13 (-1049) (-10 -8 (-15 -2189 ((-1101) $)) (-15 -2202 ((-1178) $))))
-((-3833 (((-112) $ $) NIL)) (-1937 (($) 15)) (-2535 (($) 14)) (-2827 (((-892)) 22)) (-2677 (((-1124) $) NIL)) (-1621 (((-549) $) 19)) (-3988 (((-1086) $) NIL)) (-1620 (($) 16)) (-1898 (($ (-549)) 23)) (-3845 (((-834) $) 29)) (-2328 (($) 17)) (-2388 (((-112) $ $) 13)) (-2485 (($ $ $) 11)) (* (($ (-892) $) 21) (($ (-219) $) 8)))
-(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-892) $)) (-15 * ($ (-219) $)) (-15 -2485 ($ $ $)) (-15 -2535 ($)) (-15 -1937 ($)) (-15 -1620 ($)) (-15 -2328 ($)) (-15 -1621 ((-549) $)) (-15 -2827 ((-892))) (-15 -1898 ($ (-549)))))) (T -155))
-((-2485 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-892)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) (-2535 (*1 *1) (-5 *1 (-155))) (-1937 (*1 *1) (-5 *1 (-155))) (-1620 (*1 *1) (-5 *1 (-155))) (-2328 (*1 *1) (-5 *1 (-155))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-155)))) (-2827 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-155)))) (-1898 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-155)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-892) $)) (-15 * ($ (-219) $)) (-15 -2485 ($ $ $)) (-15 -2535 ($)) (-15 -1937 ($)) (-15 -1620 ($)) (-15 -2328 ($)) (-15 -1621 ((-549) $)) (-15 -2827 ((-892))) (-15 -1898 ($ (-549)))))
-((-2106 ((|#2| |#2| (-1058 |#2|)) 88) ((|#2| |#2| (-1142)) 68)) (-1626 ((|#2| |#2| (-1058 |#2|)) 87) ((|#2| |#2| (-1142)) 67)) (-3969 ((|#2| |#2| |#2|) 27)) (-2015 (((-114) (-114)) 99)) (-2393 ((|#2| (-621 |#2|)) 117)) (-2434 ((|#2| (-621 |#2|)) 135)) (-2373 ((|#2| (-621 |#2|)) 125)) (-3438 ((|#2| |#2|) 123)) (-1871 ((|#2| (-621 |#2|)) 111)) (-3517 ((|#2| (-621 |#2|)) 112)) (-3025 ((|#2| (-621 |#2|)) 133)) (-3815 ((|#2| |#2| (-1142)) 56) ((|#2| |#2|) 55)) (-1692 ((|#2| |#2|) 23)) (-2224 ((|#2| |#2| |#2|) 26)) (-3234 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41)))
-(((-156 |#1| |#2|) (-10 -7 (-15 -3234 ((-112) (-114))) (-15 -2015 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2224 (|#2| |#2| |#2|)) (-15 -3969 (|#2| |#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -3815 (|#2| |#2| (-1142))) (-15 -2106 (|#2| |#2| (-1142))) (-15 -2106 (|#2| |#2| (-1058 |#2|))) (-15 -1626 (|#2| |#2| (-1142))) (-15 -1626 (|#2| |#2| (-1058 |#2|))) (-15 -3438 (|#2| |#2|)) (-15 -3025 (|#2| (-621 |#2|))) (-15 -2373 (|#2| (-621 |#2|))) (-15 -2434 (|#2| (-621 |#2|))) (-15 -1871 (|#2| (-621 |#2|))) (-15 -3517 (|#2| (-621 |#2|))) (-15 -2393 (|#2| (-621 |#2|)))) (-13 (-823) (-541)) (-423 |#1|)) (T -156))
-((-2393 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-541))))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-541))))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-541))))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-541))))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-541))))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-541))))) (-3438 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-1626 (*1 *2 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2)))) (-1626 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2)) (-4 *2 (-423 *4)))) (-2106 (*1 *2 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2)))) (-2106 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2)) (-4 *2 (-423 *4)))) (-3815 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2)) (-4 *2 (-423 *4)))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-3969 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-2224 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *4)) (-4 *4 (-423 *3)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-423 *4)))))
-(-10 -7 (-15 -3234 ((-112) (-114))) (-15 -2015 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2224 (|#2| |#2| |#2|)) (-15 -3969 (|#2| |#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -3815 (|#2| |#2| (-1142))) (-15 -2106 (|#2| |#2| (-1142))) (-15 -2106 (|#2| |#2| (-1058 |#2|))) (-15 -1626 (|#2| |#2| (-1142))) (-15 -1626 (|#2| |#2| (-1058 |#2|))) (-15 -3438 (|#2| |#2|)) (-15 -3025 (|#2| (-621 |#2|))) (-15 -2373 (|#2| (-621 |#2|))) (-15 -2434 (|#2| (-621 |#2|))) (-15 -1871 (|#2| (-621 |#2|))) (-15 -3517 (|#2| (-621 |#2|))) (-15 -2393 (|#2| (-621 |#2|))))
-((-1481 ((|#1| |#1| |#1|) 53)) (-1984 ((|#1| |#1| |#1|) 50)) (-3969 ((|#1| |#1| |#1|) 44)) (-1806 ((|#1| |#1|) 35)) (-1725 ((|#1| |#1| (-621 |#1|)) 43)) (-1692 ((|#1| |#1|) 37)) (-2224 ((|#1| |#1| |#1|) 40)))
-(((-157 |#1|) (-10 -7 (-15 -2224 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -1725 (|#1| |#1| (-621 |#1|))) (-15 -1806 (|#1| |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -1984 (|#1| |#1| |#1|)) (-15 -1481 (|#1| |#1| |#1|))) (-534)) (T -157))
-((-1481 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-1984 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-3969 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-1806 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-1725 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-534)) (-5 *1 (-157 *2)))) (-1692 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-2224 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
-(-10 -7 (-15 -2224 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -1725 (|#1| |#1| (-621 |#1|))) (-15 -1806 (|#1| |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -1984 (|#1| |#1| |#1|)) (-15 -1481 (|#1| |#1| |#1|)))
-((-2106 (($ $ (-1142)) 12) (($ $ (-1058 $)) 11)) (-1626 (($ $ (-1142)) 10) (($ $ (-1058 $)) 9)) (-3969 (($ $ $) 8)) (-3815 (($ $) 14) (($ $ (-1142)) 13)) (-1692 (($ $) 7)) (-2224 (($ $ $) 6)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-1391 (((-2 (|:| -2484 (-747)) (|:| -4296 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-747)) 70)) (-1390 (((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-747))) "failed") |#3|) 52)) (-1389 (((-2 (|:| -4296 (-400 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1392 ((|#1| |#3| |#3|) 40)) (-4110 ((|#3| |#3| (-400 |#2|) (-400 |#2|)) 19)) (-1393 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-747))) |#3| |#3|) 49)))
+(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -1389 ((-2 (|:| -4296 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1390 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-747))) "failed") |#3|)) (-15 -1391 ((-2 (|:| -2484 (-747)) (|:| -4296 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-747))) (-15 -1392 (|#1| |#3| |#3|)) (-15 -4110 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -1393 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-747))) |#3| |#3|))) (-1183) (-1200 |#1|) (-1200 (-400 |#2|))) (T -146))
+((-1393 (*1 *2 *3 *3) (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) (|:| |c2| (-400 *5)) (|:| |deg| (-747)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1200 (-400 *5))))) (-4110 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1200 *3)))) (-1392 (*1 *2 *3 *3) (-12 (-4 *4 (-1200 *2)) (-4 *2 (-1183)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1200 (-400 *4))))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *6)) (-4 *5 (-1183)) (-4 *6 (-1200 *5)) (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-747)) (-4 *7 (-1200 *3)))) (-1390 (*1 *2 *3) (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-747)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1200 (-400 *5))))) (-1389 (*1 *2 *3) (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| -4296 (-400 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1200 (-400 *5))))))
+(-10 -7 (-15 -1389 ((-2 (|:| -4296 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1390 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-747))) "failed") |#3|)) (-15 -1391 ((-2 (|:| -2484 (-747)) (|:| -4296 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-747))) (-15 -1392 (|#1| |#3| |#3|)) (-15 -4110 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -1393 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-747))) |#3| |#3|)))
+((-3025 (((-3 (-618 (-1136 |#2|)) "failed") (-618 (-1136 |#2|)) (-1136 |#2|)) 32)))
+(((-147 |#1| |#2|) (-10 -7 (-15 -3025 ((-3 (-618 (-1136 |#2|)) "failed") (-618 (-1136 |#2|)) (-1136 |#2|)))) (-534) (-164 |#1|)) (T -147))
+((-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-1136 *5))) (-5 *3 (-1136 *5)) (-4 *5 (-164 *4)) (-4 *4 (-534)) (-5 *1 (-147 *4 *5)))))
+(-10 -7 (-15 -3025 ((-3 (-618 (-1136 |#2|)) "failed") (-618 (-1136 |#2|)) (-1136 |#2|))))
+((-4056 (($ (-1 (-112) |#2|) $) 29)) (-1394 (($ $) 36)) (-3748 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-4185 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1395 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2065 (((-112) (-1 (-112) |#2|) $) 16)) (-2064 (((-747) (-1 (-112) |#2|) $) 14) (((-747) |#2| $) NIL)) (-2066 (((-112) (-1 (-112) |#2|) $) 15)) (-4299 (((-747) $) 11)))
+(((-148 |#1| |#2|) (-10 -8 (-15 -1394 (|#1| |#1|)) (-15 -3748 (|#1| |#2| |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4056 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3748 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1395 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4299 ((-747) |#1|))) (-149 |#2|) (-1178)) (T -148))
+NIL
+(-10 -8 (-15 -1394 (|#1| |#1|)) (-15 -3748 (|#1| |#2| |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4056 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3748 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1395 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4299 ((-747) |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-4056 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-1394 (($ $) 41 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336))) (($ |#1| $) 42 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 40 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 49)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-149 |#1|) (-138) (-1178)) (T -149))
+((-3867 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-4 *1 (-149 *3)))) (-1395 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1178)))) (-4185 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178)))) (-4185 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178)))) (-3748 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *3)) (-4 *3 (-1178)))) (-4056 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *3)) (-4 *3 (-1178)))) (-4185 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1067)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178)))) (-3748 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178)) (-4 *2 (-1067)))) (-1394 (*1 *1 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178)) (-4 *2 (-1067)))))
+(-13 (-481 |t#1|) (-10 -8 (-15 -3867 ($ (-618 |t#1|))) (-15 -1395 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4336)) (PROGN (-15 -4185 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4185 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3748 ($ (-1 (-112) |t#1|) $)) (-15 -4056 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -4185 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3748 ($ |t#1| $)) (-15 -1394 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) 86)) (-2493 (((-112) $) NIL)) (-3214 (($ |#2| (-618 (-890))) 56)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1396 (($ (-890)) 47)) (-4254 (((-133)) 23)) (-4300 (((-835) $) 69) (($ (-535)) 45) (($ |#2|) 46)) (-4023 ((|#2| $ (-618 (-890))) 59)) (-3444 (((-747)) 20)) (-2979 (($) 40 T CONST)) (-2985 (($) 43 T CONST)) (-3375 (((-112) $ $) 26)) (-4291 (($ $ |#2|) NIL)) (-4180 (($ $) 34) (($ $ $) 32)) (-4182 (($ $ $) 30)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-150 |#1| |#2| |#3|) (-13 (-1018) (-38 |#2|) (-1232 |#2|) (-10 -8 (-15 -1396 ($ (-890))) (-15 -3214 ($ |#2| (-618 (-890)))) (-15 -4023 (|#2| $ (-618 (-890)))) (-15 -3804 ((-3 $ "failed") $)))) (-890) (-356) (-964 |#1| |#2|)) (T -150))
+((-3804 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-890)) (-4 *3 (-356)) (-14 *4 (-964 *2 *3)))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-356)) (-14 *5 (-964 *3 *4)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-618 (-890))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) (-4 *2 (-356)) (-14 *5 (-964 *4 *2)))) (-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-618 (-890))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) (-14 *5 (-964 *4 *2)))))
+(-13 (-1018) (-38 |#2|) (-1232 |#2|) (-10 -8 (-15 -1396 ($ (-890))) (-15 -3214 ($ |#2| (-618 (-890)))) (-15 -4023 (|#2| $ (-618 (-890)))) (-15 -3804 ((-3 $ "failed") $))))
+((-1398 (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-618 (-914 (-219)))) (-219) (-219) (-219) (-219)) 38)) (-1397 (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896) (-400 (-535)) (-400 (-535))) 63) (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896)) 64)) (-1560 (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-618 (-914 (-219))))) 67) (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-914 (-219)))) 66) (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896) (-400 (-535)) (-400 (-535))) 58) (((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896)) 59)))
+(((-151) (-10 -7 (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896))) (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896) (-400 (-535)) (-400 (-535)))) (-15 -1397 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896))) (-15 -1397 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896) (-400 (-535)) (-400 (-535)))) (-15 -1398 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-618 (-914 (-219)))) (-219) (-219) (-219) (-219))) (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-914 (-219))))) (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-618 (-914 (-219)))))))) (T -151))
+((-1560 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) (-5 *1 (-151)) (-5 *3 (-618 (-618 (-914 (-219))))))) (-1560 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) (-5 *1 (-151)) (-5 *3 (-618 (-914 (-219)))))) (-1398 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-219)) (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 *4)))) (|:| |xValues| (-1055 *4)) (|:| |yValues| (-1055 *4)))) (-5 *1 (-151)) (-5 *3 (-618 (-618 (-914 *4)))))) (-1397 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896)) (-5 *4 (-400 (-535))) (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) (-5 *1 (-151)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) (-5 *1 (-151)))) (-1560 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896)) (-5 *4 (-400 (-535))) (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) (-5 *1 (-151)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219))))) (-5 *1 (-151)))))
+(-10 -7 (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896))) (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896) (-400 (-535)) (-400 (-535)))) (-15 -1397 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896))) (-15 -1397 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-896) (-400 (-535)) (-400 (-535)))) (-15 -1398 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-618 (-914 (-219)))) (-219) (-219) (-219) (-219))) (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-914 (-219))))) (-15 -1560 ((-2 (|:| |brans| (-618 (-618 (-914 (-219))))) (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))) (-618 (-618 (-914 (-219)))))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3515 (((-618 (-1101)) $) 15)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 24) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-1101) $) 9)) (-3375 (((-112) $ $) NIL)))
+(((-152) (-13 (-1049) (-10 -8 (-15 -3515 ((-618 (-1101)) $)) (-15 -3567 ((-1101) $))))) (T -152))
+((-3515 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-152)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-152)))))
+(-13 (-1049) (-10 -8 (-15 -3515 ((-618 (-1101)) $)) (-15 -3567 ((-1101) $))))
+((-1451 (((-618 (-166 |#2|)) |#1| |#2|) 45)))
+(((-153 |#1| |#2|) (-10 -7 (-15 -1451 ((-618 (-166 |#2|)) |#1| |#2|))) (-1200 (-166 (-535))) (-13 (-356) (-821))) (T -153))
+((-1451 (*1 *2 *3 *4) (-12 (-5 *2 (-618 (-166 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1200 (-166 (-535)))) (-4 *4 (-13 (-356) (-821))))))
+(-10 -7 (-15 -1451 ((-618 (-166 |#2|)) |#1| |#2|)))
+((-2887 (((-112) $ $) NIL)) (-3865 (((-1179) $) 12)) (-3866 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-154) (-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1179) $))))) (T -154))
+((-3866 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-154)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-154)))))
+(-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1179) $))))
+((-2887 (((-112) $ $) NIL)) (-1402 (($) 15)) (-1403 (($) 14)) (-1399 (((-890)) 22)) (-3576 (((-1124) $) NIL)) (-3277 (((-535) $) 19)) (-3577 (((-1086) $) NIL)) (-1401 (($) 16)) (-3276 (($ (-535)) 23)) (-4300 (((-835) $) 29)) (-1400 (($) 17)) (-3375 (((-112) $ $) 13)) (-4182 (($ $ $) 11)) (* (($ (-890) $) 21) (($ (-219) $) 8)))
+(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-890) $)) (-15 * ($ (-219) $)) (-15 -4182 ($ $ $)) (-15 -1403 ($)) (-15 -1402 ($)) (-15 -1401 ($)) (-15 -1400 ($)) (-15 -3277 ((-535) $)) (-15 -1399 ((-890))) (-15 -3276 ($ (-535)))))) (T -155))
+((-4182 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) (-1403 (*1 *1) (-5 *1 (-155))) (-1402 (*1 *1) (-5 *1 (-155))) (-1401 (*1 *1) (-5 *1 (-155))) (-1400 (*1 *1) (-5 *1 (-155))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-155)))) (-1399 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-155)))) (-3276 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-155)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-890) $)) (-15 * ($ (-219) $)) (-15 -4182 ($ $ $)) (-15 -1403 ($)) (-15 -1402 ($)) (-15 -1401 ($)) (-15 -1400 ($)) (-15 -3277 ((-535) $)) (-15 -1399 ((-890))) (-15 -3276 ($ (-535)))))
+((-1416 ((|#2| |#2| (-1058 |#2|)) 88) ((|#2| |#2| (-1142)) 68)) (-4287 ((|#2| |#2| (-1058 |#2|)) 87) ((|#2| |#2| (-1142)) 67)) (-1413 ((|#2| |#2| |#2|) 27)) (-3368 (((-113) (-113)) 99)) (-1410 ((|#2| (-618 |#2|)) 117)) (-1407 ((|#2| (-618 |#2|)) 135)) (-1406 ((|#2| (-618 |#2|)) 125)) (-1404 ((|#2| |#2|) 123)) (-1408 ((|#2| (-618 |#2|)) 111)) (-1409 ((|#2| (-618 |#2|)) 112)) (-1405 ((|#2| (-618 |#2|)) 133)) (-1417 ((|#2| |#2| (-1142)) 56) ((|#2| |#2|) 55)) (-1411 ((|#2| |#2|) 23)) (-3420 ((|#2| |#2| |#2|) 26)) (-2329 (((-112) (-113)) 49)) (** ((|#2| |#2| |#2|) 41)))
+(((-156 |#1| |#2|) (-10 -7 (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3420 (|#2| |#2| |#2|)) (-15 -1413 (|#2| |#2| |#2|)) (-15 -1411 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -1417 (|#2| |#2| (-1142))) (-15 -1416 (|#2| |#2| (-1142))) (-15 -1416 (|#2| |#2| (-1058 |#2|))) (-15 -4287 (|#2| |#2| (-1142))) (-15 -4287 (|#2| |#2| (-1058 |#2|))) (-15 -1404 (|#2| |#2|)) (-15 -1405 (|#2| (-618 |#2|))) (-15 -1406 (|#2| (-618 |#2|))) (-15 -1407 (|#2| (-618 |#2|))) (-15 -1408 (|#2| (-618 |#2|))) (-15 -1409 (|#2| (-618 |#2|))) (-15 -1410 (|#2| (-618 |#2|)))) (-13 (-823) (-542)) (-414 |#1|)) (T -156))
+((-1410 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-542))))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-542))))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-542))))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-542))))) (-1406 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-542))))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-542))))) (-1404 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-4287 (*1 *2 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)))) (-4287 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)) (-4 *2 (-414 *4)))) (-1416 (*1 *2 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)))) (-1416 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)) (-4 *2 (-414 *4)))) (-1417 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2)) (-4 *2 (-414 *4)))) (-1417 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-1411 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-1413 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-3420 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *4)) (-4 *4 (-414 *3)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-414 *4)))))
+(-10 -7 (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3420 (|#2| |#2| |#2|)) (-15 -1413 (|#2| |#2| |#2|)) (-15 -1411 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -1417 (|#2| |#2| (-1142))) (-15 -1416 (|#2| |#2| (-1142))) (-15 -1416 (|#2| |#2| (-1058 |#2|))) (-15 -4287 (|#2| |#2| (-1142))) (-15 -4287 (|#2| |#2| (-1058 |#2|))) (-15 -1404 (|#2| |#2|)) (-15 -1405 (|#2| (-618 |#2|))) (-15 -1406 (|#2| (-618 |#2|))) (-15 -1407 (|#2| (-618 |#2|))) (-15 -1408 (|#2| (-618 |#2|))) (-15 -1409 (|#2| (-618 |#2|))) (-15 -1410 (|#2| (-618 |#2|))))
+((-1415 ((|#1| |#1| |#1|) 53)) (-1414 ((|#1| |#1| |#1|) 50)) (-1413 ((|#1| |#1| |#1|) 44)) (-3211 ((|#1| |#1|) 35)) (-1412 ((|#1| |#1| (-618 |#1|)) 43)) (-1411 ((|#1| |#1|) 37)) (-3420 ((|#1| |#1| |#1|) 40)))
+(((-157 |#1|) (-10 -7 (-15 -3420 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1|)) (-15 -1412 (|#1| |#1| (-618 |#1|))) (-15 -3211 (|#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|))) (-534)) (T -157))
+((-1415 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-1414 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-1413 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-3211 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-1412 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-534)) (-5 *1 (-157 *2)))) (-1411 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-3420 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
+(-10 -7 (-15 -3420 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1|)) (-15 -1412 (|#1| |#1| (-618 |#1|))) (-15 -3211 (|#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)))
+((-1416 (($ $ (-1142)) 12) (($ $ (-1058 $)) 11)) (-4287 (($ $ (-1142)) 10) (($ $ (-1058 $)) 9)) (-1413 (($ $ $) 8)) (-1417 (($ $) 14) (($ $ (-1142)) 13)) (-1411 (($ $) 7)) (-3420 (($ $ $) 6)))
(((-158) (-138)) (T -158))
-((-3815 (*1 *1 *1) (-4 *1 (-158))) (-3815 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))) (-2106 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))) (-2106 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-158)))) (-1626 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-158)))))
-(-13 (-141) (-10 -8 (-15 -3815 ($ $)) (-15 -3815 ($ $ (-1142))) (-15 -2106 ($ $ (-1142))) (-15 -2106 ($ $ (-1058 $))) (-15 -1626 ($ $ (-1142))) (-15 -1626 ($ $ (-1058 $)))))
+((-1417 (*1 *1 *1) (-4 *1 (-158))) (-1417 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))) (-1416 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-158)))) (-4287 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))) (-4287 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-158)))))
+(-13 (-141) (-10 -8 (-15 -1417 ($ $)) (-15 -1417 ($ $ (-1142))) (-15 -1416 ($ $ (-1142))) (-15 -1416 ($ $ (-1058 $))) (-15 -4287 ($ $ (-1142))) (-15 -4287 ($ $ (-1058 $)))))
(((-141) . T))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2493 (((-621 (-1101)) $) 9)) (-2388 (((-112) $ $) NIL)))
-(((-159) (-13 (-1049) (-10 -8 (-15 -2493 ((-621 (-1101)) $))))) (T -159))
-((-2493 (*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-159)))))
-(-13 (-1049) (-10 -8 (-15 -2493 ((-621 (-1101)) $))))
-((-3833 (((-112) $ $) NIL)) (-3821 (($ (-549)) 13) (($ $ $) 14)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 17)) (-2388 (((-112) $ $) 9)))
-(((-160) (-13 (-1066) (-10 -8 (-15 -3821 ($ (-549))) (-15 -3821 ($ $ $))))) (T -160))
-((-3821 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-160)))) (-3821 (*1 *1 *1 *1) (-5 *1 (-160))))
-(-13 (-1066) (-10 -8 (-15 -3821 ($ (-549))) (-15 -3821 ($ $ $))))
-((-2015 (((-114) (-1142)) 97)))
-(((-161) (-10 -7 (-15 -2015 ((-114) (-1142))))) (T -161))
-((-2015 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-114)) (-5 *1 (-161)))))
-(-10 -7 (-15 -2015 ((-114) (-1142))))
-((-2765 ((|#3| |#3|) 19)))
-(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -2765 (|#3| |#3|))) (-1018) (-1201 |#1|) (-1201 |#2|)) (T -162))
-((-2765 (*1 *2 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-1201 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1201 *4)))))
-(-10 -7 (-15 -2765 (|#3| |#3|)))
-((-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 217)) (-2905 ((|#2| $) 96)) (-1663 (($ $) 247)) (-1511 (($ $) 241)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 40)) (-1639 (($ $) 245)) (-1485 (($ $) 239)) (-2713 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2658 (((-549) $) NIL) (((-400 (-549)) $) NIL) ((|#2| $) 139)) (-2094 (($ $ $) 222)) (-1698 (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) 155) (((-665 |#2|) (-665 $)) 149)) (-2558 (($ (-1138 |#2|)) 119) (((-3 $ "failed") (-400 (-1138 |#2|))) NIL)) (-3976 (((-3 $ "failed") $) 209)) (-3156 (((-3 (-400 (-549)) "failed") $) 199)) (-3230 (((-112) $) 194)) (-3867 (((-400 (-549)) $) 197)) (-3122 (((-892)) 89)) (-2066 (($ $ $) 224)) (-3638 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1425 (($) 236)) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 186) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 191)) (-4117 ((|#2| $) 94)) (-4030 (((-1138 |#2|) $) 121)) (-2796 (($ (-1 |#2| |#2|) $) 102)) (-3631 (($ $) 238)) (-2546 (((-1138 |#2|) $) 120)) (-1991 (($ $) 202)) (-1919 (($) 97)) (-1873 (((-411 (-1138 $)) (-1138 $)) 88)) (-4120 (((-411 (-1138 $)) (-1138 $)) 57)) (-2038 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2718 (($ $) 237)) (-4091 (((-747) $) 219)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 229)) (-3086 ((|#2| (-1225 $)) NIL) ((|#2|) 91)) (-3455 (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-2539 (((-1138 |#2|)) 114)) (-1649 (($ $) 246)) (-1500 (($ $) 240)) (-4163 (((-1225 |#2|) $ (-1225 $)) 128) (((-665 |#2|) (-1225 $) (-1225 $)) NIL) (((-1225 |#2|) $) 110) (((-665 |#2|) (-1225 $)) NIL)) (-2844 (((-1225 |#2|) $) NIL) (($ (-1225 |#2|)) NIL) (((-1138 |#2|) $) NIL) (($ (-1138 |#2|)) NIL) (((-863 (-549)) $) 177) (((-863 (-372)) $) 181) (((-167 (-372)) $) 167) (((-167 (-219)) $) 162) (((-525) $) 173)) (-2538 (($ $) 98)) (-3845 (((-834) $) 138) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-400 (-549))) NIL) (($ $) NIL)) (-4041 (((-1138 |#2|) $) 23)) (-1723 (((-747)) 100)) (-1732 (($ $) 250)) (-1585 (($ $) 244)) (-1708 (($ $) 248)) (-1562 (($ $) 242)) (-4155 ((|#2| $) 233)) (-1721 (($ $) 249)) (-1575 (($ $) 243)) (-3603 (($ $) 157)) (-2388 (((-112) $ $) 104)) (-2411 (((-112) $ $) 193)) (-2499 (($ $) 106) (($ $ $) NIL)) (-2485 (($ $ $) 105)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-400 (-549))) 267) (($ $ $) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL)))
-(((-163 |#1| |#2|) (-10 -8 (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3845 (|#1| |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2139 ((-2 (|:| -2699 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -4091 ((-747) |#1|)) (-15 -1346 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -2066 (|#1| |#1| |#1|)) (-15 -2094 (|#1| |#1| |#1|)) (-15 -1991 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -2411 ((-112) |#1| |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -2844 ((-167 (-219)) |#1|)) (-15 -2844 ((-167 (-372)) |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1500 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -1649 (|#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -2718 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1425 (|#1|)) (-15 ** (|#1| |#1| (-400 (-549)))) (-15 -4120 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -1873 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -1512 ((-3 (-621 (-1138 |#1|)) "failed") (-621 (-1138 |#1|)) (-1138 |#1|))) (-15 -3156 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3867 ((-400 (-549)) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 -3638 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4155 (|#2| |#1|)) (-15 -3603 (|#1| |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2538 (|#1| |#1|)) (-15 -1919 (|#1|)) (-15 -2844 ((-863 (-372)) |#1|)) (-15 -2844 ((-863 (-549)) |#1|)) (-15 -1289 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -1289 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2558 ((-3 |#1| "failed") (-400 (-1138 |#2|)))) (-15 -2546 ((-1138 |#2|) |#1|)) (-15 -2844 (|#1| (-1138 |#2|))) (-15 -2558 (|#1| (-1138 |#2|))) (-15 -2539 ((-1138 |#2|))) (-15 -1698 ((-665 |#2|) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-665 (-549)) (-665 |#1|))) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -2844 ((-1138 |#2|) |#1|)) (-15 -3086 (|#2|)) (-15 -2844 (|#1| (-1225 |#2|))) (-15 -2844 ((-1225 |#2|) |#1|)) (-15 -4163 ((-665 |#2|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1|)) (-15 -4030 ((-1138 |#2|) |#1|)) (-15 -4041 ((-1138 |#2|) |#1|)) (-15 -3086 (|#2| (-1225 |#1|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1| (-1225 |#1|))) (-15 -4117 (|#2| |#1|)) (-15 -2905 (|#2| |#1|)) (-15 -3122 ((-892))) (-15 -3845 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 (|#1| (-549))) (-15 -1723 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 -3976 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-892))) (-15 * (|#1| (-549) |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -2485 (|#1| |#1| |#1|)) (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163))
-((-1723 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3122 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-892)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3086 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-2539 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1138 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))))
-(-10 -8 (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3845 (|#1| |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2139 ((-2 (|:| -2699 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -4091 ((-747) |#1|)) (-15 -1346 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -2066 (|#1| |#1| |#1|)) (-15 -2094 (|#1| |#1| |#1|)) (-15 -1991 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -2411 ((-112) |#1| |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -2844 ((-167 (-219)) |#1|)) (-15 -2844 ((-167 (-372)) |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1500 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -1649 (|#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -2718 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1425 (|#1|)) (-15 ** (|#1| |#1| (-400 (-549)))) (-15 -4120 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -1873 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -1512 ((-3 (-621 (-1138 |#1|)) "failed") (-621 (-1138 |#1|)) (-1138 |#1|))) (-15 -3156 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3867 ((-400 (-549)) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 -3638 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4155 (|#2| |#1|)) (-15 -3603 (|#1| |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2538 (|#1| |#1|)) (-15 -1919 (|#1|)) (-15 -2844 ((-863 (-372)) |#1|)) (-15 -2844 ((-863 (-549)) |#1|)) (-15 -1289 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -1289 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2558 ((-3 |#1| "failed") (-400 (-1138 |#2|)))) (-15 -2546 ((-1138 |#2|) |#1|)) (-15 -2844 (|#1| (-1138 |#2|))) (-15 -2558 (|#1| (-1138 |#2|))) (-15 -2539 ((-1138 |#2|))) (-15 -1698 ((-665 |#2|) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-665 (-549)) (-665 |#1|))) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -2844 ((-1138 |#2|) |#1|)) (-15 -3086 (|#2|)) (-15 -2844 (|#1| (-1225 |#2|))) (-15 -2844 ((-1225 |#2|) |#1|)) (-15 -4163 ((-665 |#2|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1|)) (-15 -4030 ((-1138 |#2|) |#1|)) (-15 -4041 ((-1138 |#2|) |#1|)) (-15 -3086 (|#2| (-1225 |#1|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1| (-1225 |#1|))) (-15 -4117 (|#2| |#1|)) (-15 -2905 (|#2| |#1|)) (-15 -3122 ((-892))) (-15 -3845 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 (|#1| (-549))) (-15 -1723 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 -3976 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-892))) (-15 * (|#1| (-549) |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -2485 (|#1| |#1| |#1|)) (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 91 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-2408 (($ $) 92 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-2477 (((-112) $) 94 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-3102 (((-665 |#1|) (-1225 $)) 44) (((-665 |#1|)) 59)) (-2905 ((|#1| $) 50)) (-1663 (($ $) 225 (|has| |#1| (-1164)))) (-1511 (($ $) 208 (|has| |#1| (-1164)))) (-2572 (((-1152 (-892) (-747)) (-549)) 144 (|has| |#1| (-342)))) (-2384 (((-3 $ "failed") $ $) 19)) (-2461 (((-411 (-1138 $)) (-1138 $)) 239 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-1912 (($ $) 111 (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-3513 (((-411 $) $) 112 (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-2134 (($ $) 238 (-12 (|has| |#1| (-973)) (|has| |#1| (-1164))))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 242 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-2647 (((-112) $ $) 102 (|has| |#1| (-300)))) (-3615 (((-747)) 85 (|has| |#1| (-361)))) (-1639 (($ $) 224 (|has| |#1| (-1164)))) (-1485 (($ $) 209 (|has| |#1| (-1164)))) (-1685 (($ $) 223 (|has| |#1| (-1164)))) (-1538 (($ $) 210 (|has| |#1| (-1164)))) (-1705 (($) 17 T CONST)) (-2713 (((-3 (-549) "failed") $) 166 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 164 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 163)) (-2658 (((-549) $) 167 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 165 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 162)) (-2127 (($ (-1225 |#1|) (-1225 $)) 46) (($ (-1225 |#1|)) 62)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-342)))) (-2094 (($ $ $) 106 (|has| |#1| (-300)))) (-2988 (((-665 |#1|) $ (-1225 $)) 51) (((-665 |#1|) $) 57)) (-1698 (((-665 (-549)) (-665 $)) 161 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 160 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 159) (((-665 |#1|) (-665 $)) 158)) (-2558 (($ (-1138 |#1|)) 155) (((-3 $ "failed") (-400 (-1138 |#1|))) 152 (|has| |#1| (-356)))) (-3976 (((-3 $ "failed") $) 32)) (-2146 ((|#1| $) 250)) (-3156 (((-3 (-400 (-549)) "failed") $) 243 (|has| |#1| (-534)))) (-3230 (((-112) $) 245 (|has| |#1| (-534)))) (-3867 (((-400 (-549)) $) 244 (|has| |#1| (-534)))) (-3122 (((-892)) 52)) (-3238 (($) 88 (|has| |#1| (-361)))) (-2066 (($ $ $) 105 (|has| |#1| (-300)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 100 (|has| |#1| (-300)))) (-1327 (($) 146 (|has| |#1| (-342)))) (-1729 (((-112) $) 147 (|has| |#1| (-342)))) (-3225 (($ $ (-747)) 138 (|has| |#1| (-342))) (($ $) 137 (|has| |#1| (-342)))) (-2471 (((-112) $) 113 (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-3638 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1027)) (|has| |#1| (-1164))))) (-1425 (($) 235 (|has| |#1| (-1164)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 258 (|has| |#1| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 257 (|has| |#1| (-857 (-372))))) (-2078 (((-892) $) 149 (|has| |#1| (-342))) (((-809 (-892)) $) 135 (|has| |#1| (-342)))) (-3987 (((-112) $) 30)) (-3930 (($ $ (-549)) 237 (-12 (|has| |#1| (-973)) (|has| |#1| (-1164))))) (-4117 ((|#1| $) 49)) (-3982 (((-3 $ "failed") $) 139 (|has| |#1| (-342)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 109 (|has| |#1| (-300)))) (-4030 (((-1138 |#1|) $) 42 (|has| |#1| (-356)))) (-2862 (($ $ $) 204 (|has| |#1| (-823)))) (-3574 (($ $ $) 203 (|has| |#1| (-823)))) (-2796 (($ (-1 |#1| |#1|) $) 259)) (-2723 (((-892) $) 87 (|has| |#1| (-361)))) (-3631 (($ $) 232 (|has| |#1| (-1164)))) (-2546 (((-1138 |#1|) $) 153)) (-3696 (($ (-621 $)) 98 (-1536 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (($ $ $) 97 (-1536 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-2677 (((-1124) $) 9)) (-1991 (($ $) 114 (|has| |#1| (-356)))) (-3060 (($) 140 (|has| |#1| (-342)) CONST)) (-3491 (($ (-892)) 86 (|has| |#1| (-361)))) (-1919 (($) 254)) (-2160 ((|#1| $) 251)) (-3988 (((-1086) $) 10)) (-4246 (($) 157)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 99 (-1536 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-3726 (($ (-621 $)) 96 (-1536 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (($ $ $) 95 (-1536 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) 143 (|has| |#1| (-342)))) (-1873 (((-411 (-1138 $)) (-1138 $)) 241 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-4120 (((-411 (-1138 $)) (-1138 $)) 240 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-2120 (((-411 $) $) 110 (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 107 (|has| |#1| (-300)))) (-2038 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 90 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 101 (|has| |#1| (-300)))) (-2718 (($ $) 233 (|has| |#1| (-1164)))) (-2685 (($ $ (-621 |#1|) (-621 |#1|)) 265 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 263 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) 262 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1142)) (-621 |#1|)) 261 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) 260 (|has| |#1| (-505 (-1142) |#1|)))) (-4091 (((-747) $) 103 (|has| |#1| (-300)))) (-3340 (($ $ |#1|) 266 (|has| |#1| (-279 |#1| |#1|)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 104 (|has| |#1| (-300)))) (-3086 ((|#1| (-1225 $)) 45) ((|#1|) 58)) (-2591 (((-747) $) 148 (|has| |#1| (-342))) (((-3 (-747) "failed") $ $) 136 (|has| |#1| (-342)))) (-3455 (($ $ (-1 |#1| |#1|) (-747)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-621 (-1142)) (-621 (-747))) 127 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 128 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) 129 (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 130 (|has| |#1| (-871 (-1142)))) (($ $ (-747)) 132 (-1536 (-1820 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1820 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 134 (-1536 (-1820 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1820 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-1369 (((-665 |#1|) (-1225 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-2539 (((-1138 |#1|)) 156)) (-1697 (($ $) 222 (|has| |#1| (-1164)))) (-1551 (($ $) 211 (|has| |#1| (-1164)))) (-3191 (($) 145 (|has| |#1| (-342)))) (-1674 (($ $) 221 (|has| |#1| (-1164)))) (-1525 (($ $) 212 (|has| |#1| (-1164)))) (-1649 (($ $) 220 (|has| |#1| (-1164)))) (-1500 (($ $) 213 (|has| |#1| (-1164)))) (-4163 (((-1225 |#1|) $ (-1225 $)) 48) (((-665 |#1|) (-1225 $) (-1225 $)) 47) (((-1225 |#1|) $) 64) (((-665 |#1|) (-1225 $)) 63)) (-2844 (((-1225 |#1|) $) 61) (($ (-1225 |#1|)) 60) (((-1138 |#1|) $) 168) (($ (-1138 |#1|)) 154) (((-863 (-549)) $) 256 (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) 255 (|has| |#1| (-594 (-863 (-372))))) (((-167 (-372)) $) 207 (|has| |#1| (-993))) (((-167 (-219)) $) 206 (|has| |#1| (-993))) (((-525) $) 205 (|has| |#1| (-594 (-525))))) (-2538 (($ $) 253)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 142 (-1536 (-1820 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))) (|has| |#1| (-342))))) (-3409 (($ |#1| |#1|) 252)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35) (($ (-400 (-549))) 84 (-1536 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) 89 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-3407 (($ $) 141 (|has| |#1| (-342))) (((-3 $ "failed") $) 41 (-1536 (-1820 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))) (|has| |#1| (-143))))) (-4041 (((-1138 |#1|) $) 43)) (-1723 (((-747)) 28)) (-3420 (((-1225 $)) 65)) (-1732 (($ $) 231 (|has| |#1| (-1164)))) (-1585 (($ $) 219 (|has| |#1| (-1164)))) (-4053 (((-112) $ $) 93 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-1708 (($ $) 230 (|has| |#1| (-1164)))) (-1562 (($ $) 218 (|has| |#1| (-1164)))) (-1757 (($ $) 229 (|has| |#1| (-1164)))) (-1612 (($ $) 217 (|has| |#1| (-1164)))) (-4155 ((|#1| $) 247 (|has| |#1| (-1164)))) (-1933 (($ $) 228 (|has| |#1| (-1164)))) (-1625 (($ $) 216 (|has| |#1| (-1164)))) (-1744 (($ $) 227 (|has| |#1| (-1164)))) (-1599 (($ $) 215 (|has| |#1| (-1164)))) (-1721 (($ $) 226 (|has| |#1| (-1164)))) (-1575 (($ $) 214 (|has| |#1| (-1164)))) (-3603 (($ $) 248 (|has| |#1| (-1027)))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-1 |#1| |#1|) (-747)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-621 (-1142)) (-621 (-747))) 123 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 124 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) 125 (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 126 (|has| |#1| (-871 (-1142)))) (($ $ (-747)) 131 (-1536 (-1820 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1820 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 133 (-1536 (-1820 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1820 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2448 (((-112) $ $) 201 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 200 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 202 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 199 (|has| |#1| (-823)))) (-2512 (($ $ $) 118 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-400 (-549))) 236 (-12 (|has| |#1| (-973)) (|has| |#1| (-1164)))) (($ $ $) 234 (|has| |#1| (-1164))) (($ $ (-549)) 115 (|has| |#1| (-356)))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-549)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-549))) 116 (|has| |#1| (-356)))))
+((-2887 (((-112) $ $) NIL)) (-1418 (($ (-535)) 13) (($ $ $) 14)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 17)) (-3375 (((-112) $ $) 9)))
+(((-159) (-13 (-1067) (-10 -8 (-15 -1418 ($ (-535))) (-15 -1418 ($ $ $))))) (T -159))
+((-1418 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-159)))) (-1418 (*1 *1 *1 *1) (-5 *1 (-159))))
+(-13 (-1067) (-10 -8 (-15 -1418 ($ (-535))) (-15 -1418 ($ $ $))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-618 (-1101)) $) 9)) (-3375 (((-112) $ $) NIL)))
+(((-160) (-13 (-1049) (-10 -8 (-15 -3567 ((-618 (-1101)) $))))) (T -160))
+((-3567 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-160)))))
+(-13 (-1049) (-10 -8 (-15 -3567 ((-618 (-1101)) $))))
+((-3368 (((-113) (-1142)) 97)))
+(((-161) (-10 -7 (-15 -3368 ((-113) (-1142))))) (T -161))
+((-3368 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-113)) (-5 *1 (-161)))))
+(-10 -7 (-15 -3368 ((-113) (-1142))))
+((-1650 ((|#3| |#3|) 19)))
+(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1650 (|#3| |#3|))) (-1018) (-1200 |#1|) (-1200 |#2|)) (T -162))
+((-1650 (*1 *2 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-1200 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1200 *4)))))
+(-10 -7 (-15 -1650 (|#3| |#3|)))
+((-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 217)) (-3672 ((|#2| $) 96)) (-3829 (($ $) 247)) (-3985 (($ $) 241)) (-3025 (((-3 (-618 (-1136 $)) "failed") (-618 (-1136 $)) (-1136 $)) 40)) (-3827 (($ $) 245)) (-3984 (($ $) 239)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 |#2| #1#) $) 141)) (-3490 (((-535) $) NIL) (((-400 (-535)) $) NIL) ((|#2| $) 139)) (-2883 (($ $ $) 222)) (-2353 (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) 155) (((-665 |#2|) (-665 $)) 149)) (-4185 (($ (-1136 |#2|)) 119) (((-3 $ "failed") (-400 (-1136 |#2|))) NIL)) (-3804 (((-3 $ "failed") $) 209)) (-3345 (((-3 (-400 (-535)) "failed") $) 199)) (-3344 (((-112) $) 194)) (-3343 (((-400 (-535)) $) 197)) (-3427 (((-890)) 89)) (-2882 (($ $ $) 224)) (-1419 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3973 (($) 236)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 186) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 191)) (-3450 ((|#2| $) 94)) (-2125 (((-1136 |#2|) $) 121)) (-4301 (($ (-1 |#2| |#2|) $) 102)) (-4285 (($ $) 238)) (-3401 (((-1136 |#2|) $) 120)) (-2725 (($ $) 202)) (-1421 (($) 97)) (-3026 (((-398 (-1136 $)) (-1136 $)) 88)) (-3027 (((-398 (-1136 $)) (-1136 $)) 57)) (-3803 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-4286 (($ $) 237)) (-1699 (((-747) $) 219)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 229)) (-4100 ((|#2| (-1224 $)) NIL) ((|#2|) 91)) (-4153 (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-3519 (((-1136 |#2|)) 114)) (-3828 (($ $) 246)) (-3980 (($ $) 240)) (-3558 (((-1224 |#2|) $ (-1224 $)) 128) (((-665 |#2|) (-1224 $) (-1224 $)) NIL) (((-1224 |#2|) $) 110) (((-665 |#2|) (-1224 $)) NIL)) (-4313 (((-1224 |#2|) $) NIL) (($ (-1224 |#2|)) NIL) (((-1136 |#2|) $) NIL) (($ (-1136 |#2|)) NIL) (((-861 (-535)) $) 177) (((-861 (-371)) $) 181) (((-166 (-371)) $) 167) (((-166 (-219)) $) 162) (((-524) $) 173)) (-3330 (($ $) 98)) (-4300 (((-835) $) 138) (($ (-535)) NIL) (($ |#2|) NIL) (($ (-400 (-535))) NIL) (($ $) NIL)) (-2689 (((-1136 |#2|) $) 23)) (-3444 (((-747)) 100)) (-3835 (($ $) 250)) (-3823 (($ $) 244)) (-3833 (($ $) 248)) (-3821 (($ $) 242)) (-2309 ((|#2| $) 233)) (-3834 (($ $) 249)) (-3822 (($ $) 243)) (-3725 (($ $) 157)) (-3375 (((-112) $ $) 104)) (-3006 (((-112) $ $) 193)) (-4180 (($ $) 106) (($ $ $) NIL)) (-4182 (($ $ $) 105)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-400 (-535))) 267) (($ $ $) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL)))
+(((-163 |#1| |#2|) (-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4300 (|#1| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2172 ((-2 (|:| -1887 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -1699 ((-747) |#1|)) (-15 -3202 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -4313 ((-166 (-219)) |#1|)) (-15 -4313 ((-166 (-371)) |#1|)) (-15 -3985 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3973 (|#1|)) (-15 ** (|#1| |#1| (-400 (-535)))) (-15 -3027 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3026 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3025 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -1419 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2309 (|#2| |#1|)) (-15 -3725 (|#1| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3330 (|#1| |#1|)) (-15 -1421 (|#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4185 ((-3 |#1| "failed") (-400 (-1136 |#2|)))) (-15 -3401 ((-1136 |#2|) |#1|)) (-15 -4313 (|#1| (-1136 |#2|))) (-15 -4185 (|#1| (-1136 |#2|))) (-15 -3519 ((-1136 |#2|))) (-15 -2353 ((-665 |#2|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4313 ((-1136 |#2|) |#1|)) (-15 -4100 (|#2|)) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -2125 ((-1136 |#2|) |#1|)) (-15 -2689 ((-1136 |#2|) |#1|)) (-15 -4100 (|#2| (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -3450 (|#2| |#1|)) (-15 -3672 (|#2| |#1|)) (-15 -3427 ((-890))) (-15 -4300 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163))
+((-3444 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3427 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-890)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-4100 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-3519 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1136 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))))
+(-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4300 (|#1| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2172 ((-2 (|:| -1887 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -1699 ((-747) |#1|)) (-15 -3202 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -4313 ((-166 (-219)) |#1|)) (-15 -4313 ((-166 (-371)) |#1|)) (-15 -3985 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3973 (|#1|)) (-15 ** (|#1| |#1| (-400 (-535)))) (-15 -3027 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3026 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3025 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -1419 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2309 (|#2| |#1|)) (-15 -3725 (|#1| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3330 (|#1| |#1|)) (-15 -1421 (|#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4185 ((-3 |#1| "failed") (-400 (-1136 |#2|)))) (-15 -3401 ((-1136 |#2|) |#1|)) (-15 -4313 (|#1| (-1136 |#2|))) (-15 -4185 (|#1| (-1136 |#2|))) (-15 -3519 ((-1136 |#2|))) (-15 -2353 ((-665 |#2|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4313 ((-1136 |#2|) |#1|)) (-15 -4100 (|#2|)) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -2125 ((-1136 |#2|) |#1|)) (-15 -2689 ((-1136 |#2|) |#1|)) (-15 -4100 (|#2| (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -3450 (|#2| |#1|)) (-15 -3672 (|#2| |#1|)) (-15 -3427 ((-890))) (-15 -4300 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 91 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-2171 (($ $) 92 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-2169 (((-112) $) 94 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-1896 (((-665 |#1|) (-1224 $)) 44) (((-665 |#1|)) 59)) (-3672 ((|#1| $) 50)) (-3829 (($ $) 225 (|has| |#1| (-1164)))) (-3985 (($ $) 208 (|has| |#1| (-1164)))) (-1786 (((-1151 (-890) (-747)) (-535)) 144 (|has| |#1| (-343)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3028 (((-398 (-1136 $)) (-1136 $)) 239 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-4117 (($ $) 111 (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-4312 (((-398 $) $) 112 (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-3358 (($ $) 238 (-12 (|has| |#1| (-973)) (|has| |#1| (-1164))))) (-3025 (((-3 (-618 (-1136 $)) "failed") (-618 (-1136 $)) (-1136 $)) 242 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-1700 (((-112) $ $) 102 (|has| |#1| (-300)))) (-3454 (((-747)) 85 (|has| |#1| (-361)))) (-3827 (($ $) 224 (|has| |#1| (-1164)))) (-3984 (($ $) 209 (|has| |#1| (-1164)))) (-3831 (($ $) 223 (|has| |#1| (-1164)))) (-3983 (($ $) 210 (|has| |#1| (-1164)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 166 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 164 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 163)) (-3490 (((-535) $) 167 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 165 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 162)) (-1906 (($ (-1224 |#1|) (-1224 $)) 46) (($ (-1224 |#1|)) 62)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-2883 (($ $ $) 106 (|has| |#1| (-300)))) (-1895 (((-665 |#1|) $ (-1224 $)) 51) (((-665 |#1|) $) 57)) (-2353 (((-665 (-535)) (-665 $)) 161 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 160 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 159) (((-665 |#1|) (-665 $)) 158)) (-4185 (($ (-1136 |#1|)) 155) (((-3 $ "failed") (-400 (-1136 |#1|))) 152 (|has| |#1| (-356)))) (-3804 (((-3 $ "failed") $) 32)) (-3989 ((|#1| $) 250)) (-3345 (((-3 (-400 (-535)) "failed") $) 243 (|has| |#1| (-534)))) (-3344 (((-112) $) 245 (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) 244 (|has| |#1| (-534)))) (-3427 (((-890)) 52)) (-3315 (($) 88 (|has| |#1| (-361)))) (-2882 (($ $ $) 105 (|has| |#1| (-300)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 100 (|has| |#1| (-300)))) (-3154 (($) 146 (|has| |#1| (-343)))) (-1791 (((-112) $) 147 (|has| |#1| (-343)))) (-1881 (($ $ (-747)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-4069 (((-112) $) 113 (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-1419 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1027)) (|has| |#1| (-1164))))) (-3973 (($) 235 (|has| |#1| (-1164)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 258 (|has| |#1| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 257 (|has| |#1| (-857 (-371))))) (-4114 (((-890) $) 149 (|has| |#1| (-343))) (((-808 (-890)) $) 135 (|has| |#1| (-343)))) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 237 (-12 (|has| |#1| (-973)) (|has| |#1| (-1164))))) (-3450 ((|#1| $) 49)) (-3786 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 109 (|has| |#1| (-300)))) (-2125 (((-1136 |#1|) $) 42 (|has| |#1| (-356)))) (-3660 (($ $ $) 204 (|has| |#1| (-823)))) (-3661 (($ $ $) 203 (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) 259)) (-2121 (((-890) $) 87 (|has| |#1| (-361)))) (-4285 (($ $) 232 (|has| |#1| (-1164)))) (-3401 (((-1136 |#1|) $) 153)) (-2008 (($ (-618 $)) 98 (-3874 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (($ $ $) 97 (-3874 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-3576 (((-1124) $) 9)) (-2725 (($ $) 114 (|has| |#1| (-356)))) (-3787 (($) 140 (|has| |#1| (-343)) CONST)) (-2483 (($ (-890)) 86 (|has| |#1| (-361)))) (-1421 (($) 254)) (-3990 ((|#1| $) 251)) (-3577 (((-1086) $) 10)) (-2492 (($) 157)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 99 (-3874 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-3478 (($ (-618 $)) 96 (-3874 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (($ $ $) 95 (-3874 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 143 (|has| |#1| (-343)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 241 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-3027 (((-398 (-1136 $)) (-1136 $)) 240 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-4075 (((-398 $) $) 110 (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 107 (|has| |#1| (-300)))) (-3803 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 90 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 101 (|has| |#1| (-300)))) (-4286 (($ $) 233 (|has| |#1| (-1164)))) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) 265 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 263 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) 262 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 261 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) 260 (|has| |#1| (-505 (-1142) |#1|)))) (-1699 (((-747) $) 103 (|has| |#1| (-300)))) (-4142 (($ $ |#1|) 266 (|has| |#1| (-279 |#1| |#1|)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 104 (|has| |#1| (-300)))) (-4100 ((|#1| (-1224 $)) 45) ((|#1|) 58)) (-1882 (((-747) $) 148 (|has| |#1| (-343))) (((-3 (-747) "failed") $ $) 136 (|has| |#1| (-343)))) (-4153 (($ $ (-1 |#1| |#1|) (-747)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-618 (-1142)) (-618 (-747))) 127 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 128 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 129 (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 130 (|has| |#1| (-871 (-1142)))) (($ $ (-747)) 132 (-3874 (-3179 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3179 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 134 (-3874 (-3179 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3179 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2491 (((-665 |#1|) (-1224 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-3519 (((-1136 |#1|)) 156)) (-3832 (($ $) 222 (|has| |#1| (-1164)))) (-3982 (($ $) 211 (|has| |#1| (-1164)))) (-1785 (($) 145 (|has| |#1| (-343)))) (-3830 (($ $) 221 (|has| |#1| (-1164)))) (-3981 (($ $) 212 (|has| |#1| (-1164)))) (-3828 (($ $) 220 (|has| |#1| (-1164)))) (-3980 (($ $) 213 (|has| |#1| (-1164)))) (-3558 (((-1224 |#1|) $ (-1224 $)) 48) (((-665 |#1|) (-1224 $) (-1224 $)) 47) (((-1224 |#1|) $) 64) (((-665 |#1|) (-1224 $)) 63)) (-4313 (((-1224 |#1|) $) 61) (($ (-1224 |#1|)) 60) (((-1136 |#1|) $) 168) (($ (-1136 |#1|)) 154) (((-861 (-535)) $) 256 (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) 255 (|has| |#1| (-594 (-861 (-371))))) (((-166 (-371)) $) 207 (|has| |#1| (-991))) (((-166 (-219)) $) 206 (|has| |#1| (-991))) (((-524) $) 205 (|has| |#1| (-594 (-524))))) (-3330 (($ $) 253)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 142 (-3874 (-3179 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))) (|has| |#1| (-343))))) (-1420 (($ |#1| |#1|) 252)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35) (($ (-400 (-535))) 84 (-3874 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) 89 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-3023 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (-3874 (-3179 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))) (|has| |#1| (-143))))) (-2689 (((-1136 |#1|) $) 43)) (-3444 (((-747)) 28)) (-2123 (((-1224 $)) 65)) (-3835 (($ $) 231 (|has| |#1| (-1164)))) (-3823 (($ $) 219 (|has| |#1| (-1164)))) (-2170 (((-112) $ $) 93 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))) (-3833 (($ $) 230 (|has| |#1| (-1164)))) (-3821 (($ $) 218 (|has| |#1| (-1164)))) (-3837 (($ $) 229 (|has| |#1| (-1164)))) (-3825 (($ $) 217 (|has| |#1| (-1164)))) (-2309 ((|#1| $) 247 (|has| |#1| (-1164)))) (-3838 (($ $) 228 (|has| |#1| (-1164)))) (-3826 (($ $) 216 (|has| |#1| (-1164)))) (-3836 (($ $) 227 (|has| |#1| (-1164)))) (-3824 (($ $) 215 (|has| |#1| (-1164)))) (-3834 (($ $) 226 (|has| |#1| (-1164)))) (-3822 (($ $) 214 (|has| |#1| (-1164)))) (-3725 (($ $) 248 (|has| |#1| (-1027)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1 |#1| |#1|) (-747)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-618 (-1142)) (-618 (-747))) 123 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 124 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 125 (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 126 (|has| |#1| (-871 (-1142)))) (($ $ (-747)) 131 (-3874 (-3179 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3179 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 133 (-3874 (-3179 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3179 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2885 (((-112) $ $) 201 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 200 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 202 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 199 (|has| |#1| (-823)))) (-4291 (($ $ $) 118 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-400 (-535))) 236 (-12 (|has| |#1| (-973)) (|has| |#1| (-1164)))) (($ $ $) 234 (|has| |#1| (-1164))) (($ $ (-535)) 115 (|has| |#1| (-356)))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-535)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-535))) 116 (|has| |#1| (-356)))))
(((-164 |#1|) (-138) (-170)) (T -164))
-((-4117 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1919 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2538 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3409 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2160 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2038 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-541)))) (-3603 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1164)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1027)) (-4 *3 (-1164)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-549))))) (-3156 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-549))))))
-(-13 (-701 |t#1| (-1138 |t#1|)) (-404 |t#1|) (-225 |t#1|) (-331 |t#1|) (-393 |t#1|) (-855 |t#1|) (-370 |t#1|) (-170) (-10 -8 (-6 -3409) (-15 -1919 ($)) (-15 -2538 ($ $)) (-15 -3409 ($ |t#1| |t#1|)) (-15 -2160 (|t#1| $)) (-15 -2146 (|t#1| $)) (-15 -4117 (|t#1| $)) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-541)) (PROGN (-6 (-541)) (-15 -2038 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-6 -4335)) (-6 -4335) |%noBranch|) (IF (|has| |t#1| (-6 -4332)) (-6 -4332) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|) (IF (|has| |t#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-993)) (PROGN (-6 (-594 (-167 (-219)))) (-6 (-594 (-167 (-372))))) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3603 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1164)) (PROGN (-6 (-1164)) (-15 -4155 (|t#1| $)) (IF (|has| |t#1| (-973)) (-6 (-973)) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3638 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3230 ((-112) $)) (-15 -3867 ((-400 (-549)) $)) (-15 -3156 ((-3 (-400 (-549)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-300)) (-6 (-880)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-35) |has| |#1| (-1164)) ((-94) |has| |#1| (-1164)) ((-101) . T) ((-111 #0# #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1536 (|has| |#1| (-342)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) . T) ((-594 (-167 (-219))) |has| |#1| (-993)) ((-594 (-167 (-372))) |has| |#1| (-993)) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-594 (-863 (-372))) |has| |#1| (-594 (-863 (-372)))) ((-594 (-863 (-549))) |has| |#1| (-594 (-863 (-549)))) ((-594 #1=(-1138 |#1|)) . T) ((-225 |#1|) . T) ((-227) -1536 (|has| |#1| (-342)) (|has| |#1| (-227))) ((-237) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-277) |has| |#1| (-1164)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -1536 (|has| |#1| (-541)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-300) -1536 (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-395) |has| |#1| (-342)) ((-361) -1536 (|has| |#1| (-361)) (|has| |#1| (-342))) ((-342) |has| |#1| (-342)) ((-363 |#1| #1#) . T) ((-402 |#1| #1#) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-404 |#1|) . T) ((-444) -1536 (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-484) |has| |#1| (-1164)) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-541) -1536 (|has| |#1| (-541)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-624 #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-694 |#1|) . T) ((-694 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-701 |#1| #1#) . T) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-857 (-372)) |has| |#1| (-857 (-372))) ((-857 (-549)) |has| |#1| (-857 (-549))) ((-855 |#1|) . T) ((-880) -12 (|has| |#1| (-300)) (|has| |#1| (-880))) ((-891) -1536 (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-973) -12 (|has| |#1| (-973)) (|has| |#1| (-1164))) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1117) |has| |#1| (-342)) ((-1164) |has| |#1| (-1164)) ((-1167) |has| |#1| (-1164)) ((-1179) . T) ((-1183) -1536 (|has| |#1| (-342)) (|has| |#1| (-356)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))
-((-2120 (((-411 |#2|) |#2|) 63)))
-(((-165 |#1| |#2|) (-10 -7 (-15 -2120 ((-411 |#2|) |#2|))) (-300) (-1201 (-167 |#1|))) (T -165))
-((-2120 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1201 (-167 *4))))))
-(-10 -7 (-15 -2120 ((-411 |#2|) |#2|)))
-((-2796 (((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)) 14)))
-(((-166 |#1| |#2|) (-10 -7 (-15 -2796 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) (-170) (-170)) (T -166))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6)))))
-(-10 -7 (-15 -2796 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 33)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-541))))) (-2408 (($ $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-541))))) (-2477 (((-112) $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-541))))) (-3102 (((-665 |#1|) (-1225 $)) NIL) (((-665 |#1|)) NIL)) (-2905 ((|#1| $) NIL)) (-1663 (($ $) NIL (|has| |#1| (-1164)))) (-1511 (($ $) NIL (|has| |#1| (-1164)))) (-2572 (((-1152 (-892) (-747)) (-549)) NIL (|has| |#1| (-342)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-1912 (($ $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-3513 (((-411 $) $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-2134 (($ $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1164))))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-2647 (((-112) $ $) NIL (|has| |#1| (-300)))) (-3615 (((-747)) NIL (|has| |#1| (-361)))) (-1639 (($ $) NIL (|has| |#1| (-1164)))) (-1485 (($ $) NIL (|has| |#1| (-1164)))) (-1685 (($ $) NIL (|has| |#1| (-1164)))) (-1538 (($ $) NIL (|has| |#1| (-1164)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2127 (($ (-1225 |#1|) (-1225 $)) NIL) (($ (-1225 |#1|)) NIL)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-2094 (($ $ $) NIL (|has| |#1| (-300)))) (-2988 (((-665 |#1|) $ (-1225 $)) NIL) (((-665 |#1|) $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2558 (($ (-1138 |#1|)) NIL) (((-3 $ "failed") (-400 (-1138 |#1|))) NIL (|has| |#1| (-356)))) (-3976 (((-3 $ "failed") $) NIL)) (-2146 ((|#1| $) 13)) (-3156 (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-534)))) (-3230 (((-112) $) NIL (|has| |#1| (-534)))) (-3867 (((-400 (-549)) $) NIL (|has| |#1| (-534)))) (-3122 (((-892)) NIL)) (-3238 (($) NIL (|has| |#1| (-361)))) (-2066 (($ $ $) NIL (|has| |#1| (-300)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-300)))) (-1327 (($) NIL (|has| |#1| (-342)))) (-1729 (((-112) $) NIL (|has| |#1| (-342)))) (-3225 (($ $ (-747)) NIL (|has| |#1| (-342))) (($ $) NIL (|has| |#1| (-342)))) (-2471 (((-112) $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-3638 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1164))))) (-1425 (($) NIL (|has| |#1| (-1164)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| |#1| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| |#1| (-857 (-372))))) (-2078 (((-892) $) NIL (|has| |#1| (-342))) (((-809 (-892)) $) NIL (|has| |#1| (-342)))) (-3987 (((-112) $) 35)) (-3930 (($ $ (-549)) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1164))))) (-4117 ((|#1| $) 46)) (-3982 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-300)))) (-4030 (((-1138 |#1|) $) NIL (|has| |#1| (-356)))) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-2723 (((-892) $) NIL (|has| |#1| (-361)))) (-3631 (($ $) NIL (|has| |#1| (-1164)))) (-2546 (((-1138 |#1|) $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL (|has| |#1| (-356)))) (-3060 (($) NIL (|has| |#1| (-342)) CONST)) (-3491 (($ (-892)) NIL (|has| |#1| (-361)))) (-1919 (($) NIL)) (-2160 ((|#1| $) 15)) (-3988 (((-1086) $) NIL)) (-4246 (($) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-300)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL (|has| |#1| (-342)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-2120 (((-411 $) $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-300)))) (-2038 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 47 (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-541))))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-300)))) (-2718 (($ $) NIL (|has| |#1| (-1164)))) (-2685 (($ $ (-621 |#1|) (-621 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1142)) (-621 |#1|)) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|)))) (-4091 (((-747) $) NIL (|has| |#1| (-300)))) (-3340 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-300)))) (-3086 ((|#1| (-1225 $)) NIL) ((|#1|) NIL)) (-2591 (((-747) $) NIL (|has| |#1| (-342))) (((-3 (-747) "failed") $ $) NIL (|has| |#1| (-342)))) (-3455 (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-1369 (((-665 |#1|) (-1225 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2539 (((-1138 |#1|)) NIL)) (-1697 (($ $) NIL (|has| |#1| (-1164)))) (-1551 (($ $) NIL (|has| |#1| (-1164)))) (-3191 (($) NIL (|has| |#1| (-342)))) (-1674 (($ $) NIL (|has| |#1| (-1164)))) (-1525 (($ $) NIL (|has| |#1| (-1164)))) (-1649 (($ $) NIL (|has| |#1| (-1164)))) (-1500 (($ $) NIL (|has| |#1| (-1164)))) (-4163 (((-1225 |#1|) $ (-1225 $)) NIL) (((-665 |#1|) (-1225 $) (-1225 $)) NIL) (((-1225 |#1|) $) NIL) (((-665 |#1|) (-1225 $)) NIL)) (-2844 (((-1225 |#1|) $) NIL) (($ (-1225 |#1|)) NIL) (((-1138 |#1|) $) NIL) (($ (-1138 |#1|)) NIL) (((-863 (-549)) $) NIL (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| |#1| (-594 (-863 (-372))))) (((-167 (-372)) $) NIL (|has| |#1| (-993))) (((-167 (-219)) $) NIL (|has| |#1| (-993))) (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-2538 (($ $) 45)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-342))))) (-3409 (($ |#1| |#1|) 37)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) 36) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-541))))) (-3407 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-4041 (((-1138 |#1|) $) NIL)) (-1723 (((-747)) NIL)) (-3420 (((-1225 $)) NIL)) (-1732 (($ $) NIL (|has| |#1| (-1164)))) (-1585 (($ $) NIL (|has| |#1| (-1164)))) (-4053 (((-112) $ $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-541))))) (-1708 (($ $) NIL (|has| |#1| (-1164)))) (-1562 (($ $) NIL (|has| |#1| (-1164)))) (-1757 (($ $) NIL (|has| |#1| (-1164)))) (-1612 (($ $) NIL (|has| |#1| (-1164)))) (-4155 ((|#1| $) NIL (|has| |#1| (-1164)))) (-1933 (($ $) NIL (|has| |#1| (-1164)))) (-1625 (($ $) NIL (|has| |#1| (-1164)))) (-1744 (($ $) NIL (|has| |#1| (-1164)))) (-1599 (($ $) NIL (|has| |#1| (-1164)))) (-1721 (($ $) NIL (|has| |#1| (-1164)))) (-1575 (($ $) NIL (|has| |#1| (-1164)))) (-3603 (($ $) NIL (|has| |#1| (-1027)))) (-3275 (($) 28 T CONST)) (-3287 (($) 30 T CONST)) (-3135 (((-1124) $) 23 (|has| |#1| (-804))) (((-1124) $ (-112)) 25 (|has| |#1| (-804))) (((-1230) (-798) $) 26 (|has| |#1| (-804))) (((-1230) (-798) $ (-112)) 27 (|has| |#1| (-804)))) (-1700 (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2512 (($ $ $) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 39)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-400 (-549))) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1164)))) (($ $ $) NIL (|has| |#1| (-1164))) (($ $ (-549)) NIL (|has| |#1| (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-549)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-549))) NIL (|has| |#1| (-356)))))
-(((-167 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|))) (-170)) (T -167))
-NIL
-(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|)))
-((-2844 (((-863 |#1|) |#3|) 22)))
-(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -2844 ((-863 |#1|) |#3|))) (-1066) (-13 (-594 (-863 |#1|)) (-170)) (-164 |#2|)) (T -168))
-((-2844 (*1 *2 *3) (-12 (-4 *5 (-13 (-594 *2) (-170))) (-5 *2 (-863 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1066)) (-4 *3 (-164 *5)))))
-(-10 -7 (-15 -2844 ((-863 |#1|) |#3|)))
-((-3833 (((-112) $ $) NIL)) (-2783 (((-112) $) 9)) (-2322 (((-112) $ (-112)) 11)) (-3743 (($) 12)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2281 (($ $) 13)) (-3845 (((-834) $) 17)) (-4241 (((-112) $) 8)) (-2680 (((-112) $ (-112)) 10)) (-2388 (((-112) $ $) NIL)))
-(((-169) (-13 (-1066) (-10 -8 (-15 -3743 ($)) (-15 -4241 ((-112) $)) (-15 -2783 ((-112) $)) (-15 -2680 ((-112) $ (-112))) (-15 -2322 ((-112) $ (-112))) (-15 -2281 ($ $))))) (T -169))
-((-3743 (*1 *1) (-5 *1 (-169))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2680 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2322 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2281 (*1 *1 *1) (-5 *1 (-169))))
-(-13 (-1066) (-10 -8 (-15 -3743 ($)) (-15 -4241 ((-112) $)) (-15 -2783 ((-112) $)) (-15 -2680 ((-112) $ (-112))) (-15 -2322 ((-112) $ (-112))) (-15 -2281 ($ $))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ (-549)) 27)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-3450 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1421 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3330 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1420 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3990 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3803 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-3725 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1164)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1027)) (-4 *3 (-1164)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))) (-3345 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))))
+(-13 (-701 |t#1| (-1136 |t#1|)) (-405 |t#1|) (-225 |t#1|) (-331 |t#1|) (-393 |t#1|) (-855 |t#1|) (-370 |t#1|) (-170) (-10 -8 (-6 -1420) (-15 -1421 ($)) (-15 -3330 ($ $)) (-15 -1420 ($ |t#1| |t#1|)) (-15 -3990 (|t#1| $)) (-15 -3989 (|t#1| $)) (-15 -3450 (|t#1| $)) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-6 (-542)) (-15 -3803 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-6 -4335)) (-6 -4335) |%noBranch|) (IF (|has| |t#1| (-6 -4332)) (-6 -4332) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|) (IF (|has| |t#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-991)) (PROGN (-6 (-594 (-166 (-219)))) (-6 (-594 (-166 (-371))))) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3725 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1164)) (PROGN (-6 (-1164)) (-15 -2309 (|t#1| $)) (IF (|has| |t#1| (-973)) (-6 (-973)) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -1419 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-881)) (IF (|has| |t#1| (-300)) (-6 (-881)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-35) |has| |#1| (-1164)) ((-94) |has| |#1| (-1164)) ((-101) . T) ((-111 #1# #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3874 (|has| |#1| (-343)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) . T) ((-594 (-166 (-219))) |has| |#1| (-991)) ((-594 (-166 (-371))) |has| |#1| (-991)) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-594 (-861 (-371))) |has| |#1| (-594 (-861 (-371)))) ((-594 (-861 (-535))) |has| |#1| (-594 (-861 (-535)))) ((-594 #2=(-1136 |#1|)) . T) ((-225 |#1|) . T) ((-227) -3874 (|has| |#1| (-343)) (|has| |#1| (-227))) ((-237) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-277) |has| |#1| (-1164)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -3874 (|has| |#1| (-542)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-300) -3874 (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-395) |has| |#1| (-343)) ((-361) -3874 (|has| |#1| (-343)) (|has| |#1| (-361))) ((-343) |has| |#1| (-343)) ((-363 |#1| #2#) . T) ((-403 |#1| #2#) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-405 |#1|) . T) ((-444) -3874 (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-484) |has| |#1| (-1164)) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-542) -3874 (|has| |#1| (-542)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-624 #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-694 |#1|) . T) ((-694 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-701 |#1| #2#) . T) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-857 (-371)) |has| |#1| (-857 (-371))) ((-857 (-535)) |has| |#1| (-857 (-535))) ((-855 |#1|) . T) ((-881) -12 (|has| |#1| (-300)) (|has| |#1| (-881))) ((-892) -3874 (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-973) -12 (|has| |#1| (-973)) (|has| |#1| (-1164))) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) |has| |#1| (-343)) ((-1164) |has| |#1| (-1164)) ((-1167) |has| |#1| (-1164)) ((-1178) . T) ((-1183) -3874 (|has| |#1| (-343)) (|has| |#1| (-356)) (-12 (|has| |#1| (-300)) (|has| |#1| (-881)))))
+((-4075 (((-398 |#2|) |#2|) 63)))
+(((-165 |#1| |#2|) (-10 -7 (-15 -4075 ((-398 |#2|) |#2|))) (-300) (-1200 (-166 |#1|))) (T -165))
+((-4075 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1200 (-166 *4))))))
+(-10 -7 (-15 -4075 ((-398 |#2|) |#2|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 33)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-542))))) (-2171 (($ $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-542))))) (-2169 (((-112) $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-542))))) (-1896 (((-665 |#1|) (-1224 $)) NIL) (((-665 |#1|)) NIL)) (-3672 ((|#1| $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-1164)))) (-3985 (($ $) NIL (|has| |#1| (-1164)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| |#1| (-343)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-4117 (($ $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-4312 (((-398 $) $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-3358 (($ $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1164))))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-300)))) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3827 (($ $) NIL (|has| |#1| (-1164)))) (-3984 (($ $) NIL (|has| |#1| (-1164)))) (-3831 (($ $) NIL (|has| |#1| (-1164)))) (-3983 (($ $) NIL (|has| |#1| (-1164)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-1906 (($ (-1224 |#1|) (-1224 $)) NIL) (($ (-1224 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2883 (($ $ $) NIL (|has| |#1| (-300)))) (-1895 (((-665 |#1|) $ (-1224 $)) NIL) (((-665 |#1|) $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-4185 (($ (-1136 |#1|)) NIL) (((-3 $ "failed") (-400 (-1136 |#1|))) NIL (|has| |#1| (-356)))) (-3804 (((-3 $ "failed") $) NIL)) (-3989 ((|#1| $) 13)) (-3345 (((-3 (-400 (-535)) #3="failed") $) NIL (|has| |#1| (-534)))) (-3344 (((-112) $) NIL (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) NIL (|has| |#1| (-534)))) (-3427 (((-890)) NIL)) (-3315 (($) NIL (|has| |#1| (-361)))) (-2882 (($ $ $) NIL (|has| |#1| (-300)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-300)))) (-3154 (($) NIL (|has| |#1| (-343)))) (-1791 (((-112) $) NIL (|has| |#1| (-343)))) (-1881 (($ $ (-747)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-4069 (((-112) $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-1419 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1164))))) (-3973 (($) NIL (|has| |#1| (-1164)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| |#1| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| |#1| (-857 (-371))))) (-4114 (((-890) $) NIL (|has| |#1| (-343))) (((-808 (-890)) $) NIL (|has| |#1| (-343)))) (-2493 (((-112) $) 35)) (-3332 (($ $ (-535)) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1164))))) (-3450 ((|#1| $) 46)) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-1697 (((-3 (-618 $) #4="failed") (-618 $) $) NIL (|has| |#1| (-300)))) (-2125 (((-1136 |#1|) $) NIL (|has| |#1| (-356)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-4285 (($ $) NIL (|has| |#1| (-1164)))) (-3401 (((-1136 |#1|) $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-3787 (($) NIL (|has| |#1| (-343)) CONST)) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-1421 (($) NIL)) (-3990 ((|#1| $) 15)) (-3577 (((-1086) $) NIL)) (-2492 (($) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-300)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| |#1| (-343)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-881))))) (-4075 (((-398 $) $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-356))))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-300)))) (-3803 (((-3 $ #3#) $ |#1|) 44 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 47 (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-542))))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-300)))) (-4286 (($ $) NIL (|has| |#1| (-1164)))) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|)))) (-1699 (((-747) $) NIL (|has| |#1| (-300)))) (-4142 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-300)))) (-4100 ((|#1| (-1224 $)) NIL) ((|#1|) NIL)) (-1882 (((-747) $) NIL (|has| |#1| (-343))) (((-3 (-747) "failed") $ $) NIL (|has| |#1| (-343)))) (-4153 (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2491 (((-665 |#1|) (-1224 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3519 (((-1136 |#1|)) NIL)) (-3832 (($ $) NIL (|has| |#1| (-1164)))) (-3982 (($ $) NIL (|has| |#1| (-1164)))) (-1785 (($) NIL (|has| |#1| (-343)))) (-3830 (($ $) NIL (|has| |#1| (-1164)))) (-3981 (($ $) NIL (|has| |#1| (-1164)))) (-3828 (($ $) NIL (|has| |#1| (-1164)))) (-3980 (($ $) NIL (|has| |#1| (-1164)))) (-3558 (((-1224 |#1|) $ (-1224 $)) NIL) (((-665 |#1|) (-1224 $) (-1224 $)) NIL) (((-1224 |#1|) $) NIL) (((-665 |#1|) (-1224 $)) NIL)) (-4313 (((-1224 |#1|) $) NIL) (($ (-1224 |#1|)) NIL) (((-1136 |#1|) $) NIL) (($ (-1136 |#1|)) NIL) (((-861 (-535)) $) NIL (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| |#1| (-594 (-861 (-371))))) (((-166 (-371)) $) NIL (|has| |#1| (-991))) (((-166 (-219)) $) NIL (|has| |#1| (-991))) (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3330 (($ $) 45)) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-343))))) (-1420 (($ |#1| |#1|) 37)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) 36) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-542))))) (-3023 (($ $) NIL (|has| |#1| (-343))) (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-2689 (((-1136 |#1|) $) NIL)) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL)) (-3835 (($ $) NIL (|has| |#1| (-1164)))) (-3823 (($ $) NIL (|has| |#1| (-1164)))) (-2170 (((-112) $ $) NIL (-3874 (-12 (|has| |#1| (-300)) (|has| |#1| (-881))) (|has| |#1| (-542))))) (-3833 (($ $) NIL (|has| |#1| (-1164)))) (-3821 (($ $) NIL (|has| |#1| (-1164)))) (-3837 (($ $) NIL (|has| |#1| (-1164)))) (-3825 (($ $) NIL (|has| |#1| (-1164)))) (-2309 ((|#1| $) NIL (|has| |#1| (-1164)))) (-3838 (($ $) NIL (|has| |#1| (-1164)))) (-3826 (($ $) NIL (|has| |#1| (-1164)))) (-3836 (($ $) NIL (|has| |#1| (-1164)))) (-3824 (($ $) NIL (|has| |#1| (-1164)))) (-3834 (($ $) NIL (|has| |#1| (-1164)))) (-3822 (($ $) NIL (|has| |#1| (-1164)))) (-3725 (($ $) NIL (|has| |#1| (-1027)))) (-2979 (($) 28 T CONST)) (-2985 (($) 30 T CONST)) (-2825 (((-1124) $) 23 (|has| |#1| (-797))) (((-1124) $ (-112)) 25 (|has| |#1| (-797))) (((-1230) (-799) $) 26 (|has| |#1| (-797))) (((-1230) (-799) $ (-112)) 27 (|has| |#1| (-797)))) (-2990 (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 39)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-400 (-535))) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1164)))) (($ $ $) NIL (|has| |#1| (-1164))) (($ $ (-535)) NIL (|has| |#1| (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-535)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-535))) NIL (|has| |#1| (-356)))))
+(((-166 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|))) (-170)) (T -166))
+NIL
+(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|)))
+((-4301 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -4301 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-170) (-170)) (T -167))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-166 *6)) (-5 *1 (-167 *5 *6)))))
+(-10 -7 (-15 -4301 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|))))
+((-4313 (((-861 |#1|) |#3|) 22)))
+(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-861 |#1|) |#3|))) (-1067) (-13 (-594 (-861 |#1|)) (-170)) (-164 |#2|)) (T -168))
+((-4313 (*1 *2 *3) (-12 (-4 *5 (-13 (-594 *2) (-170))) (-5 *2 (-861 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1067)) (-4 *3 (-164 *5)))))
+(-10 -7 (-15 -4313 ((-861 |#1|) |#3|)))
+((-2887 (((-112) $ $) NIL)) (-1423 (((-112) $) 9)) (-1422 (((-112) $ (-112)) 11)) (-3960 (($) 12)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3742 (($ $) 13)) (-4300 (((-835) $) 17)) (-4048 (((-112) $) 8)) (-4204 (((-112) $ (-112)) 10)) (-3375 (((-112) $ $) NIL)))
+(((-169) (-13 (-1067) (-10 -8 (-15 -3960 ($)) (-15 -4048 ((-112) $)) (-15 -1423 ((-112) $)) (-15 -4204 ((-112) $ (-112))) (-15 -1422 ((-112) $ (-112))) (-15 -3742 ($ $))))) (T -169))
+((-3960 (*1 *1) (-5 *1 (-169))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-4204 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1422 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-3742 (*1 *1 *1) (-5 *1 (-169))))
+(-13 (-1067) (-10 -8 (-15 -3960 ($)) (-15 -4048 ((-112) $)) (-15 -1423 ((-112) $)) (-15 -4204 ((-112) $ (-112))) (-15 -1422 ((-112) $ (-112))) (-15 -3742 ($ $))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-170) (-138)) (T -170))
NIL
(-13 (-1018) (-111 $ $) (-10 -7 (-6 (-4338 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3559 (($ $) 6)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-1811 (($ $) 6)))
(((-171) (-138)) (T -171))
-((-3559 (*1 *1 *1) (-4 *1 (-171))))
-(-13 (-10 -8 (-15 -3559 ($ $))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2364 ((|#1| $) 75)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-2094 (($ $ $) NIL)) (-1389 (($ $) 19)) (-1267 (($ |#1| (-1122 |#1|)) 48)) (-3976 (((-3 $ "failed") $) 117)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-4074 (((-1122 |#1|) $) 82)) (-3180 (((-1122 |#1|) $) 79)) (-1506 (((-1122 |#1|) $) 80)) (-3987 (((-112) $) NIL)) (-3411 (((-1122 |#1|) $) 88)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3696 (($ (-621 $)) NIL) (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ (-621 $)) NIL) (($ $ $) NIL)) (-2120 (((-411 $) $) NIL)) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL)) (-2975 (($ $ (-549)) 91)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3949 (((-1122 |#1|) $) 89)) (-2242 (((-1122 (-400 |#1|)) $) 14)) (-2020 (($ (-400 |#1|)) 17) (($ |#1| (-1122 |#1|) (-1122 |#1|)) 38)) (-1814 (($ $) 93)) (-3845 (((-834) $) 127) (($ (-549)) 51) (($ |#1|) 52) (($ (-400 |#1|)) 36) (($ (-400 (-549))) NIL) (($ $) NIL)) (-1723 (((-747)) 64)) (-4053 (((-112) $ $) NIL)) (-1918 (((-1122 (-400 |#1|)) $) 18)) (-3275 (($) 25 T CONST)) (-3287 (($) 28 T CONST)) (-2388 (((-112) $ $) 35)) (-2512 (($ $ $) 115)) (-2499 (($ $) 106) (($ $ $) 103)) (-2485 (($ $ $) 101)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-400 |#1|) $) 111) (($ $ (-400 |#1|)) NIL) (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL)))
-(((-172 |#1|) (-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -2020 ($ (-400 |#1|))) (-15 -2020 ($ |#1| (-1122 |#1|) (-1122 |#1|))) (-15 -1267 ($ |#1| (-1122 |#1|))) (-15 -3180 ((-1122 |#1|) $)) (-15 -1506 ((-1122 |#1|) $)) (-15 -4074 ((-1122 |#1|) $)) (-15 -2364 (|#1| $)) (-15 -1389 ($ $)) (-15 -1918 ((-1122 (-400 |#1|)) $)) (-15 -2242 ((-1122 (-400 |#1|)) $)) (-15 -3411 ((-1122 |#1|) $)) (-15 -3949 ((-1122 |#1|) $)) (-15 -2975 ($ $ (-549))) (-15 -1814 ($ $)))) (-300)) (T -172))
-((-2020 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) (-2020 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-1267 (*1 *1 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-4074 (*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-2364 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-1389 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-1122 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-1122 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-2975 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1814 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))))
-(-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -2020 ($ (-400 |#1|))) (-15 -2020 ($ |#1| (-1122 |#1|) (-1122 |#1|))) (-15 -1267 ($ |#1| (-1122 |#1|))) (-15 -3180 ((-1122 |#1|) $)) (-15 -1506 ((-1122 |#1|) $)) (-15 -4074 ((-1122 |#1|) $)) (-15 -2364 (|#1| $)) (-15 -1389 ($ $)) (-15 -1918 ((-1122 (-400 |#1|)) $)) (-15 -2242 ((-1122 (-400 |#1|)) $)) (-15 -3411 ((-1122 |#1|) $)) (-15 -3949 ((-1122 |#1|) $)) (-15 -2975 ($ $ (-549))) (-15 -1814 ($ $))))
-((-2185 (($ (-108) $) 13)) (-3075 (((-3 (-108) "failed") (-1142) $) 12)) (-3845 (((-834) $) 16)) (-2246 (((-621 (-108)) $) 8)))
-(((-173) (-13 (-593 (-834)) (-10 -8 (-15 -2246 ((-621 (-108)) $)) (-15 -2185 ($ (-108) $)) (-15 -3075 ((-3 (-108) "failed") (-1142) $))))) (T -173))
-((-2246 (*1 *2 *1) (-12 (-5 *2 (-621 (-108))) (-5 *1 (-173)))) (-2185 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))) (-3075 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-108)) (-5 *1 (-173)))))
-(-13 (-593 (-834)) (-10 -8 (-15 -2246 ((-621 (-108)) $)) (-15 -2185 ($ (-108) $)) (-15 -3075 ((-3 (-108) "failed") (-1142) $))))
-((-3721 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 40)) (-2009 (((-914 |#1|) (-914 |#1|)) 19)) (-2582 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 36)) (-1401 (((-914 |#1|) (-914 |#1|)) 17)) (-1923 (((-914 |#1|) (-914 |#1|)) 25)) (-2503 (((-914 |#1|) (-914 |#1|)) 24)) (-2076 (((-914 |#1|) (-914 |#1|)) 23)) (-2254 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 37)) (-2744 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 35)) (-3697 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 34)) (-2243 (((-914 |#1|) (-914 |#1|)) 18)) (-1934 (((-1 (-914 |#1|) (-914 |#1|)) |#1| |#1|) 43)) (-3579 (((-914 |#1|) (-914 |#1|)) 8)) (-2866 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 39)) (-2735 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 38)))
-(((-174 |#1|) (-10 -7 (-15 -3579 ((-914 |#1|) (-914 |#1|))) (-15 -1401 ((-914 |#1|) (-914 |#1|))) (-15 -2243 ((-914 |#1|) (-914 |#1|))) (-15 -2009 ((-914 |#1|) (-914 |#1|))) (-15 -2076 ((-914 |#1|) (-914 |#1|))) (-15 -2503 ((-914 |#1|) (-914 |#1|))) (-15 -1923 ((-914 |#1|) (-914 |#1|))) (-15 -3697 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2744 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2582 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2254 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2735 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2866 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -3721 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1934 ((-1 (-914 |#1|) (-914 |#1|)) |#1| |#1|))) (-13 (-356) (-1164) (-973))) (T -174))
-((-1934 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-3721 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-2866 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-2735 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-2582 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-2744 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-3697 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-2503 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-2009 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-2243 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))))
-(-10 -7 (-15 -3579 ((-914 |#1|) (-914 |#1|))) (-15 -1401 ((-914 |#1|) (-914 |#1|))) (-15 -2243 ((-914 |#1|) (-914 |#1|))) (-15 -2009 ((-914 |#1|) (-914 |#1|))) (-15 -2076 ((-914 |#1|) (-914 |#1|))) (-15 -2503 ((-914 |#1|) (-914 |#1|))) (-15 -1923 ((-914 |#1|) (-914 |#1|))) (-15 -3697 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2744 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2582 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2254 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2735 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2866 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -3721 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1934 ((-1 (-914 |#1|) (-914 |#1|)) |#1| |#1|)))
-((-4041 ((|#2| |#3|) 27)))
-(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -4041 (|#2| |#3|))) (-170) (-1201 |#1|) (-701 |#1| |#2|)) (T -175))
-((-4041 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1201 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-701 *4 *2)))))
-(-10 -7 (-15 -4041 (|#2| |#3|)))
-((-1289 (((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)) 47 (|has| (-923 |#2|) (-857 |#1|)))))
-(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-923 |#2|) (-857 |#1|)) (-15 -1289 ((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))) |%noBranch|)) (-1066) (-13 (-857 |#1|) (-170)) (-164 |#2|)) (T -176))
-((-1289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 *3)) (-5 *4 (-863 *5)) (-4 *5 (-1066)) (-4 *3 (-164 *6)) (-4 (-923 *6) (-857 *5)) (-4 *6 (-13 (-857 *5) (-170))) (-5 *1 (-176 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-923 |#2|) (-857 |#1|)) (-15 -1289 ((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))) |%noBranch|))
-((-2137 (((-621 |#1|) (-621 |#1|) |#1|) 38)) (-3679 (((-621 |#1|) |#1| (-621 |#1|)) 19)) (-2593 (((-621 |#1|) (-621 (-621 |#1|)) (-621 |#1|)) 33) ((|#1| (-621 |#1|) (-621 |#1|)) 31)))
-(((-177 |#1|) (-10 -7 (-15 -3679 ((-621 |#1|) |#1| (-621 |#1|))) (-15 -2593 (|#1| (-621 |#1|) (-621 |#1|))) (-15 -2593 ((-621 |#1|) (-621 (-621 |#1|)) (-621 |#1|))) (-15 -2137 ((-621 |#1|) (-621 |#1|) |#1|))) (-300)) (T -177))
-((-2137 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))) (-2593 (*1 *2 *3 *2) (-12 (-5 *3 (-621 (-621 *4))) (-5 *2 (-621 *4)) (-4 *4 (-300)) (-5 *1 (-177 *4)))) (-2593 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) (-3679 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))))
-(-10 -7 (-15 -3679 ((-621 |#1|) |#1| (-621 |#1|))) (-15 -2593 (|#1| (-621 |#1|) (-621 |#1|))) (-15 -2593 ((-621 |#1|) (-621 (-621 |#1|)) (-621 |#1|))) (-15 -2137 ((-621 |#1|) (-621 |#1|) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-2099 (((-1178) $) 13)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3954 (((-1101) $) 10)) (-3845 (((-834) $) 22) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-178) (-13 (-1049) (-10 -8 (-15 -3954 ((-1101) $)) (-15 -2099 ((-1178) $))))) (T -178))
-((-3954 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-178)))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-178)))))
-(-13 (-1049) (-10 -8 (-15 -3954 ((-1101) $)) (-15 -2099 ((-1178) $))))
-((-2961 (((-2 (|:| |start| |#2|) (|:| -2886 (-411 |#2|))) |#2|) 61)) (-2916 ((|#1| |#1|) 54)) (-1682 (((-167 |#1|) |#2|) 84)) (-3331 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3417 ((|#2| |#2|) 83)) (-2046 (((-411 |#2|) |#2| |#1|) 113) (((-411 |#2|) |#2| |#1| (-112)) 81)) (-4117 ((|#1| |#2|) 112)) (-1671 ((|#2| |#2|) 119)) (-2120 (((-411 |#2|) |#2|) 134) (((-411 |#2|) |#2| |#1|) 32) (((-411 |#2|) |#2| |#1| (-112)) 133)) (-1736 (((-621 (-2 (|:| -2886 (-621 |#2|)) (|:| -3041 |#1|))) |#2| |#2|) 132) (((-621 (-2 (|:| -2886 (-621 |#2|)) (|:| -3041 |#1|))) |#2| |#2| (-112)) 76)) (-3288 (((-621 (-167 |#1|)) |#2| |#1|) 40) (((-621 (-167 |#1|)) |#2|) 41)))
-(((-179 |#1| |#2|) (-10 -7 (-15 -3288 ((-621 (-167 |#1|)) |#2|)) (-15 -3288 ((-621 (-167 |#1|)) |#2| |#1|)) (-15 -1736 ((-621 (-2 (|:| -2886 (-621 |#2|)) (|:| -3041 |#1|))) |#2| |#2| (-112))) (-15 -1736 ((-621 (-2 (|:| -2886 (-621 |#2|)) (|:| -3041 |#1|))) |#2| |#2|)) (-15 -2120 ((-411 |#2|) |#2| |#1| (-112))) (-15 -2120 ((-411 |#2|) |#2| |#1|)) (-15 -2120 ((-411 |#2|) |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -4117 (|#1| |#2|)) (-15 -2046 ((-411 |#2|) |#2| |#1| (-112))) (-15 -2046 ((-411 |#2|) |#2| |#1|)) (-15 -3417 (|#2| |#2|)) (-15 -3331 (|#1| |#2| |#1|)) (-15 -3331 (|#1| |#2|)) (-15 -1682 ((-167 |#1|) |#2|)) (-15 -2916 (|#1| |#1|)) (-15 -2961 ((-2 (|:| |start| |#2|) (|:| -2886 (-411 |#2|))) |#2|))) (-13 (-356) (-821)) (-1201 (-167 |#1|))) (T -179))
-((-2961 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-2 (|:| |start| *3) (|:| -2886 (-411 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))) (-2916 (*1 *2 *2) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1201 (-167 *2))))) (-1682 (*1 *2 *3) (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-356) (-821))) (-4 *3 (-1201 *2)))) (-3331 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1201 (-167 *2))))) (-3331 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1201 (-167 *2))))) (-3417 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1201 (-167 *3))))) (-2046 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))) (-2046 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))) (-4117 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1201 (-167 *2))))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1201 (-167 *3))))) (-2120 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))) (-2120 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))) (-2120 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))) (-1736 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-621 (-2 (|:| -2886 (-621 *3)) (|:| -3041 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))) (-1736 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-821))) (-5 *2 (-621 (-2 (|:| -2886 (-621 *3)) (|:| -3041 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1201 (-167 *5))))) (-3288 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-621 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))) (-3288 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-621 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))))
-(-10 -7 (-15 -3288 ((-621 (-167 |#1|)) |#2|)) (-15 -3288 ((-621 (-167 |#1|)) |#2| |#1|)) (-15 -1736 ((-621 (-2 (|:| -2886 (-621 |#2|)) (|:| -3041 |#1|))) |#2| |#2| (-112))) (-15 -1736 ((-621 (-2 (|:| -2886 (-621 |#2|)) (|:| -3041 |#1|))) |#2| |#2|)) (-15 -2120 ((-411 |#2|) |#2| |#1| (-112))) (-15 -2120 ((-411 |#2|) |#2| |#1|)) (-15 -2120 ((-411 |#2|) |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -4117 (|#1| |#2|)) (-15 -2046 ((-411 |#2|) |#2| |#1| (-112))) (-15 -2046 ((-411 |#2|) |#2| |#1|)) (-15 -3417 (|#2| |#2|)) (-15 -3331 (|#1| |#2| |#1|)) (-15 -3331 (|#1| |#2|)) (-15 -1682 ((-167 |#1|) |#2|)) (-15 -2916 (|#1| |#1|)) (-15 -2961 ((-2 (|:| |start| |#2|) (|:| -2886 (-411 |#2|))) |#2|)))
-((-3849 (((-3 |#2| "failed") |#2|) 14)) (-3376 (((-747) |#2|) 16)) (-3120 ((|#2| |#2| |#2|) 18)))
-(((-180 |#1| |#2|) (-10 -7 (-15 -3849 ((-3 |#2| "failed") |#2|)) (-15 -3376 ((-747) |#2|)) (-15 -3120 (|#2| |#2| |#2|))) (-1179) (-650 |#1|)) (T -180))
-((-3120 (*1 *2 *2 *2) (-12 (-4 *3 (-1179)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3)))) (-3376 (*1 *2 *3) (-12 (-4 *4 (-1179)) (-5 *2 (-747)) (-5 *1 (-180 *4 *3)) (-4 *3 (-650 *4)))) (-3849 (*1 *2 *2) (|partial| -12 (-4 *3 (-1179)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3)))))
-(-10 -7 (-15 -3849 ((-3 |#2| "failed") |#2|)) (-15 -3376 ((-747) |#2|)) (-15 -3120 (|#2| |#2| |#2|)))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2515 (((-1142) $) 10)) (-3845 (((-834) $) 17)) (-2871 (((-621 (-1147)) $) 12)) (-2388 (((-112) $ $) 15)))
-(((-181) (-13 (-1066) (-10 -8 (-15 -2515 ((-1142) $)) (-15 -2871 ((-621 (-1147)) $))))) (T -181))
-((-2515 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-181)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-621 (-1147))) (-5 *1 (-181)))))
-(-13 (-1066) (-10 -8 (-15 -2515 ((-1142) $)) (-15 -2871 ((-621 (-1147)) $))))
-((-3722 ((|#2| |#2|) 28)) (-3113 (((-112) |#2|) 19)) (-2146 (((-309 |#1|) |#2|) 12)) (-2160 (((-309 |#1|) |#2|) 14)) (-1451 ((|#2| |#2| (-1142)) 68) ((|#2| |#2|) 69)) (-4193 (((-167 (-309 |#1|)) |#2|) 10)) (-4032 ((|#2| |#2| (-1142)) 65) ((|#2| |#2|) 59)))
-(((-182 |#1| |#2|) (-10 -7 (-15 -1451 (|#2| |#2|)) (-15 -1451 (|#2| |#2| (-1142))) (-15 -4032 (|#2| |#2|)) (-15 -4032 (|#2| |#2| (-1142))) (-15 -2146 ((-309 |#1|) |#2|)) (-15 -2160 ((-309 |#1|) |#2|)) (-15 -3113 ((-112) |#2|)) (-15 -3722 (|#2| |#2|)) (-15 -4193 ((-167 (-309 |#1|)) |#2|))) (-13 (-541) (-823) (-1009 (-549))) (-13 (-27) (-1164) (-423 (-167 |#1|)))) (T -182))
-((-4193 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-167 (-309 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 (-167 *4)))))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 (-167 *3)))))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-112)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 (-167 *4)))))) (-2160 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-309 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 (-167 *4)))))) (-2146 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-309 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 (-167 *4)))))) (-4032 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 (-167 *4)))))) (-4032 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 (-167 *3)))))) (-1451 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 (-167 *4)))))) (-1451 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 (-167 *3)))))))
-(-10 -7 (-15 -1451 (|#2| |#2|)) (-15 -1451 (|#2| |#2| (-1142))) (-15 -4032 (|#2| |#2|)) (-15 -4032 (|#2| |#2| (-1142))) (-15 -2146 ((-309 |#1|) |#2|)) (-15 -2160 ((-309 |#1|) |#2|)) (-15 -3113 ((-112) |#2|)) (-15 -3722 (|#2| |#2|)) (-15 -4193 ((-167 (-309 |#1|)) |#2|)))
-((-1395 (((-1225 (-665 (-923 |#1|))) (-1225 (-665 |#1|))) 24)) (-3845 (((-1225 (-665 (-400 (-923 |#1|)))) (-1225 (-665 |#1|))) 33)))
-(((-183 |#1|) (-10 -7 (-15 -1395 ((-1225 (-665 (-923 |#1|))) (-1225 (-665 |#1|)))) (-15 -3845 ((-1225 (-665 (-400 (-923 |#1|)))) (-1225 (-665 |#1|))))) (-170)) (T -183))
-((-3845 (*1 *2 *3) (-12 (-5 *3 (-1225 (-665 *4))) (-4 *4 (-170)) (-5 *2 (-1225 (-665 (-400 (-923 *4))))) (-5 *1 (-183 *4)))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-1225 (-665 *4))) (-4 *4 (-170)) (-5 *2 (-1225 (-665 (-923 *4)))) (-5 *1 (-183 *4)))))
-(-10 -7 (-15 -1395 ((-1225 (-665 (-923 |#1|))) (-1225 (-665 |#1|)))) (-15 -3845 ((-1225 (-665 (-400 (-923 |#1|)))) (-1225 (-665 |#1|)))))
-((-2521 (((-1144 (-400 (-549))) (-1144 (-400 (-549))) (-1144 (-400 (-549)))) 66)) (-2481 (((-1144 (-400 (-549))) (-621 (-549)) (-621 (-549))) 75)) (-4123 (((-1144 (-400 (-549))) (-549)) 40)) (-1320 (((-1144 (-400 (-549))) (-549)) 52)) (-2685 (((-400 (-549)) (-1144 (-400 (-549)))) 62)) (-3026 (((-1144 (-400 (-549))) (-549)) 32)) (-2356 (((-1144 (-400 (-549))) (-549)) 48)) (-1812 (((-1144 (-400 (-549))) (-549)) 46)) (-3754 (((-1144 (-400 (-549))) (-1144 (-400 (-549))) (-1144 (-400 (-549)))) 60)) (-1814 (((-1144 (-400 (-549))) (-549)) 25)) (-1970 (((-400 (-549)) (-1144 (-400 (-549))) (-1144 (-400 (-549)))) 64)) (-2906 (((-1144 (-400 (-549))) (-549)) 30)) (-3871 (((-1144 (-400 (-549))) (-621 (-549))) 72)))
-(((-184) (-10 -7 (-15 -1814 ((-1144 (-400 (-549))) (-549))) (-15 -4123 ((-1144 (-400 (-549))) (-549))) (-15 -3026 ((-1144 (-400 (-549))) (-549))) (-15 -2906 ((-1144 (-400 (-549))) (-549))) (-15 -1812 ((-1144 (-400 (-549))) (-549))) (-15 -2356 ((-1144 (-400 (-549))) (-549))) (-15 -1320 ((-1144 (-400 (-549))) (-549))) (-15 -1970 ((-400 (-549)) (-1144 (-400 (-549))) (-1144 (-400 (-549))))) (-15 -3754 ((-1144 (-400 (-549))) (-1144 (-400 (-549))) (-1144 (-400 (-549))))) (-15 -2685 ((-400 (-549)) (-1144 (-400 (-549))))) (-15 -2521 ((-1144 (-400 (-549))) (-1144 (-400 (-549))) (-1144 (-400 (-549))))) (-15 -3871 ((-1144 (-400 (-549))) (-621 (-549)))) (-15 -2481 ((-1144 (-400 (-549))) (-621 (-549)) (-621 (-549)))))) (T -184))
-((-2481 (*1 *2 *3 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)))) (-2521 (*1 *2 *2 *2) (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)))) (-2685 (*1 *2 *3) (-12 (-5 *3 (-1144 (-400 (-549)))) (-5 *2 (-400 (-549))) (-5 *1 (-184)))) (-3754 (*1 *2 *2 *2) (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)))) (-1970 (*1 *2 *3 *3) (-12 (-5 *3 (-1144 (-400 (-549)))) (-5 *2 (-400 (-549))) (-5 *1 (-184)))) (-1320 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))) (-2356 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))) (-1812 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))) (-2906 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))) (-3026 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))) (-4123 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))) (-1814 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))))
-(-10 -7 (-15 -1814 ((-1144 (-400 (-549))) (-549))) (-15 -4123 ((-1144 (-400 (-549))) (-549))) (-15 -3026 ((-1144 (-400 (-549))) (-549))) (-15 -2906 ((-1144 (-400 (-549))) (-549))) (-15 -1812 ((-1144 (-400 (-549))) (-549))) (-15 -2356 ((-1144 (-400 (-549))) (-549))) (-15 -1320 ((-1144 (-400 (-549))) (-549))) (-15 -1970 ((-400 (-549)) (-1144 (-400 (-549))) (-1144 (-400 (-549))))) (-15 -3754 ((-1144 (-400 (-549))) (-1144 (-400 (-549))) (-1144 (-400 (-549))))) (-15 -2685 ((-400 (-549)) (-1144 (-400 (-549))))) (-15 -2521 ((-1144 (-400 (-549))) (-1144 (-400 (-549))) (-1144 (-400 (-549))))) (-15 -3871 ((-1144 (-400 (-549))) (-621 (-549)))) (-15 -2481 ((-1144 (-400 (-549))) (-621 (-549)) (-621 (-549)))))
-((-4055 (((-411 (-1138 (-549))) (-549)) 28)) (-3866 (((-621 (-1138 (-549))) (-549)) 23)) (-3575 (((-1138 (-549)) (-549)) 21)))
-(((-185) (-10 -7 (-15 -3866 ((-621 (-1138 (-549))) (-549))) (-15 -3575 ((-1138 (-549)) (-549))) (-15 -4055 ((-411 (-1138 (-549))) (-549))))) (T -185))
-((-4055 (*1 *2 *3) (-12 (-5 *2 (-411 (-1138 (-549)))) (-5 *1 (-185)) (-5 *3 (-549)))) (-3575 (*1 *2 *3) (-12 (-5 *2 (-1138 (-549))) (-5 *1 (-185)) (-5 *3 (-549)))) (-3866 (*1 *2 *3) (-12 (-5 *2 (-621 (-1138 (-549)))) (-5 *1 (-185)) (-5 *3 (-549)))))
-(-10 -7 (-15 -3866 ((-621 (-1138 (-549))) (-549))) (-15 -3575 ((-1138 (-549)) (-549))) (-15 -4055 ((-411 (-1138 (-549))) (-549))))
-((-3542 (((-1122 (-219)) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 105)) (-2376 (((-621 (-1124)) (-1122 (-219))) NIL)) (-1608 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 81)) (-4306 (((-621 (-219)) (-309 (-219)) (-1142) (-1060 (-816 (-219)))) NIL)) (-1741 (((-621 (-1124)) (-621 (-219))) NIL)) (-4124 (((-219) (-1060 (-816 (-219)))) 24)) (-2799 (((-219) (-1060 (-816 (-219)))) 25)) (-2622 (((-372) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 98)) (-1324 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-1882 (((-1124) (-219)) NIL)) (-3032 (((-1124) (-621 (-1124))) 20)) (-3818 (((-1006) (-1142) (-1142) (-1006)) 13)))
-(((-186) (-10 -7 (-15 -1608 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1324 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4124 ((-219) (-1060 (-816 (-219))))) (-15 -2799 ((-219) (-1060 (-816 (-219))))) (-15 -2622 ((-372) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4306 ((-621 (-219)) (-309 (-219)) (-1142) (-1060 (-816 (-219))))) (-15 -3542 ((-1122 (-219)) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1882 ((-1124) (-219))) (-15 -1741 ((-621 (-1124)) (-621 (-219)))) (-15 -2376 ((-621 (-1124)) (-1122 (-219)))) (-15 -3032 ((-1124) (-621 (-1124)))) (-15 -3818 ((-1006) (-1142) (-1142) (-1006))))) (T -186))
-((-3818 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1142)) (-5 *1 (-186)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-621 (-1124))) (-5 *2 (-1124)) (-5 *1 (-186)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-1122 (-219))) (-5 *2 (-621 (-1124))) (-5 *1 (-186)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-621 (-219))) (-5 *2 (-621 (-1124))) (-5 *1 (-186)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-186)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1122 (-219))) (-5 *1 (-186)))) (-4306 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1142)) (-5 *5 (-1060 (-816 (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-186)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-186)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-1060 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1060 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-1324 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-186)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-186)))))
-(-10 -7 (-15 -1608 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1324 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4124 ((-219) (-1060 (-816 (-219))))) (-15 -2799 ((-219) (-1060 (-816 (-219))))) (-15 -2622 ((-372) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4306 ((-621 (-219)) (-309 (-219)) (-1142) (-1060 (-816 (-219))))) (-15 -3542 ((-1122 (-219)) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1882 ((-1124) (-219))) (-15 -1741 ((-621 (-1124)) (-621 (-219)))) (-15 -2376 ((-621 (-1124)) (-1122 (-219)))) (-15 -3032 ((-1124) (-621 (-1124)))) (-15 -3818 ((-1006) (-1142) (-1142) (-1006))))
-((-3833 (((-112) $ $) NIL)) (-3515 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 55) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-1811 (*1 *1 *1) (-4 *1 (-171))))
+(-13 (-10 -8 (-15 -1811 ($ $))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 ((|#1| $) 75)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL)) (-1428 (($ $) 19)) (-1432 (($ |#1| (-1119 |#1|)) 48)) (-3804 (((-3 $ "failed") $) 117)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-1429 (((-1119 |#1|) $) 82)) (-1431 (((-1119 |#1|) $) 79)) (-1430 (((-1119 |#1|) $) 80)) (-2493 (((-112) $) NIL)) (-1425 (((-1119 |#1|) $) 88)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2008 (($ (-618 $)) NIL) (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ (-618 $)) NIL) (($ $ $) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-4111 (($ $ (-535)) 91)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1424 (((-1119 |#1|) $) 89)) (-1426 (((-1119 (-400 |#1|)) $) 14)) (-2933 (($ (-400 |#1|)) 17) (($ |#1| (-1119 |#1|) (-1119 |#1|)) 38)) (-3212 (($ $) 93)) (-4300 (((-835) $) 127) (($ (-535)) 51) (($ |#1|) 52) (($ (-400 |#1|)) 36) (($ (-400 (-535))) NIL) (($ $) NIL)) (-3444 (((-747)) 64)) (-2170 (((-112) $ $) NIL)) (-1427 (((-1119 (-400 |#1|)) $) 18)) (-2979 (($) 25 T CONST)) (-2985 (($) 28 T CONST)) (-3375 (((-112) $ $) 35)) (-4291 (($ $ $) 115)) (-4180 (($ $) 106) (($ $ $) 103)) (-4182 (($ $ $) 101)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-400 |#1|) $) 111) (($ $ (-400 |#1|)) NIL) (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL)))
+(((-172 |#1|) (-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -2933 ($ (-400 |#1|))) (-15 -2933 ($ |#1| (-1119 |#1|) (-1119 |#1|))) (-15 -1432 ($ |#1| (-1119 |#1|))) (-15 -1431 ((-1119 |#1|) $)) (-15 -1430 ((-1119 |#1|) $)) (-15 -1429 ((-1119 |#1|) $)) (-15 -3447 (|#1| $)) (-15 -1428 ($ $)) (-15 -1427 ((-1119 (-400 |#1|)) $)) (-15 -1426 ((-1119 (-400 |#1|)) $)) (-15 -1425 ((-1119 |#1|) $)) (-15 -1424 ((-1119 |#1|) $)) (-15 -4111 ($ $ (-535))) (-15 -3212 ($ $)))) (-300)) (T -172))
+((-2933 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) (-2933 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1119 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-1432 (*1 *1 *2 *3) (-12 (-5 *3 (-1119 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3447 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-1428 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1119 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-1119 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3212 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))))
+(-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -2933 ($ (-400 |#1|))) (-15 -2933 ($ |#1| (-1119 |#1|) (-1119 |#1|))) (-15 -1432 ($ |#1| (-1119 |#1|))) (-15 -1431 ((-1119 |#1|) $)) (-15 -1430 ((-1119 |#1|) $)) (-15 -1429 ((-1119 |#1|) $)) (-15 -3447 (|#1| $)) (-15 -1428 ($ $)) (-15 -1427 ((-1119 (-400 |#1|)) $)) (-15 -1426 ((-1119 (-400 |#1|)) $)) (-15 -1425 ((-1119 |#1|) $)) (-15 -1424 ((-1119 |#1|) $)) (-15 -4111 ($ $ (-535))) (-15 -3212 ($ $))))
+((-1433 (($ (-108) $) 13)) (-3555 (((-3 (-108) "failed") (-1142) $) 12)) (-4300 (((-835) $) 16)) (-1434 (((-618 (-108)) $) 8)))
+(((-173) (-13 (-593 (-835)) (-10 -8 (-15 -1434 ((-618 (-108)) $)) (-15 -1433 ($ (-108) $)) (-15 -3555 ((-3 (-108) "failed") (-1142) $))))) (T -173))
+((-1434 (*1 *2 *1) (-12 (-5 *2 (-618 (-108))) (-5 *1 (-173)))) (-1433 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))) (-3555 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-108)) (-5 *1 (-173)))))
+(-13 (-593 (-835)) (-10 -8 (-15 -1434 ((-618 (-108)) $)) (-15 -1433 ($ (-108) $)) (-15 -3555 ((-3 (-108) "failed") (-1142) $))))
+((-1447 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 40)) (-1438 (((-914 |#1|) (-914 |#1|)) 19)) (-1443 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 36)) (-1436 (((-914 |#1|) (-914 |#1|)) 17)) (-1441 (((-914 |#1|) (-914 |#1|)) 25)) (-1440 (((-914 |#1|) (-914 |#1|)) 24)) (-1439 (((-914 |#1|) (-914 |#1|)) 23)) (-1444 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 37)) (-1442 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 35)) (-1754 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 34)) (-1437 (((-914 |#1|) (-914 |#1|)) 18)) (-1448 (((-1 (-914 |#1|) (-914 |#1|)) |#1| |#1|) 43)) (-1435 (((-914 |#1|) (-914 |#1|)) 8)) (-1446 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 39)) (-1445 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 38)))
+(((-174 |#1|) (-10 -7 (-15 -1435 ((-914 |#1|) (-914 |#1|))) (-15 -1436 ((-914 |#1|) (-914 |#1|))) (-15 -1437 ((-914 |#1|) (-914 |#1|))) (-15 -1438 ((-914 |#1|) (-914 |#1|))) (-15 -1439 ((-914 |#1|) (-914 |#1|))) (-15 -1440 ((-914 |#1|) (-914 |#1|))) (-15 -1441 ((-914 |#1|) (-914 |#1|))) (-15 -1754 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1442 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1443 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1444 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1445 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1446 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1447 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1448 ((-1 (-914 |#1|) (-914 |#1|)) |#1| |#1|))) (-13 (-356) (-1164) (-973))) (T -174))
+((-1448 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1447 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1446 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1445 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1444 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1443 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1442 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1754 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1164) (-973))))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1440 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1439 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1438 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1437 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))) (-1435 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973))) (-5 *1 (-174 *3)))))
+(-10 -7 (-15 -1435 ((-914 |#1|) (-914 |#1|))) (-15 -1436 ((-914 |#1|) (-914 |#1|))) (-15 -1437 ((-914 |#1|) (-914 |#1|))) (-15 -1438 ((-914 |#1|) (-914 |#1|))) (-15 -1439 ((-914 |#1|) (-914 |#1|))) (-15 -1440 ((-914 |#1|) (-914 |#1|))) (-15 -1441 ((-914 |#1|) (-914 |#1|))) (-15 -1754 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1442 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1443 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1444 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1445 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1446 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1447 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1448 ((-1 (-914 |#1|) (-914 |#1|)) |#1| |#1|)))
+((-2689 ((|#2| |#3|) 27)))
+(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -2689 (|#2| |#3|))) (-170) (-1200 |#1|) (-701 |#1| |#2|)) (T -175))
+((-2689 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1200 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-701 *4 *2)))))
+(-10 -7 (-15 -2689 (|#2| |#3|)))
+((-3117 (((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)) 47 (|has| (-917 |#2|) (-857 |#1|)))))
+(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-917 |#2|) (-857 |#1|)) (-15 -3117 ((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))) |%noBranch|)) (-1067) (-13 (-857 |#1|) (-170)) (-164 |#2|)) (T -176))
+((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *3 (-164 *6)) (-4 (-917 *6) (-857 *5)) (-4 *6 (-13 (-857 *5) (-170))) (-5 *1 (-176 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-917 |#2|) (-857 |#1|)) (-15 -3117 ((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))) |%noBranch|))
+((-1450 (((-618 |#1|) (-618 |#1|) |#1|) 38)) (-1449 (((-618 |#1|) |#1| (-618 |#1|)) 19)) (-2190 (((-618 |#1|) (-618 (-618 |#1|)) (-618 |#1|)) 33) ((|#1| (-618 |#1|) (-618 |#1|)) 31)))
+(((-177 |#1|) (-10 -7 (-15 -1449 ((-618 |#1|) |#1| (-618 |#1|))) (-15 -2190 (|#1| (-618 |#1|) (-618 |#1|))) (-15 -2190 ((-618 |#1|) (-618 (-618 |#1|)) (-618 |#1|))) (-15 -1450 ((-618 |#1|) (-618 |#1|) |#1|))) (-300)) (T -177))
+((-1450 (*1 *2 *2 *3) (-12 (-5 *2 (-618 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))) (-2190 (*1 *2 *3 *2) (-12 (-5 *3 (-618 (-618 *4))) (-5 *2 (-618 *4)) (-4 *4 (-300)) (-5 *1 (-177 *4)))) (-2190 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) (-1449 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))))
+(-10 -7 (-15 -1449 ((-618 |#1|) |#1| (-618 |#1|))) (-15 -2190 (|#1| (-618 |#1|) (-618 |#1|))) (-15 -2190 ((-618 |#1|) (-618 (-618 |#1|)) (-618 |#1|))) (-15 -1450 ((-618 |#1|) (-618 |#1|) |#1|)))
+((-2887 (((-112) $ $) NIL)) (-3652 (((-1179) $) 13)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3540 (((-1101) $) 10)) (-4300 (((-835) $) 22) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-178) (-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3652 ((-1179) $))))) (T -178))
+((-3540 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-178)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-178)))))
+(-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3652 ((-1179) $))))
+((-1459 (((-2 (|:| |start| |#2|) (|:| -2758 (-398 |#2|))) |#2|) 61)) (-1458 ((|#1| |#1|) 54)) (-1457 (((-166 |#1|) |#2|) 84)) (-1456 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1455 ((|#2| |#2|) 83)) (-1454 (((-398 |#2|) |#2| |#1|) 113) (((-398 |#2|) |#2| |#1| (-112)) 81)) (-3450 ((|#1| |#2|) 112)) (-1453 ((|#2| |#2|) 119)) (-4075 (((-398 |#2|) |#2|) 134) (((-398 |#2|) |#2| |#1|) 32) (((-398 |#2|) |#2| |#1| (-112)) 133)) (-1452 (((-618 (-2 (|:| -2758 (-618 |#2|)) (|:| -1651 |#1|))) |#2| |#2|) 132) (((-618 (-2 (|:| -2758 (-618 |#2|)) (|:| -1651 |#1|))) |#2| |#2| (-112)) 76)) (-1451 (((-618 (-166 |#1|)) |#2| |#1|) 40) (((-618 (-166 |#1|)) |#2|) 41)))
+(((-179 |#1| |#2|) (-10 -7 (-15 -1451 ((-618 (-166 |#1|)) |#2|)) (-15 -1451 ((-618 (-166 |#1|)) |#2| |#1|)) (-15 -1452 ((-618 (-2 (|:| -2758 (-618 |#2|)) (|:| -1651 |#1|))) |#2| |#2| (-112))) (-15 -1452 ((-618 (-2 (|:| -2758 (-618 |#2|)) (|:| -1651 |#1|))) |#2| |#2|)) (-15 -4075 ((-398 |#2|) |#2| |#1| (-112))) (-15 -4075 ((-398 |#2|) |#2| |#1|)) (-15 -4075 ((-398 |#2|) |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -3450 (|#1| |#2|)) (-15 -1454 ((-398 |#2|) |#2| |#1| (-112))) (-15 -1454 ((-398 |#2|) |#2| |#1|)) (-15 -1455 (|#2| |#2|)) (-15 -1456 (|#1| |#2| |#1|)) (-15 -1456 (|#1| |#2|)) (-15 -1457 ((-166 |#1|) |#2|)) (-15 -1458 (|#1| |#1|)) (-15 -1459 ((-2 (|:| |start| |#2|) (|:| -2758 (-398 |#2|))) |#2|))) (-13 (-356) (-821)) (-1200 (-166 |#1|))) (T -179))
+((-1459 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-2 (|:| |start| *3) (|:| -2758 (-398 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-1458 (*1 *2 *2) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1200 (-166 *2))))) (-1457 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-356) (-821))) (-4 *3 (-1200 *2)))) (-1456 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1200 (-166 *2))))) (-1456 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1200 (-166 *2))))) (-1455 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1200 (-166 *3))))) (-1454 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-3450 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1200 (-166 *2))))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1200 (-166 *3))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-4075 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-4075 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-1452 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-618 (-2 (|:| -2758 (-618 *3)) (|:| -1651 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-1452 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-821))) (-5 *2 (-618 (-2 (|:| -2758 (-618 *3)) (|:| -1651 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1200 (-166 *5))))) (-1451 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-618 (-166 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))) (-1451 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-618 (-166 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))))
+(-10 -7 (-15 -1451 ((-618 (-166 |#1|)) |#2|)) (-15 -1451 ((-618 (-166 |#1|)) |#2| |#1|)) (-15 -1452 ((-618 (-2 (|:| -2758 (-618 |#2|)) (|:| -1651 |#1|))) |#2| |#2| (-112))) (-15 -1452 ((-618 (-2 (|:| -2758 (-618 |#2|)) (|:| -1651 |#1|))) |#2| |#2|)) (-15 -4075 ((-398 |#2|) |#2| |#1| (-112))) (-15 -4075 ((-398 |#2|) |#2| |#1|)) (-15 -4075 ((-398 |#2|) |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -3450 (|#1| |#2|)) (-15 -1454 ((-398 |#2|) |#2| |#1| (-112))) (-15 -1454 ((-398 |#2|) |#2| |#1|)) (-15 -1455 (|#2| |#2|)) (-15 -1456 (|#1| |#2| |#1|)) (-15 -1456 (|#1| |#2|)) (-15 -1457 ((-166 |#1|) |#2|)) (-15 -1458 (|#1| |#1|)) (-15 -1459 ((-2 (|:| |start| |#2|) (|:| -2758 (-398 |#2|))) |#2|)))
+((-1460 (((-3 |#2| "failed") |#2|) 14)) (-1461 (((-747) |#2|) 16)) (-1462 ((|#2| |#2| |#2|) 18)))
+(((-180 |#1| |#2|) (-10 -7 (-15 -1460 ((-3 |#2| "failed") |#2|)) (-15 -1461 ((-747) |#2|)) (-15 -1462 (|#2| |#2| |#2|))) (-1178) (-650 |#1|)) (T -180))
+((-1462 (*1 *2 *2 *2) (-12 (-4 *3 (-1178)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3)))) (-1461 (*1 *2 *3) (-12 (-4 *4 (-1178)) (-5 *2 (-747)) (-5 *1 (-180 *4 *3)) (-4 *3 (-650 *4)))) (-1460 (*1 *2 *2) (|partial| -12 (-4 *3 (-1178)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3)))))
+(-10 -7 (-15 -1460 ((-3 |#2| "failed") |#2|)) (-15 -1461 ((-747) |#2|)) (-15 -1462 (|#2| |#2| |#2|)))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1464 (((-1142) $) 10)) (-4300 (((-835) $) 17)) (-1463 (((-618 (-1147)) $) 12)) (-3375 (((-112) $ $) 15)))
+(((-181) (-13 (-1067) (-10 -8 (-15 -1464 ((-1142) $)) (-15 -1463 ((-618 (-1147)) $))))) (T -181))
+((-1464 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-181)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-181)))))
+(-13 (-1067) (-10 -8 (-15 -1464 ((-1142) $)) (-15 -1463 ((-618 (-1147)) $))))
+((-3988 ((|#2| |#2|) 28)) (-3991 (((-112) |#2|) 19)) (-3989 (((-307 |#1|) |#2|) 12)) (-3990 (((-307 |#1|) |#2|) 14)) (-3986 ((|#2| |#2| (-1142)) 68) ((|#2| |#2|) 69)) (-3992 (((-166 (-307 |#1|)) |#2|) 10)) (-3987 ((|#2| |#2| (-1142)) 65) ((|#2| |#2|) 59)))
+(((-182 |#1| |#2|) (-10 -7 (-15 -3986 (|#2| |#2|)) (-15 -3986 (|#2| |#2| (-1142))) (-15 -3987 (|#2| |#2|)) (-15 -3987 (|#2| |#2| (-1142))) (-15 -3989 ((-307 |#1|) |#2|)) (-15 -3990 ((-307 |#1|) |#2|)) (-15 -3991 ((-112) |#2|)) (-15 -3988 (|#2| |#2|)) (-15 -3992 ((-166 (-307 |#1|)) |#2|))) (-13 (-542) (-823) (-1009 (-535))) (-13 (-27) (-1164) (-414 (-166 |#1|)))) (T -182))
+((-3992 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-166 (-307 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4)))))) (-3988 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *3)))))) (-3991 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-112)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4)))))) (-3990 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-307 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4)))))) (-3989 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-307 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4)))))) (-3987 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *4)))))) (-3987 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *3)))))) (-3986 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *4)))))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *3)))))))
+(-10 -7 (-15 -3986 (|#2| |#2|)) (-15 -3986 (|#2| |#2| (-1142))) (-15 -3987 (|#2| |#2|)) (-15 -3987 (|#2| |#2| (-1142))) (-15 -3989 ((-307 |#1|) |#2|)) (-15 -3990 ((-307 |#1|) |#2|)) (-15 -3991 ((-112) |#2|)) (-15 -3988 (|#2| |#2|)) (-15 -3992 ((-166 (-307 |#1|)) |#2|)))
+((-1465 (((-1224 (-665 (-917 |#1|))) (-1224 (-665 |#1|))) 24)) (-4300 (((-1224 (-665 (-400 (-917 |#1|)))) (-1224 (-665 |#1|))) 33)))
+(((-183 |#1|) (-10 -7 (-15 -1465 ((-1224 (-665 (-917 |#1|))) (-1224 (-665 |#1|)))) (-15 -4300 ((-1224 (-665 (-400 (-917 |#1|)))) (-1224 (-665 |#1|))))) (-170)) (T -183))
+((-4300 (*1 *2 *3) (-12 (-5 *3 (-1224 (-665 *4))) (-4 *4 (-170)) (-5 *2 (-1224 (-665 (-400 (-917 *4))))) (-5 *1 (-183 *4)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-1224 (-665 *4))) (-4 *4 (-170)) (-5 *2 (-1224 (-665 (-917 *4)))) (-5 *1 (-183 *4)))))
+(-10 -7 (-15 -1465 ((-1224 (-665 (-917 |#1|))) (-1224 (-665 |#1|)))) (-15 -4300 ((-1224 (-665 (-400 (-917 |#1|)))) (-1224 (-665 |#1|)))))
+((-1473 (((-1144 (-400 (-535))) (-1144 (-400 (-535))) (-1144 (-400 (-535)))) 66)) (-1475 (((-1144 (-400 (-535))) (-618 (-535)) (-618 (-535))) 75)) (-1466 (((-1144 (-400 (-535))) (-535)) 40)) (-4197 (((-1144 (-400 (-535))) (-535)) 52)) (-4110 (((-400 (-535)) (-1144 (-400 (-535)))) 62)) (-1467 (((-1144 (-400 (-535))) (-535)) 32)) (-1470 (((-1144 (-400 (-535))) (-535)) 48)) (-1469 (((-1144 (-400 (-535))) (-535)) 46)) (-1472 (((-1144 (-400 (-535))) (-1144 (-400 (-535))) (-1144 (-400 (-535)))) 60)) (-3212 (((-1144 (-400 (-535))) (-535)) 25)) (-1471 (((-400 (-535)) (-1144 (-400 (-535))) (-1144 (-400 (-535)))) 64)) (-1468 (((-1144 (-400 (-535))) (-535)) 30)) (-1474 (((-1144 (-400 (-535))) (-618 (-535))) 72)))
+(((-184) (-10 -7 (-15 -3212 ((-1144 (-400 (-535))) (-535))) (-15 -1466 ((-1144 (-400 (-535))) (-535))) (-15 -1467 ((-1144 (-400 (-535))) (-535))) (-15 -1468 ((-1144 (-400 (-535))) (-535))) (-15 -1469 ((-1144 (-400 (-535))) (-535))) (-15 -1470 ((-1144 (-400 (-535))) (-535))) (-15 -4197 ((-1144 (-400 (-535))) (-535))) (-15 -1471 ((-400 (-535)) (-1144 (-400 (-535))) (-1144 (-400 (-535))))) (-15 -1472 ((-1144 (-400 (-535))) (-1144 (-400 (-535))) (-1144 (-400 (-535))))) (-15 -4110 ((-400 (-535)) (-1144 (-400 (-535))))) (-15 -1473 ((-1144 (-400 (-535))) (-1144 (-400 (-535))) (-1144 (-400 (-535))))) (-15 -1474 ((-1144 (-400 (-535))) (-618 (-535)))) (-15 -1475 ((-1144 (-400 (-535))) (-618 (-535)) (-618 (-535)))))) (T -184))
+((-1475 (*1 *2 *3 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)))) (-1474 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)))) (-1473 (*1 *2 *2 *2) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-1144 (-400 (-535)))) (-5 *2 (-400 (-535))) (-5 *1 (-184)))) (-1472 (*1 *2 *2 *2) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)))) (-1471 (*1 *2 *3 *3) (-12 (-5 *3 (-1144 (-400 (-535)))) (-5 *2 (-400 (-535))) (-5 *1 (-184)))) (-4197 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) (-1470 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) (-1469 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) (-1468 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) (-1467 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) (-1466 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))) (-3212 (*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))))
+(-10 -7 (-15 -3212 ((-1144 (-400 (-535))) (-535))) (-15 -1466 ((-1144 (-400 (-535))) (-535))) (-15 -1467 ((-1144 (-400 (-535))) (-535))) (-15 -1468 ((-1144 (-400 (-535))) (-535))) (-15 -1469 ((-1144 (-400 (-535))) (-535))) (-15 -1470 ((-1144 (-400 (-535))) (-535))) (-15 -4197 ((-1144 (-400 (-535))) (-535))) (-15 -1471 ((-400 (-535)) (-1144 (-400 (-535))) (-1144 (-400 (-535))))) (-15 -1472 ((-1144 (-400 (-535))) (-1144 (-400 (-535))) (-1144 (-400 (-535))))) (-15 -4110 ((-400 (-535)) (-1144 (-400 (-535))))) (-15 -1473 ((-1144 (-400 (-535))) (-1144 (-400 (-535))) (-1144 (-400 (-535))))) (-15 -1474 ((-1144 (-400 (-535))) (-618 (-535)))) (-15 -1475 ((-1144 (-400 (-535))) (-618 (-535)) (-618 (-535)))))
+((-1477 (((-398 (-1136 (-535))) (-535)) 28)) (-1476 (((-618 (-1136 (-535))) (-535)) 23)) (-3122 (((-1136 (-535)) (-535)) 21)))
+(((-185) (-10 -7 (-15 -1476 ((-618 (-1136 (-535))) (-535))) (-15 -3122 ((-1136 (-535)) (-535))) (-15 -1477 ((-398 (-1136 (-535))) (-535))))) (T -185))
+((-1477 (*1 *2 *3) (-12 (-5 *2 (-398 (-1136 (-535)))) (-5 *1 (-185)) (-5 *3 (-535)))) (-3122 (*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-185)) (-5 *3 (-535)))) (-1476 (*1 *2 *3) (-12 (-5 *2 (-618 (-1136 (-535)))) (-5 *1 (-185)) (-5 *3 (-535)))))
+(-10 -7 (-15 -1476 ((-618 (-1136 (-535))) (-535))) (-15 -3122 ((-1136 (-535)) (-535))) (-15 -1477 ((-398 (-1136 (-535))) (-535))))
+((-1663 (((-1119 (-219)) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 105)) (-1684 (((-618 (-1124)) (-1119 (-219))) NIL)) (-1478 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 81)) (-1661 (((-618 (-219)) (-307 (-219)) (-1142) (-1055 (-815 (-219)))) NIL)) (-1683 (((-618 (-1124)) (-618 (-219))) NIL)) (-1685 (((-219) (-1055 (-815 (-219)))) 24)) (-1686 (((-219) (-1055 (-815 (-219)))) 25)) (-1480 (((-371) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 98)) (-1479 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-1681 (((-1124) (-219)) NIL)) (-2890 (((-1124) (-618 (-1124))) 20)) (-1481 (((-1006) (-1142) (-1142) (-1006)) 13)))
+(((-186) (-10 -7 (-15 -1478 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1479 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1685 ((-219) (-1055 (-815 (-219))))) (-15 -1686 ((-219) (-1055 (-815 (-219))))) (-15 -1480 ((-371) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-618 (-219)) (-307 (-219)) (-1142) (-1055 (-815 (-219))))) (-15 -1663 ((-1119 (-219)) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1681 ((-1124) (-219))) (-15 -1683 ((-618 (-1124)) (-618 (-219)))) (-15 -1684 ((-618 (-1124)) (-1119 (-219)))) (-15 -2890 ((-1124) (-618 (-1124)))) (-15 -1481 ((-1006) (-1142) (-1142) (-1006))))) (T -186))
+((-1481 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1142)) (-5 *1 (-186)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1124)) (-5 *1 (-186)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1119 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-186)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-186)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-186)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-186)))) (-1661 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1142)) (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-618 (-219))) (-5 *1 (-186)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-186)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-186)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-186)))))
+(-10 -7 (-15 -1478 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1479 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1685 ((-219) (-1055 (-815 (-219))))) (-15 -1686 ((-219) (-1055 (-815 (-219))))) (-15 -1480 ((-371) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-618 (-219)) (-307 (-219)) (-1142) (-1055 (-815 (-219))))) (-15 -1663 ((-1119 (-219)) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1681 ((-1124) (-219))) (-15 -1683 ((-618 (-1124)) (-618 (-219)))) (-15 -1684 ((-618 (-1124)) (-1119 (-219)))) (-15 -2890 ((-1124) (-618 (-1124)))) (-15 -1481 ((-1006) (-1142) (-1142) (-1006))))
+((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 55) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-187) (-763)) (T -187))
NIL
(-763)
-((-3833 (((-112) $ $) NIL)) (-3515 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 60) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 60) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-188) (-763)) (T -188))
NIL
(-763)
-((-3833 (((-112) $ $) NIL)) (-3515 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 69) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 69) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-189) (-763)) (T -189))
NIL
(-763)
-((-3833 (((-112) $ $) NIL)) (-3515 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 56) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 56) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-190) (-763)) (T -190))
NIL
(-763)
-((-3833 (((-112) $ $) NIL)) (-3515 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 67) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 38) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 67) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 38) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-191) (-763)) (T -191))
NIL
(-763)
-((-3833 (((-112) $ $) NIL)) (-3515 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 73) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 73) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-192) (-763)) (T -192))
NIL
(-763)
-((-3833 (((-112) $ $) NIL)) (-3515 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 80) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 44) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 80) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 44) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-193) (-763)) (T -193))
NIL
(-763)
-((-3833 (((-112) $ $) NIL)) (-3515 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 70) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 70) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-194) (-763)) (T -194))
NIL
(-763)
-((-3833 (((-112) $ $) NIL)) (-3515 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 66)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 66)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-195) (-763)) (T -195))
NIL
(-763)
-((-3833 (((-112) $ $) NIL)) (-3515 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 63)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 63)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-196) (-763)) (T -196))
NIL
(-763)
-((-3833 (((-112) $ $) NIL)) (-3515 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 90) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 78) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 90) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 78) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-197) (-763)) (T -197))
NIL
(-763)
-((-2682 (((-3 (-2 (|:| -2719 (-114)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 85)) (-3724 (((-549) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-4154 (((-3 (-621 (-219)) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 73)))
-(((-198) (-10 -7 (-15 -2682 ((-3 (-2 (|:| -2719 (-114)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4154 ((-3 (-621 (-219)) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3724 ((-549) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -198))
-((-3724 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-549)) (-5 *1 (-198)))) (-4154 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-198)))) (-2682 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2719 (-114)) (|:| |w| (-219)))) (-5 *1 (-198)))))
-(-10 -7 (-15 -2682 ((-3 (-2 (|:| -2719 (-114)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4154 ((-3 (-621 (-219)) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3724 ((-549) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
-((-3875 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-2864 (((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 130)) (-3520 (((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-665 (-309 (-219)))) 89)) (-2753 (((-372) (-665 (-309 (-219)))) 113)) (-3634 (((-665 (-309 (-219))) (-1225 (-309 (-219))) (-621 (-1142))) 110)) (-3618 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 30)) (-3687 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 43)) (-2685 (((-665 (-309 (-219))) (-665 (-309 (-219))) (-621 (-1142)) (-1225 (-309 (-219)))) 102)) (-2256 (((-372) (-372) (-621 (-372))) 107) (((-372) (-372) (-372)) 105)) (-2793 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36)))
-(((-199) (-10 -7 (-15 -2256 ((-372) (-372) (-372))) (-15 -2256 ((-372) (-372) (-621 (-372)))) (-15 -2753 ((-372) (-665 (-309 (-219))))) (-15 -3634 ((-665 (-309 (-219))) (-1225 (-309 (-219))) (-621 (-1142)))) (-15 -2685 ((-665 (-309 (-219))) (-665 (-309 (-219))) (-621 (-1142)) (-1225 (-309 (-219))))) (-15 -3520 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-665 (-309 (-219))))) (-15 -2864 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3875 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3687 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2793 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3618 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -199))
-((-3618 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-3687 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372)))) (-5 *1 (-199)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-665 (-309 (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372)))) (-5 *1 (-199)))) (-2685 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-665 (-309 (-219)))) (-5 *3 (-621 (-1142))) (-5 *4 (-1225 (-309 (-219)))) (-5 *1 (-199)))) (-3634 (*1 *2 *3 *4) (-12 (-5 *3 (-1225 (-309 (-219)))) (-5 *4 (-621 (-1142))) (-5 *2 (-665 (-309 (-219)))) (-5 *1 (-199)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-665 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-372))) (-5 *2 (-372)) (-5 *1 (-199)))) (-2256 (*1 *2 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-199)))))
-(-10 -7 (-15 -2256 ((-372) (-372) (-372))) (-15 -2256 ((-372) (-372) (-621 (-372)))) (-15 -2753 ((-372) (-665 (-309 (-219))))) (-15 -3634 ((-665 (-309 (-219))) (-1225 (-309 (-219))) (-621 (-1142)))) (-15 -2685 ((-665 (-309 (-219))) (-665 (-309 (-219))) (-621 (-1142)) (-1225 (-309 (-219))))) (-15 -3520 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-665 (-309 (-219))))) (-15 -2864 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3875 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3687 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2793 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3618 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
-((-3833 (((-112) $ $) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-3016 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 64)) (-2388 (((-112) $ $) NIL)))
+((-1482 (((-3 (-2 (|:| -2827 (-113)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 85)) (-1484 (((-535) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-1483 (((-3 (-618 (-219)) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 73)))
+(((-198) (-10 -7 (-15 -1482 ((-3 (-2 (|:| -2827 (-113)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1483 ((-3 (-618 (-219)) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1484 ((-535) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -198))
+((-1484 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-535)) (-5 *1 (-198)))) (-1483 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-618 (-219))) (-5 *1 (-198)))) (-1482 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2827 (-113)) (|:| |w| (-219)))) (-5 *1 (-198)))))
+(-10 -7 (-15 -1482 ((-3 (-2 (|:| -2827 (-113)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1483 ((-3 (-618 (-219)) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1484 ((-535) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
+((-1489 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-1488 (((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 130)) (-1487 (((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-665 (-307 (-219)))) 89)) (-1486 (((-371) (-665 (-307 (-219)))) 113)) (-2443 (((-665 (-307 (-219))) (-1224 (-307 (-219))) (-618 (-1142))) 110)) (-1492 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 30)) (-1490 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 43)) (-4110 (((-665 (-307 (-219))) (-665 (-307 (-219))) (-618 (-1142)) (-1224 (-307 (-219)))) 102)) (-1485 (((-371) (-371) (-618 (-371))) 107) (((-371) (-371) (-371)) 105)) (-1491 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36)))
+(((-199) (-10 -7 (-15 -1485 ((-371) (-371) (-371))) (-15 -1485 ((-371) (-371) (-618 (-371)))) (-15 -1486 ((-371) (-665 (-307 (-219))))) (-15 -2443 ((-665 (-307 (-219))) (-1224 (-307 (-219))) (-618 (-1142)))) (-15 -4110 ((-665 (-307 (-219))) (-665 (-307 (-219))) (-618 (-1142)) (-1224 (-307 (-219))))) (-15 -1487 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-665 (-307 (-219))))) (-15 -1488 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1489 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1490 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1491 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1492 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -199))
+((-1492 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) (-5 *1 (-199)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-665 (-307 (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) (-5 *1 (-199)))) (-4110 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-665 (-307 (-219)))) (-5 *3 (-618 (-1142))) (-5 *4 (-1224 (-307 (-219)))) (-5 *1 (-199)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *4 (-618 (-1142))) (-5 *2 (-665 (-307 (-219)))) (-5 *1 (-199)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-665 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1485 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-371))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1485 (*1 *2 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-199)))))
+(-10 -7 (-15 -1485 ((-371) (-371) (-371))) (-15 -1485 ((-371) (-371) (-618 (-371)))) (-15 -1486 ((-371) (-665 (-307 (-219))))) (-15 -2443 ((-665 (-307 (-219))) (-1224 (-307 (-219))) (-618 (-1142)))) (-15 -4110 ((-665 (-307 (-219))) (-665 (-307 (-219))) (-618 (-1142)) (-1224 (-307 (-219))))) (-15 -1487 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-665 (-307 (-219))))) (-15 -1488 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1489 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1490 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1491 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1492 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
+((-2887 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2731 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 64)) (-3375 (((-112) $ $) NIL)))
(((-200) (-776)) (T -200))
NIL
(-776)
-((-3833 (((-112) $ $) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-3016 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 62)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2731 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 62)) (-3375 (((-112) $ $) NIL)))
(((-201) (-776)) (T -201))
NIL
(-776)
-((-3833 (((-112) $ $) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-3016 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 66)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2731 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 66)) (-3375 (((-112) $ $) NIL)))
(((-202) (-776)) (T -202))
NIL
(-776)
-((-3833 (((-112) $ $) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 46)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-3016 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 75)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 46)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2731 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 75)) (-3375 (((-112) $ $) NIL)))
(((-203) (-776)) (T -203))
NIL
(-776)
-((-3303 (((-621 (-1142)) (-1142) (-747)) 23)) (-2565 (((-309 (-219)) (-309 (-219))) 31)) (-2435 (((-112) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 74)) (-3890 (((-112) (-219) (-219) (-621 (-309 (-219)))) 45)))
-(((-204) (-10 -7 (-15 -3303 ((-621 (-1142)) (-1142) (-747))) (-15 -2565 ((-309 (-219)) (-309 (-219)))) (-15 -3890 ((-112) (-219) (-219) (-621 (-309 (-219))))) (-15 -2435 ((-112) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))))) (T -204))
-((-2435 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *2 (-112)) (-5 *1 (-204)))) (-3890 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-621 (-309 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-204)))) (-2565 (*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-204)))) (-3303 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-621 (-1142))) (-5 *1 (-204)) (-5 *3 (-1142)))))
-(-10 -7 (-15 -3303 ((-621 (-1142)) (-1142) (-747))) (-15 -2565 ((-309 (-219)) (-309 (-219)))) (-15 -3890 ((-112) (-219) (-219) (-621 (-309 (-219))))) (-15 -2435 ((-112) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))))
-((-3833 (((-112) $ $) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 26)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-1943 (((-1006) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 57)) (-2388 (((-112) $ $) NIL)))
+((-4277 (((-618 (-1142)) (-1142) (-747)) 23)) (-1493 (((-307 (-219)) (-307 (-219))) 31)) (-1495 (((-112) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 74)) (-1494 (((-112) (-219) (-219) (-618 (-307 (-219)))) 45)))
+(((-204) (-10 -7 (-15 -4277 ((-618 (-1142)) (-1142) (-747))) (-15 -1493 ((-307 (-219)) (-307 (-219)))) (-15 -1494 ((-112) (-219) (-219) (-618 (-307 (-219))))) (-15 -1495 ((-112) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))))) (T -204))
+((-1495 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *2 (-112)) (-5 *1 (-204)))) (-1494 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-618 (-307 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-204)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-204)))) (-4277 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-618 (-1142))) (-5 *1 (-204)) (-5 *3 (-1142)))))
+(-10 -7 (-15 -4277 ((-618 (-1142)) (-1142) (-747))) (-15 -1493 ((-307 (-219)) (-307 (-219)))) (-15 -1494 ((-112) (-219) (-219) (-618 (-307 (-219))))) (-15 -1495 ((-112) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))))
+((-2887 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 26)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2986 (((-1006) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 57)) (-3375 (((-112) $ $) NIL)))
(((-205) (-866)) (T -205))
NIL
(-866)
-((-3833 (((-112) $ $) NIL)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 21)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-1943 (((-1006) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 21)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2986 (((-1006) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) NIL)) (-3375 (((-112) $ $) NIL)))
(((-206) (-866)) (T -206))
NIL
(-866)
-((-3833 (((-112) $ $) NIL)) (-2253 ((|#2| $ (-747) |#2|) 11)) (-3743 (($) 8)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3340 ((|#2| $ (-747)) 10)) (-3845 (((-834) $) 18)) (-2388 (((-112) $ $) 13)))
-(((-207 |#1| |#2|) (-13 (-1066) (-10 -8 (-15 -3743 ($)) (-15 -3340 (|#2| $ (-747))) (-15 -2253 (|#2| $ (-747) |#2|)))) (-892) (-1066)) (T -207))
-((-3743 (*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1066)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *2 (-1066)) (-5 *1 (-207 *4 *2)) (-14 *4 (-892)))) (-2253 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-207 *4 *2)) (-14 *4 (-892)) (-4 *2 (-1066)))))
-(-13 (-1066) (-10 -8 (-15 -3743 ($)) (-15 -3340 (|#2| $ (-747))) (-15 -2253 (|#2| $ (-747) |#2|))))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3431 (((-1230) $) 36) (((-1230) $ (-892) (-892)) 38)) (-3340 (($ $ (-960)) 19) (((-239 (-1124)) $ (-1142)) 15)) (-2697 (((-1230) $) 34)) (-3845 (((-834) $) 31) (($ (-621 |#1|)) 8)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $ $) 27)) (-2485 (($ $ $) 22)))
-(((-208 |#1|) (-13 (-1066) (-10 -8 (-15 -3340 ($ $ (-960))) (-15 -3340 ((-239 (-1124)) $ (-1142))) (-15 -2485 ($ $ $)) (-15 -2499 ($ $ $)) (-15 -3845 ($ (-621 |#1|))) (-15 -2697 ((-1230) $)) (-15 -3431 ((-1230) $)) (-15 -3431 ((-1230) $ (-892) (-892))))) (-13 (-823) (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 ((-1230) $)) (-15 -3431 ((-1230) $))))) (T -208))
-((-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-960)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 ((-1230) $)) (-15 -3431 ((-1230) $))))))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-239 (-1124))) (-5 *1 (-208 *4)) (-4 *4 (-13 (-823) (-10 -8 (-15 -3340 ((-1124) $ *3)) (-15 -2697 ((-1230) $)) (-15 -3431 ((-1230) $))))))) (-2485 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-823) (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 ((-1230) $)) (-15 -3431 ((-1230) $))))))) (-2499 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-823) (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 ((-1230) $)) (-15 -3431 ((-1230) $))))))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 ((-1230) $)) (-15 -3431 ((-1230) $))))) (-5 *1 (-208 *3)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 (*2 $)) (-15 -3431 (*2 $))))))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 (*2 $)) (-15 -3431 (*2 $))))))) (-3431 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1230)) (-5 *1 (-208 *4)) (-4 *4 (-13 (-823) (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 (*2 $)) (-15 -3431 (*2 $))))))))
-(-13 (-1066) (-10 -8 (-15 -3340 ($ $ (-960))) (-15 -3340 ((-239 (-1124)) $ (-1142))) (-15 -2485 ($ $ $)) (-15 -2499 ($ $ $)) (-15 -3845 ($ (-621 |#1|))) (-15 -2697 ((-1230) $)) (-15 -3431 ((-1230) $)) (-15 -3431 ((-1230) $ (-892) (-892)))))
-((-4077 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4077 (|#2| |#4| (-1 |#2| |#2|)))) (-356) (-1201 |#1|) (-1201 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -209))
-((-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1201 (-400 *2))) (-4 *2 (-1201 *5)) (-5 *1 (-209 *5 *2 *6 *3)) (-4 *3 (-335 *5 *2 *6)))))
-(-10 -7 (-15 -4077 (|#2| |#4| (-1 |#2| |#2|))))
-((-4164 ((|#2| |#2| (-747) |#2|) 42)) (-3632 ((|#2| |#2| (-747) |#2|) 38)) (-1995 (((-621 |#2|) (-621 (-2 (|:| |deg| (-747)) (|:| -3825 |#2|)))) 57)) (-1590 (((-621 (-2 (|:| |deg| (-747)) (|:| -3825 |#2|))) |#2|) 53)) (-1987 (((-112) |#2|) 50)) (-1961 (((-411 |#2|) |#2|) 77)) (-2120 (((-411 |#2|) |#2|) 76)) (-2494 ((|#2| |#2| (-747) |#2|) 36)) (-2444 (((-2 (|:| |cont| |#1|) (|:| -2886 (-621 (-2 (|:| |irr| |#2|) (|:| -3533 (-549)))))) |#2| (-112)) 69)))
-(((-210 |#1| |#2|) (-10 -7 (-15 -2120 ((-411 |#2|) |#2|)) (-15 -1961 ((-411 |#2|) |#2|)) (-15 -2444 ((-2 (|:| |cont| |#1|) (|:| -2886 (-621 (-2 (|:| |irr| |#2|) (|:| -3533 (-549)))))) |#2| (-112))) (-15 -1590 ((-621 (-2 (|:| |deg| (-747)) (|:| -3825 |#2|))) |#2|)) (-15 -1995 ((-621 |#2|) (-621 (-2 (|:| |deg| (-747)) (|:| -3825 |#2|))))) (-15 -2494 (|#2| |#2| (-747) |#2|)) (-15 -3632 (|#2| |#2| (-747) |#2|)) (-15 -4164 (|#2| |#2| (-747) |#2|)) (-15 -1987 ((-112) |#2|))) (-342) (-1201 |#1|)) (T -210))
-((-1987 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1201 *4)))) (-4164 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1201 *4)))) (-3632 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1201 *4)))) (-2494 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1201 *4)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| |deg| (-747)) (|:| -3825 *5)))) (-4 *5 (-1201 *4)) (-4 *4 (-342)) (-5 *2 (-621 *5)) (-5 *1 (-210 *4 *5)))) (-1590 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-621 (-2 (|:| |deg| (-747)) (|:| -3825 *3)))) (-5 *1 (-210 *4 *3)) (-4 *3 (-1201 *4)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-342)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2886 (-621 (-2 (|:| |irr| *3) (|:| -3533 (-549))))))) (-5 *1 (-210 *5 *3)) (-4 *3 (-1201 *5)))) (-1961 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1201 *4)))) (-2120 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1201 *4)))))
-(-10 -7 (-15 -2120 ((-411 |#2|) |#2|)) (-15 -1961 ((-411 |#2|) |#2|)) (-15 -2444 ((-2 (|:| |cont| |#1|) (|:| -2886 (-621 (-2 (|:| |irr| |#2|) (|:| -3533 (-549)))))) |#2| (-112))) (-15 -1590 ((-621 (-2 (|:| |deg| (-747)) (|:| -3825 |#2|))) |#2|)) (-15 -1995 ((-621 |#2|) (-621 (-2 (|:| |deg| (-747)) (|:| -3825 |#2|))))) (-15 -2494 (|#2| |#2| (-747) |#2|)) (-15 -3632 (|#2| |#2| (-747) |#2|)) (-15 -4164 (|#2| |#2| (-747) |#2|)) (-15 -1987 ((-112) |#2|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2364 (((-549) $) NIL (|has| (-549) (-300)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL (|has| (-549) (-796)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL) (((-3 (-1142) "failed") $) NIL (|has| (-549) (-1009 (-1142)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-549) (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| (-549) (-1009 (-549))))) (-2658 (((-549) $) NIL) (((-1142) $) NIL (|has| (-549) (-1009 (-1142)))) (((-400 (-549)) $) NIL (|has| (-549) (-1009 (-549)))) (((-549) $) NIL (|has| (-549) (-1009 (-549))))) (-2094 (($ $ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL) (((-665 (-549)) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| (-549) (-534)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3079 (((-112) $) NIL (|has| (-549) (-796)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-549) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-549) (-857 (-372))))) (-3987 (((-112) $) NIL)) (-2053 (($ $) NIL)) (-1393 (((-549) $) NIL)) (-3982 (((-3 $ "failed") $) NIL (|has| (-549) (-1117)))) (-2847 (((-112) $) NIL (|has| (-549) (-796)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2862 (($ $ $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| (-549) (-823)))) (-2796 (($ (-1 (-549) (-549)) $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| (-549) (-1117)) CONST)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1260 (($ $) NIL (|has| (-549) (-300))) (((-400 (-549)) $) NIL)) (-4060 (((-549) $) NIL (|has| (-549) (-534)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2685 (($ $ (-621 (-549)) (-621 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-302 (-549)))) (($ $ (-287 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-287 (-549)))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-1142)) (-621 (-549))) NIL (|has| (-549) (-505 (-1142) (-549)))) (($ $ (-1142) (-549)) NIL (|has| (-549) (-505 (-1142) (-549))))) (-4091 (((-747) $) NIL)) (-3340 (($ $ (-549)) NIL (|has| (-549) (-279 (-549) (-549))))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3455 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1142)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-4288 (($ $) NIL)) (-1404 (((-549) $) NIL)) (-3486 (($ (-400 (-549))) 9)) (-2844 (((-863 (-549)) $) NIL (|has| (-549) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-549) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-549) (-594 (-525)))) (((-372) $) NIL (|has| (-549) (-993))) (((-219) $) NIL (|has| (-549) (-993)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-549) (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) 8) (($ (-549)) NIL) (($ (-1142)) NIL (|has| (-549) (-1009 (-1142)))) (((-400 (-549)) $) NIL) (((-975 10) $) 10)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-549) (-880))) (|has| (-549) (-143))))) (-1723 (((-747)) NIL)) (-2926 (((-549) $) NIL (|has| (-549) (-534)))) (-4053 (((-112) $ $) NIL)) (-3603 (($ $) NIL (|has| (-549) (-796)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1142)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2424 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2411 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2512 (($ $ $) NIL) (($ (-549) (-549)) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL)))
-(((-211) (-13 (-963 (-549)) (-10 -8 (-15 -3845 ((-400 (-549)) $)) (-15 -3845 ((-975 10) $)) (-15 -1260 ((-400 (-549)) $)) (-15 -3486 ($ (-400 (-549))))))) (T -211))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-211)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-975 10)) (-5 *1 (-211)))) (-1260 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-211)))) (-3486 (*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-211)))))
-(-13 (-963 (-549)) (-10 -8 (-15 -3845 ((-400 (-549)) $)) (-15 -3845 ((-975 10) $)) (-15 -1260 ((-400 (-549)) $)) (-15 -3486 ($ (-400 (-549))))))
-((-3833 (((-112) $ $) NIL)) (-3984 (((-1084) $) 13)) (-2677 (((-1124) $) NIL)) (-1390 (((-475) $) 10)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 25) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2493 (((-1101) $) 15)) (-2388 (((-112) $ $) NIL)))
-(((-212) (-13 (-1049) (-10 -8 (-15 -1390 ((-475) $)) (-15 -3984 ((-1084) $)) (-15 -2493 ((-1101) $))))) (T -212))
-((-1390 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-212)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-212)))))
-(-13 (-1049) (-10 -8 (-15 -1390 ((-475) $)) (-15 -3984 ((-1084) $)) (-15 -2493 ((-1101) $))))
-((-1531 (((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1058 (-816 |#2|)) (-1124)) 28) (((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1058 (-816 |#2|))) 24)) (-3308 (((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1142) (-816 |#2|) (-816 |#2|) (-112)) 17)))
-(((-213 |#1| |#2|) (-10 -7 (-15 -1531 ((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1058 (-816 |#2|)))) (-15 -1531 ((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1058 (-816 |#2|)) (-1124))) (-15 -3308 ((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1142) (-816 |#2|) (-816 |#2|) (-112)))) (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1164) (-930) (-29 |#1|))) (T -213))
-((-3308 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1142)) (-5 *6 (-112)) (-4 *7 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-4 *3 (-13 (-1164) (-930) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-816 *3)) (|:| |f2| (-621 (-816 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *7 *3)) (-5 *5 (-816 *3)))) (-1531 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1058 (-816 *3))) (-5 *5 (-1124)) (-4 *3 (-13 (-1164) (-930) (-29 *6))) (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |f1| (-816 *3)) (|:| |f2| (-621 (-816 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *6 *3)))) (-1531 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-816 *3))) (-4 *3 (-13 (-1164) (-930) (-29 *5))) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |f1| (-816 *3)) (|:| |f2| (-621 (-816 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *5 *3)))))
-(-10 -7 (-15 -1531 ((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1058 (-816 |#2|)))) (-15 -1531 ((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1058 (-816 |#2|)) (-1124))) (-15 -3308 ((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1142) (-816 |#2|) (-816 |#2|) (-112))))
-((-1531 (((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1058 (-816 (-400 (-923 |#1|)))) (-1124)) 46) (((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1058 (-816 (-400 (-923 |#1|))))) 43) (((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1058 (-816 (-309 |#1|))) (-1124)) 47) (((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1058 (-816 (-309 |#1|)))) 20)))
-(((-214 |#1|) (-10 -7 (-15 -1531 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1058 (-816 (-309 |#1|))))) (-15 -1531 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1058 (-816 (-309 |#1|))) (-1124))) (-15 -1531 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1058 (-816 (-400 (-923 |#1|)))))) (-15 -1531 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1058 (-816 (-400 (-923 |#1|)))) (-1124)))) (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (T -214))
-((-1531 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1058 (-816 (-400 (-923 *6))))) (-5 *5 (-1124)) (-5 *3 (-400 (-923 *6))) (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |f1| (-816 (-309 *6))) (|:| |f2| (-621 (-816 (-309 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6)))) (-1531 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-816 (-400 (-923 *5))))) (-5 *3 (-400 (-923 *5))) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |f1| (-816 (-309 *5))) (|:| |f2| (-621 (-816 (-309 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5)))) (-1531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-400 (-923 *6))) (-5 *4 (-1058 (-816 (-309 *6)))) (-5 *5 (-1124)) (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |f1| (-816 (-309 *6))) (|:| |f2| (-621 (-816 (-309 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6)))) (-1531 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1058 (-816 (-309 *5)))) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |f1| (-816 (-309 *5))) (|:| |f2| (-621 (-816 (-309 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5)))))
-(-10 -7 (-15 -1531 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1058 (-816 (-309 |#1|))))) (-15 -1531 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1058 (-816 (-309 |#1|))) (-1124))) (-15 -1531 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1058 (-816 (-400 (-923 |#1|)))))) (-15 -1531 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1058 (-816 (-400 (-923 |#1|)))) (-1124))))
-((-2558 (((-2 (|:| -4267 (-1138 |#1|)) (|:| |deg| (-892))) (-1138 |#1|)) 21)) (-1448 (((-621 (-309 |#2|)) (-309 |#2|) (-892)) 42)))
-(((-215 |#1| |#2|) (-10 -7 (-15 -2558 ((-2 (|:| -4267 (-1138 |#1|)) (|:| |deg| (-892))) (-1138 |#1|))) (-15 -1448 ((-621 (-309 |#2|)) (-309 |#2|) (-892)))) (-1018) (-13 (-541) (-823))) (T -215))
-((-1448 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-4 *6 (-13 (-541) (-823))) (-5 *2 (-621 (-309 *6))) (-5 *1 (-215 *5 *6)) (-5 *3 (-309 *6)) (-4 *5 (-1018)))) (-2558 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-2 (|:| -4267 (-1138 *4)) (|:| |deg| (-892)))) (-5 *1 (-215 *4 *5)) (-5 *3 (-1138 *4)) (-4 *5 (-13 (-541) (-823))))))
-(-10 -7 (-15 -2558 ((-2 (|:| -4267 (-1138 |#1|)) (|:| |deg| (-892))) (-1138 |#1|))) (-15 -1448 ((-621 (-309 |#2|)) (-309 |#2|) (-892))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-1936 ((|#1| $) NIL)) (-2316 ((|#1| $) 25)) (-1323 (((-112) $ (-747)) NIL)) (-1705 (($) NIL T CONST)) (-2643 (($ $) NIL)) (-4273 (($ $) 31)) (-1913 ((|#1| |#1| $) NIL)) (-2399 ((|#1| $) NIL)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-4209 (((-747) $) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2349 ((|#1| $) NIL)) (-2548 ((|#1| |#1| $) 28)) (-2192 ((|#1| |#1| $) 30)) (-1709 (($ |#1| $) NIL)) (-4035 (((-747) $) 27)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2032 ((|#1| $) NIL)) (-4245 ((|#1| $) 26)) (-4103 ((|#1| $) 24)) (-2629 ((|#1| $) NIL)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-4248 ((|#1| |#1| $) NIL)) (-1807 (((-112) $) 9)) (-1461 (($) NIL)) (-1800 ((|#1| $) NIL)) (-3038 (($) NIL) (($ (-621 |#1|)) 16)) (-1319 (((-747) $) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3049 ((|#1| $) 13)) (-1765 (($ (-621 |#1|)) NIL)) (-3529 ((|#1| $) NIL)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-216 |#1|) (-13 (-247 |#1|) (-10 -8 (-15 -3038 ($ (-621 |#1|))))) (-1066)) (T -216))
-((-3038 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-216 *3)))))
-(-13 (-247 |#1|) (-10 -8 (-15 -3038 ($ (-621 |#1|)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2468 (($ (-309 |#1|)) 23)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2061 (((-112) $) NIL)) (-2713 (((-3 (-309 |#1|) "failed") $) NIL)) (-2658 (((-309 |#1|) $) NIL)) (-2069 (($ $) 31)) (-3976 (((-3 $ "failed") $) NIL)) (-3987 (((-112) $) NIL)) (-2796 (($ (-1 (-309 |#1|) (-309 |#1|)) $) NIL)) (-2042 (((-309 |#1|) $) NIL)) (-4268 (($ $) 30)) (-2677 (((-1124) $) NIL)) (-3022 (((-112) $) NIL)) (-3988 (((-1086) $) NIL)) (-4246 (($ (-747)) NIL)) (-1822 (($ $) 32)) (-3068 (((-549) $) NIL)) (-3845 (((-834) $) 57) (($ (-549)) NIL) (($ (-309 |#1|)) NIL)) (-2944 (((-309 |#1|) $ $) NIL)) (-1723 (((-747)) NIL)) (-3275 (($) 25 T CONST)) (-3287 (($) 50 T CONST)) (-2388 (((-112) $ $) 28)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 19)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 24) (($ (-309 |#1|) $) 18)))
-(((-217 |#1| |#2|) (-13 (-598 (-309 |#1|)) (-1009 (-309 |#1|)) (-10 -8 (-15 -2042 ((-309 |#1|) $)) (-15 -4268 ($ $)) (-15 -2069 ($ $)) (-15 -2944 ((-309 |#1|) $ $)) (-15 -4246 ($ (-747))) (-15 -3022 ((-112) $)) (-15 -2061 ((-112) $)) (-15 -3068 ((-549) $)) (-15 -2796 ($ (-1 (-309 |#1|) (-309 |#1|)) $)) (-15 -2468 ($ (-309 |#1|))) (-15 -1822 ($ $)))) (-13 (-1018) (-823)) (-621 (-1142))) (T -217))
-((-2042 (*1 *2 *1) (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1142))))) (-4268 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) (-14 *3 (-621 (-1142))))) (-2069 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) (-14 *3 (-621 (-1142))))) (-2944 (*1 *2 *1 *1) (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1142))))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1142))))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1142))))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1142))))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1142))))) (-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-309 *3) (-309 *3))) (-4 *3 (-13 (-1018) (-823))) (-5 *1 (-217 *3 *4)) (-14 *4 (-621 (-1142))))) (-2468 (*1 *1 *2) (-12 (-5 *2 (-309 *3)) (-4 *3 (-13 (-1018) (-823))) (-5 *1 (-217 *3 *4)) (-14 *4 (-621 (-1142))))) (-1822 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) (-14 *3 (-621 (-1142))))))
-(-13 (-598 (-309 |#1|)) (-1009 (-309 |#1|)) (-10 -8 (-15 -2042 ((-309 |#1|) $)) (-15 -4268 ($ $)) (-15 -2069 ($ $)) (-15 -2944 ((-309 |#1|) $ $)) (-15 -4246 ($ (-747))) (-15 -3022 ((-112) $)) (-15 -2061 ((-112) $)) (-15 -3068 ((-549) $)) (-15 -2796 ($ (-1 (-309 |#1|) (-309 |#1|)) $)) (-15 -2468 ($ (-309 |#1|))) (-15 -1822 ($ $))))
-((-3584 (((-112) (-1124)) 22)) (-4031 (((-3 (-816 |#2|) "failed") (-592 |#2|) |#2| (-816 |#2|) (-816 |#2|) (-112)) 32)) (-3284 (((-3 (-112) "failed") (-1138 |#2|) (-816 |#2|) (-816 |#2|) (-112)) 73) (((-3 (-112) "failed") (-923 |#1|) (-1142) (-816 |#2|) (-816 |#2|) (-112)) 74)))
-(((-218 |#1| |#2|) (-10 -7 (-15 -3584 ((-112) (-1124))) (-15 -4031 ((-3 (-816 |#2|) "failed") (-592 |#2|) |#2| (-816 |#2|) (-816 |#2|) (-112))) (-15 -3284 ((-3 (-112) "failed") (-923 |#1|) (-1142) (-816 |#2|) (-816 |#2|) (-112))) (-15 -3284 ((-3 (-112) "failed") (-1138 |#2|) (-816 |#2|) (-816 |#2|) (-112)))) (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-1164) (-29 |#1|))) (T -218))
-((-3284 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1138 *6)) (-5 *4 (-816 *6)) (-4 *6 (-13 (-1164) (-29 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-218 *5 *6)))) (-3284 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-923 *6)) (-5 *4 (-1142)) (-5 *5 (-816 *7)) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-4 *7 (-13 (-1164) (-29 *6))) (-5 *1 (-218 *6 *7)))) (-4031 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-816 *4)) (-5 *3 (-592 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1164) (-29 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-218 *6 *4)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1164) (-29 *4))))))
-(-10 -7 (-15 -3584 ((-112) (-1124))) (-15 -4031 ((-3 (-816 |#2|) "failed") (-592 |#2|) |#2| (-816 |#2|) (-816 |#2|) (-112))) (-15 -3284 ((-3 (-112) "failed") (-923 |#1|) (-1142) (-816 |#2|) (-816 |#2|) (-112))) (-15 -3284 ((-3 (-112) "failed") (-1138 |#2|) (-816 |#2|) (-816 |#2|) (-112))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 89)) (-2364 (((-549) $) 100)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2305 (($ $) NIL)) (-1663 (($ $) 77)) (-1511 (($ $) 65)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2134 (($ $) 56)) (-2647 (((-112) $ $) NIL)) (-1639 (($ $) 75)) (-1485 (($ $) 63)) (-3902 (((-549) $) 117)) (-1685 (($ $) 80)) (-1538 (($ $) 67)) (-1705 (($) NIL T CONST)) (-4016 (($ $) NIL)) (-2713 (((-3 (-549) "failed") $) 116) (((-3 (-400 (-549)) "failed") $) 113)) (-2658 (((-549) $) 114) (((-400 (-549)) $) 111)) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) 93)) (-2522 (((-400 (-549)) $ (-747)) 109) (((-400 (-549)) $ (-747) (-747)) 108)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3235 (((-892)) 29) (((-892) (-892)) NIL (|has| $ (-6 -4327)))) (-3079 (((-112) $) NIL)) (-1425 (($) 39)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL)) (-2078 (((-549) $) 35)) (-3987 (((-112) $) NIL)) (-3930 (($ $ (-549)) NIL)) (-4117 (($ $) NIL)) (-2847 (((-112) $) 88)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2862 (($ $ $) 53) (($) 34 (-12 (-4007 (|has| $ (-6 -4319))) (-4007 (|has| $ (-6 -4327)))))) (-3574 (($ $ $) 52) (($) 33 (-12 (-4007 (|has| $ (-6 -4319))) (-4007 (|has| $ (-6 -4327)))))) (-1460 (((-549) $) 27)) (-3897 (($ $) 30)) (-2299 (($ $) 57)) (-3631 (($ $) 62)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3646 (((-892) (-549)) NIL (|has| $ (-6 -4327)))) (-3988 (((-1086) $) 91)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1260 (($ $) NIL)) (-4060 (($ $) NIL)) (-1354 (($ (-549) (-549)) NIL) (($ (-549) (-549) (-892)) 101)) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3577 (((-549) $) 28)) (-4293 (($) 38)) (-2718 (($ $) 61)) (-4091 (((-747) $) NIL)) (-4249 (((-1124) (-1124)) 8)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-1587 (((-892)) NIL) (((-892) (-892)) NIL (|has| $ (-6 -4327)))) (-3455 (($ $ (-747)) NIL) (($ $) 94)) (-2717 (((-892) (-549)) NIL (|has| $ (-6 -4327)))) (-1697 (($ $) 78)) (-1551 (($ $) 68)) (-1674 (($ $) 79)) (-1525 (($ $) 66)) (-1649 (($ $) 76)) (-1500 (($ $) 64)) (-2844 (((-372) $) 105) (((-219) $) 102) (((-863 (-372)) $) NIL) (((-525) $) 45)) (-3845 (((-834) $) 42) (($ (-549)) 60) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-549)) 60) (($ (-400 (-549))) NIL)) (-1723 (((-747)) NIL)) (-2926 (($ $) NIL)) (-3960 (((-892)) 32) (((-892) (-892)) NIL (|has| $ (-6 -4327)))) (-1863 (((-892)) 25)) (-1732 (($ $) 83)) (-1585 (($ $) 71) (($ $ $) 110)) (-4053 (((-112) $ $) NIL)) (-1708 (($ $) 81)) (-1562 (($ $) 69)) (-1757 (($ $) 86)) (-1612 (($ $) 74)) (-1933 (($ $) 84)) (-1625 (($ $) 72)) (-1744 (($ $) 85)) (-1599 (($ $) 73)) (-1721 (($ $) 82)) (-1575 (($ $) 70)) (-3603 (($ $) 118)) (-3275 (($) 36 T CONST)) (-3287 (($) 37 T CONST)) (-3135 (((-1124) $) 19) (((-1124) $ (-112)) 21) (((-1230) (-798) $) 22) (((-1230) (-798) $ (-112)) 23)) (-1756 (($ $) 97)) (-1700 (($ $ (-747)) NIL) (($ $) NIL)) (-1850 (($ $ $) 99)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 54)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 46)) (-2512 (($ $ $) 87) (($ $ (-549)) 55)) (-2499 (($ $) 47) (($ $ $) 49)) (-2485 (($ $ $) 48)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 58) (($ $ (-400 (-549))) 130) (($ $ $) 59)) (* (($ (-892) $) 31) (($ (-747) $) NIL) (($ (-549) $) 51) (($ $ $) 50) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
-(((-219) (-13 (-397) (-227) (-804) (-1164) (-594 (-525)) (-10 -8 (-15 -2512 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -4293 ($)) (-15 -3897 ($ $)) (-15 -2299 ($ $)) (-15 -1585 ($ $ $)) (-15 -1756 ($ $)) (-15 -1850 ($ $ $)) (-15 -4249 ((-1124) (-1124))) (-15 -2522 ((-400 (-549)) $ (-747))) (-15 -2522 ((-400 (-549)) $ (-747) (-747)))))) (T -219))
-((** (*1 *1 *1 *1) (-5 *1 (-219))) (-2512 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-219)))) (-4293 (*1 *1) (-5 *1 (-219))) (-3897 (*1 *1 *1) (-5 *1 (-219))) (-2299 (*1 *1 *1) (-5 *1 (-219))) (-1585 (*1 *1 *1 *1) (-5 *1 (-219))) (-1756 (*1 *1 *1) (-5 *1 (-219))) (-1850 (*1 *1 *1 *1) (-5 *1 (-219))) (-4249 (*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-219)))) (-2522 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-219)))) (-2522 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-219)))))
-(-13 (-397) (-227) (-804) (-1164) (-594 (-525)) (-10 -8 (-15 -2512 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -4293 ($)) (-15 -3897 ($ $)) (-15 -2299 ($ $)) (-15 -1585 ($ $ $)) (-15 -1756 ($ $)) (-15 -1850 ($ $ $)) (-15 -4249 ((-1124) (-1124))) (-15 -2522 ((-400 (-549)) $ (-747))) (-15 -2522 ((-400 (-549)) $ (-747) (-747)))))
-((-3752 (((-167 (-219)) (-747) (-167 (-219))) 11) (((-219) (-747) (-219)) 12)) (-2085 (((-167 (-219)) (-167 (-219))) 13) (((-219) (-219)) 14)) (-1763 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 19) (((-219) (-219) (-219)) 22)) (-3272 (((-167 (-219)) (-167 (-219))) 25) (((-219) (-219)) 24)) (-2047 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 43) (((-219) (-219) (-219)) 35)) (-2730 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 48) (((-219) (-219) (-219)) 45)) (-3232 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 15) (((-219) (-219) (-219)) 16)) (-1940 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 17) (((-219) (-219) (-219)) 18)) (-3173 (((-167 (-219)) (-167 (-219))) 60) (((-219) (-219)) 59)) (-4195 (((-219) (-219)) 54) (((-167 (-219)) (-167 (-219))) 58)) (-1756 (((-167 (-219)) (-167 (-219))) 8) (((-219) (-219)) 9)) (-1850 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 30) (((-219) (-219) (-219)) 26)))
-(((-220) (-10 -7 (-15 -1756 ((-219) (-219))) (-15 -1756 ((-167 (-219)) (-167 (-219)))) (-15 -1850 ((-219) (-219) (-219))) (-15 -1850 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -2085 ((-219) (-219))) (-15 -2085 ((-167 (-219)) (-167 (-219)))) (-15 -3272 ((-219) (-219))) (-15 -3272 ((-167 (-219)) (-167 (-219)))) (-15 -3752 ((-219) (-747) (-219))) (-15 -3752 ((-167 (-219)) (-747) (-167 (-219)))) (-15 -3232 ((-219) (-219) (-219))) (-15 -3232 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -2047 ((-219) (-219) (-219))) (-15 -2047 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -1940 ((-219) (-219) (-219))) (-15 -1940 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -2730 ((-219) (-219) (-219))) (-15 -2730 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -4195 ((-167 (-219)) (-167 (-219)))) (-15 -4195 ((-219) (-219))) (-15 -3173 ((-219) (-219))) (-15 -3173 ((-167 (-219)) (-167 (-219)))) (-15 -1763 ((-219) (-219) (-219))) (-15 -1763 ((-167 (-219)) (-167 (-219)) (-167 (-219)))))) (T -220))
-((-1763 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1763 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-4195 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-4195 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-2730 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-2730 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1940 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1940 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-2047 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-2047 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3232 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3232 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3752 (*1 *2 *3 *2) (-12 (-5 *2 (-167 (-219))) (-5 *3 (-747)) (-5 *1 (-220)))) (-3752 (*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-747)) (-5 *1 (-220)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1850 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1850 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1756 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1756 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))))
-(-10 -7 (-15 -1756 ((-219) (-219))) (-15 -1756 ((-167 (-219)) (-167 (-219)))) (-15 -1850 ((-219) (-219) (-219))) (-15 -1850 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -2085 ((-219) (-219))) (-15 -2085 ((-167 (-219)) (-167 (-219)))) (-15 -3272 ((-219) (-219))) (-15 -3272 ((-167 (-219)) (-167 (-219)))) (-15 -3752 ((-219) (-747) (-219))) (-15 -3752 ((-167 (-219)) (-747) (-167 (-219)))) (-15 -3232 ((-219) (-219) (-219))) (-15 -3232 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -2047 ((-219) (-219) (-219))) (-15 -2047 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -1940 ((-219) (-219) (-219))) (-15 -1940 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -2730 ((-219) (-219) (-219))) (-15 -2730 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -4195 ((-167 (-219)) (-167 (-219)))) (-15 -4195 ((-219) (-219))) (-15 -3173 ((-219) (-219))) (-15 -3173 ((-167 (-219)) (-167 (-219)))) (-15 -1763 ((-219) (-219) (-219))) (-15 -1763 ((-167 (-219)) (-167 (-219)) (-167 (-219)))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3768 (($ (-747) (-747)) NIL)) (-3876 (($ $ $) NIL)) (-2429 (($ (-1225 |#1|)) NIL) (($ $) NIL)) (-2782 (($ |#1| |#1| |#1|) 32)) (-1818 (((-112) $) NIL)) (-1846 (($ $ (-549) (-549)) NIL)) (-3295 (($ $ (-549) (-549)) NIL)) (-1910 (($ $ (-549) (-549) (-549) (-549)) NIL)) (-3931 (($ $) NIL)) (-3893 (((-112) $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-1667 (($ $ (-549) (-549) $) NIL)) (-2253 ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-621 (-549)) (-621 (-549)) $) NIL)) (-1915 (($ $ (-549) (-1225 |#1|)) NIL)) (-2058 (($ $ (-549) (-1225 |#1|)) NIL)) (-4018 (($ |#1| |#1| |#1|) 31)) (-2005 (($ (-747) |#1|) NIL)) (-1705 (($) NIL T CONST)) (-2226 (($ $) NIL (|has| |#1| (-300)))) (-2413 (((-1225 |#1|) $ (-549)) NIL)) (-1683 (($ |#1|) 30)) (-3748 (($ |#1|) 29)) (-4260 (($ |#1|) 28)) (-3122 (((-747) $) NIL (|has| |#1| (-541)))) (-1878 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1808 ((|#1| $ (-549) (-549)) NIL)) (-2990 (((-621 |#1|) $) NIL)) (-1746 (((-747) $) NIL (|has| |#1| (-541)))) (-1701 (((-621 (-1225 |#1|)) $) NIL (|has| |#1| (-541)))) (-2141 (((-747) $) NIL)) (-3743 (($ (-747) (-747) |#1|) NIL)) (-2154 (((-747) $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-1542 ((|#1| $) NIL (|has| |#1| (-6 (-4338 "*"))))) (-2437 (((-549) $) NIL)) (-2103 (((-549) $) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2303 (((-549) $) NIL)) (-2362 (((-549) $) NIL)) (-3945 (($ (-621 (-621 |#1|))) 11)) (-1865 (($ (-1 |#1| |#1|) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3595 (((-621 (-621 |#1|)) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3733 (((-3 $ "failed") $) NIL (|has| |#1| (-356)))) (-3429 (($) 12)) (-4294 (($ $ $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3158 (($ $ |#1|) NIL)) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-621 (-549)) (-621 (-549))) NIL)) (-1601 (($ (-621 |#1|)) NIL) (($ (-621 $)) NIL)) (-2798 (((-112) $) NIL)) (-3097 ((|#1| $) NIL (|has| |#1| (-6 (-4338 "*"))))) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-4102 (((-1225 |#1|) $ (-549)) NIL)) (-3845 (($ (-1225 |#1|)) NIL) (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2901 (((-112) $) NIL)) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $ $) NIL) (($ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-549) $) NIL) (((-1225 |#1|) $ (-1225 |#1|)) 15) (((-1225 |#1|) (-1225 |#1|) $) NIL) (((-914 |#1|) $ (-914 |#1|)) 20)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-221 |#1|) (-13 (-663 |#1| (-1225 |#1|) (-1225 |#1|)) (-10 -8 (-15 * ((-914 |#1|) $ (-914 |#1|))) (-15 -3429 ($)) (-15 -4260 ($ |#1|)) (-15 -3748 ($ |#1|)) (-15 -1683 ($ |#1|)) (-15 -4018 ($ |#1| |#1| |#1|)) (-15 -2782 ($ |#1| |#1| |#1|)))) (-13 (-356) (-1164))) (T -221))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164))) (-5 *1 (-221 *3)))) (-3429 (*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-4260 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-3748 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-1683 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-4018 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-2782 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))))
-(-13 (-663 |#1| (-1225 |#1|) (-1225 |#1|)) (-10 -8 (-15 * ((-914 |#1|) $ (-914 |#1|))) (-15 -3429 ($)) (-15 -4260 ($ |#1|)) (-15 -3748 ($ |#1|)) (-15 -1683 ($ |#1|)) (-15 -4018 ($ |#1| |#1| |#1|)) (-15 -2782 ($ |#1| |#1| |#1|))))
-((-3069 (($ (-1 (-112) |#2|) $) 16)) (-4204 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-4252 (($) NIL) (($ (-621 |#2|)) 11)) (-2388 (((-112) $ $) 23)))
-(((-222 |#1| |#2|) (-10 -8 (-15 -3069 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4204 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4204 (|#1| |#2| |#1|)) (-15 -4252 (|#1| (-621 |#2|))) (-15 -4252 (|#1|)) (-15 -2388 ((-112) |#1| |#1|))) (-223 |#2|) (-1066)) (T -222))
-NIL
-(-10 -8 (-15 -3069 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4204 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4204 (|#1| |#2| |#1|)) (-15 -4252 (|#1| (-621 |#2|))) (-15 -4252 (|#1|)) (-15 -2388 ((-112) |#1| |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) 8)) (-3069 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-3675 (($ $) 58 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-4204 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3812 (($ |#1| $) 57 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2349 ((|#1| $) 39)) (-1709 (($ |#1| $) 40)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2629 ((|#1| $) 41)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-4252 (($) 49) (($ (-621 |#1|)) 48)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-2844 (((-525) $) 59 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 50)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1765 (($ (-621 |#1|)) 42)) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-223 |#1|) (-138) (-1066)) (T -223))
+((-2887 (((-112) $ $) NIL)) (-4130 ((|#2| $ (-747) |#2|) 11)) (-3960 (($) 8)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4142 ((|#2| $ (-747)) 10)) (-4300 (((-835) $) 18)) (-3375 (((-112) $ $) 13)))
+(((-207 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -3960 ($)) (-15 -4142 (|#2| $ (-747))) (-15 -4130 (|#2| $ (-747) |#2|)))) (-890) (-1067)) (T -207))
+((-3960 (*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1067)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *2 (-1067)) (-5 *1 (-207 *4 *2)) (-14 *4 (-890)))) (-4130 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-207 *4 *2)) (-14 *4 (-890)) (-4 *2 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -3960 ($)) (-15 -4142 (|#2| $ (-747))) (-15 -4130 (|#2| $ (-747) |#2|))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2082 (((-1230) $) 36) (((-1230) $ (-890) (-890)) 38)) (-4142 (($ $ (-960)) 19) (((-239 (-1124)) $ (-1142)) 15)) (-3963 (((-1230) $) 34)) (-4300 (((-835) $) 31) (($ (-618 |#1|)) 8)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $ $) 27)) (-4182 (($ $ $) 22)))
+(((-208 |#1|) (-13 (-1067) (-10 -8 (-15 -4142 ($ $ (-960))) (-15 -4142 ((-239 (-1124)) $ (-1142))) (-15 -4182 ($ $ $)) (-15 -4180 ($ $ $)) (-15 -4300 ($ (-618 |#1|))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $)) (-15 -2082 ((-1230) $ (-890) (-890))))) (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $))))) (T -208))
+((-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-960)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $))))))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-239 (-1124))) (-5 *1 (-208 *4)) (-4 *4 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ *3)) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $))))))) (-4182 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $))))))) (-4180 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $))))))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $))))) (-5 *1 (-208 *3)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 (*2 $)) (-15 -2082 (*2 $))))))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 (*2 $)) (-15 -2082 (*2 $))))))) (-2082 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1230)) (-5 *1 (-208 *4)) (-4 *4 (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 (*2 $)) (-15 -2082 (*2 $))))))))
+(-13 (-1067) (-10 -8 (-15 -4142 ($ $ (-960))) (-15 -4142 ((-239 (-1124)) $ (-1142))) (-15 -4182 ($ $ $)) (-15 -4180 ($ $ $)) (-15 -4300 ($ (-618 |#1|))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $)) (-15 -2082 ((-1230) $ (-890) (-890)))))
+((-1496 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1496 (|#2| |#4| (-1 |#2| |#2|)))) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -209))
+((-1496 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1200 (-400 *2))) (-4 *2 (-1200 *5)) (-5 *1 (-209 *5 *2 *6 *3)) (-4 *3 (-335 *5 *2 *6)))))
+(-10 -7 (-15 -1496 (|#2| |#4| (-1 |#2| |#2|))))
+((-1500 ((|#2| |#2| (-747) |#2|) 42)) (-1499 ((|#2| |#2| (-747) |#2|) 38)) (-2449 (((-618 |#2|) (-618 (-2 (|:| |deg| (-747)) (|:| -2894 |#2|)))) 57)) (-1498 (((-618 (-2 (|:| |deg| (-747)) (|:| -2894 |#2|))) |#2|) 53)) (-1501 (((-112) |#2|) 50)) (-4076 (((-398 |#2|) |#2|) 77)) (-4075 (((-398 |#2|) |#2|) 76)) (-2450 ((|#2| |#2| (-747) |#2|) 36)) (-1497 (((-2 (|:| |cont| |#1|) (|:| -2758 (-618 (-2 (|:| |irr| |#2|) (|:| -2478 (-535)))))) |#2| (-112)) 69)))
+(((-210 |#1| |#2|) (-10 -7 (-15 -4075 ((-398 |#2|) |#2|)) (-15 -4076 ((-398 |#2|) |#2|)) (-15 -1497 ((-2 (|:| |cont| |#1|) (|:| -2758 (-618 (-2 (|:| |irr| |#2|) (|:| -2478 (-535)))))) |#2| (-112))) (-15 -1498 ((-618 (-2 (|:| |deg| (-747)) (|:| -2894 |#2|))) |#2|)) (-15 -2449 ((-618 |#2|) (-618 (-2 (|:| |deg| (-747)) (|:| -2894 |#2|))))) (-15 -2450 (|#2| |#2| (-747) |#2|)) (-15 -1499 (|#2| |#2| (-747) |#2|)) (-15 -1500 (|#2| |#2| (-747) |#2|)) (-15 -1501 ((-112) |#2|))) (-343) (-1200 |#1|)) (T -210))
+((-1501 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1200 *4)))) (-1500 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1200 *4)))) (-1499 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1200 *4)))) (-2450 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1200 *4)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| |deg| (-747)) (|:| -2894 *5)))) (-4 *5 (-1200 *4)) (-4 *4 (-343)) (-5 *2 (-618 *5)) (-5 *1 (-210 *4 *5)))) (-1498 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-618 (-2 (|:| |deg| (-747)) (|:| -2894 *3)))) (-5 *1 (-210 *4 *3)) (-4 *3 (-1200 *4)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535))))))) (-5 *1 (-210 *5 *3)) (-4 *3 (-1200 *5)))) (-4076 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1200 *4)))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1200 *4)))))
+(-10 -7 (-15 -4075 ((-398 |#2|) |#2|)) (-15 -4076 ((-398 |#2|) |#2|)) (-15 -1497 ((-2 (|:| |cont| |#1|) (|:| -2758 (-618 (-2 (|:| |irr| |#2|) (|:| -2478 (-535)))))) |#2| (-112))) (-15 -1498 ((-618 (-2 (|:| |deg| (-747)) (|:| -2894 |#2|))) |#2|)) (-15 -2449 ((-618 |#2|) (-618 (-2 (|:| |deg| (-747)) (|:| -2894 |#2|))))) (-15 -2450 (|#2| |#2| (-747) |#2|)) (-15 -1499 (|#2| |#2| (-747) |#2|)) (-15 -1500 (|#2| |#2| (-747) |#2|)) (-15 -1501 ((-112) |#2|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-535) $) NIL (|has| (-535) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-535) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| (-535) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-535) (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| (-535) (-1009 (-535))))) (-3490 (((-535) $) NIL) (((-1142) $) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-535) (-1009 (-535)))) (((-535) $) NIL (|has| (-535) (-1009 (-535))))) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-535) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| (-535) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-535) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-535) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-535) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| (-535) (-1117)))) (-3521 (((-112) $) NIL (|has| (-535) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-535) (-823)))) (-4301 (($ (-1 (-535) (-535)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-535) (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-535) (-300))) (((-400 (-535)) $) NIL)) (-3448 (((-535) $) NIL (|has| (-535) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-535)) (-618 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-535) (-535)) NIL (|has| (-535) (-302 (-535)))) (($ $ (-286 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-286 (-535)))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-1142)) (-618 (-535))) NIL (|has| (-535) (-505 (-1142) (-535)))) (($ $ (-1142) (-535)) NIL (|has| (-535) (-505 (-1142) (-535))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-535)) NIL (|has| (-535) (-279 (-535) (-535))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-535) $) NIL)) (-1502 (($ (-400 (-535))) 9)) (-4313 (((-861 (-535)) $) NIL (|has| (-535) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-535) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-535) (-594 (-524)))) (((-371) $) NIL (|has| (-535) (-991))) (((-219) $) NIL (|has| (-535) (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-535) (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) 8) (($ (-535)) NIL) (($ (-1142)) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL) (((-975 10) $) 10)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-535) (-881))) (|has| (-535) (-143))))) (-3444 (((-747)) NIL)) (-3449 (((-535) $) NIL (|has| (-535) (-534)))) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL (|has| (-535) (-796)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-535) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-535) (-823)))) (-4291 (($ $ $) NIL) (($ (-535) (-535)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-535) $) NIL) (($ $ (-535)) NIL)))
+(((-211) (-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -4300 ((-975 10) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -1502 ($ (-400 (-535))))))) (T -211))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-211)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-975 10)) (-5 *1 (-211)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-211)))) (-1502 (*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-211)))))
+(-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -4300 ((-975 10) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -1502 ($ (-400 (-535))))))
+((-2887 (((-112) $ $) NIL)) (-3653 (((-1081) $) 13)) (-3576 (((-1124) $) NIL)) (-3512 (((-475) $) 10)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 25) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-1101) $) 15)) (-3375 (((-112) $ $) NIL)))
+(((-212) (-13 (-1049) (-10 -8 (-15 -3512 ((-475) $)) (-15 -3653 ((-1081) $)) (-15 -3567 ((-1101) $))))) (T -212))
+((-3512 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-212)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-212)))))
+(-13 (-1049) (-10 -8 (-15 -3512 ((-475) $)) (-15 -3653 ((-1081) $)) (-15 -3567 ((-1101) $))))
+((-4155 (((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1058 (-815 |#2|)) (-1124)) 28) (((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1058 (-815 |#2|))) 24)) (-1503 (((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1142) (-815 |#2|) (-815 |#2|) (-112)) 17)))
+(((-213 |#1| |#2|) (-10 -7 (-15 -4155 ((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1058 (-815 |#2|)))) (-15 -4155 ((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1058 (-815 |#2|)) (-1124))) (-15 -1503 ((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1142) (-815 |#2|) (-815 |#2|) (-112)))) (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-931) (-29 |#1|))) (T -213))
+((-1503 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1142)) (-5 *6 (-112)) (-4 *7 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-4 *3 (-13 (-1164) (-931) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-815 *3)) (|:| |f2| (-618 (-815 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-213 *7 *3)) (-5 *5 (-815 *3)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1058 (-815 *3))) (-5 *5 (-1124)) (-4 *3 (-13 (-1164) (-931) (-29 *6))) (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |f1| (-815 *3)) (|:| |f2| (-618 (-815 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-213 *6 *3)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-815 *3))) (-4 *3 (-13 (-1164) (-931) (-29 *5))) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |f1| (-815 *3)) (|:| |f2| (-618 (-815 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-213 *5 *3)))))
+(-10 -7 (-15 -4155 ((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1058 (-815 |#2|)))) (-15 -4155 ((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1058 (-815 |#2|)) (-1124))) (-15 -1503 ((-3 (|:| |f1| (-815 |#2|)) (|:| |f2| (-618 (-815 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1142) (-815 |#2|) (-815 |#2|) (-112))))
+((-4155 (((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-400 (-917 |#1|)) (-1058 (-815 (-400 (-917 |#1|)))) (-1124)) 46) (((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-400 (-917 |#1|))))) 43) (((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-307 |#1|))) (-1124)) 47) (((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-307 |#1|)))) 20)))
+(((-214 |#1|) (-10 -7 (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-400 (-917 |#1|)) (-1058 (-815 (-307 |#1|))))) (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-307 |#1|))) (-1124))) (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-400 (-917 |#1|)))))) (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-400 (-917 |#1|)))) (-1124)))) (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (T -214))
+((-4155 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1058 (-815 (-400 (-917 *6))))) (-5 *5 (-1124)) (-5 *3 (-400 (-917 *6))) (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |f1| (-815 (-307 *6))) (|:| |f2| (-618 (-815 (-307 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-214 *6)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-815 (-400 (-917 *5))))) (-5 *3 (-400 (-917 *5))) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |f1| (-815 (-307 *5))) (|:| |f2| (-618 (-815 (-307 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-214 *5)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-400 (-917 *6))) (-5 *4 (-1058 (-815 (-307 *6)))) (-5 *5 (-1124)) (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |f1| (-815 (-307 *6))) (|:| |f2| (-618 (-815 (-307 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-214 *6)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1058 (-815 (-307 *5)))) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |f1| (-815 (-307 *5))) (|:| |f2| (-618 (-815 (-307 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-214 *5)))))
+(-10 -7 (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-400 (-917 |#1|)) (-1058 (-815 (-307 |#1|))))) (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-307 |#1|))) (-1124))) (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-400 (-917 |#1|)))))) (-15 -4155 ((-3 (|:| |f1| (-815 (-307 |#1|))) (|:| |f2| (-618 (-815 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-917 |#1|)) (-1058 (-815 (-400 (-917 |#1|)))) (-1124))))
+((-4185 (((-2 (|:| -2115 (-1136 |#1|)) (|:| |deg| (-890))) (-1136 |#1|)) 21)) (-4306 (((-618 (-307 |#2|)) (-307 |#2|) (-890)) 42)))
+(((-215 |#1| |#2|) (-10 -7 (-15 -4185 ((-2 (|:| -2115 (-1136 |#1|)) (|:| |deg| (-890))) (-1136 |#1|))) (-15 -4306 ((-618 (-307 |#2|)) (-307 |#2|) (-890)))) (-1018) (-13 (-542) (-823))) (T -215))
+((-4306 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *6 (-13 (-542) (-823))) (-5 *2 (-618 (-307 *6))) (-5 *1 (-215 *5 *6)) (-5 *3 (-307 *6)) (-4 *5 (-1018)))) (-4185 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-2 (|:| -2115 (-1136 *4)) (|:| |deg| (-890)))) (-5 *1 (-215 *4 *5)) (-5 *3 (-1136 *4)) (-4 *5 (-13 (-542) (-823))))))
+(-10 -7 (-15 -4185 ((-2 (|:| -2115 (-1136 |#1|)) (|:| |deg| (-890))) (-1136 |#1|))) (-15 -4306 ((-618 (-307 |#2|)) (-307 |#2|) (-890))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1545 ((|#1| $) NIL)) (-3666 ((|#1| $) 25)) (-1264 (((-112) $ (-747)) NIL)) (-3879 (($) NIL T CONST)) (-3323 (($ $) NIL)) (-2368 (($ $) 31)) (-3668 ((|#1| |#1| $) NIL)) (-3667 ((|#1| $) NIL)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-4176 (((-747) $) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1326 ((|#1| $) NIL)) (-1543 ((|#1| |#1| $) 28)) (-1542 ((|#1| |#1| $) 30)) (-3953 (($ |#1| $) NIL)) (-2922 (((-747) $) 27)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-3322 ((|#1| $) NIL)) (-1541 ((|#1| $) 26)) (-1540 ((|#1| $) 24)) (-1327 ((|#1| $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3325 ((|#1| |#1| $) NIL)) (-3745 (((-112) $) 9)) (-3911 (($) NIL)) (-3324 ((|#1| $) NIL)) (-1546 (($) NIL) (($ (-618 |#1|)) 16)) (-3665 (((-747) $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-1544 ((|#1| $) 13)) (-1328 (($ (-618 |#1|)) NIL)) (-3321 ((|#1| $) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-216 |#1|) (-13 (-247 |#1|) (-10 -8 (-15 -1546 ($ (-618 |#1|))))) (-1067)) (T -216))
+((-1546 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-216 *3)))))
+(-13 (-247 |#1|) (-10 -8 (-15 -1546 ($ (-618 |#1|)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1505 (($ (-307 |#1|)) 23)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2983 (((-112) $) NIL)) (-3491 (((-3 (-307 |#1|) "failed") $) NIL)) (-3490 (((-307 |#1|) $) NIL)) (-4302 (($ $) 31)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-4301 (($ (-1 (-307 |#1|) (-307 |#1|)) $) NIL)) (-3508 (((-307 |#1|) $) NIL)) (-1507 (($ $) 30)) (-3576 (((-1124) $) NIL)) (-1506 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-2492 (($ (-747)) NIL)) (-1504 (($ $) 32)) (-4290 (((-535) $) NIL)) (-4300 (((-835) $) 57) (($ (-535)) NIL) (($ (-307 |#1|)) NIL)) (-4023 (((-307 |#1|) $ $) NIL)) (-3444 (((-747)) NIL)) (-2979 (($) 25 T CONST)) (-2985 (($) 50 T CONST)) (-3375 (((-112) $ $) 28)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 19)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 24) (($ (-307 |#1|) $) 18)))
+(((-217 |#1| |#2|) (-13 (-599 (-307 |#1|)) (-1009 (-307 |#1|)) (-10 -8 (-15 -3508 ((-307 |#1|) $)) (-15 -1507 ($ $)) (-15 -4302 ($ $)) (-15 -4023 ((-307 |#1|) $ $)) (-15 -2492 ($ (-747))) (-15 -1506 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -4290 ((-535) $)) (-15 -4301 ($ (-1 (-307 |#1|) (-307 |#1|)) $)) (-15 -1505 ($ (-307 |#1|))) (-15 -1504 ($ $)))) (-13 (-1018) (-823)) (-618 (-1142))) (T -217))
+((-3508 (*1 *2 *1) (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-618 (-1142))))) (-1507 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) (-14 *3 (-618 (-1142))))) (-4302 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) (-14 *3 (-618 (-1142))))) (-4023 (*1 *2 *1 *1) (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-618 (-1142))))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-618 (-1142))))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-618 (-1142))))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-618 (-1142))))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-618 (-1142))))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-307 *3) (-307 *3))) (-4 *3 (-13 (-1018) (-823))) (-5 *1 (-217 *3 *4)) (-14 *4 (-618 (-1142))))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-307 *3)) (-4 *3 (-13 (-1018) (-823))) (-5 *1 (-217 *3 *4)) (-14 *4 (-618 (-1142))))) (-1504 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) (-14 *3 (-618 (-1142))))))
+(-13 (-599 (-307 |#1|)) (-1009 (-307 |#1|)) (-10 -8 (-15 -3508 ((-307 |#1|) $)) (-15 -1507 ($ $)) (-15 -4302 ($ $)) (-15 -4023 ((-307 |#1|) $ $)) (-15 -2492 ($ (-747))) (-15 -1506 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -4290 ((-535) $)) (-15 -4301 ($ (-1 (-307 |#1|) (-307 |#1|)) $)) (-15 -1505 ($ (-307 |#1|))) (-15 -1504 ($ $))))
+((-1508 (((-112) (-1124)) 22)) (-1509 (((-3 (-815 |#2|) "failed") (-591 |#2|) |#2| (-815 |#2|) (-815 |#2|) (-112)) 32)) (-1510 (((-3 (-112) "failed") (-1136 |#2|) (-815 |#2|) (-815 |#2|) (-112)) 73) (((-3 (-112) "failed") (-917 |#1|) (-1142) (-815 |#2|) (-815 |#2|) (-112)) 74)))
+(((-218 |#1| |#2|) (-10 -7 (-15 -1508 ((-112) (-1124))) (-15 -1509 ((-3 (-815 |#2|) "failed") (-591 |#2|) |#2| (-815 |#2|) (-815 |#2|) (-112))) (-15 -1510 ((-3 (-112) "failed") (-917 |#1|) (-1142) (-815 |#2|) (-815 |#2|) (-112))) (-15 -1510 ((-3 (-112) "failed") (-1136 |#2|) (-815 |#2|) (-815 |#2|) (-112)))) (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-29 |#1|))) (T -218))
+((-1510 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1136 *6)) (-5 *4 (-815 *6)) (-4 *6 (-13 (-1164) (-29 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-218 *5 *6)))) (-1510 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-917 *6)) (-5 *4 (-1142)) (-5 *5 (-815 *7)) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-4 *7 (-13 (-1164) (-29 *6))) (-5 *1 (-218 *6 *7)))) (-1509 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-815 *4)) (-5 *3 (-591 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1164) (-29 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-218 *6 *4)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1164) (-29 *4))))))
+(-10 -7 (-15 -1508 ((-112) (-1124))) (-15 -1509 ((-3 (-815 |#2|) "failed") (-591 |#2|) |#2| (-815 |#2|) (-815 |#2|) (-112))) (-15 -1510 ((-3 (-112) "failed") (-917 |#1|) (-1142) (-815 |#2|) (-815 |#2|) (-112))) (-15 -1510 ((-3 (-112) "failed") (-1136 |#2|) (-815 |#2|) (-815 |#2|) (-112))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 89)) (-3447 (((-535) $) 100)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4113 (($ $) NIL)) (-3829 (($ $) 77)) (-3985 (($ $) 65)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3358 (($ $) 56)) (-1700 (((-112) $ $) NIL)) (-3827 (($ $) 75)) (-3984 (($ $) 63)) (-3969 (((-535) $) 117)) (-3831 (($ $) 80)) (-3983 (($ $) 67)) (-3879 (($) NIL T CONST)) (-3445 (($ $) NIL)) (-3491 (((-3 (-535) #1="failed") $) 116) (((-3 (-400 (-535)) #1#) $) 113)) (-3490 (((-535) $) 114) (((-400 (-535)) $) 111)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) 93)) (-1855 (((-400 (-535)) $ (-747)) 109) (((-400 (-535)) $ (-747) (-747)) 108)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2457 (((-890)) 29) (((-890) (-890)) NIL (|has| $ (-6 -4327)))) (-3520 (((-112) $) NIL)) (-3973 (($) 39)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL)) (-4114 (((-535) $) 35)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL)) (-3450 (($ $) NIL)) (-3521 (((-112) $) 88)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL)) (-3660 (($ $ $) 53) (($) 34 (-12 (-3659 (|has| $ (-6 -4319))) (-3659 (|has| $ (-6 -4327)))))) (-3661 (($ $ $) 52) (($) 33 (-12 (-3659 (|has| $ (-6 -4319))) (-3659 (|has| $ (-6 -4327)))))) (-2458 (((-535) $) 27)) (-1854 (($ $) 30)) (-1853 (($ $) 57)) (-4285 (($ $) 62)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-1884 (((-890) (-535)) NIL (|has| $ (-6 -4327)))) (-3577 (((-1086) $) 91)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL)) (-3448 (($ $) NIL)) (-3588 (($ (-535) (-535)) NIL) (($ (-535) (-535) (-890)) 101)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2484 (((-535) $) 28)) (-1852 (($) 38)) (-4286 (($ $) 61)) (-1699 (((-747) $) NIL)) (-1511 (((-1124) (-1124)) 8)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-2932 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4327)))) (-4153 (($ $ (-747)) NIL) (($ $) 94)) (-1883 (((-890) (-535)) NIL (|has| $ (-6 -4327)))) (-3832 (($ $) 78)) (-3982 (($ $) 68)) (-3830 (($ $) 79)) (-3981 (($ $) 66)) (-3828 (($ $) 76)) (-3980 (($ $) 64)) (-4313 (((-371) $) 105) (((-219) $) 102) (((-861 (-371)) $) NIL) (((-524) $) 45)) (-4300 (((-835) $) 42) (($ (-535)) 60) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-535)) 60) (($ (-400 (-535))) NIL)) (-3444 (((-747)) NIL)) (-3449 (($ $) NIL)) (-1885 (((-890)) 32) (((-890) (-890)) NIL (|has| $ (-6 -4327)))) (-3015 (((-890)) 25)) (-3835 (($ $) 83)) (-3823 (($ $) 71) (($ $ $) 110)) (-2170 (((-112) $ $) NIL)) (-3833 (($ $) 81)) (-3821 (($ $) 69)) (-3837 (($ $) 86)) (-3825 (($ $) 74)) (-3838 (($ $) 84)) (-3826 (($ $) 72)) (-3836 (($ $) 85)) (-3824 (($ $) 73)) (-3834 (($ $) 82)) (-3822 (($ $) 70)) (-3725 (($ $) 118)) (-2979 (($) 36 T CONST)) (-2985 (($) 37 T CONST)) (-2825 (((-1124) $) 19) (((-1124) $ (-112)) 21) (((-1230) (-799) $) 22) (((-1230) (-799) $ (-112)) 23)) (-3729 (($ $) 97)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-3726 (($ $ $) 99)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 54)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 46)) (-4291 (($ $ $) 87) (($ $ (-535)) 55)) (-4180 (($ $) 47) (($ $ $) 49)) (-4182 (($ $ $) 48)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 58) (($ $ (-400 (-535))) 130) (($ $ $) 59)) (* (($ (-890) $) 31) (($ (-747) $) NIL) (($ (-535) $) 51) (($ $ $) 50) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL)))
+(((-219) (-13 (-397) (-227) (-797) (-1164) (-594 (-524)) (-10 -8 (-15 -4291 ($ $ (-535))) (-15 ** ($ $ $)) (-15 -1852 ($)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -3823 ($ $ $)) (-15 -3729 ($ $)) (-15 -3726 ($ $ $)) (-15 -1511 ((-1124) (-1124))) (-15 -1855 ((-400 (-535)) $ (-747))) (-15 -1855 ((-400 (-535)) $ (-747) (-747)))))) (T -219))
+((** (*1 *1 *1 *1) (-5 *1 (-219))) (-4291 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-219)))) (-1852 (*1 *1) (-5 *1 (-219))) (-1854 (*1 *1 *1) (-5 *1 (-219))) (-1853 (*1 *1 *1) (-5 *1 (-219))) (-3823 (*1 *1 *1 *1) (-5 *1 (-219))) (-3729 (*1 *1 *1) (-5 *1 (-219))) (-3726 (*1 *1 *1 *1) (-5 *1 (-219))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-219)))) (-1855 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-219)))) (-1855 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-219)))))
+(-13 (-397) (-227) (-797) (-1164) (-594 (-524)) (-10 -8 (-15 -4291 ($ $ (-535))) (-15 ** ($ $ $)) (-15 -1852 ($)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -3823 ($ $ $)) (-15 -3729 ($ $)) (-15 -3726 ($ $ $)) (-15 -1511 ((-1124) (-1124))) (-15 -1855 ((-400 (-535)) $ (-747))) (-15 -1855 ((-400 (-535)) $ (-747) (-747)))))
+((-3728 (((-166 (-219)) (-747) (-166 (-219))) 11) (((-219) (-747) (-219)) 12)) (-1512 (((-166 (-219)) (-166 (-219))) 13) (((-219) (-219)) 14)) (-1513 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 19) (((-219) (-219) (-219)) 22)) (-3727 (((-166 (-219)) (-166 (-219))) 25) (((-219) (-219)) 24)) (-3731 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 43) (((-219) (-219) (-219)) 35)) (-3733 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 48) (((-219) (-219) (-219)) 45)) (-3730 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 15) (((-219) (-219) (-219)) 16)) (-3732 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 17) (((-219) (-219) (-219)) 18)) (-3735 (((-166 (-219)) (-166 (-219))) 60) (((-219) (-219)) 59)) (-3734 (((-219) (-219)) 54) (((-166 (-219)) (-166 (-219))) 58)) (-3729 (((-166 (-219)) (-166 (-219))) 8) (((-219) (-219)) 9)) (-3726 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 30) (((-219) (-219) (-219)) 26)))
+(((-220) (-10 -7 (-15 -3729 ((-219) (-219))) (-15 -3729 ((-166 (-219)) (-166 (-219)))) (-15 -3726 ((-219) (-219) (-219))) (-15 -3726 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -1512 ((-219) (-219))) (-15 -1512 ((-166 (-219)) (-166 (-219)))) (-15 -3727 ((-219) (-219))) (-15 -3727 ((-166 (-219)) (-166 (-219)))) (-15 -3728 ((-219) (-747) (-219))) (-15 -3728 ((-166 (-219)) (-747) (-166 (-219)))) (-15 -3730 ((-219) (-219) (-219))) (-15 -3730 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3731 ((-219) (-219) (-219))) (-15 -3731 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3732 ((-219) (-219) (-219))) (-15 -3732 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3733 ((-219) (-219) (-219))) (-15 -3733 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3734 ((-166 (-219)) (-166 (-219)))) (-15 -3734 ((-219) (-219))) (-15 -3735 ((-219) (-219))) (-15 -3735 ((-166 (-219)) (-166 (-219)))) (-15 -1513 ((-219) (-219) (-219))) (-15 -1513 ((-166 (-219)) (-166 (-219)) (-166 (-219)))))) (T -220))
+((-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3734 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3734 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3733 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3733 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3732 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3732 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3731 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3731 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3730 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3730 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3728 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-219))) (-5 *3 (-747)) (-5 *1 (-220)))) (-3728 (*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-747)) (-5 *1 (-220)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3726 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3726 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3729 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3729 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))))
+(-10 -7 (-15 -3729 ((-219) (-219))) (-15 -3729 ((-166 (-219)) (-166 (-219)))) (-15 -3726 ((-219) (-219) (-219))) (-15 -3726 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -1512 ((-219) (-219))) (-15 -1512 ((-166 (-219)) (-166 (-219)))) (-15 -3727 ((-219) (-219))) (-15 -3727 ((-166 (-219)) (-166 (-219)))) (-15 -3728 ((-219) (-747) (-219))) (-15 -3728 ((-166 (-219)) (-747) (-166 (-219)))) (-15 -3730 ((-219) (-219) (-219))) (-15 -3730 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3731 ((-219) (-219) (-219))) (-15 -3731 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3732 ((-219) (-219) (-219))) (-15 -3732 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3733 ((-219) (-219) (-219))) (-15 -3733 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3734 ((-166 (-219)) (-166 (-219)))) (-15 -3734 ((-219) (-219))) (-15 -3735 ((-219) (-219))) (-15 -3735 ((-166 (-219)) (-166 (-219)))) (-15 -1513 ((-219) (-219) (-219))) (-15 -1513 ((-166 (-219)) (-166 (-219)) (-166 (-219)))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4181 (($ (-747) (-747)) NIL)) (-2422 (($ $ $) NIL)) (-3756 (($ (-1224 |#1|)) NIL) (($ $) NIL)) (-4216 (($ |#1| |#1| |#1|) 32)) (-3439 (((-112) $) NIL)) (-2421 (($ $ (-535) (-535)) NIL)) (-2420 (($ $ (-535) (-535)) NIL)) (-2419 (($ $ (-535) (-535) (-535) (-535)) NIL)) (-2424 (($ $) NIL)) (-3441 (((-112) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-2418 (($ $ (-535) (-535) $) NIL)) (-4130 ((|#1| $ (-535) (-535) |#1|) NIL) (($ $ (-618 (-535)) (-618 (-535)) $) NIL)) (-1302 (($ $ (-535) (-1224 |#1|)) NIL)) (-1301 (($ $ (-535) (-1224 |#1|)) NIL)) (-4190 (($ |#1| |#1| |#1|) 31)) (-3675 (($ (-747) |#1|) NIL)) (-3879 (($) NIL T CONST)) (-3428 (($ $) NIL (|has| |#1| (-300)))) (-3430 (((-1224 |#1|) $ (-535)) NIL)) (-1514 (($ |#1|) 30)) (-1515 (($ |#1|) 29)) (-1516 (($ |#1|) 28)) (-3427 (((-747) $) NIL (|has| |#1| (-542)))) (-1632 ((|#1| $ (-535) (-535) |#1|) NIL)) (-3431 ((|#1| $ (-535) (-535)) NIL)) (-2063 (((-618 |#1|) $) NIL)) (-3426 (((-747) $) NIL (|has| |#1| (-542)))) (-3425 (((-618 (-1224 |#1|)) $) NIL (|has| |#1| (-542)))) (-3433 (((-747) $) NIL)) (-3960 (($ (-747) (-747) |#1|) NIL)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3669 ((|#1| $) NIL (|has| |#1| (-6 (-4338 #1="*"))))) (-3437 (((-535) $) NIL)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3436 (((-535) $) NIL)) (-3434 (((-535) $) NIL)) (-3442 (($ (-618 (-618 |#1|))) 11)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3939 (((-618 (-618 |#1|)) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3935 (((-3 $ #2="failed") $) NIL (|has| |#1| (-356)))) (-1517 (($) 12)) (-2423 (($ $ $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) NIL)) (-3803 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-542)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) (-535)) NIL) ((|#1| $ (-535) (-535) |#1|) NIL) (($ $ (-618 (-535)) (-618 (-535))) NIL)) (-3674 (($ (-618 |#1|)) NIL) (($ (-618 $)) NIL)) (-3440 (((-112) $) NIL)) (-3670 ((|#1| $) NIL (|has| |#1| (-6 (-4338 #1#))))) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-3429 (((-1224 |#1|) $ (-535)) NIL)) (-4300 (($ (-1224 |#1|)) NIL) (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3438 (((-112) $) NIL)) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-535) $) NIL) (((-1224 |#1|) $ (-1224 |#1|)) 15) (((-1224 |#1|) (-1224 |#1|) $) NIL) (((-914 |#1|) $ (-914 |#1|)) 20)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-221 |#1|) (-13 (-662 |#1| (-1224 |#1|) (-1224 |#1|)) (-10 -8 (-15 * ((-914 |#1|) $ (-914 |#1|))) (-15 -1517 ($)) (-15 -1516 ($ |#1|)) (-15 -1515 ($ |#1|)) (-15 -1514 ($ |#1|)) (-15 -4190 ($ |#1| |#1| |#1|)) (-15 -4216 ($ |#1| |#1| |#1|)))) (-13 (-356) (-1164))) (T -221))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164))) (-5 *1 (-221 *3)))) (-1517 (*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-1516 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-1515 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-1514 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-4190 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))) (-4216 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))))
+(-13 (-662 |#1| (-1224 |#1|) (-1224 |#1|)) (-10 -8 (-15 * ((-914 |#1|) $ (-914 |#1|))) (-15 -1517 ($)) (-15 -1516 ($ |#1|)) (-15 -1515 ($ |#1|)) (-15 -1514 ($ |#1|)) (-15 -4190 ($ |#1| |#1| |#1|)) (-15 -4216 ($ |#1| |#1| |#1|))))
+((-1626 (($ (-1 (-112) |#2|) $) 16)) (-3747 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-1518 (($) NIL) (($ (-618 |#2|)) 11)) (-3375 (((-112) $ $) 23)))
+(((-222 |#1| |#2|) (-10 -8 (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3747 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3747 (|#1| |#2| |#1|)) (-15 -1518 (|#1| (-618 |#2|))) (-15 -1518 (|#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-223 |#2|) (-1067)) (T -222))
+NIL
+(-10 -8 (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3747 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3747 (|#1| |#2| |#1|)) (-15 -1518 (|#1| (-618 |#2|))) (-15 -1518 (|#1|)) (-15 -3375 ((-112) |#1| |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-1394 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-1518 (($) 49) (($ (-618 |#1|)) 48)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 50)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-223 |#1|) (-138) (-1067)) (T -223))
NIL
(-13 (-229 |t#1|))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-3455 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) 11) (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142)) 19) (($ $ (-747)) NIL) (($ $) 16)) (-1700 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-747)) 14) (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)))
-(((-224 |#1| |#2|) (-10 -8 (-15 -3455 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -1700 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -1700 (|#1| |#1| (-1142))) (-15 -1700 (|#1| |#1| (-621 (-1142)))) (-15 -1700 (|#1| |#1| (-1142) (-747))) (-15 -1700 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -1700 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -1700 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1018)) (T -224))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-4153 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) 11) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) 19) (($ $ (-747)) NIL) (($ $) 16)) (-2990 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-747)) 14) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)))
+(((-224 |#1| |#2|) (-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -2990 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -2990 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -2990 (|#1| |#1| (-1142))) (-15 -2990 (|#1| |#1| (-618 (-1142)))) (-15 -2990 (|#1| |#1| (-1142) (-747))) (-15 -2990 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -2990 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2990 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1018)) (T -224))
NIL
-(-10 -8 (-15 -3455 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -1700 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -1700 (|#1| |#1| (-1142))) (-15 -1700 (|#1| |#1| (-621 (-1142)))) (-15 -1700 (|#1| |#1| (-1142) (-747))) (-15 -1700 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -1700 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -1700 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3455 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-747)) 49) (($ $ (-621 (-1142)) (-621 (-747))) 42 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 41 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) 40 (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 39 (|has| |#1| (-871 (-1142)))) (($ $ (-747)) 37 (|has| |#1| (-227))) (($ $) 35 (|has| |#1| (-227)))) (-3845 (((-834) $) 11) (($ (-549)) 27)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-747)) 47) (($ $ (-621 (-1142)) (-621 (-747))) 46 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 45 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) 44 (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 43 (|has| |#1| (-871 (-1142)))) (($ $ (-747)) 38 (|has| |#1| (-227))) (($ $) 36 (|has| |#1| (-227)))) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -2990 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -2990 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -2990 (|#1| |#1| (-1142))) (-15 -2990 (|#1| |#1| (-618 (-1142)))) (-15 -2990 (|#1| |#1| (-1142) (-747))) (-15 -2990 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -2990 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2990 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4153 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-747)) 49) (($ $ (-618 (-1142)) (-618 (-747))) 42 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 41 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 40 (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 39 (|has| |#1| (-871 (-1142)))) (($ $ (-747)) 37 (|has| |#1| (-227))) (($ $) 35 (|has| |#1| (-227)))) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-747)) 47) (($ $ (-618 (-1142)) (-618 (-747))) 46 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 45 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 44 (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 43 (|has| |#1| (-871 (-1142)))) (($ $ (-747)) 38 (|has| |#1| (-227))) (($ $) 36 (|has| |#1| (-227)))) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-225 |#1|) (-138) (-1018)) (T -225))
-((-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018)))) (-3455 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4)) (-4 *4 (-1018)))) (-1700 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018)))) (-1700 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4)) (-4 *4 (-1018)))))
-(-13 (-1018) (-10 -8 (-15 -3455 ($ $ (-1 |t#1| |t#1|))) (-15 -3455 ($ $ (-1 |t#1| |t#1|) (-747))) (-15 -1700 ($ $ (-1 |t#1| |t#1|))) (-15 -1700 ($ $ (-1 |t#1| |t#1|) (-747))) (IF (|has| |t#1| (-227)) (-6 (-227)) |%noBranch|) (IF (|has| |t#1| (-871 (-1142))) (-6 (-871 (-1142))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-227) |has| |#1| (-227)) ((-624 $) . T) ((-703) . T) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3455 (($ $) NIL) (($ $ (-747)) 10)) (-1700 (($ $) 8) (($ $ (-747)) 12)))
-(((-226 |#1|) (-10 -8 (-15 -1700 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1| (-747))) (-15 -1700 (|#1| |#1|)) (-15 -3455 (|#1| |#1|))) (-227)) (T -226))
-NIL
-(-10 -8 (-15 -1700 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1| (-747))) (-15 -1700 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3455 (($ $) 36) (($ $ (-747)) 34)) (-3845 (((-834) $) 11) (($ (-549)) 27)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $) 35) (($ $ (-747)) 33)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018)))) (-4153 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4)) (-4 *4 (-1018)))) (-2990 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018)))) (-2990 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4)) (-4 *4 (-1018)))))
+(-13 (-1018) (-10 -8 (-15 -4153 ($ $ (-1 |t#1| |t#1|))) (-15 -4153 ($ $ (-1 |t#1| |t#1|) (-747))) (-15 -2990 ($ $ (-1 |t#1| |t#1|))) (-15 -2990 ($ $ (-1 |t#1| |t#1|) (-747))) (IF (|has| |t#1| (-227)) (-6 (-227)) |%noBranch|) (IF (|has| |t#1| (-871 (-1142))) (-6 (-871 (-1142))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-227) |has| |#1| (-227)) ((-624 $) . T) ((-703) . T) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-4153 (($ $) NIL) (($ $ (-747)) 10)) (-2990 (($ $) 8) (($ $ (-747)) 12)))
+(((-226 |#1|) (-10 -8 (-15 -2990 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-747))) (-15 -2990 (|#1| |#1|)) (-15 -4153 (|#1| |#1|))) (-227)) (T -226))
+NIL
+(-10 -8 (-15 -2990 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-747))) (-15 -2990 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4153 (($ $) 36) (($ $ (-747)) 34)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $) 35) (($ $ (-747)) 33)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-227) (-138)) (T -227))
-((-3455 (*1 *1 *1) (-4 *1 (-227))) (-1700 (*1 *1 *1) (-4 *1 (-227))) (-3455 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747)))) (-1700 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747)))))
-(-13 (-1018) (-10 -8 (-15 -3455 ($ $)) (-15 -1700 ($ $)) (-15 -3455 ($ $ (-747))) (-15 -1700 ($ $ (-747)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-4252 (($) 12) (($ (-621 |#2|)) NIL)) (-2281 (($ $) 14)) (-3853 (($ (-621 |#2|)) 10)) (-3845 (((-834) $) 21)))
-(((-228 |#1| |#2|) (-10 -8 (-15 -3845 ((-834) |#1|)) (-15 -4252 (|#1| (-621 |#2|))) (-15 -4252 (|#1|)) (-15 -3853 (|#1| (-621 |#2|))) (-15 -2281 (|#1| |#1|))) (-229 |#2|) (-1066)) (T -228))
-NIL
-(-10 -8 (-15 -3845 ((-834) |#1|)) (-15 -4252 (|#1| (-621 |#2|))) (-15 -4252 (|#1|)) (-15 -3853 (|#1| (-621 |#2|))) (-15 -2281 (|#1| |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) 8)) (-3069 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-3675 (($ $) 58 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-4204 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3812 (($ |#1| $) 57 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2349 ((|#1| $) 39)) (-1709 (($ |#1| $) 40)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2629 ((|#1| $) 41)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-4252 (($) 49) (($ (-621 |#1|)) 48)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-2844 (((-525) $) 59 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 50)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1765 (($ (-621 |#1|)) 42)) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-229 |#1|) (-138) (-1066)) (T -229))
-((-4252 (*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1066)))) (-4252 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-4 *1 (-229 *3)))) (-4204 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-229 *2)) (-4 *2 (-1066)))) (-4204 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-229 *3)) (-4 *3 (-1066)))) (-3069 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-229 *3)) (-4 *3 (-1066)))))
-(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -4252 ($)) (-15 -4252 ($ (-621 |t#1|))) (IF (|has| $ (-6 -4336)) (PROGN (-15 -4204 ($ |t#1| $)) (-15 -4204 ($ (-1 (-112) |t#1|) $)) (-15 -3069 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-4025 (((-2 (|:| |varOrder| (-621 (-1142))) (|:| |inhom| (-3 (-621 (-1225 (-747))) "failed")) (|:| |hom| (-621 (-1225 (-747))))) (-287 (-923 (-549)))) 27)))
-(((-230) (-10 -7 (-15 -4025 ((-2 (|:| |varOrder| (-621 (-1142))) (|:| |inhom| (-3 (-621 (-1225 (-747))) "failed")) (|:| |hom| (-621 (-1225 (-747))))) (-287 (-923 (-549))))))) (T -230))
-((-4025 (*1 *2 *3) (-12 (-5 *3 (-287 (-923 (-549)))) (-5 *2 (-2 (|:| |varOrder| (-621 (-1142))) (|:| |inhom| (-3 (-621 (-1225 (-747))) "failed")) (|:| |hom| (-621 (-1225 (-747)))))) (-5 *1 (-230)))))
-(-10 -7 (-15 -4025 ((-2 (|:| |varOrder| (-621 (-1142))) (|:| |inhom| (-3 (-621 (-1225 (-747))) "failed")) (|:| |hom| (-621 (-1225 (-747))))) (-287 (-923 (-549))))))
-((-3615 (((-747)) 51)) (-1698 (((-2 (|:| -1859 (-665 |#3|)) (|:| |vec| (-1225 |#3|))) (-665 $) (-1225 $)) 49) (((-665 |#3|) (-665 $)) 41) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL) (((-665 (-549)) (-665 $)) NIL)) (-3128 (((-133)) 57)) (-3455 (($ $ (-1 |#3| |#3|) (-747)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-3845 (((-1225 |#3|) $) NIL) (($ |#3|) NIL) (((-834) $) NIL) (($ (-549)) 12) (($ (-400 (-549))) NIL)) (-1723 (((-747)) 15)) (-2512 (($ $ |#3|) 54)))
-(((-231 |#1| |#2| |#3|) (-10 -8 (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|)) (-15 -1723 ((-747))) (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -1698 ((-665 (-549)) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 |#1|) (-1225 |#1|))) (-15 -3845 (|#1| |#3|)) (-15 -3455 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3455 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -1698 ((-665 |#3|) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 |#3|)) (|:| |vec| (-1225 |#3|))) (-665 |#1|) (-1225 |#1|))) (-15 -3615 ((-747))) (-15 -2512 (|#1| |#1| |#3|)) (-15 -3128 ((-133))) (-15 -3845 ((-1225 |#3|) |#1|))) (-232 |#2| |#3|) (-747) (-1179)) (T -231))
-((-3128 (*1 *2) (-12 (-14 *4 (-747)) (-4 *5 (-1179)) (-5 *2 (-133)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-3615 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1179)) (-5 *2 (-747)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-1723 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1179)) (-5 *2 (-747)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))))
-(-10 -8 (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|)) (-15 -1723 ((-747))) (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -1698 ((-665 (-549)) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 |#1|) (-1225 |#1|))) (-15 -3845 (|#1| |#3|)) (-15 -3455 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3455 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -1698 ((-665 |#3|) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 |#3|)) (|:| |vec| (-1225 |#3|))) (-665 |#1|) (-1225 |#1|))) (-15 -3615 ((-747))) (-15 -2512 (|#1| |#1| |#3|)) (-15 -3128 ((-133))) (-15 -3845 ((-1225 |#3|) |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#2| (-1066)))) (-3166 (((-112) $) 72 (|has| |#2| (-130)))) (-3195 (($ (-892)) 125 (|has| |#2| (-1018)))) (-2932 (((-1230) $ (-549) (-549)) 40 (|has| $ (-6 -4337)))) (-3100 (($ $ $) 121 (|has| |#2| (-769)))) (-2384 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-1323 (((-112) $ (-747)) 8)) (-3615 (((-747)) 107 (|has| |#2| (-361)))) (-3902 (((-549) $) 119 (|has| |#2| (-821)))) (-2253 ((|#2| $ (-549) |#2|) 52 (|has| $ (-6 -4337)))) (-1705 (($) 7 T CONST)) (-2713 (((-3 (-549) "failed") $) 67 (-1820 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066)))) (((-3 (-400 (-549)) "failed") $) 64 (-1820 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1066)))) (-2658 (((-549) $) 68 (-1820 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066)))) (((-400 (-549)) $) 65 (-1820 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066)))) ((|#2| $) 60 (|has| |#2| (-1066)))) (-1698 (((-665 (-549)) (-665 $)) 106 (-1820 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 105 (-1820 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) 104 (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) 103 (|has| |#2| (-1018)))) (-3976 (((-3 $ "failed") $) 79 (|has| |#2| (-703)))) (-3238 (($) 110 (|has| |#2| (-361)))) (-1878 ((|#2| $ (-549) |#2|) 53 (|has| $ (-6 -4337)))) (-1808 ((|#2| $ (-549)) 51)) (-3079 (((-112) $) 117 (|has| |#2| (-821)))) (-2990 (((-621 |#2|) $) 30 (|has| $ (-6 -4336)))) (-3987 (((-112) $) 81 (|has| |#2| (-703)))) (-2847 (((-112) $) 118 (|has| |#2| (-821)))) (-4202 (((-112) $ (-747)) 9)) (-3485 (((-549) $) 43 (|has| (-549) (-823)))) (-2862 (($ $ $) 116 (-1536 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-1958 (((-621 |#2|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 44 (|has| (-549) (-823)))) (-3574 (($ $ $) 115 (-1536 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-1865 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#2| |#2|) $) 35)) (-2723 (((-892) $) 109 (|has| |#2| (-361)))) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#2| (-1066)))) (-3927 (((-621 (-549)) $) 46)) (-1286 (((-112) (-549) $) 47)) (-3491 (($ (-892)) 108 (|has| |#2| (-361)))) (-3988 (((-1086) $) 21 (|has| |#2| (-1066)))) (-3645 ((|#2| $) 42 (|has| (-549) (-823)))) (-3158 (($ $ |#2|) 41 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1738 (((-621 |#2|) $) 48)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#2| $ (-549) |#2|) 50) ((|#2| $ (-549)) 49)) (-4140 ((|#2| $ $) 124 (|has| |#2| (-1018)))) (-2168 (($ (-1225 |#2|)) 126)) (-3128 (((-133)) 123 (|has| |#2| (-356)))) (-3455 (($ $) 98 (-1820 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) 96 (-1820 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) 94 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142))) 93 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) 92 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142)) (-621 (-747))) 91 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) 84 (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1018)))) (-3997 (((-747) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4336))) (((-747) |#2| $) 28 (-12 (|has| |#2| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3845 (((-1225 |#2|) $) 127) (($ (-549)) 66 (-1536 (-1820 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066))) (|has| |#2| (-1018)))) (($ (-400 (-549))) 63 (-1820 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066)))) (($ |#2|) 62 (|has| |#2| (-1066))) (((-834) $) 18 (|has| |#2| (-593 (-834))))) (-1723 (((-747)) 102 (|has| |#2| (-1018)))) (-2150 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4336)))) (-3603 (($ $) 120 (|has| |#2| (-821)))) (-3275 (($) 71 (|has| |#2| (-130)) CONST)) (-3287 (($) 82 (|has| |#2| (-703)) CONST)) (-1700 (($ $) 97 (-1820 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) 95 (-1820 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) 90 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142))) 89 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) 88 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142)) (-621 (-747))) 87 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) 86 (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1018)))) (-2448 (((-112) $ $) 113 (-1536 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2424 (((-112) $ $) 112 (-1536 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2388 (((-112) $ $) 20 (|has| |#2| (-1066)))) (-2436 (((-112) $ $) 114 (-1536 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2411 (((-112) $ $) 111 (-1536 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2512 (($ $ |#2|) 122 (|has| |#2| (-356)))) (-2499 (($ $ $) 100 (|has| |#2| (-1018))) (($ $) 99 (|has| |#2| (-1018)))) (-2485 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-747)) 80 (|has| |#2| (-703))) (($ $ (-892)) 77 (|has| |#2| (-703)))) (* (($ (-549) $) 101 (|has| |#2| (-1018))) (($ $ $) 78 (|has| |#2| (-703))) (($ $ |#2|) 76 (|has| |#2| (-703))) (($ |#2| $) 75 (|has| |#2| (-703))) (($ (-747) $) 73 (|has| |#2| (-130))) (($ (-892) $) 70 (|has| |#2| (-25)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-232 |#1| |#2|) (-138) (-747) (-1179)) (T -232))
-((-2168 (*1 *1 *2) (-12 (-5 *2 (-1225 *4)) (-4 *4 (-1179)) (-4 *1 (-232 *3 *4)))) (-3195 (*1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1018)) (-4 *4 (-1179)))) (-4140 (*1 *2 *1 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1179)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1179)) (-4 *2 (-703)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1179)) (-4 *2 (-703)))))
-(-13 (-584 (-549) |t#2|) (-593 (-1225 |t#2|)) (-10 -8 (-6 -4336) (-15 -2168 ($ (-1225 |t#2|))) (IF (|has| |t#2| (-1066)) (-6 (-404 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1018)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-225 |t#2|)) (-6 (-370 |t#2|)) (-15 -3195 ($ (-892))) (-15 -4140 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-703)) (PROGN (-6 (-703)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4333)) (-6 -4333) |%noBranch|) (IF (|has| |t#2| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#2| (-769)) (-6 (-769)) |%noBranch|) (IF (|has| |t#2| (-356)) (-6 (-1232 |t#2|)) |%noBranch|)))
-(((-21) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-23) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) -1536 (|has| |#2| (-1066)) (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-703)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -1536 (|has| |#2| (-1018)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-593 (-834)) -1536 (|has| |#2| (-1066)) (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-703)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-593 (-834))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-593 (-1225 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-225 |#2|) |has| |#2| (-1018)) ((-227) -12 (|has| |#2| (-227)) (|has| |#2| (-1018))) ((-279 #0=(-549) |#2|) . T) ((-281 #0# |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((-361) |has| |#2| (-361)) ((-370 |#2|) |has| |#2| (-1018)) ((-404 |#2|) |has| |#2| (-1066)) ((-481 |#2|) . T) ((-584 #0# |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((-624 |#2|) -1536 (|has| |#2| (-1018)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-624 $) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-170))) ((-617 (-549)) -12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018))) ((-617 |#2|) |has| |#2| (-1018)) ((-694 |#2|) -1536 (|has| |#2| (-356)) (|has| |#2| (-170))) ((-703) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-703)) (|has| |#2| (-170))) ((-767) |has| |#2| (-821)) ((-768) -1536 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-769) |has| |#2| (-769)) ((-770) -1536 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-771) -1536 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-821) |has| |#2| (-821)) ((-823) -1536 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-871 (-1142)) -12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018))) ((-1009 (-400 (-549))) -12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066))) ((-1009 (-549)) -12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066))) ((-1009 |#2|) |has| |#2| (-1066)) ((-1024 |#2|) -1536 (|has| |#2| (-1018)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-1024 $) |has| |#2| (-170)) ((-1018) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-170))) ((-1025) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-170))) ((-1078) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-703)) (|has| |#2| (-170))) ((-1066) -1536 (|has| |#2| (-1066)) (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-703)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1179) . T) ((-1232 |#2|) |has| |#2| (-356)))
-((-3076 (((-234 |#1| |#3|) (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|) 21)) (-2558 ((|#3| (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|) 23)) (-2796 (((-234 |#1| |#3|) (-1 |#3| |#2|) (-234 |#1| |#2|)) 18)))
-(((-233 |#1| |#2| |#3|) (-10 -7 (-15 -3076 ((-234 |#1| |#3|) (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2558 (|#3| (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2796 ((-234 |#1| |#3|) (-1 |#3| |#2|) (-234 |#1| |#2|)))) (-747) (-1179) (-1179)) (T -233))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-234 *5 *6)) (-14 *5 (-747)) (-4 *6 (-1179)) (-4 *7 (-1179)) (-5 *2 (-234 *5 *7)) (-5 *1 (-233 *5 *6 *7)))) (-2558 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-234 *5 *6)) (-14 *5 (-747)) (-4 *6 (-1179)) (-4 *2 (-1179)) (-5 *1 (-233 *5 *6 *2)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-234 *6 *7)) (-14 *6 (-747)) (-4 *7 (-1179)) (-4 *5 (-1179)) (-5 *2 (-234 *6 *5)) (-5 *1 (-233 *6 *7 *5)))))
-(-10 -7 (-15 -3076 ((-234 |#1| |#3|) (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2558 (|#3| (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2796 ((-234 |#1| |#3|) (-1 |#3| |#2|) (-234 |#1| |#2|))))
-((-3833 (((-112) $ $) NIL (|has| |#2| (-1066)))) (-3166 (((-112) $) NIL (|has| |#2| (-130)))) (-3195 (($ (-892)) 56 (|has| |#2| (-1018)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-3100 (($ $ $) 60 (|has| |#2| (-769)))) (-2384 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-1323 (((-112) $ (-747)) 17)) (-3615 (((-747)) NIL (|has| |#2| (-361)))) (-3902 (((-549) $) NIL (|has| |#2| (-821)))) (-2253 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1066)))) (-2658 (((-549) $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066)))) (((-400 (-549)) $) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066)))) ((|#2| $) 27 (|has| |#2| (-1066)))) (-1698 (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) NIL (|has| |#2| (-1018)))) (-3976 (((-3 $ "failed") $) 53 (|has| |#2| (-703)))) (-3238 (($) NIL (|has| |#2| (-361)))) (-1878 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#2| $ (-549)) 51)) (-3079 (((-112) $) NIL (|has| |#2| (-821)))) (-2990 (((-621 |#2|) $) 15 (|has| $ (-6 -4336)))) (-3987 (((-112) $) NIL (|has| |#2| (-703)))) (-2847 (((-112) $) NIL (|has| |#2| (-821)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) 20 (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-1958 (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1548 (((-549) $) 50 (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-1865 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#2| |#2|) $) 41)) (-2723 (((-892) $) NIL (|has| |#2| (-361)))) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#2| (-1066)))) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3491 (($ (-892)) NIL (|has| |#2| (-361)))) (-3988 (((-1086) $) NIL (|has| |#2| (-1066)))) (-3645 ((|#2| $) NIL (|has| (-549) (-823)))) (-3158 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1738 (((-621 |#2|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) 21)) (-4140 ((|#2| $ $) NIL (|has| |#2| (-1018)))) (-2168 (($ (-1225 |#2|)) 18)) (-3128 (((-133)) NIL (|has| |#2| (-356)))) (-3455 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-3997 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-1225 |#2|) $) 10) (($ (-549)) NIL (-1536 (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066))) (|has| |#2| (-1018)))) (($ (-400 (-549))) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066)))) (($ |#2|) 13 (|has| |#2| (-1066))) (((-834) $) NIL (|has| |#2| (-593 (-834))))) (-1723 (((-747)) NIL (|has| |#2| (-1018)))) (-2150 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3603 (($ $) NIL (|has| |#2| (-821)))) (-3275 (($) 35 (|has| |#2| (-130)) CONST)) (-3287 (($) 38 (|has| |#2| (-703)) CONST)) (-1700 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2448 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2424 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2388 (((-112) $ $) 26 (|has| |#2| (-1066)))) (-2436 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2411 (((-112) $ $) 58 (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2512 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2499 (($ $ $) NIL (|has| |#2| (-1018))) (($ $) NIL (|has| |#2| (-1018)))) (-2485 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-747)) NIL (|has| |#2| (-703))) (($ $ (-892)) NIL (|has| |#2| (-703)))) (* (($ (-549) $) NIL (|has| |#2| (-1018))) (($ $ $) 44 (|has| |#2| (-703))) (($ $ |#2|) 42 (|has| |#2| (-703))) (($ |#2| $) 43 (|has| |#2| (-703))) (($ (-747) $) NIL (|has| |#2| (-130))) (($ (-892) $) NIL (|has| |#2| (-25)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-234 |#1| |#2|) (-232 |#1| |#2|) (-747) (-1179)) (T -234))
+((-4153 (*1 *1 *1) (-4 *1 (-227))) (-2990 (*1 *1 *1) (-4 *1 (-227))) (-4153 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747)))) (-2990 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747)))))
+(-13 (-1018) (-10 -8 (-15 -4153 ($ $)) (-15 -2990 ($ $)) (-15 -4153 ($ $ (-747))) (-15 -2990 ($ $ (-747)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-1518 (($) 12) (($ (-618 |#2|)) NIL)) (-3742 (($ $) 14)) (-3867 (($ (-618 |#2|)) 10)) (-4300 (((-835) $) 21)))
+(((-228 |#1| |#2|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -1518 (|#1| (-618 |#2|))) (-15 -1518 (|#1|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -3742 (|#1| |#1|))) (-229 |#2|) (-1067)) (T -228))
+NIL
+(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -1518 (|#1| (-618 |#2|))) (-15 -1518 (|#1|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -3742 (|#1| |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-1394 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-1518 (($) 49) (($ (-618 |#1|)) 48)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 50)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-229 |#1|) (-138) (-1067)) (T -229))
+((-1518 (*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1067)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-229 *3)))) (-3747 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-229 *2)) (-4 *2 (-1067)))) (-3747 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-229 *3)) (-4 *3 (-1067)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-229 *3)) (-4 *3 (-1067)))))
+(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -1518 ($)) (-15 -1518 ($ (-618 |t#1|))) (IF (|has| $ (-6 -4336)) (PROGN (-15 -3747 ($ |t#1| $)) (-15 -3747 ($ (-1 (-112) |t#1|) $)) (-15 -1626 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-1519 (((-2 (|:| |varOrder| (-618 (-1142))) (|:| |inhom| (-3 (-618 (-1224 (-747))) "failed")) (|:| |hom| (-618 (-1224 (-747))))) (-286 (-917 (-535)))) 27)))
+(((-230) (-10 -7 (-15 -1519 ((-2 (|:| |varOrder| (-618 (-1142))) (|:| |inhom| (-3 (-618 (-1224 (-747))) "failed")) (|:| |hom| (-618 (-1224 (-747))))) (-286 (-917 (-535))))))) (T -230))
+((-1519 (*1 *2 *3) (-12 (-5 *3 (-286 (-917 (-535)))) (-5 *2 (-2 (|:| |varOrder| (-618 (-1142))) (|:| |inhom| (-3 (-618 (-1224 (-747))) "failed")) (|:| |hom| (-618 (-1224 (-747)))))) (-5 *1 (-230)))))
+(-10 -7 (-15 -1519 ((-2 (|:| |varOrder| (-618 (-1142))) (|:| |inhom| (-3 (-618 (-1224 (-747))) "failed")) (|:| |hom| (-618 (-1224 (-747))))) (-286 (-917 (-535))))))
+((-3454 (((-747)) 51)) (-2353 (((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 $) (-1224 $)) 49) (((-665 |#3|) (-665 $)) 41) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL)) (-4254 (((-133)) 57)) (-4153 (($ $ (-1 |#3| |#3|) (-747)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-4300 (((-1224 |#3|) $) NIL) (($ |#3|) NIL) (((-835) $) NIL) (($ (-535)) 12) (($ (-400 (-535))) NIL)) (-3444 (((-747)) 15)) (-4291 (($ $ |#3|) 54)))
+(((-231 |#1| |#2| |#3|) (-10 -8 (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|)) (-15 -3444 ((-747))) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -4300 (|#1| |#3|)) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -2353 ((-665 |#3|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 |#1|) (-1224 |#1|))) (-15 -3454 ((-747))) (-15 -4291 (|#1| |#1| |#3|)) (-15 -4254 ((-133))) (-15 -4300 ((-1224 |#3|) |#1|))) (-232 |#2| |#3|) (-747) (-1178)) (T -231))
+((-4254 (*1 *2) (-12 (-14 *4 (-747)) (-4 *5 (-1178)) (-5 *2 (-133)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-3454 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1178)) (-5 *2 (-747)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-3444 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1178)) (-5 *2 (-747)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))))
+(-10 -8 (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|)) (-15 -3444 ((-747))) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -4300 (|#1| |#3|)) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -2353 ((-665 |#3|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 |#1|) (-1224 |#1|))) (-15 -3454 ((-747))) (-15 -4291 (|#1| |#1| |#3|)) (-15 -4254 ((-133))) (-15 -4300 ((-1224 |#3|) |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#2| (-1067)))) (-3522 (((-112) $) 72 (|has| |#2| (-130)))) (-4053 (($ (-890)) 125 (|has| |#2| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-2724 (($ $ $) 121 (|has| |#2| (-769)))) (-1363 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-1264 (((-112) $ (-747)) 8)) (-3454 (((-747)) 107 (|has| |#2| (-361)))) (-3969 (((-535) $) 119 (|has| |#2| (-821)))) (-4130 ((|#2| $ (-535) |#2|) 52 (|has| $ (-6 -4337)))) (-3879 (($) 7 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 67 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-3 (-400 (-535)) #1#) $) 64 (-3179 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1067)))) (-3490 (((-535) $) 68 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-400 (-535)) $) 65 (-3179 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) ((|#2| $) 60 (|has| |#2| (-1067)))) (-2353 (((-665 (-535)) (-665 $)) 106 (-3179 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 105 (-3179 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) 104 (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) 103 (|has| |#2| (-1018)))) (-3804 (((-3 $ "failed") $) 79 (|has| |#2| (-703)))) (-3315 (($) 110 (|has| |#2| (-361)))) (-1632 ((|#2| $ (-535) |#2|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#2| $ (-535)) 51)) (-3520 (((-112) $) 117 (|has| |#2| (-821)))) (-2063 (((-618 |#2|) $) 30 (|has| $ (-6 -4336)))) (-2493 (((-112) $) 81 (|has| |#2| (-703)))) (-3521 (((-112) $) 118 (|has| |#2| (-821)))) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 116 (-3874 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2502 (((-618 |#2|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 115 (-3874 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2067 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2|) $) 35)) (-2121 (((-890) $) 109 (|has| |#2| (-361)))) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#2| (-1067)))) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-2483 (($ (-890)) 108 (|has| |#2| (-361)))) (-3577 (((-1086) $) 21 (|has| |#2| (-1067)))) (-4143 ((|#2| $) 42 (|has| (-535) (-823)))) (-2297 (($ $ |#2|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#2| $ (-535) |#2|) 50) ((|#2| $ (-535)) 49)) (-4179 ((|#2| $ $) 124 (|has| |#2| (-1018)))) (-1520 (($ (-1224 |#2|)) 126)) (-4254 (((-133)) 123 (|has| |#2| (-356)))) (-4153 (($ $) 98 (-3179 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) 96 (-3179 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) 94 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) 93 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) 92 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) 91 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) 84 (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1018)))) (-2064 (((-747) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4336))) (((-747) |#2| $) 28 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-1224 |#2|) $) 127) (($ (-535)) 66 (-3874 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (|has| |#2| (-1018)))) (($ (-400 (-535))) 63 (-3179 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (($ |#2|) 62 (|has| |#2| (-1067))) (((-835) $) 18 (|has| |#2| (-593 (-835))))) (-3444 (((-747)) 102 (|has| |#2| (-1018)))) (-2066 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4336)))) (-3725 (($ $) 120 (|has| |#2| (-821)))) (-2979 (($) 71 (|has| |#2| (-130)) CONST)) (-2985 (($) 82 (|has| |#2| (-703)) CONST)) (-2990 (($ $) 97 (-3179 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) 95 (-3179 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) 90 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) 89 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) 88 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) 87 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) 86 (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1018)))) (-2885 (((-112) $ $) 113 (-3874 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2886 (((-112) $ $) 112 (-3874 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-3375 (((-112) $ $) 20 (|has| |#2| (-1067)))) (-3005 (((-112) $ $) 114 (-3874 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-3006 (((-112) $ $) 111 (-3874 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-4291 (($ $ |#2|) 122 (|has| |#2| (-356)))) (-4180 (($ $ $) 100 (|has| |#2| (-1018))) (($ $) 99 (|has| |#2| (-1018)))) (-4182 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-747)) 80 (|has| |#2| (-703))) (($ $ (-890)) 77 (|has| |#2| (-703)))) (* (($ (-535) $) 101 (|has| |#2| (-1018))) (($ $ $) 78 (|has| |#2| (-703))) (($ $ |#2|) 76 (|has| |#2| (-703))) (($ |#2| $) 75 (|has| |#2| (-703))) (($ (-747) $) 73 (|has| |#2| (-130))) (($ (-890) $) 70 (|has| |#2| (-25)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-232 |#1| |#2|) (-138) (-747) (-1178)) (T -232))
+((-1520 (*1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-4 *4 (-1178)) (-4 *1 (-232 *3 *4)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1018)) (-4 *4 (-1178)))) (-4179 (*1 *2 *1 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1178)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1178)) (-4 *2 (-703)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1178)) (-4 *2 (-703)))))
+(-13 (-584 (-535) |t#2|) (-593 (-1224 |t#2|)) (-10 -8 (-6 -4336) (-15 -1520 ($ (-1224 |t#2|))) (IF (|has| |t#2| (-1067)) (-6 (-405 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1018)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-225 |t#2|)) (-6 (-370 |t#2|)) (-15 -4053 ($ (-890))) (-15 -4179 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-703)) (PROGN (-6 (-703)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4333)) (-6 -4333) |%noBranch|) (IF (|has| |t#2| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#2| (-769)) (-6 (-769)) |%noBranch|) (IF (|has| |t#2| (-356)) (-6 (-1232 |t#2|)) |%noBranch|)))
+(((-21) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-23) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) -3874 (|has| |#2| (-1067)) (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-703)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3874 (|has| |#2| (-1018)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-593 (-835)) -3874 (|has| |#2| (-1067)) (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-703)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-593 (-835))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-593 (-1224 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-225 |#2|) |has| |#2| (-1018)) ((-227) -12 (|has| |#2| (-227)) (|has| |#2| (-1018))) ((-279 #1=(-535) |#2|) . T) ((-281 #1# |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-361) |has| |#2| (-361)) ((-370 |#2|) |has| |#2| (-1018)) ((-405 |#2|) |has| |#2| (-1067)) ((-481 |#2|) . T) ((-584 #1# |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-624 |#2|) -3874 (|has| |#2| (-1018)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-624 $) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-170))) ((-617 (-535)) -12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018))) ((-617 |#2|) |has| |#2| (-1018)) ((-694 |#2|) -3874 (|has| |#2| (-356)) (|has| |#2| (-170))) ((-703) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-703)) (|has| |#2| (-170))) ((-767) |has| |#2| (-821)) ((-768) -3874 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-769) |has| |#2| (-769)) ((-770) -3874 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-773) -3874 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-821) |has| |#2| (-821)) ((-823) -3874 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-871 (-1142)) -12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018))) ((-1009 (-400 (-535))) -12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067))) ((-1009 (-535)) -12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) ((-1009 |#2|) |has| |#2| (-1067)) ((-1024 |#2|) -3874 (|has| |#2| (-1018)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-1024 $) |has| |#2| (-170)) ((-1018) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-170))) ((-1025) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-170))) ((-1078) -3874 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-703)) (|has| |#2| (-170))) ((-1067) -3874 (|has| |#2| (-1067)) (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-703)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1178) . T) ((-1232 |#2|) |has| |#2| (-356)))
+((-2887 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-3522 (((-112) $) NIL (|has| |#2| (-130)))) (-4053 (($ (-890)) 56 (|has| |#2| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-2724 (($ $ $) 60 (|has| |#2| (-769)))) (-1363 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-1264 (((-112) $ (-747)) 17)) (-3454 (((-747)) NIL (|has| |#2| (-361)))) (-3969 (((-535) $) NIL (|has| |#2| (-821)))) (-4130 ((|#2| $ (-535) |#2|) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-3 (-400 (-535)) #1#) $) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (((-3 |#2| #1#) $) 29 (|has| |#2| (-1067)))) (-3490 (((-535) $) NIL (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-400 (-535)) $) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) ((|#2| $) 27 (|has| |#2| (-1067)))) (-2353 (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) NIL (|has| |#2| (-1018)))) (-3804 (((-3 $ "failed") $) 53 (|has| |#2| (-703)))) (-3315 (($) NIL (|has| |#2| (-361)))) (-1632 ((|#2| $ (-535) |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ (-535)) 51)) (-3520 (((-112) $) NIL (|has| |#2| (-821)))) (-2063 (((-618 |#2|) $) 15 (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL (|has| |#2| (-703)))) (-3521 (((-112) $) NIL (|has| |#2| (-821)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 20 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2502 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 (((-535) $) 50 (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2|) $) 41)) (-2121 (((-890) $) NIL (|has| |#2| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#2| (-1067)))) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-2483 (($ (-890)) NIL (|has| |#2| (-361)))) (-3577 (((-1086) $) NIL (|has| |#2| (-1067)))) (-4143 ((|#2| $) NIL (|has| (-535) (-823)))) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ (-535) |#2|) NIL) ((|#2| $ (-535)) 21)) (-4179 ((|#2| $ $) NIL (|has| |#2| (-1018)))) (-1520 (($ (-1224 |#2|)) 18)) (-4254 (((-133)) NIL (|has| |#2| (-356)))) (-4153 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2064 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1224 |#2|) $) 10) (($ (-535)) NIL (-3874 (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (|has| |#2| (-1018)))) (($ (-400 (-535))) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (($ |#2|) 13 (|has| |#2| (-1067))) (((-835) $) NIL (|has| |#2| (-593 (-835))))) (-3444 (((-747)) NIL (|has| |#2| (-1018)))) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3725 (($ $) NIL (|has| |#2| (-821)))) (-2979 (($) 35 (|has| |#2| (-130)) CONST)) (-2985 (($) 38 (|has| |#2| (-703)) CONST)) (-2990 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2885 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-3375 (((-112) $ $) 26 (|has| |#2| (-1067)))) (-3005 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-3006 (((-112) $ $) 58 (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $ $) NIL (|has| |#2| (-1018))) (($ $) NIL (|has| |#2| (-1018)))) (-4182 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-747)) NIL (|has| |#2| (-703))) (($ $ (-890)) NIL (|has| |#2| (-703)))) (* (($ (-535) $) NIL (|has| |#2| (-1018))) (($ $ $) 44 (|has| |#2| (-703))) (($ $ |#2|) 42 (|has| |#2| (-703))) (($ |#2| $) 43 (|has| |#2| (-703))) (($ (-747) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-233 |#1| |#2|) (-232 |#1| |#2|) (-747) (-1178)) (T -233))
NIL
(-232 |#1| |#2|)
-((-2466 (((-549) (-621 (-1124))) 24) (((-549) (-1124)) 19)) (-2421 (((-1230) (-621 (-1124))) 29) (((-1230) (-1124)) 28)) (-3477 (((-1124)) 14)) (-2805 (((-1124) (-549) (-1124)) 16)) (-2597 (((-621 (-1124)) (-621 (-1124)) (-549) (-1124)) 25) (((-1124) (-1124) (-549) (-1124)) 23)) (-3270 (((-621 (-1124)) (-621 (-1124))) 13) (((-621 (-1124)) (-1124)) 11)))
-(((-235) (-10 -7 (-15 -3270 ((-621 (-1124)) (-1124))) (-15 -3270 ((-621 (-1124)) (-621 (-1124)))) (-15 -3477 ((-1124))) (-15 -2805 ((-1124) (-549) (-1124))) (-15 -2597 ((-1124) (-1124) (-549) (-1124))) (-15 -2597 ((-621 (-1124)) (-621 (-1124)) (-549) (-1124))) (-15 -2421 ((-1230) (-1124))) (-15 -2421 ((-1230) (-621 (-1124)))) (-15 -2466 ((-549) (-1124))) (-15 -2466 ((-549) (-621 (-1124)))))) (T -235))
-((-2466 (*1 *2 *3) (-12 (-5 *3 (-621 (-1124))) (-5 *2 (-549)) (-5 *1 (-235)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-549)) (-5 *1 (-235)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-621 (-1124))) (-5 *2 (-1230)) (-5 *1 (-235)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-235)))) (-2597 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-621 (-1124))) (-5 *3 (-549)) (-5 *4 (-1124)) (-5 *1 (-235)))) (-2597 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-549)) (-5 *1 (-235)))) (-2805 (*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-549)) (-5 *1 (-235)))) (-3477 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-235)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-235)))) (-3270 (*1 *2 *3) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-235)) (-5 *3 (-1124)))))
-(-10 -7 (-15 -3270 ((-621 (-1124)) (-1124))) (-15 -3270 ((-621 (-1124)) (-621 (-1124)))) (-15 -3477 ((-1124))) (-15 -2805 ((-1124) (-549) (-1124))) (-15 -2597 ((-1124) (-1124) (-549) (-1124))) (-15 -2597 ((-621 (-1124)) (-621 (-1124)) (-549) (-1124))) (-15 -2421 ((-1230) (-1124))) (-15 -2421 ((-1230) (-621 (-1124)))) (-15 -2466 ((-549) (-1124))) (-15 -2466 ((-549) (-621 (-1124)))))
-((** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 16)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ (-400 (-549)) $) 23) (($ $ (-400 (-549))) NIL)))
-(((-236 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-892))) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|))) (-237)) (T -236))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-892))) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 37)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 41)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 38)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ (-400 (-549)) $) 40) (($ $ (-400 (-549))) 39)))
+((-4184 (((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|) 21)) (-4185 ((|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|) 23)) (-4301 (((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)) 18)))
+(((-234 |#1| |#2| |#3|) (-10 -7 (-15 -4184 ((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4185 (|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4301 ((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)))) (-747) (-1178) (-1178)) (T -234))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-233 *5 *6)) (-14 *5 (-747)) (-4 *6 (-1178)) (-4 *7 (-1178)) (-5 *2 (-233 *5 *7)) (-5 *1 (-234 *5 *6 *7)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-233 *5 *6)) (-14 *5 (-747)) (-4 *6 (-1178)) (-4 *2 (-1178)) (-5 *1 (-234 *5 *6 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-233 *6 *7)) (-14 *6 (-747)) (-4 *7 (-1178)) (-4 *5 (-1178)) (-5 *2 (-233 *6 *5)) (-5 *1 (-234 *6 *7 *5)))))
+(-10 -7 (-15 -4184 ((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4185 (|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4301 ((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|))))
+((-1524 (((-535) (-618 (-1124))) 24) (((-535) (-1124)) 19)) (-1523 (((-1230) (-618 (-1124))) 29) (((-1230) (-1124)) 28)) (-1521 (((-1124)) 14)) (-1522 (((-1124) (-535) (-1124)) 16)) (-4115 (((-618 (-1124)) (-618 (-1124)) (-535) (-1124)) 25) (((-1124) (-1124) (-535) (-1124)) 23)) (-2937 (((-618 (-1124)) (-618 (-1124))) 13) (((-618 (-1124)) (-1124)) 11)))
+(((-235) (-10 -7 (-15 -2937 ((-618 (-1124)) (-1124))) (-15 -2937 ((-618 (-1124)) (-618 (-1124)))) (-15 -1521 ((-1124))) (-15 -1522 ((-1124) (-535) (-1124))) (-15 -4115 ((-1124) (-1124) (-535) (-1124))) (-15 -4115 ((-618 (-1124)) (-618 (-1124)) (-535) (-1124))) (-15 -1523 ((-1230) (-1124))) (-15 -1523 ((-1230) (-618 (-1124)))) (-15 -1524 ((-535) (-1124))) (-15 -1524 ((-535) (-618 (-1124)))))) (T -235))
+((-1524 (*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-535)) (-5 *1 (-235)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-535)) (-5 *1 (-235)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1230)) (-5 *1 (-235)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-235)))) (-4115 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-618 (-1124))) (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *1 (-235)))) (-4115 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-535)) (-5 *1 (-235)))) (-1522 (*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-535)) (-5 *1 (-235)))) (-1521 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-235)))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-235)))) (-2937 (*1 *2 *3) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-235)) (-5 *3 (-1124)))))
+(-10 -7 (-15 -2937 ((-618 (-1124)) (-1124))) (-15 -2937 ((-618 (-1124)) (-618 (-1124)))) (-15 -1521 ((-1124))) (-15 -1522 ((-1124) (-535) (-1124))) (-15 -4115 ((-1124) (-1124) (-535) (-1124))) (-15 -4115 ((-618 (-1124)) (-618 (-1124)) (-535) (-1124))) (-15 -1523 ((-1230) (-1124))) (-15 -1523 ((-1230) (-618 (-1124)))) (-15 -1524 ((-535) (-1124))) (-15 -1524 ((-535) (-618 (-1124)))))
+((** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 16)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ (-400 (-535)) $) 23) (($ $ (-400 (-535))) NIL)))
+(((-236 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-535))) (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) (-237)) (T -236))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-535))) (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 37)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 41)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 38)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ (-400 (-535)) $) 40) (($ $ (-400 (-535))) 39)))
(((-237) (-138)) (T -237))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-549)))) (-1991 (*1 *1 *1) (-4 *1 (-237))))
-(-13 (-283) (-38 (-400 (-549))) (-10 -8 (-15 ** ($ $ (-549))) (-15 -1991 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-283) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-703) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-4160 ((|#1| $) 48)) (-1342 (($ $) 57)) (-1323 (((-112) $ (-747)) 8)) (-3751 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-2683 (($ $ $) 53 (|has| $ (-6 -4337)))) (-4250 (($ $ $) 52 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) 41 (|has| $ (-6 -4337)))) (-1705 (($) 7 T CONST)) (-1979 (($ $) 56)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) 50)) (-1742 (((-112) $ $) 42 (|has| |#1| (-1066)))) (-3042 (($ $) 55)) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-3590 (((-621 |#1|) $) 45)) (-2456 (((-112) $) 49)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-3828 ((|#1| $) 59)) (-1390 (($ $) 58)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ "value") 47)) (-1953 (((-549) $ $) 44)) (-4187 (((-112) $) 46)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3091 (($ $ $) 54 (|has| $ (-6 -4337)))) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) 51)) (-2937 (((-112) $ $) 43 (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-238 |#1|) (-138) (-1179)) (T -238))
-((-3828 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1179)))) (-1390 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1179)))) (-1342 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1179)))) (-1979 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1179)))) (-3042 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1179)))) (-3091 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1179)))) (-2683 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1179)))) (-4250 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1179)))))
-(-13 (-981 |t#1|) (-10 -8 (-15 -3828 (|t#1| $)) (-15 -1390 ($ $)) (-15 -1342 ($ $)) (-15 -1979 ($ $)) (-15 -3042 ($ $)) (IF (|has| $ (-6 -4337)) (PROGN (-15 -3091 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -4250 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-981 |#1|) . T) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-4160 ((|#1| $) NIL)) (-2838 ((|#1| $) NIL)) (-1342 (($ $) NIL)) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-3637 (($ $ (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) $) NIL (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4106 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-3193 (($ $) 10 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-3751 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-1362 (($ $ $) NIL (|has| $ (-6 -4337)))) (-4277 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-2627 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4337))) (($ $ "rest" $) NIL (|has| $ (-6 -4337))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) NIL (|has| $ (-6 -4337)))) (-3069 (($ (-1 (-112) |#1|) $) NIL)) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2828 ((|#1| $) NIL)) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-3655 (($ $) NIL) (($ $ (-747)) NIL)) (-2992 (($ $) NIL (|has| |#1| (-1066)))) (-3675 (($ $) 7 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-4204 (($ |#1| $) NIL (|has| |#1| (-1066))) (($ (-1 (-112) |#1|) $) NIL)) (-3812 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1878 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) NIL)) (-3149 (((-112) $) NIL)) (-2882 (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1066))) (((-549) |#1| $) NIL (|has| |#1| (-1066))) (((-549) (-1 (-112) |#1|) $) NIL)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) NIL)) (-1742 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3743 (($ (-747) |#1|) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3019 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1586 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3524 (($ |#1|) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-3590 (((-621 |#1|) $) NIL)) (-2456 (((-112) $) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3828 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-1709 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2614 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3645 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3158 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-3342 (((-112) $) NIL)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1192 (-549))) NIL) ((|#1| $ (-549)) NIL) ((|#1| $ (-549) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-747) $ "count") 16)) (-1953 (((-549) $ $) NIL)) (-1876 (($ $ (-1192 (-549))) NIL) (($ $ (-549)) NIL)) (-2166 (($ $ (-1192 (-549))) NIL) (($ $ (-549)) NIL)) (-3080 (($ (-621 |#1|)) 22)) (-4187 (((-112) $) NIL)) (-1811 (($ $) NIL)) (-1679 (($ $) NIL (|has| $ (-6 -4337)))) (-2041 (((-747) $) NIL)) (-2277 (($ $) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) NIL)) (-3091 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1951 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-621 $)) NIL) (($ $ |#1|) NIL)) (-3845 (($ (-621 |#1|)) 17) (((-621 |#1|) $) 18) (((-834) $) 21 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) NIL)) (-2937 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3774 (((-747) $) 14 (|has| $ (-6 -4336)))))
-(((-239 |#1|) (-13 (-642 |#1|) (-10 -8 (-15 -3845 ($ (-621 |#1|))) (-15 -3845 ((-621 |#1|) $)) (-15 -3080 ($ (-621 |#1|))) (-15 -3340 ($ $ "unique")) (-15 -3340 ($ $ "sort")) (-15 -3340 ((-747) $ "count")))) (-823)) (T -239))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-239 *3)) (-4 *3 (-823)))) (-3080 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-823)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-823)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-747)) (-5 *1 (-239 *4)) (-4 *4 (-823)))))
-(-13 (-642 |#1|) (-10 -8 (-15 -3845 ($ (-621 |#1|))) (-15 -3845 ((-621 |#1|) $)) (-15 -3080 ($ (-621 |#1|))) (-15 -3340 ($ $ "unique")) (-15 -3340 ($ $ "sort")) (-15 -3340 ((-747) $ "count"))))
-((-2476 (((-3 (-747) "failed") |#1| |#1| (-747)) 27)))
-(((-240 |#1|) (-10 -7 (-15 -2476 ((-3 (-747) "failed") |#1| |#1| (-747)))) (-13 (-703) (-361) (-10 -7 (-15 ** (|#1| |#1| (-549)))))) (T -240))
-((-2476 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-747)) (-4 *3 (-13 (-703) (-361) (-10 -7 (-15 ** (*3 *3 (-549)))))) (-5 *1 (-240 *3)))))
-(-10 -7 (-15 -2476 ((-3 (-747) "failed") |#1| |#1| (-747))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2271 (((-621 (-836 |#1|)) $) NIL)) (-2082 (((-1138 $) $ (-836 |#1|)) NIL) (((-1138 |#2|) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-541)))) (-2408 (($ $) NIL (|has| |#2| (-541)))) (-2477 (((-112) $) NIL (|has| |#2| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 (-836 |#1|))) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-1912 (($ $) NIL (|has| |#2| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-836 |#1|) "failed") $) NIL)) (-2658 ((|#2| $) NIL) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-836 |#1|) $) NIL)) (-2252 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-3664 (($ $ (-621 (-549))) NIL)) (-2069 (($ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#2| (-880)))) (-3744 (($ $ |#2| (-234 (-3774 |#1|) (-747)) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-2258 (($ (-1138 |#2|) (-836 |#1|)) NIL) (($ (-1138 $) (-836 |#1|)) NIL)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#2| (-234 (-3774 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ (-836 |#1|)) NIL)) (-2856 (((-234 (-3774 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-621 (-747)) $ (-621 (-836 |#1|))) NIL)) (-2862 (($ $ $) NIL (|has| |#2| (-823)))) (-3574 (($ $ $) NIL (|has| |#2| (-823)))) (-4058 (($ (-1 (-234 (-3774 |#1|) (-747)) (-234 (-3774 |#1|) (-747))) $) NIL)) (-2796 (($ (-1 |#2| |#2|) $) NIL)) (-1790 (((-3 (-836 |#1|) "failed") $) NIL)) (-2027 (($ $) NIL)) (-2042 ((|#2| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2677 (((-1124) $) NIL)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -3577 (-747))) "failed") $) NIL)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) NIL)) (-2012 ((|#2| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#2| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#2| (-880)))) (-2038 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-541)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-836 |#1|) |#2|) NIL) (($ $ (-621 (-836 |#1|)) (-621 |#2|)) NIL) (($ $ (-836 |#1|) $) NIL) (($ $ (-621 (-836 |#1|)) (-621 $)) NIL)) (-3086 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-3455 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3068 (((-234 (-3774 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-621 (-747)) $ (-621 (-836 |#1|))) NIL)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-836 |#1|) (-594 (-525))) (|has| |#2| (-594 (-525)))))) (-1931 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-836 |#1|)) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#2| (-38 (-400 (-549)))) (|has| |#2| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#2| (-541)))) (-3330 (((-621 |#2|) $) NIL)) (-2944 ((|#2| $ (-234 (-3774 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#2| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#2| (-541)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2512 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#2| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#2| (-38 (-400 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-241 |#1| |#2|) (-13 (-920 |#2| (-234 (-3774 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -3664 ($ $ (-621 (-549)))))) (-621 (-1142)) (-1018)) (T -241))
-((-3664 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-241 *3 *4)) (-14 *3 (-621 (-1142))) (-4 *4 (-1018)))))
-(-13 (-920 |#2| (-234 (-3774 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -3664 ($ $ (-621 (-549))))))
-((-3833 (((-112) $ $) NIL)) (-2746 (((-1230) $) 15)) (-3581 (((-181) $) 9)) (-2059 (($ (-181)) 10)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 7)) (-2388 (((-112) $ $) 13)))
-(((-242) (-13 (-1066) (-10 -8 (-15 -3581 ((-181) $)) (-15 -2059 ($ (-181))) (-15 -2746 ((-1230) $))))) (T -242))
-((-3581 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-2059 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-242)))))
-(-13 (-1066) (-10 -8 (-15 -3581 ((-181) $)) (-15 -2059 ($ (-181))) (-15 -2746 ((-1230) $))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3195 (($ (-892)) NIL (|has| |#4| (-1018)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-3100 (($ $ $) NIL (|has| |#4| (-769)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-3615 (((-747)) NIL (|has| |#4| (-361)))) (-3902 (((-549) $) NIL (|has| |#4| (-821)))) (-2253 ((|#4| $ (-549) |#4|) NIL (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1066))) (((-3 (-549) "failed") $) NIL (-12 (|has| |#4| (-1009 (-549))) (|has| |#4| (-1066)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#4| (-1009 (-400 (-549)))) (|has| |#4| (-1066))))) (-2658 ((|#4| $) NIL (|has| |#4| (-1066))) (((-549) $) NIL (-12 (|has| |#4| (-1009 (-549))) (|has| |#4| (-1066)))) (((-400 (-549)) $) NIL (-12 (|has| |#4| (-1009 (-400 (-549)))) (|has| |#4| (-1066))))) (-1698 (((-2 (|:| -1859 (-665 |#4|)) (|:| |vec| (-1225 |#4|))) (-665 $) (-1225 $)) NIL (|has| |#4| (-1018))) (((-665 |#4|) (-665 $)) NIL (|has| |#4| (-1018))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018)))) (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))))) (-3976 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))))) (-3238 (($) NIL (|has| |#4| (-361)))) (-1878 ((|#4| $ (-549) |#4|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#4| $ (-549)) NIL)) (-3079 (((-112) $) NIL (|has| |#4| (-821)))) (-2990 (((-621 |#4|) $) NIL (|has| $ (-6 -4336)))) (-3987 (((-112) $) NIL (-1536 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))))) (-2847 (((-112) $) NIL (|has| |#4| (-821)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (-1536 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-1958 (((-621 |#4|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (-1536 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-1865 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#4| |#4|) $) NIL)) (-2723 (((-892) $) NIL (|has| |#4| (-361)))) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3491 (($ (-892)) NIL (|has| |#4| (-361)))) (-3988 (((-1086) $) NIL)) (-3645 ((|#4| $) NIL (|has| (-549) (-823)))) (-3158 (($ $ |#4|) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-621 |#4|) (-621 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-1738 (((-621 |#4|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#4| $ (-549) |#4|) NIL) ((|#4| $ (-549)) 12)) (-4140 ((|#4| $ $) NIL (|has| |#4| (-1018)))) (-2168 (($ (-1225 |#4|)) NIL)) (-3128 (((-133)) NIL (|has| |#4| (-356)))) (-3455 (($ $ (-1 |#4| |#4|) (-747)) NIL (|has| |#4| (-1018))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1018))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))))) (-3997 (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-1225 |#4|) $) NIL) (((-834) $) NIL) (($ |#4|) NIL (|has| |#4| (-1066))) (($ (-549)) NIL (-1536 (-12 (|has| |#4| (-1009 (-549))) (|has| |#4| (-1066))) (|has| |#4| (-1018)))) (($ (-400 (-549))) NIL (-12 (|has| |#4| (-1009 (-400 (-549)))) (|has| |#4| (-1066))))) (-1723 (((-747)) NIL (|has| |#4| (-1018)))) (-2150 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3603 (($ $) NIL (|has| |#4| (-821)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL (-1536 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) CONST)) (-1700 (($ $ (-1 |#4| |#4|) (-747)) NIL (|has| |#4| (-1018))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1018))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))))) (-2448 (((-112) $ $) NIL (-1536 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2424 (((-112) $ $) NIL (-1536 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (-1536 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2411 (((-112) $ $) NIL (-1536 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2512 (($ $ |#4|) NIL (|has| |#4| (-356)))) (-2499 (($ $ $) NIL) (($ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-747)) NIL (-1536 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018))))) (($ $ (-892)) NIL (-1536 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))))) (* (($ |#2| $) 14) (($ (-549) $) NIL) (($ (-747) $) NIL) (($ (-892) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-703))) (($ |#4| $) NIL (|has| |#4| (-703))) (($ $ $) NIL (-1536 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-243 |#1| |#2| |#3| |#4|) (-13 (-232 |#1| |#4|) (-624 |#2|) (-624 |#3|)) (-892) (-1018) (-1089 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-624 |#2|)) (T -243))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-535)))) (-2725 (*1 *1 *1) (-4 *1 (-237))))
+(-13 (-283) (-38 (-400 (-535))) (-10 -8 (-15 ** ($ $ (-535))) (-15 -2725 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-283) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-703) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-4139 (($ $) 57)) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-1526 (($ $ $) 53 (|has| $ (-6 -4337)))) (-1525 (($ $ $) 52 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-3879 (($) 7 T CONST)) (-1528 (($ $) 56)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-1527 (($ $) 55)) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-4140 ((|#1| $) 59)) (-3512 (($ $) 58)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47)) (-3350 (((-535) $ $) 44)) (-3979 (((-112) $) 46)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4133 (($ $ $) 54 (|has| $ (-6 -4337)))) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-238 |#1|) (-138) (-1178)) (T -238))
+((-4140 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-3512 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-4139 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-1528 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-1527 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-4133 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-1526 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1178)))) (-1525 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1178)))))
+(-13 (-981 |t#1|) (-10 -8 (-15 -4140 (|t#1| $)) (-15 -3512 ($ $)) (-15 -4139 ($ $)) (-15 -1528 ($ $)) (-15 -1527 ($ $)) (IF (|has| $ (-6 -4337)) (PROGN (-15 -4133 ($ $ $)) (-15 -1526 ($ $ $)) (-15 -1525 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) NIL)) (-4137 ((|#1| $) NIL)) (-4139 (($ $) NIL)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) $) NIL (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-3230 (($ $) 10 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4129 (($ $ $) NIL (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4138 ((|#1| $) NIL)) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-4141 (($ $) NIL) (($ $ (-747)) NIL)) (-2446 (($ $) NIL (|has| |#1| (-1067)))) (-1394 (($ $) 7 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) NIL)) (-3748 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3784 (((-112) $) NIL)) (-3761 (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067))) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) (-1 (-112) |#1|) $) NIL)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3180 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3855 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3880 (($ |#1|) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-4140 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-3953 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2373 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-3785 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1191 (-535))) NIL) ((|#1| $ (-535)) NIL) ((|#1| $ (-535) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-747) $ "count") 16)) (-3350 (((-535) $ $) NIL)) (-1627 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-2374 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-1529 (($ (-618 |#1|)) 22)) (-3979 (((-112) $) NIL)) (-4134 (($ $) NIL)) (-4132 (($ $) NIL (|has| $ (-6 -4337)))) (-4135 (((-747) $) NIL)) (-4136 (($ $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4133 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4144 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-618 $)) NIL) (($ $ |#1|) NIL)) (-4300 (($ (-618 |#1|)) 17) (((-618 |#1|) $) 18) (((-835) $) 21 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) 14 (|has| $ (-6 -4336)))))
+(((-239 |#1|) (-13 (-642 |#1|) (-10 -8 (-15 -4300 ($ (-618 |#1|))) (-15 -4300 ((-618 |#1|) $)) (-15 -1529 ($ (-618 |#1|))) (-15 -4142 ($ $ "unique")) (-15 -4142 ($ $ "sort")) (-15 -4142 ((-747) $ "count")))) (-823)) (T -239))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-239 *3)) (-4 *3 (-823)))) (-1529 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-823)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-823)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-747)) (-5 *1 (-239 *4)) (-4 *4 (-823)))))
+(-13 (-642 |#1|) (-10 -8 (-15 -4300 ($ (-618 |#1|))) (-15 -4300 ((-618 |#1|) $)) (-15 -1529 ($ (-618 |#1|))) (-15 -4142 ($ $ "unique")) (-15 -4142 ($ $ "sort")) (-15 -4142 ((-747) $ "count"))))
+((-1530 (((-3 (-747) "failed") |#1| |#1| (-747)) 27)))
+(((-240 |#1|) (-10 -7 (-15 -1530 ((-3 (-747) "failed") |#1| |#1| (-747)))) (-13 (-703) (-361) (-10 -7 (-15 ** (|#1| |#1| (-535)))))) (T -240))
+((-1530 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-747)) (-4 *3 (-13 (-703) (-361) (-10 -7 (-15 ** (*3 *3 (-535)))))) (-5 *1 (-240 *3)))))
+(-10 -7 (-15 -1530 ((-3 (-747) "failed") |#1| |#1| (-747))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-836 |#1|)) $) NIL)) (-3407 (((-1136 $) $ (-836 |#1|)) NIL) (((-1136 |#2|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-2171 (($ $) NIL (|has| |#2| (-542)))) (-2169 (((-112) $) NIL (|has| |#2| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-836 |#1|))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4117 (($ $) NIL (|has| |#2| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-836 |#1|) #2#) $) NIL)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-836 |#1|) $) NIL)) (-4099 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-2054 (($ $ (-618 (-535))) NIL)) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#2| (-881)))) (-1716 (($ $ |#2| (-233 (-4299 |#1|) (-747)) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#2|) (-836 |#1|)) NIL) (($ (-1136 $) (-836 |#1|)) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#2| (-233 (-4299 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-836 |#1|)) NIL)) (-3141 (((-233 (-4299 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-618 (-747)) $ (-618 (-836 |#1|))) NIL)) (-3660 (($ $ $) NIL (|has| |#2| (-823)))) (-3661 (($ $ $) NIL (|has| |#2| (-823)))) (-1717 (($ (-1 (-233 (-4299 |#1|) (-747)) (-233 (-4299 |#1|) (-747))) $) NIL)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-3406 (((-3 (-836 |#1|) #3="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#2| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -2484 (-747))) #3#) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#2| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#2| (-881)))) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-836 |#1|) |#2|) NIL) (($ $ (-618 (-836 |#1|)) (-618 |#2|)) NIL) (($ $ (-836 |#1|) $) NIL) (($ $ (-618 (-836 |#1|)) (-618 $)) NIL)) (-4100 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-4153 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4290 (((-233 (-4299 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-618 (-747)) $ (-618 (-836 |#1|))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-836 |#1|) (-594 (-524))) (|has| |#2| (-594 (-524)))))) (-3138 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) NIL) (($ (-836 |#1|)) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#2| (-38 (-400 (-535)))) (|has| |#2| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#2| (-542)))) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-233 (-4299 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#2| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#2| (-823)))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#2| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#2| (-38 (-400 (-535))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-241 |#1| |#2|) (-13 (-921 |#2| (-233 (-4299 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -2054 ($ $ (-618 (-535)))))) (-618 (-1142)) (-1018)) (T -241))
+((-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-241 *3 *4)) (-14 *3 (-618 (-1142))) (-4 *4 (-1018)))))
+(-13 (-921 |#2| (-233 (-4299 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -2054 ($ $ (-618 (-535))))))
+((-2887 (((-112) $ $) NIL)) (-1531 (((-1230) $) 15)) (-1533 (((-181) $) 9)) (-1532 (($ (-181)) 10)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 7)) (-3375 (((-112) $ $) 13)))
+(((-242) (-13 (-1067) (-10 -8 (-15 -1533 ((-181) $)) (-15 -1532 ($ (-181))) (-15 -1531 ((-1230) $))))) (T -242))
+((-1533 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-242)))))
+(-13 (-1067) (-10 -8 (-15 -1533 ((-181) $)) (-15 -1532 ($ (-181))) (-15 -1531 ((-1230) $))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4053 (($ (-890)) NIL (|has| |#4| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-2724 (($ $ $) NIL (|has| |#4| (-769)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| |#4| (-361)))) (-3969 (((-535) $) NIL (|has| |#4| (-821)))) (-4130 ((|#4| $ (-535) |#4|) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1067))) (((-3 (-535) #1#) $) NIL (-12 (|has| |#4| (-1009 (-535))) (|has| |#4| (-1067)))) (((-3 (-400 (-535)) #1#) $) NIL (-12 (|has| |#4| (-1009 (-400 (-535)))) (|has| |#4| (-1067))))) (-3490 ((|#4| $) NIL (|has| |#4| (-1067))) (((-535) $) NIL (-12 (|has| |#4| (-1009 (-535))) (|has| |#4| (-1067)))) (((-400 (-535)) $) NIL (-12 (|has| |#4| (-1009 (-400 (-535)))) (|has| |#4| (-1067))))) (-2353 (((-2 (|:| -1695 (-665 |#4|)) (|:| |vec| (-1224 |#4|))) (-665 $) (-1224 $)) NIL (|has| |#4| (-1018))) (((-665 |#4|) (-665 $)) NIL (|has| |#4| (-1018))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018)))) (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))))) (-3804 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))))) (-3315 (($) NIL (|has| |#4| (-361)))) (-1632 ((|#4| $ (-535) |#4|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#4| $ (-535)) NIL)) (-3520 (((-112) $) NIL (|has| |#4| (-821)))) (-2063 (((-618 |#4|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL (-3874 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))))) (-3521 (((-112) $) NIL (|has| |#4| (-821)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (-3874 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2502 (((-618 |#4|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (-3874 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2067 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#4| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-2483 (($ (-890)) NIL (|has| |#4| (-361)))) (-3577 (((-1086) $) NIL)) (-4143 ((|#4| $) NIL (|has| (-535) (-823)))) (-2297 (($ $ |#4|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 |#4|) (-618 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-2303 (((-618 |#4|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#4| $ (-535) |#4|) NIL) ((|#4| $ (-535)) 12)) (-4179 ((|#4| $ $) NIL (|has| |#4| (-1018)))) (-1520 (($ (-1224 |#4|)) NIL)) (-4254 (((-133)) NIL (|has| |#4| (-356)))) (-4153 (($ $ (-1 |#4| |#4|) (-747)) NIL (|has| |#4| (-1018))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1018))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))))) (-2064 (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1224 |#4|) $) NIL) (((-835) $) NIL) (($ |#4|) NIL (|has| |#4| (-1067))) (($ (-535)) NIL (-3874 (-12 (|has| |#4| (-1009 (-535))) (|has| |#4| (-1067))) (|has| |#4| (-1018)))) (($ (-400 (-535))) NIL (-12 (|has| |#4| (-1009 (-400 (-535)))) (|has| |#4| (-1067))))) (-3444 (((-747)) NIL (|has| |#4| (-1018)))) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3725 (($ $) NIL (|has| |#4| (-821)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL (-3874 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) CONST)) (-2990 (($ $ (-1 |#4| |#4|) (-747)) NIL (|has| |#4| (-1018))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1018))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))))) (-2885 (((-112) $ $) NIL (-3874 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (-3874 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-3006 (((-112) $ $) NIL (-3874 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-4291 (($ $ |#4|) NIL (|has| |#4| (-356)))) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL (-3874 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018))))) (($ $ (-890)) NIL (-3874 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))))) (* (($ |#2| $) 14) (($ (-535) $) NIL) (($ (-747) $) NIL) (($ (-890) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-703))) (($ |#4| $) NIL (|has| |#4| (-703))) (($ $ $) NIL (-3874 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-535))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1142))) (|has| |#4| (-1018)))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-243 |#1| |#2| |#3| |#4|) (-13 (-232 |#1| |#4|) (-624 |#2|) (-624 |#3|)) (-890) (-1018) (-1089 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-624 |#2|)) (T -243))
NIL
(-13 (-232 |#1| |#4|) (-624 |#2|) (-624 |#3|))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3195 (($ (-892)) NIL (|has| |#3| (-1018)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-3100 (($ $ $) NIL (|has| |#3| (-769)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-3615 (((-747)) NIL (|has| |#3| (-361)))) (-3902 (((-549) $) NIL (|has| |#3| (-821)))) (-2253 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1066))) (((-3 (-549) "failed") $) NIL (-12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1066)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1066))))) (-2658 ((|#3| $) NIL (|has| |#3| (-1066))) (((-549) $) NIL (-12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1066)))) (((-400 (-549)) $) NIL (-12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1066))))) (-1698 (((-2 (|:| -1859 (-665 |#3|)) (|:| |vec| (-1225 |#3|))) (-665 $) (-1225 $)) NIL (|has| |#3| (-1018))) (((-665 |#3|) (-665 $)) NIL (|has| |#3| (-1018))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018)))) (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))))) (-3976 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))))) (-3238 (($) NIL (|has| |#3| (-361)))) (-1878 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#3| $ (-549)) NIL)) (-3079 (((-112) $) NIL (|has| |#3| (-821)))) (-2990 (((-621 |#3|) $) NIL (|has| $ (-6 -4336)))) (-3987 (((-112) $) NIL (-1536 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))))) (-2847 (((-112) $) NIL (|has| |#3| (-821)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-1958 (((-621 |#3|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-1865 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#3| |#3|) $) NIL)) (-2723 (((-892) $) NIL (|has| |#3| (-361)))) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3491 (($ (-892)) NIL (|has| |#3| (-361)))) (-3988 (((-1086) $) NIL)) (-3645 ((|#3| $) NIL (|has| (-549) (-823)))) (-3158 (($ $ |#3|) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066)))) (($ $ (-287 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066)))) (($ $ (-621 |#3|) (-621 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1066))))) (-1738 (((-621 |#3|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#3| $ (-549) |#3|) NIL) ((|#3| $ (-549)) 11)) (-4140 ((|#3| $ $) NIL (|has| |#3| (-1018)))) (-2168 (($ (-1225 |#3|)) NIL)) (-3128 (((-133)) NIL (|has| |#3| (-356)))) (-3455 (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))))) (-3997 (((-747) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336))) (((-747) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-1225 |#3|) $) NIL) (((-834) $) NIL) (($ |#3|) NIL (|has| |#3| (-1066))) (($ (-549)) NIL (-1536 (-12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1066))) (|has| |#3| (-1018)))) (($ (-400 (-549))) NIL (-12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1066))))) (-1723 (((-747)) NIL (|has| |#3| (-1018)))) (-2150 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-3603 (($ $) NIL (|has| |#3| (-821)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL (-1536 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) CONST)) (-1700 (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))))) (-2448 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2424 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2411 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2512 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-2499 (($ $ $) NIL) (($ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-747)) NIL (-1536 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018))))) (($ $ (-892)) NIL (-1536 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))))) (* (($ |#2| $) 13) (($ (-549) $) NIL) (($ (-747) $) NIL) (($ (-892) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-703))) (($ |#3| $) NIL (|has| |#3| (-703))) (($ $ $) NIL (-1536 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4053 (($ (-890)) NIL (|has| |#3| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-2724 (($ $ $) NIL (|has| |#3| (-769)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| |#3| (-361)))) (-3969 (((-535) $) NIL (|has| |#3| (-821)))) (-4130 ((|#3| $ (-535) |#3|) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1067))) (((-3 (-535) #1#) $) NIL (-12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067)))) (((-3 (-400 (-535)) #1#) $) NIL (-12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067))))) (-3490 ((|#3| $) NIL (|has| |#3| (-1067))) (((-535) $) NIL (-12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067)))) (((-400 (-535)) $) NIL (-12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067))))) (-2353 (((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 $) (-1224 $)) NIL (|has| |#3| (-1018))) (((-665 |#3|) (-665 $)) NIL (|has| |#3| (-1018))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018)))) (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))))) (-3804 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))))) (-3315 (($) NIL (|has| |#3| (-361)))) (-1632 ((|#3| $ (-535) |#3|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#3| $ (-535)) NIL)) (-3520 (((-112) $) NIL (|has| |#3| (-821)))) (-2063 (((-618 |#3|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL (-3874 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))))) (-3521 (((-112) $) NIL (|has| |#3| (-821)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2502 (((-618 |#3|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2067 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#3| |#3|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#3| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-2483 (($ (-890)) NIL (|has| |#3| (-361)))) (-3577 (((-1086) $) NIL)) (-4143 ((|#3| $) NIL (|has| (-535) (-823)))) (-2297 (($ $ |#3|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-618 |#3|) (-618 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-2303 (((-618 |#3|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#3| $ (-535) |#3|) NIL) ((|#3| $ (-535)) 11)) (-4179 ((|#3| $ $) NIL (|has| |#3| (-1018)))) (-1520 (($ (-1224 |#3|)) NIL)) (-4254 (((-133)) NIL (|has| |#3| (-356)))) (-4153 (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))))) (-2064 (((-747) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336))) (((-747) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1224 |#3|) $) NIL) (((-835) $) NIL) (($ |#3|) NIL (|has| |#3| (-1067))) (($ (-535)) NIL (-3874 (-12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067))) (|has| |#3| (-1018)))) (($ (-400 (-535))) NIL (-12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067))))) (-3444 (((-747)) NIL (|has| |#3| (-1018)))) (-2066 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-3725 (($ $) NIL (|has| |#3| (-821)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL (-3874 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) CONST)) (-2990 (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))))) (-2885 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-3006 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-4291 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL (-3874 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018))))) (($ $ (-890)) NIL (-3874 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))))) (* (($ |#2| $) 13) (($ (-535) $) NIL) (($ (-747) $) NIL) (($ (-890) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-703))) (($ |#3| $) NIL (|has| |#3| (-703))) (($ $ $) NIL (-3874 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
(((-244 |#1| |#2| |#3|) (-13 (-232 |#1| |#3|) (-624 |#2|)) (-747) (-1018) (-624 |#2|)) (T -244))
NIL
(-13 (-232 |#1| |#3|) (-624 |#2|))
-((-3830 (((-621 (-747)) $) 47) (((-621 (-747)) $ |#3|) 50)) (-1996 (((-747) $) 49) (((-747) $ |#3|) 52)) (-3851 (($ $) 65)) (-2713 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 (-549) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2078 (((-747) $ |#3|) 39) (((-747) $) 36)) (-2963 (((-1 $ (-747)) |#3|) 15) (((-1 $ (-747)) $) 77)) (-4051 ((|#4| $) 58)) (-2747 (((-112) $) 56)) (-2257 (($ $) 64)) (-2685 (($ $ (-621 (-287 $))) 97) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-621 |#4|) (-621 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-621 |#4|) (-621 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-621 |#3|) (-621 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-621 |#3|) (-621 |#2|)) 84)) (-3455 (($ $ |#4|) NIL) (($ $ (-621 |#4|)) NIL) (($ $ |#4| (-747)) NIL) (($ $ (-621 |#4|) (-621 (-747))) NIL) (($ $) NIL) (($ $ (-747)) NIL) (($ $ (-1142)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1727 (((-621 |#3|) $) 75)) (-3068 ((|#5| $) NIL) (((-747) $ |#4|) NIL) (((-621 (-747)) $ (-621 |#4|)) NIL) (((-747) $ |#3|) 44)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-400 (-549))) NIL) (($ $) NIL)))
-(((-245 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3845 (|#1| |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -2685 (|#1| |#1| (-621 |#3|) (-621 |#2|))) (-15 -2685 (|#1| |#1| |#3| |#2|)) (-15 -2685 (|#1| |#1| (-621 |#3|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#3| |#1|)) (-15 -2963 ((-1 |#1| (-747)) |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -4051 (|#4| |#1|)) (-15 -2747 ((-112) |#1|)) (-15 -1996 ((-747) |#1| |#3|)) (-15 -3830 ((-621 (-747)) |#1| |#3|)) (-15 -1996 ((-747) |#1|)) (-15 -3830 ((-621 (-747)) |#1|)) (-15 -3068 ((-747) |#1| |#3|)) (-15 -2078 ((-747) |#1|)) (-15 -2078 ((-747) |#1| |#3|)) (-15 -1727 ((-621 |#3|) |#1|)) (-15 -2963 ((-1 |#1| (-747)) |#3|)) (-15 -2713 ((-3 |#3| "failed") |#1|)) (-15 -3845 (|#1| |#3|)) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1|)) (-15 -3068 ((-621 (-747)) |#1| (-621 |#4|))) (-15 -3068 ((-747) |#1| |#4|)) (-15 -2713 ((-3 |#4| "failed") |#1|)) (-15 -3845 (|#1| |#4|)) (-15 -2685 (|#1| |#1| (-621 |#4|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#4| |#1|)) (-15 -2685 (|#1| |#1| (-621 |#4|) (-621 |#2|))) (-15 -2685 (|#1| |#1| |#4| |#2|)) (-15 -2685 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#1| |#1|)) (-15 -2685 (|#1| |#1| (-287 |#1|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3068 (|#5| |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -3455 (|#1| |#1| (-621 |#4|) (-621 (-747)))) (-15 -3455 (|#1| |#1| |#4| (-747))) (-15 -3455 (|#1| |#1| (-621 |#4|))) (-15 -3455 (|#1| |#1| |#4|)) (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|))) (-246 |#2| |#3| |#4| |#5|) (-1018) (-823) (-259 |#3|) (-769)) (T -245))
+((-1538 (((-618 (-747)) $) 47) (((-618 (-747)) $ |#3|) 50)) (-1572 (((-747) $) 49) (((-747) $ |#3|) 52)) (-1534 (($ $) 65)) (-3491 (((-3 |#2| #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 (-535) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 72)) (-4114 (((-747) $ |#3|) 39) (((-747) $) 36)) (-1573 (((-1 $ (-747)) |#3|) 15) (((-1 $ (-747)) $) 77)) (-1536 ((|#4| $) 58)) (-1537 (((-112) $) 56)) (-1535 (($ $) 64)) (-4110 (($ $ (-618 (-286 $))) 97) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-618 |#4|) (-618 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-618 |#4|) (-618 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-618 |#3|) (-618 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-618 |#3|) (-618 |#2|)) 84)) (-4153 (($ $ |#4|) NIL) (($ $ (-618 |#4|)) NIL) (($ $ |#4| (-747)) NIL) (($ $ (-618 |#4|) (-618 (-747))) NIL) (($ $) NIL) (($ $ (-747)) NIL) (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1539 (((-618 |#3|) $) 75)) (-4290 ((|#5| $) NIL) (((-747) $ |#4|) NIL) (((-618 (-747)) $ (-618 |#4|)) NIL) (((-747) $ |#3|) 44)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-400 (-535))) NIL) (($ $) NIL)))
+(((-245 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4110 (|#1| |#1| (-618 |#3|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#3| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#3|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#3| |#1|)) (-15 -1573 ((-1 |#1| (-747)) |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1535 (|#1| |#1|)) (-15 -1536 (|#4| |#1|)) (-15 -1537 ((-112) |#1|)) (-15 -1572 ((-747) |#1| |#3|)) (-15 -1538 ((-618 (-747)) |#1| |#3|)) (-15 -1572 ((-747) |#1|)) (-15 -1538 ((-618 (-747)) |#1|)) (-15 -4290 ((-747) |#1| |#3|)) (-15 -4114 ((-747) |#1|)) (-15 -4114 ((-747) |#1| |#3|)) (-15 -1539 ((-618 |#3|) |#1|)) (-15 -1573 ((-1 |#1| (-747)) |#3|)) (-15 -3491 ((-3 |#3| #1="failed") |#1|)) (-15 -4300 (|#1| |#3|)) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -4290 ((-618 (-747)) |#1| (-618 |#4|))) (-15 -4290 ((-747) |#1| |#4|)) (-15 -3491 ((-3 |#4| #1#) |#1|)) (-15 -4300 (|#1| |#4|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#4| |#1|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#4| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4290 (|#5| |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -4153 (|#1| |#1| (-618 |#4|) (-618 (-747)))) (-15 -4153 (|#1| |#1| |#4| (-747))) (-15 -4153 (|#1| |#1| (-618 |#4|))) (-15 -4153 (|#1| |#1| |#4|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-246 |#2| |#3| |#4| |#5|) (-1018) (-823) (-259 |#3|) (-769)) (T -245))
NIL
-(-10 -8 (-15 -3845 (|#1| |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -2685 (|#1| |#1| (-621 |#3|) (-621 |#2|))) (-15 -2685 (|#1| |#1| |#3| |#2|)) (-15 -2685 (|#1| |#1| (-621 |#3|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#3| |#1|)) (-15 -2963 ((-1 |#1| (-747)) |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -4051 (|#4| |#1|)) (-15 -2747 ((-112) |#1|)) (-15 -1996 ((-747) |#1| |#3|)) (-15 -3830 ((-621 (-747)) |#1| |#3|)) (-15 -1996 ((-747) |#1|)) (-15 -3830 ((-621 (-747)) |#1|)) (-15 -3068 ((-747) |#1| |#3|)) (-15 -2078 ((-747) |#1|)) (-15 -2078 ((-747) |#1| |#3|)) (-15 -1727 ((-621 |#3|) |#1|)) (-15 -2963 ((-1 |#1| (-747)) |#3|)) (-15 -2713 ((-3 |#3| "failed") |#1|)) (-15 -3845 (|#1| |#3|)) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1|)) (-15 -3068 ((-621 (-747)) |#1| (-621 |#4|))) (-15 -3068 ((-747) |#1| |#4|)) (-15 -2713 ((-3 |#4| "failed") |#1|)) (-15 -3845 (|#1| |#4|)) (-15 -2685 (|#1| |#1| (-621 |#4|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#4| |#1|)) (-15 -2685 (|#1| |#1| (-621 |#4|) (-621 |#2|))) (-15 -2685 (|#1| |#1| |#4| |#2|)) (-15 -2685 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#1| |#1|)) (-15 -2685 (|#1| |#1| (-287 |#1|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3068 (|#5| |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -3455 (|#1| |#1| (-621 |#4|) (-621 (-747)))) (-15 -3455 (|#1| |#1| |#4| (-747))) (-15 -3455 (|#1| |#1| (-621 |#4|))) (-15 -3455 (|#1| |#1| |#4|)) (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-3830 (((-621 (-747)) $) 212) (((-621 (-747)) $ |#2|) 210)) (-1996 (((-747) $) 211) (((-747) $ |#2|) 209)) (-2271 (((-621 |#3|) $) 108)) (-2082 (((-1138 $) $ |#3|) 123) (((-1138 |#1|) $) 122)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 85 (|has| |#1| (-541)))) (-2408 (($ $) 86 (|has| |#1| (-541)))) (-2477 (((-112) $) 88 (|has| |#1| (-541)))) (-1689 (((-747) $) 110) (((-747) $ (-621 |#3|)) 109)) (-2384 (((-3 $ "failed") $ $) 19)) (-2461 (((-411 (-1138 $)) (-1138 $)) 98 (|has| |#1| (-880)))) (-1912 (($ $) 96 (|has| |#1| (-444)))) (-3513 (((-411 $) $) 95 (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 101 (|has| |#1| (-880)))) (-3851 (($ $) 205)) (-1705 (($) 17 T CONST)) (-2713 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-549)) "failed") $) 160 (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) 158 (|has| |#1| (-1009 (-549)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2658 ((|#1| $) 163) (((-400 (-549)) $) 159 (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) 157 (|has| |#1| (-1009 (-549)))) ((|#3| $) 133) ((|#2| $) 218)) (-2252 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-2069 (($ $) 152)) (-1698 (((-665 (-549)) (-665 $)) 132 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 131 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-3976 (((-3 $ "failed") $) 32)) (-4212 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-2057 (((-621 $) $) 107)) (-2471 (((-112) $) 94 (|has| |#1| (-880)))) (-3744 (($ $ |#1| |#4| $) 170)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 82 (-12 (|has| |#3| (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 81 (-12 (|has| |#3| (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2078 (((-747) $ |#2|) 215) (((-747) $) 214)) (-3987 (((-112) $) 30)) (-3454 (((-747) $) 167)) (-2258 (($ (-1138 |#1|) |#3|) 115) (($ (-1138 $) |#3|) 114)) (-1298 (((-621 $) $) 124)) (-2427 (((-112) $) 150)) (-2244 (($ |#1| |#4|) 151) (($ $ |#3| (-747)) 117) (($ $ (-621 |#3|) (-621 (-747))) 116)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ |#3|) 118)) (-2856 ((|#4| $) 168) (((-747) $ |#3|) 120) (((-621 (-747)) $ (-621 |#3|)) 119)) (-2862 (($ $ $) 77 (|has| |#1| (-823)))) (-3574 (($ $ $) 76 (|has| |#1| (-823)))) (-4058 (($ (-1 |#4| |#4|) $) 169)) (-2796 (($ (-1 |#1| |#1|) $) 149)) (-2963 (((-1 $ (-747)) |#2|) 217) (((-1 $ (-747)) $) 204 (|has| |#1| (-227)))) (-1790 (((-3 |#3| "failed") $) 121)) (-2027 (($ $) 147)) (-2042 ((|#1| $) 146)) (-4051 ((|#3| $) 207)) (-3696 (($ (-621 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-2677 (((-1124) $) 9)) (-2747 (((-112) $) 208)) (-4201 (((-3 (-621 $) "failed") $) 112)) (-1462 (((-3 (-621 $) "failed") $) 113)) (-4219 (((-3 (-2 (|:| |var| |#3|) (|:| -3577 (-747))) "failed") $) 111)) (-2257 (($ $) 206)) (-3988 (((-1086) $) 10)) (-2002 (((-112) $) 164)) (-2012 ((|#1| $) 165)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 93 (|has| |#1| (-444)))) (-3726 (($ (-621 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) 100 (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) 99 (|has| |#1| (-880)))) (-2120 (((-411 $) $) 97 (|has| |#1| (-880)))) (-2038 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-541)))) (-2685 (($ $ (-621 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-621 $) (-621 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-621 |#3|) (-621 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-621 |#3|) (-621 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-227))) (($ $ (-621 |#2|) (-621 $)) 202 (|has| |#1| (-227))) (($ $ |#2| |#1|) 201 (|has| |#1| (-227))) (($ $ (-621 |#2|) (-621 |#1|)) 200 (|has| |#1| (-227)))) (-3086 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-3455 (($ $ |#3|) 40) (($ $ (-621 |#3|)) 39) (($ $ |#3| (-747)) 38) (($ $ (-621 |#3|) (-621 (-747))) 37) (($ $) 236 (|has| |#1| (-227))) (($ $ (-747)) 234 (|has| |#1| (-227))) (($ $ (-1142)) 232 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) 231 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 230 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) 229 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-1727 (((-621 |#2|) $) 216)) (-3068 ((|#4| $) 148) (((-747) $ |#3|) 128) (((-621 (-747)) $ (-621 |#3|)) 127) (((-747) $ |#2|) 213)) (-2844 (((-863 (-372)) $) 80 (-12 (|has| |#3| (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) 79 (-12 (|has| |#3| (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) 78 (-12 (|has| |#3| (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-1931 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 102 (-1820 (|has| $ (-143)) (|has| |#1| (-880))))) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-400 (-549))) 70 (-1536 (|has| |#1| (-1009 (-400 (-549)))) (|has| |#1| (-38 (-400 (-549)))))) (($ $) 83 (|has| |#1| (-541)))) (-3330 (((-621 |#1|) $) 166)) (-2944 ((|#1| $ |#4|) 153) (($ $ |#3| (-747)) 126) (($ $ (-621 |#3|) (-621 (-747))) 125)) (-3407 (((-3 $ "failed") $) 71 (-1536 (-1820 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) 28)) (-1544 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-4053 (((-112) $ $) 87 (|has| |#1| (-541)))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ |#3|) 36) (($ $ (-621 |#3|)) 35) (($ $ |#3| (-747)) 34) (($ $ (-621 |#3|) (-621 (-747))) 33) (($ $) 235 (|has| |#1| (-227))) (($ $ (-747)) 233 (|has| |#1| (-227))) (($ $ (-1142)) 228 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) 227 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 226 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) 225 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2448 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 73 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 75 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 72 (|has| |#1| (-823)))) (-2512 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 156 (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) 155 (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4110 (|#1| |#1| (-618 |#3|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#3| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#3|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#3| |#1|)) (-15 -1573 ((-1 |#1| (-747)) |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1535 (|#1| |#1|)) (-15 -1536 (|#4| |#1|)) (-15 -1537 ((-112) |#1|)) (-15 -1572 ((-747) |#1| |#3|)) (-15 -1538 ((-618 (-747)) |#1| |#3|)) (-15 -1572 ((-747) |#1|)) (-15 -1538 ((-618 (-747)) |#1|)) (-15 -4290 ((-747) |#1| |#3|)) (-15 -4114 ((-747) |#1|)) (-15 -4114 ((-747) |#1| |#3|)) (-15 -1539 ((-618 |#3|) |#1|)) (-15 -1573 ((-1 |#1| (-747)) |#3|)) (-15 -3491 ((-3 |#3| #1="failed") |#1|)) (-15 -4300 (|#1| |#3|)) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -4290 ((-618 (-747)) |#1| (-618 |#4|))) (-15 -4290 ((-747) |#1| |#4|)) (-15 -3491 ((-3 |#4| #1#) |#1|)) (-15 -4300 (|#1| |#4|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#4| |#1|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#4| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4290 (|#5| |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -4153 (|#1| |#1| (-618 |#4|) (-618 (-747)))) (-15 -4153 (|#1| |#1| |#4| (-747))) (-15 -4153 (|#1| |#1| (-618 |#4|))) (-15 -4153 (|#1| |#1| |#4|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1538 (((-618 (-747)) $) 212) (((-618 (-747)) $ |#2|) 210)) (-1572 (((-747) $) 211) (((-747) $ |#2|) 209)) (-3405 (((-618 |#3|) $) 108)) (-3407 (((-1136 $) $ |#3|) 123) (((-1136 |#1|) $) 122)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-2171 (($ $) 86 (|has| |#1| (-542)))) (-2169 (((-112) $) 88 (|has| |#1| (-542)))) (-3140 (((-747) $) 110) (((-747) $ (-618 |#3|)) 109)) (-1363 (((-3 $ "failed") $ $) 19)) (-3028 (((-398 (-1136 $)) (-1136 $)) 98 (|has| |#1| (-881)))) (-4117 (($ $) 96 (|has| |#1| (-444)))) (-4312 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 101 (|has| |#1| (-881)))) (-1534 (($ $) 205)) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-535)) #2#) $) 160 (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) 158 (|has| |#1| (-1009 (-535)))) (((-3 |#3| #2#) $) 134) (((-3 |#2| #2#) $) 219)) (-3490 ((|#1| $) 163) (((-400 (-535)) $) 159 (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) 157 (|has| |#1| (-1009 (-535)))) ((|#3| $) 133) ((|#2| $) 218)) (-4099 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4302 (($ $) 152)) (-2353 (((-665 (-535)) (-665 $)) 132 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 131 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-3804 (((-3 $ "failed") $) 32)) (-3840 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3139 (((-618 $) $) 107)) (-4069 (((-112) $) 94 (|has| |#1| (-881)))) (-1716 (($ $ |#1| |#4| $) 170)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 82 (-12 (|has| |#3| (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 81 (-12 (|has| |#3| (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-4114 (((-747) $ |#2|) 215) (((-747) $) 214)) (-2493 (((-112) $) 30)) (-2501 (((-747) $) 167)) (-3408 (($ (-1136 |#1|) |#3|) 115) (($ (-1136 $) |#3|) 114)) (-3142 (((-618 $) $) 124)) (-4280 (((-112) $) 150)) (-3214 (($ |#1| |#4|) 151) (($ $ |#3| (-747)) 117) (($ $ (-618 |#3|) (-618 (-747))) 116)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#3|) 118)) (-3141 ((|#4| $) 168) (((-747) $ |#3|) 120) (((-618 (-747)) $ (-618 |#3|)) 119)) (-3660 (($ $ $) 77 (|has| |#1| (-823)))) (-3661 (($ $ $) 76 (|has| |#1| (-823)))) (-1717 (($ (-1 |#4| |#4|) $) 169)) (-4301 (($ (-1 |#1| |#1|) $) 149)) (-1573 (((-1 $ (-747)) |#2|) 217) (((-1 $ (-747)) $) 204 (|has| |#1| (-227)))) (-3406 (((-3 |#3| #3="failed") $) 121)) (-3215 (($ $) 147)) (-3508 ((|#1| $) 146)) (-1536 ((|#3| $) 207)) (-2008 (($ (-618 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3576 (((-1124) $) 9)) (-1537 (((-112) $) 208)) (-3144 (((-3 (-618 $) #3#) $) 112)) (-3143 (((-3 (-618 $) #3#) $) 113)) (-3145 (((-3 (-2 (|:| |var| |#3|) (|:| -2484 (-747))) #3#) $) 111)) (-1535 (($ $) 206)) (-3577 (((-1086) $) 10)) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 93 (|has| |#1| (-444)))) (-3478 (($ (-618 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 100 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 99 (|has| |#1| (-881)))) (-4075 (((-398 $) $) 97 (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-618 $) (-618 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-618 |#3|) (-618 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-618 |#3|) (-618 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-227))) (($ $ (-618 |#2|) (-618 $)) 202 (|has| |#1| (-227))) (($ $ |#2| |#1|) 201 (|has| |#1| (-227))) (($ $ (-618 |#2|) (-618 |#1|)) 200 (|has| |#1| (-227)))) (-4100 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4153 (($ $ |#3|) 40) (($ $ (-618 |#3|)) 39) (($ $ |#3| (-747)) 38) (($ $ (-618 |#3|) (-618 (-747))) 37) (($ $) 236 (|has| |#1| (-227))) (($ $ (-747)) 234 (|has| |#1| (-227))) (($ $ (-1142)) 232 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 231 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 230 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 229 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-1539 (((-618 |#2|) $) 216)) (-4290 ((|#4| $) 148) (((-747) $ |#3|) 128) (((-618 (-747)) $ (-618 |#3|)) 127) (((-747) $ |#2|) 213)) (-4313 (((-861 (-371)) $) 80 (-12 (|has| |#3| (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) 79 (-12 (|has| |#3| (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) 78 (-12 (|has| |#3| (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 102 (-3179 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-400 (-535))) 70 (-3874 (|has| |#1| (-1009 (-400 (-535)))) (|has| |#1| (-38 (-400 (-535)))))) (($ $) 83 (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) 166)) (-4023 ((|#1| $ |#4|) 153) (($ $ |#3| (-747)) 126) (($ $ (-618 |#3|) (-618 (-747))) 125)) (-3023 (((-3 $ #1#) $) 71 (-3874 (-3179 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) 28)) (-1715 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-2170 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ |#3|) 36) (($ $ (-618 |#3|)) 35) (($ $ |#3| (-747)) 34) (($ $ (-618 |#3|) (-618 (-747))) 33) (($ $) 235 (|has| |#1| (-227))) (($ $ (-747)) 233 (|has| |#1| (-227))) (($ $ (-1142)) 228 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 227 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 226 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 225 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2885 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 73 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 75 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 72 (|has| |#1| (-823)))) (-4291 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 156 (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) 155 (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
(((-246 |#1| |#2| |#3| |#4|) (-138) (-1018) (-823) (-259 |t#2|) (-769)) (T -246))
-((-2963 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *4 *3 *5 *6)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-621 *4)))) (-2078 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) (-2078 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747)))) (-3068 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-621 (-747))))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747)))) (-3830 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-621 (-747))))) (-1996 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) (-2747 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-112)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-4 *2 (-259 *4)))) (-2257 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-259 *3)) (-4 *5 (-769)))) (-3851 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-259 *3)) (-4 *5 (-769)))) (-2963 (*1 *2 *1) (-12 (-4 *3 (-227)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *3 *4 *5 *6)))))
-(-13 (-920 |t#1| |t#4| |t#3|) (-225 |t#1|) (-1009 |t#2|) (-10 -8 (-15 -2963 ((-1 $ (-747)) |t#2|)) (-15 -1727 ((-621 |t#2|) $)) (-15 -2078 ((-747) $ |t#2|)) (-15 -2078 ((-747) $)) (-15 -3068 ((-747) $ |t#2|)) (-15 -3830 ((-621 (-747)) $)) (-15 -1996 ((-747) $)) (-15 -3830 ((-621 (-747)) $ |t#2|)) (-15 -1996 ((-747) $ |t#2|)) (-15 -2747 ((-112) $)) (-15 -4051 (|t#3| $)) (-15 -2257 ($ $)) (-15 -3851 ($ $)) (IF (|has| |t#1| (-227)) (PROGN (-6 (-505 |t#2| |t#1|)) (-6 (-505 |t#2| $)) (-6 (-302 $)) (-15 -2963 ((-1 $ (-747)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-594 (-525)) -12 (|has| |#1| (-594 (-525))) (|has| |#3| (-594 (-525)))) ((-594 (-863 (-372))) -12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#3| (-594 (-863 (-372))))) ((-594 (-863 (-549))) -12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#3| (-594 (-863 (-549))))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-283) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#4|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1536 (|has| |#1| (-880)) (|has| |#1| (-444))) ((-505 |#2| |#1|) |has| |#1| (-227)) ((-505 |#2| $) |has| |#1| (-227)) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-541) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-871 |#3|) . T) ((-857 (-372)) -12 (|has| |#1| (-857 (-372))) (|has| |#3| (-857 (-372)))) ((-857 (-549)) -12 (|has| |#1| (-857 (-549))) (|has| |#3| (-857 (-549)))) ((-920 |#1| |#4| |#3|) . T) ((-880) |has| |#1| (-880)) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1009 |#2|) . T) ((-1009 |#3|) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1183) |has| |#1| (-880)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-1936 ((|#1| $) 54)) (-2316 ((|#1| $) 44)) (-1323 (((-112) $ (-747)) 8)) (-1705 (($) 7 T CONST)) (-2643 (($ $) 60)) (-4273 (($ $) 48)) (-1913 ((|#1| |#1| $) 46)) (-2399 ((|#1| $) 45)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-4209 (((-747) $) 61)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2349 ((|#1| $) 39)) (-2548 ((|#1| |#1| $) 52)) (-2192 ((|#1| |#1| $) 51)) (-1709 (($ |#1| $) 40)) (-4035 (((-747) $) 55)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-2032 ((|#1| $) 62)) (-4245 ((|#1| $) 50)) (-4103 ((|#1| $) 49)) (-2629 ((|#1| $) 41)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-4248 ((|#1| |#1| $) 58)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-1800 ((|#1| $) 59)) (-3038 (($) 57) (($ (-621 |#1|)) 56)) (-1319 (((-747) $) 43)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3049 ((|#1| $) 53)) (-1765 (($ (-621 |#1|)) 42)) (-3529 ((|#1| $) 63)) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-247 |#1|) (-138) (-1179)) (T -247))
-((-3038 (*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))) (-3038 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-4 *1 (-247 *3)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1179)) (-5 *2 (-747)))) (-1936 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))) (-3049 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))) (-2548 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))) (-2192 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))) (-4273 (*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))))
-(-13 (-1087 |t#1|) (-966 |t#1|) (-10 -8 (-15 -3038 ($)) (-15 -3038 ($ (-621 |t#1|))) (-15 -4035 ((-747) $)) (-15 -1936 (|t#1| $)) (-15 -3049 (|t#1| $)) (-15 -2548 (|t#1| |t#1| $)) (-15 -2192 (|t#1| |t#1| $)) (-15 -4245 (|t#1| $)) (-15 -4103 (|t#1| $)) (-15 -4273 ($ $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-966 |#1|) . T) ((-1066) |has| |#1| (-1066)) ((-1087 |#1|) . T) ((-1179) . T))
-((-1893 (((-1 (-914 (-219)) (-219) (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 139)) (-1541 (((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1060 (-372)) (-1060 (-372))) 160) (((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1060 (-372)) (-1060 (-372)) (-621 (-256))) 158) (((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-372)) (-1060 (-372))) 163) (((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-372)) (-1060 (-372)) (-621 (-256))) 159) (((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-372)) (-1060 (-372))) 150) (((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-372)) (-1060 (-372)) (-621 (-256))) 149) (((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1060 (-372))) 129) (((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1060 (-372)) (-621 (-256))) 127) (((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1060 (-372))) 128) (((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1060 (-372)) (-621 (-256))) 125)) (-1489 (((-1227) (-853 (-1 (-219) (-219) (-219))) (-1060 (-372)) (-1060 (-372))) 162) (((-1227) (-853 (-1 (-219) (-219) (-219))) (-1060 (-372)) (-1060 (-372)) (-621 (-256))) 161) (((-1227) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-372)) (-1060 (-372))) 165) (((-1227) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-372)) (-1060 (-372)) (-621 (-256))) 164) (((-1227) (-1 (-219) (-219) (-219)) (-1060 (-372)) (-1060 (-372))) 152) (((-1227) (-1 (-219) (-219) (-219)) (-1060 (-372)) (-1060 (-372)) (-621 (-256))) 151) (((-1227) (-1 (-914 (-219)) (-219)) (-1060 (-372))) 135) (((-1227) (-1 (-914 (-219)) (-219)) (-1060 (-372)) (-621 (-256))) 134) (((-1227) (-850 (-1 (-219) (-219))) (-1060 (-372))) 133) (((-1227) (-850 (-1 (-219) (-219))) (-1060 (-372)) (-621 (-256))) 132) (((-1226) (-848 (-1 (-219) (-219))) (-1060 (-372))) 100) (((-1226) (-848 (-1 (-219) (-219))) (-1060 (-372)) (-621 (-256))) 99) (((-1226) (-1 (-219) (-219)) (-1060 (-372))) 96) (((-1226) (-1 (-219) (-219)) (-1060 (-372)) (-621 (-256))) 95)))
-(((-248) (-10 -7 (-15 -1489 ((-1226) (-1 (-219) (-219)) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1226) (-1 (-219) (-219)) (-1060 (-372)))) (-15 -1489 ((-1226) (-848 (-1 (-219) (-219))) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1226) (-848 (-1 (-219) (-219))) (-1060 (-372)))) (-15 -1489 ((-1227) (-850 (-1 (-219) (-219))) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-850 (-1 (-219) (-219))) (-1060 (-372)))) (-15 -1489 ((-1227) (-1 (-914 (-219)) (-219)) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-1 (-914 (-219)) (-219)) (-1060 (-372)))) (-15 -1541 ((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1060 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1060 (-372)))) (-15 -1541 ((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1060 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1060 (-372)))) (-15 -1489 ((-1227) (-1 (-219) (-219) (-219)) (-1060 (-372)) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-1 (-219) (-219) (-219)) (-1060 (-372)) (-1060 (-372)))) (-15 -1541 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-372)) (-1060 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-372)) (-1060 (-372)))) (-15 -1489 ((-1227) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-372)) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-372)) (-1060 (-372)))) (-15 -1541 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-372)) (-1060 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-372)) (-1060 (-372)))) (-15 -1489 ((-1227) (-853 (-1 (-219) (-219) (-219))) (-1060 (-372)) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-853 (-1 (-219) (-219) (-219))) (-1060 (-372)) (-1060 (-372)))) (-15 -1541 ((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1060 (-372)) (-1060 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1060 (-372)) (-1060 (-372)))) (-15 -1893 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -248))
-((-1893 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219) (-219))) (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-248)))) (-1541 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-372))) (-5 *2 (-1099 (-219))) (-5 *1 (-248)))) (-1541 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-372))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1541 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1060 (-372))) (-5 *2 (-1099 (-219))) (-5 *1 (-248)))) (-1541 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1060 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1060 (-372))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1060 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1541 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-372))) (-5 *2 (-1099 (-219))) (-5 *1 (-248)))) (-1541 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-372))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1060 (-372))) (-5 *2 (-1099 (-219))) (-5 *1 (-248)))) (-1541 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1060 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-248)))) (-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1060 (-372))) (-5 *2 (-1099 (-219))) (-5 *1 (-248)))) (-1541 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1060 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1060 (-372))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1060 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1060 (-372))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1060 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1060 (-372))) (-5 *2 (-1226)) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1060 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1226)) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1060 (-372))) (-5 *2 (-1226)) (-5 *1 (-248)))) (-1489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1060 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1226)) (-5 *1 (-248)))))
-(-10 -7 (-15 -1489 ((-1226) (-1 (-219) (-219)) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1226) (-1 (-219) (-219)) (-1060 (-372)))) (-15 -1489 ((-1226) (-848 (-1 (-219) (-219))) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1226) (-848 (-1 (-219) (-219))) (-1060 (-372)))) (-15 -1489 ((-1227) (-850 (-1 (-219) (-219))) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-850 (-1 (-219) (-219))) (-1060 (-372)))) (-15 -1489 ((-1227) (-1 (-914 (-219)) (-219)) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-1 (-914 (-219)) (-219)) (-1060 (-372)))) (-15 -1541 ((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1060 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1060 (-372)))) (-15 -1541 ((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1060 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1060 (-372)))) (-15 -1489 ((-1227) (-1 (-219) (-219) (-219)) (-1060 (-372)) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-1 (-219) (-219) (-219)) (-1060 (-372)) (-1060 (-372)))) (-15 -1541 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-372)) (-1060 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-372)) (-1060 (-372)))) (-15 -1489 ((-1227) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-372)) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-372)) (-1060 (-372)))) (-15 -1541 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-372)) (-1060 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-372)) (-1060 (-372)))) (-15 -1489 ((-1227) (-853 (-1 (-219) (-219) (-219))) (-1060 (-372)) (-1060 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-853 (-1 (-219) (-219) (-219))) (-1060 (-372)) (-1060 (-372)))) (-15 -1541 ((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1060 (-372)) (-1060 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1060 (-372)) (-1060 (-372)))) (-15 -1893 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))
-((-1489 (((-1226) (-287 |#2|) (-1142) (-1142) (-621 (-256))) 96)))
-(((-249 |#1| |#2|) (-10 -7 (-15 -1489 ((-1226) (-287 |#2|) (-1142) (-1142) (-621 (-256))))) (-13 (-541) (-823) (-1009 (-549))) (-423 |#1|)) (T -249))
-((-1489 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-287 *7)) (-5 *4 (-1142)) (-5 *5 (-621 (-256))) (-4 *7 (-423 *6)) (-4 *6 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-1226)) (-5 *1 (-249 *6 *7)))))
-(-10 -7 (-15 -1489 ((-1226) (-287 |#2|) (-1142) (-1142) (-621 (-256)))))
-((-1710 (((-549) (-549)) 50)) (-2438 (((-549) (-549)) 51)) (-4297 (((-219) (-219)) 52)) (-2306 (((-1227) (-1 (-167 (-219)) (-167 (-219))) (-1060 (-219)) (-1060 (-219))) 49)) (-3446 (((-1227) (-1 (-167 (-219)) (-167 (-219))) (-1060 (-219)) (-1060 (-219)) (-112)) 47)))
-(((-250) (-10 -7 (-15 -3446 ((-1227) (-1 (-167 (-219)) (-167 (-219))) (-1060 (-219)) (-1060 (-219)) (-112))) (-15 -2306 ((-1227) (-1 (-167 (-219)) (-167 (-219))) (-1060 (-219)) (-1060 (-219)))) (-15 -1710 ((-549) (-549))) (-15 -2438 ((-549) (-549))) (-15 -4297 ((-219) (-219))))) (T -250))
-((-4297 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-250)))) (-2438 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-250)))) (-1710 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-250)))) (-2306 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1060 (-219))) (-5 *2 (-1227)) (-5 *1 (-250)))) (-3446 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1060 (-219))) (-5 *5 (-112)) (-5 *2 (-1227)) (-5 *1 (-250)))))
-(-10 -7 (-15 -3446 ((-1227) (-1 (-167 (-219)) (-167 (-219))) (-1060 (-219)) (-1060 (-219)) (-112))) (-15 -2306 ((-1227) (-1 (-167 (-219)) (-167 (-219))) (-1060 (-219)) (-1060 (-219)))) (-15 -1710 ((-549) (-549))) (-15 -2438 ((-549) (-549))) (-15 -4297 ((-219) (-219))))
-((-3845 (((-1058 (-372)) (-1058 (-309 |#1|))) 16)))
-(((-251 |#1|) (-10 -7 (-15 -3845 ((-1058 (-372)) (-1058 (-309 |#1|))))) (-13 (-823) (-541) (-594 (-372)))) (T -251))
-((-3845 (*1 *2 *3) (-12 (-5 *3 (-1058 (-309 *4))) (-4 *4 (-13 (-823) (-541) (-594 (-372)))) (-5 *2 (-1058 (-372))) (-5 *1 (-251 *4)))))
-(-10 -7 (-15 -3845 ((-1058 (-372)) (-1058 (-309 |#1|)))))
-((-1541 (((-1099 (-219)) (-853 |#1|) (-1058 (-372)) (-1058 (-372))) 71) (((-1099 (-219)) (-853 |#1|) (-1058 (-372)) (-1058 (-372)) (-621 (-256))) 70) (((-1099 (-219)) |#1| (-1058 (-372)) (-1058 (-372))) 61) (((-1099 (-219)) |#1| (-1058 (-372)) (-1058 (-372)) (-621 (-256))) 60) (((-1099 (-219)) (-850 |#1|) (-1058 (-372))) 52) (((-1099 (-219)) (-850 |#1|) (-1058 (-372)) (-621 (-256))) 51)) (-1489 (((-1227) (-853 |#1|) (-1058 (-372)) (-1058 (-372))) 74) (((-1227) (-853 |#1|) (-1058 (-372)) (-1058 (-372)) (-621 (-256))) 73) (((-1227) |#1| (-1058 (-372)) (-1058 (-372))) 64) (((-1227) |#1| (-1058 (-372)) (-1058 (-372)) (-621 (-256))) 63) (((-1227) (-850 |#1|) (-1058 (-372))) 56) (((-1227) (-850 |#1|) (-1058 (-372)) (-621 (-256))) 55) (((-1226) (-848 |#1|) (-1058 (-372))) 43) (((-1226) (-848 |#1|) (-1058 (-372)) (-621 (-256))) 42) (((-1226) |#1| (-1058 (-372))) 35) (((-1226) |#1| (-1058 (-372)) (-621 (-256))) 34)))
-(((-252 |#1|) (-10 -7 (-15 -1489 ((-1226) |#1| (-1058 (-372)) (-621 (-256)))) (-15 -1489 ((-1226) |#1| (-1058 (-372)))) (-15 -1489 ((-1226) (-848 |#1|) (-1058 (-372)) (-621 (-256)))) (-15 -1489 ((-1226) (-848 |#1|) (-1058 (-372)))) (-15 -1489 ((-1227) (-850 |#1|) (-1058 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-850 |#1|) (-1058 (-372)))) (-15 -1541 ((-1099 (-219)) (-850 |#1|) (-1058 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-850 |#1|) (-1058 (-372)))) (-15 -1489 ((-1227) |#1| (-1058 (-372)) (-1058 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) |#1| (-1058 (-372)) (-1058 (-372)))) (-15 -1541 ((-1099 (-219)) |#1| (-1058 (-372)) (-1058 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) |#1| (-1058 (-372)) (-1058 (-372)))) (-15 -1489 ((-1227) (-853 |#1|) (-1058 (-372)) (-1058 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-853 |#1|) (-1058 (-372)) (-1058 (-372)))) (-15 -1541 ((-1099 (-219)) (-853 |#1|) (-1058 (-372)) (-1058 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-853 |#1|) (-1058 (-372)) (-1058 (-372))))) (-13 (-594 (-525)) (-1066))) (T -252))
-((-1541 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1058 (-372))) (-4 *5 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1099 (-219))) (-5 *1 (-252 *5)))) (-1541 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256))) (-4 *6 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1099 (-219))) (-5 *1 (-252 *6)))) (-1489 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1058 (-372))) (-4 *5 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1227)) (-5 *1 (-252 *5)))) (-1489 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256))) (-4 *6 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1227)) (-5 *1 (-252 *6)))) (-1541 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1058 (-372))) (-5 *2 (-1099 (-219))) (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1066))))) (-1541 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1066))))) (-1489 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1058 (-372))) (-5 *2 (-1227)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1066))))) (-1489 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1066))))) (-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-1058 (-372))) (-4 *5 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1099 (-219))) (-5 *1 (-252 *5)))) (-1541 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 *6)) (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256))) (-4 *6 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1099 (-219))) (-5 *1 (-252 *6)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-1058 (-372))) (-4 *5 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1227)) (-5 *1 (-252 *5)))) (-1489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 *6)) (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256))) (-4 *6 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1227)) (-5 *1 (-252 *6)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-848 *5)) (-5 *4 (-1058 (-372))) (-4 *5 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1226)) (-5 *1 (-252 *5)))) (-1489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 *6)) (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256))) (-4 *6 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1226)) (-5 *1 (-252 *6)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-372))) (-5 *2 (-1226)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1066))))) (-1489 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1226)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1066))))))
-(-10 -7 (-15 -1489 ((-1226) |#1| (-1058 (-372)) (-621 (-256)))) (-15 -1489 ((-1226) |#1| (-1058 (-372)))) (-15 -1489 ((-1226) (-848 |#1|) (-1058 (-372)) (-621 (-256)))) (-15 -1489 ((-1226) (-848 |#1|) (-1058 (-372)))) (-15 -1489 ((-1227) (-850 |#1|) (-1058 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-850 |#1|) (-1058 (-372)))) (-15 -1541 ((-1099 (-219)) (-850 |#1|) (-1058 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-850 |#1|) (-1058 (-372)))) (-15 -1489 ((-1227) |#1| (-1058 (-372)) (-1058 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) |#1| (-1058 (-372)) (-1058 (-372)))) (-15 -1541 ((-1099 (-219)) |#1| (-1058 (-372)) (-1058 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) |#1| (-1058 (-372)) (-1058 (-372)))) (-15 -1489 ((-1227) (-853 |#1|) (-1058 (-372)) (-1058 (-372)) (-621 (-256)))) (-15 -1489 ((-1227) (-853 |#1|) (-1058 (-372)) (-1058 (-372)))) (-15 -1541 ((-1099 (-219)) (-853 |#1|) (-1058 (-372)) (-1058 (-372)) (-621 (-256)))) (-15 -1541 ((-1099 (-219)) (-853 |#1|) (-1058 (-372)) (-1058 (-372)))))
-((-1489 (((-1227) (-621 (-219)) (-621 (-219)) (-621 (-219)) (-621 (-256))) 23) (((-1227) (-621 (-219)) (-621 (-219)) (-621 (-219))) 24) (((-1226) (-621 (-914 (-219))) (-621 (-256))) 16) (((-1226) (-621 (-914 (-219)))) 17) (((-1226) (-621 (-219)) (-621 (-219)) (-621 (-256))) 20) (((-1226) (-621 (-219)) (-621 (-219))) 21)))
-(((-253) (-10 -7 (-15 -1489 ((-1226) (-621 (-219)) (-621 (-219)))) (-15 -1489 ((-1226) (-621 (-219)) (-621 (-219)) (-621 (-256)))) (-15 -1489 ((-1226) (-621 (-914 (-219))))) (-15 -1489 ((-1226) (-621 (-914 (-219))) (-621 (-256)))) (-15 -1489 ((-1227) (-621 (-219)) (-621 (-219)) (-621 (-219)))) (-15 -1489 ((-1227) (-621 (-219)) (-621 (-219)) (-621 (-219)) (-621 (-256)))))) (T -253))
-((-1489 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-621 (-219))) (-5 *4 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-253)))) (-1489 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-621 (-219))) (-5 *2 (-1227)) (-5 *1 (-253)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-914 (-219)))) (-5 *4 (-621 (-256))) (-5 *2 (-1226)) (-5 *1 (-253)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-621 (-914 (-219)))) (-5 *2 (-1226)) (-5 *1 (-253)))) (-1489 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-621 (-219))) (-5 *4 (-621 (-256))) (-5 *2 (-1226)) (-5 *1 (-253)))) (-1489 (*1 *2 *3 *3) (-12 (-5 *3 (-621 (-219))) (-5 *2 (-1226)) (-5 *1 (-253)))))
-(-10 -7 (-15 -1489 ((-1226) (-621 (-219)) (-621 (-219)))) (-15 -1489 ((-1226) (-621 (-219)) (-621 (-219)) (-621 (-256)))) (-15 -1489 ((-1226) (-621 (-914 (-219))))) (-15 -1489 ((-1226) (-621 (-914 (-219))) (-621 (-256)))) (-15 -1489 ((-1227) (-621 (-219)) (-621 (-219)) (-621 (-219)))) (-15 -1489 ((-1227) (-621 (-219)) (-621 (-219)) (-621 (-219)) (-621 (-256)))))
-((-3601 (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-621 (-256)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 26)) (-3657 (((-892) (-621 (-256)) (-892)) 53)) (-3450 (((-892) (-621 (-256)) (-892)) 52)) (-2035 (((-621 (-372)) (-621 (-256)) (-621 (-372))) 69)) (-3891 (((-372) (-621 (-256)) (-372)) 58)) (-4235 (((-892) (-621 (-256)) (-892)) 54)) (-3899 (((-112) (-621 (-256)) (-112)) 28)) (-1595 (((-1124) (-621 (-256)) (-1124)) 20)) (-4301 (((-1124) (-621 (-256)) (-1124)) 27)) (-4159 (((-1099 (-219)) (-621 (-256))) 47)) (-3922 (((-621 (-1060 (-372))) (-621 (-256)) (-621 (-1060 (-372)))) 41)) (-3098 (((-845) (-621 (-256)) (-845)) 33)) (-2367 (((-845) (-621 (-256)) (-845)) 34)) (-1300 (((-1 (-914 (-219)) (-914 (-219))) (-621 (-256)) (-1 (-914 (-219)) (-914 (-219)))) 64)) (-2329 (((-112) (-621 (-256)) (-112)) 16)) (-2169 (((-112) (-621 (-256)) (-112)) 15)))
-(((-254) (-10 -7 (-15 -2169 ((-112) (-621 (-256)) (-112))) (-15 -2329 ((-112) (-621 (-256)) (-112))) (-15 -3601 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-621 (-256)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1595 ((-1124) (-621 (-256)) (-1124))) (-15 -4301 ((-1124) (-621 (-256)) (-1124))) (-15 -3899 ((-112) (-621 (-256)) (-112))) (-15 -3098 ((-845) (-621 (-256)) (-845))) (-15 -2367 ((-845) (-621 (-256)) (-845))) (-15 -3922 ((-621 (-1060 (-372))) (-621 (-256)) (-621 (-1060 (-372))))) (-15 -3450 ((-892) (-621 (-256)) (-892))) (-15 -3657 ((-892) (-621 (-256)) (-892))) (-15 -4159 ((-1099 (-219)) (-621 (-256)))) (-15 -4235 ((-892) (-621 (-256)) (-892))) (-15 -3891 ((-372) (-621 (-256)) (-372))) (-15 -1300 ((-1 (-914 (-219)) (-914 (-219))) (-621 (-256)) (-1 (-914 (-219)) (-914 (-219))))) (-15 -2035 ((-621 (-372)) (-621 (-256)) (-621 (-372)))))) (T -254))
-((-2035 (*1 *2 *3 *2) (-12 (-5 *2 (-621 (-372))) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-1300 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-3891 (*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-4235 (*1 *2 *3 *2) (-12 (-5 *2 (-892)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-254)))) (-3657 (*1 *2 *3 *2) (-12 (-5 *2 (-892)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-3450 (*1 *2 *3 *2) (-12 (-5 *2 (-892)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-3922 (*1 *2 *3 *2) (-12 (-5 *2 (-621 (-1060 (-372)))) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-2367 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-3098 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-3899 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-4301 (*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-1595 (*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-3601 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-2329 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-2169 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))))
-(-10 -7 (-15 -2169 ((-112) (-621 (-256)) (-112))) (-15 -2329 ((-112) (-621 (-256)) (-112))) (-15 -3601 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-621 (-256)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1595 ((-1124) (-621 (-256)) (-1124))) (-15 -4301 ((-1124) (-621 (-256)) (-1124))) (-15 -3899 ((-112) (-621 (-256)) (-112))) (-15 -3098 ((-845) (-621 (-256)) (-845))) (-15 -2367 ((-845) (-621 (-256)) (-845))) (-15 -3922 ((-621 (-1060 (-372))) (-621 (-256)) (-621 (-1060 (-372))))) (-15 -3450 ((-892) (-621 (-256)) (-892))) (-15 -3657 ((-892) (-621 (-256)) (-892))) (-15 -4159 ((-1099 (-219)) (-621 (-256)))) (-15 -4235 ((-892) (-621 (-256)) (-892))) (-15 -3891 ((-372) (-621 (-256)) (-372))) (-15 -1300 ((-1 (-914 (-219)) (-914 (-219))) (-621 (-256)) (-1 (-914 (-219)) (-914 (-219))))) (-15 -2035 ((-621 (-372)) (-621 (-256)) (-621 (-372)))))
-((-3509 (((-3 |#1| "failed") (-621 (-256)) (-1142)) 17)))
-(((-255 |#1|) (-10 -7 (-15 -3509 ((-3 |#1| "failed") (-621 (-256)) (-1142)))) (-1179)) (T -255))
-((-3509 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-621 (-256))) (-5 *4 (-1142)) (-5 *1 (-255 *2)) (-4 *2 (-1179)))))
-(-10 -7 (-15 -3509 ((-3 |#1| "failed") (-621 (-256)) (-1142))))
-((-3833 (((-112) $ $) NIL)) (-3601 (($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 15)) (-3657 (($ (-892)) 76)) (-3450 (($ (-892)) 75)) (-2699 (($ (-621 (-372))) 82)) (-3891 (($ (-372)) 58)) (-4235 (($ (-892)) 77)) (-3899 (($ (-112)) 23)) (-1595 (($ (-1124)) 18)) (-4301 (($ (-1124)) 19)) (-4159 (($ (-1099 (-219))) 71)) (-3922 (($ (-621 (-1060 (-372)))) 67)) (-2062 (($ (-621 (-1060 (-372)))) 59) (($ (-621 (-1060 (-400 (-549))))) 66)) (-2155 (($ (-372)) 29) (($ (-845)) 33)) (-3412 (((-112) (-621 $) (-1142)) 91)) (-3509 (((-3 (-52) "failed") (-621 $) (-1142)) 93)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3309 (($ (-372)) 34) (($ (-845)) 35)) (-4163 (($ (-1 (-914 (-219)) (-914 (-219)))) 57)) (-1300 (($ (-1 (-914 (-219)) (-914 (-219)))) 78)) (-3114 (($ (-1 (-219) (-219))) 39) (($ (-1 (-219) (-219) (-219))) 43) (($ (-1 (-219) (-219) (-219) (-219))) 47)) (-3845 (((-834) $) 87)) (-3157 (($ (-112)) 24) (($ (-621 (-1060 (-372)))) 52)) (-2169 (($ (-112)) 25)) (-2388 (((-112) $ $) 89)))
-(((-256) (-13 (-1066) (-10 -8 (-15 -2169 ($ (-112))) (-15 -3157 ($ (-112))) (-15 -3601 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1595 ($ (-1124))) (-15 -4301 ($ (-1124))) (-15 -3899 ($ (-112))) (-15 -3157 ($ (-621 (-1060 (-372))))) (-15 -4163 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -2155 ($ (-372))) (-15 -2155 ($ (-845))) (-15 -3309 ($ (-372))) (-15 -3309 ($ (-845))) (-15 -3114 ($ (-1 (-219) (-219)))) (-15 -3114 ($ (-1 (-219) (-219) (-219)))) (-15 -3114 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -3891 ($ (-372))) (-15 -2062 ($ (-621 (-1060 (-372))))) (-15 -2062 ($ (-621 (-1060 (-400 (-549)))))) (-15 -3922 ($ (-621 (-1060 (-372))))) (-15 -4159 ($ (-1099 (-219)))) (-15 -3450 ($ (-892))) (-15 -3657 ($ (-892))) (-15 -4235 ($ (-892))) (-15 -1300 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -2699 ($ (-621 (-372)))) (-15 -3509 ((-3 (-52) "failed") (-621 $) (-1142))) (-15 -3412 ((-112) (-621 $) (-1142)))))) (T -256))
-((-2169 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-3601 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-256)))) (-1595 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-256)))) (-4301 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-256)))) (-3899 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-621 (-1060 (-372)))) (-5 *1 (-256)))) (-4163 (*1 *1 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-256)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-256)))) (-3309 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))) (-3309 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-256)))) (-3114 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-256)))) (-3114 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-256)))) (-3114 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-256)))) (-3891 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-621 (-1060 (-372)))) (-5 *1 (-256)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-621 (-1060 (-400 (-549))))) (-5 *1 (-256)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-621 (-1060 (-372)))) (-5 *1 (-256)))) (-4159 (*1 *1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-256)))) (-3450 (*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-256)))) (-3657 (*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-256)))) (-4235 (*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-256)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-256)))) (-2699 (*1 *1 *2) (-12 (-5 *2 (-621 (-372))) (-5 *1 (-256)))) (-3509 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-621 (-256))) (-5 *4 (-1142)) (-5 *2 (-52)) (-5 *1 (-256)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-256))) (-5 *4 (-1142)) (-5 *2 (-112)) (-5 *1 (-256)))))
-(-13 (-1066) (-10 -8 (-15 -2169 ($ (-112))) (-15 -3157 ($ (-112))) (-15 -3601 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1595 ($ (-1124))) (-15 -4301 ($ (-1124))) (-15 -3899 ($ (-112))) (-15 -3157 ($ (-621 (-1060 (-372))))) (-15 -4163 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -2155 ($ (-372))) (-15 -2155 ($ (-845))) (-15 -3309 ($ (-372))) (-15 -3309 ($ (-845))) (-15 -3114 ($ (-1 (-219) (-219)))) (-15 -3114 ($ (-1 (-219) (-219) (-219)))) (-15 -3114 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -3891 ($ (-372))) (-15 -2062 ($ (-621 (-1060 (-372))))) (-15 -2062 ($ (-621 (-1060 (-400 (-549)))))) (-15 -3922 ($ (-621 (-1060 (-372))))) (-15 -4159 ($ (-1099 (-219)))) (-15 -3450 ($ (-892))) (-15 -3657 ($ (-892))) (-15 -4235 ($ (-892))) (-15 -1300 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -2699 ($ (-621 (-372)))) (-15 -3509 ((-3 (-52) "failed") (-621 $) (-1142))) (-15 -3412 ((-112) (-621 $) (-1142)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3830 (((-621 (-747)) $) NIL) (((-621 (-747)) $ |#2|) NIL)) (-1996 (((-747) $) NIL) (((-747) $ |#2|) NIL)) (-2271 (((-621 |#3|) $) NIL)) (-2082 (((-1138 $) $ |#3|) NIL) (((-1138 |#1|) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 |#3|)) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-1912 (($ $) NIL (|has| |#1| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-3851 (($ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1091 |#1| |#2|) "failed") $) 21)) (-2658 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1091 |#1| |#2|) $) NIL)) (-2252 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-2069 (($ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#1| (-880)))) (-3744 (($ $ |#1| (-521 |#3|) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| |#1| (-857 (-372))) (|has| |#3| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| |#1| (-857 (-549))) (|has| |#3| (-857 (-549)))))) (-2078 (((-747) $ |#2|) NIL) (((-747) $) 10)) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-2258 (($ (-1138 |#1|) |#3|) NIL) (($ (-1138 $) |#3|) NIL)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-521 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-621 |#3|) (-621 (-747))) NIL)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ |#3|) NIL)) (-2856 (((-521 |#3|) $) NIL) (((-747) $ |#3|) NIL) (((-621 (-747)) $ (-621 |#3|)) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-4058 (($ (-1 (-521 |#3|) (-521 |#3|)) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-2963 (((-1 $ (-747)) |#2|) NIL) (((-1 $ (-747)) $) NIL (|has| |#1| (-227)))) (-1790 (((-3 |#3| "failed") $) NIL)) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-4051 ((|#3| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2677 (((-1124) $) NIL)) (-2747 (((-112) $) NIL)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| |#3|) (|:| -3577 (-747))) "failed") $) NIL)) (-2257 (($ $) NIL)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) NIL)) (-2012 ((|#1| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-880)))) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-621 |#3|) (-621 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-621 |#3|) (-621 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-227))) (($ $ (-621 |#2|) (-621 $)) NIL (|has| |#1| (-227))) (($ $ |#2| |#1|) NIL (|has| |#1| (-227))) (($ $ (-621 |#2|) (-621 |#1|)) NIL (|has| |#1| (-227)))) (-3086 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-3455 (($ $ |#3|) NIL) (($ $ (-621 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-621 |#3|) (-621 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1727 (((-621 |#2|) $) NIL)) (-3068 (((-521 |#3|) $) NIL) (((-747) $ |#3|) NIL) (((-621 (-747)) $ (-621 |#3|)) NIL) (((-747) $ |#2|) NIL)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#3| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#3| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| |#1| (-594 (-525))) (|has| |#3| (-594 (-525)))))) (-1931 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1091 |#1| |#2|)) 30) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-521 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-621 |#3|) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ |#3|) NIL) (($ $ (-621 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-621 |#3|) (-621 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-1573 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *4 *3 *5 *6)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-618 *4)))) (-4114 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747)))) (-4290 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-618 (-747))))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747)))) (-1538 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-618 (-747))))) (-1572 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-112)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-4 *2 (-259 *4)))) (-1535 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-259 *3)) (-4 *5 (-769)))) (-1534 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-259 *3)) (-4 *5 (-769)))) (-1573 (*1 *2 *1) (-12 (-4 *3 (-227)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *3 *4 *5 *6)))))
+(-13 (-921 |t#1| |t#4| |t#3|) (-225 |t#1|) (-1009 |t#2|) (-10 -8 (-15 -1573 ((-1 $ (-747)) |t#2|)) (-15 -1539 ((-618 |t#2|) $)) (-15 -4114 ((-747) $ |t#2|)) (-15 -4114 ((-747) $)) (-15 -4290 ((-747) $ |t#2|)) (-15 -1538 ((-618 (-747)) $)) (-15 -1572 ((-747) $)) (-15 -1538 ((-618 (-747)) $ |t#2|)) (-15 -1572 ((-747) $ |t#2|)) (-15 -1537 ((-112) $)) (-15 -1536 (|t#3| $)) (-15 -1535 ($ $)) (-15 -1534 ($ $)) (IF (|has| |t#1| (-227)) (PROGN (-6 (-505 |t#2| |t#1|)) (-6 (-505 |t#2| $)) (-6 (-302 $)) (-15 -1573 ((-1 $ (-747)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-594 (-524)) -12 (|has| |#1| (-594 (-524))) (|has| |#3| (-594 (-524)))) ((-594 (-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#3| (-594 (-861 (-371))))) ((-594 (-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#3| (-594 (-861 (-535))))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-283) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#4|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3874 (|has| |#1| (-881)) (|has| |#1| (-444))) ((-505 |#2| |#1|) |has| |#1| (-227)) ((-505 |#2| $) |has| |#1| (-227)) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-542) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-871 |#3|) . T) ((-857 (-371)) -12 (|has| |#1| (-857 (-371))) (|has| |#3| (-857 (-371)))) ((-857 (-535)) -12 (|has| |#1| (-857 (-535))) (|has| |#3| (-857 (-535)))) ((-921 |#1| |#4| |#3|) . T) ((-881) |has| |#1| (-881)) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1009 |#2|) . T) ((-1009 |#3|) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) |has| |#1| (-881)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1545 ((|#1| $) 54)) (-3666 ((|#1| $) 44)) (-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-3323 (($ $) 60)) (-2368 (($ $) 48)) (-3668 ((|#1| |#1| $) 46)) (-3667 ((|#1| $) 45)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-4176 (((-747) $) 61)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-1543 ((|#1| |#1| $) 52)) (-1542 ((|#1| |#1| $) 51)) (-3953 (($ |#1| $) 40)) (-2922 (((-747) $) 55)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-3322 ((|#1| $) 62)) (-1541 ((|#1| $) 50)) (-1540 ((|#1| $) 49)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3325 ((|#1| |#1| $) 58)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-3324 ((|#1| $) 59)) (-1546 (($) 57) (($ (-618 |#1|)) 56)) (-3665 (((-747) $) 43)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1544 ((|#1| $) 53)) (-1328 (($ (-618 |#1|)) 42)) (-3321 ((|#1| $) 63)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-247 |#1|) (-138) (-1178)) (T -247))
+((-1546 (*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-1546 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-4 *1 (-247 *3)))) (-2922 (*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-1543 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-1542 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))) (-2368 (*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))))
+(-13 (-1087 |t#1|) (-966 |t#1|) (-10 -8 (-15 -1546 ($)) (-15 -1546 ($ (-618 |t#1|))) (-15 -2922 ((-747) $)) (-15 -1545 (|t#1| $)) (-15 -1544 (|t#1| $)) (-15 -1543 (|t#1| |t#1| $)) (-15 -1542 (|t#1| |t#1| $)) (-15 -1541 (|t#1| $)) (-15 -1540 (|t#1| $)) (-15 -2368 ($ $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-966 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1087 |#1|) . T) ((-1178) . T))
+((-1547 (((-1099 (-219)) (-853 |#1|) (-1058 (-371)) (-1058 (-371))) 71) (((-1099 (-219)) (-853 |#1|) (-1058 (-371)) (-1058 (-371)) (-618 (-254))) 70) (((-1099 (-219)) |#1| (-1058 (-371)) (-1058 (-371))) 61) (((-1099 (-219)) |#1| (-1058 (-371)) (-1058 (-371)) (-618 (-254))) 60) (((-1099 (-219)) (-850 |#1|) (-1058 (-371))) 52) (((-1099 (-219)) (-850 |#1|) (-1058 (-371)) (-618 (-254))) 51)) (-1554 (((-1228) (-853 |#1|) (-1058 (-371)) (-1058 (-371))) 74) (((-1228) (-853 |#1|) (-1058 (-371)) (-1058 (-371)) (-618 (-254))) 73) (((-1228) |#1| (-1058 (-371)) (-1058 (-371))) 64) (((-1228) |#1| (-1058 (-371)) (-1058 (-371)) (-618 (-254))) 63) (((-1228) (-850 |#1|) (-1058 (-371))) 56) (((-1228) (-850 |#1|) (-1058 (-371)) (-618 (-254))) 55) (((-1227) (-848 |#1|) (-1058 (-371))) 43) (((-1227) (-848 |#1|) (-1058 (-371)) (-618 (-254))) 42) (((-1227) |#1| (-1058 (-371))) 35) (((-1227) |#1| (-1058 (-371)) (-618 (-254))) 34)))
+(((-248 |#1|) (-10 -7 (-15 -1554 ((-1227) |#1| (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) |#1| (-1058 (-371)))) (-15 -1554 ((-1227) (-848 |#1|) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) (-848 |#1|) (-1058 (-371)))) (-15 -1554 ((-1228) (-850 |#1|) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-850 |#1|) (-1058 (-371)))) (-15 -1547 ((-1099 (-219)) (-850 |#1|) (-1058 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-850 |#1|) (-1058 (-371)))) (-15 -1554 ((-1228) |#1| (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) |#1| (-1058 (-371)) (-1058 (-371)))) (-15 -1547 ((-1099 (-219)) |#1| (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) |#1| (-1058 (-371)) (-1058 (-371)))) (-15 -1554 ((-1228) (-853 |#1|) (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-853 |#1|) (-1058 (-371)) (-1058 (-371)))) (-15 -1547 ((-1099 (-219)) (-853 |#1|) (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-853 |#1|) (-1058 (-371)) (-1058 (-371))))) (-13 (-594 (-524)) (-1067))) (T -248))
+((-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1058 (-371))) (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *5)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1058 (-371))) (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *5)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *6)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1058 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1058 (-371))) (-5 *2 (-1228)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-1058 (-371))) (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *5)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-1058 (-371))) (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *5)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-848 *5)) (-5 *4 (-1058 (-371))) (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1227)) (-5 *1 (-248 *5)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1227)) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-371))) (-5 *2 (-1227)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067))))))
+(-10 -7 (-15 -1554 ((-1227) |#1| (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) |#1| (-1058 (-371)))) (-15 -1554 ((-1227) (-848 |#1|) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) (-848 |#1|) (-1058 (-371)))) (-15 -1554 ((-1228) (-850 |#1|) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-850 |#1|) (-1058 (-371)))) (-15 -1547 ((-1099 (-219)) (-850 |#1|) (-1058 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-850 |#1|) (-1058 (-371)))) (-15 -1554 ((-1228) |#1| (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) |#1| (-1058 (-371)) (-1058 (-371)))) (-15 -1547 ((-1099 (-219)) |#1| (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) |#1| (-1058 (-371)) (-1058 (-371)))) (-15 -1554 ((-1228) (-853 |#1|) (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-853 |#1|) (-1058 (-371)) (-1058 (-371)))) (-15 -1547 ((-1099 (-219)) (-853 |#1|) (-1058 (-371)) (-1058 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-853 |#1|) (-1058 (-371)) (-1058 (-371)))))
+((-1548 (((-1 (-914 (-219)) (-219) (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 139)) (-1547 (((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371))) 160) (((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)) (-618 (-254))) 158) (((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371))) 163) (((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254))) 159) (((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371))) 150) (((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254))) 149) (((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1055 (-371))) 129) (((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1055 (-371)) (-618 (-254))) 127) (((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1055 (-371))) 128) (((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254))) 125)) (-1554 (((-1228) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371))) 162) (((-1228) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)) (-618 (-254))) 161) (((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371))) 165) (((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254))) 164) (((-1228) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371))) 152) (((-1228) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254))) 151) (((-1228) (-1 (-914 (-219)) (-219)) (-1055 (-371))) 135) (((-1228) (-1 (-914 (-219)) (-219)) (-1055 (-371)) (-618 (-254))) 134) (((-1228) (-850 (-1 (-219) (-219))) (-1055 (-371))) 133) (((-1228) (-850 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254))) 132) (((-1227) (-848 (-1 (-219) (-219))) (-1055 (-371))) 100) (((-1227) (-848 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254))) 99) (((-1227) (-1 (-219) (-219)) (-1055 (-371))) 96) (((-1227) (-1 (-219) (-219)) (-1055 (-371)) (-618 (-254))) 95)))
+(((-249) (-10 -7 (-15 -1554 ((-1227) (-1 (-219) (-219)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) (-1 (-219) (-219)) (-1055 (-371)))) (-15 -1554 ((-1227) (-848 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) (-848 (-1 (-219) (-219))) (-1055 (-371)))) (-15 -1554 ((-1228) (-850 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-850 (-1 (-219) (-219))) (-1055 (-371)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1055 (-371)))) (-15 -1554 ((-1228) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1554 ((-1228) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)))) (-15 -1548 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -249))
+((-1548 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219) (-219))) (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1227)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1227)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-249)))))
+(-10 -7 (-15 -1554 ((-1227) (-1 (-219) (-219)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) (-1 (-219) (-219)) (-1055 (-371)))) (-15 -1554 ((-1227) (-848 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1227) (-848 (-1 (-219) (-219))) (-1055 (-371)))) (-15 -1554 ((-1228) (-850 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-850 (-1 (-219) (-219))) (-1055 (-371)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-850 (-1 (-219) (-219))) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219)) (-1055 (-371)))) (-15 -1554 ((-1228) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-371)) (-1055 (-371)))) (-15 -1554 ((-1228) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1554 ((-1228) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)))) (-15 -1547 ((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)) (-618 (-254)))) (-15 -1547 ((-1099 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1055 (-371)) (-1055 (-371)))) (-15 -1548 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))
+((-1554 (((-1227) (-286 |#2|) (-1142) (-1142) (-618 (-254))) 96)))
+(((-250 |#1| |#2|) (-10 -7 (-15 -1554 ((-1227) (-286 |#2|) (-1142) (-1142) (-618 (-254))))) (-13 (-542) (-823) (-1009 (-535))) (-414 |#1|)) (T -250))
+((-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-1142)) (-5 *5 (-618 (-254))) (-4 *7 (-414 *6)) (-4 *6 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-1227)) (-5 *1 (-250 *6 *7)))))
+(-10 -7 (-15 -1554 ((-1227) (-286 |#2|) (-1142) (-1142) (-618 (-254)))))
+((-1551 (((-535) (-535)) 50)) (-1552 (((-535) (-535)) 51)) (-1553 (((-219) (-219)) 52)) (-1550 (((-1228) (-1 (-166 (-219)) (-166 (-219))) (-1055 (-219)) (-1055 (-219))) 49)) (-1549 (((-1228) (-1 (-166 (-219)) (-166 (-219))) (-1055 (-219)) (-1055 (-219)) (-112)) 47)))
+(((-251) (-10 -7 (-15 -1549 ((-1228) (-1 (-166 (-219)) (-166 (-219))) (-1055 (-219)) (-1055 (-219)) (-112))) (-15 -1550 ((-1228) (-1 (-166 (-219)) (-166 (-219))) (-1055 (-219)) (-1055 (-219)))) (-15 -1551 ((-535) (-535))) (-15 -1552 ((-535) (-535))) (-15 -1553 ((-219) (-219))))) (T -251))
+((-1553 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-251)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-251)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-251)))) (-1550 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1055 (-219))) (-5 *2 (-1228)) (-5 *1 (-251)))) (-1549 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1055 (-219))) (-5 *5 (-112)) (-5 *2 (-1228)) (-5 *1 (-251)))))
+(-10 -7 (-15 -1549 ((-1228) (-1 (-166 (-219)) (-166 (-219))) (-1055 (-219)) (-1055 (-219)) (-112))) (-15 -1550 ((-1228) (-1 (-166 (-219)) (-166 (-219))) (-1055 (-219)) (-1055 (-219)))) (-15 -1551 ((-535) (-535))) (-15 -1552 ((-535) (-535))) (-15 -1553 ((-219) (-219))))
+((-4300 (((-1058 (-371)) (-1058 (-307 |#1|))) 16)))
+(((-252 |#1|) (-10 -7 (-15 -4300 ((-1058 (-371)) (-1058 (-307 |#1|))))) (-13 (-823) (-542) (-594 (-371)))) (T -252))
+((-4300 (*1 *2 *3) (-12 (-5 *3 (-1058 (-307 *4))) (-4 *4 (-13 (-823) (-542) (-594 (-371)))) (-5 *2 (-1058 (-371))) (-5 *1 (-252 *4)))))
+(-10 -7 (-15 -4300 ((-1058 (-371)) (-1058 (-307 |#1|)))))
+((-1554 (((-1228) (-618 (-219)) (-618 (-219)) (-618 (-219)) (-618 (-254))) 23) (((-1228) (-618 (-219)) (-618 (-219)) (-618 (-219))) 24) (((-1227) (-618 (-914 (-219))) (-618 (-254))) 16) (((-1227) (-618 (-914 (-219)))) 17) (((-1227) (-618 (-219)) (-618 (-219)) (-618 (-254))) 20) (((-1227) (-618 (-219)) (-618 (-219))) 21)))
+(((-253) (-10 -7 (-15 -1554 ((-1227) (-618 (-219)) (-618 (-219)))) (-15 -1554 ((-1227) (-618 (-219)) (-618 (-219)) (-618 (-254)))) (-15 -1554 ((-1227) (-618 (-914 (-219))))) (-15 -1554 ((-1227) (-618 (-914 (-219))) (-618 (-254)))) (-15 -1554 ((-1228) (-618 (-219)) (-618 (-219)) (-618 (-219)))) (-15 -1554 ((-1228) (-618 (-219)) (-618 (-219)) (-618 (-219)) (-618 (-254)))))) (T -253))
+((-1554 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-618 (-219))) (-5 *4 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-1228)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-914 (-219)))) (-5 *4 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-253)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-618 (-914 (-219)))) (-5 *2 (-1227)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-618 (-219))) (-5 *4 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-1227)) (-5 *1 (-253)))))
+(-10 -7 (-15 -1554 ((-1227) (-618 (-219)) (-618 (-219)))) (-15 -1554 ((-1227) (-618 (-219)) (-618 (-219)) (-618 (-254)))) (-15 -1554 ((-1227) (-618 (-914 (-219))))) (-15 -1554 ((-1227) (-618 (-914 (-219))) (-618 (-254)))) (-15 -1554 ((-1228) (-618 (-219)) (-618 (-219)) (-618 (-219)))) (-15 -1554 ((-1228) (-618 (-219)) (-618 (-219)) (-618 (-219)) (-618 (-254)))))
+((-2887 (((-112) $ $) NIL)) (-4224 (($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 15)) (-1567 (($ (-890)) 76)) (-1566 (($ (-890)) 75)) (-1887 (($ (-618 (-371))) 82)) (-1570 (($ (-371)) 58)) (-1569 (($ (-890)) 77)) (-1563 (($ (-112)) 23)) (-4226 (($ (-1124)) 18)) (-1562 (($ (-1124)) 19)) (-1568 (($ (-1099 (-219))) 71)) (-2045 (($ (-618 (-1055 (-371)))) 67)) (-1556 (($ (-618 (-1055 (-371)))) 59) (($ (-618 (-1055 (-400 (-535))))) 66)) (-1559 (($ (-371)) 29) (($ (-845)) 33)) (-1555 (((-112) (-618 $) (-1142)) 91)) (-1571 (((-3 (-51) "failed") (-618 $) (-1142)) 93)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1558 (($ (-371)) 34) (($ (-845)) 35)) (-3558 (($ (-1 (-914 (-219)) (-914 (-219)))) 57)) (-2341 (($ (-1 (-914 (-219)) (-914 (-219)))) 78)) (-1557 (($ (-1 (-219) (-219))) 39) (($ (-1 (-219) (-219) (-219))) 43) (($ (-1 (-219) (-219) (-219) (-219))) 47)) (-4300 (((-835) $) 87)) (-1560 (($ (-112)) 24) (($ (-618 (-1055 (-371)))) 52)) (-2040 (($ (-112)) 25)) (-3375 (((-112) $ $) 89)))
+(((-254) (-13 (-1067) (-10 -8 (-15 -2040 ($ (-112))) (-15 -1560 ($ (-112))) (-15 -4224 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4226 ($ (-1124))) (-15 -1562 ($ (-1124))) (-15 -1563 ($ (-112))) (-15 -1560 ($ (-618 (-1055 (-371))))) (-15 -3558 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -1559 ($ (-371))) (-15 -1559 ($ (-845))) (-15 -1558 ($ (-371))) (-15 -1558 ($ (-845))) (-15 -1557 ($ (-1 (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -1570 ($ (-371))) (-15 -1556 ($ (-618 (-1055 (-371))))) (-15 -1556 ($ (-618 (-1055 (-400 (-535)))))) (-15 -2045 ($ (-618 (-1055 (-371))))) (-15 -1568 ($ (-1099 (-219)))) (-15 -1566 ($ (-890))) (-15 -1567 ($ (-890))) (-15 -1569 ($ (-890))) (-15 -2341 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -1887 ($ (-618 (-371)))) (-15 -1571 ((-3 (-51) "failed") (-618 $) (-1142))) (-15 -1555 ((-112) (-618 $) (-1142)))))) (T -254))
+((-2040 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-4224 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-254)))) (-4226 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-254)))) (-1562 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-254)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-254)))) (-3558 (*1 *1 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-254)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-254)))) (-1558 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) (-1558 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-254)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-254)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-254)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-254)))) (-1570 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-254)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-400 (-535))))) (-5 *1 (-254)))) (-2045 (*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-254)))) (-1568 (*1 *1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-254)))) (-1566 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) (-1569 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-254)))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-618 (-371))) (-5 *1 (-254)))) (-1571 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-618 (-254))) (-5 *4 (-1142)) (-5 *2 (-51)) (-5 *1 (-254)))) (-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-254))) (-5 *4 (-1142)) (-5 *2 (-112)) (-5 *1 (-254)))))
+(-13 (-1067) (-10 -8 (-15 -2040 ($ (-112))) (-15 -1560 ($ (-112))) (-15 -4224 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4226 ($ (-1124))) (-15 -1562 ($ (-1124))) (-15 -1563 ($ (-112))) (-15 -1560 ($ (-618 (-1055 (-371))))) (-15 -3558 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -1559 ($ (-371))) (-15 -1559 ($ (-845))) (-15 -1558 ($ (-371))) (-15 -1558 ($ (-845))) (-15 -1557 ($ (-1 (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -1570 ($ (-371))) (-15 -1556 ($ (-618 (-1055 (-371))))) (-15 -1556 ($ (-618 (-1055 (-400 (-535)))))) (-15 -2045 ($ (-618 (-1055 (-371))))) (-15 -1568 ($ (-1099 (-219)))) (-15 -1566 ($ (-890))) (-15 -1567 ($ (-890))) (-15 -1569 ($ (-890))) (-15 -2341 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -1887 ($ (-618 (-371)))) (-15 -1571 ((-3 (-51) "failed") (-618 $) (-1142))) (-15 -1555 ((-112) (-618 $) (-1142)))))
+((-4224 (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-618 (-254)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 26)) (-1567 (((-890) (-618 (-254)) (-890)) 53)) (-1566 (((-890) (-618 (-254)) (-890)) 52)) (-4194 (((-618 (-371)) (-618 (-254)) (-618 (-371))) 69)) (-1570 (((-371) (-618 (-254)) (-371)) 58)) (-1569 (((-890) (-618 (-254)) (-890)) 54)) (-1563 (((-112) (-618 (-254)) (-112)) 28)) (-4226 (((-1124) (-618 (-254)) (-1124)) 20)) (-1562 (((-1124) (-618 (-254)) (-1124)) 27)) (-1568 (((-1099 (-219)) (-618 (-254))) 47)) (-2045 (((-618 (-1055 (-371))) (-618 (-254)) (-618 (-1055 (-371)))) 41)) (-1564 (((-845) (-618 (-254)) (-845)) 33)) (-1565 (((-845) (-618 (-254)) (-845)) 34)) (-2341 (((-1 (-914 (-219)) (-914 (-219))) (-618 (-254)) (-1 (-914 (-219)) (-914 (-219)))) 64)) (-1561 (((-112) (-618 (-254)) (-112)) 16)) (-2040 (((-112) (-618 (-254)) (-112)) 15)))
+(((-255) (-10 -7 (-15 -2040 ((-112) (-618 (-254)) (-112))) (-15 -1561 ((-112) (-618 (-254)) (-112))) (-15 -4224 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-618 (-254)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4226 ((-1124) (-618 (-254)) (-1124))) (-15 -1562 ((-1124) (-618 (-254)) (-1124))) (-15 -1563 ((-112) (-618 (-254)) (-112))) (-15 -1564 ((-845) (-618 (-254)) (-845))) (-15 -1565 ((-845) (-618 (-254)) (-845))) (-15 -2045 ((-618 (-1055 (-371))) (-618 (-254)) (-618 (-1055 (-371))))) (-15 -1566 ((-890) (-618 (-254)) (-890))) (-15 -1567 ((-890) (-618 (-254)) (-890))) (-15 -1568 ((-1099 (-219)) (-618 (-254)))) (-15 -1569 ((-890) (-618 (-254)) (-890))) (-15 -1570 ((-371) (-618 (-254)) (-371))) (-15 -2341 ((-1 (-914 (-219)) (-914 (-219))) (-618 (-254)) (-1 (-914 (-219)) (-914 (-219))))) (-15 -4194 ((-618 (-371)) (-618 (-254)) (-618 (-371)))))) (T -255))
+((-4194 (*1 *2 *3 *2) (-12 (-5 *2 (-618 (-371))) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-2341 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1570 (*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1569 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-255)))) (-1567 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1566 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-2045 (*1 *2 *3 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1565 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1564 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1563 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1562 (*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-4226 (*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-4224 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-1561 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))) (-2040 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))))
+(-10 -7 (-15 -2040 ((-112) (-618 (-254)) (-112))) (-15 -1561 ((-112) (-618 (-254)) (-112))) (-15 -4224 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-618 (-254)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4226 ((-1124) (-618 (-254)) (-1124))) (-15 -1562 ((-1124) (-618 (-254)) (-1124))) (-15 -1563 ((-112) (-618 (-254)) (-112))) (-15 -1564 ((-845) (-618 (-254)) (-845))) (-15 -1565 ((-845) (-618 (-254)) (-845))) (-15 -2045 ((-618 (-1055 (-371))) (-618 (-254)) (-618 (-1055 (-371))))) (-15 -1566 ((-890) (-618 (-254)) (-890))) (-15 -1567 ((-890) (-618 (-254)) (-890))) (-15 -1568 ((-1099 (-219)) (-618 (-254)))) (-15 -1569 ((-890) (-618 (-254)) (-890))) (-15 -1570 ((-371) (-618 (-254)) (-371))) (-15 -2341 ((-1 (-914 (-219)) (-914 (-219))) (-618 (-254)) (-1 (-914 (-219)) (-914 (-219))))) (-15 -4194 ((-618 (-371)) (-618 (-254)) (-618 (-371)))))
+((-1571 (((-3 |#1| "failed") (-618 (-254)) (-1142)) 17)))
+(((-256 |#1|) (-10 -7 (-15 -1571 ((-3 |#1| "failed") (-618 (-254)) (-1142)))) (-1178)) (T -256))
+((-1571 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-618 (-254))) (-5 *4 (-1142)) (-5 *1 (-256 *2)) (-4 *2 (-1178)))))
+(-10 -7 (-15 -1571 ((-3 |#1| "failed") (-618 (-254)) (-1142))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1538 (((-618 (-747)) $) NIL) (((-618 (-747)) $ |#2|) NIL)) (-1572 (((-747) $) NIL) (((-747) $ |#2|) NIL)) (-3405 (((-618 |#3|) $) NIL)) (-3407 (((-1136 $) $ |#3|) NIL) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 |#3|)) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-1534 (($ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1091 |#1| |#2|) #2#) $) 21)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1091 |#1| |#2|) $) NIL)) (-4099 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-521 |#3|) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| |#1| (-857 (-371))) (|has| |#3| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| |#1| (-857 (-535))) (|has| |#3| (-857 (-535)))))) (-4114 (((-747) $ |#2|) NIL) (((-747) $) 10)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#1|) |#3|) NIL) (($ (-1136 $) |#3|) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-521 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-618 |#3|) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#3|) NIL)) (-3141 (((-521 |#3|) $) NIL) (((-747) $ |#3|) NIL) (((-618 (-747)) $ (-618 |#3|)) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-521 |#3|) (-521 |#3|)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-1 $ (-747)) |#2|) NIL) (((-1 $ (-747)) $) NIL (|has| |#1| (-227)))) (-3406 (((-3 |#3| #3="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-1536 ((|#3| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-1537 (((-112) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| |#3|) (|:| -2484 (-747))) #3#) $) NIL)) (-1535 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-618 |#3|) (-618 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-618 |#3|) (-618 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-227))) (($ $ (-618 |#2|) (-618 $)) NIL (|has| |#1| (-227))) (($ $ |#2| |#1|) NIL (|has| |#1| (-227))) (($ $ (-618 |#2|) (-618 |#1|)) NIL (|has| |#1| (-227)))) (-4100 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-4153 (($ $ |#3|) NIL) (($ $ (-618 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-618 |#3|) (-618 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-618 |#2|) $) NIL)) (-4290 (((-521 |#3|) $) NIL) (((-747) $ |#3|) NIL) (((-618 (-747)) $ (-618 |#3|)) NIL) (((-747) $ |#2|) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#3| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#3| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| |#1| (-594 (-524))) (|has| |#3| (-594 (-524)))))) (-3138 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1091 |#1| |#2|)) 30) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-521 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-618 |#3|) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ |#3|) NIL) (($ $ (-618 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-618 |#3|) (-618 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-257 |#1| |#2| |#3|) (-13 (-246 |#1| |#2| |#3| (-521 |#3|)) (-1009 (-1091 |#1| |#2|))) (-1018) (-823) (-259 |#2|)) (T -257))
NIL
(-13 (-246 |#1| |#2| |#3| (-521 |#3|)) (-1009 (-1091 |#1| |#2|)))
-((-1996 (((-747) $) 30)) (-2713 (((-3 |#2| "failed") $) 17)) (-2658 ((|#2| $) 27)) (-3455 (($ $) 12) (($ $ (-747)) 15)) (-3845 (((-834) $) 26) (($ |#2|) 10)) (-2388 (((-112) $ $) 20)) (-2411 (((-112) $ $) 29)))
-(((-258 |#1| |#2|) (-10 -8 (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1|)) (-15 -1996 ((-747) |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -2411 ((-112) |#1| |#1|)) (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|))) (-259 |#2|) (-823)) (T -258))
+((-1572 (((-747) $) 30)) (-3491 (((-3 |#2| "failed") $) 17)) (-3490 ((|#2| $) 27)) (-4153 (($ $) 12) (($ $ (-747)) 15)) (-4300 (((-835) $) 26) (($ |#2|) 10)) (-3375 (((-112) $ $) 20)) (-3006 (((-112) $ $) 29)))
+(((-258 |#1| |#2|) (-10 -8 (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -1572 ((-747) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| "failed") |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-259 |#2|) (-823)) (T -258))
NIL
-(-10 -8 (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1|)) (-15 -1996 ((-747) |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -2411 ((-112) |#1| |#1|)) (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-1996 (((-747) $) 22)) (-3010 ((|#1| $) 23)) (-2713 (((-3 |#1| "failed") $) 27)) (-2658 ((|#1| $) 26)) (-2078 (((-747) $) 24)) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2963 (($ |#1| (-747)) 25)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3455 (($ $) 21) (($ $ (-747)) 20)) (-3845 (((-834) $) 11) (($ |#1|) 28)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)))
+(-10 -8 (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -1572 ((-747) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| "failed") |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-1572 (((-747) $) 22)) (-4174 ((|#1| $) 23)) (-3491 (((-3 |#1| "failed") $) 27)) (-3490 ((|#1| $) 26)) (-4114 (((-747) $) 24)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-1573 (($ |#1| (-747)) 25)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4153 (($ $) 21) (($ $ (-747)) 20)) (-4300 (((-835) $) 11) (($ |#1|) 28)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)))
(((-259 |#1|) (-138) (-823)) (T -259))
-((-3845 (*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-2963 (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-2078 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747)))) (-3455 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-259 *3)) (-4 *3 (-823)))))
-(-13 (-823) (-1009 |t#1|) (-10 -8 (-15 -2963 ($ |t#1| (-747))) (-15 -2078 ((-747) $)) (-15 -3010 (|t#1| $)) (-15 -1996 ((-747) $)) (-15 -3455 ($ $)) (-15 -3455 ($ $ (-747))) (-15 -3845 ($ |t#1|))))
-(((-101) . T) ((-593 (-834)) . T) ((-823) . T) ((-1009 |#1|) . T) ((-1066) . T))
-((-2271 (((-621 (-1142)) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 41)) (-3303 (((-621 (-1142)) (-309 (-219)) (-747)) 80)) (-1602 (((-3 (-309 (-219)) "failed") (-309 (-219))) 51)) (-3966 (((-309 (-219)) (-309 (-219))) 67)) (-2314 (((-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 26)) (-2708 (((-112) (-621 (-309 (-219)))) 84)) (-2566 (((-112) (-309 (-219))) 24)) (-4078 (((-621 (-1124)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))))) 106)) (-2696 (((-621 (-309 (-219))) (-621 (-309 (-219)))) 88)) (-3184 (((-621 (-309 (-219))) (-621 (-309 (-219)))) 86)) (-1693 (((-665 (-219)) (-621 (-309 (-219))) (-747)) 95)) (-2786 (((-112) (-309 (-219))) 20) (((-112) (-621 (-309 (-219)))) 85)) (-3951 (((-621 (-219)) (-621 (-816 (-219))) (-219)) 14)) (-2924 (((-372) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 101)) (-2330 (((-1006) (-1142) (-1006)) 34)))
-(((-260) (-10 -7 (-15 -3951 ((-621 (-219)) (-621 (-816 (-219))) (-219))) (-15 -2314 ((-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))))) (-15 -1602 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -3966 ((-309 (-219)) (-309 (-219)))) (-15 -2708 ((-112) (-621 (-309 (-219))))) (-15 -2786 ((-112) (-621 (-309 (-219))))) (-15 -2786 ((-112) (-309 (-219)))) (-15 -1693 ((-665 (-219)) (-621 (-309 (-219))) (-747))) (-15 -3184 ((-621 (-309 (-219))) (-621 (-309 (-219))))) (-15 -2696 ((-621 (-309 (-219))) (-621 (-309 (-219))))) (-15 -2566 ((-112) (-309 (-219)))) (-15 -2271 ((-621 (-1142)) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -3303 ((-621 (-1142)) (-309 (-219)) (-747))) (-15 -2330 ((-1006) (-1142) (-1006))) (-15 -2924 ((-372) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -4078 ((-621 (-1124)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))))))) (T -260))
-((-4078 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))))) (-5 *2 (-621 (-1124))) (-5 *1 (-260)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) (-5 *2 (-372)) (-5 *1 (-260)))) (-2330 (*1 *2 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1142)) (-5 *1 (-260)))) (-3303 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-747)) (-5 *2 (-621 (-1142))) (-5 *1 (-260)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) (-5 *2 (-621 (-1142))) (-5 *1 (-260)))) (-2566 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-2696 (*1 *2 *2) (-12 (-5 *2 (-621 (-309 (-219)))) (-5 *1 (-260)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-621 (-309 (-219)))) (-5 *1 (-260)))) (-1693 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-309 (-219)))) (-5 *4 (-747)) (-5 *2 (-665 (-219))) (-5 *1 (-260)))) (-2786 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-2786 (*1 *2 *3) (-12 (-5 *3 (-621 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-621 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-3966 (*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-260)))) (-1602 (*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-260)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (-5 *1 (-260)))) (-3951 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-816 (-219)))) (-5 *4 (-219)) (-5 *2 (-621 *4)) (-5 *1 (-260)))))
-(-10 -7 (-15 -3951 ((-621 (-219)) (-621 (-816 (-219))) (-219))) (-15 -2314 ((-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))))) (-15 -1602 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -3966 ((-309 (-219)) (-309 (-219)))) (-15 -2708 ((-112) (-621 (-309 (-219))))) (-15 -2786 ((-112) (-621 (-309 (-219))))) (-15 -2786 ((-112) (-309 (-219)))) (-15 -1693 ((-665 (-219)) (-621 (-309 (-219))) (-747))) (-15 -3184 ((-621 (-309 (-219))) (-621 (-309 (-219))))) (-15 -2696 ((-621 (-309 (-219))) (-621 (-309 (-219))))) (-15 -2566 ((-112) (-309 (-219)))) (-15 -2271 ((-621 (-1142)) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -3303 ((-621 (-1142)) (-309 (-219)) (-747))) (-15 -2330 ((-1006) (-1142) (-1006))) (-15 -2924 ((-372) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -4078 ((-621 (-1124)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))))))
-((-3833 (((-112) $ $) NIL)) (-3947 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 44)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 26) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-4300 (*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-1573 (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747)))) (-4153 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-259 *3)) (-4 *3 (-823)))))
+(-13 (-823) (-1009 |t#1|) (-10 -8 (-15 -1573 ($ |t#1| (-747))) (-15 -4114 ((-747) $)) (-15 -4174 (|t#1| $)) (-15 -1572 ((-747) $)) (-15 -4153 ($ $)) (-15 -4153 ($ $ (-747))) (-15 -4300 ($ |t#1|))))
+(((-101) . T) ((-593 (-835)) . T) ((-823) . T) ((-1009 |#1|) . T) ((-1067) . T))
+((-3405 (((-618 (-1142)) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 41)) (-4277 (((-618 (-1142)) (-307 (-219)) (-747)) 80)) (-1576 (((-3 (-307 (-219)) "failed") (-307 (-219))) 51)) (-1577 (((-307 (-219)) (-307 (-219))) 67)) (-1575 (((-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 26)) (-1578 (((-112) (-618 (-307 (-219)))) 84)) (-1582 (((-112) (-307 (-219))) 24)) (-1584 (((-618 (-1124)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) 106)) (-1581 (((-618 (-307 (-219))) (-618 (-307 (-219)))) 88)) (-1580 (((-618 (-307 (-219))) (-618 (-307 (-219)))) 86)) (-1579 (((-665 (-219)) (-618 (-307 (-219))) (-747)) 95)) (-3248 (((-112) (-307 (-219))) 20) (((-112) (-618 (-307 (-219)))) 85)) (-1574 (((-618 (-219)) (-618 (-815 (-219))) (-219)) 14)) (-1672 (((-371) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 101)) (-1583 (((-1006) (-1142) (-1006)) 34)))
+(((-260) (-10 -7 (-15 -1574 ((-618 (-219)) (-618 (-815 (-219))) (-219))) (-15 -1575 ((-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))))) (-15 -1576 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1577 ((-307 (-219)) (-307 (-219)))) (-15 -1578 ((-112) (-618 (-307 (-219))))) (-15 -3248 ((-112) (-618 (-307 (-219))))) (-15 -3248 ((-112) (-307 (-219)))) (-15 -1579 ((-665 (-219)) (-618 (-307 (-219))) (-747))) (-15 -1580 ((-618 (-307 (-219))) (-618 (-307 (-219))))) (-15 -1581 ((-618 (-307 (-219))) (-618 (-307 (-219))))) (-15 -1582 ((-112) (-307 (-219)))) (-15 -3405 ((-618 (-1142)) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -4277 ((-618 (-1142)) (-307 (-219)) (-747))) (-15 -1583 ((-1006) (-1142) (-1006))) (-15 -1672 ((-371) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -1584 ((-618 (-1124)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))))))) (T -260))
+((-1584 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) (-5 *2 (-618 (-1124))) (-5 *1 (-260)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) (-5 *2 (-371)) (-5 *1 (-260)))) (-1583 (*1 *2 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1142)) (-5 *1 (-260)))) (-4277 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-747)) (-5 *2 (-618 (-1142))) (-5 *1 (-260)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) (-5 *2 (-618 (-1142))) (-5 *1 (-260)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1581 (*1 *2 *2) (-12 (-5 *2 (-618 (-307 (-219)))) (-5 *1 (-260)))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-618 (-307 (-219)))) (-5 *1 (-260)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-307 (-219)))) (-5 *4 (-747)) (-5 *2 (-665 (-219))) (-5 *1 (-260)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-618 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-618 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-260)))) (-1576 (*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-260)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (-5 *1 (-260)))) (-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-815 (-219)))) (-5 *4 (-219)) (-5 *2 (-618 *4)) (-5 *1 (-260)))))
+(-10 -7 (-15 -1574 ((-618 (-219)) (-618 (-815 (-219))) (-219))) (-15 -1575 ((-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))))) (-15 -1576 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1577 ((-307 (-219)) (-307 (-219)))) (-15 -1578 ((-112) (-618 (-307 (-219))))) (-15 -3248 ((-112) (-618 (-307 (-219))))) (-15 -3248 ((-112) (-307 (-219)))) (-15 -1579 ((-665 (-219)) (-618 (-307 (-219))) (-747))) (-15 -1580 ((-618 (-307 (-219))) (-618 (-307 (-219))))) (-15 -1581 ((-618 (-307 (-219))) (-618 (-307 (-219))))) (-15 -1582 ((-112) (-307 (-219)))) (-15 -3405 ((-618 (-1142)) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -4277 ((-618 (-1142)) (-307 (-219)) (-747))) (-15 -1583 ((-1006) (-1142) (-1006))) (-15 -1672 ((-371) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -1584 ((-618 (-1124)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))))))
+((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 44)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 26) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-261) (-812)) (T -261))
NIL
(-812)
-((-3833 (((-112) $ $) NIL)) (-3947 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 58) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 54)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 34) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 36)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 58) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 54)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 34) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 36)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-262) (-812)) (T -262))
NIL
(-812)
-((-3833 (((-112) $ $) NIL)) (-3947 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 76) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 73)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 44) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 55)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 76) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 73)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 44) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 55)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-263) (-812)) (T -263))
NIL
(-812)
-((-3833 (((-112) $ $) NIL)) (-3947 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 50)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 31) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 50)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 31) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-264) (-812)) (T -264))
NIL
(-812)
-((-3833 (((-112) $ $) NIL)) (-3947 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 50)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 28) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 50)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 28) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-265) (-812)) (T -265))
NIL
(-812)
-((-3833 (((-112) $ $) NIL)) (-3947 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 73)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 28) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 73)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 28) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-266) (-812)) (T -266))
NIL
(-812)
-((-3833 (((-112) $ $) NIL)) (-3947 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 77)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 25) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-2388 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 77)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 25) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-3375 (((-112) $ $) NIL)))
(((-267) (-812)) (T -267))
NIL
(-812)
-((-3833 (((-112) $ $) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1545 (((-621 (-549)) $) 19)) (-3068 (((-747) $) 17)) (-3845 (((-834) $) 23) (($ (-621 (-549))) 15)) (-1494 (($ (-747)) 20)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 9)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 11)))
-(((-268) (-13 (-823) (-10 -8 (-15 -3845 ($ (-621 (-549)))) (-15 -3068 ((-747) $)) (-15 -1545 ((-621 (-549)) $)) (-15 -1494 ($ (-747)))))) (T -268))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-268)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-268)))) (-1545 (*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-268)))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-268)))))
-(-13 (-823) (-10 -8 (-15 -3845 ($ (-621 (-549)))) (-15 -3068 ((-747) $)) (-15 -1545 ((-621 (-549)) $)) (-15 -1494 ($ (-747)))))
-((-1663 ((|#2| |#2|) 77)) (-1511 ((|#2| |#2|) 65)) (-3252 (((-3 |#2| "failed") |#2| (-621 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-1639 ((|#2| |#2|) 75)) (-1485 ((|#2| |#2|) 63)) (-1685 ((|#2| |#2|) 79)) (-1538 ((|#2| |#2|) 67)) (-1425 ((|#2|) 46)) (-2015 (((-114) (-114)) 95)) (-3631 ((|#2| |#2|) 61)) (-2052 (((-112) |#2|) 134)) (-4169 ((|#2| |#2|) 181)) (-2325 ((|#2| |#2|) 157)) (-4079 ((|#2|) 59)) (-1422 ((|#2|) 58)) (-4045 ((|#2| |#2|) 177)) (-3175 ((|#2| |#2|) 153)) (-2617 ((|#2| |#2|) 185)) (-1268 ((|#2| |#2|) 161)) (-1603 ((|#2| |#2|) 149)) (-2755 ((|#2| |#2|) 151)) (-2378 ((|#2| |#2|) 187)) (-3519 ((|#2| |#2|) 163)) (-4266 ((|#2| |#2|) 183)) (-3233 ((|#2| |#2|) 159)) (-2819 ((|#2| |#2|) 179)) (-1502 ((|#2| |#2|) 155)) (-2867 ((|#2| |#2|) 193)) (-3072 ((|#2| |#2|) 169)) (-3383 ((|#2| |#2|) 189)) (-1392 ((|#2| |#2|) 165)) (-2722 ((|#2| |#2|) 197)) (-3737 ((|#2| |#2|) 173)) (-3082 ((|#2| |#2|) 199)) (-3473 ((|#2| |#2|) 175)) (-1566 ((|#2| |#2|) 195)) (-2863 ((|#2| |#2|) 171)) (-3604 ((|#2| |#2|) 191)) (-3457 ((|#2| |#2|) 167)) (-2718 ((|#2| |#2|) 62)) (-1697 ((|#2| |#2|) 80)) (-1551 ((|#2| |#2|) 68)) (-1674 ((|#2| |#2|) 78)) (-1525 ((|#2| |#2|) 66)) (-1649 ((|#2| |#2|) 76)) (-1500 ((|#2| |#2|) 64)) (-3234 (((-112) (-114)) 93)) (-1732 ((|#2| |#2|) 83)) (-1585 ((|#2| |#2|) 71)) (-1708 ((|#2| |#2|) 81)) (-1562 ((|#2| |#2|) 69)) (-1757 ((|#2| |#2|) 85)) (-1612 ((|#2| |#2|) 73)) (-1933 ((|#2| |#2|) 86)) (-1625 ((|#2| |#2|) 74)) (-1744 ((|#2| |#2|) 84)) (-1599 ((|#2| |#2|) 72)) (-1721 ((|#2| |#2|) 82)) (-1575 ((|#2| |#2|) 70)))
-(((-269 |#1| |#2|) (-10 -7 (-15 -2718 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -1500 (|#2| |#2|)) (-15 -1511 (|#2| |#2|)) (-15 -1525 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1585 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1625 (|#2| |#2|)) (-15 -1639 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1708 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -1732 (|#2| |#2|)) (-15 -1744 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -1933 (|#2| |#2|)) (-15 -1425 (|#2|)) (-15 -3234 ((-112) (-114))) (-15 -2015 ((-114) (-114))) (-15 -1422 (|#2|)) (-15 -4079 (|#2|)) (-15 -2755 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -3175 (|#2| |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -2325 (|#2| |#2|)) (-15 -3233 (|#2| |#2|)) (-15 -1268 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -1392 (|#2| |#2|)) (-15 -3457 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)) (-15 -2863 (|#2| |#2|)) (-15 -3737 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -4045 (|#2| |#2|)) (-15 -2819 (|#2| |#2|)) (-15 -4169 (|#2| |#2|)) (-15 -4266 (|#2| |#2|)) (-15 -2617 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)) (-15 -3383 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -2867 (|#2| |#2|)) (-15 -1566 (|#2| |#2|)) (-15 -2722 (|#2| |#2|)) (-15 -3082 (|#2| |#2|)) (-15 -3252 ((-3 |#2| "failed") |#2| (-621 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2052 ((-112) |#2|))) (-13 (-823) (-541)) (-13 (-423 |#1|) (-973))) (T -269))
-((-2052 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-423 *4) (-973))))) (-3252 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-621 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-423 *4) (-973))) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-269 *4 *2)))) (-3082 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2722 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1566 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2867 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3383 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2617 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-4266 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-4169 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2819 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3737 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2863 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3072 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3457 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1392 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1268 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3233 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3175 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2755 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-4079 (*1 *2) (-12 (-4 *2 (-13 (-423 *3) (-973))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-823) (-541))))) (-1422 (*1 *2) (-12 (-4 *2 (-13 (-423 *3) (-973))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-823) (-541))))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *4)) (-4 *4 (-13 (-423 *3) (-973))))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-423 *4) (-973))))) (-1425 (*1 *2) (-12 (-4 *2 (-13 (-423 *3) (-973))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-823) (-541))))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1708 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1663 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1639 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1625 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1585 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1525 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1511 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1500 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2718 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))))
-(-10 -7 (-15 -2718 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -1500 (|#2| |#2|)) (-15 -1511 (|#2| |#2|)) (-15 -1525 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1585 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1625 (|#2| |#2|)) (-15 -1639 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1708 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -1732 (|#2| |#2|)) (-15 -1744 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -1933 (|#2| |#2|)) (-15 -1425 (|#2|)) (-15 -3234 ((-112) (-114))) (-15 -2015 ((-114) (-114))) (-15 -1422 (|#2|)) (-15 -4079 (|#2|)) (-15 -2755 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -3175 (|#2| |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -2325 (|#2| |#2|)) (-15 -3233 (|#2| |#2|)) (-15 -1268 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -1392 (|#2| |#2|)) (-15 -3457 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)) (-15 -2863 (|#2| |#2|)) (-15 -3737 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -4045 (|#2| |#2|)) (-15 -2819 (|#2| |#2|)) (-15 -4169 (|#2| |#2|)) (-15 -4266 (|#2| |#2|)) (-15 -2617 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)) (-15 -3383 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -2867 (|#2| |#2|)) (-15 -1566 (|#2| |#2|)) (-15 -2722 (|#2| |#2|)) (-15 -3082 (|#2| |#2|)) (-15 -3252 ((-3 |#2| "failed") |#2| (-621 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2052 ((-112) |#2|)))
-((-2180 (((-3 |#2| "failed") (-621 (-592 |#2|)) |#2| (-1142)) 135)) (-1908 ((|#2| (-400 (-549)) |#2|) 51)) (-1406 ((|#2| |#2| (-592 |#2|)) 128)) (-1303 (((-2 (|:| |func| |#2|) (|:| |kers| (-621 (-592 |#2|))) (|:| |vals| (-621 |#2|))) |#2| (-1142)) 127)) (-2255 ((|#2| |#2| (-1142)) 20) ((|#2| |#2|) 23)) (-2758 ((|#2| |#2| (-1142)) 141) ((|#2| |#2|) 139)))
-(((-270 |#1| |#2|) (-10 -7 (-15 -2758 (|#2| |#2|)) (-15 -2758 (|#2| |#2| (-1142))) (-15 -1303 ((-2 (|:| |func| |#2|) (|:| |kers| (-621 (-592 |#2|))) (|:| |vals| (-621 |#2|))) |#2| (-1142))) (-15 -2255 (|#2| |#2|)) (-15 -2255 (|#2| |#2| (-1142))) (-15 -2180 ((-3 |#2| "failed") (-621 (-592 |#2|)) |#2| (-1142))) (-15 -1406 (|#2| |#2| (-592 |#2|))) (-15 -1908 (|#2| (-400 (-549)) |#2|))) (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1164) (-423 |#1|))) (T -270))
-((-1908 (*1 *2 *3 *2) (-12 (-5 *3 (-400 (-549))) (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4))))) (-1406 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4))) (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *4 *2)))) (-2180 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-621 (-592 *2))) (-5 *4 (-1142)) (-4 *2 (-13 (-27) (-1164) (-423 *5))) (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *5 *2)))) (-2255 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3))))) (-1303 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-621 (-592 *3))) (|:| |vals| (-621 *3)))) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))))) (-2758 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4))))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3))))))
-(-10 -7 (-15 -2758 (|#2| |#2|)) (-15 -2758 (|#2| |#2| (-1142))) (-15 -1303 ((-2 (|:| |func| |#2|) (|:| |kers| (-621 (-592 |#2|))) (|:| |vals| (-621 |#2|))) |#2| (-1142))) (-15 -2255 (|#2| |#2|)) (-15 -2255 (|#2| |#2| (-1142))) (-15 -2180 ((-3 |#2| "failed") (-621 (-592 |#2|)) |#2| (-1142))) (-15 -1406 (|#2| |#2| (-592 |#2|))) (-15 -1908 (|#2| (-400 (-549)) |#2|)))
-((-2315 (((-3 |#3| "failed") |#3|) 110)) (-1663 ((|#3| |#3|) 131)) (-1643 (((-3 |#3| "failed") |#3|) 82)) (-1511 ((|#3| |#3|) 121)) (-1999 (((-3 |#3| "failed") |#3|) 58)) (-1639 ((|#3| |#3|) 129)) (-2585 (((-3 |#3| "failed") |#3|) 46)) (-1485 ((|#3| |#3|) 119)) (-3241 (((-3 |#3| "failed") |#3|) 112)) (-1685 ((|#3| |#3|) 133)) (-3017 (((-3 |#3| "failed") |#3|) 84)) (-1538 ((|#3| |#3|) 123)) (-3835 (((-3 |#3| "failed") |#3| (-747)) 36)) (-1424 (((-3 |#3| "failed") |#3|) 74)) (-3631 ((|#3| |#3|) 118)) (-1308 (((-3 |#3| "failed") |#3|) 44)) (-2718 ((|#3| |#3|) 117)) (-4015 (((-3 |#3| "failed") |#3|) 113)) (-1697 ((|#3| |#3|) 134)) (-1558 (((-3 |#3| "failed") |#3|) 85)) (-1551 ((|#3| |#3|) 124)) (-1301 (((-3 |#3| "failed") |#3|) 111)) (-1674 ((|#3| |#3|) 132)) (-2657 (((-3 |#3| "failed") |#3|) 83)) (-1525 ((|#3| |#3|) 122)) (-3165 (((-3 |#3| "failed") |#3|) 60)) (-1649 ((|#3| |#3|) 130)) (-2712 (((-3 |#3| "failed") |#3|) 48)) (-1500 ((|#3| |#3|) 120)) (-1990 (((-3 |#3| "failed") |#3|) 66)) (-1732 ((|#3| |#3|) 137)) (-2949 (((-3 |#3| "failed") |#3|) 104)) (-1585 ((|#3| |#3|) 142)) (-4274 (((-3 |#3| "failed") |#3|) 62)) (-1708 ((|#3| |#3|) 135)) (-2433 (((-3 |#3| "failed") |#3|) 50)) (-1562 ((|#3| |#3|) 125)) (-2920 (((-3 |#3| "failed") |#3|) 70)) (-1757 ((|#3| |#3|) 139)) (-1366 (((-3 |#3| "failed") |#3|) 54)) (-1612 ((|#3| |#3|) 127)) (-1266 (((-3 |#3| "failed") |#3|) 72)) (-1933 ((|#3| |#3|) 140)) (-2318 (((-3 |#3| "failed") |#3|) 56)) (-1625 ((|#3| |#3|) 128)) (-1644 (((-3 |#3| "failed") |#3|) 68)) (-1744 ((|#3| |#3|) 138)) (-2147 (((-3 |#3| "failed") |#3|) 107)) (-1599 ((|#3| |#3|) 143)) (-3024 (((-3 |#3| "failed") |#3|) 64)) (-1721 ((|#3| |#3|) 136)) (-3942 (((-3 |#3| "failed") |#3|) 52)) (-1575 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-400 (-549))) 40 (|has| |#1| (-356)))))
-(((-271 |#1| |#2| |#3|) (-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-549)))) |%noBranch|) (-15 -2718 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -1485 (|#3| |#3|)) (-15 -1500 (|#3| |#3|)) (-15 -1511 (|#3| |#3|)) (-15 -1525 (|#3| |#3|)) (-15 -1538 (|#3| |#3|)) (-15 -1551 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1585 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1625 (|#3| |#3|)) (-15 -1639 (|#3| |#3|)) (-15 -1649 (|#3| |#3|)) (-15 -1663 (|#3| |#3|)) (-15 -1674 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -1708 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1933 (|#3| |#3|)))) (-38 (-400 (-549))) (-1216 |#1|) (-1187 |#1| |#2|)) (T -271))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-549))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1216 *4)) (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1187 *4 *5)))) (-2718 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1500 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1511 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1525 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1585 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1625 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1639 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1663 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1708 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4)))))
-(-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-549)))) |%noBranch|) (-15 -2718 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -1485 (|#3| |#3|)) (-15 -1500 (|#3| |#3|)) (-15 -1511 (|#3| |#3|)) (-15 -1525 (|#3| |#3|)) (-15 -1538 (|#3| |#3|)) (-15 -1551 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1585 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1625 (|#3| |#3|)) (-15 -1639 (|#3| |#3|)) (-15 -1649 (|#3| |#3|)) (-15 -1663 (|#3| |#3|)) (-15 -1674 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -1708 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1933 (|#3| |#3|))))
-((-2315 (((-3 |#3| "failed") |#3|) 66)) (-1663 ((|#3| |#3|) 129)) (-1643 (((-3 |#3| "failed") |#3|) 50)) (-1511 ((|#3| |#3|) 117)) (-1999 (((-3 |#3| "failed") |#3|) 62)) (-1639 ((|#3| |#3|) 127)) (-2585 (((-3 |#3| "failed") |#3|) 46)) (-1485 ((|#3| |#3|) 115)) (-3241 (((-3 |#3| "failed") |#3|) 70)) (-1685 ((|#3| |#3|) 131)) (-3017 (((-3 |#3| "failed") |#3|) 54)) (-1538 ((|#3| |#3|) 119)) (-3835 (((-3 |#3| "failed") |#3| (-747)) 35)) (-1424 (((-3 |#3| "failed") |#3|) 44)) (-3631 ((|#3| |#3|) 104)) (-1308 (((-3 |#3| "failed") |#3|) 42)) (-2718 ((|#3| |#3|) 114)) (-4015 (((-3 |#3| "failed") |#3|) 72)) (-1697 ((|#3| |#3|) 132)) (-1558 (((-3 |#3| "failed") |#3|) 56)) (-1551 ((|#3| |#3|) 120)) (-1301 (((-3 |#3| "failed") |#3|) 68)) (-1674 ((|#3| |#3|) 130)) (-2657 (((-3 |#3| "failed") |#3|) 52)) (-1525 ((|#3| |#3|) 118)) (-3165 (((-3 |#3| "failed") |#3|) 64)) (-1649 ((|#3| |#3|) 128)) (-2712 (((-3 |#3| "failed") |#3|) 48)) (-1500 ((|#3| |#3|) 116)) (-1990 (((-3 |#3| "failed") |#3|) 74)) (-1732 ((|#3| |#3|) 135)) (-2949 (((-3 |#3| "failed") |#3|) 58)) (-1585 ((|#3| |#3|) 123)) (-4274 (((-3 |#3| "failed") |#3|) 105)) (-1708 ((|#3| |#3|) 133)) (-2433 (((-3 |#3| "failed") |#3|) 94)) (-1562 ((|#3| |#3|) 121)) (-2920 (((-3 |#3| "failed") |#3|) 109)) (-1757 ((|#3| |#3|) 137)) (-1366 (((-3 |#3| "failed") |#3|) 101)) (-1612 ((|#3| |#3|) 125)) (-1266 (((-3 |#3| "failed") |#3|) 110)) (-1933 ((|#3| |#3|) 138)) (-2318 (((-3 |#3| "failed") |#3|) 103)) (-1625 ((|#3| |#3|) 126)) (-1644 (((-3 |#3| "failed") |#3|) 76)) (-1744 ((|#3| |#3|) 136)) (-2147 (((-3 |#3| "failed") |#3|) 60)) (-1599 ((|#3| |#3|) 124)) (-3024 (((-3 |#3| "failed") |#3|) 106)) (-1721 ((|#3| |#3|) 134)) (-3942 (((-3 |#3| "failed") |#3|) 97)) (-1575 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-400 (-549))) 40 (|has| |#1| (-356)))))
-(((-272 |#1| |#2| |#3| |#4|) (-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-549)))) |%noBranch|) (-15 -2718 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -1485 (|#3| |#3|)) (-15 -1500 (|#3| |#3|)) (-15 -1511 (|#3| |#3|)) (-15 -1525 (|#3| |#3|)) (-15 -1538 (|#3| |#3|)) (-15 -1551 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1585 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1625 (|#3| |#3|)) (-15 -1639 (|#3| |#3|)) (-15 -1649 (|#3| |#3|)) (-15 -1663 (|#3| |#3|)) (-15 -1674 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -1708 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1933 (|#3| |#3|)))) (-38 (-400 (-549))) (-1185 |#1|) (-1208 |#1| |#2|) (-954 |#2|)) (T -272))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-549))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1185 *4)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1208 *4 *5)) (-4 *6 (-954 *5)))) (-2718 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1500 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1511 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1525 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1585 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1625 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1639 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1663 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1708 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4)))))
-(-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-549)))) |%noBranch|) (-15 -2718 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -1485 (|#3| |#3|)) (-15 -1500 (|#3| |#3|)) (-15 -1511 (|#3| |#3|)) (-15 -1525 (|#3| |#3|)) (-15 -1538 (|#3| |#3|)) (-15 -1551 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1585 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1625 (|#3| |#3|)) (-15 -1639 (|#3| |#3|)) (-15 -1649 (|#3| |#3|)) (-15 -1663 (|#3| |#3|)) (-15 -1674 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -1708 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1933 (|#3| |#3|))))
-((-2095 (((-112) $) 19)) (-3105 (((-181) $) 7)) (-3226 (((-3 (-1142) "failed") $) 14)) (-1854 (((-3 (-621 $) "failed") $) NIL)) (-2368 (((-3 (-1142) "failed") $) 21)) (-1909 (((-3 (-1070) "failed") $) 17)) (-3983 (((-112) $) 15)) (-3845 (((-834) $) NIL)) (-2440 (((-112) $) 9)))
-(((-273) (-13 (-593 (-834)) (-10 -8 (-15 -3105 ((-181) $)) (-15 -3983 ((-112) $)) (-15 -1909 ((-3 (-1070) "failed") $)) (-15 -2095 ((-112) $)) (-15 -2368 ((-3 (-1142) "failed") $)) (-15 -2440 ((-112) $)) (-15 -3226 ((-3 (-1142) "failed") $)) (-15 -1854 ((-3 (-621 $) "failed") $))))) (T -273))
-((-3105 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-1909 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-273)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-2368 (*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-273)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-3226 (*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-273)))) (-1854 (*1 *2 *1) (|partial| -12 (-5 *2 (-621 (-273))) (-5 *1 (-273)))))
-(-13 (-593 (-834)) (-10 -8 (-15 -3105 ((-181) $)) (-15 -3983 ((-112) $)) (-15 -1909 ((-3 (-1070) "failed") $)) (-15 -2095 ((-112) $)) (-15 -2368 ((-3 (-1142) "failed") $)) (-15 -2440 ((-112) $)) (-15 -3226 ((-3 (-1142) "failed") $)) (-15 -1854 ((-3 (-621 $) "failed") $))))
-((-1488 (($ (-1 (-112) |#2|) $) 24)) (-3675 (($ $) 36)) (-4204 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3812 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3019 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2614 (($ |#2| $ (-549)) 20) (($ $ $ (-549)) 22)) (-2166 (($ $ (-549)) 11) (($ $ (-1192 (-549))) 14)) (-3091 (($ $ |#2|) 30) (($ $ $) NIL)) (-1951 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-621 $)) NIL)))
-(((-274 |#1| |#2|) (-10 -8 (-15 -3019 (|#1| |#1| |#1|)) (-15 -4204 (|#1| |#2| |#1|)) (-15 -3019 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4204 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3091 (|#1| |#1| |#1|)) (-15 -3091 (|#1| |#1| |#2|)) (-15 -2614 (|#1| |#1| |#1| (-549))) (-15 -2614 (|#1| |#2| |#1| (-549))) (-15 -2166 (|#1| |#1| (-1192 (-549)))) (-15 -2166 (|#1| |#1| (-549))) (-15 -1951 (|#1| (-621 |#1|))) (-15 -1951 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -3812 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3812 (|#1| |#2| |#1|)) (-15 -3675 (|#1| |#1|))) (-275 |#2|) (-1179)) (T -274))
-NIL
-(-10 -8 (-15 -3019 (|#1| |#1| |#1|)) (-15 -4204 (|#1| |#2| |#1|)) (-15 -3019 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4204 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3091 (|#1| |#1| |#1|)) (-15 -3091 (|#1| |#1| |#2|)) (-15 -2614 (|#1| |#1| |#1| (-549))) (-15 -2614 (|#1| |#2| |#1| (-549))) (-15 -2166 (|#1| |#1| (-1192 (-549)))) (-15 -2166 (|#1| |#1| (-549))) (-15 -1951 (|#1| (-621 |#1|))) (-15 -1951 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -3812 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3812 (|#1| |#2| |#1|)) (-15 -3675 (|#1| |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-2932 (((-1230) $ (-549) (-549)) 40 (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) 8)) (-2253 ((|#1| $ (-549) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) 58 (|has| $ (-6 -4337)))) (-3069 (($ (-1 (-112) |#1|) $) 85)) (-1488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-2992 (($ $) 83 (|has| |#1| (-1066)))) (-3675 (($ $) 78 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-4204 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1066)))) (-3812 (($ |#1| $) 77 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) 51)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3743 (($ (-747) |#1|) 69)) (-4202 (((-112) $ (-747)) 9)) (-3485 (((-549) $) 43 (|has| (-549) (-823)))) (-3019 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 44 (|has| (-549) (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-1709 (($ |#1| $ (-549)) 88) (($ $ $ (-549)) 87)) (-2614 (($ |#1| $ (-549)) 60) (($ $ $ (-549)) 59)) (-3927 (((-621 (-549)) $) 46)) (-1286 (((-112) (-549) $) 47)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-3645 ((|#1| $) 42 (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3158 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) 48)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ (-549) |#1|) 50) ((|#1| $ (-549)) 49) (($ $ (-1192 (-549))) 63)) (-1876 (($ $ (-549)) 91) (($ $ (-1192 (-549))) 90)) (-2166 (($ $ (-549)) 62) (($ $ (-1192 (-549))) 61)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-2844 (((-525) $) 79 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 70)) (-3091 (($ $ |#1|) 93) (($ $ $) 92)) (-1951 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-275 |#1|) (-138) (-1179)) (T -275))
-((-3091 (*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1179)))) (-3091 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1179)))) (-1876 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-275 *3)) (-4 *3 (-1179)))) (-1876 (*1 *1 *1 *2) (-12 (-5 *2 (-1192 (-549))) (-4 *1 (-275 *3)) (-4 *3 (-1179)))) (-4204 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1179)))) (-1709 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-275 *2)) (-4 *2 (-1179)))) (-1709 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-275 *3)) (-4 *3 (-1179)))) (-3019 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1179)))) (-3069 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1179)))) (-4204 (*1 *1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1179)) (-4 *2 (-1066)))) (-2992 (*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1179)) (-4 *2 (-1066)))) (-3019 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1179)) (-4 *2 (-823)))))
-(-13 (-627 |t#1|) (-10 -8 (-6 -4337) (-15 -3091 ($ $ |t#1|)) (-15 -3091 ($ $ $)) (-15 -1876 ($ $ (-549))) (-15 -1876 ($ $ (-1192 (-549)))) (-15 -4204 ($ (-1 (-112) |t#1|) $)) (-15 -1709 ($ |t#1| $ (-549))) (-15 -1709 ($ $ $ (-549))) (-15 -3019 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3069 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1066)) (PROGN (-15 -4204 ($ |t#1| $)) (-15 -2992 ($ $))) |%noBranch|) (IF (|has| |t#1| (-823)) (-15 -3019 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-627 |#1|) . T) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
+((-2887 (((-112) $ $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1586 (((-618 (-535)) $) 19)) (-4290 (((-747) $) 17)) (-4300 (((-835) $) 23) (($ (-618 (-535))) 15)) (-1585 (($ (-747)) 20)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 9)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 11)))
+(((-268) (-13 (-823) (-10 -8 (-15 -4300 ($ (-618 (-535)))) (-15 -4290 ((-747) $)) (-15 -1586 ((-618 (-535)) $)) (-15 -1585 ($ (-747)))))) (T -268))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-268)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-268)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-268)))) (-1585 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-268)))))
+(-13 (-823) (-10 -8 (-15 -4300 ($ (-618 (-535)))) (-15 -4290 ((-747) $)) (-15 -1586 ((-618 (-535)) $)) (-15 -1585 ($ (-747)))))
+((-3829 ((|#2| |#2|) 77)) (-3985 ((|#2| |#2|) 65)) (-1615 (((-3 |#2| "failed") |#2| (-618 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3827 ((|#2| |#2|) 75)) (-3984 ((|#2| |#2|) 63)) (-3831 ((|#2| |#2|) 79)) (-3983 ((|#2| |#2|) 67)) (-3973 ((|#2|) 46)) (-3368 (((-113) (-113)) 95)) (-4285 ((|#2| |#2|) 61)) (-1616 (((-112) |#2|) 134)) (-1605 ((|#2| |#2|) 181)) (-1593 ((|#2| |#2|) 157)) (-1588 ((|#2|) 59)) (-1587 ((|#2|) 58)) (-1603 ((|#2| |#2|) 177)) (-1591 ((|#2| |#2|) 153)) (-1607 ((|#2| |#2|) 185)) (-1595 ((|#2| |#2|) 161)) (-1590 ((|#2| |#2|) 149)) (-1589 ((|#2| |#2|) 151)) (-1608 ((|#2| |#2|) 187)) (-1596 ((|#2| |#2|) 163)) (-1606 ((|#2| |#2|) 183)) (-1594 ((|#2| |#2|) 159)) (-1604 ((|#2| |#2|) 179)) (-1592 ((|#2| |#2|) 155)) (-1611 ((|#2| |#2|) 193)) (-1599 ((|#2| |#2|) 169)) (-1609 ((|#2| |#2|) 189)) (-1597 ((|#2| |#2|) 165)) (-1613 ((|#2| |#2|) 197)) (-1601 ((|#2| |#2|) 173)) (-1614 ((|#2| |#2|) 199)) (-1602 ((|#2| |#2|) 175)) (-1612 ((|#2| |#2|) 195)) (-1600 ((|#2| |#2|) 171)) (-1610 ((|#2| |#2|) 191)) (-1598 ((|#2| |#2|) 167)) (-4286 ((|#2| |#2|) 62)) (-3832 ((|#2| |#2|) 80)) (-3982 ((|#2| |#2|) 68)) (-3830 ((|#2| |#2|) 78)) (-3981 ((|#2| |#2|) 66)) (-3828 ((|#2| |#2|) 76)) (-3980 ((|#2| |#2|) 64)) (-2329 (((-112) (-113)) 93)) (-3835 ((|#2| |#2|) 83)) (-3823 ((|#2| |#2|) 71)) (-3833 ((|#2| |#2|) 81)) (-3821 ((|#2| |#2|) 69)) (-3837 ((|#2| |#2|) 85)) (-3825 ((|#2| |#2|) 73)) (-3838 ((|#2| |#2|) 86)) (-3826 ((|#2| |#2|) 74)) (-3836 ((|#2| |#2|) 84)) (-3824 ((|#2| |#2|) 72)) (-3834 ((|#2| |#2|) 82)) (-3822 ((|#2| |#2|) 70)))
+(((-269 |#1| |#2|) (-10 -7 (-15 -4286 (|#2| |#2|)) (-15 -4285 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3980 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -3821 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3823 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3830 (|#2| |#2|)) (-15 -3831 (|#2| |#2|)) (-15 -3832 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3973 (|#2|)) (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -1587 (|#2|)) (-15 -1588 (|#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -1615 ((-3 |#2| "failed") |#2| (-618 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1616 ((-112) |#2|))) (-13 (-823) (-542)) (-13 (-414 |#1|) (-973))) (T -269))
+((-1616 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-414 *4) (-973))))) (-1615 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-618 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-414 *4) (-973))) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-269 *4 *2)))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1613 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1611 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1604 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1602 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1595 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-1588 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-973))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-823) (-542))))) (-1587 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-973))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-823) (-542))))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *4)) (-4 *4 (-13 (-414 *3) (-973))))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-414 *4) (-973))))) (-3973 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-973))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-823) (-542))))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3832 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3831 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3830 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3823 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3821 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3980 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-4285 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))) (-4286 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-973))))))
+(-10 -7 (-15 -4286 (|#2| |#2|)) (-15 -4285 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3980 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -3821 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3823 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3830 (|#2| |#2|)) (-15 -3831 (|#2| |#2|)) (-15 -3832 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3973 (|#2|)) (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -1587 (|#2|)) (-15 -1588 (|#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -1615 ((-3 |#2| "failed") |#2| (-618 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1616 ((-112) |#2|)))
+((-1619 (((-3 |#2| "failed") (-618 (-591 |#2|)) |#2| (-1142)) 135)) (-1621 ((|#2| (-400 (-535)) |#2|) 51)) (-1620 ((|#2| |#2| (-591 |#2|)) 128)) (-1617 (((-2 (|:| |func| |#2|) (|:| |kers| (-618 (-591 |#2|))) (|:| |vals| (-618 |#2|))) |#2| (-1142)) 127)) (-1618 ((|#2| |#2| (-1142)) 20) ((|#2| |#2|) 23)) (-2683 ((|#2| |#2| (-1142)) 141) ((|#2| |#2|) 139)))
+(((-270 |#1| |#2|) (-10 -7 (-15 -2683 (|#2| |#2|)) (-15 -2683 (|#2| |#2| (-1142))) (-15 -1617 ((-2 (|:| |func| |#2|) (|:| |kers| (-618 (-591 |#2|))) (|:| |vals| (-618 |#2|))) |#2| (-1142))) (-15 -1618 (|#2| |#2|)) (-15 -1618 (|#2| |#2| (-1142))) (-15 -1619 ((-3 |#2| "failed") (-618 (-591 |#2|)) |#2| (-1142))) (-15 -1620 (|#2| |#2| (-591 |#2|))) (-15 -1621 (|#2| (-400 (-535)) |#2|))) (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -270))
+((-1621 (*1 *2 *3 *2) (-12 (-5 *3 (-400 (-535))) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) (-1620 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *4 *2)))) (-1619 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-618 (-591 *2))) (-5 *4 (-1142)) (-4 *2 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *5 *2)))) (-1618 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) (-1617 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-618 (-591 *3))) (|:| |vals| (-618 *3)))) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-2683 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) (-2683 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))))
+(-10 -7 (-15 -2683 (|#2| |#2|)) (-15 -2683 (|#2| |#2| (-1142))) (-15 -1617 ((-2 (|:| |func| |#2|) (|:| |kers| (-618 (-591 |#2|))) (|:| |vals| (-618 |#2|))) |#2| (-1142))) (-15 -1618 (|#2| |#2|)) (-15 -1618 (|#2| |#2| (-1142))) (-15 -1619 ((-3 |#2| "failed") (-618 (-591 |#2|)) |#2| (-1142))) (-15 -1620 (|#2| |#2| (-591 |#2|))) (-15 -1621 (|#2| (-400 (-535)) |#2|)))
+((-3296 (((-3 |#3| #1="failed") |#3|) 110)) (-3829 ((|#3| |#3|) 131)) (-3284 (((-3 |#3| #1#) |#3|) 82)) (-3985 ((|#3| |#3|) 121)) (-3294 (((-3 |#3| #1#) |#3|) 58)) (-3827 ((|#3| |#3|) 129)) (-3282 (((-3 |#3| #1#) |#3|) 46)) (-3984 ((|#3| |#3|) 119)) (-3298 (((-3 |#3| #1#) |#3|) 112)) (-3831 ((|#3| |#3|) 133)) (-3286 (((-3 |#3| #1#) |#3|) 84)) (-3983 ((|#3| |#3|) 123)) (-3279 (((-3 |#3| #1#) |#3| (-747)) 36)) (-3281 (((-3 |#3| #1#) |#3|) 74)) (-4285 ((|#3| |#3|) 118)) (-3280 (((-3 |#3| #1#) |#3|) 44)) (-4286 ((|#3| |#3|) 117)) (-3299 (((-3 |#3| #1#) |#3|) 113)) (-3832 ((|#3| |#3|) 134)) (-3287 (((-3 |#3| #1#) |#3|) 85)) (-3982 ((|#3| |#3|) 124)) (-3297 (((-3 |#3| #1#) |#3|) 111)) (-3830 ((|#3| |#3|) 132)) (-3285 (((-3 |#3| #1#) |#3|) 83)) (-3981 ((|#3| |#3|) 122)) (-3295 (((-3 |#3| #1#) |#3|) 60)) (-3828 ((|#3| |#3|) 130)) (-3283 (((-3 |#3| #1#) |#3|) 48)) (-3980 ((|#3| |#3|) 120)) (-3302 (((-3 |#3| #1#) |#3|) 66)) (-3835 ((|#3| |#3|) 137)) (-3290 (((-3 |#3| #1#) |#3|) 104)) (-3823 ((|#3| |#3|) 142)) (-3300 (((-3 |#3| #1#) |#3|) 62)) (-3833 ((|#3| |#3|) 135)) (-3288 (((-3 |#3| #1#) |#3|) 50)) (-3821 ((|#3| |#3|) 125)) (-3304 (((-3 |#3| #1#) |#3|) 70)) (-3837 ((|#3| |#3|) 139)) (-3292 (((-3 |#3| #1#) |#3|) 54)) (-3825 ((|#3| |#3|) 127)) (-3305 (((-3 |#3| #1#) |#3|) 72)) (-3838 ((|#3| |#3|) 140)) (-3293 (((-3 |#3| #1#) |#3|) 56)) (-3826 ((|#3| |#3|) 128)) (-3303 (((-3 |#3| #1#) |#3|) 68)) (-3836 ((|#3| |#3|) 138)) (-3291 (((-3 |#3| #1#) |#3|) 107)) (-3824 ((|#3| |#3|) 143)) (-3301 (((-3 |#3| #1#) |#3|) 64)) (-3834 ((|#3| |#3|) 136)) (-3289 (((-3 |#3| #1#) |#3|) 52)) (-3822 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-400 (-535))) 40 (|has| |#1| (-356)))))
+(((-271 |#1| |#2| |#3|) (-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-535)))) |%noBranch|) (-15 -4286 (|#3| |#3|)) (-15 -4285 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3980 (|#3| |#3|)) (-15 -3985 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3983 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3821 (|#3| |#3|)) (-15 -3822 (|#3| |#3|)) (-15 -3823 (|#3| |#3|)) (-15 -3824 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3829 (|#3| |#3|)) (-15 -3830 (|#3| |#3|)) (-15 -3831 (|#3| |#3|)) (-15 -3832 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)))) (-38 (-400 (-535))) (-1217 |#1|) (-1188 |#1| |#2|)) (T -271))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-535))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1217 *4)) (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1188 *4 *5)))) (-4286 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-4285 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3980 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3821 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3823 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3830 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3831 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3832 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))))
+(-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-535)))) |%noBranch|) (-15 -4286 (|#3| |#3|)) (-15 -4285 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3980 (|#3| |#3|)) (-15 -3985 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3983 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3821 (|#3| |#3|)) (-15 -3822 (|#3| |#3|)) (-15 -3823 (|#3| |#3|)) (-15 -3824 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3829 (|#3| |#3|)) (-15 -3830 (|#3| |#3|)) (-15 -3831 (|#3| |#3|)) (-15 -3832 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|))))
+((-3296 (((-3 |#3| #1="failed") |#3|) 66)) (-3829 ((|#3| |#3|) 129)) (-3284 (((-3 |#3| #1#) |#3|) 50)) (-3985 ((|#3| |#3|) 117)) (-3294 (((-3 |#3| #1#) |#3|) 62)) (-3827 ((|#3| |#3|) 127)) (-3282 (((-3 |#3| #1#) |#3|) 46)) (-3984 ((|#3| |#3|) 115)) (-3298 (((-3 |#3| #1#) |#3|) 70)) (-3831 ((|#3| |#3|) 131)) (-3286 (((-3 |#3| #1#) |#3|) 54)) (-3983 ((|#3| |#3|) 119)) (-3279 (((-3 |#3| #1#) |#3| (-747)) 35)) (-3281 (((-3 |#3| #1#) |#3|) 44)) (-4285 ((|#3| |#3|) 104)) (-3280 (((-3 |#3| #1#) |#3|) 42)) (-4286 ((|#3| |#3|) 114)) (-3299 (((-3 |#3| #1#) |#3|) 72)) (-3832 ((|#3| |#3|) 132)) (-3287 (((-3 |#3| #1#) |#3|) 56)) (-3982 ((|#3| |#3|) 120)) (-3297 (((-3 |#3| #1#) |#3|) 68)) (-3830 ((|#3| |#3|) 130)) (-3285 (((-3 |#3| #1#) |#3|) 52)) (-3981 ((|#3| |#3|) 118)) (-3295 (((-3 |#3| #1#) |#3|) 64)) (-3828 ((|#3| |#3|) 128)) (-3283 (((-3 |#3| #1#) |#3|) 48)) (-3980 ((|#3| |#3|) 116)) (-3302 (((-3 |#3| #1#) |#3|) 74)) (-3835 ((|#3| |#3|) 135)) (-3290 (((-3 |#3| #1#) |#3|) 58)) (-3823 ((|#3| |#3|) 123)) (-3300 (((-3 |#3| #1#) |#3|) 105)) (-3833 ((|#3| |#3|) 133)) (-3288 (((-3 |#3| #1#) |#3|) 94)) (-3821 ((|#3| |#3|) 121)) (-3304 (((-3 |#3| #1#) |#3|) 109)) (-3837 ((|#3| |#3|) 137)) (-3292 (((-3 |#3| #1#) |#3|) 101)) (-3825 ((|#3| |#3|) 125)) (-3305 (((-3 |#3| #1#) |#3|) 110)) (-3838 ((|#3| |#3|) 138)) (-3293 (((-3 |#3| #1#) |#3|) 103)) (-3826 ((|#3| |#3|) 126)) (-3303 (((-3 |#3| #1#) |#3|) 76)) (-3836 ((|#3| |#3|) 136)) (-3291 (((-3 |#3| #1#) |#3|) 60)) (-3824 ((|#3| |#3|) 124)) (-3301 (((-3 |#3| #1#) |#3|) 106)) (-3834 ((|#3| |#3|) 134)) (-3289 (((-3 |#3| #1#) |#3|) 97)) (-3822 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-400 (-535))) 40 (|has| |#1| (-356)))))
+(((-272 |#1| |#2| |#3| |#4|) (-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-535)))) |%noBranch|) (-15 -4286 (|#3| |#3|)) (-15 -4285 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3980 (|#3| |#3|)) (-15 -3985 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3983 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3821 (|#3| |#3|)) (-15 -3822 (|#3| |#3|)) (-15 -3823 (|#3| |#3|)) (-15 -3824 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3829 (|#3| |#3|)) (-15 -3830 (|#3| |#3|)) (-15 -3831 (|#3| |#3|)) (-15 -3832 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)))) (-38 (-400 (-535))) (-1186 |#1|) (-1209 |#1| |#2|) (-954 |#2|)) (T -272))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-535))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1186 *4)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1209 *4 *5)) (-4 *6 (-954 *5)))) (-4286 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-4285 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3980 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3821 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3823 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3830 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3831 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3832 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))))
+(-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-535)))) |%noBranch|) (-15 -4286 (|#3| |#3|)) (-15 -4285 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3980 (|#3| |#3|)) (-15 -3985 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3983 (|#3| |#3|)) (-15 -3982 (|#3| |#3|)) (-15 -3821 (|#3| |#3|)) (-15 -3822 (|#3| |#3|)) (-15 -3823 (|#3| |#3|)) (-15 -3824 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3828 (|#3| |#3|)) (-15 -3829 (|#3| |#3|)) (-15 -3830 (|#3| |#3|)) (-15 -3831 (|#3| |#3|)) (-15 -3832 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|))))
+((-3173 (((-112) $) 19)) (-1625 (((-181) $) 7)) (-3915 (((-3 (-1142) "failed") $) 14)) (-3914 (((-3 (-618 $) "failed") $) NIL)) (-1623 (((-3 (-1142) "failed") $) 21)) (-1624 (((-3 (-1069) "failed") $) 17)) (-4295 (((-112) $) 15)) (-4300 (((-835) $) NIL)) (-1622 (((-112) $) 9)))
+(((-273) (-13 (-593 (-835)) (-10 -8 (-15 -1625 ((-181) $)) (-15 -4295 ((-112) $)) (-15 -1624 ((-3 (-1069) "failed") $)) (-15 -3173 ((-112) $)) (-15 -1623 ((-3 (-1142) "failed") $)) (-15 -1622 ((-112) $)) (-15 -3915 ((-3 (-1142) "failed") $)) (-15 -3914 ((-3 (-618 $) "failed") $))))) (T -273))
+((-1625 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-1624 (*1 *2 *1) (|partial| -12 (-5 *2 (-1069)) (-5 *1 (-273)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-1623 (*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-273)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-3915 (*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-273)))) (-3914 (*1 *2 *1) (|partial| -12 (-5 *2 (-618 (-273))) (-5 *1 (-273)))))
+(-13 (-593 (-835)) (-10 -8 (-15 -1625 ((-181) $)) (-15 -4295 ((-112) $)) (-15 -1624 ((-3 (-1069) "failed") $)) (-15 -3173 ((-112) $)) (-15 -1623 ((-3 (-1142) "failed") $)) (-15 -1622 ((-112) $)) (-15 -3915 ((-3 (-1142) "failed") $)) (-15 -3914 ((-3 (-618 $) "failed") $))))
+((-4056 (($ (-1 (-112) |#2|) $) 24)) (-1394 (($ $) 36)) (-3747 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3748 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3180 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2373 (($ |#2| $ (-535)) 20) (($ $ $ (-535)) 22)) (-2374 (($ $ (-535)) 11) (($ $ (-1191 (-535))) 14)) (-4133 (($ $ |#2|) 30) (($ $ $) NIL)) (-4144 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-618 $)) NIL)))
+(((-274 |#1| |#2|) (-10 -8 (-15 -3180 (|#1| |#1| |#1|)) (-15 -3747 (|#1| |#2| |#1|)) (-15 -3180 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3747 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -4133 (|#1| |#1| |#2|)) (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -2374 (|#1| |#1| (-1191 (-535)))) (-15 -2374 (|#1| |#1| (-535))) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -3748 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4056 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3748 (|#1| |#2| |#1|)) (-15 -1394 (|#1| |#1|))) (-275 |#2|) (-1178)) (T -274))
+NIL
+(-10 -8 (-15 -3180 (|#1| |#1| |#1|)) (-15 -3747 (|#1| |#2| |#1|)) (-15 -3180 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3747 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -4133 (|#1| |#1| |#2|)) (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -2374 (|#1| |#1| (-1191 (-535)))) (-15 -2374 (|#1| |#1| (-535))) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -3748 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4056 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3748 (|#1| |#2| |#1|)) (-15 -1394 (|#1| |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 58 (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) |#1|) $) 85)) (-4056 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2446 (($ $) 83 (|has| |#1| (-1067)))) (-1394 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1067)))) (-3748 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 51)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3180 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3953 (($ |#1| $ (-535)) 88) (($ $ $ (-535)) 87)) (-2373 (($ |#1| $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 42 (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2297 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) |#1|) 50) ((|#1| $ (-535)) 49) (($ $ (-1191 (-535))) 63)) (-1627 (($ $ (-535)) 91) (($ $ (-1191 (-535))) 90)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 70)) (-4133 (($ $ |#1|) 93) (($ $ $) 92)) (-4144 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-275 |#1|) (-138) (-1178)) (T -275))
+((-4133 (*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)))) (-4133 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-1191 (-535))) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) (-3747 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) (-3953 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-275 *2)) (-4 *2 (-1178)))) (-3953 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) (-3180 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))) (-3747 (*1 *1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)) (-4 *2 (-1067)))) (-2446 (*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)) (-4 *2 (-1067)))) (-3180 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)) (-4 *2 (-823)))))
+(-13 (-627 |t#1|) (-10 -8 (-6 -4337) (-15 -4133 ($ $ |t#1|)) (-15 -4133 ($ $ $)) (-15 -1627 ($ $ (-535))) (-15 -1627 ($ $ (-1191 (-535)))) (-15 -3747 ($ (-1 (-112) |t#1|) $)) (-15 -3953 ($ |t#1| $ (-535))) (-15 -3953 ($ $ $ (-535))) (-15 -3180 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1626 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -3747 ($ |t#1| $)) (-15 -2446 ($ $))) |%noBranch|) (IF (|has| |t#1| (-823)) (-15 -3180 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
((** (($ $ $) 10)))
(((-276 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-277)) (T -276))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-3631 (($ $) 6)) (-2718 (($ $) 7)) (** (($ $ $) 8)))
+((-4285 (($ $) 6)) (-4286 (($ $) 7)) (** (($ $ $) 8)))
(((-277) (-138)) (T -277))
-((** (*1 *1 *1 *1) (-4 *1 (-277))) (-2718 (*1 *1 *1) (-4 *1 (-277))) (-3631 (*1 *1 *1) (-4 *1 (-277))))
-(-13 (-10 -8 (-15 -3631 ($ $)) (-15 -2718 ($ $)) (-15 ** ($ $ $))))
-((-1452 (((-621 (-1122 |#1|)) (-1122 |#1|) |#1|) 35)) (-3944 ((|#2| |#2| |#1|) 38)) (-1557 ((|#2| |#2| |#1|) 40)) (-3996 ((|#2| |#2| |#1|) 39)))
-(((-278 |#1| |#2|) (-10 -7 (-15 -3944 (|#2| |#2| |#1|)) (-15 -3996 (|#2| |#2| |#1|)) (-15 -1557 (|#2| |#2| |#1|)) (-15 -1452 ((-621 (-1122 |#1|)) (-1122 |#1|) |#1|))) (-356) (-1216 |#1|)) (T -278))
-((-1452 (*1 *2 *3 *4) (-12 (-4 *4 (-356)) (-5 *2 (-621 (-1122 *4))) (-5 *1 (-278 *4 *5)) (-5 *3 (-1122 *4)) (-4 *5 (-1216 *4)))) (-1557 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1216 *3)))) (-3996 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1216 *3)))) (-3944 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1216 *3)))))
-(-10 -7 (-15 -3944 (|#2| |#2| |#1|)) (-15 -3996 (|#2| |#2| |#1|)) (-15 -1557 (|#2| |#2| |#1|)) (-15 -1452 ((-621 (-1122 |#1|)) (-1122 |#1|) |#1|)))
-((-3340 ((|#2| $ |#1|) 6)))
-(((-279 |#1| |#2|) (-138) (-1066) (-1179)) (T -279))
-((-3340 (*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1179)))))
-(-13 (-10 -8 (-15 -3340 (|t#2| $ |t#1|))))
-((-1878 ((|#3| $ |#2| |#3|) 12)) (-1808 ((|#3| $ |#2|) 10)))
-(((-280 |#1| |#2| |#3|) (-10 -8 (-15 -1878 (|#3| |#1| |#2| |#3|)) (-15 -1808 (|#3| |#1| |#2|))) (-281 |#2| |#3|) (-1066) (-1179)) (T -280))
-NIL
-(-10 -8 (-15 -1878 (|#3| |#1| |#2| |#3|)) (-15 -1808 (|#3| |#1| |#2|)))
-((-2253 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4337)))) (-1878 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4337)))) (-1808 ((|#2| $ |#1|) 11)) (-3340 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-281 |#1| |#2|) (-138) (-1066) (-1179)) (T -281))
-((-3340 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1179)))) (-1808 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1179)))) (-2253 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1179)))) (-1878 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1179)))))
-(-13 (-279 |t#1| |t#2|) (-10 -8 (-15 -3340 (|t#2| $ |t#1| |t#2|)) (-15 -1808 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4337)) (PROGN (-15 -2253 (|t#2| $ |t#1| |t#2|)) (-15 -1878 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((** (*1 *1 *1 *1) (-4 *1 (-277))) (-4286 (*1 *1 *1) (-4 *1 (-277))) (-4285 (*1 *1 *1) (-4 *1 (-277))))
+(-13 (-10 -8 (-15 -4285 ($ $)) (-15 -4286 ($ $)) (-15 ** ($ $ $))))
+((-1631 (((-618 (-1119 |#1|)) (-1119 |#1|) |#1|) 35)) (-1628 ((|#2| |#2| |#1|) 38)) (-1630 ((|#2| |#2| |#1|) 40)) (-1629 ((|#2| |#2| |#1|) 39)))
+(((-278 |#1| |#2|) (-10 -7 (-15 -1628 (|#2| |#2| |#1|)) (-15 -1629 (|#2| |#2| |#1|)) (-15 -1630 (|#2| |#2| |#1|)) (-15 -1631 ((-618 (-1119 |#1|)) (-1119 |#1|) |#1|))) (-356) (-1217 |#1|)) (T -278))
+((-1631 (*1 *2 *3 *4) (-12 (-4 *4 (-356)) (-5 *2 (-618 (-1119 *4))) (-5 *1 (-278 *4 *5)) (-5 *3 (-1119 *4)) (-4 *5 (-1217 *4)))) (-1630 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))) (-1629 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))) (-1628 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))))
+(-10 -7 (-15 -1628 (|#2| |#2| |#1|)) (-15 -1629 (|#2| |#2| |#1|)) (-15 -1630 (|#2| |#2| |#1|)) (-15 -1631 ((-618 (-1119 |#1|)) (-1119 |#1|) |#1|)))
+((-4142 ((|#2| $ |#1|) 6)))
+(((-279 |#1| |#2|) (-138) (-1067) (-1178)) (T -279))
+((-4142 (*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))))
+(-13 (-10 -8 (-15 -4142 (|t#2| $ |t#1|))))
+((-1632 ((|#3| $ |#2| |#3|) 12)) (-3431 ((|#3| $ |#2|) 10)))
+(((-280 |#1| |#2| |#3|) (-10 -8 (-15 -1632 (|#3| |#1| |#2| |#3|)) (-15 -3431 (|#3| |#1| |#2|))) (-281 |#2| |#3|) (-1067) (-1178)) (T -280))
+NIL
+(-10 -8 (-15 -1632 (|#3| |#1| |#2| |#3|)) (-15 -3431 (|#3| |#1| |#2|)))
+((-4130 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4337)))) (-1632 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) 11)) (-4142 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-281 |#1| |#2|) (-138) (-1067) (-1178)) (T -281))
+((-4142 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))) (-3431 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))) (-4130 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))) (-1632 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))))
+(-13 (-279 |t#1| |t#2|) (-10 -8 (-15 -4142 (|t#2| $ |t#1| |t#2|)) (-15 -3431 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4337)) (PROGN (-15 -4130 (|t#2| $ |t#1| |t#2|)) (-15 -1632 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-279 |#1| |#2|) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 35)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 40)) (-2408 (($ $) 38)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2647 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-2094 (($ $ $) 33)) (-2558 (($ |#2| |#3|) 19)) (-3976 (((-3 $ "failed") $) NIL)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-3987 (((-112) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2968 ((|#3| $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 20)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3359 (((-3 $ "failed") $ $) NIL)) (-4091 (((-747) $) 34)) (-3340 ((|#2| $ |#2|) 42)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 24)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1723 (((-747)) NIL)) (-4053 (((-112) $ $) NIL)) (-3275 (($) 29 T CONST)) (-3287 (($) 36 T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 37)))
-(((-282 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-300) (-10 -8 (-15 -2968 (|#3| $)) (-15 -3845 (|#2| $)) (-15 -2558 ($ |#2| |#3|)) (-15 -3359 ((-3 $ "failed") $ $)) (-15 -3976 ((-3 $ "failed") $)) (-15 -1991 ($ $)) (-15 -3340 (|#2| $ |#2|)))) (-170) (-1201 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -282))
-((-3976 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1201 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2968 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1201 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3845 (*1 *2 *1) (-12 (-4 *2 (-1201 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2558 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1201 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3359 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1201 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1991 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1201 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3340 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1201 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-300) (-10 -8 (-15 -2968 (|#3| $)) (-15 -3845 (|#2| $)) (-15 -2558 ($ |#2| |#3|)) (-15 -3359 ((-3 $ "failed") $ $)) (-15 -3976 ((-3 $ "failed") $)) (-15 -1991 ($ $)) (-15 -3340 (|#2| $ |#2|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ (-549)) 27)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 35)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 40)) (-2171 (($ $) 38)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) 33)) (-4185 (($ |#2| |#3|) 19)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2931 ((|#3| $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 20)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2485 (((-3 $ "failed") $ $) NIL)) (-1699 (((-747) $) 34)) (-4142 ((|#2| $ |#2|) 42)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 24)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 29 T CONST)) (-2985 (($) 36 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 37)))
+(((-282 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-300) (-10 -8 (-15 -2931 (|#3| $)) (-15 -4300 (|#2| $)) (-15 -4185 ($ |#2| |#3|)) (-15 -2485 ((-3 $ "failed") $ $)) (-15 -3804 ((-3 $ "failed") $)) (-15 -2725 ($ $)) (-15 -4142 (|#2| $ |#2|)))) (-170) (-1200 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -282))
+((-3804 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1200 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2931 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1200 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4300 (*1 *2 *1) (-12 (-4 *2 (-1200 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4185 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1200 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2485 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1200 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2725 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1200 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4142 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1200 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))))
+(-13 (-300) (-10 -8 (-15 -2931 (|#3| $)) (-15 -4300 (|#2| $)) (-15 -4185 ($ |#2| |#3|)) (-15 -2485 ((-3 $ "failed") $ $)) (-15 -3804 ((-3 $ "failed") $)) (-15 -2725 ($ $)) (-15 -4142 (|#2| $ |#2|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-283) (-138)) (T -283))
NIL
(-13 (-1018) (-111 $ $) (-10 -7 (-6 -4329)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3742 (($ (-1142) (-1142) (-1070) $) 17)) (-3430 (($ (-1142) (-621 (-936)) $) 22)) (-4287 (((-621 (-1051)) $) 10)) (-4090 (((-3 (-1070) "failed") (-1142) (-1142) $) 16)) (-2054 (((-3 (-621 (-936)) "failed") (-1142) $) 21)) (-1461 (($) 7)) (-3464 (($) 23)) (-3845 (((-834) $) 27)) (-4207 (($) 24)))
-(((-284) (-13 (-593 (-834)) (-10 -8 (-15 -1461 ($)) (-15 -4287 ((-621 (-1051)) $)) (-15 -4090 ((-3 (-1070) "failed") (-1142) (-1142) $)) (-15 -3742 ($ (-1142) (-1142) (-1070) $)) (-15 -2054 ((-3 (-621 (-936)) "failed") (-1142) $)) (-15 -3430 ($ (-1142) (-621 (-936)) $)) (-15 -3464 ($)) (-15 -4207 ($))))) (T -284))
-((-1461 (*1 *1) (-5 *1 (-284))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-621 (-1051))) (-5 *1 (-284)))) (-4090 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-1070)) (-5 *1 (-284)))) (-3742 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1142)) (-5 *3 (-1070)) (-5 *1 (-284)))) (-2054 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-621 (-936))) (-5 *1 (-284)))) (-3430 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-936))) (-5 *1 (-284)))) (-3464 (*1 *1) (-5 *1 (-284))) (-4207 (*1 *1) (-5 *1 (-284))))
-(-13 (-593 (-834)) (-10 -8 (-15 -1461 ($)) (-15 -4287 ((-621 (-1051)) $)) (-15 -4090 ((-3 (-1070) "failed") (-1142) (-1142) $)) (-15 -3742 ($ (-1142) (-1142) (-1070) $)) (-15 -2054 ((-3 (-621 (-936)) "failed") (-1142) $)) (-15 -3430 ($ (-1142) (-621 (-936)) $)) (-15 -3464 ($)) (-15 -4207 ($))))
-((-3341 (((-621 (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|)))) (|:| |geneigvec| (-621 (-665 (-400 (-923 |#1|))))))) (-665 (-400 (-923 |#1|)))) 85)) (-3789 (((-621 (-665 (-400 (-923 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 |#1|)))))) (-665 (-400 (-923 |#1|)))) 80) (((-621 (-665 (-400 (-923 |#1|)))) (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|))) (-665 (-400 (-923 |#1|))) (-747) (-747)) 38)) (-2998 (((-621 (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 |#1|))))))) (-665 (-400 (-923 |#1|)))) 82)) (-1467 (((-621 (-665 (-400 (-923 |#1|)))) (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|))) (-665 (-400 (-923 |#1|)))) 62)) (-2791 (((-621 (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|)))) (-665 (-400 (-923 |#1|)))) 61)) (-4041 (((-923 |#1|) (-665 (-400 (-923 |#1|)))) 50) (((-923 |#1|) (-665 (-400 (-923 |#1|))) (-1142)) 51)))
-(((-285 |#1|) (-10 -7 (-15 -4041 ((-923 |#1|) (-665 (-400 (-923 |#1|))) (-1142))) (-15 -4041 ((-923 |#1|) (-665 (-400 (-923 |#1|))))) (-15 -2791 ((-621 (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|)))) (-665 (-400 (-923 |#1|))))) (-15 -1467 ((-621 (-665 (-400 (-923 |#1|)))) (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|))) (-665 (-400 (-923 |#1|))))) (-15 -3789 ((-621 (-665 (-400 (-923 |#1|)))) (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|))) (-665 (-400 (-923 |#1|))) (-747) (-747))) (-15 -3789 ((-621 (-665 (-400 (-923 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 |#1|)))))) (-665 (-400 (-923 |#1|))))) (-15 -3341 ((-621 (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|)))) (|:| |geneigvec| (-621 (-665 (-400 (-923 |#1|))))))) (-665 (-400 (-923 |#1|))))) (-15 -2998 ((-621 (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 |#1|))))))) (-665 (-400 (-923 |#1|)))))) (-444)) (T -285))
-((-2998 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-621 (-2 (|:| |eigval| (-3 (-400 (-923 *4)) (-1131 (-1142) (-923 *4)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-923 *4)))))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-621 (-2 (|:| |eigval| (-3 (-400 (-923 *4)) (-1131 (-1142) (-923 *4)))) (|:| |geneigvec| (-621 (-665 (-400 (-923 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-923 *4)))))) (-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-400 (-923 *5)) (-1131 (-1142) (-923 *5)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 *4)))) (-4 *5 (-444)) (-5 *2 (-621 (-665 (-400 (-923 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-665 (-400 (-923 *5)))))) (-3789 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-400 (-923 *6)) (-1131 (-1142) (-923 *6)))) (-5 *5 (-747)) (-4 *6 (-444)) (-5 *2 (-621 (-665 (-400 (-923 *6))))) (-5 *1 (-285 *6)) (-5 *4 (-665 (-400 (-923 *6)))))) (-1467 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-400 (-923 *5)) (-1131 (-1142) (-923 *5)))) (-4 *5 (-444)) (-5 *2 (-621 (-665 (-400 (-923 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-665 (-400 (-923 *5)))))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-923 *4)))) (-4 *4 (-444)) (-5 *2 (-621 (-3 (-400 (-923 *4)) (-1131 (-1142) (-923 *4))))) (-5 *1 (-285 *4)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-923 *4)))) (-5 *2 (-923 *4)) (-5 *1 (-285 *4)) (-4 *4 (-444)))) (-4041 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-923 *5)))) (-5 *4 (-1142)) (-5 *2 (-923 *5)) (-5 *1 (-285 *5)) (-4 *5 (-444)))))
-(-10 -7 (-15 -4041 ((-923 |#1|) (-665 (-400 (-923 |#1|))) (-1142))) (-15 -4041 ((-923 |#1|) (-665 (-400 (-923 |#1|))))) (-15 -2791 ((-621 (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|)))) (-665 (-400 (-923 |#1|))))) (-15 -1467 ((-621 (-665 (-400 (-923 |#1|)))) (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|))) (-665 (-400 (-923 |#1|))))) (-15 -3789 ((-621 (-665 (-400 (-923 |#1|)))) (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|))) (-665 (-400 (-923 |#1|))) (-747) (-747))) (-15 -3789 ((-621 (-665 (-400 (-923 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 |#1|)))))) (-665 (-400 (-923 |#1|))))) (-15 -3341 ((-621 (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|)))) (|:| |geneigvec| (-621 (-665 (-400 (-923 |#1|))))))) (-665 (-400 (-923 |#1|))))) (-15 -2998 ((-621 (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1131 (-1142) (-923 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 |#1|))))))) (-665 (-400 (-923 |#1|))))))
-((-2796 (((-287 |#2|) (-1 |#2| |#1|) (-287 |#1|)) 14)))
-(((-286 |#1| |#2|) (-10 -7 (-15 -2796 ((-287 |#2|) (-1 |#2| |#1|) (-287 |#1|)))) (-1179) (-1179)) (T -286))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-287 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-287 *6)) (-5 *1 (-286 *5 *6)))))
-(-10 -7 (-15 -2796 ((-287 |#2|) (-1 |#2| |#1|) (-287 |#1|))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3166 (((-112) $) NIL (|has| |#1| (-21)))) (-2765 (($ $) 12)) (-2384 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3014 (($ $ $) 94 (|has| |#1| (-295)))) (-1705 (($) NIL (-1536 (|has| |#1| (-21)) (|has| |#1| (-703))) CONST)) (-2530 (($ $) 50 (|has| |#1| (-21)))) (-4111 (((-3 $ "failed") $) 61 (|has| |#1| (-703)))) (-2202 ((|#1| $) 11)) (-3976 (((-3 $ "failed") $) 59 (|has| |#1| (-703)))) (-3987 (((-112) $) NIL (|has| |#1| (-703)))) (-2796 (($ (-1 |#1| |#1|) $) 14)) (-2189 ((|#1| $) 10)) (-1385 (($ $) 49 (|has| |#1| (-21)))) (-1579 (((-3 $ "failed") $) 60 (|has| |#1| (-703)))) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-1991 (($ $) 63 (-1536 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-1740 (((-621 $) $) 84 (|has| |#1| (-541)))) (-2685 (($ $ $) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 $)) 28 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-1142) |#1|) 17 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-621 (-1142)) (-621 |#1|)) 21 (|has| |#1| (-505 (-1142) |#1|)))) (-2389 (($ |#1| |#1|) 9)) (-3128 (((-133)) 89 (|has| |#1| (-356)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 86 (|has| |#1| (-871 (-1142))))) (-2538 (($ $ $) NIL (|has| |#1| (-465)))) (-1911 (($ $ $) NIL (|has| |#1| (-465)))) (-3845 (($ (-549)) NIL (|has| |#1| (-1018))) (((-112) $) 36 (|has| |#1| (-1066))) (((-834) $) 35 (|has| |#1| (-1066)))) (-1723 (((-747)) 66 (|has| |#1| (-1018)))) (-3275 (($) 46 (|has| |#1| (-21)) CONST)) (-3287 (($) 56 (|has| |#1| (-703)) CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142))))) (-2388 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1066)))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 91 (-1536 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-2499 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2485 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-549)) NIL (|has| |#1| (-465))) (($ $ (-747)) NIL (|has| |#1| (-703))) (($ $ (-892)) NIL (|has| |#1| (-1078)))) (* (($ $ |#1|) 54 (|has| |#1| (-1078))) (($ |#1| $) 53 (|has| |#1| (-1078))) (($ $ $) 52 (|has| |#1| (-1078))) (($ (-549) $) 69 (|has| |#1| (-21))) (($ (-747) $) NIL (|has| |#1| (-21))) (($ (-892) $) NIL (|has| |#1| (-25)))))
-(((-287 |#1|) (-13 (-1179) (-10 -8 (-15 -2388 ($ |#1| |#1|)) (-15 -2389 ($ |#1| |#1|)) (-15 -2765 ($ $)) (-15 -2189 (|#1| $)) (-15 -2202 (|#1| $)) (-15 -2796 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1142) |#1|)) (-6 (-505 (-1142) |#1|)) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-6 (-1066)) (-6 (-593 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -2685 ($ $ $)) (-15 -2685 ($ $ (-621 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2485 ($ |#1| $)) (-15 -2485 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1385 ($ $)) (-15 -2530 ($ $)) (-15 -2499 ($ |#1| $)) (-15 -2499 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1078)) (PROGN (-6 (-1078)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-703)) (PROGN (-6 (-703)) (-15 -1579 ((-3 $ "failed") $)) (-15 -4111 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -1579 ((-3 $ "failed") $)) (-15 -4111 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|) (IF (|has| |#1| (-541)) (-15 -1740 ((-621 $) $)) |%noBranch|) (IF (|has| |#1| (-871 (-1142))) (-6 (-871 (-1142))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1232 |#1|)) (-15 -2512 ($ $ $)) (-15 -1991 ($ $))) |%noBranch|) (IF (|has| |#1| (-295)) (-15 -3014 ($ $ $)) |%noBranch|))) (-1179)) (T -287))
-((-2388 (*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1179)))) (-2389 (*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1179)))) (-2765 (*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1179)))) (-2189 (*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1179)))) (-2202 (*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1179)))) (-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1179)) (-5 *1 (-287 *3)))) (-2685 (*1 *1 *1 *1) (-12 (-4 *2 (-302 *2)) (-4 *2 (-1066)) (-4 *2 (-1179)) (-5 *1 (-287 *2)))) (-2685 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-287 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1066)) (-4 *3 (-1179)) (-5 *1 (-287 *3)))) (-2485 (*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1179)))) (-2485 (*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1179)))) (-1385 (*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1179)))) (-2530 (*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1179)))) (-2499 (*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1179)))) (-2499 (*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1179)))) (-1579 (*1 *1 *1) (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-703)) (-4 *2 (-1179)))) (-4111 (*1 *1 *1) (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-703)) (-4 *2 (-1179)))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-621 (-287 *3))) (-5 *1 (-287 *3)) (-4 *3 (-541)) (-4 *3 (-1179)))) (-3014 (*1 *1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-295)) (-4 *2 (-1179)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1078)) (-4 *2 (-1179)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1078)) (-4 *2 (-1179)))) (-2512 (*1 *1 *1 *1) (-1536 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1179))) (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1179))))) (-1991 (*1 *1 *1) (-1536 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1179))) (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1179))))))
-(-13 (-1179) (-10 -8 (-15 -2388 ($ |#1| |#1|)) (-15 -2389 ($ |#1| |#1|)) (-15 -2765 ($ $)) (-15 -2189 (|#1| $)) (-15 -2202 (|#1| $)) (-15 -2796 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1142) |#1|)) (-6 (-505 (-1142) |#1|)) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-6 (-1066)) (-6 (-593 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -2685 ($ $ $)) (-15 -2685 ($ $ (-621 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2485 ($ |#1| $)) (-15 -2485 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1385 ($ $)) (-15 -2530 ($ $)) (-15 -2499 ($ |#1| $)) (-15 -2499 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1078)) (PROGN (-6 (-1078)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-703)) (PROGN (-6 (-703)) (-15 -1579 ((-3 $ "failed") $)) (-15 -4111 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -1579 ((-3 $ "failed") $)) (-15 -4111 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|) (IF (|has| |#1| (-541)) (-15 -1740 ((-621 $) $)) |%noBranch|) (IF (|has| |#1| (-871 (-1142))) (-6 (-871 (-1142))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1232 |#1|)) (-15 -2512 ($ $ $)) (-15 -1991 ($ $))) |%noBranch|) (IF (|has| |#1| (-295)) (-15 -3014 ($ $ $)) |%noBranch|)))
-((-3833 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3732 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2932 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#2| $ |#1| |#2|) NIL)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3489 (((-3 |#2| "failed") |#1| $) NIL)) (-1705 (($) NIL T CONST)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-4204 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| "failed") |#1| $) NIL)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#2| $ |#1|) NIL)) (-2990 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 ((|#1| $) NIL (|has| |#1| (-823)))) (-1958 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1548 ((|#1| $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3449 (((-621 |#1|) $) NIL)) (-3665 (((-112) |#1| $) NIL)) (-2349 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-3927 (((-621 |#1|) $) NIL)) (-1286 (((-112) |#1| $) NIL)) (-3988 (((-1086) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3645 ((|#2| $) NIL (|has| |#1| (-823)))) (-1917 (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL)) (-3158 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1738 (((-621 |#2|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4252 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3845 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-1765 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-288 |#1| |#2|) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) (-1066) (-1066)) (T -288))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-1637 (($ (-1142) (-1142) (-1069) $) 17)) (-1635 (($ (-1142) (-618 (-936)) $) 22)) (-1639 (((-618 (-1051)) $) 10)) (-1638 (((-3 (-1069) "failed") (-1142) (-1142) $) 16)) (-1636 (((-3 (-618 (-936)) "failed") (-1142) $) 21)) (-3911 (($) 7)) (-1634 (($) 23)) (-4300 (((-835) $) 27)) (-1633 (($) 24)))
+(((-284) (-13 (-593 (-835)) (-10 -8 (-15 -3911 ($)) (-15 -1639 ((-618 (-1051)) $)) (-15 -1638 ((-3 (-1069) "failed") (-1142) (-1142) $)) (-15 -1637 ($ (-1142) (-1142) (-1069) $)) (-15 -1636 ((-3 (-618 (-936)) "failed") (-1142) $)) (-15 -1635 ($ (-1142) (-618 (-936)) $)) (-15 -1634 ($)) (-15 -1633 ($))))) (T -284))
+((-3911 (*1 *1) (-5 *1 (-284))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-618 (-1051))) (-5 *1 (-284)))) (-1638 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-284)))) (-1637 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1142)) (-5 *3 (-1069)) (-5 *1 (-284)))) (-1636 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-618 (-936))) (-5 *1 (-284)))) (-1635 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-936))) (-5 *1 (-284)))) (-1634 (*1 *1) (-5 *1 (-284))) (-1633 (*1 *1) (-5 *1 (-284))))
+(-13 (-593 (-835)) (-10 -8 (-15 -3911 ($)) (-15 -1639 ((-618 (-1051)) $)) (-15 -1638 ((-3 (-1069) "failed") (-1142) (-1142) $)) (-15 -1637 ($ (-1142) (-1142) (-1069) $)) (-15 -1636 ((-3 (-618 (-936)) "failed") (-1142) $)) (-15 -1635 ($ (-1142) (-618 (-936)) $)) (-15 -1634 ($)) (-15 -1633 ($))))
+((-1643 (((-618 (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |geneigvec| (-618 (-665 (-400 (-917 |#1|))))))) (-665 (-400 (-917 |#1|)))) 85)) (-1642 (((-618 (-665 (-400 (-917 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 |#1|)))))) (-665 (-400 (-917 |#1|)))) 80) (((-618 (-665 (-400 (-917 |#1|)))) (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|))) (-665 (-400 (-917 |#1|))) (-747) (-747)) 38)) (-1644 (((-618 (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 |#1|))))))) (-665 (-400 (-917 |#1|)))) 82)) (-1641 (((-618 (-665 (-400 (-917 |#1|)))) (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|))) (-665 (-400 (-917 |#1|)))) 62)) (-1640 (((-618 (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (-665 (-400 (-917 |#1|)))) 61)) (-2689 (((-917 |#1|) (-665 (-400 (-917 |#1|)))) 50) (((-917 |#1|) (-665 (-400 (-917 |#1|))) (-1142)) 51)))
+(((-285 |#1|) (-10 -7 (-15 -2689 ((-917 |#1|) (-665 (-400 (-917 |#1|))) (-1142))) (-15 -2689 ((-917 |#1|) (-665 (-400 (-917 |#1|))))) (-15 -1640 ((-618 (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (-665 (-400 (-917 |#1|))))) (-15 -1641 ((-618 (-665 (-400 (-917 |#1|)))) (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|))) (-665 (-400 (-917 |#1|))))) (-15 -1642 ((-618 (-665 (-400 (-917 |#1|)))) (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|))) (-665 (-400 (-917 |#1|))) (-747) (-747))) (-15 -1642 ((-618 (-665 (-400 (-917 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 |#1|)))))) (-665 (-400 (-917 |#1|))))) (-15 -1643 ((-618 (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |geneigvec| (-618 (-665 (-400 (-917 |#1|))))))) (-665 (-400 (-917 |#1|))))) (-15 -1644 ((-618 (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 |#1|))))))) (-665 (-400 (-917 |#1|)))))) (-444)) (T -285))
+((-1644 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-618 (-2 (|:| |eigval| (-3 (-400 (-917 *4)) (-1131 (-1142) (-917 *4)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-917 *4)))))) (-1643 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-618 (-2 (|:| |eigval| (-3 (-400 (-917 *4)) (-1131 (-1142) (-917 *4)))) (|:| |geneigvec| (-618 (-665 (-400 (-917 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-917 *4)))))) (-1642 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-400 (-917 *5)) (-1131 (-1142) (-917 *5)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 *4)))) (-4 *5 (-444)) (-5 *2 (-618 (-665 (-400 (-917 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-665 (-400 (-917 *5)))))) (-1642 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-400 (-917 *6)) (-1131 (-1142) (-917 *6)))) (-5 *5 (-747)) (-4 *6 (-444)) (-5 *2 (-618 (-665 (-400 (-917 *6))))) (-5 *1 (-285 *6)) (-5 *4 (-665 (-400 (-917 *6)))))) (-1641 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-400 (-917 *5)) (-1131 (-1142) (-917 *5)))) (-4 *5 (-444)) (-5 *2 (-618 (-665 (-400 (-917 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-665 (-400 (-917 *5)))))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-917 *4)))) (-4 *4 (-444)) (-5 *2 (-618 (-3 (-400 (-917 *4)) (-1131 (-1142) (-917 *4))))) (-5 *1 (-285 *4)))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-917 *4)))) (-5 *2 (-917 *4)) (-5 *1 (-285 *4)) (-4 *4 (-444)))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-917 *5)))) (-5 *4 (-1142)) (-5 *2 (-917 *5)) (-5 *1 (-285 *5)) (-4 *5 (-444)))))
+(-10 -7 (-15 -2689 ((-917 |#1|) (-665 (-400 (-917 |#1|))) (-1142))) (-15 -2689 ((-917 |#1|) (-665 (-400 (-917 |#1|))))) (-15 -1640 ((-618 (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (-665 (-400 (-917 |#1|))))) (-15 -1641 ((-618 (-665 (-400 (-917 |#1|)))) (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|))) (-665 (-400 (-917 |#1|))))) (-15 -1642 ((-618 (-665 (-400 (-917 |#1|)))) (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|))) (-665 (-400 (-917 |#1|))) (-747) (-747))) (-15 -1642 ((-618 (-665 (-400 (-917 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 |#1|)))))) (-665 (-400 (-917 |#1|))))) (-15 -1643 ((-618 (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |geneigvec| (-618 (-665 (-400 (-917 |#1|))))))) (-665 (-400 (-917 |#1|))))) (-15 -1644 ((-618 (-2 (|:| |eigval| (-3 (-400 (-917 |#1|)) (-1131 (-1142) (-917 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 |#1|))))))) (-665 (-400 (-917 |#1|))))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3522 (((-112) $) NIL (|has| |#1| (-21)))) (-1650 (($ $) 12)) (-1363 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1659 (($ $ $) 94 (|has| |#1| (-291)))) (-3879 (($) NIL (-3874 (|has| |#1| (-21)) (|has| |#1| (-703))) CONST)) (-1648 (($ $) 50 (|has| |#1| (-21)))) (-1646 (((-3 $ "failed") $) 61 (|has| |#1| (-703)))) (-3865 ((|#1| $) 11)) (-3804 (((-3 $ "failed") $) 59 (|has| |#1| (-703)))) (-2493 (((-112) $) NIL (|has| |#1| (-703)))) (-4301 (($ (-1 |#1| |#1|) $) 14)) (-3866 ((|#1| $) 10)) (-1649 (($ $) 49 (|has| |#1| (-21)))) (-1647 (((-3 $ "failed") $) 60 (|has| |#1| (-703)))) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2725 (($ $) 63 (-3874 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-1645 (((-618 $) $) 84 (|has| |#1| (-542)))) (-4110 (($ $ $) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 $)) 28 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-1142) |#1|) 17 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 21 (|has| |#1| (-505 (-1142) |#1|)))) (-3560 (($ |#1| |#1|) 9)) (-4254 (((-133)) 89 (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) 86 (|has| |#1| (-871 (-1142))))) (-3330 (($ $ $) NIL (|has| |#1| (-465)))) (-2677 (($ $ $) NIL (|has| |#1| (-465)))) (-4300 (($ (-535)) NIL (|has| |#1| (-1018))) (((-112) $) 36 (|has| |#1| (-1067))) (((-835) $) 35 (|has| |#1| (-1067)))) (-3444 (((-747)) 66 (|has| |#1| (-1018)))) (-2979 (($) 46 (|has| |#1| (-21)) CONST)) (-2985 (($) 56 (|has| |#1| (-703)) CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142))))) (-3375 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1067)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 91 (-3874 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-4180 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-4182 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-535)) NIL (|has| |#1| (-465))) (($ $ (-747)) NIL (|has| |#1| (-703))) (($ $ (-890)) NIL (|has| |#1| (-1078)))) (* (($ $ |#1|) 54 (|has| |#1| (-1078))) (($ |#1| $) 53 (|has| |#1| (-1078))) (($ $ $) 52 (|has| |#1| (-1078))) (($ (-535) $) 69 (|has| |#1| (-21))) (($ (-747) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-25)))))
+(((-286 |#1|) (-13 (-1178) (-10 -8 (-15 -3375 ($ |#1| |#1|)) (-15 -3560 ($ |#1| |#1|)) (-15 -1650 ($ $)) (-15 -3866 (|#1| $)) (-15 -3865 (|#1| $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1142) |#1|)) (-6 (-505 (-1142) |#1|)) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-6 (-1067)) (-6 (-593 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -4110 ($ $ $)) (-15 -4110 ($ $ (-618 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4182 ($ |#1| $)) (-15 -4182 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1649 ($ $)) (-15 -1648 ($ $)) (-15 -4180 ($ |#1| $)) (-15 -4180 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1078)) (PROGN (-6 (-1078)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-703)) (PROGN (-6 (-703)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|) (IF (|has| |#1| (-542)) (-15 -1645 ((-618 $) $)) |%noBranch|) (IF (|has| |#1| (-871 (-1142))) (-6 (-871 (-1142))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1232 |#1|)) (-15 -4291 ($ $ $)) (-15 -2725 ($ $))) |%noBranch|) (IF (|has| |#1| (-291)) (-15 -1659 ($ $ $)) |%noBranch|))) (-1178)) (T -286))
+((-3375 (*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) (-3560 (*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) (-1650 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) (-3866 (*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) (-3865 (*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-286 *3)))) (-4110 (*1 *1 *1 *1) (-12 (-4 *2 (-302 *2)) (-4 *2 (-1067)) (-4 *2 (-1178)) (-5 *1 (-286 *2)))) (-4110 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-286 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1067)) (-4 *3 (-1178)) (-5 *1 (-286 *3)))) (-4182 (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1178)))) (-4182 (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1178)))) (-1649 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178)))) (-1648 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178)))) (-4180 (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178)))) (-4180 (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178)))) (-1647 (*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-703)) (-4 *2 (-1178)))) (-1646 (*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-703)) (-4 *2 (-1178)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-618 (-286 *3))) (-5 *1 (-286 *3)) (-4 *3 (-542)) (-4 *3 (-1178)))) (-1659 (*1 *1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-291)) (-4 *2 (-1178)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1078)) (-4 *2 (-1178)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1078)) (-4 *2 (-1178)))) (-4291 (*1 *1 *1 *1) (-3874 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1178))) (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1178))))) (-2725 (*1 *1 *1) (-3874 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1178))) (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1178))))))
+(-13 (-1178) (-10 -8 (-15 -3375 ($ |#1| |#1|)) (-15 -3560 ($ |#1| |#1|)) (-15 -1650 ($ $)) (-15 -3866 (|#1| $)) (-15 -3865 (|#1| $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1142) |#1|)) (-6 (-505 (-1142) |#1|)) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-6 (-1067)) (-6 (-593 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -4110 ($ $ $)) (-15 -4110 ($ $ (-618 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4182 ($ |#1| $)) (-15 -4182 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1649 ($ $)) (-15 -1648 ($ $)) (-15 -4180 ($ |#1| $)) (-15 -4180 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1078)) (PROGN (-6 (-1078)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-703)) (PROGN (-6 (-703)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|) (IF (|has| |#1| (-542)) (-15 -1645 ((-618 $) $)) |%noBranch|) (IF (|has| |#1| (-871 (-1142))) (-6 (-871 (-1142))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1232 |#1|)) (-15 -4291 ($ $ $)) (-15 -2725 ($ $))) |%noBranch|) (IF (|has| |#1| (-291)) (-15 -1659 ($ $ $)) |%noBranch|)))
+((-4301 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 14)))
+(((-287 |#1| |#2|) (-10 -7 (-15 -4301 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-1178) (-1178)) (T -287))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-286 *6)) (-5 *1 (-287 *5 *6)))))
+(-10 -7 (-15 -4301 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|))))
+((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) NIL)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2735 (((-618 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2301 (((-618 |#1|) $) NIL)) (-2302 (((-112) |#1| $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-288 |#1| |#2|) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) (-1067) (-1067)) (T -288))
NIL
(-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336)))
-((-3041 (((-305) (-1124) (-621 (-1124))) 16) (((-305) (-1124) (-1124)) 15) (((-305) (-621 (-1124))) 14) (((-305) (-1124)) 12)))
-(((-289) (-10 -7 (-15 -3041 ((-305) (-1124))) (-15 -3041 ((-305) (-621 (-1124)))) (-15 -3041 ((-305) (-1124) (-1124))) (-15 -3041 ((-305) (-1124) (-621 (-1124)))))) (T -289))
-((-3041 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-1124))) (-5 *3 (-1124)) (-5 *2 (-305)) (-5 *1 (-289)))) (-3041 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-305)) (-5 *1 (-289)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-621 (-1124))) (-5 *2 (-305)) (-5 *1 (-289)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-305)) (-5 *1 (-289)))))
-(-10 -7 (-15 -3041 ((-305) (-1124))) (-15 -3041 ((-305) (-621 (-1124)))) (-15 -3041 ((-305) (-1124) (-1124))) (-15 -3041 ((-305) (-1124) (-621 (-1124)))))
-((-2796 ((|#2| (-1 |#2| |#1|) (-1124) (-592 |#1|)) 18)))
-(((-290 |#1| |#2|) (-10 -7 (-15 -2796 (|#2| (-1 |#2| |#1|) (-1124) (-592 |#1|)))) (-295) (-1179)) (T -290))
-((-2796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1124)) (-5 *5 (-592 *6)) (-4 *6 (-295)) (-4 *2 (-1179)) (-5 *1 (-290 *6 *2)))))
-(-10 -7 (-15 -2796 (|#2| (-1 |#2| |#1|) (-1124) (-592 |#1|))))
-((-2796 ((|#2| (-1 |#2| |#1|) (-592 |#1|)) 17)))
-(((-291 |#1| |#2|) (-10 -7 (-15 -2796 (|#2| (-1 |#2| |#1|) (-592 |#1|)))) (-295) (-295)) (T -291))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-592 *5)) (-4 *5 (-295)) (-4 *2 (-295)) (-5 *1 (-291 *5 *2)))))
-(-10 -7 (-15 -2796 (|#2| (-1 |#2| |#1|) (-592 |#1|))))
-((-2900 (((-112) (-219)) 10)))
-(((-292 |#1| |#2|) (-10 -7 (-15 -2900 ((-112) (-219)))) (-219) (-219)) (T -292))
-((-2900 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-292 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -2900 ((-112) (-219))))
-((-2379 (((-1122 (-219)) (-309 (-219)) (-621 (-1142)) (-1060 (-816 (-219)))) 93)) (-3542 (((-1122 (-219)) (-1225 (-309 (-219))) (-621 (-1142)) (-1060 (-816 (-219)))) 107) (((-1122 (-219)) (-309 (-219)) (-621 (-1142)) (-1060 (-816 (-219)))) 61)) (-2376 (((-621 (-1124)) (-1122 (-219))) NIL)) (-4306 (((-621 (-219)) (-309 (-219)) (-1142) (-1060 (-816 (-219)))) 58)) (-3643 (((-621 (-219)) (-923 (-400 (-549))) (-1142) (-1060 (-816 (-219)))) 49)) (-1741 (((-621 (-1124)) (-621 (-219))) NIL)) (-4124 (((-219) (-1060 (-816 (-219)))) 25)) (-2799 (((-219) (-1060 (-816 (-219)))) 26)) (-1635 (((-112) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 54)) (-1882 (((-1124) (-219)) NIL)))
-(((-293) (-10 -7 (-15 -4124 ((-219) (-1060 (-816 (-219))))) (-15 -2799 ((-219) (-1060 (-816 (-219))))) (-15 -1635 ((-112) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4306 ((-621 (-219)) (-309 (-219)) (-1142) (-1060 (-816 (-219))))) (-15 -2379 ((-1122 (-219)) (-309 (-219)) (-621 (-1142)) (-1060 (-816 (-219))))) (-15 -3542 ((-1122 (-219)) (-309 (-219)) (-621 (-1142)) (-1060 (-816 (-219))))) (-15 -3542 ((-1122 (-219)) (-1225 (-309 (-219))) (-621 (-1142)) (-1060 (-816 (-219))))) (-15 -3643 ((-621 (-219)) (-923 (-400 (-549))) (-1142) (-1060 (-816 (-219))))) (-15 -1882 ((-1124) (-219))) (-15 -1741 ((-621 (-1124)) (-621 (-219)))) (-15 -2376 ((-621 (-1124)) (-1122 (-219)))))) (T -293))
-((-2376 (*1 *2 *3) (-12 (-5 *3 (-1122 (-219))) (-5 *2 (-621 (-1124))) (-5 *1 (-293)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-621 (-219))) (-5 *2 (-621 (-1124))) (-5 *1 (-293)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-293)))) (-3643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-923 (-400 (-549)))) (-5 *4 (-1142)) (-5 *5 (-1060 (-816 (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-293)))) (-3542 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1225 (-309 (-219)))) (-5 *4 (-621 (-1142))) (-5 *5 (-1060 (-816 (-219)))) (-5 *2 (-1122 (-219))) (-5 *1 (-293)))) (-3542 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-621 (-1142))) (-5 *5 (-1060 (-816 (-219)))) (-5 *2 (-1122 (-219))) (-5 *1 (-293)))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-621 (-1142))) (-5 *5 (-1060 (-816 (-219)))) (-5 *2 (-1122 (-219))) (-5 *1 (-293)))) (-4306 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1142)) (-5 *5 (-1060 (-816 (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-293)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-112)) (-5 *1 (-293)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-1060 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-293)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1060 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-293)))))
-(-10 -7 (-15 -4124 ((-219) (-1060 (-816 (-219))))) (-15 -2799 ((-219) (-1060 (-816 (-219))))) (-15 -1635 ((-112) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4306 ((-621 (-219)) (-309 (-219)) (-1142) (-1060 (-816 (-219))))) (-15 -2379 ((-1122 (-219)) (-309 (-219)) (-621 (-1142)) (-1060 (-816 (-219))))) (-15 -3542 ((-1122 (-219)) (-309 (-219)) (-621 (-1142)) (-1060 (-816 (-219))))) (-15 -3542 ((-1122 (-219)) (-1225 (-309 (-219))) (-621 (-1142)) (-1060 (-816 (-219))))) (-15 -3643 ((-621 (-219)) (-923 (-400 (-549))) (-1142) (-1060 (-816 (-219))))) (-15 -1882 ((-1124) (-219))) (-15 -1741 ((-621 (-1124)) (-621 (-219)))) (-15 -2376 ((-621 (-1124)) (-1122 (-219)))))
-((-1980 (((-621 (-592 $)) $) 30)) (-3014 (($ $ (-287 $)) 81) (($ $ (-621 (-287 $))) 123) (($ $ (-621 (-592 $)) (-621 $)) NIL)) (-2713 (((-3 (-592 $) "failed") $) 113)) (-2658 (((-592 $) $) 112)) (-3390 (($ $) 19) (($ (-621 $)) 56)) (-2415 (((-621 (-114)) $) 38)) (-2015 (((-114) (-114)) 91)) (-3061 (((-112) $) 131)) (-2796 (($ (-1 $ $) (-592 $)) 89)) (-3364 (((-3 (-592 $) "failed") $) 93)) (-1477 (($ (-114) $) 61) (($ (-114) (-621 $)) 100)) (-1581 (((-112) $ (-114)) 117) (((-112) $ (-1142)) 116)) (-4035 (((-747) $) 46)) (-4029 (((-112) $ $) 59) (((-112) $ (-1142)) 51)) (-4062 (((-112) $) 129)) (-2685 (($ $ (-592 $) $) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL) (($ $ (-621 (-287 $))) 121) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-621 (-1142)) (-621 (-1 $ $))) 84) (($ $ (-621 (-1142)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-1142) (-1 $ (-621 $))) 69) (($ $ (-1142) (-1 $ $)) 75) (($ $ (-621 (-114)) (-621 (-1 $ $))) 83) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) 85) (($ $ (-114) (-1 $ (-621 $))) 71) (($ $ (-114) (-1 $ $)) 77)) (-3340 (($ (-114) $) 62) (($ (-114) $ $) 63) (($ (-114) $ $ $) 64) (($ (-114) $ $ $ $) 65) (($ (-114) (-621 $)) 109)) (-3776 (($ $) 53) (($ $ $) 119)) (-4136 (($ $) 17) (($ (-621 $)) 55)) (-3234 (((-112) (-114)) 22)))
-(((-294 |#1|) (-10 -8 (-15 -3061 ((-112) |#1|)) (-15 -4062 ((-112) |#1|)) (-15 -2685 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2685 (|#1| |#1| (-114) (-1 |#1| (-621 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2685 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| |#1|)))) (-15 -2685 (|#1| |#1| (-1142) (-1 |#1| |#1|))) (-15 -2685 (|#1| |#1| (-1142) (-1 |#1| (-621 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 (-1 |#1| |#1|)))) (-15 -4029 ((-112) |#1| (-1142))) (-15 -4029 ((-112) |#1| |#1|)) (-15 -2796 (|#1| (-1 |#1| |#1|) (-592 |#1|))) (-15 -1477 (|#1| (-114) (-621 |#1|))) (-15 -1477 (|#1| (-114) |#1|)) (-15 -1581 ((-112) |#1| (-1142))) (-15 -1581 ((-112) |#1| (-114))) (-15 -3234 ((-112) (-114))) (-15 -2015 ((-114) (-114))) (-15 -2415 ((-621 (-114)) |#1|)) (-15 -1980 ((-621 (-592 |#1|)) |#1|)) (-15 -3364 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -4035 ((-747) |#1|)) (-15 -3776 (|#1| |#1| |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3390 (|#1| (-621 |#1|))) (-15 -3390 (|#1| |#1|)) (-15 -4136 (|#1| (-621 |#1|))) (-15 -4136 (|#1| |#1|)) (-15 -3014 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -3014 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3014 (|#1| |#1| (-287 |#1|))) (-15 -3340 (|#1| (-114) (-621 |#1|))) (-15 -3340 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3340 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3340 (|#1| (-114) |#1| |#1|)) (-15 -3340 (|#1| (-114) |#1|)) (-15 -2685 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#1| |#1|)) (-15 -2685 (|#1| |#1| (-287 |#1|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -2685 (|#1| |#1| (-592 |#1|) |#1|)) (-15 -2658 ((-592 |#1|) |#1|)) (-15 -2713 ((-3 (-592 |#1|) "failed") |#1|))) (-295)) (T -294))
-((-2015 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-294 *3)) (-4 *3 (-295)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-294 *4)) (-4 *4 (-295)))))
-(-10 -8 (-15 -3061 ((-112) |#1|)) (-15 -4062 ((-112) |#1|)) (-15 -2685 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2685 (|#1| |#1| (-114) (-1 |#1| (-621 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2685 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| |#1|)))) (-15 -2685 (|#1| |#1| (-1142) (-1 |#1| |#1|))) (-15 -2685 (|#1| |#1| (-1142) (-1 |#1| (-621 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 (-1 |#1| |#1|)))) (-15 -4029 ((-112) |#1| (-1142))) (-15 -4029 ((-112) |#1| |#1|)) (-15 -2796 (|#1| (-1 |#1| |#1|) (-592 |#1|))) (-15 -1477 (|#1| (-114) (-621 |#1|))) (-15 -1477 (|#1| (-114) |#1|)) (-15 -1581 ((-112) |#1| (-1142))) (-15 -1581 ((-112) |#1| (-114))) (-15 -3234 ((-112) (-114))) (-15 -2015 ((-114) (-114))) (-15 -2415 ((-621 (-114)) |#1|)) (-15 -1980 ((-621 (-592 |#1|)) |#1|)) (-15 -3364 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -4035 ((-747) |#1|)) (-15 -3776 (|#1| |#1| |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3390 (|#1| (-621 |#1|))) (-15 -3390 (|#1| |#1|)) (-15 -4136 (|#1| (-621 |#1|))) (-15 -4136 (|#1| |#1|)) (-15 -3014 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -3014 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3014 (|#1| |#1| (-287 |#1|))) (-15 -3340 (|#1| (-114) (-621 |#1|))) (-15 -3340 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3340 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3340 (|#1| (-114) |#1| |#1|)) (-15 -3340 (|#1| (-114) |#1|)) (-15 -2685 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#1| |#1|)) (-15 -2685 (|#1| |#1| (-287 |#1|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -2685 (|#1| |#1| (-592 |#1|) |#1|)) (-15 -2658 ((-592 |#1|) |#1|)) (-15 -2713 ((-3 (-592 |#1|) "failed") |#1|)))
-((-3833 (((-112) $ $) 7)) (-1980 (((-621 (-592 $)) $) 44)) (-3014 (($ $ (-287 $)) 56) (($ $ (-621 (-287 $))) 55) (($ $ (-621 (-592 $)) (-621 $)) 54)) (-2713 (((-3 (-592 $) "failed") $) 69)) (-2658 (((-592 $) $) 68)) (-3390 (($ $) 51) (($ (-621 $)) 50)) (-2415 (((-621 (-114)) $) 43)) (-2015 (((-114) (-114)) 42)) (-3061 (((-112) $) 22 (|has| $ (-1009 (-549))))) (-1417 (((-1138 $) (-592 $)) 25 (|has| $ (-1018)))) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2796 (($ (-1 $ $) (-592 $)) 36)) (-3364 (((-3 (-592 $) "failed") $) 46)) (-2677 (((-1124) $) 9)) (-2063 (((-621 (-592 $)) $) 45)) (-1477 (($ (-114) $) 38) (($ (-114) (-621 $)) 37)) (-1581 (((-112) $ (-114)) 40) (((-112) $ (-1142)) 39)) (-4035 (((-747) $) 47)) (-3988 (((-1086) $) 10)) (-4029 (((-112) $ $) 35) (((-112) $ (-1142)) 34)) (-4062 (((-112) $) 23 (|has| $ (-1009 (-549))))) (-2685 (($ $ (-592 $) $) 67) (($ $ (-621 (-592 $)) (-621 $)) 66) (($ $ (-621 (-287 $))) 65) (($ $ (-287 $)) 64) (($ $ $ $) 63) (($ $ (-621 $) (-621 $)) 62) (($ $ (-621 (-1142)) (-621 (-1 $ $))) 33) (($ $ (-621 (-1142)) (-621 (-1 $ (-621 $)))) 32) (($ $ (-1142) (-1 $ (-621 $))) 31) (($ $ (-1142) (-1 $ $)) 30) (($ $ (-621 (-114)) (-621 (-1 $ $))) 29) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) 28) (($ $ (-114) (-1 $ (-621 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-3340 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-621 $)) 57)) (-3776 (($ $) 49) (($ $ $) 48)) (-2539 (($ $) 24 (|has| $ (-1018)))) (-3845 (((-834) $) 11) (($ (-592 $)) 70)) (-4136 (($ $) 53) (($ (-621 $)) 52)) (-3234 (((-112) (-114)) 41)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)))
-(((-295) (-138)) (T -295))
-((-3340 (*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-3340 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-3340 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-3340 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-3340 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-621 *1)) (-4 *1 (-295)))) (-3014 (*1 *1 *1 *2) (-12 (-5 *2 (-287 *1)) (-4 *1 (-295)))) (-3014 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-287 *1))) (-4 *1 (-295)))) (-3014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-592 *1))) (-5 *3 (-621 *1)) (-4 *1 (-295)))) (-4136 (*1 *1 *1) (-4 *1 (-295))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-295)))) (-3390 (*1 *1 *1) (-4 *1 (-295))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-295)))) (-3776 (*1 *1 *1) (-4 *1 (-295))) (-3776 (*1 *1 *1 *1) (-4 *1 (-295))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-747)))) (-3364 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-295)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-621 (-592 *1))) (-4 *1 (-295)))) (-1980 (*1 *2 *1) (-12 (-5 *2 (-621 (-592 *1))) (-4 *1 (-295)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-621 (-114))))) (-2015 (*1 *2 *2) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-3234 (*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1581 (*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1581 (*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1142)) (-5 *2 (-112)))) (-1477 (*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-1477 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-621 *1)) (-4 *1 (-295)))) (-2796 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-592 *1)) (-4 *1 (-295)))) (-4029 (*1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-112)))) (-4029 (*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1142)) (-5 *2 (-112)))) (-2685 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-621 (-1 *1 *1))) (-4 *1 (-295)))) (-2685 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-621 (-1 *1 (-621 *1)))) (-4 *1 (-295)))) (-2685 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1 *1 (-621 *1))) (-4 *1 (-295)))) (-2685 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295)))) (-2685 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-114))) (-5 *3 (-621 (-1 *1 *1))) (-4 *1 (-295)))) (-2685 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-114))) (-5 *3 (-621 (-1 *1 (-621 *1)))) (-4 *1 (-295)))) (-2685 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-621 *1))) (-4 *1 (-295)))) (-2685 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-1018)) (-4 *1 (-295)) (-5 *2 (-1138 *1)))) (-2539 (*1 *1 *1) (-12 (-4 *1 (-1018)) (-4 *1 (-295)))) (-4062 (*1 *2 *1) (-12 (-4 *1 (-1009 (-549))) (-4 *1 (-295)) (-5 *2 (-112)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-1009 (-549))) (-4 *1 (-295)) (-5 *2 (-112)))))
-(-13 (-823) (-1009 (-592 $)) (-505 (-592 $) $) (-302 $) (-10 -8 (-15 -3340 ($ (-114) $)) (-15 -3340 ($ (-114) $ $)) (-15 -3340 ($ (-114) $ $ $)) (-15 -3340 ($ (-114) $ $ $ $)) (-15 -3340 ($ (-114) (-621 $))) (-15 -3014 ($ $ (-287 $))) (-15 -3014 ($ $ (-621 (-287 $)))) (-15 -3014 ($ $ (-621 (-592 $)) (-621 $))) (-15 -4136 ($ $)) (-15 -4136 ($ (-621 $))) (-15 -3390 ($ $)) (-15 -3390 ($ (-621 $))) (-15 -3776 ($ $)) (-15 -3776 ($ $ $)) (-15 -4035 ((-747) $)) (-15 -3364 ((-3 (-592 $) "failed") $)) (-15 -2063 ((-621 (-592 $)) $)) (-15 -1980 ((-621 (-592 $)) $)) (-15 -2415 ((-621 (-114)) $)) (-15 -2015 ((-114) (-114))) (-15 -3234 ((-112) (-114))) (-15 -1581 ((-112) $ (-114))) (-15 -1581 ((-112) $ (-1142))) (-15 -1477 ($ (-114) $)) (-15 -1477 ($ (-114) (-621 $))) (-15 -2796 ($ (-1 $ $) (-592 $))) (-15 -4029 ((-112) $ $)) (-15 -4029 ((-112) $ (-1142))) (-15 -2685 ($ $ (-621 (-1142)) (-621 (-1 $ $)))) (-15 -2685 ($ $ (-621 (-1142)) (-621 (-1 $ (-621 $))))) (-15 -2685 ($ $ (-1142) (-1 $ (-621 $)))) (-15 -2685 ($ $ (-1142) (-1 $ $))) (-15 -2685 ($ $ (-621 (-114)) (-621 (-1 $ $)))) (-15 -2685 ($ $ (-621 (-114)) (-621 (-1 $ (-621 $))))) (-15 -2685 ($ $ (-114) (-1 $ (-621 $)))) (-15 -2685 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1018)) (PROGN (-15 -1417 ((-1138 $) (-592 $))) (-15 -2539 ($ $))) |%noBranch|) (IF (|has| $ (-1009 (-549))) (PROGN (-15 -4062 ((-112) $)) (-15 -3061 ((-112) $))) |%noBranch|)))
-(((-101) . T) ((-593 (-834)) . T) ((-302 $) . T) ((-505 (-592 $) $) . T) ((-505 $ $) . T) ((-823) . T) ((-1009 (-592 $)) . T) ((-1066) . T))
-((-1920 (((-621 |#1|) (-621 |#1|)) 10)))
-(((-296 |#1|) (-10 -7 (-15 -1920 ((-621 |#1|) (-621 |#1|)))) (-821)) (T -296))
-((-1920 (*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-821)) (-5 *1 (-296 *3)))))
-(-10 -7 (-15 -1920 ((-621 |#1|) (-621 |#1|))))
-((-2796 (((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)) 17)))
-(((-297 |#1| |#2|) (-10 -7 (-15 -2796 ((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)))) (-1018) (-1018)) (T -297))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-665 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-665 *6)) (-5 *1 (-297 *5 *6)))))
-(-10 -7 (-15 -2796 ((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|))))
-((-3229 (((-1225 (-309 (-372))) (-1225 (-309 (-219)))) 105)) (-2575 (((-1060 (-816 (-219))) (-1060 (-816 (-372)))) 40)) (-2376 (((-621 (-1124)) (-1122 (-219))) 87)) (-3749 (((-309 (-372)) (-923 (-219))) 50)) (-3474 (((-219) (-923 (-219))) 46)) (-3345 (((-1124) (-372)) 169)) (-2502 (((-816 (-219)) (-816 (-372))) 34)) (-3671 (((-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))) (-1225 (-309 (-219)))) 143)) (-2123 (((-1006) (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006)))) 181) (((-1006) (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))))) 179)) (-1859 (((-665 (-219)) (-621 (-219)) (-747)) 14)) (-4171 (((-1225 (-675)) (-621 (-219))) 94)) (-1741 (((-621 (-1124)) (-621 (-219))) 75)) (-3980 (((-3 (-309 (-219)) "failed") (-309 (-219))) 120)) (-2900 (((-112) (-219) (-1060 (-816 (-219)))) 109)) (-3154 (((-1006) (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))) 198)) (-4124 (((-219) (-1060 (-816 (-219)))) 107)) (-2799 (((-219) (-1060 (-816 (-219)))) 108)) (-4295 (((-219) (-400 (-549))) 27)) (-3719 (((-1124) (-372)) 73)) (-2841 (((-219) (-372)) 17)) (-2924 (((-372) (-1225 (-309 (-219)))) 154)) (-3385 (((-309 (-219)) (-309 (-372))) 23)) (-4304 (((-400 (-549)) (-309 (-219))) 53)) (-3908 (((-309 (-400 (-549))) (-309 (-219))) 69)) (-1333 (((-309 (-372)) (-309 (-219))) 98)) (-1719 (((-219) (-309 (-219))) 54)) (-4071 (((-621 (-219)) (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) 64)) (-1622 (((-1060 (-816 (-219))) (-1060 (-816 (-219)))) 61)) (-1882 (((-1124) (-219)) 72)) (-4065 (((-675) (-219)) 90)) (-2199 (((-400 (-549)) (-219)) 55)) (-2100 (((-309 (-372)) (-219)) 49)) (-2844 (((-621 (-1060 (-816 (-219)))) (-621 (-1060 (-816 (-372))))) 43)) (-1951 (((-1006) (-621 (-1006))) 165) (((-1006) (-1006) (-1006)) 162)) (-1543 (((-1006) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
-(((-298) (-10 -7 (-15 -2841 ((-219) (-372))) (-15 -3385 ((-309 (-219)) (-309 (-372)))) (-15 -2502 ((-816 (-219)) (-816 (-372)))) (-15 -2575 ((-1060 (-816 (-219))) (-1060 (-816 (-372))))) (-15 -2844 ((-621 (-1060 (-816 (-219)))) (-621 (-1060 (-816 (-372)))))) (-15 -2199 ((-400 (-549)) (-219))) (-15 -4304 ((-400 (-549)) (-309 (-219)))) (-15 -1719 ((-219) (-309 (-219)))) (-15 -3980 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -2924 ((-372) (-1225 (-309 (-219))))) (-15 -3671 ((-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))) (-1225 (-309 (-219))))) (-15 -3908 ((-309 (-400 (-549))) (-309 (-219)))) (-15 -1622 ((-1060 (-816 (-219))) (-1060 (-816 (-219))))) (-15 -4071 ((-621 (-219)) (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))) (-15 -4065 ((-675) (-219))) (-15 -4171 ((-1225 (-675)) (-621 (-219)))) (-15 -1333 ((-309 (-372)) (-309 (-219)))) (-15 -3229 ((-1225 (-309 (-372))) (-1225 (-309 (-219))))) (-15 -2900 ((-112) (-219) (-1060 (-816 (-219))))) (-15 -1882 ((-1124) (-219))) (-15 -3719 ((-1124) (-372))) (-15 -1741 ((-621 (-1124)) (-621 (-219)))) (-15 -2376 ((-621 (-1124)) (-1122 (-219)))) (-15 -4124 ((-219) (-1060 (-816 (-219))))) (-15 -2799 ((-219) (-1060 (-816 (-219))))) (-15 -1951 ((-1006) (-1006) (-1006))) (-15 -1951 ((-1006) (-621 (-1006)))) (-15 -3345 ((-1124) (-372))) (-15 -2123 ((-1006) (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))))) (-15 -2123 ((-1006) (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006))))) (-15 -1543 ((-1006) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3154 ((-1006) (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))) (-15 -3749 ((-309 (-372)) (-923 (-219)))) (-15 -3474 ((-219) (-923 (-219)))) (-15 -2100 ((-309 (-372)) (-219))) (-15 -4295 ((-219) (-400 (-549)))) (-15 -1859 ((-665 (-219)) (-621 (-219)) (-747))))) (T -298))
-((-1859 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-219))) (-5 *4 (-747)) (-5 *2 (-665 (-219))) (-5 *1 (-298)))) (-4295 (*1 *2 *3) (-12 (-5 *3 (-400 (-549))) (-5 *2 (-219)) (-5 *1 (-298)))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-309 (-372))) (-5 *1 (-298)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-923 (-219))) (-5 *2 (-219)) (-5 *1 (-298)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-923 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))) (-5 *2 (-1006)) (-5 *1 (-298)))) (-1543 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1006)) (-5 *1 (-298)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006)))) (-5 *2 (-1006)) (-5 *1 (-298)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))))) (-5 *2 (-1006)) (-5 *1 (-298)))) (-3345 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1124)) (-5 *1 (-298)))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-621 (-1006))) (-5 *2 (-1006)) (-5 *1 (-298)))) (-1951 (*1 *2 *2 *2) (-12 (-5 *2 (-1006)) (-5 *1 (-298)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-1060 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-298)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1060 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-298)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-1122 (-219))) (-5 *2 (-621 (-1124))) (-5 *1 (-298)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-621 (-219))) (-5 *2 (-621 (-1124))) (-5 *1 (-298)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1124)) (-5 *1 (-298)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-298)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *4 (-1060 (-816 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-298)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-1225 (-309 (-219)))) (-5 *2 (-1225 (-309 (-372)))) (-5 *1 (-298)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-621 (-219))) (-5 *2 (-1225 (-675))) (-5 *1 (-298)))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-675)) (-5 *1 (-298)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-5 *2 (-621 (-219))) (-5 *1 (-298)))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-1060 (-816 (-219)))) (-5 *1 (-298)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-400 (-549)))) (-5 *1 (-298)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-1225 (-309 (-219)))) (-5 *2 (-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549)))) (-5 *1 (-298)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-1225 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-298)))) (-3980 (*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-298)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-219)) (-5 *1 (-298)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-400 (-549))) (-5 *1 (-298)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-549))) (-5 *1 (-298)))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-621 (-1060 (-816 (-372))))) (-5 *2 (-621 (-1060 (-816 (-219))))) (-5 *1 (-298)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-1060 (-816 (-372)))) (-5 *2 (-1060 (-816 (-219)))) (-5 *1 (-298)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-816 (-372))) (-5 *2 (-816 (-219))) (-5 *1 (-298)))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-309 (-372))) (-5 *2 (-309 (-219))) (-5 *1 (-298)))) (-2841 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-298)))))
-(-10 -7 (-15 -2841 ((-219) (-372))) (-15 -3385 ((-309 (-219)) (-309 (-372)))) (-15 -2502 ((-816 (-219)) (-816 (-372)))) (-15 -2575 ((-1060 (-816 (-219))) (-1060 (-816 (-372))))) (-15 -2844 ((-621 (-1060 (-816 (-219)))) (-621 (-1060 (-816 (-372)))))) (-15 -2199 ((-400 (-549)) (-219))) (-15 -4304 ((-400 (-549)) (-309 (-219)))) (-15 -1719 ((-219) (-309 (-219)))) (-15 -3980 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -2924 ((-372) (-1225 (-309 (-219))))) (-15 -3671 ((-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))) (-1225 (-309 (-219))))) (-15 -3908 ((-309 (-400 (-549))) (-309 (-219)))) (-15 -1622 ((-1060 (-816 (-219))) (-1060 (-816 (-219))))) (-15 -4071 ((-621 (-219)) (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))) (-15 -4065 ((-675) (-219))) (-15 -4171 ((-1225 (-675)) (-621 (-219)))) (-15 -1333 ((-309 (-372)) (-309 (-219)))) (-15 -3229 ((-1225 (-309 (-372))) (-1225 (-309 (-219))))) (-15 -2900 ((-112) (-219) (-1060 (-816 (-219))))) (-15 -1882 ((-1124) (-219))) (-15 -3719 ((-1124) (-372))) (-15 -1741 ((-621 (-1124)) (-621 (-219)))) (-15 -2376 ((-621 (-1124)) (-1122 (-219)))) (-15 -4124 ((-219) (-1060 (-816 (-219))))) (-15 -2799 ((-219) (-1060 (-816 (-219))))) (-15 -1951 ((-1006) (-1006) (-1006))) (-15 -1951 ((-1006) (-621 (-1006)))) (-15 -3345 ((-1124) (-372))) (-15 -2123 ((-1006) (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))))) (-15 -2123 ((-1006) (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006))))) (-15 -1543 ((-1006) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3154 ((-1006) (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))) (-15 -3749 ((-309 (-372)) (-923 (-219)))) (-15 -3474 ((-219) (-923 (-219)))) (-15 -2100 ((-309 (-372)) (-219))) (-15 -4295 ((-219) (-400 (-549)))) (-15 -1859 ((-665 (-219)) (-621 (-219)) (-747))))
-((-2647 (((-112) $ $) 11)) (-2094 (($ $ $) 15)) (-2066 (($ $ $) 14)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 44)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 53)) (-3726 (($ $ $) 21) (($ (-621 $)) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2038 (((-3 $ "failed") $ $) 17)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 46)))
-(((-299 |#1|) (-10 -8 (-15 -1496 ((-3 (-621 |#1|) "failed") (-621 |#1|) |#1|)) (-15 -3628 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3628 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4246 |#1|)) |#1| |#1|)) (-15 -2094 (|#1| |#1| |#1|)) (-15 -2066 (|#1| |#1| |#1|)) (-15 -2647 ((-112) |#1| |#1|)) (-15 -2245 ((-3 (-621 |#1|) "failed") (-621 |#1|) |#1|)) (-15 -3614 ((-2 (|:| -1569 (-621 |#1|)) (|:| -4246 |#1|)) (-621 |#1|))) (-15 -3726 (|#1| (-621 |#1|))) (-15 -3726 (|#1| |#1| |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#1|))) (-300)) (T -299))
-NIL
-(-10 -8 (-15 -1496 ((-3 (-621 |#1|) "failed") (-621 |#1|) |#1|)) (-15 -3628 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3628 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4246 |#1|)) |#1| |#1|)) (-15 -2094 (|#1| |#1| |#1|)) (-15 -2066 (|#1| |#1| |#1|)) (-15 -2647 ((-112) |#1| |#1|)) (-15 -2245 ((-3 (-621 |#1|) "failed") (-621 |#1|) |#1|)) (-15 -3614 ((-2 (|:| -1569 (-621 |#1|)) (|:| -4246 |#1|)) (-621 |#1|))) (-15 -3726 (|#1| (-621 |#1|))) (-15 -3726 (|#1| |#1| |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-2647 (((-112) $ $) 57)) (-1705 (($) 17 T CONST)) (-2094 (($ $ $) 53)) (-3976 (((-3 $ "failed") $) 32)) (-2066 (($ $ $) 54)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-3987 (((-112) $) 30)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-4091 (((-747) $) 56)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-1651 (((-304) (-1124) (-618 (-1124))) 16) (((-304) (-1124) (-1124)) 15) (((-304) (-618 (-1124))) 14) (((-304) (-1124)) 12)))
+(((-289) (-10 -7 (-15 -1651 ((-304) (-1124))) (-15 -1651 ((-304) (-618 (-1124)))) (-15 -1651 ((-304) (-1124) (-1124))) (-15 -1651 ((-304) (-1124) (-618 (-1124)))))) (T -289))
+((-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-1124))) (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-289)))) (-1651 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-289)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-304)) (-5 *1 (-289)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-289)))))
+(-10 -7 (-15 -1651 ((-304) (-1124))) (-15 -1651 ((-304) (-618 (-1124)))) (-15 -1651 ((-304) (-1124) (-1124))) (-15 -1651 ((-304) (-1124) (-618 (-1124)))))
+((-1655 (((-618 (-591 $)) $) 30)) (-1659 (($ $ (-286 $)) 81) (($ $ (-618 (-286 $))) 123) (($ $ (-618 (-591 $)) (-618 $)) NIL)) (-3491 (((-3 (-591 $) "failed") $) 113)) (-3490 (((-591 $) $) 112)) (-2892 (($ $) 19) (($ (-618 $)) 56)) (-1654 (((-618 (-113)) $) 38)) (-3368 (((-113) (-113)) 91)) (-2994 (((-112) $) 131)) (-4301 (($ (-1 $ $) (-591 $)) 89)) (-1657 (((-3 (-591 $) "failed") $) 93)) (-2308 (($ (-113) $) 61) (($ (-113) (-618 $)) 100)) (-2952 (((-112) $ (-113)) 117) (((-112) $ (-1142)) 116)) (-2922 (((-747) $) 46)) (-1653 (((-112) $ $) 59) (((-112) $ (-1142)) 51)) (-2995 (((-112) $) 129)) (-4110 (($ $ (-591 $) $) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL) (($ $ (-618 (-286 $))) 121) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ $))) 84) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-1142) (-1 $ (-618 $))) 69) (($ $ (-1142) (-1 $ $)) 75) (($ $ (-618 (-113)) (-618 (-1 $ $))) 83) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) 85) (($ $ (-113) (-1 $ (-618 $))) 71) (($ $ (-113) (-1 $ $)) 77)) (-4142 (($ (-113) $) 62) (($ (-113) $ $) 63) (($ (-113) $ $ $) 64) (($ (-113) $ $ $ $) 65) (($ (-113) (-618 $)) 109)) (-1658 (($ $) 53) (($ $ $) 119)) (-2909 (($ $) 17) (($ (-618 $)) 55)) (-2329 (((-112) (-113)) 22)))
+(((-290 |#1|) (-10 -8 (-15 -2994 ((-112) |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| |#1|)))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| |#1|)))) (-15 -1653 ((-112) |#1| (-1142))) (-15 -1653 ((-112) |#1| |#1|)) (-15 -4301 (|#1| (-1 |#1| |#1|) (-591 |#1|))) (-15 -2308 (|#1| (-113) (-618 |#1|))) (-15 -2308 (|#1| (-113) |#1|)) (-15 -2952 ((-112) |#1| (-1142))) (-15 -2952 ((-112) |#1| (-113))) (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -1654 ((-618 (-113)) |#1|)) (-15 -1655 ((-618 (-591 |#1|)) |#1|)) (-15 -1657 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -2922 ((-747) |#1|)) (-15 -1658 (|#1| |#1| |#1|)) (-15 -1658 (|#1| |#1|)) (-15 -2892 (|#1| (-618 |#1|))) (-15 -2892 (|#1| |#1|)) (-15 -2909 (|#1| (-618 |#1|))) (-15 -2909 (|#1| |#1|)) (-15 -1659 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -1659 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4142 (|#1| (-113) (-618 |#1|))) (-15 -4142 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -4110 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -3490 ((-591 |#1|) |#1|)) (-15 -3491 ((-3 (-591 |#1|) "failed") |#1|))) (-291)) (T -290))
+((-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-290 *3)) (-4 *3 (-291)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-290 *4)) (-4 *4 (-291)))))
+(-10 -8 (-15 -2994 ((-112) |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| |#1|)))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| |#1|)))) (-15 -1653 ((-112) |#1| (-1142))) (-15 -1653 ((-112) |#1| |#1|)) (-15 -4301 (|#1| (-1 |#1| |#1|) (-591 |#1|))) (-15 -2308 (|#1| (-113) (-618 |#1|))) (-15 -2308 (|#1| (-113) |#1|)) (-15 -2952 ((-112) |#1| (-1142))) (-15 -2952 ((-112) |#1| (-113))) (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -1654 ((-618 (-113)) |#1|)) (-15 -1655 ((-618 (-591 |#1|)) |#1|)) (-15 -1657 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -2922 ((-747) |#1|)) (-15 -1658 (|#1| |#1| |#1|)) (-15 -1658 (|#1| |#1|)) (-15 -2892 (|#1| (-618 |#1|))) (-15 -2892 (|#1| |#1|)) (-15 -2909 (|#1| (-618 |#1|))) (-15 -2909 (|#1| |#1|)) (-15 -1659 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -1659 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4142 (|#1| (-113) (-618 |#1|))) (-15 -4142 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -4110 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -3490 ((-591 |#1|) |#1|)) (-15 -3491 ((-3 (-591 |#1|) "failed") |#1|)))
+((-2887 (((-112) $ $) 7)) (-1655 (((-618 (-591 $)) $) 44)) (-1659 (($ $ (-286 $)) 56) (($ $ (-618 (-286 $))) 55) (($ $ (-618 (-591 $)) (-618 $)) 54)) (-3491 (((-3 (-591 $) "failed") $) 69)) (-3490 (((-591 $) $) 68)) (-2892 (($ $) 51) (($ (-618 $)) 50)) (-1654 (((-618 (-113)) $) 43)) (-3368 (((-113) (-113)) 42)) (-2994 (((-112) $) 22 (|has| $ (-1009 (-535))))) (-1652 (((-1136 $) (-591 $)) 25 (|has| $ (-1018)))) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-4301 (($ (-1 $ $) (-591 $)) 36)) (-1657 (((-3 (-591 $) "failed") $) 46)) (-3576 (((-1124) $) 9)) (-1656 (((-618 (-591 $)) $) 45)) (-2308 (($ (-113) $) 38) (($ (-113) (-618 $)) 37)) (-2952 (((-112) $ (-113)) 40) (((-112) $ (-1142)) 39)) (-2922 (((-747) $) 47)) (-3577 (((-1086) $) 10)) (-1653 (((-112) $ $) 35) (((-112) $ (-1142)) 34)) (-2995 (((-112) $) 23 (|has| $ (-1009 (-535))))) (-4110 (($ $ (-591 $) $) 67) (($ $ (-618 (-591 $)) (-618 $)) 66) (($ $ (-618 (-286 $))) 65) (($ $ (-286 $)) 64) (($ $ $ $) 63) (($ $ (-618 $) (-618 $)) 62) (($ $ (-618 (-1142)) (-618 (-1 $ $))) 33) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) 32) (($ $ (-1142) (-1 $ (-618 $))) 31) (($ $ (-1142) (-1 $ $)) 30) (($ $ (-618 (-113)) (-618 (-1 $ $))) 29) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) 28) (($ $ (-113) (-1 $ (-618 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-4142 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-618 $)) 57)) (-1658 (($ $) 49) (($ $ $) 48)) (-3519 (($ $) 24 (|has| $ (-1018)))) (-4300 (((-835) $) 11) (($ (-591 $)) 70)) (-2909 (($ $) 53) (($ (-618 $)) 52)) (-2329 (((-112) (-113)) 41)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)))
+(((-291) (-138)) (T -291))
+((-4142 (*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4142 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4142 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4142 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4142 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-618 *1)) (-4 *1 (-291)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-286 *1)) (-4 *1 (-291)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-286 *1))) (-4 *1 (-291)))) (-1659 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-591 *1))) (-5 *3 (-618 *1)) (-4 *1 (-291)))) (-2909 (*1 *1 *1) (-4 *1 (-291))) (-2909 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-291)))) (-2892 (*1 *1 *1) (-4 *1 (-291))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-291)))) (-1658 (*1 *1 *1) (-4 *1 (-291))) (-1658 (*1 *1 *1 *1) (-4 *1 (-291))) (-2922 (*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-747)))) (-1657 (*1 *2 *1) (|partial| -12 (-5 *2 (-591 *1)) (-4 *1 (-291)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-618 (-591 *1))) (-4 *1 (-291)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-618 (-591 *1))) (-4 *1 (-291)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-618 (-113))))) (-3368 (*1 *2 *2) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-2329 (*1 *2 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) (-2952 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) (-2952 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1142)) (-5 *2 (-112)))) (-2308 (*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-2308 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-618 *1)) (-4 *1 (-291)))) (-4301 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-591 *1)) (-4 *1 (-291)))) (-1653 (*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-112)))) (-1653 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1142)) (-5 *2 (-112)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-1 *1 *1))) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-1 *1 (-618 *1)))) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1 *1 (-618 *1))) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-113))) (-5 *3 (-618 (-1 *1 *1))) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-113))) (-5 *3 (-618 (-1 *1 (-618 *1)))) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-618 *1))) (-4 *1 (-291)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-1018)) (-4 *1 (-291)) (-5 *2 (-1136 *1)))) (-3519 (*1 *1 *1) (-12 (-4 *1 (-1018)) (-4 *1 (-291)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-1009 (-535))) (-4 *1 (-291)) (-5 *2 (-112)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-1009 (-535))) (-4 *1 (-291)) (-5 *2 (-112)))))
+(-13 (-823) (-1009 (-591 $)) (-505 (-591 $) $) (-302 $) (-10 -8 (-15 -4142 ($ (-113) $)) (-15 -4142 ($ (-113) $ $)) (-15 -4142 ($ (-113) $ $ $)) (-15 -4142 ($ (-113) $ $ $ $)) (-15 -4142 ($ (-113) (-618 $))) (-15 -1659 ($ $ (-286 $))) (-15 -1659 ($ $ (-618 (-286 $)))) (-15 -1659 ($ $ (-618 (-591 $)) (-618 $))) (-15 -2909 ($ $)) (-15 -2909 ($ (-618 $))) (-15 -2892 ($ $)) (-15 -2892 ($ (-618 $))) (-15 -1658 ($ $)) (-15 -1658 ($ $ $)) (-15 -2922 ((-747) $)) (-15 -1657 ((-3 (-591 $) "failed") $)) (-15 -1656 ((-618 (-591 $)) $)) (-15 -1655 ((-618 (-591 $)) $)) (-15 -1654 ((-618 (-113)) $)) (-15 -3368 ((-113) (-113))) (-15 -2329 ((-112) (-113))) (-15 -2952 ((-112) $ (-113))) (-15 -2952 ((-112) $ (-1142))) (-15 -2308 ($ (-113) $)) (-15 -2308 ($ (-113) (-618 $))) (-15 -4301 ($ (-1 $ $) (-591 $))) (-15 -1653 ((-112) $ $)) (-15 -1653 ((-112) $ (-1142))) (-15 -4110 ($ $ (-618 (-1142)) (-618 (-1 $ $)))) (-15 -4110 ($ $ (-618 (-1142)) (-618 (-1 $ (-618 $))))) (-15 -4110 ($ $ (-1142) (-1 $ (-618 $)))) (-15 -4110 ($ $ (-1142) (-1 $ $))) (-15 -4110 ($ $ (-618 (-113)) (-618 (-1 $ $)))) (-15 -4110 ($ $ (-618 (-113)) (-618 (-1 $ (-618 $))))) (-15 -4110 ($ $ (-113) (-1 $ (-618 $)))) (-15 -4110 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1018)) (PROGN (-15 -1652 ((-1136 $) (-591 $))) (-15 -3519 ($ $))) |%noBranch|) (IF (|has| $ (-1009 (-535))) (PROGN (-15 -2995 ((-112) $)) (-15 -2994 ((-112) $))) |%noBranch|)))
+(((-101) . T) ((-593 (-835)) . T) ((-302 $) . T) ((-505 (-591 $) $) . T) ((-505 $ $) . T) ((-823) . T) ((-1009 (-591 $)) . T) ((-1067) . T))
+((-4301 ((|#2| (-1 |#2| |#1|) (-1124) (-591 |#1|)) 18)))
+(((-292 |#1| |#2|) (-10 -7 (-15 -4301 (|#2| (-1 |#2| |#1|) (-1124) (-591 |#1|)))) (-291) (-1178)) (T -292))
+((-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1124)) (-5 *5 (-591 *6)) (-4 *6 (-291)) (-4 *2 (-1178)) (-5 *1 (-292 *6 *2)))))
+(-10 -7 (-15 -4301 (|#2| (-1 |#2| |#1|) (-1124) (-591 |#1|))))
+((-4301 ((|#2| (-1 |#2| |#1|) (-591 |#1|)) 17)))
+(((-293 |#1| |#2|) (-10 -7 (-15 -4301 (|#2| (-1 |#2| |#1|) (-591 |#1|)))) (-291) (-291)) (T -293))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-591 *5)) (-4 *5 (-291)) (-4 *2 (-291)) (-5 *1 (-293 *5 *2)))))
+(-10 -7 (-15 -4301 (|#2| (-1 |#2| |#1|) (-591 |#1|))))
+((-1662 (((-1119 (-219)) (-307 (-219)) (-618 (-1142)) (-1055 (-815 (-219)))) 93)) (-1663 (((-1119 (-219)) (-1224 (-307 (-219))) (-618 (-1142)) (-1055 (-815 (-219)))) 107) (((-1119 (-219)) (-307 (-219)) (-618 (-1142)) (-1055 (-815 (-219)))) 61)) (-1684 (((-618 (-1124)) (-1119 (-219))) NIL)) (-1661 (((-618 (-219)) (-307 (-219)) (-1142) (-1055 (-815 (-219)))) 58)) (-1664 (((-618 (-219)) (-917 (-400 (-535))) (-1142) (-1055 (-815 (-219)))) 49)) (-1683 (((-618 (-1124)) (-618 (-219))) NIL)) (-1685 (((-219) (-1055 (-815 (-219)))) 25)) (-1686 (((-219) (-1055 (-815 (-219)))) 26)) (-1660 (((-112) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 54)) (-1681 (((-1124) (-219)) NIL)))
+(((-294) (-10 -7 (-15 -1685 ((-219) (-1055 (-815 (-219))))) (-15 -1686 ((-219) (-1055 (-815 (-219))))) (-15 -1660 ((-112) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-618 (-219)) (-307 (-219)) (-1142) (-1055 (-815 (-219))))) (-15 -1662 ((-1119 (-219)) (-307 (-219)) (-618 (-1142)) (-1055 (-815 (-219))))) (-15 -1663 ((-1119 (-219)) (-307 (-219)) (-618 (-1142)) (-1055 (-815 (-219))))) (-15 -1663 ((-1119 (-219)) (-1224 (-307 (-219))) (-618 (-1142)) (-1055 (-815 (-219))))) (-15 -1664 ((-618 (-219)) (-917 (-400 (-535))) (-1142) (-1055 (-815 (-219))))) (-15 -1681 ((-1124) (-219))) (-15 -1683 ((-618 (-1124)) (-618 (-219)))) (-15 -1684 ((-618 (-1124)) (-1119 (-219)))))) (T -294))
+((-1684 (*1 *2 *3) (-12 (-5 *3 (-1119 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-294)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-294)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-294)))) (-1664 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-917 (-400 (-535)))) (-5 *4 (-1142)) (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-618 (-219))) (-5 *1 (-294)))) (-1663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *4 (-618 (-1142))) (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-294)))) (-1663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-618 (-1142))) (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-294)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-618 (-1142))) (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-294)))) (-1661 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1142)) (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-618 (-219))) (-5 *1 (-294)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-112)) (-5 *1 (-294)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-294)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-294)))))
+(-10 -7 (-15 -1685 ((-219) (-1055 (-815 (-219))))) (-15 -1686 ((-219) (-1055 (-815 (-219))))) (-15 -1660 ((-112) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-618 (-219)) (-307 (-219)) (-1142) (-1055 (-815 (-219))))) (-15 -1662 ((-1119 (-219)) (-307 (-219)) (-618 (-1142)) (-1055 (-815 (-219))))) (-15 -1663 ((-1119 (-219)) (-307 (-219)) (-618 (-1142)) (-1055 (-815 (-219))))) (-15 -1663 ((-1119 (-219)) (-1224 (-307 (-219))) (-618 (-1142)) (-1055 (-815 (-219))))) (-15 -1664 ((-618 (-219)) (-917 (-400 (-535))) (-1142) (-1055 (-815 (-219))))) (-15 -1681 ((-1124) (-219))) (-15 -1683 ((-618 (-1124)) (-618 (-219)))) (-15 -1684 ((-618 (-1124)) (-1119 (-219)))))
+((-2094 (((-112) (-219)) 10)))
+(((-295 |#1| |#2|) (-10 -7 (-15 -2094 ((-112) (-219)))) (-219) (-219)) (T -295))
+((-2094 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-295 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -2094 ((-112) (-219))))
+((-1680 (((-1224 (-307 (-371))) (-1224 (-307 (-219)))) 105)) (-1668 (((-1055 (-815 (-219))) (-1055 (-815 (-371)))) 40)) (-1684 (((-618 (-1124)) (-1119 (-219))) 87)) (-1691 (((-307 (-371)) (-917 (-219))) 50)) (-1692 (((-219) (-917 (-219))) 46)) (-1687 (((-1124) (-371)) 169)) (-1667 (((-815 (-219)) (-815 (-371))) 34)) (-1673 (((-2 (|:| |additions| (-535)) (|:| |multiplications| (-535)) (|:| |exponentiations| (-535)) (|:| |functionCalls| (-535))) (-1224 (-307 (-219)))) 143)) (-1688 (((-1006) (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006)))) 181) (((-1006) (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) 179)) (-1695 (((-665 (-219)) (-618 (-219)) (-747)) 14)) (-1678 (((-1224 (-675)) (-618 (-219))) 94)) (-1683 (((-618 (-1124)) (-618 (-219))) 75)) (-2977 (((-3 (-307 (-219)) "failed") (-307 (-219))) 120)) (-2094 (((-112) (-219) (-1055 (-815 (-219)))) 109)) (-1690 (((-1006) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) 198)) (-1685 (((-219) (-1055 (-815 (-219)))) 107)) (-1686 (((-219) (-1055 (-815 (-219)))) 108)) (-1694 (((-219) (-400 (-535))) 27)) (-1682 (((-1124) (-371)) 73)) (-1665 (((-219) (-371)) 17)) (-1672 (((-371) (-1224 (-307 (-219)))) 154)) (-1666 (((-307 (-219)) (-307 (-371))) 23)) (-1670 (((-400 (-535)) (-307 (-219))) 53)) (-1674 (((-307 (-400 (-535))) (-307 (-219))) 69)) (-1679 (((-307 (-371)) (-307 (-219))) 98)) (-1671 (((-219) (-307 (-219))) 54)) (-1676 (((-618 (-219)) (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) 64)) (-1675 (((-1055 (-815 (-219))) (-1055 (-815 (-219)))) 61)) (-1681 (((-1124) (-219)) 72)) (-1677 (((-675) (-219)) 90)) (-1669 (((-400 (-535)) (-219)) 55)) (-1693 (((-307 (-371)) (-219)) 49)) (-4313 (((-618 (-1055 (-815 (-219)))) (-618 (-1055 (-815 (-371))))) 43)) (-4144 (((-1006) (-618 (-1006))) 165) (((-1006) (-1006) (-1006)) 162)) (-1689 (((-1006) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
+(((-296) (-10 -7 (-15 -1665 ((-219) (-371))) (-15 -1666 ((-307 (-219)) (-307 (-371)))) (-15 -1667 ((-815 (-219)) (-815 (-371)))) (-15 -1668 ((-1055 (-815 (-219))) (-1055 (-815 (-371))))) (-15 -4313 ((-618 (-1055 (-815 (-219)))) (-618 (-1055 (-815 (-371)))))) (-15 -1669 ((-400 (-535)) (-219))) (-15 -1670 ((-400 (-535)) (-307 (-219)))) (-15 -1671 ((-219) (-307 (-219)))) (-15 -2977 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1672 ((-371) (-1224 (-307 (-219))))) (-15 -1673 ((-2 (|:| |additions| (-535)) (|:| |multiplications| (-535)) (|:| |exponentiations| (-535)) (|:| |functionCalls| (-535))) (-1224 (-307 (-219))))) (-15 -1674 ((-307 (-400 (-535))) (-307 (-219)))) (-15 -1675 ((-1055 (-815 (-219))) (-1055 (-815 (-219))))) (-15 -1676 ((-618 (-219)) (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) (-15 -1677 ((-675) (-219))) (-15 -1678 ((-1224 (-675)) (-618 (-219)))) (-15 -1679 ((-307 (-371)) (-307 (-219)))) (-15 -1680 ((-1224 (-307 (-371))) (-1224 (-307 (-219))))) (-15 -2094 ((-112) (-219) (-1055 (-815 (-219))))) (-15 -1681 ((-1124) (-219))) (-15 -1682 ((-1124) (-371))) (-15 -1683 ((-618 (-1124)) (-618 (-219)))) (-15 -1684 ((-618 (-1124)) (-1119 (-219)))) (-15 -1685 ((-219) (-1055 (-815 (-219))))) (-15 -1686 ((-219) (-1055 (-815 (-219))))) (-15 -4144 ((-1006) (-1006) (-1006))) (-15 -4144 ((-1006) (-618 (-1006)))) (-15 -1687 ((-1124) (-371))) (-15 -1688 ((-1006) (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))))) (-15 -1688 ((-1006) (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))))) (-15 -1689 ((-1006) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1690 ((-1006) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))) (-15 -1691 ((-307 (-371)) (-917 (-219)))) (-15 -1692 ((-219) (-917 (-219)))) (-15 -1693 ((-307 (-371)) (-219))) (-15 -1694 ((-219) (-400 (-535)))) (-15 -1695 ((-665 (-219)) (-618 (-219)) (-747))))) (T -296))
+((-1695 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-219))) (-5 *4 (-747)) (-5 *2 (-665 (-219))) (-5 *1 (-296)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-400 (-535))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-307 (-371))) (-5 *1 (-296)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) (-5 *2 (-1006)) (-5 *1 (-296)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1006)) (-5 *1 (-296)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006)))) (-5 *2 (-1006)) (-5 *1 (-296)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *2 (-1006)) (-5 *1 (-296)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1124)) (-5 *1 (-296)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-618 (-1006))) (-5 *2 (-1006)) (-5 *1 (-296)))) (-4144 (*1 *2 *2 *2) (-12 (-5 *2 (-1006)) (-5 *1 (-296)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1119 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-296)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-296)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1124)) (-5 *1 (-296)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-296)))) (-2094 (*1 *2 *3 *4) (-12 (-5 *4 (-1055 (-815 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-296)))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *2 (-1224 (-307 (-371)))) (-5 *1 (-296)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-1224 (-675))) (-5 *1 (-296)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-675)) (-5 *1 (-296)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *2 (-618 (-219))) (-5 *1 (-296)))) (-1675 (*1 *2 *2) (-12 (-5 *2 (-1055 (-815 (-219)))) (-5 *1 (-296)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-400 (-535)))) (-5 *1 (-296)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *2 (-2 (|:| |additions| (-535)) (|:| |multiplications| (-535)) (|:| |exponentiations| (-535)) (|:| |functionCalls| (-535)))) (-5 *1 (-296)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-296)))) (-2977 (*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-296)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-400 (-535))) (-5 *1 (-296)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-535))) (-5 *1 (-296)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-618 (-1055 (-815 (-371))))) (-5 *2 (-618 (-1055 (-815 (-219))))) (-5 *1 (-296)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-371)))) (-5 *2 (-1055 (-815 (-219)))) (-5 *1 (-296)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-815 (-371))) (-5 *2 (-815 (-219))) (-5 *1 (-296)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-307 (-371))) (-5 *2 (-307 (-219))) (-5 *1 (-296)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-296)))))
+(-10 -7 (-15 -1665 ((-219) (-371))) (-15 -1666 ((-307 (-219)) (-307 (-371)))) (-15 -1667 ((-815 (-219)) (-815 (-371)))) (-15 -1668 ((-1055 (-815 (-219))) (-1055 (-815 (-371))))) (-15 -4313 ((-618 (-1055 (-815 (-219)))) (-618 (-1055 (-815 (-371)))))) (-15 -1669 ((-400 (-535)) (-219))) (-15 -1670 ((-400 (-535)) (-307 (-219)))) (-15 -1671 ((-219) (-307 (-219)))) (-15 -2977 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1672 ((-371) (-1224 (-307 (-219))))) (-15 -1673 ((-2 (|:| |additions| (-535)) (|:| |multiplications| (-535)) (|:| |exponentiations| (-535)) (|:| |functionCalls| (-535))) (-1224 (-307 (-219))))) (-15 -1674 ((-307 (-400 (-535))) (-307 (-219)))) (-15 -1675 ((-1055 (-815 (-219))) (-1055 (-815 (-219))))) (-15 -1676 ((-618 (-219)) (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) (-15 -1677 ((-675) (-219))) (-15 -1678 ((-1224 (-675)) (-618 (-219)))) (-15 -1679 ((-307 (-371)) (-307 (-219)))) (-15 -1680 ((-1224 (-307 (-371))) (-1224 (-307 (-219))))) (-15 -2094 ((-112) (-219) (-1055 (-815 (-219))))) (-15 -1681 ((-1124) (-219))) (-15 -1682 ((-1124) (-371))) (-15 -1683 ((-618 (-1124)) (-618 (-219)))) (-15 -1684 ((-618 (-1124)) (-1119 (-219)))) (-15 -1685 ((-219) (-1055 (-815 (-219))))) (-15 -1686 ((-219) (-1055 (-815 (-219))))) (-15 -4144 ((-1006) (-1006) (-1006))) (-15 -4144 ((-1006) (-618 (-1006)))) (-15 -1687 ((-1124) (-371))) (-15 -1688 ((-1006) (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))))) (-15 -1688 ((-1006) (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))))) (-15 -1689 ((-1006) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1690 ((-1006) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))) (-15 -1691 ((-307 (-371)) (-917 (-219)))) (-15 -1692 ((-219) (-917 (-219)))) (-15 -1693 ((-307 (-371)) (-219))) (-15 -1694 ((-219) (-400 (-535)))) (-15 -1695 ((-665 (-219)) (-618 (-219)) (-747))))
+((-1696 (((-618 |#1|) (-618 |#1|)) 10)))
+(((-297 |#1|) (-10 -7 (-15 -1696 ((-618 |#1|) (-618 |#1|)))) (-821)) (T -297))
+((-1696 (*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-821)) (-5 *1 (-297 *3)))))
+(-10 -7 (-15 -1696 ((-618 |#1|) (-618 |#1|))))
+((-4301 (((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)) 17)))
+(((-298 |#1| |#2|) (-10 -7 (-15 -4301 ((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)))) (-1018) (-1018)) (T -298))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-665 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-665 *6)) (-5 *1 (-298 *5 *6)))))
+(-10 -7 (-15 -4301 ((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|))))
+((-1700 (((-112) $ $) 11)) (-2883 (($ $ $) 15)) (-2882 (($ $ $) 14)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 44)) (-1697 (((-3 (-618 $) "failed") (-618 $) $) 53)) (-3478 (($ $ $) 21) (($ (-618 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3803 (((-3 $ "failed") $ $) 17)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 46)))
+(((-299 |#1|) (-10 -8 (-15 -1697 ((-3 (-618 |#1|) "failed") (-618 |#1|) |#1|)) (-15 -1698 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1698 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2492 |#1|)) |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -3061 ((-3 (-618 |#1|) "failed") (-618 |#1|) |#1|)) (-15 -3062 ((-2 (|:| -4296 (-618 |#1|)) (|:| -2492 |#1|)) (-618 |#1|))) (-15 -3478 (|#1| (-618 |#1|))) (-15 -3478 (|#1| |#1| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|))) (-300)) (T -299))
+NIL
+(-10 -8 (-15 -1697 ((-3 (-618 |#1|) "failed") (-618 |#1|) |#1|)) (-15 -1698 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1698 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2492 |#1|)) |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -3061 ((-3 (-618 |#1|) "failed") (-618 |#1|) |#1|)) (-15 -3062 ((-2 (|:| -4296 (-618 |#1|)) (|:| -2492 |#1|)) (-618 |#1|))) (-15 -3478 (|#1| (-618 |#1|))) (-15 -3478 (|#1| |#1| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-2493 (((-112) $) 30)) (-1697 (((-3 (-618 $) "failed") (-618 $) $) 50)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-300) (-138)) (T -300))
-((-2647 (*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-747)))) (-1346 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-300)))) (-2066 (*1 *1 *1 *1) (-4 *1 (-300))) (-2094 (*1 *1 *1 *1) (-4 *1 (-300))) (-3628 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4246 *1))) (-4 *1 (-300)))) (-3628 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-300)))) (-1496 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-621 *1)) (-4 *1 (-300)))))
-(-13 (-891) (-10 -8 (-15 -2647 ((-112) $ $)) (-15 -4091 ((-747) $)) (-15 -1346 ((-2 (|:| -2112 $) (|:| -3249 $)) $ $)) (-15 -2066 ($ $ $)) (-15 -2094 ($ $ $)) (-15 -3628 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $)) (-15 -3628 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1496 ((-3 (-621 $) "failed") (-621 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-2685 (($ $ (-621 |#2|) (-621 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-287 |#2|)) 11) (($ $ (-621 (-287 |#2|))) NIL)))
-(((-301 |#1| |#2|) (-10 -8 (-15 -2685 (|#1| |#1| (-621 (-287 |#2|)))) (-15 -2685 (|#1| |#1| (-287 |#2|))) (-15 -2685 (|#1| |#1| |#2| |#2|)) (-15 -2685 (|#1| |#1| (-621 |#2|) (-621 |#2|)))) (-302 |#2|) (-1066)) (T -301))
-NIL
-(-10 -8 (-15 -2685 (|#1| |#1| (-621 (-287 |#2|)))) (-15 -2685 (|#1| |#1| (-287 |#2|))) (-15 -2685 (|#1| |#1| |#2| |#2|)) (-15 -2685 (|#1| |#1| (-621 |#2|) (-621 |#2|))))
-((-2685 (($ $ (-621 |#1|) (-621 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-287 |#1|)) 11) (($ $ (-621 (-287 |#1|))) 10)))
-(((-302 |#1|) (-138) (-1066)) (T -302))
-((-2685 (*1 *1 *1 *2) (-12 (-5 *2 (-287 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1066)))) (-2685 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-287 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1066)))))
-(-13 (-505 |t#1| |t#1|) (-10 -8 (-15 -2685 ($ $ (-287 |t#1|))) (-15 -2685 ($ $ (-621 (-287 |t#1|))))))
+((-1700 (*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-747)))) (-3202 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-300)))) (-2882 (*1 *1 *1 *1) (-4 *1 (-300))) (-2883 (*1 *1 *1 *1) (-4 *1 (-300))) (-1698 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2492 *1))) (-4 *1 (-300)))) (-1698 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-300)))) (-1697 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-618 *1)) (-4 *1 (-300)))))
+(-13 (-892) (-10 -8 (-15 -1700 ((-112) $ $)) (-15 -1699 ((-747) $)) (-15 -3202 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -2882 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -1698 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $)) (-15 -1698 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1697 ((-3 (-618 $) "failed") (-618 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-4110 (($ $ (-618 |#2|) (-618 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-286 |#2|)) 11) (($ $ (-618 (-286 |#2|))) NIL)))
+(((-301 |#1| |#2|) (-10 -8 (-15 -4110 (|#1| |#1| (-618 (-286 |#2|)))) (-15 -4110 (|#1| |#1| (-286 |#2|))) (-15 -4110 (|#1| |#1| |#2| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#2|)))) (-302 |#2|) (-1067)) (T -301))
+NIL
+(-10 -8 (-15 -4110 (|#1| |#1| (-618 (-286 |#2|)))) (-15 -4110 (|#1| |#1| (-286 |#2|))) (-15 -4110 (|#1| |#1| |#2| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#2|))))
+((-4110 (($ $ (-618 |#1|) (-618 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-286 |#1|)) 11) (($ $ (-618 (-286 |#1|))) 10)))
+(((-302 |#1|) (-138) (-1067)) (T -302))
+((-4110 (*1 *1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1067)))) (-4110 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-286 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1067)))))
+(-13 (-505 |t#1| |t#1|) (-10 -8 (-15 -4110 ($ $ (-286 |t#1|))) (-15 -4110 ($ $ (-618 (-286 |t#1|))))))
(((-505 |#1| |#1|) . T))
-((-2685 ((|#1| (-1 |#1| (-549)) (-1144 (-400 (-549)))) 25)))
-(((-303 |#1|) (-10 -7 (-15 -2685 (|#1| (-1 |#1| (-549)) (-1144 (-400 (-549)))))) (-38 (-400 (-549)))) (T -303))
-((-2685 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-549))) (-5 *4 (-1144 (-400 (-549)))) (-5 *1 (-303 *2)) (-4 *2 (-38 (-400 (-549)))))))
-(-10 -7 (-15 -2685 (|#1| (-1 |#1| (-549)) (-1144 (-400 (-549))))))
-((-3833 (((-112) $ $) NIL)) (-1493 (((-549) $) 12)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3954 (((-1101) $) 9)) (-3845 (((-834) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-304) (-13 (-1049) (-10 -8 (-15 -3954 ((-1101) $)) (-15 -1493 ((-549) $))))) (T -304))
-((-3954 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-304)))) (-1493 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-304)))))
-(-13 (-1049) (-10 -8 (-15 -3954 ((-1101) $)) (-15 -1493 ((-549) $))))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 7)) (-2388 (((-112) $ $) 9)))
-(((-305) (-1066)) (T -305))
-NIL
-(-1066)
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 62)) (-2364 (((-1211 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-300)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-880)))) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-880)))) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-796)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-1211 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1142) "failed") $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-1142)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-549)))) (((-3 (-1210 |#2| |#3| |#4|) "failed") $) 25)) (-2658 (((-1211 |#1| |#2| |#3| |#4|) $) NIL) (((-1142) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-1142)))) (((-400 (-549)) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-549)))) (((-549) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-549)))) (((-1210 |#2| |#3| |#4|) $) NIL)) (-2094 (($ $ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-1211 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1225 (-1211 |#1| |#2| |#3| |#4|)))) (-665 $) (-1225 $)) NIL) (((-665 (-1211 |#1| |#2| |#3| |#4|)) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-534)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3079 (((-112) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-796)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-857 (-372))))) (-3987 (((-112) $) NIL)) (-2053 (($ $) NIL)) (-1393 (((-1211 |#1| |#2| |#3| |#4|) $) 21)) (-3982 (((-3 $ "failed") $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1117)))) (-2847 (((-112) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-796)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2862 (($ $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-3574 (($ $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-2796 (($ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) $) NIL)) (-2716 (((-3 (-816 |#2|) "failed") $) 78)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1117)) CONST)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1260 (($ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-300)))) (-4060 (((-1211 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-534)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-880)))) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2685 (($ $ (-621 (-1211 |#1| |#2| |#3| |#4|)) (-621 (-1211 |#1| |#2| |#3| |#4|))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-302 (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-302 (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-287 (-1211 |#1| |#2| |#3| |#4|))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-302 (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-621 (-287 (-1211 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-302 (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-621 (-1142)) (-621 (-1211 |#1| |#2| |#3| |#4|))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-505 (-1142) (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-1142) (-1211 |#1| |#2| |#3| |#4|)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-505 (-1142) (-1211 |#1| |#2| |#3| |#4|))))) (-4091 (((-747) $) NIL)) (-3340 (($ $ (-1211 |#1| |#2| |#3| |#4|)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-279 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|))))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3455 (($ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-747)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1142)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) (-747)) NIL) (($ $ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|))) NIL)) (-4288 (($ $) NIL)) (-1404 (((-1211 |#1| |#2| |#3| |#4|) $) 17)) (-2844 (((-863 (-549)) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-594 (-525)))) (((-372) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-993))) (((-219) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-993)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-1211 |#1| |#2| |#3| |#4|) (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-1211 |#1| |#2| |#3| |#4|)) 29) (($ (-1142)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-1142)))) (($ (-1210 |#2| |#3| |#4|)) 36)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-1211 |#1| |#2| |#3| |#4|) (-880))) (|has| (-1211 |#1| |#2| |#3| |#4|) (-143))))) (-1723 (((-747)) NIL)) (-2926 (((-1211 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-534)))) (-4053 (((-112) $ $) NIL)) (-3603 (($ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-796)))) (-3275 (($) 41 T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-747)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1142)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) (-747)) NIL) (($ $ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-2424 (((-112) $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-2411 (((-112) $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-2512 (($ $ $) 34) (($ (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) 31)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-1211 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1211 |#1| |#2| |#3| |#4|)) NIL)))
-(((-306 |#1| |#2| |#3| |#4|) (-13 (-963 (-1211 |#1| |#2| |#3| |#4|)) (-1009 (-1210 |#2| |#3| |#4|)) (-10 -8 (-15 -2716 ((-3 (-816 |#2|) "failed") $)) (-15 -3845 ($ (-1210 |#2| |#3| |#4|))))) (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444)) (-13 (-27) (-1164) (-423 |#1|)) (-1142) |#2|) (T -306))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1210 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-423 *3))) (-14 *5 (-1142)) (-14 *6 *4) (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444))) (-5 *1 (-306 *3 *4 *5 *6)))) (-2716 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444))) (-5 *2 (-816 *4)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-423 *3))) (-14 *5 (-1142)) (-14 *6 *4))))
-(-13 (-963 (-1211 |#1| |#2| |#3| |#4|)) (-1009 (-1210 |#2| |#3| |#4|)) (-10 -8 (-15 -2716 ((-3 (-816 |#2|) "failed") $)) (-15 -3845 ($ (-1210 |#2| |#3| |#4|)))))
-((-2796 (((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)) 13)))
-(((-307 |#1| |#2|) (-10 -7 (-15 -2796 ((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)))) (-823) (-823)) (T -307))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-309 *5)) (-4 *5 (-823)) (-4 *6 (-823)) (-5 *2 (-309 *6)) (-5 *1 (-307 *5 *6)))))
-(-10 -7 (-15 -2796 ((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|))))
-((-2339 (((-52) |#2| (-287 |#2|) (-747)) 33) (((-52) |#2| (-287 |#2|)) 24) (((-52) |#2| (-747)) 28) (((-52) |#2|) 25) (((-52) (-1142)) 21)) (-2825 (((-52) |#2| (-287 |#2|) (-400 (-549))) 51) (((-52) |#2| (-287 |#2|)) 48) (((-52) |#2| (-400 (-549))) 50) (((-52) |#2|) 49) (((-52) (-1142)) 47)) (-2366 (((-52) |#2| (-287 |#2|) (-400 (-549))) 46) (((-52) |#2| (-287 |#2|)) 43) (((-52) |#2| (-400 (-549))) 45) (((-52) |#2|) 44) (((-52) (-1142)) 42)) (-2354 (((-52) |#2| (-287 |#2|) (-549)) 39) (((-52) |#2| (-287 |#2|)) 35) (((-52) |#2| (-549)) 38) (((-52) |#2|) 36) (((-52) (-1142)) 34)))
-(((-308 |#1| |#2|) (-10 -7 (-15 -2339 ((-52) (-1142))) (-15 -2339 ((-52) |#2|)) (-15 -2339 ((-52) |#2| (-747))) (-15 -2339 ((-52) |#2| (-287 |#2|))) (-15 -2339 ((-52) |#2| (-287 |#2|) (-747))) (-15 -2354 ((-52) (-1142))) (-15 -2354 ((-52) |#2|)) (-15 -2354 ((-52) |#2| (-549))) (-15 -2354 ((-52) |#2| (-287 |#2|))) (-15 -2354 ((-52) |#2| (-287 |#2|) (-549))) (-15 -2366 ((-52) (-1142))) (-15 -2366 ((-52) |#2|)) (-15 -2366 ((-52) |#2| (-400 (-549)))) (-15 -2366 ((-52) |#2| (-287 |#2|))) (-15 -2366 ((-52) |#2| (-287 |#2|) (-400 (-549)))) (-15 -2825 ((-52) (-1142))) (-15 -2825 ((-52) |#2|)) (-15 -2825 ((-52) |#2| (-400 (-549)))) (-15 -2825 ((-52) |#2| (-287 |#2|))) (-15 -2825 ((-52) |#2| (-287 |#2|) (-400 (-549))))) (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1164) (-423 |#1|))) (T -308))
-((-2825 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-549))) (-4 *3 (-13 (-27) (-1164) (-423 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-549))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))))) (-2825 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *4))))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-423 *4))))) (-2366 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-549))) (-4 *3 (-13 (-27) (-1164) (-423 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-549))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))))) (-2366 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *4))))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-423 *4))))) (-2354 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *6))) (-4 *6 (-13 (-444) (-823) (-1009 *5) (-617 *5))) (-5 *5 (-549)) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-4 *5 (-13 (-444) (-823) (-1009 *4) (-617 *4))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))))) (-2354 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *4))))) (-2354 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-423 *4))))) (-2339 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-5 *5 (-747)) (-4 *3 (-13 (-27) (-1164) (-423 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))))) (-2339 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *4))))) (-2339 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-423 *4))))))
-(-10 -7 (-15 -2339 ((-52) (-1142))) (-15 -2339 ((-52) |#2|)) (-15 -2339 ((-52) |#2| (-747))) (-15 -2339 ((-52) |#2| (-287 |#2|))) (-15 -2339 ((-52) |#2| (-287 |#2|) (-747))) (-15 -2354 ((-52) (-1142))) (-15 -2354 ((-52) |#2|)) (-15 -2354 ((-52) |#2| (-549))) (-15 -2354 ((-52) |#2| (-287 |#2|))) (-15 -2354 ((-52) |#2| (-287 |#2|) (-549))) (-15 -2366 ((-52) (-1142))) (-15 -2366 ((-52) |#2|)) (-15 -2366 ((-52) |#2| (-400 (-549)))) (-15 -2366 ((-52) |#2| (-287 |#2|))) (-15 -2366 ((-52) |#2| (-287 |#2|) (-400 (-549)))) (-15 -2825 ((-52) (-1142))) (-15 -2825 ((-52) |#2|)) (-15 -2825 ((-52) |#2| (-400 (-549)))) (-15 -2825 ((-52) |#2| (-287 |#2|))) (-15 -2825 ((-52) |#2| (-287 |#2|) (-400 (-549)))))
-((-3833 (((-112) $ $) NIL)) (-2379 (((-621 $) $ (-1142)) NIL (|has| |#1| (-541))) (((-621 $) $) NIL (|has| |#1| (-541))) (((-621 $) (-1138 $) (-1142)) NIL (|has| |#1| (-541))) (((-621 $) (-1138 $)) NIL (|has| |#1| (-541))) (((-621 $) (-923 $)) NIL (|has| |#1| (-541)))) (-2767 (($ $ (-1142)) NIL (|has| |#1| (-541))) (($ $) NIL (|has| |#1| (-541))) (($ (-1138 $) (-1142)) NIL (|has| |#1| (-541))) (($ (-1138 $)) NIL (|has| |#1| (-541))) (($ (-923 $)) NIL (|has| |#1| (-541)))) (-3166 (((-112) $) 27 (-1536 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))))) (-2271 (((-621 (-1142)) $) 351)) (-2082 (((-400 (-1138 $)) $ (-592 $)) NIL (|has| |#1| (-541)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-1980 (((-621 (-592 $)) $) NIL)) (-1663 (($ $) 161 (|has| |#1| (-541)))) (-1511 (($ $) 137 (|has| |#1| (-541)))) (-2106 (($ $ (-1058 $)) 222 (|has| |#1| (-541))) (($ $ (-1142)) 218 (|has| |#1| (-541)))) (-2384 (((-3 $ "failed") $ $) NIL (-1536 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))))) (-3014 (($ $ (-287 $)) NIL) (($ $ (-621 (-287 $))) 368) (($ $ (-621 (-592 $)) (-621 $)) 412)) (-2461 (((-411 (-1138 $)) (-1138 $)) 295 (-12 (|has| |#1| (-444)) (|has| |#1| (-541))))) (-1912 (($ $) NIL (|has| |#1| (-541)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-541)))) (-2134 (($ $) NIL (|has| |#1| (-541)))) (-2647 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1639 (($ $) 157 (|has| |#1| (-541)))) (-1485 (($ $) 133 (|has| |#1| (-541)))) (-1664 (($ $ (-549)) 72 (|has| |#1| (-541)))) (-1685 (($ $) 165 (|has| |#1| (-541)))) (-1538 (($ $) 141 (|has| |#1| (-541)))) (-1705 (($) NIL (-1536 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1078))) CONST)) (-3810 (((-621 $) $ (-1142)) NIL (|has| |#1| (-541))) (((-621 $) $) NIL (|has| |#1| (-541))) (((-621 $) (-1138 $) (-1142)) NIL (|has| |#1| (-541))) (((-621 $) (-1138 $)) NIL (|has| |#1| (-541))) (((-621 $) (-923 $)) NIL (|has| |#1| (-541)))) (-1681 (($ $ (-1142)) NIL (|has| |#1| (-541))) (($ $) NIL (|has| |#1| (-541))) (($ (-1138 $) (-1142)) 124 (|has| |#1| (-541))) (($ (-1138 $)) NIL (|has| |#1| (-541))) (($ (-923 $)) NIL (|has| |#1| (-541)))) (-2713 (((-3 (-592 $) "failed") $) 17) (((-3 (-1142) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-923 |#1|)) "failed") $) NIL (|has| |#1| (-541))) (((-3 (-923 |#1|) "failed") $) NIL (|has| |#1| (-1018))) (((-3 (-400 (-549)) "failed") $) 46 (-1536 (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-2658 (((-592 $) $) 11) (((-1142) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-923 |#1|)) $) NIL (|has| |#1| (-541))) (((-923 |#1|) $) NIL (|has| |#1| (-1018))) (((-400 (-549)) $) 306 (-1536 (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-2094 (($ $ $) NIL (|has| |#1| (-541)))) (-1698 (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 117 (|has| |#1| (-1018))) (((-665 |#1|) (-665 $)) 107 (|has| |#1| (-1018))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))) (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))))) (-2558 (($ $) 89 (|has| |#1| (-541)))) (-3976 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1078))))) (-2066 (($ $ $) NIL (|has| |#1| (-541)))) (-1626 (($ $ (-1058 $)) 226 (|has| |#1| (-541))) (($ $ (-1142)) 224 (|has| |#1| (-541)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-541)))) (-2471 (((-112) $) NIL (|has| |#1| (-541)))) (-3752 (($ $ $) 192 (|has| |#1| (-541)))) (-1425 (($) 127 (|has| |#1| (-541)))) (-3969 (($ $ $) 212 (|has| |#1| (-541)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 374 (|has| |#1| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 381 (|has| |#1| (-857 (-372))))) (-3390 (($ $) NIL) (($ (-621 $)) NIL)) (-2415 (((-621 (-114)) $) NIL)) (-2015 (((-114) (-114)) 267)) (-3987 (((-112) $) 25 (-1536 (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1078))))) (-3061 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-2053 (($ $) 71 (|has| |#1| (-1018)))) (-1393 (((-1091 |#1| (-592 $)) $) 84 (|has| |#1| (-1018)))) (-3530 (((-112) $) 64 (|has| |#1| (-541)))) (-3930 (($ $ (-549)) NIL (|has| |#1| (-541)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-541)))) (-1417 (((-1138 $) (-592 $)) 268 (|has| $ (-1018)))) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2796 (($ (-1 $ $) (-592 $)) 408)) (-3364 (((-3 (-592 $) "failed") $) NIL)) (-3631 (($ $) 131 (|has| |#1| (-541)))) (-1712 (($ $) 237 (|has| |#1| (-541)))) (-3696 (($ (-621 $)) NIL (|has| |#1| (-541))) (($ $ $) NIL (|has| |#1| (-541)))) (-2677 (((-1124) $) NIL)) (-2063 (((-621 (-592 $)) $) 49)) (-1477 (($ (-114) $) NIL) (($ (-114) (-621 $)) 413)) (-4201 (((-3 (-621 $) "failed") $) NIL (|has| |#1| (-1078)))) (-1572 (((-3 (-2 (|:| |val| $) (|:| -3577 (-549))) "failed") $) NIL (|has| |#1| (-1018)))) (-1462 (((-3 (-621 $) "failed") $) 416 (|has| |#1| (-25)))) (-3505 (((-3 (-2 (|:| -1569 (-549)) (|:| |var| (-592 $))) "failed") $) 420 (|has| |#1| (-25)))) (-4219 (((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $) NIL (|has| |#1| (-1078))) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $ (-114)) NIL (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $ (-1142)) NIL (|has| |#1| (-1018)))) (-1581 (((-112) $ (-114)) NIL) (((-112) $ (-1142)) 53)) (-1991 (($ $) NIL (-1536 (|has| |#1| (-465)) (|has| |#1| (-541))))) (-4211 (($ $ (-1142)) 241 (|has| |#1| (-541))) (($ $ (-1058 $)) 243 (|has| |#1| (-541)))) (-4035 (((-747) $) NIL)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) 43)) (-2012 ((|#1| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 288 (|has| |#1| (-541)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-541))) (($ $ $) NIL (|has| |#1| (-541)))) (-4029 (((-112) $ $) NIL) (((-112) $ (-1142)) NIL)) (-3815 (($ $ (-1142)) 216 (|has| |#1| (-541))) (($ $) 214 (|has| |#1| (-541)))) (-1692 (($ $) 208 (|has| |#1| (-541)))) (-4120 (((-411 (-1138 $)) (-1138 $)) 293 (-12 (|has| |#1| (-444)) (|has| |#1| (-541))))) (-2120 (((-411 $) $) NIL (|has| |#1| (-541)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-541))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-541)))) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-541)))) (-2718 (($ $) 129 (|has| |#1| (-541)))) (-4062 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-2685 (($ $ (-592 $) $) NIL) (($ $ (-621 (-592 $)) (-621 $)) 407) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-621 (-1142)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-1142)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-1142) (-1 $ (-621 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-621 (-114)) (-621 (-1 $ $))) 361) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-114) (-1 $ (-621 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1142)) NIL (|has| |#1| (-594 (-525)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-594 (-525)))) (($ $) NIL (|has| |#1| (-594 (-525)))) (($ $ (-114) $ (-1142)) 349 (|has| |#1| (-594 (-525)))) (($ $ (-621 (-114)) (-621 $) (-1142)) 348 (|has| |#1| (-594 (-525)))) (($ $ (-621 (-1142)) (-621 (-747)) (-621 (-1 $ $))) NIL (|has| |#1| (-1018))) (($ $ (-621 (-1142)) (-621 (-747)) (-621 (-1 $ (-621 $)))) NIL (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ (-621 $))) NIL (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ $)) NIL (|has| |#1| (-1018)))) (-4091 (((-747) $) NIL (|has| |#1| (-541)))) (-1432 (($ $) 229 (|has| |#1| (-541)))) (-3340 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-621 $)) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-541)))) (-3776 (($ $) NIL) (($ $ $) NIL)) (-1470 (($ $) 239 (|has| |#1| (-541)))) (-3272 (($ $) 190 (|has| |#1| (-541)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-1018))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-1018))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-1018))) (($ $ (-1142)) NIL (|has| |#1| (-1018)))) (-4288 (($ $) 73 (|has| |#1| (-541)))) (-1404 (((-1091 |#1| (-592 $)) $) 86 (|has| |#1| (-541)))) (-2539 (($ $) 304 (|has| $ (-1018)))) (-1697 (($ $) 167 (|has| |#1| (-541)))) (-1551 (($ $) 143 (|has| |#1| (-541)))) (-1674 (($ $) 163 (|has| |#1| (-541)))) (-1525 (($ $) 139 (|has| |#1| (-541)))) (-1649 (($ $) 159 (|has| |#1| (-541)))) (-1500 (($ $) 135 (|has| |#1| (-541)))) (-2844 (((-863 (-549)) $) NIL (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| |#1| (-594 (-863 (-372))))) (($ (-411 $)) NIL (|has| |#1| (-541))) (((-525) $) 346 (|has| |#1| (-594 (-525))))) (-2538 (($ $ $) NIL (|has| |#1| (-465)))) (-1911 (($ $ $) NIL (|has| |#1| (-465)))) (-3845 (((-834) $) 406) (($ (-592 $)) 397) (($ (-1142)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-541))) (($ (-48)) 299 (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549))))) (($ (-1091 |#1| (-592 $))) 88 (|has| |#1| (-1018))) (($ (-400 |#1|)) NIL (|has| |#1| (-541))) (($ (-923 (-400 |#1|))) NIL (|has| |#1| (-541))) (($ (-400 (-923 (-400 |#1|)))) NIL (|has| |#1| (-541))) (($ (-400 (-923 |#1|))) NIL (|has| |#1| (-541))) (($ (-923 |#1|)) NIL (|has| |#1| (-1018))) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-541)) (|has| |#1| (-1009 (-400 (-549)))))) (($ (-549)) 34 (-1536 (|has| |#1| (-1009 (-549))) (|has| |#1| (-1018))))) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL (|has| |#1| (-1018)))) (-4136 (($ $) NIL) (($ (-621 $)) NIL)) (-2224 (($ $ $) 210 (|has| |#1| (-541)))) (-2047 (($ $ $) 196 (|has| |#1| (-541)))) (-2730 (($ $ $) 200 (|has| |#1| (-541)))) (-3232 (($ $ $) 194 (|has| |#1| (-541)))) (-1940 (($ $ $) 198 (|has| |#1| (-541)))) (-3234 (((-112) (-114)) 9)) (-1732 (($ $) 173 (|has| |#1| (-541)))) (-1585 (($ $) 149 (|has| |#1| (-541)))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1708 (($ $) 169 (|has| |#1| (-541)))) (-1562 (($ $) 145 (|has| |#1| (-541)))) (-1757 (($ $) 177 (|has| |#1| (-541)))) (-1612 (($ $) 153 (|has| |#1| (-541)))) (-1788 (($ (-1142) $) NIL) (($ (-1142) $ $) NIL) (($ (-1142) $ $ $) NIL) (($ (-1142) $ $ $ $) NIL) (($ (-1142) (-621 $)) NIL)) (-3173 (($ $) 204 (|has| |#1| (-541)))) (-4195 (($ $) 202 (|has| |#1| (-541)))) (-1933 (($ $) 179 (|has| |#1| (-541)))) (-1625 (($ $) 155 (|has| |#1| (-541)))) (-1744 (($ $) 175 (|has| |#1| (-541)))) (-1599 (($ $) 151 (|has| |#1| (-541)))) (-1721 (($ $) 171 (|has| |#1| (-541)))) (-1575 (($ $) 147 (|has| |#1| (-541)))) (-3603 (($ $) 182 (|has| |#1| (-541)))) (-3275 (($) 20 (-1536 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))) CONST)) (-1576 (($ $) 233 (|has| |#1| (-541)))) (-3287 (($) 22 (-1536 (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1078))) CONST)) (-1756 (($ $) 184 (|has| |#1| (-541))) (($ $ $) 186 (|has| |#1| (-541)))) (-1658 (($ $) 231 (|has| |#1| (-541)))) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-1018))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-1018))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-1018))) (($ $ (-1142)) NIL (|has| |#1| (-1018)))) (-1519 (($ $) 235 (|has| |#1| (-541)))) (-1850 (($ $ $) 188 (|has| |#1| (-541)))) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 81)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 80)) (-2512 (($ (-1091 |#1| (-592 $)) (-1091 |#1| (-592 $))) 98 (|has| |#1| (-541))) (($ $ $) 42 (-1536 (|has| |#1| (-465)) (|has| |#1| (-541))))) (-2499 (($ $ $) 40 (-1536 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))))) (($ $) 29 (-1536 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))))) (-2485 (($ $ $) 38 (-1536 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))))) (** (($ $ $) 66 (|has| |#1| (-541))) (($ $ (-400 (-549))) 301 (|has| |#1| (-541))) (($ $ (-549)) 76 (-1536 (|has| |#1| (-465)) (|has| |#1| (-541)))) (($ $ (-747)) 74 (-1536 (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1078)))) (($ $ (-892)) 78 (-1536 (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1078))))) (* (($ (-400 (-549)) $) NIL (|has| |#1| (-541))) (($ $ (-400 (-549))) NIL (|has| |#1| (-541))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-1536 (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1078)))) (($ (-549) $) 32 (-1536 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))))) (($ (-747) $) NIL (-1536 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))))) (($ (-892) $) NIL (-1536 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))))))
-(((-309 |#1|) (-13 (-423 |#1|) (-10 -8 (IF (|has| |#1| (-541)) (PROGN (-6 (-29 |#1|)) (-6 (-1164)) (-6 (-158)) (-6 (-607)) (-6 (-1105)) (-15 -2558 ($ $)) (-15 -3530 ((-112) $)) (-15 -1664 ($ $ (-549))) (IF (|has| |#1| (-444)) (PROGN (-15 -4120 ((-411 (-1138 $)) (-1138 $))) (-15 -2461 ((-411 (-1138 $)) (-1138 $)))) |%noBranch|) (IF (|has| |#1| (-1009 (-549))) (-6 (-1009 (-48))) |%noBranch|)) |%noBranch|))) (-823)) (T -309))
-((-2558 (*1 *1 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-541)) (-4 *2 (-823)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-309 *3)) (-4 *3 (-541)) (-4 *3 (-823)))) (-1664 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-309 *3)) (-4 *3 (-541)) (-4 *3 (-823)))) (-4120 (*1 *2 *3) (-12 (-5 *2 (-411 (-1138 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1138 *1)) (-4 *4 (-444)) (-4 *4 (-541)) (-4 *4 (-823)))) (-2461 (*1 *2 *3) (-12 (-5 *2 (-411 (-1138 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1138 *1)) (-4 *4 (-444)) (-4 *4 (-541)) (-4 *4 (-823)))))
-(-13 (-423 |#1|) (-10 -8 (IF (|has| |#1| (-541)) (PROGN (-6 (-29 |#1|)) (-6 (-1164)) (-6 (-158)) (-6 (-607)) (-6 (-1105)) (-15 -2558 ($ $)) (-15 -3530 ((-112) $)) (-15 -1664 ($ $ (-549))) (IF (|has| |#1| (-444)) (PROGN (-15 -4120 ((-411 (-1138 $)) (-1138 $))) (-15 -2461 ((-411 (-1138 $)) (-1138 $)))) |%noBranch|) (IF (|has| |#1| (-1009 (-549))) (-6 (-1009 (-48))) |%noBranch|)) |%noBranch|)))
-((-2110 (((-52) |#2| (-114) (-287 |#2|) (-621 |#2|)) 88) (((-52) |#2| (-114) (-287 |#2|) (-287 |#2|)) 84) (((-52) |#2| (-114) (-287 |#2|) |#2|) 86) (((-52) (-287 |#2|) (-114) (-287 |#2|) |#2|) 87) (((-52) (-621 |#2|) (-621 (-114)) (-287 |#2|) (-621 (-287 |#2|))) 80) (((-52) (-621 |#2|) (-621 (-114)) (-287 |#2|) (-621 |#2|)) 82) (((-52) (-621 (-287 |#2|)) (-621 (-114)) (-287 |#2|) (-621 |#2|)) 83) (((-52) (-621 (-287 |#2|)) (-621 (-114)) (-287 |#2|) (-621 (-287 |#2|))) 81) (((-52) (-287 |#2|) (-114) (-287 |#2|) (-621 |#2|)) 89) (((-52) (-287 |#2|) (-114) (-287 |#2|) (-287 |#2|)) 85)))
-(((-310 |#1| |#2|) (-10 -7 (-15 -2110 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-287 |#2|))) (-15 -2110 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-621 |#2|))) (-15 -2110 ((-52) (-621 (-287 |#2|)) (-621 (-114)) (-287 |#2|) (-621 (-287 |#2|)))) (-15 -2110 ((-52) (-621 (-287 |#2|)) (-621 (-114)) (-287 |#2|) (-621 |#2|))) (-15 -2110 ((-52) (-621 |#2|) (-621 (-114)) (-287 |#2|) (-621 |#2|))) (-15 -2110 ((-52) (-621 |#2|) (-621 (-114)) (-287 |#2|) (-621 (-287 |#2|)))) (-15 -2110 ((-52) (-287 |#2|) (-114) (-287 |#2|) |#2|)) (-15 -2110 ((-52) |#2| (-114) (-287 |#2|) |#2|)) (-15 -2110 ((-52) |#2| (-114) (-287 |#2|) (-287 |#2|))) (-15 -2110 ((-52) |#2| (-114) (-287 |#2|) (-621 |#2|)))) (-13 (-823) (-541) (-594 (-525))) (-423 |#1|)) (T -310))
-((-2110 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-5 *6 (-621 *3)) (-4 *3 (-423 *7)) (-4 *7 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *7 *3)))) (-2110 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-2110 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-2110 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-287 *5)) (-5 *4 (-114)) (-4 *5 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *5)))) (-2110 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 (-114))) (-5 *6 (-621 (-287 *8))) (-4 *8 (-423 *7)) (-5 *5 (-287 *8)) (-4 *7 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *7 *8)))) (-2110 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-621 *7)) (-5 *4 (-621 (-114))) (-5 *5 (-287 *7)) (-4 *7 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) (-2110 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 (-287 *8))) (-5 *4 (-621 (-114))) (-5 *5 (-287 *8)) (-5 *6 (-621 *8)) (-4 *8 (-423 *7)) (-4 *7 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *7 *8)))) (-2110 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-621 (-287 *7))) (-5 *4 (-621 (-114))) (-5 *5 (-287 *7)) (-4 *7 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) (-2110 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-621 *7)) (-4 *7 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) (-2110 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-287 *6)) (-5 *4 (-114)) (-4 *6 (-423 *5)) (-4 *5 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *6)))))
-(-10 -7 (-15 -2110 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-287 |#2|))) (-15 -2110 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-621 |#2|))) (-15 -2110 ((-52) (-621 (-287 |#2|)) (-621 (-114)) (-287 |#2|) (-621 (-287 |#2|)))) (-15 -2110 ((-52) (-621 (-287 |#2|)) (-621 (-114)) (-287 |#2|) (-621 |#2|))) (-15 -2110 ((-52) (-621 |#2|) (-621 (-114)) (-287 |#2|) (-621 |#2|))) (-15 -2110 ((-52) (-621 |#2|) (-621 (-114)) (-287 |#2|) (-621 (-287 |#2|)))) (-15 -2110 ((-52) (-287 |#2|) (-114) (-287 |#2|) |#2|)) (-15 -2110 ((-52) |#2| (-114) (-287 |#2|) |#2|)) (-15 -2110 ((-52) |#2| (-114) (-287 |#2|) (-287 |#2|))) (-15 -2110 ((-52) |#2| (-114) (-287 |#2|) (-621 |#2|))))
-((-1403 (((-1174 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-549) (-1124)) 46) (((-1174 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-549)) 47) (((-1174 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-549) (-1124)) 43) (((-1174 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-549)) 44)) (-2567 (((-1 (-219) (-219)) (-219)) 45)))
-(((-311) (-10 -7 (-15 -2567 ((-1 (-219) (-219)) (-219))) (-15 -1403 ((-1174 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-549))) (-15 -1403 ((-1174 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-549) (-1124))) (-15 -1403 ((-1174 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-549))) (-15 -1403 ((-1174 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-549) (-1124))))) (T -311))
-((-1403 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-219)) (-5 *7 (-549)) (-5 *8 (-1124)) (-5 *2 (-1174 (-897))) (-5 *1 (-311)))) (-1403 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-219)) (-5 *7 (-549)) (-5 *2 (-1174 (-897))) (-5 *1 (-311)))) (-1403 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-549)) (-5 *7 (-1124)) (-5 *2 (-1174 (-897))) (-5 *1 (-311)))) (-1403 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-549)) (-5 *2 (-1174 (-897))) (-5 *1 (-311)))) (-2567 (*1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219)))))
-(-10 -7 (-15 -2567 ((-1 (-219) (-219)) (-219))) (-15 -1403 ((-1174 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-549))) (-15 -1403 ((-1174 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-549) (-1124))) (-15 -1403 ((-1174 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-549))) (-15 -1403 ((-1174 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-549) (-1124))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 25)) (-2271 (((-621 (-1048)) $) NIL)) (-3010 (((-1142) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-2305 (($ $ (-400 (-549))) NIL) (($ $ (-400 (-549)) (-400 (-549))) NIL)) (-1480 (((-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) 20)) (-1663 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL (|has| |#1| (-356)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1639 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2825 (($ (-747) (-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) NIL)) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) NIL T CONST)) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2069 (($ $) 32)) (-3976 (((-3 $ "failed") $) NIL)) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-2471 (((-112) $) NIL (|has| |#1| (-356)))) (-3155 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-400 (-549)) $) NIL) (((-400 (-549)) $ (-400 (-549))) 16)) (-3987 (((-112) $) NIL)) (-3930 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2769 (($ $ (-892)) NIL) (($ $ (-400 (-549))) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-400 (-549))) NIL) (($ $ (-1048) (-400 (-549))) NIL) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-3631 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL (|has| |#1| (-356)))) (-1531 (($ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) NIL (-1536 (-12 (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1164)))))) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-356)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2975 (($ $ (-400 (-549))) NIL)) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-4258 (((-400 (-549)) $) 17)) (-4198 (($ (-1210 |#1| |#2| |#3|)) 11)) (-3577 (((-1210 |#1| |#2| |#3|) $) 12)) (-2718 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-4091 (((-747) $) NIL (|has| |#1| (-356)))) (-3340 ((|#1| $ (-400 (-549))) NIL) (($ $ $) NIL (|has| (-400 (-549)) (-1078)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-3068 (((-400 (-549)) $) NIL)) (-1697 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) 10)) (-3845 (((-834) $) 38) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541)))) (-2944 ((|#1| $ (-400 (-549))) 30)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-2597 ((|#1| $) NIL)) (-1732 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1708 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-400 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 27)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 33)) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-312 |#1| |#2| |#3|) (-13 (-1206 |#1|) (-768) (-10 -8 (-15 -4198 ($ (-1210 |#1| |#2| |#3|))) (-15 -3577 ((-1210 |#1| |#2| |#3|) $)) (-15 -4258 ((-400 (-549)) $)))) (-13 (-356) (-823)) (-1142) |#1|) (T -312))
-((-4198 (*1 *1 *2) (-12 (-5 *2 (-1210 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1210 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3))) (-4258 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3))))
-(-13 (-1206 |#1|) (-768) (-10 -8 (-15 -4198 ($ (-1210 |#1| |#2| |#3|))) (-15 -3577 ((-1210 |#1| |#2| |#3|) $)) (-15 -4258 ((-400 (-549)) $))))
-((-3930 (((-2 (|:| -3577 (-747)) (|:| -1569 |#1|) (|:| |radicand| (-621 |#1|))) (-411 |#1|) (-747)) 24)) (-3631 (((-621 (-2 (|:| -1569 (-747)) (|:| |logand| |#1|))) (-411 |#1|)) 28)))
-(((-313 |#1|) (-10 -7 (-15 -3930 ((-2 (|:| -3577 (-747)) (|:| -1569 |#1|) (|:| |radicand| (-621 |#1|))) (-411 |#1|) (-747))) (-15 -3631 ((-621 (-2 (|:| -1569 (-747)) (|:| |logand| |#1|))) (-411 |#1|)))) (-541)) (T -313))
-((-3631 (*1 *2 *3) (-12 (-5 *3 (-411 *4)) (-4 *4 (-541)) (-5 *2 (-621 (-2 (|:| -1569 (-747)) (|:| |logand| *4)))) (-5 *1 (-313 *4)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *3 (-411 *5)) (-4 *5 (-541)) (-5 *2 (-2 (|:| -3577 (-747)) (|:| -1569 *5) (|:| |radicand| (-621 *5)))) (-5 *1 (-313 *5)) (-5 *4 (-747)))))
-(-10 -7 (-15 -3930 ((-2 (|:| -3577 (-747)) (|:| -1569 |#1|) (|:| |radicand| (-621 |#1|))) (-411 |#1|) (-747))) (-15 -3631 ((-621 (-2 (|:| -1569 (-747)) (|:| |logand| |#1|))) (-411 |#1|))))
-((-2271 (((-621 |#2|) (-1138 |#4|)) 43)) (-3418 ((|#3| (-549)) 46)) (-2125 (((-1138 |#4|) (-1138 |#3|)) 30)) (-3928 (((-1138 |#4|) (-1138 |#4|) (-549)) 56)) (-3764 (((-1138 |#3|) (-1138 |#4|)) 21)) (-3068 (((-621 (-747)) (-1138 |#4|) (-621 |#2|)) 40)) (-2570 (((-1138 |#3|) (-1138 |#4|) (-621 |#2|) (-621 |#3|)) 35)))
-(((-314 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2570 ((-1138 |#3|) (-1138 |#4|) (-621 |#2|) (-621 |#3|))) (-15 -3068 ((-621 (-747)) (-1138 |#4|) (-621 |#2|))) (-15 -2271 ((-621 |#2|) (-1138 |#4|))) (-15 -3764 ((-1138 |#3|) (-1138 |#4|))) (-15 -2125 ((-1138 |#4|) (-1138 |#3|))) (-15 -3928 ((-1138 |#4|) (-1138 |#4|) (-549))) (-15 -3418 (|#3| (-549)))) (-769) (-823) (-1018) (-920 |#3| |#1| |#2|)) (T -314))
-((-3418 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1018)) (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-920 *2 *4 *5)))) (-3928 (*1 *2 *2 *3) (-12 (-5 *2 (-1138 *7)) (-5 *3 (-549)) (-4 *7 (-920 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *1 (-314 *4 *5 *6 *7)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-1138 *6)) (-4 *6 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-1138 *7)) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-1138 *7)) (-4 *7 (-920 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *2 (-1138 *6)) (-5 *1 (-314 *4 *5 *6 *7)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-1138 *7)) (-4 *7 (-920 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *2 (-621 *5)) (-5 *1 (-314 *4 *5 *6 *7)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-1138 *8)) (-5 *4 (-621 *6)) (-4 *6 (-823)) (-4 *8 (-920 *7 *5 *6)) (-4 *5 (-769)) (-4 *7 (-1018)) (-5 *2 (-621 (-747))) (-5 *1 (-314 *5 *6 *7 *8)))) (-2570 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1138 *9)) (-5 *4 (-621 *7)) (-5 *5 (-621 *8)) (-4 *7 (-823)) (-4 *8 (-1018)) (-4 *9 (-920 *8 *6 *7)) (-4 *6 (-769)) (-5 *2 (-1138 *8)) (-5 *1 (-314 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2570 ((-1138 |#3|) (-1138 |#4|) (-621 |#2|) (-621 |#3|))) (-15 -3068 ((-621 (-747)) (-1138 |#4|) (-621 |#2|))) (-15 -2271 ((-621 |#2|) (-1138 |#4|))) (-15 -3764 ((-1138 |#3|) (-1138 |#4|))) (-15 -2125 ((-1138 |#4|) (-1138 |#3|))) (-15 -3928 ((-1138 |#4|) (-1138 |#4|) (-549))) (-15 -3418 (|#3| (-549))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 14)) (-1480 (((-621 (-2 (|:| |gen| |#1|) (|:| -2718 (-549)))) $) 18)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3615 (((-747) $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL)) (-2658 ((|#1| $) NIL)) (-3570 ((|#1| $ (-549)) NIL)) (-3299 (((-549) $ (-549)) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-2555 (($ (-1 |#1| |#1|) $) NIL)) (-1753 (($ (-1 (-549) (-549)) $) 10)) (-2677 (((-1124) $) NIL)) (-4089 (($ $ $) NIL (|has| (-549) (-768)))) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL) (($ |#1|) NIL)) (-2944 (((-549) |#1| $) NIL)) (-3275 (($) 15 T CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) 21 (|has| |#1| (-823)))) (-2499 (($ $) 11) (($ $ $) 20)) (-2485 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL) (($ (-549) |#1|) 19)))
-(((-315 |#1|) (-13 (-21) (-694 (-549)) (-316 |#1| (-549)) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-1066)) (T -315))
-NIL
-(-13 (-21) (-694 (-549)) (-316 |#1| (-549)) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-1480 (((-621 (-2 (|:| |gen| |#1|) (|:| -2718 |#2|))) $) 27)) (-2384 (((-3 $ "failed") $ $) 19)) (-3615 (((-747) $) 28)) (-1705 (($) 17 T CONST)) (-2713 (((-3 |#1| "failed") $) 32)) (-2658 ((|#1| $) 31)) (-3570 ((|#1| $ (-549)) 25)) (-3299 ((|#2| $ (-549)) 26)) (-2555 (($ (-1 |#1| |#1|) $) 22)) (-1753 (($ (-1 |#2| |#2|) $) 23)) (-2677 (((-1124) $) 9)) (-4089 (($ $ $) 21 (|has| |#2| (-768)))) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ |#1|) 33)) (-2944 ((|#2| |#1| $) 24)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2485 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ |#2| |#1|) 29)))
-(((-316 |#1| |#2|) (-138) (-1066) (-130)) (T -316))
-((-2485 (*1 *1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-130)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-130)) (-5 *2 (-747)))) (-1480 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-130)) (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2718 *4)))))) (-3299 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1066)) (-4 *2 (-130)))) (-3570 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1066)))) (-2944 (*1 *2 *3 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-130)))) (-1753 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-130)))) (-2555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-130)))) (-4089 (*1 *1 *1 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-130)) (-4 *3 (-768)))))
-(-13 (-130) (-1009 |t#1|) (-10 -8 (-15 -2485 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3615 ((-747) $)) (-15 -1480 ((-621 (-2 (|:| |gen| |t#1|) (|:| -2718 |t#2|))) $)) (-15 -3299 (|t#2| $ (-549))) (-15 -3570 (|t#1| $ (-549))) (-15 -2944 (|t#2| |t#1| $)) (-15 -1753 ($ (-1 |t#2| |t#2|) $)) (-15 -2555 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-768)) (-15 -4089 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-1009 |#1|) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-1480 (((-621 (-2 (|:| |gen| |#1|) (|:| -2718 (-747)))) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3615 (((-747) $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL)) (-2658 ((|#1| $) NIL)) (-3570 ((|#1| $ (-549)) NIL)) (-3299 (((-747) $ (-549)) NIL)) (-2555 (($ (-1 |#1| |#1|) $) NIL)) (-1753 (($ (-1 (-747) (-747)) $) NIL)) (-2677 (((-1124) $) NIL)) (-4089 (($ $ $) NIL (|has| (-747) (-768)))) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL) (($ |#1|) NIL)) (-2944 (((-747) |#1| $) NIL)) (-3275 (($) NIL T CONST)) (-2388 (((-112) $ $) NIL)) (-2485 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-747) |#1|) NIL)))
-(((-317 |#1|) (-316 |#1| (-747)) (-1066)) (T -317))
+((-4110 ((|#1| (-1 |#1| (-535)) (-1144 (-400 (-535)))) 25)))
+(((-303 |#1|) (-10 -7 (-15 -4110 (|#1| (-1 |#1| (-535)) (-1144 (-400 (-535)))))) (-38 (-400 (-535)))) (T -303))
+((-4110 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-535))) (-5 *4 (-1144 (-400 (-535)))) (-5 *1 (-303 *2)) (-4 *2 (-38 (-400 (-535)))))))
+(-10 -7 (-15 -4110 (|#1| (-1 |#1| (-535)) (-1144 (-400 (-535))))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 7)) (-3375 (((-112) $ $) 9)))
+(((-304) (-1067)) (T -304))
+NIL
+(-1067)
+((-2887 (((-112) $ $) NIL)) (-3843 (((-535) $) 12)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3540 (((-1101) $) 9)) (-4300 (((-835) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-305) (-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3843 ((-535) $))))) (T -305))
+((-3540 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-305)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-305)))))
+(-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3843 ((-535) $))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 62)) (-3447 (((-1211 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-1211 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-535)))) (((-3 (-1205 |#2| |#3| |#4|) #2#) $) 25)) (-3490 (((-1211 |#1| |#2| |#3| |#4|) $) NIL) (((-1142) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-535)))) (((-535) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-535)))) (((-1205 |#2| |#3| |#4|) $) NIL)) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-1211 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1224 (-1211 |#1| |#2| |#3| |#4|)))) (-665 $) (-1224 $)) NIL) (((-665 (-1211 |#1| |#2| |#3| |#4|)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-1211 |#1| |#2| |#3| |#4|) $) 21)) (-3786 (((-3 $ "failed") $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1117)))) (-3521 (((-112) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-3661 (($ $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-4301 (($ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) $) NIL)) (-4126 (((-3 (-815 |#2|) "failed") $) 78)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-300)))) (-3448 (((-1211 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-1211 |#1| |#2| |#3| |#4|)) (-618 (-1211 |#1| |#2| |#3| |#4|))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-302 (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-302 (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-286 (-1211 |#1| |#2| |#3| |#4|))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-302 (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-618 (-286 (-1211 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-302 (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-618 (-1142)) (-618 (-1211 |#1| |#2| |#3| |#4|))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-505 (-1142) (-1211 |#1| |#2| |#3| |#4|)))) (($ $ (-1142) (-1211 |#1| |#2| |#3| |#4|)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-505 (-1142) (-1211 |#1| |#2| |#3| |#4|))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-1211 |#1| |#2| |#3| |#4|)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-279 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-747)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1142)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) (-747)) NIL) (($ $ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-1211 |#1| |#2| |#3| |#4|) $) 17)) (-4313 (((-861 (-535)) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-594 (-524)))) (((-371) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-991))) (((-219) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-1211 |#1| |#2| |#3| |#4|) (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-1211 |#1| |#2| |#3| |#4|)) 29) (($ (-1142)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-1009 (-1142)))) (($ (-1205 |#2| |#3| |#4|)) 36)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-1211 |#1| |#2| |#3| |#4|) (-881))) (|has| (-1211 |#1| |#2| |#3| |#4|) (-143))))) (-3444 (((-747)) NIL)) (-3449 (((-1211 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-534)))) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-796)))) (-2979 (($) 41 T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-747)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1142)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-871 (-1142)))) (($ $ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) (-747)) NIL) (($ $ (-1 (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-1211 |#1| |#2| |#3| |#4|) (-823)))) (-4291 (($ $ $) 34) (($ (-1211 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2| |#3| |#4|)) 31)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-1211 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1211 |#1| |#2| |#3| |#4|)) NIL)))
+(((-306 |#1| |#2| |#3| |#4|) (-13 (-962 (-1211 |#1| |#2| |#3| |#4|)) (-1009 (-1205 |#2| |#3| |#4|)) (-10 -8 (-15 -4126 ((-3 (-815 |#2|) "failed") $)) (-15 -4300 ($ (-1205 |#2| |#3| |#4|))))) (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444)) (-13 (-27) (-1164) (-414 |#1|)) (-1142) |#2|) (T -306))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1205 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-414 *3))) (-14 *5 (-1142)) (-14 *6 *4) (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444))) (-5 *1 (-306 *3 *4 *5 *6)))) (-4126 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444))) (-5 *2 (-815 *4)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-414 *3))) (-14 *5 (-1142)) (-14 *6 *4))))
+(-13 (-962 (-1211 |#1| |#2| |#3| |#4|)) (-1009 (-1205 |#2| |#3| |#4|)) (-10 -8 (-15 -4126 ((-3 (-815 |#2|) "failed") $)) (-15 -4300 ($ (-1205 |#2| |#3| |#4|)))))
+((-2887 (((-112) $ $) NIL)) (-1662 (((-618 $) $ (-1142)) NIL (|has| |#1| (-542))) (((-618 $) $) NIL (|has| |#1| (-542))) (((-618 $) (-1136 $) (-1142)) NIL (|has| |#1| (-542))) (((-618 $) (-1136 $)) NIL (|has| |#1| (-542))) (((-618 $) (-917 $)) NIL (|has| |#1| (-542)))) (-1258 (($ $ (-1142)) NIL (|has| |#1| (-542))) (($ $) NIL (|has| |#1| (-542))) (($ (-1136 $) (-1142)) NIL (|has| |#1| (-542))) (($ (-1136 $)) NIL (|has| |#1| (-542))) (($ (-917 $)) NIL (|has| |#1| (-542)))) (-3522 (((-112) $) 27 (-3874 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))))) (-3405 (((-618 (-1142)) $) 351)) (-3407 (((-400 (-1136 $)) $ (-591 $)) NIL (|has| |#1| (-542)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-1655 (((-618 (-591 $)) $) NIL)) (-3829 (($ $) 161 (|has| |#1| (-542)))) (-3985 (($ $) 137 (|has| |#1| (-542)))) (-1416 (($ $ (-1058 $)) 222 (|has| |#1| (-542))) (($ $ (-1142)) 218 (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) NIL (-3874 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))))) (-1659 (($ $ (-286 $)) NIL) (($ $ (-618 (-286 $))) 368) (($ $ (-618 (-591 $)) (-618 $)) 412)) (-3028 (((-398 (-1136 $)) (-1136 $)) 295 (-12 (|has| |#1| (-444)) (|has| |#1| (-542))))) (-4117 (($ $) NIL (|has| |#1| (-542)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-542)))) (-3358 (($ $) NIL (|has| |#1| (-542)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3827 (($ $) 157 (|has| |#1| (-542)))) (-3984 (($ $) 133 (|has| |#1| (-542)))) (-1701 (($ $ (-535)) 72 (|has| |#1| (-542)))) (-3831 (($ $) 165 (|has| |#1| (-542)))) (-3983 (($ $) 141 (|has| |#1| (-542)))) (-3879 (($) NIL (-3874 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078))) CONST)) (-1259 (((-618 $) $ (-1142)) NIL (|has| |#1| (-542))) (((-618 $) $) NIL (|has| |#1| (-542))) (((-618 $) (-1136 $) (-1142)) NIL (|has| |#1| (-542))) (((-618 $) (-1136 $)) NIL (|has| |#1| (-542))) (((-618 $) (-917 $)) NIL (|has| |#1| (-542)))) (-3517 (($ $ (-1142)) NIL (|has| |#1| (-542))) (($ $) NIL (|has| |#1| (-542))) (($ (-1136 $) (-1142)) 124 (|has| |#1| (-542))) (($ (-1136 $)) NIL (|has| |#1| (-542))) (($ (-917 $)) NIL (|has| |#1| (-542)))) (-3491 (((-3 (-591 $) #1="failed") $) 17) (((-3 (-1142) #1#) $) NIL) (((-3 |#1| #1#) $) 421) (((-3 (-48) #1#) $) 323 (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535))))) (((-3 (-535) #1#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-917 |#1|)) #1#) $) NIL (|has| |#1| (-542))) (((-3 (-917 |#1|) #1#) $) NIL (|has| |#1| (-1018))) (((-3 (-400 (-535)) #1#) $) 46 (-3874 (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-3490 (((-591 $) $) 11) (((-1142) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-917 |#1|)) $) NIL (|has| |#1| (-542))) (((-917 |#1|) $) NIL (|has| |#1| (-1018))) (((-400 (-535)) $) 306 (-3874 (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-2883 (($ $ $) NIL (|has| |#1| (-542)))) (-2353 (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 117 (|has| |#1| (-1018))) (((-665 |#1|) (-665 $)) 107 (|has| |#1| (-1018))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))) (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))))) (-4185 (($ $) 89 (|has| |#1| (-542)))) (-3804 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078))))) (-2882 (($ $ $) NIL (|has| |#1| (-542)))) (-4287 (($ $ (-1058 $)) 226 (|has| |#1| (-542))) (($ $ (-1142)) 224 (|has| |#1| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-542)))) (-4069 (((-112) $) NIL (|has| |#1| (-542)))) (-3728 (($ $ $) 192 (|has| |#1| (-542)))) (-3973 (($) 127 (|has| |#1| (-542)))) (-1413 (($ $ $) 212 (|has| |#1| (-542)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 374 (|has| |#1| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 381 (|has| |#1| (-857 (-371))))) (-2892 (($ $) NIL) (($ (-618 $)) NIL)) (-1654 (((-618 (-113)) $) NIL)) (-3368 (((-113) (-113)) 267)) (-2493 (((-112) $) 25 (-3874 (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078))))) (-2994 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-3317 (($ $) 71 (|has| |#1| (-1018)))) (-3319 (((-1091 |#1| (-591 $)) $) 84 (|has| |#1| (-1018)))) (-1702 (((-112) $) 64 (|has| |#1| (-542)))) (-3332 (($ $ (-535)) NIL (|has| |#1| (-542)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| |#1| (-542)))) (-1652 (((-1136 $) (-591 $)) 268 (|has| $ (-1018)))) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 $ $) (-591 $)) 408)) (-1657 (((-3 (-591 $) "failed") $) NIL)) (-4285 (($ $) 131 (|has| |#1| (-542)))) (-2332 (($ $) 237 (|has| |#1| (-542)))) (-2008 (($ (-618 $)) NIL (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-3576 (((-1124) $) NIL)) (-1656 (((-618 (-591 $)) $) 49)) (-2308 (($ (-113) $) NIL) (($ (-113) (-618 $)) 413)) (-3144 (((-3 (-618 $) #3="failed") $) NIL (|has| |#1| (-1078)))) (-3146 (((-3 (-2 (|:| |val| $) (|:| -2484 (-535))) #3#) $) NIL (|has| |#1| (-1018)))) (-3143 (((-3 (-618 $) #3#) $) 416 (|has| |#1| (-25)))) (-1908 (((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 $))) #3#) $) 420 (|has| |#1| (-25)))) (-3145 (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) #3#) $) NIL (|has| |#1| (-1078))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) #3#) $ (-113)) NIL (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) #3#) $ (-1142)) NIL (|has| |#1| (-1018)))) (-2952 (((-112) $ (-113)) NIL) (((-112) $ (-1142)) 53)) (-2725 (($ $) NIL (-3874 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-3153 (($ $ (-1142)) 241 (|has| |#1| (-542))) (($ $ (-1058 $)) 243 (|has| |#1| (-542)))) (-2922 (((-747) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) 43)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 288 (|has| |#1| (-542)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-1653 (((-112) $ $) NIL) (((-112) $ (-1142)) NIL)) (-1417 (($ $ (-1142)) 216 (|has| |#1| (-542))) (($ $) 214 (|has| |#1| (-542)))) (-1411 (($ $) 208 (|has| |#1| (-542)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 293 (-12 (|has| |#1| (-444)) (|has| |#1| (-542))))) (-4075 (((-398 $) $) NIL (|has| |#1| (-542)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-542))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-542)))) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-542)))) (-4286 (($ $) 129 (|has| |#1| (-542)))) (-2995 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-4110 (($ $ (-591 $) $) NIL) (($ $ (-618 (-591 $)) (-618 $)) 407) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-1142) (-1 $ (-618 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-618 (-113)) (-618 (-1 $ $))) 361) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-113) (-1 $ (-618 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1142)) NIL (|has| |#1| (-594 (-524)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-594 (-524)))) (($ $) NIL (|has| |#1| (-594 (-524)))) (($ $ (-113) $ (-1142)) 349 (|has| |#1| (-594 (-524)))) (($ $ (-618 (-113)) (-618 $) (-1142)) 348 (|has| |#1| (-594 (-524)))) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ $))) NIL (|has| |#1| (-1018))) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ (-618 $)))) NIL (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ (-618 $))) NIL (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ $)) NIL (|has| |#1| (-1018)))) (-1699 (((-747) $) NIL (|has| |#1| (-542)))) (-2330 (($ $) 229 (|has| |#1| (-542)))) (-4142 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-618 $)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-1658 (($ $) NIL) (($ $ $) NIL)) (-2331 (($ $) 239 (|has| |#1| (-542)))) (-3727 (($ $) 190 (|has| |#1| (-542)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-1018))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-1018))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-1018))) (($ $ (-1142)) NIL (|has| |#1| (-1018)))) (-3316 (($ $) 73 (|has| |#1| (-542)))) (-3318 (((-1091 |#1| (-591 $)) $) 86 (|has| |#1| (-542)))) (-3519 (($ $) 304 (|has| $ (-1018)))) (-3832 (($ $) 167 (|has| |#1| (-542)))) (-3982 (($ $) 143 (|has| |#1| (-542)))) (-3830 (($ $) 163 (|has| |#1| (-542)))) (-3981 (($ $) 139 (|has| |#1| (-542)))) (-3828 (($ $) 159 (|has| |#1| (-542)))) (-3980 (($ $) 135 (|has| |#1| (-542)))) (-4313 (((-861 (-535)) $) NIL (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| |#1| (-594 (-861 (-371))))) (($ (-398 $)) NIL (|has| |#1| (-542))) (((-524) $) 346 (|has| |#1| (-594 (-524))))) (-3330 (($ $ $) NIL (|has| |#1| (-465)))) (-2677 (($ $ $) NIL (|has| |#1| (-465)))) (-4300 (((-835) $) 406) (($ (-591 $)) 397) (($ (-1142)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-542))) (($ (-48)) 299 (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535))))) (($ (-1091 |#1| (-591 $))) 88 (|has| |#1| (-1018))) (($ (-400 |#1|)) NIL (|has| |#1| (-542))) (($ (-917 (-400 |#1|))) NIL (|has| |#1| (-542))) (($ (-400 (-917 (-400 |#1|)))) NIL (|has| |#1| (-542))) (($ (-400 (-917 |#1|))) NIL (|has| |#1| (-542))) (($ (-917 |#1|)) NIL (|has| |#1| (-1018))) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-542)) (|has| |#1| (-1009 (-400 (-535)))))) (($ (-535)) 34 (-3874 (|has| |#1| (-1009 (-535))) (|has| |#1| (-1018))))) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL (|has| |#1| (-1018)))) (-2909 (($ $) NIL) (($ (-618 $)) NIL)) (-3420 (($ $ $) 210 (|has| |#1| (-542)))) (-3731 (($ $ $) 196 (|has| |#1| (-542)))) (-3733 (($ $ $) 200 (|has| |#1| (-542)))) (-3730 (($ $ $) 194 (|has| |#1| (-542)))) (-3732 (($ $ $) 198 (|has| |#1| (-542)))) (-2329 (((-112) (-113)) 9)) (-3835 (($ $) 173 (|has| |#1| (-542)))) (-3823 (($ $) 149 (|has| |#1| (-542)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) 169 (|has| |#1| (-542)))) (-3821 (($ $) 145 (|has| |#1| (-542)))) (-3837 (($ $) 177 (|has| |#1| (-542)))) (-3825 (($ $) 153 (|has| |#1| (-542)))) (-1909 (($ (-1142) $) NIL) (($ (-1142) $ $) NIL) (($ (-1142) $ $ $) NIL) (($ (-1142) $ $ $ $) NIL) (($ (-1142) (-618 $)) NIL)) (-3735 (($ $) 204 (|has| |#1| (-542)))) (-3734 (($ $) 202 (|has| |#1| (-542)))) (-3838 (($ $) 179 (|has| |#1| (-542)))) (-3826 (($ $) 155 (|has| |#1| (-542)))) (-3836 (($ $) 175 (|has| |#1| (-542)))) (-3824 (($ $) 151 (|has| |#1| (-542)))) (-3834 (($ $) 171 (|has| |#1| (-542)))) (-3822 (($ $) 147 (|has| |#1| (-542)))) (-3725 (($ $) 182 (|has| |#1| (-542)))) (-2979 (($) 20 (-3874 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))) CONST)) (-2334 (($ $) 233 (|has| |#1| (-542)))) (-2985 (($) 22 (-3874 (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078))) CONST)) (-3729 (($ $) 184 (|has| |#1| (-542))) (($ $ $) 186 (|has| |#1| (-542)))) (-2335 (($ $) 231 (|has| |#1| (-542)))) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-1018))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-1018))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-1018))) (($ $ (-1142)) NIL (|has| |#1| (-1018)))) (-2333 (($ $) 235 (|has| |#1| (-542)))) (-3726 (($ $ $) 188 (|has| |#1| (-542)))) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 81)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 80)) (-4291 (($ (-1091 |#1| (-591 $)) (-1091 |#1| (-591 $))) 98 (|has| |#1| (-542))) (($ $ $) 42 (-3874 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-4180 (($ $ $) 40 (-3874 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))))) (($ $) 29 (-3874 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))))) (-4182 (($ $ $) 38 (-3874 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))))) (** (($ $ $) 66 (|has| |#1| (-542))) (($ $ (-400 (-535))) 301 (|has| |#1| (-542))) (($ $ (-535)) 76 (-3874 (|has| |#1| (-465)) (|has| |#1| (-542)))) (($ $ (-747)) 74 (-3874 (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078)))) (($ $ (-890)) 78 (-3874 (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078))))) (* (($ (-400 (-535)) $) NIL (|has| |#1| (-542))) (($ $ (-400 (-535))) NIL (|has| |#1| (-542))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-3874 (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) (|has| |#1| (-1078)))) (($ (-535) $) 32 (-3874 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))))) (($ (-747) $) NIL (-3874 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))))) (($ (-890) $) NIL (-3874 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))))))
+(((-307 |#1|) (-13 (-414 |#1|) (-10 -8 (IF (|has| |#1| (-542)) (PROGN (-6 (-29 |#1|)) (-6 (-1164)) (-6 (-158)) (-6 (-608)) (-6 (-1105)) (-15 -4185 ($ $)) (-15 -1702 ((-112) $)) (-15 -1701 ($ $ (-535))) (IF (|has| |#1| (-444)) (PROGN (-15 -3027 ((-398 (-1136 $)) (-1136 $))) (-15 -3028 ((-398 (-1136 $)) (-1136 $)))) |%noBranch|) (IF (|has| |#1| (-1009 (-535))) (-6 (-1009 (-48))) |%noBranch|)) |%noBranch|))) (-823)) (T -307))
+((-4185 (*1 *1 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-542)) (-4 *2 (-823)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-307 *3)) (-4 *3 (-542)) (-4 *3 (-823)))) (-1701 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-307 *3)) (-4 *3 (-542)) (-4 *3 (-823)))) (-3027 (*1 *2 *3) (-12 (-5 *2 (-398 (-1136 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1136 *1)) (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-823)))) (-3028 (*1 *2 *3) (-12 (-5 *2 (-398 (-1136 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1136 *1)) (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-823)))))
+(-13 (-414 |#1|) (-10 -8 (IF (|has| |#1| (-542)) (PROGN (-6 (-29 |#1|)) (-6 (-1164)) (-6 (-158)) (-6 (-608)) (-6 (-1105)) (-15 -4185 ($ $)) (-15 -1702 ((-112) $)) (-15 -1701 ($ $ (-535))) (IF (|has| |#1| (-444)) (PROGN (-15 -3027 ((-398 (-1136 $)) (-1136 $))) (-15 -3028 ((-398 (-1136 $)) (-1136 $)))) |%noBranch|) (IF (|has| |#1| (-1009 (-535))) (-6 (-1009 (-48))) |%noBranch|)) |%noBranch|)))
+((-4301 (((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)) 13)))
+(((-308 |#1| |#2|) (-10 -7 (-15 -4301 ((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)))) (-823) (-823)) (T -308))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-307 *5)) (-4 *5 (-823)) (-4 *6 (-823)) (-5 *2 (-307 *6)) (-5 *1 (-308 *5 *6)))))
+(-10 -7 (-15 -4301 ((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|))))
+((-4072 (((-51) |#2| (-286 |#2|) (-747)) 33) (((-51) |#2| (-286 |#2|)) 24) (((-51) |#2| (-747)) 28) (((-51) |#2|) 25) (((-51) (-1142)) 21)) (-4161 (((-51) |#2| (-286 |#2|) (-400 (-535))) 51) (((-51) |#2| (-286 |#2|)) 48) (((-51) |#2| (-400 (-535))) 50) (((-51) |#2|) 49) (((-51) (-1142)) 47)) (-4124 (((-51) |#2| (-286 |#2|) (-400 (-535))) 46) (((-51) |#2| (-286 |#2|)) 43) (((-51) |#2| (-400 (-535))) 45) (((-51) |#2|) 44) (((-51) (-1142)) 42)) (-4121 (((-51) |#2| (-286 |#2|) (-535)) 39) (((-51) |#2| (-286 |#2|)) 35) (((-51) |#2| (-535)) 38) (((-51) |#2|) 36) (((-51) (-1142)) 34)))
+(((-309 |#1| |#2|) (-10 -7 (-15 -4072 ((-51) (-1142))) (-15 -4072 ((-51) |#2|)) (-15 -4072 ((-51) |#2| (-747))) (-15 -4072 ((-51) |#2| (-286 |#2|))) (-15 -4072 ((-51) |#2| (-286 |#2|) (-747))) (-15 -4121 ((-51) (-1142))) (-15 -4121 ((-51) |#2|)) (-15 -4121 ((-51) |#2| (-535))) (-15 -4121 ((-51) |#2| (-286 |#2|))) (-15 -4121 ((-51) |#2| (-286 |#2|) (-535))) (-15 -4124 ((-51) (-1142))) (-15 -4124 ((-51) |#2|)) (-15 -4124 ((-51) |#2| (-400 (-535)))) (-15 -4124 ((-51) |#2| (-286 |#2|))) (-15 -4124 ((-51) |#2| (-286 |#2|) (-400 (-535)))) (-15 -4161 ((-51) (-1142))) (-15 -4161 ((-51) |#2|)) (-15 -4161 ((-51) |#2| (-400 (-535)))) (-15 -4161 ((-51) |#2| (-286 |#2|))) (-15 -4161 ((-51) |#2| (-286 |#2|) (-400 (-535))))) (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -309))
+((-4161 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-535))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4))))) (-4124 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4124 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4124 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-535))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-4124 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4))))) (-4121 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-444) (-823) (-1009 *5) (-617 *5))) (-5 *5 (-535)) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4121 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4121 (*1 *2 *3 *4) (-12 (-5 *4 (-535)) (-4 *5 (-13 (-444) (-823) (-1009 *4) (-617 *4))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4))))) (-4072 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-747)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4072 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4072 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-4072 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4))))))
+(-10 -7 (-15 -4072 ((-51) (-1142))) (-15 -4072 ((-51) |#2|)) (-15 -4072 ((-51) |#2| (-747))) (-15 -4072 ((-51) |#2| (-286 |#2|))) (-15 -4072 ((-51) |#2| (-286 |#2|) (-747))) (-15 -4121 ((-51) (-1142))) (-15 -4121 ((-51) |#2|)) (-15 -4121 ((-51) |#2| (-535))) (-15 -4121 ((-51) |#2| (-286 |#2|))) (-15 -4121 ((-51) |#2| (-286 |#2|) (-535))) (-15 -4124 ((-51) (-1142))) (-15 -4124 ((-51) |#2|)) (-15 -4124 ((-51) |#2| (-400 (-535)))) (-15 -4124 ((-51) |#2| (-286 |#2|))) (-15 -4124 ((-51) |#2| (-286 |#2|) (-400 (-535)))) (-15 -4161 ((-51) (-1142))) (-15 -4161 ((-51) |#2|)) (-15 -4161 ((-51) |#2| (-400 (-535)))) (-15 -4161 ((-51) |#2| (-286 |#2|))) (-15 -4161 ((-51) |#2| (-286 |#2|) (-400 (-535)))))
+((-1703 (((-51) |#2| (-113) (-286 |#2|) (-618 |#2|)) 88) (((-51) |#2| (-113) (-286 |#2|) (-286 |#2|)) 84) (((-51) |#2| (-113) (-286 |#2|) |#2|) 86) (((-51) (-286 |#2|) (-113) (-286 |#2|) |#2|) 87) (((-51) (-618 |#2|) (-618 (-113)) (-286 |#2|) (-618 (-286 |#2|))) 80) (((-51) (-618 |#2|) (-618 (-113)) (-286 |#2|) (-618 |#2|)) 82) (((-51) (-618 (-286 |#2|)) (-618 (-113)) (-286 |#2|) (-618 |#2|)) 83) (((-51) (-618 (-286 |#2|)) (-618 (-113)) (-286 |#2|) (-618 (-286 |#2|))) 81) (((-51) (-286 |#2|) (-113) (-286 |#2|) (-618 |#2|)) 89) (((-51) (-286 |#2|) (-113) (-286 |#2|) (-286 |#2|)) 85)))
+(((-310 |#1| |#2|) (-10 -7 (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-618 |#2|))) (-15 -1703 ((-51) (-618 (-286 |#2|)) (-618 (-113)) (-286 |#2|) (-618 (-286 |#2|)))) (-15 -1703 ((-51) (-618 (-286 |#2|)) (-618 (-113)) (-286 |#2|) (-618 |#2|))) (-15 -1703 ((-51) (-618 |#2|) (-618 (-113)) (-286 |#2|) (-618 |#2|))) (-15 -1703 ((-51) (-618 |#2|) (-618 (-113)) (-286 |#2|) (-618 (-286 |#2|)))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-618 |#2|)))) (-13 (-823) (-542) (-594 (-524))) (-414 |#1|)) (T -310))
+((-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-5 *6 (-618 *3)) (-4 *3 (-414 *7)) (-4 *7 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *7 *3)))) (-1703 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *3)))) (-1703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *3)))) (-1703 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-286 *5)) (-5 *4 (-113)) (-4 *5 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *5)))) (-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 (-113))) (-5 *6 (-618 (-286 *8))) (-4 *8 (-414 *7)) (-5 *5 (-286 *8)) (-4 *7 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *7 *8)))) (-1703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-618 *7)) (-5 *4 (-618 (-113))) (-5 *5 (-286 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *7)))) (-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-618 (-286 *8))) (-5 *4 (-618 (-113))) (-5 *5 (-286 *8)) (-5 *6 (-618 *8)) (-4 *8 (-414 *7)) (-4 *7 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *7 *8)))) (-1703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-618 (-286 *7))) (-5 *4 (-618 (-113))) (-5 *5 (-286 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *7)))) (-1703 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-618 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *7)))) (-1703 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-286 *6)) (-5 *4 (-113)) (-4 *6 (-414 *5)) (-4 *5 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51)) (-5 *1 (-310 *5 *6)))))
+(-10 -7 (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-618 |#2|))) (-15 -1703 ((-51) (-618 (-286 |#2|)) (-618 (-113)) (-286 |#2|) (-618 (-286 |#2|)))) (-15 -1703 ((-51) (-618 (-286 |#2|)) (-618 (-113)) (-286 |#2|) (-618 |#2|))) (-15 -1703 ((-51) (-618 |#2|) (-618 (-113)) (-286 |#2|) (-618 |#2|))) (-15 -1703 ((-51) (-618 |#2|) (-618 (-113)) (-286 |#2|) (-618 (-286 |#2|)))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-618 |#2|))))
+((-1705 (((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-219) (-535) (-1124)) 46) (((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-219) (-535)) 47) (((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-1 (-219) (-219)) (-535) (-1124)) 43) (((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-1 (-219) (-219)) (-535)) 44)) (-1704 (((-1 (-219) (-219)) (-219)) 45)))
+(((-311) (-10 -7 (-15 -1704 ((-1 (-219) (-219)) (-219))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-1 (-219) (-219)) (-535))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-1 (-219) (-219)) (-535) (-1124))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-219) (-535))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-219) (-535) (-1124))))) (T -311))
+((-1705 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) (-5 *6 (-219)) (-5 *7 (-535)) (-5 *8 (-1124)) (-5 *2 (-1174 (-898))) (-5 *1 (-311)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) (-5 *6 (-219)) (-5 *7 (-535)) (-5 *2 (-1174 (-898))) (-5 *1 (-311)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) (-5 *6 (-535)) (-5 *7 (-1124)) (-5 *2 (-1174 (-898))) (-5 *1 (-311)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) (-5 *6 (-535)) (-5 *2 (-1174 (-898))) (-5 *1 (-311)))) (-1704 (*1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219)))))
+(-10 -7 (-15 -1704 ((-1 (-219) (-219)) (-219))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-1 (-219) (-219)) (-535))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-1 (-219) (-219)) (-535) (-1124))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-219) (-535))) (-15 -1705 ((-1174 (-898)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-219) (-535) (-1124))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 25)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) NIL) (($ $ (-400 (-535)) (-400 (-535))) NIL)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) 20)) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) NIL)) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) 32)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) NIL) (((-400 (-535)) $ (-400 (-535))) 16)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) NIL) (($ $ (-400 (-535))) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-400 (-535))) NIL) (($ $ (-1048) (-400 (-535))) NIL) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-4155 (($ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))))))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-1706 (((-400 (-535)) $) 17)) (-3414 (($ (-1205 |#1| |#2| |#3|)) 11)) (-2484 (((-1205 |#1| |#2| |#3|) $) 12)) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) NIL) (($ $ $) NIL (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-4290 (((-400 (-535)) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 10)) (-4300 (((-835) $) 38) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) 30)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) NIL)) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 27)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 33)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-312 |#1| |#2| |#3|) (-13 (-1207 |#1|) (-768) (-10 -8 (-15 -3414 ($ (-1205 |#1| |#2| |#3|))) (-15 -2484 ((-1205 |#1| |#2| |#3|) $)) (-15 -1706 ((-400 (-535)) $)))) (-13 (-356) (-823)) (-1142) |#1|) (T -312))
+((-3414 (*1 *1 *2) (-12 (-5 *2 (-1205 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1205 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3))) (-1706 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3))))
+(-13 (-1207 |#1|) (-768) (-10 -8 (-15 -3414 ($ (-1205 |#1| |#2| |#3|))) (-15 -2484 ((-1205 |#1| |#2| |#3|) $)) (-15 -1706 ((-400 (-535)) $))))
+((-3332 (((-2 (|:| -2484 (-747)) (|:| -4296 |#1|) (|:| |radicand| (-618 |#1|))) (-398 |#1|) (-747)) 24)) (-4285 (((-618 (-2 (|:| -4296 (-747)) (|:| |logand| |#1|))) (-398 |#1|)) 28)))
+(((-313 |#1|) (-10 -7 (-15 -3332 ((-2 (|:| -2484 (-747)) (|:| -4296 |#1|) (|:| |radicand| (-618 |#1|))) (-398 |#1|) (-747))) (-15 -4285 ((-618 (-2 (|:| -4296 (-747)) (|:| |logand| |#1|))) (-398 |#1|)))) (-542)) (T -313))
+((-4285 (*1 *2 *3) (-12 (-5 *3 (-398 *4)) (-4 *4 (-542)) (-5 *2 (-618 (-2 (|:| -4296 (-747)) (|:| |logand| *4)))) (-5 *1 (-313 *4)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-398 *5)) (-4 *5 (-542)) (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *5) (|:| |radicand| (-618 *5)))) (-5 *1 (-313 *5)) (-5 *4 (-747)))))
+(-10 -7 (-15 -3332 ((-2 (|:| -2484 (-747)) (|:| -4296 |#1|) (|:| |radicand| (-618 |#1|))) (-398 |#1|) (-747))) (-15 -4285 ((-618 (-2 (|:| -4296 (-747)) (|:| |logand| |#1|))) (-398 |#1|))))
+((-3405 (((-618 |#2|) (-1136 |#4|)) 43)) (-1711 ((|#3| (-535)) 46)) (-1709 (((-1136 |#4|) (-1136 |#3|)) 30)) (-1710 (((-1136 |#4|) (-1136 |#4|) (-535)) 56)) (-1708 (((-1136 |#3|) (-1136 |#4|)) 21)) (-4290 (((-618 (-747)) (-1136 |#4|) (-618 |#2|)) 40)) (-1707 (((-1136 |#3|) (-1136 |#4|) (-618 |#2|) (-618 |#3|)) 35)))
+(((-314 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1707 ((-1136 |#3|) (-1136 |#4|) (-618 |#2|) (-618 |#3|))) (-15 -4290 ((-618 (-747)) (-1136 |#4|) (-618 |#2|))) (-15 -3405 ((-618 |#2|) (-1136 |#4|))) (-15 -1708 ((-1136 |#3|) (-1136 |#4|))) (-15 -1709 ((-1136 |#4|) (-1136 |#3|))) (-15 -1710 ((-1136 |#4|) (-1136 |#4|) (-535))) (-15 -1711 (|#3| (-535)))) (-769) (-823) (-1018) (-921 |#3| |#1| |#2|)) (T -314))
+((-1711 (*1 *2 *3) (-12 (-5 *3 (-535)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1018)) (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-921 *2 *4 *5)))) (-1710 (*1 *2 *2 *3) (-12 (-5 *2 (-1136 *7)) (-5 *3 (-535)) (-4 *7 (-921 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *1 (-314 *4 *5 *6 *7)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-1136 *6)) (-4 *6 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-1136 *7)) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-1136 *7)) (-4 *7 (-921 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *2 (-1136 *6)) (-5 *1 (-314 *4 *5 *6 *7)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-1136 *7)) (-4 *7 (-921 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *2 (-618 *5)) (-5 *1 (-314 *4 *5 *6 *7)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *8)) (-5 *4 (-618 *6)) (-4 *6 (-823)) (-4 *8 (-921 *7 *5 *6)) (-4 *5 (-769)) (-4 *7 (-1018)) (-5 *2 (-618 (-747))) (-5 *1 (-314 *5 *6 *7 *8)))) (-1707 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1136 *9)) (-5 *4 (-618 *7)) (-5 *5 (-618 *8)) (-4 *7 (-823)) (-4 *8 (-1018)) (-4 *9 (-921 *8 *6 *7)) (-4 *6 (-769)) (-5 *2 (-1136 *8)) (-5 *1 (-314 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1707 ((-1136 |#3|) (-1136 |#4|) (-618 |#2|) (-618 |#3|))) (-15 -4290 ((-618 (-747)) (-1136 |#4|) (-618 |#2|))) (-15 -3405 ((-618 |#2|) (-1136 |#4|))) (-15 -1708 ((-1136 |#3|) (-1136 |#4|))) (-15 -1709 ((-1136 |#4|) (-1136 |#3|))) (-15 -1710 ((-1136 |#4|) (-1136 |#4|) (-535))) (-15 -1711 (|#3| (-535))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 14)) (-4116 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-535)))) $) 18)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3454 (((-747) $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2759 ((|#1| $ (-535)) NIL)) (-1714 (((-535) $ (-535)) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2362 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (($ (-1 (-535) (-535)) $) 10)) (-3576 (((-1124) $) NIL)) (-1712 (($ $ $) NIL (|has| (-535) (-768)))) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL) (($ |#1|) NIL)) (-4023 (((-535) |#1| $) NIL)) (-2979 (($) 15 T CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) 21 (|has| |#1| (-823)))) (-4180 (($ $) 11) (($ $ $) 20)) (-4182 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ (-535)) NIL) (($ (-535) |#1|) 19)))
+(((-315 |#1|) (-13 (-21) (-694 (-535)) (-316 |#1| (-535)) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-1067)) (T -315))
+NIL
+(-13 (-21) (-694 (-535)) (-316 |#1| (-535)) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-4116 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))) $) 27)) (-1363 (((-3 $ "failed") $ $) 19)) (-3454 (((-747) $) 28)) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| "failed") $) 32)) (-3490 ((|#1| $) 31)) (-2759 ((|#1| $ (-535)) 25)) (-1714 ((|#2| $ (-535)) 26)) (-2362 (($ (-1 |#1| |#1|) $) 22)) (-1713 (($ (-1 |#2| |#2|) $) 23)) (-3576 (((-1124) $) 9)) (-1712 (($ $ $) 21 (|has| |#2| (-768)))) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ |#1|) 33)) (-4023 ((|#2| |#1| $) 24)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4182 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ |#2| |#1|) 29)))
+(((-316 |#1| |#2|) (-138) (-1067) (-130)) (T -316))
+((-4182 (*1 *1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-130)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)) (-5 *2 (-747)))) (-4116 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)) (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 *4)))))) (-1714 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1067)) (-4 *2 (-130)))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1067)))) (-4023 (*1 *2 *3 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-130)))) (-1713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)))) (-2362 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)))) (-1712 (*1 *1 *1 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-130)) (-4 *3 (-768)))))
+(-13 (-130) (-1009 |t#1|) (-10 -8 (-15 -4182 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3454 ((-747) $)) (-15 -4116 ((-618 (-2 (|:| |gen| |t#1|) (|:| -4286 |t#2|))) $)) (-15 -1714 (|t#2| $ (-535))) (-15 -2759 (|t#1| $ (-535))) (-15 -4023 (|t#2| |t#1| $)) (-15 -1713 ($ (-1 |t#2| |t#2|) $)) (-15 -2362 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-768)) (-15 -1712 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-1009 |#1|) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4116 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3454 (((-747) $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2759 ((|#1| $ (-535)) NIL)) (-1714 (((-747) $ (-535)) NIL)) (-2362 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (($ (-1 (-747) (-747)) $) NIL)) (-3576 (((-1124) $) NIL)) (-1712 (($ $ $) NIL (|has| (-747) (-768)))) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL) (($ |#1|) NIL)) (-4023 (((-747) |#1| $) NIL)) (-2979 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4182 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-747) |#1|) NIL)))
+(((-317 |#1|) (-316 |#1| (-747)) (-1067)) (T -317))
NIL
(-316 |#1| (-747))
-((-4212 (($ $) 53)) (-3744 (($ $ |#2| |#3| $) 14)) (-4058 (($ (-1 |#3| |#3|) $) 33)) (-2002 (((-112) $) 24)) (-2012 ((|#2| $) 26)) (-2038 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-1931 ((|#2| $) 49)) (-3330 (((-621 |#2|) $) 36)) (-1544 (($ $ $ (-747)) 20)) (-2512 (($ $ |#2|) 40)))
-(((-318 |#1| |#2| |#3|) (-10 -8 (-15 -4212 (|#1| |#1|)) (-15 -1931 (|#2| |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1544 (|#1| |#1| |#1| (-747))) (-15 -3744 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4058 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3330 ((-621 |#2|) |#1|)) (-15 -2012 (|#2| |#1|)) (-15 -2002 ((-112) |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2512 (|#1| |#1| |#2|))) (-319 |#2| |#3|) (-1018) (-768)) (T -318))
+((-3840 (($ $) 53)) (-1716 (($ $ |#2| |#3| $) 14)) (-1717 (($ (-1 |#3| |#3|) $) 33)) (-1911 (((-112) $) 24)) (-1910 ((|#2| $) 26)) (-3803 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3138 ((|#2| $) 49)) (-4160 (((-618 |#2|) $) 36)) (-1715 (($ $ $ (-747)) 20)) (-4291 (($ $ |#2|) 40)))
+(((-318 |#1| |#2| |#3|) (-10 -8 (-15 -3840 (|#1| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1715 (|#1| |#1| |#1| (-747))) (-15 -1716 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1717 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4160 ((-618 |#2|) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4291 (|#1| |#1| |#2|))) (-319 |#2| |#3|) (-1018) (-768)) (T -318))
NIL
-(-10 -8 (-15 -4212 (|#1| |#1|)) (-15 -1931 (|#2| |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1544 (|#1| |#1| |#1| (-747))) (-15 -3744 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4058 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3330 ((-621 |#2|) |#1|)) (-15 -2012 (|#2| |#1|)) (-15 -2002 ((-112) |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2512 (|#1| |#1| |#2|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2408 (($ $) 50 (|has| |#1| (-541)))) (-2477 (((-112) $) 52 (|has| |#1| (-541)))) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2713 (((-3 (-549) "failed") $) 88 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 86 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 85)) (-2658 (((-549) $) 89 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 87 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 84)) (-2069 (($ $) 58)) (-3976 (((-3 $ "failed") $) 32)) (-4212 (($ $) 73 (|has| |#1| (-444)))) (-3744 (($ $ |#1| |#2| $) 77)) (-3987 (((-112) $) 30)) (-3454 (((-747) $) 80)) (-2427 (((-112) $) 60)) (-2244 (($ |#1| |#2|) 59)) (-2856 ((|#2| $) 79)) (-4058 (($ (-1 |#2| |#2|) $) 78)) (-2796 (($ (-1 |#1| |#1|) $) 61)) (-2027 (($ $) 63)) (-2042 ((|#1| $) 64)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-2002 (((-112) $) 83)) (-2012 ((|#1| $) 82)) (-2038 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-541)))) (-3068 ((|#2| $) 62)) (-1931 ((|#1| $) 74 (|has| |#1| (-444)))) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 47 (|has| |#1| (-541))) (($ |#1|) 45) (($ (-400 (-549))) 55 (-1536 (|has| |#1| (-1009 (-400 (-549)))) (|has| |#1| (-38 (-400 (-549))))))) (-3330 (((-621 |#1|) $) 81)) (-2944 ((|#1| $ |#2|) 57)) (-3407 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-1723 (((-747)) 28)) (-1544 (($ $ $ (-747)) 76 (|has| |#1| (-170)))) (-4053 (((-112) $ $) 51 (|has| |#1| (-541)))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+(-10 -8 (-15 -3840 (|#1| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1715 (|#1| |#1| |#1| (-747))) (-15 -1716 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1717 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4160 ((-618 |#2|) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4291 (|#1| |#1| |#2|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 88 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 86 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 85)) (-3490 (((-535) $) 89 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 87 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 84)) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-3840 (($ $) 73 (|has| |#1| (-444)))) (-1716 (($ $ |#1| |#2| $) 77)) (-2493 (((-112) $) 30)) (-2501 (((-747) $) 80)) (-4280 (((-112) $) 60)) (-3214 (($ |#1| |#2|) 59)) (-3141 ((|#2| $) 79)) (-1717 (($ (-1 |#2| |#2|) $) 78)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-1911 (((-112) $) 83)) (-1910 ((|#1| $) 82)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-542)))) (-4290 ((|#2| $) 62)) (-3138 ((|#1| $) 74 (|has| |#1| (-444)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45) (($ (-400 (-535))) 55 (-3874 (|has| |#1| (-1009 (-400 (-535)))) (|has| |#1| (-38 (-400 (-535))))))) (-4160 (((-618 |#1|) $) 81)) (-4023 ((|#1| $ |#2|) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-1715 (($ $ $ (-747)) 76 (|has| |#1| (-170)))) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535)))))))
(((-319 |#1| |#2|) (-138) (-1018) (-768)) (T -319))
-((-2002 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-112)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-621 *3)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-747)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4058 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) (-3744 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-1544 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *3 (-170)))) (-2038 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-541)))) (-1931 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)) (-4 *2 (-444)))) (-4212 (*1 *1 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-444)))))
-(-13 (-47 |t#1| |t#2|) (-404 |t#1|) (-10 -8 (-15 -2002 ((-112) $)) (-15 -2012 (|t#1| $)) (-15 -3330 ((-621 |t#1|) $)) (-15 -3454 ((-747) $)) (-15 -2856 (|t#2| $)) (-15 -4058 ($ (-1 |t#2| |t#2|) $)) (-15 -3744 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -1544 ($ $ $ (-747))) |%noBranch|) (IF (|has| |t#1| (-541)) (-15 -2038 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -1931 (|t#1| $)) (-15 -4212 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-283) |has| |#1| (-541)) ((-404 |#1|) . T) ((-541) |has| |#1| (-541)) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) . T) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4106 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1323 (((-112) $ (-747)) NIL)) (-4269 (((-112) (-112)) NIL)) (-2253 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) NIL (|has| $ (-6 -4337)))) (-3069 (($ (-1 (-112) |#1|) $) NIL)) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-2992 (($ $) NIL (|has| |#1| (-1066)))) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-4204 (($ |#1| $) NIL (|has| |#1| (-1066))) (($ (-1 (-112) |#1|) $) NIL)) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) NIL)) (-2882 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1066))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1066)))) (-2925 (($ $ (-549)) NIL)) (-2964 (((-747) $) NIL)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3743 (($ (-747) |#1|) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3019 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1586 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-1709 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2614 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2654 (($ (-621 |#1|)) NIL)) (-3645 ((|#1| $) NIL (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3158 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-1876 (($ $ (-1192 (-549))) NIL) (($ $ (-549)) NIL)) (-2166 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) NIL)) (-3091 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-320 |#1|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2654 ($ (-621 |#1|))) (-15 -2964 ((-747) $)) (-15 -2925 ($ $ (-549))) (-15 -4269 ((-112) (-112))))) (-1179)) (T -320))
-((-2654 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-320 *3)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-320 *3)) (-4 *3 (-1179)))) (-2925 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-320 *3)) (-4 *3 (-1179)))) (-4269 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1179)))))
-(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2654 ($ (-621 |#1|))) (-15 -2964 ((-747) $)) (-15 -2925 ($ $ (-549))) (-15 -4269 ((-112) (-112)))))
-((-2642 (((-112) $) 42)) (-1703 (((-747)) 22)) (-2905 ((|#2| $) 46) (($ $ (-892)) 101)) (-3615 (((-747)) 102)) (-2127 (($ (-1225 |#2|)) 20)) (-2815 (((-112) $) 115)) (-4117 ((|#2| $) 48) (($ $ (-892)) 99)) (-4030 (((-1138 |#2|) $) NIL) (((-1138 $) $ (-892)) 95)) (-4228 (((-1138 |#2|) $) 82)) (-3609 (((-1138 |#2|) $) 79) (((-3 (-1138 |#2|) "failed") $ $) 76)) (-3289 (($ $ (-1138 |#2|)) 53)) (-3656 (((-809 (-892))) 28) (((-892)) 43)) (-3128 (((-133)) 25)) (-3068 (((-809 (-892)) $) 30) (((-892) $) 117)) (-3250 (($) 108)) (-4163 (((-1225 |#2|) $) NIL) (((-665 |#2|) (-1225 $)) 39)) (-3407 (($ $) NIL) (((-3 $ "failed") $) 85)) (-2923 (((-112) $) 41)))
-(((-321 |#1| |#2|) (-10 -8 (-15 -3407 ((-3 |#1| "failed") |#1|)) (-15 -3615 ((-747))) (-15 -3407 (|#1| |#1|)) (-15 -3609 ((-3 (-1138 |#2|) "failed") |#1| |#1|)) (-15 -3609 ((-1138 |#2|) |#1|)) (-15 -4228 ((-1138 |#2|) |#1|)) (-15 -3289 (|#1| |#1| (-1138 |#2|))) (-15 -2815 ((-112) |#1|)) (-15 -3250 (|#1|)) (-15 -2905 (|#1| |#1| (-892))) (-15 -4117 (|#1| |#1| (-892))) (-15 -4030 ((-1138 |#1|) |#1| (-892))) (-15 -2905 (|#2| |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -3068 ((-892) |#1|)) (-15 -3656 ((-892))) (-15 -4030 ((-1138 |#2|) |#1|)) (-15 -2127 (|#1| (-1225 |#2|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1|)) (-15 -1703 ((-747))) (-15 -3656 ((-809 (-892)))) (-15 -3068 ((-809 (-892)) |#1|)) (-15 -2642 ((-112) |#1|)) (-15 -2923 ((-112) |#1|)) (-15 -3128 ((-133)))) (-322 |#2|) (-356)) (T -321))
-((-3128 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3656 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-809 (-892))) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-1703 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3656 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-892)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3615 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))))
-(-10 -8 (-15 -3407 ((-3 |#1| "failed") |#1|)) (-15 -3615 ((-747))) (-15 -3407 (|#1| |#1|)) (-15 -3609 ((-3 (-1138 |#2|) "failed") |#1| |#1|)) (-15 -3609 ((-1138 |#2|) |#1|)) (-15 -4228 ((-1138 |#2|) |#1|)) (-15 -3289 (|#1| |#1| (-1138 |#2|))) (-15 -2815 ((-112) |#1|)) (-15 -3250 (|#1|)) (-15 -2905 (|#1| |#1| (-892))) (-15 -4117 (|#1| |#1| (-892))) (-15 -4030 ((-1138 |#1|) |#1| (-892))) (-15 -2905 (|#2| |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -3068 ((-892) |#1|)) (-15 -3656 ((-892))) (-15 -4030 ((-1138 |#2|) |#1|)) (-15 -2127 (|#1| (-1225 |#2|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1|)) (-15 -1703 ((-747))) (-15 -3656 ((-809 (-892)))) (-15 -3068 ((-809 (-892)) |#1|)) (-15 -2642 ((-112) |#1|)) (-15 -2923 ((-112) |#1|)) (-15 -3128 ((-133))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2642 (((-112) $) 91)) (-1703 (((-747)) 87)) (-2905 ((|#1| $) 137) (($ $ (-892)) 134 (|has| |#1| (-361)))) (-2572 (((-1152 (-892) (-747)) (-549)) 119 (|has| |#1| (-361)))) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 70)) (-3513 (((-411 $) $) 69)) (-2647 (((-112) $ $) 57)) (-3615 (((-747)) 109 (|has| |#1| (-361)))) (-1705 (($) 17 T CONST)) (-2713 (((-3 |#1| "failed") $) 98)) (-2658 ((|#1| $) 97)) (-2127 (($ (-1225 |#1|)) 143)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-361)))) (-2094 (($ $ $) 53)) (-3976 (((-3 $ "failed") $) 32)) (-3238 (($) 106 (|has| |#1| (-361)))) (-2066 (($ $ $) 54)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-1327 (($) 121 (|has| |#1| (-361)))) (-1729 (((-112) $) 122 (|has| |#1| (-361)))) (-3225 (($ $ (-747)) 84 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2471 (((-112) $) 68)) (-2078 (((-892) $) 124 (|has| |#1| (-361))) (((-809 (-892)) $) 81 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3987 (((-112) $) 30)) (-2308 (($) 132 (|has| |#1| (-361)))) (-2815 (((-112) $) 131 (|has| |#1| (-361)))) (-4117 ((|#1| $) 138) (($ $ (-892)) 135 (|has| |#1| (-361)))) (-3982 (((-3 $ "failed") $) 110 (|has| |#1| (-361)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-4030 (((-1138 |#1|) $) 142) (((-1138 $) $ (-892)) 136 (|has| |#1| (-361)))) (-2723 (((-892) $) 107 (|has| |#1| (-361)))) (-4228 (((-1138 |#1|) $) 128 (|has| |#1| (-361)))) (-3609 (((-1138 |#1|) $) 127 (|has| |#1| (-361))) (((-3 (-1138 |#1|) "failed") $ $) 126 (|has| |#1| (-361)))) (-3289 (($ $ (-1138 |#1|)) 129 (|has| |#1| (-361)))) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 67)) (-3060 (($) 111 (|has| |#1| (-361)) CONST)) (-3491 (($ (-892)) 108 (|has| |#1| (-361)))) (-2360 (((-112) $) 90)) (-3988 (((-1086) $) 10)) (-4246 (($) 130 (|has| |#1| (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) 118 (|has| |#1| (-361)))) (-2120 (((-411 $) $) 71)) (-3656 (((-809 (-892))) 88) (((-892)) 140)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-4091 (((-747) $) 56)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55)) (-2591 (((-747) $) 123 (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) 82 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3128 (((-133)) 96)) (-3455 (($ $) 115 (|has| |#1| (-361))) (($ $ (-747)) 113 (|has| |#1| (-361)))) (-3068 (((-809 (-892)) $) 89) (((-892) $) 139)) (-2539 (((-1138 |#1|)) 141)) (-3191 (($) 120 (|has| |#1| (-361)))) (-3250 (($) 133 (|has| |#1| (-361)))) (-4163 (((-1225 |#1|) $) 145) (((-665 |#1|) (-1225 $)) 144)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 117 (|has| |#1| (-361)))) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63) (($ |#1|) 99)) (-3407 (($ $) 116 (|has| |#1| (-361))) (((-3 $ "failed") $) 80 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1723 (((-747)) 28)) (-3420 (((-1225 $)) 147) (((-1225 $) (-892)) 146)) (-4053 (((-112) $ $) 37)) (-2923 (((-112) $) 92)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2731 (($ $) 86 (|has| |#1| (-361))) (($ $ (-747)) 85 (|has| |#1| (-361)))) (-1700 (($ $) 114 (|has| |#1| (-361))) (($ $ (-747)) 112 (|has| |#1| (-361)))) (-2388 (((-112) $ $) 6)) (-2512 (($ $ $) 62) (($ $ |#1|) 95)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
+((-1911 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-112)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-618 *3)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-747)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-1717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) (-1716 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-1715 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *3 (-170)))) (-3803 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-542)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)) (-4 *2 (-444)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-444)))))
+(-13 (-47 |t#1| |t#2|) (-405 |t#1|) (-10 -8 (-15 -1911 ((-112) $)) (-15 -1910 (|t#1| $)) (-15 -4160 ((-618 |t#1|) $)) (-15 -2501 ((-747) $)) (-15 -3141 (|t#2| $)) (-15 -1717 ($ (-1 |t#2| |t#2|) $)) (-15 -1716 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -1715 ($ $ $ (-747))) |%noBranch|) (IF (|has| |t#1| (-542)) (-15 -3803 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3138 (|t#1| $)) (-15 -3840 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-283) |has| |#1| (-542)) ((-405 |#1|) . T) ((-542) |has| |#1| (-542)) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) . T) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-2102 (((-112) (-112)) NIL)) (-4130 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-2446 (($ $) NIL (|has| |#1| (-1067)))) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) NIL)) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2103 (($ $ (-535)) NIL)) (-2104 (((-747) $) NIL)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3180 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3953 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2105 (($ (-618 |#1|)) NIL)) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-1627 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4133 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-320 |#1|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-618 |#1|))) (-15 -2104 ((-747) $)) (-15 -2103 ($ $ (-535))) (-15 -2102 ((-112) (-112))))) (-1178)) (T -320))
+((-2105 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-320 *3)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-320 *3)) (-4 *3 (-1178)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-320 *3)) (-4 *3 (-1178)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1178)))))
+(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-618 |#1|))) (-15 -2104 ((-747) $)) (-15 -2103 ($ $ (-535))) (-15 -2102 ((-112) (-112)))))
+((-4275 (((-112) $) 42)) (-4272 (((-747)) 22)) (-3672 ((|#2| $) 46) (($ $ (-890)) 101)) (-3454 (((-747)) 102)) (-1906 (($ (-1224 |#2|)) 20)) (-2122 (((-112) $) 115)) (-3450 ((|#2| $) 48) (($ $ (-890)) 99)) (-2125 (((-1136 |#2|) $) NIL) (((-1136 $) $ (-890)) 95)) (-1719 (((-1136 |#2|) $) 82)) (-1718 (((-1136 |#2|) $) 79) (((-3 (-1136 |#2|) "failed") $ $) 76)) (-1720 (($ $ (-1136 |#2|)) 53)) (-4273 (((-808 (-890))) 28) (((-890)) 43)) (-4254 (((-133)) 25)) (-4290 (((-808 (-890)) $) 30) (((-890) $) 117)) (-1721 (($) 108)) (-3558 (((-1224 |#2|) $) NIL) (((-665 |#2|) (-1224 $)) 39)) (-3023 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4276 (((-112) $) 41)))
+(((-321 |#1| |#2|) (-10 -8 (-15 -3023 ((-3 |#1| "failed") |#1|)) (-15 -3454 ((-747))) (-15 -3023 (|#1| |#1|)) (-15 -1718 ((-3 (-1136 |#2|) "failed") |#1| |#1|)) (-15 -1718 ((-1136 |#2|) |#1|)) (-15 -1719 ((-1136 |#2|) |#1|)) (-15 -1720 (|#1| |#1| (-1136 |#2|))) (-15 -2122 ((-112) |#1|)) (-15 -1721 (|#1|)) (-15 -3672 (|#1| |#1| (-890))) (-15 -3450 (|#1| |#1| (-890))) (-15 -2125 ((-1136 |#1|) |#1| (-890))) (-15 -3672 (|#2| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -4290 ((-890) |#1|)) (-15 -4273 ((-890))) (-15 -2125 ((-1136 |#2|) |#1|)) (-15 -1906 (|#1| (-1224 |#2|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -4272 ((-747))) (-15 -4273 ((-808 (-890)))) (-15 -4290 ((-808 (-890)) |#1|)) (-15 -4275 ((-112) |#1|)) (-15 -4276 ((-112) |#1|)) (-15 -4254 ((-133)))) (-322 |#2|) (-356)) (T -321))
+((-4254 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4273 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-808 (-890))) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4272 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4273 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-890)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3454 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))))
+(-10 -8 (-15 -3023 ((-3 |#1| "failed") |#1|)) (-15 -3454 ((-747))) (-15 -3023 (|#1| |#1|)) (-15 -1718 ((-3 (-1136 |#2|) "failed") |#1| |#1|)) (-15 -1718 ((-1136 |#2|) |#1|)) (-15 -1719 ((-1136 |#2|) |#1|)) (-15 -1720 (|#1| |#1| (-1136 |#2|))) (-15 -2122 ((-112) |#1|)) (-15 -1721 (|#1|)) (-15 -3672 (|#1| |#1| (-890))) (-15 -3450 (|#1| |#1| (-890))) (-15 -2125 ((-1136 |#1|) |#1| (-890))) (-15 -3672 (|#2| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -4290 ((-890) |#1|)) (-15 -4273 ((-890))) (-15 -2125 ((-1136 |#2|) |#1|)) (-15 -1906 (|#1| (-1224 |#2|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -4272 ((-747))) (-15 -4273 ((-808 (-890)))) (-15 -4290 ((-808 (-890)) |#1|)) (-15 -4275 ((-112) |#1|)) (-15 -4276 ((-112) |#1|)) (-15 -4254 ((-133))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-4275 (((-112) $) 91)) (-4272 (((-747)) 87)) (-3672 ((|#1| $) 137) (($ $ (-890)) 134 (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) 119 (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3454 (((-747)) 109 (|has| |#1| (-361)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| "failed") $) 98)) (-3490 ((|#1| $) 97)) (-1906 (($ (-1224 |#1|)) 143)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-361)))) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-3315 (($) 106 (|has| |#1| (-361)))) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-3154 (($) 121 (|has| |#1| (-361)))) (-1791 (((-112) $) 122 (|has| |#1| (-361)))) (-1881 (($ $ (-747)) 84 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) 68)) (-4114 (((-890) $) 124 (|has| |#1| (-361))) (((-808 (-890)) $) 81 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) 30)) (-2124 (($) 132 (|has| |#1| (-361)))) (-2122 (((-112) $) 131 (|has| |#1| (-361)))) (-3450 ((|#1| $) 138) (($ $ (-890)) 135 (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) 110 (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2125 (((-1136 |#1|) $) 142) (((-1136 $) $ (-890)) 136 (|has| |#1| (-361)))) (-2121 (((-890) $) 107 (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) 128 (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) 127 (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) 126 (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) 129 (|has| |#1| (-361)))) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3787 (($) 111 (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) 108 (|has| |#1| (-361)))) (-4274 (((-112) $) 90)) (-3577 (((-1086) $) 10)) (-2492 (($) 130 (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 118 (|has| |#1| (-361)))) (-4075 (((-398 $) $) 71)) (-4273 (((-808 (-890))) 88) (((-890)) 140)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-1882 (((-747) $) 123 (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) 82 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) 96)) (-4153 (($ $) 115 (|has| |#1| (-361))) (($ $ (-747)) 113 (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) 89) (((-890) $) 139)) (-3519 (((-1136 |#1|)) 141)) (-1785 (($) 120 (|has| |#1| (-361)))) (-1721 (($) 133 (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) 145) (((-665 |#1|) (-1224 $)) 144)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 117 (|has| |#1| (-361)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63) (($ |#1|) 99)) (-3023 (($ $) 116 (|has| |#1| (-361))) (((-3 $ "failed") $) 80 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) 28)) (-2123 (((-1224 $)) 147) (((-1224 $) (-890)) 146)) (-2170 (((-112) $ $) 37)) (-4276 (((-112) $) 92)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-4271 (($ $) 86 (|has| |#1| (-361))) (($ $ (-747)) 85 (|has| |#1| (-361)))) (-2990 (($ $) 114 (|has| |#1| (-361))) (($ $ (-747)) 112 (|has| |#1| (-361)))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 62) (($ $ |#1|) 95)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
(((-322 |#1|) (-138) (-356)) (T -322))
-((-3420 (*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1225 *1)) (-4 *1 (-322 *3)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-892)) (-4 *4 (-356)) (-5 *2 (-1225 *1)) (-4 *1 (-322 *4)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1225 *3)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1138 *3)))) (-2539 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1138 *3)))) (-3656 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-892)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-892)))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-4030 (*1 *2 *1 *3) (-12 (-5 *3 (-892)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1138 *1)) (-4 *1 (-322 *4)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-2905 (*1 *1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-3250 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-2308 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) (-4246 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) (-4 *3 (-356)))) (-4228 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1138 *3)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1138 *3)))) (-3609 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1138 *3)))))
-(-13 (-1244 |t#1|) (-1009 |t#1|) (-10 -8 (-15 -3420 ((-1225 $))) (-15 -3420 ((-1225 $) (-892))) (-15 -4163 ((-1225 |t#1|) $)) (-15 -4163 ((-665 |t#1|) (-1225 $))) (-15 -2127 ($ (-1225 |t#1|))) (-15 -4030 ((-1138 |t#1|) $)) (-15 -2539 ((-1138 |t#1|))) (-15 -3656 ((-892))) (-15 -3068 ((-892) $)) (-15 -4117 (|t#1| $)) (-15 -2905 (|t#1| $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-342)) (-15 -4030 ((-1138 $) $ (-892))) (-15 -4117 ($ $ (-892))) (-15 -2905 ($ $ (-892))) (-15 -3250 ($)) (-15 -2308 ($)) (-15 -2815 ((-112) $)) (-15 -4246 ($)) (-15 -3289 ($ $ (-1138 |t#1|))) (-15 -4228 ((-1138 |t#1|) $)) (-15 -3609 ((-1138 |t#1|) $)) (-15 -3609 ((-3 (-1138 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1536 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) . T) ((-227) |has| |#1| (-361)) ((-237) . T) ((-283) . T) ((-300) . T) ((-1244 |#1|) . T) ((-356) . T) ((-395) -1536 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-361) |has| |#1| (-361)) ((-342) |has| |#1| (-361)) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 |#1|) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1009 |#1|) . T) ((-1024 #0#) . T) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1117) |has| |#1| (-361)) ((-1183) . T) ((-1232 |#1|) . T))
-((-3833 (((-112) $ $) NIL)) (-1504 (($ (-1141) $) 88)) (-4148 (($) 77)) (-3668 (((-1086) (-1086)) 11)) (-2536 (($) 78)) (-2702 (($) 90) (($ (-309 (-675))) 98) (($ (-309 (-677))) 94) (($ (-309 (-670))) 102) (($ (-309 (-372))) 109) (($ (-309 (-549))) 105) (($ (-309 (-167 (-372)))) 113)) (-1921 (($ (-1141) $) 89)) (-3422 (($ (-621 (-834))) 79)) (-3028 (((-1230) $) 75)) (-3377 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2845 (($ (-1086)) 51)) (-2879 (((-1070) $) 25)) (-2891 (($ (-1058 (-923 (-549))) $) 85) (($ (-1058 (-923 (-549))) (-923 (-549)) $) 86)) (-2331 (($ (-1086)) 87)) (-4108 (($ (-1141) $) 115) (($ (-1141) $ $) 116)) (-3554 (($ (-1142) (-621 (-1142))) 76)) (-1261 (($ (-1124)) 82) (($ (-621 (-1124))) 80)) (-3845 (((-834) $) 118)) (-2101 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-621 (-923 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2976 (-834)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1142)) (|:| |rand| (-834)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1141)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1807 (-112)) (|:| -4160 (-2 (|:| |ints2Floats?| (-112)) (|:| -2976 (-834)))))) (|:| |blockBranch| (-621 $)) (|:| |commentBranch| (-621 (-1124))) (|:| |callBranch| (-1124)) (|:| |forBranch| (-2 (|:| -2062 (-1058 (-923 (-549)))) (|:| |span| (-923 (-549))) (|:| -2493 $))) (|:| |labelBranch| (-1086)) (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -2493 $))) (|:| |commonBranch| (-2 (|:| -2480 (-1142)) (|:| |contents| (-621 (-1142))))) (|:| |printBranch| (-621 (-834)))) $) 44)) (-3510 (($ (-1124)) 187)) (-1490 (($ (-621 $)) 114)) (-3881 (($ (-1142) (-1124)) 120) (($ (-1142) (-309 (-677))) 160) (($ (-1142) (-309 (-675))) 161) (($ (-1142) (-309 (-670))) 162) (($ (-1142) (-665 (-677))) 123) (($ (-1142) (-665 (-675))) 126) (($ (-1142) (-665 (-670))) 129) (($ (-1142) (-1225 (-677))) 132) (($ (-1142) (-1225 (-675))) 135) (($ (-1142) (-1225 (-670))) 138) (($ (-1142) (-665 (-309 (-677)))) 141) (($ (-1142) (-665 (-309 (-675)))) 144) (($ (-1142) (-665 (-309 (-670)))) 147) (($ (-1142) (-1225 (-309 (-677)))) 150) (($ (-1142) (-1225 (-309 (-675)))) 153) (($ (-1142) (-1225 (-309 (-670)))) 156) (($ (-1142) (-621 (-923 (-549))) (-309 (-677))) 157) (($ (-1142) (-621 (-923 (-549))) (-309 (-675))) 158) (($ (-1142) (-621 (-923 (-549))) (-309 (-670))) 159) (($ (-1142) (-309 (-549))) 184) (($ (-1142) (-309 (-372))) 185) (($ (-1142) (-309 (-167 (-372)))) 186) (($ (-1142) (-665 (-309 (-549)))) 165) (($ (-1142) (-665 (-309 (-372)))) 168) (($ (-1142) (-665 (-309 (-167 (-372))))) 171) (($ (-1142) (-1225 (-309 (-549)))) 174) (($ (-1142) (-1225 (-309 (-372)))) 177) (($ (-1142) (-1225 (-309 (-167 (-372))))) 180) (($ (-1142) (-621 (-923 (-549))) (-309 (-549))) 181) (($ (-1142) (-621 (-923 (-549))) (-309 (-372))) 182) (($ (-1142) (-621 (-923 (-549))) (-309 (-167 (-372)))) 183)) (-2388 (((-112) $ $) NIL)))
-(((-323) (-13 (-1066) (-10 -8 (-15 -3845 ((-834) $)) (-15 -2891 ($ (-1058 (-923 (-549))) $)) (-15 -2891 ($ (-1058 (-923 (-549))) (-923 (-549)) $)) (-15 -1504 ($ (-1141) $)) (-15 -1921 ($ (-1141) $)) (-15 -2845 ($ (-1086))) (-15 -2331 ($ (-1086))) (-15 -1261 ($ (-1124))) (-15 -1261 ($ (-621 (-1124)))) (-15 -3510 ($ (-1124))) (-15 -2702 ($)) (-15 -2702 ($ (-309 (-675)))) (-15 -2702 ($ (-309 (-677)))) (-15 -2702 ($ (-309 (-670)))) (-15 -2702 ($ (-309 (-372)))) (-15 -2702 ($ (-309 (-549)))) (-15 -2702 ($ (-309 (-167 (-372))))) (-15 -4108 ($ (-1141) $)) (-15 -4108 ($ (-1141) $ $)) (-15 -3881 ($ (-1142) (-1124))) (-15 -3881 ($ (-1142) (-309 (-677)))) (-15 -3881 ($ (-1142) (-309 (-675)))) (-15 -3881 ($ (-1142) (-309 (-670)))) (-15 -3881 ($ (-1142) (-665 (-677)))) (-15 -3881 ($ (-1142) (-665 (-675)))) (-15 -3881 ($ (-1142) (-665 (-670)))) (-15 -3881 ($ (-1142) (-1225 (-677)))) (-15 -3881 ($ (-1142) (-1225 (-675)))) (-15 -3881 ($ (-1142) (-1225 (-670)))) (-15 -3881 ($ (-1142) (-665 (-309 (-677))))) (-15 -3881 ($ (-1142) (-665 (-309 (-675))))) (-15 -3881 ($ (-1142) (-665 (-309 (-670))))) (-15 -3881 ($ (-1142) (-1225 (-309 (-677))))) (-15 -3881 ($ (-1142) (-1225 (-309 (-675))))) (-15 -3881 ($ (-1142) (-1225 (-309 (-670))))) (-15 -3881 ($ (-1142) (-621 (-923 (-549))) (-309 (-677)))) (-15 -3881 ($ (-1142) (-621 (-923 (-549))) (-309 (-675)))) (-15 -3881 ($ (-1142) (-621 (-923 (-549))) (-309 (-670)))) (-15 -3881 ($ (-1142) (-309 (-549)))) (-15 -3881 ($ (-1142) (-309 (-372)))) (-15 -3881 ($ (-1142) (-309 (-167 (-372))))) (-15 -3881 ($ (-1142) (-665 (-309 (-549))))) (-15 -3881 ($ (-1142) (-665 (-309 (-372))))) (-15 -3881 ($ (-1142) (-665 (-309 (-167 (-372)))))) (-15 -3881 ($ (-1142) (-1225 (-309 (-549))))) (-15 -3881 ($ (-1142) (-1225 (-309 (-372))))) (-15 -3881 ($ (-1142) (-1225 (-309 (-167 (-372)))))) (-15 -3881 ($ (-1142) (-621 (-923 (-549))) (-309 (-549)))) (-15 -3881 ($ (-1142) (-621 (-923 (-549))) (-309 (-372)))) (-15 -3881 ($ (-1142) (-621 (-923 (-549))) (-309 (-167 (-372))))) (-15 -1490 ($ (-621 $))) (-15 -4148 ($)) (-15 -2536 ($)) (-15 -3422 ($ (-621 (-834)))) (-15 -3554 ($ (-1142) (-621 (-1142)))) (-15 -3377 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2101 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-621 (-923 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2976 (-834)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1142)) (|:| |rand| (-834)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1141)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1807 (-112)) (|:| -4160 (-2 (|:| |ints2Floats?| (-112)) (|:| -2976 (-834)))))) (|:| |blockBranch| (-621 $)) (|:| |commentBranch| (-621 (-1124))) (|:| |callBranch| (-1124)) (|:| |forBranch| (-2 (|:| -2062 (-1058 (-923 (-549)))) (|:| |span| (-923 (-549))) (|:| -2493 $))) (|:| |labelBranch| (-1086)) (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -2493 $))) (|:| |commonBranch| (-2 (|:| -2480 (-1142)) (|:| |contents| (-621 (-1142))))) (|:| |printBranch| (-621 (-834)))) $)) (-15 -3028 ((-1230) $)) (-15 -2879 ((-1070) $)) (-15 -3668 ((-1086) (-1086)))))) (T -323))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-323)))) (-2891 (*1 *1 *2 *1) (-12 (-5 *2 (-1058 (-923 (-549)))) (-5 *1 (-323)))) (-2891 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1058 (-923 (-549)))) (-5 *3 (-923 (-549))) (-5 *1 (-323)))) (-1504 (*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) (-1921 (*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))) (-2331 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))) (-1261 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-323)))) (-1261 (*1 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-323)))) (-3510 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-323)))) (-2702 (*1 *1) (-5 *1 (-323))) (-2702 (*1 *1 *2) (-12 (-5 *2 (-309 (-675))) (-5 *1 (-323)))) (-2702 (*1 *1 *2) (-12 (-5 *2 (-309 (-677))) (-5 *1 (-323)))) (-2702 (*1 *1 *2) (-12 (-5 *2 (-309 (-670))) (-5 *1 (-323)))) (-2702 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-323)))) (-2702 (*1 *1 *2) (-12 (-5 *2 (-309 (-549))) (-5 *1 (-323)))) (-2702 (*1 *1 *2) (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-323)))) (-4108 (*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) (-4108 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1124)) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-309 (-677))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-309 (-675))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-309 (-670))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-677))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-675))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-670))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-677))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-675))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-670))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-309 (-677)))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-309 (-675)))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-309 (-670)))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-309 (-677)))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-309 (-675)))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-309 (-670)))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-309 (-677))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-309 (-675))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-309 (-670))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-309 (-549))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-309 (-372))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-309 (-167 (-372)))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-309 (-549)))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-309 (-372)))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-309 (-167 (-372))))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-309 (-549)))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-309 (-372)))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-309 (-167 (-372))))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-309 (-549))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-309 (-372))) (-5 *1 (-323)))) (-3881 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-309 (-167 (-372)))) (-5 *1 (-323)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-5 *1 (-323)))) (-4148 (*1 *1) (-5 *1 (-323))) (-2536 (*1 *1) (-5 *1 (-323))) (-3422 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-323)))) (-3554 (*1 *1 *2 *3) (-12 (-5 *3 (-621 (-1142))) (-5 *2 (-1142)) (-5 *1 (-323)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-323)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-621 (-923 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2976 (-834)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1142)) (|:| |rand| (-834)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1141)) (|:| |thenClause| (-323)) (|:| |elseClause| (-323)))) (|:| |returnBranch| (-2 (|:| -1807 (-112)) (|:| -4160 (-2 (|:| |ints2Floats?| (-112)) (|:| -2976 (-834)))))) (|:| |blockBranch| (-621 (-323))) (|:| |commentBranch| (-621 (-1124))) (|:| |callBranch| (-1124)) (|:| |forBranch| (-2 (|:| -2062 (-1058 (-923 (-549)))) (|:| |span| (-923 (-549))) (|:| -2493 (-323)))) (|:| |labelBranch| (-1086)) (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -2493 (-323)))) (|:| |commonBranch| (-2 (|:| -2480 (-1142)) (|:| |contents| (-621 (-1142))))) (|:| |printBranch| (-621 (-834))))) (-5 *1 (-323)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-323)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-323)))) (-3668 (*1 *2 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))))
-(-13 (-1066) (-10 -8 (-15 -3845 ((-834) $)) (-15 -2891 ($ (-1058 (-923 (-549))) $)) (-15 -2891 ($ (-1058 (-923 (-549))) (-923 (-549)) $)) (-15 -1504 ($ (-1141) $)) (-15 -1921 ($ (-1141) $)) (-15 -2845 ($ (-1086))) (-15 -2331 ($ (-1086))) (-15 -1261 ($ (-1124))) (-15 -1261 ($ (-621 (-1124)))) (-15 -3510 ($ (-1124))) (-15 -2702 ($)) (-15 -2702 ($ (-309 (-675)))) (-15 -2702 ($ (-309 (-677)))) (-15 -2702 ($ (-309 (-670)))) (-15 -2702 ($ (-309 (-372)))) (-15 -2702 ($ (-309 (-549)))) (-15 -2702 ($ (-309 (-167 (-372))))) (-15 -4108 ($ (-1141) $)) (-15 -4108 ($ (-1141) $ $)) (-15 -3881 ($ (-1142) (-1124))) (-15 -3881 ($ (-1142) (-309 (-677)))) (-15 -3881 ($ (-1142) (-309 (-675)))) (-15 -3881 ($ (-1142) (-309 (-670)))) (-15 -3881 ($ (-1142) (-665 (-677)))) (-15 -3881 ($ (-1142) (-665 (-675)))) (-15 -3881 ($ (-1142) (-665 (-670)))) (-15 -3881 ($ (-1142) (-1225 (-677)))) (-15 -3881 ($ (-1142) (-1225 (-675)))) (-15 -3881 ($ (-1142) (-1225 (-670)))) (-15 -3881 ($ (-1142) (-665 (-309 (-677))))) (-15 -3881 ($ (-1142) (-665 (-309 (-675))))) (-15 -3881 ($ (-1142) (-665 (-309 (-670))))) (-15 -3881 ($ (-1142) (-1225 (-309 (-677))))) (-15 -3881 ($ (-1142) (-1225 (-309 (-675))))) (-15 -3881 ($ (-1142) (-1225 (-309 (-670))))) (-15 -3881 ($ (-1142) (-621 (-923 (-549))) (-309 (-677)))) (-15 -3881 ($ (-1142) (-621 (-923 (-549))) (-309 (-675)))) (-15 -3881 ($ (-1142) (-621 (-923 (-549))) (-309 (-670)))) (-15 -3881 ($ (-1142) (-309 (-549)))) (-15 -3881 ($ (-1142) (-309 (-372)))) (-15 -3881 ($ (-1142) (-309 (-167 (-372))))) (-15 -3881 ($ (-1142) (-665 (-309 (-549))))) (-15 -3881 ($ (-1142) (-665 (-309 (-372))))) (-15 -3881 ($ (-1142) (-665 (-309 (-167 (-372)))))) (-15 -3881 ($ (-1142) (-1225 (-309 (-549))))) (-15 -3881 ($ (-1142) (-1225 (-309 (-372))))) (-15 -3881 ($ (-1142) (-1225 (-309 (-167 (-372)))))) (-15 -3881 ($ (-1142) (-621 (-923 (-549))) (-309 (-549)))) (-15 -3881 ($ (-1142) (-621 (-923 (-549))) (-309 (-372)))) (-15 -3881 ($ (-1142) (-621 (-923 (-549))) (-309 (-167 (-372))))) (-15 -1490 ($ (-621 $))) (-15 -4148 ($)) (-15 -2536 ($)) (-15 -3422 ($ (-621 (-834)))) (-15 -3554 ($ (-1142) (-621 (-1142)))) (-15 -3377 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2101 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-621 (-923 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2976 (-834)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1142)) (|:| |rand| (-834)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1141)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1807 (-112)) (|:| -4160 (-2 (|:| |ints2Floats?| (-112)) (|:| -2976 (-834)))))) (|:| |blockBranch| (-621 $)) (|:| |commentBranch| (-621 (-1124))) (|:| |callBranch| (-1124)) (|:| |forBranch| (-2 (|:| -2062 (-1058 (-923 (-549)))) (|:| |span| (-923 (-549))) (|:| -2493 $))) (|:| |labelBranch| (-1086)) (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -2493 $))) (|:| |commonBranch| (-2 (|:| -2480 (-1142)) (|:| |contents| (-621 (-1142))))) (|:| |printBranch| (-621 (-834)))) $)) (-15 -3028 ((-1230) $)) (-15 -2879 ((-1070) $)) (-15 -3668 ((-1086) (-1086)))))
-((-3833 (((-112) $ $) NIL)) (-2048 (((-112) $) 11)) (-1485 (($ |#1|) 8)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1500 (($ |#1|) 9)) (-3845 (((-834) $) 17)) (-4155 ((|#1| $) 12)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 19)))
-(((-324 |#1|) (-13 (-823) (-10 -8 (-15 -1485 ($ |#1|)) (-15 -1500 ($ |#1|)) (-15 -2048 ((-112) $)) (-15 -4155 (|#1| $)))) (-823)) (T -324))
-((-1485 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))) (-1500 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-823)))) (-4155 (*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))))
-(-13 (-823) (-10 -8 (-15 -1485 ($ |#1|)) (-15 -1500 ($ |#1|)) (-15 -2048 ((-112) $)) (-15 -4155 (|#1| $))))
-((-1371 (((-323) (-1142) (-923 (-549))) 23)) (-3353 (((-323) (-1142) (-923 (-549))) 27)) (-1604 (((-323) (-1142) (-1058 (-923 (-549))) (-1058 (-923 (-549)))) 26) (((-323) (-1142) (-923 (-549)) (-923 (-549))) 24)) (-3585 (((-323) (-1142) (-923 (-549))) 31)))
-(((-325) (-10 -7 (-15 -1371 ((-323) (-1142) (-923 (-549)))) (-15 -1604 ((-323) (-1142) (-923 (-549)) (-923 (-549)))) (-15 -1604 ((-323) (-1142) (-1058 (-923 (-549))) (-1058 (-923 (-549))))) (-15 -3353 ((-323) (-1142) (-923 (-549)))) (-15 -3585 ((-323) (-1142) (-923 (-549)))))) (T -325))
-((-3585 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-923 (-549))) (-5 *2 (-323)) (-5 *1 (-325)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-923 (-549))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1604 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-1058 (-923 (-549)))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1604 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-923 (-549))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-923 (-549))) (-5 *2 (-323)) (-5 *1 (-325)))))
-(-10 -7 (-15 -1371 ((-323) (-1142) (-923 (-549)))) (-15 -1604 ((-323) (-1142) (-923 (-549)) (-923 (-549)))) (-15 -1604 ((-323) (-1142) (-1058 (-923 (-549))) (-1058 (-923 (-549))))) (-15 -3353 ((-323) (-1142) (-923 (-549)))) (-15 -3585 ((-323) (-1142) (-923 (-549)))))
-((-2796 (((-329 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-329 |#1| |#2| |#3| |#4|)) 33)))
-(((-326 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2796 ((-329 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-329 |#1| |#2| |#3| |#4|)))) (-356) (-1201 |#1|) (-1201 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-356) (-1201 |#5|) (-1201 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -326))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-329 *5 *6 *7 *8)) (-4 *5 (-356)) (-4 *6 (-1201 *5)) (-4 *7 (-1201 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *9 (-356)) (-4 *10 (-1201 *9)) (-4 *11 (-1201 (-400 *10))) (-5 *2 (-329 *9 *10 *11 *12)) (-5 *1 (-326 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-335 *9 *10 *11)))))
-(-10 -7 (-15 -2796 ((-329 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-329 |#1| |#2| |#3| |#4|))))
-((-3718 (((-112) $) 14)))
-(((-327 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3718 ((-112) |#1|))) (-328 |#2| |#3| |#4| |#5|) (-356) (-1201 |#2|) (-1201 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -327))
-NIL
-(-10 -8 (-15 -3718 ((-112) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2558 (($ $) 26)) (-3718 (((-112) $) 25)) (-2677 (((-1124) $) 9)) (-4296 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 32)) (-3988 (((-1086) $) 10)) (-4246 (((-3 |#4| "failed") $) 24)) (-3868 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-549)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3702 (((-2 (|:| -3713 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3845 (((-834) $) 11)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20)))
-(((-328 |#1| |#2| |#3| |#4|) (-138) (-356) (-1201 |t#1|) (-1201 (-400 |t#2|)) (-335 |t#1| |t#2| |t#3|)) (T -328))
-((-4296 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-406 *4 (-400 *4) *5 *6)))) (-3868 (*1 *1 *2) (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) (-4 *1 (-328 *3 *4 *5 *6)))) (-3868 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-4 *1 (-328 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) (-3868 (*1 *1 *2 *2) (-12 (-4 *2 (-356)) (-4 *3 (-1201 *2)) (-4 *4 (-1201 (-400 *3))) (-4 *1 (-328 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) (-3868 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-549)) (-4 *2 (-356)) (-4 *4 (-1201 *2)) (-4 *5 (-1201 (-400 *4))) (-4 *1 (-328 *2 *4 *5 *6)) (-4 *6 (-335 *2 *4 *5)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-2 (|:| -3713 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) (-2558 (*1 *1 *1) (-12 (-4 *1 (-328 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1201 *2)) (-4 *4 (-1201 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112)))) (-4246 (*1 *2 *1) (|partial| -12 (-4 *1 (-328 *3 *4 *5 *2)) (-4 *3 (-356)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-4 *2 (-335 *3 *4 *5)))) (-3868 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-356)) (-4 *3 (-1201 *4)) (-4 *5 (-1201 (-400 *3))) (-4 *1 (-328 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -4296 ((-406 |t#2| (-400 |t#2|) |t#3| |t#4|) $)) (-15 -3868 ($ (-406 |t#2| (-400 |t#2|) |t#3| |t#4|))) (-15 -3868 ($ |t#4|)) (-15 -3868 ($ |t#1| |t#1|)) (-15 -3868 ($ |t#1| |t#1| (-549))) (-15 -3702 ((-2 (|:| -3713 (-406 |t#2| (-400 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2558 ($ $)) (-15 -3718 ((-112) $)) (-15 -4246 ((-3 |t#4| "failed") $)) (-15 -3868 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2558 (($ $) 33)) (-3718 (((-112) $) NIL)) (-2677 (((-1124) $) NIL)) (-3094 (((-1225 |#4|) $) 125)) (-4296 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 31)) (-3988 (((-1086) $) NIL)) (-4246 (((-3 |#4| "failed") $) 36)) (-1514 (((-1225 |#4|) $) 118)) (-3868 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-549)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3702 (((-2 (|:| -3713 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3845 (((-834) $) 17)) (-3275 (($) 14 T CONST)) (-2388 (((-112) $ $) 20)) (-2499 (($ $) 27) (($ $ $) NIL)) (-2485 (($ $ $) 25)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 23)))
-(((-329 |#1| |#2| |#3| |#4|) (-13 (-328 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1514 ((-1225 |#4|) $)) (-15 -3094 ((-1225 |#4|) $)))) (-356) (-1201 |#1|) (-1201 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -329))
-((-1514 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-1225 *6)) (-5 *1 (-329 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))) (-3094 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-1225 *6)) (-5 *1 (-329 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))))
-(-13 (-328 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1514 ((-1225 |#4|) $)) (-15 -3094 ((-1225 |#4|) $))))
-((-2685 (($ $ (-1142) |#2|) NIL) (($ $ (-621 (-1142)) (-621 |#2|)) 20) (($ $ (-621 (-287 |#2|))) 15) (($ $ (-287 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-621 |#2|) (-621 |#2|)) NIL)) (-3340 (($ $ |#2|) 11)))
-(((-330 |#1| |#2|) (-10 -8 (-15 -3340 (|#1| |#1| |#2|)) (-15 -2685 (|#1| |#1| (-621 |#2|) (-621 |#2|))) (-15 -2685 (|#1| |#1| |#2| |#2|)) (-15 -2685 (|#1| |#1| (-287 |#2|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#2|)))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 |#2|))) (-15 -2685 (|#1| |#1| (-1142) |#2|))) (-331 |#2|) (-1066)) (T -330))
-NIL
-(-10 -8 (-15 -3340 (|#1| |#1| |#2|)) (-15 -2685 (|#1| |#1| (-621 |#2|) (-621 |#2|))) (-15 -2685 (|#1| |#1| |#2| |#2|)) (-15 -2685 (|#1| |#1| (-287 |#2|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#2|)))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 |#2|))) (-15 -2685 (|#1| |#1| (-1142) |#2|)))
-((-2796 (($ (-1 |#1| |#1|) $) 6)) (-2685 (($ $ (-1142) |#1|) 17 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-621 (-1142)) (-621 |#1|)) 16 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-621 (-287 |#1|))) 15 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 14 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-302 |#1|))) (($ $ (-621 |#1|) (-621 |#1|)) 12 (|has| |#1| (-302 |#1|)))) (-3340 (($ $ |#1|) 11 (|has| |#1| (-279 |#1| |#1|)))))
-(((-331 |#1|) (-138) (-1066)) (T -331))
-((-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1066)))))
-(-13 (-10 -8 (-15 -2796 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-279 |t#1| |t#1|)) (-6 (-279 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-505 (-1142) |t#1|)) (-6 (-505 (-1142) |t#1|)) |%noBranch|)))
+((-2123 (*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1224 *1)) (-4 *1 (-322 *3)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-356)) (-5 *2 (-1224 *1)) (-4 *1 (-322 *4)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1224 *3)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1136 *3)))) (-3519 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1136 *3)))) (-4273 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-890)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-890)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1136 *1)) (-4 *1 (-322 *4)))) (-3450 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-3672 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-1721 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-2124 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) (-2492 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-1720 (*1 *1 *1 *2) (-12 (-5 *2 (-1136 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) (-4 *3 (-356)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1136 *3)))) (-1718 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1136 *3)))) (-1718 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1136 *3)))))
+(-13 (-1243 |t#1|) (-1009 |t#1|) (-10 -8 (-15 -2123 ((-1224 $))) (-15 -2123 ((-1224 $) (-890))) (-15 -3558 ((-1224 |t#1|) $)) (-15 -3558 ((-665 |t#1|) (-1224 $))) (-15 -1906 ($ (-1224 |t#1|))) (-15 -2125 ((-1136 |t#1|) $)) (-15 -3519 ((-1136 |t#1|))) (-15 -4273 ((-890))) (-15 -4290 ((-890) $)) (-15 -3450 (|t#1| $)) (-15 -3672 (|t#1| $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-343)) (-15 -2125 ((-1136 $) $ (-890))) (-15 -3450 ($ $ (-890))) (-15 -3672 ($ $ (-890))) (-15 -1721 ($)) (-15 -2124 ($)) (-15 -2122 ((-112) $)) (-15 -2492 ($)) (-15 -1720 ($ $ (-1136 |t#1|))) (-15 -1719 ((-1136 |t#1|) $)) (-15 -1718 ((-1136 |t#1|) $)) (-15 -1718 ((-3 (-1136 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3874 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) . T) ((-227) |has| |#1| (-361)) ((-237) . T) ((-283) . T) ((-300) . T) ((-1243 |#1|) . T) ((-356) . T) ((-395) -3874 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-361) |has| |#1| (-361)) ((-343) |has| |#1| (-361)) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 |#1|) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1009 |#1|) . T) ((-1024 #1#) . T) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) |has| |#1| (-361)) ((-1183) . T) ((-1232 |#1|) . T))
+((-2887 (((-112) $ $) NIL)) (-1739 (($ (-1141) $) 88)) (-1730 (($) 77)) (-1722 (((-1086) (-1086)) 11)) (-1729 (($) 78)) (-1733 (($) 90) (($ (-307 (-675))) 98) (($ (-307 (-677))) 94) (($ (-307 (-670))) 102) (($ (-307 (-371))) 109) (($ (-307 (-535))) 105) (($ (-307 (-166 (-371)))) 113)) (-1738 (($ (-1141) $) 89)) (-1728 (($ (-618 (-835))) 79)) (-1724 (((-1230) $) 75)) (-1726 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1737 (($ (-1086)) 51)) (-1723 (((-1069) $) 25)) (-1740 (($ (-1058 (-917 (-535))) $) 85) (($ (-1058 (-917 (-535))) (-917 (-535)) $) 86)) (-1736 (($ (-1086)) 87)) (-1732 (($ (-1141) $) 115) (($ (-1141) $ $) 116)) (-1727 (($ (-1142) (-618 (-1142))) 76)) (-1735 (($ (-1124)) 82) (($ (-618 (-1124))) 80)) (-4300 (((-835) $) 118)) (-1725 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-618 (-917 (-535)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1142)) (|:| |rand| (-835)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1141)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3745 (-112)) (|:| -3744 (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |blockBranch| (-618 $)) (|:| |commentBranch| (-618 (-1124))) (|:| |callBranch| (-1124)) (|:| |forBranch| (-2 (|:| -1556 (-1058 (-917 (-535)))) (|:| |span| (-917 (-535))) (|:| -3567 $))) (|:| |labelBranch| (-1086)) (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -3567 $))) (|:| |commonBranch| (-2 (|:| -3888 (-1142)) (|:| |contents| (-618 (-1142))))) (|:| |printBranch| (-618 (-835)))) $) 44)) (-1734 (($ (-1124)) 187)) (-1731 (($ (-618 $)) 114)) (-2905 (($ (-1142) (-1124)) 120) (($ (-1142) (-307 (-677))) 160) (($ (-1142) (-307 (-675))) 161) (($ (-1142) (-307 (-670))) 162) (($ (-1142) (-665 (-677))) 123) (($ (-1142) (-665 (-675))) 126) (($ (-1142) (-665 (-670))) 129) (($ (-1142) (-1224 (-677))) 132) (($ (-1142) (-1224 (-675))) 135) (($ (-1142) (-1224 (-670))) 138) (($ (-1142) (-665 (-307 (-677)))) 141) (($ (-1142) (-665 (-307 (-675)))) 144) (($ (-1142) (-665 (-307 (-670)))) 147) (($ (-1142) (-1224 (-307 (-677)))) 150) (($ (-1142) (-1224 (-307 (-675)))) 153) (($ (-1142) (-1224 (-307 (-670)))) 156) (($ (-1142) (-618 (-917 (-535))) (-307 (-677))) 157) (($ (-1142) (-618 (-917 (-535))) (-307 (-675))) 158) (($ (-1142) (-618 (-917 (-535))) (-307 (-670))) 159) (($ (-1142) (-307 (-535))) 184) (($ (-1142) (-307 (-371))) 185) (($ (-1142) (-307 (-166 (-371)))) 186) (($ (-1142) (-665 (-307 (-535)))) 165) (($ (-1142) (-665 (-307 (-371)))) 168) (($ (-1142) (-665 (-307 (-166 (-371))))) 171) (($ (-1142) (-1224 (-307 (-535)))) 174) (($ (-1142) (-1224 (-307 (-371)))) 177) (($ (-1142) (-1224 (-307 (-166 (-371))))) 180) (($ (-1142) (-618 (-917 (-535))) (-307 (-535))) 181) (($ (-1142) (-618 (-917 (-535))) (-307 (-371))) 182) (($ (-1142) (-618 (-917 (-535))) (-307 (-166 (-371)))) 183)) (-3375 (((-112) $ $) NIL)))
+(((-323) (-13 (-1067) (-10 -8 (-15 -4300 ((-835) $)) (-15 -1740 ($ (-1058 (-917 (-535))) $)) (-15 -1740 ($ (-1058 (-917 (-535))) (-917 (-535)) $)) (-15 -1739 ($ (-1141) $)) (-15 -1738 ($ (-1141) $)) (-15 -1737 ($ (-1086))) (-15 -1736 ($ (-1086))) (-15 -1735 ($ (-1124))) (-15 -1735 ($ (-618 (-1124)))) (-15 -1734 ($ (-1124))) (-15 -1733 ($)) (-15 -1733 ($ (-307 (-675)))) (-15 -1733 ($ (-307 (-677)))) (-15 -1733 ($ (-307 (-670)))) (-15 -1733 ($ (-307 (-371)))) (-15 -1733 ($ (-307 (-535)))) (-15 -1733 ($ (-307 (-166 (-371))))) (-15 -1732 ($ (-1141) $)) (-15 -1732 ($ (-1141) $ $)) (-15 -2905 ($ (-1142) (-1124))) (-15 -2905 ($ (-1142) (-307 (-677)))) (-15 -2905 ($ (-1142) (-307 (-675)))) (-15 -2905 ($ (-1142) (-307 (-670)))) (-15 -2905 ($ (-1142) (-665 (-677)))) (-15 -2905 ($ (-1142) (-665 (-675)))) (-15 -2905 ($ (-1142) (-665 (-670)))) (-15 -2905 ($ (-1142) (-1224 (-677)))) (-15 -2905 ($ (-1142) (-1224 (-675)))) (-15 -2905 ($ (-1142) (-1224 (-670)))) (-15 -2905 ($ (-1142) (-665 (-307 (-677))))) (-15 -2905 ($ (-1142) (-665 (-307 (-675))))) (-15 -2905 ($ (-1142) (-665 (-307 (-670))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-677))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-675))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-670))))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-677)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-675)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-670)))) (-15 -2905 ($ (-1142) (-307 (-535)))) (-15 -2905 ($ (-1142) (-307 (-371)))) (-15 -2905 ($ (-1142) (-307 (-166 (-371))))) (-15 -2905 ($ (-1142) (-665 (-307 (-535))))) (-15 -2905 ($ (-1142) (-665 (-307 (-371))))) (-15 -2905 ($ (-1142) (-665 (-307 (-166 (-371)))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-535))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-371))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-166 (-371)))))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-535)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-371)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-166 (-371))))) (-15 -1731 ($ (-618 $))) (-15 -1730 ($)) (-15 -1729 ($)) (-15 -1728 ($ (-618 (-835)))) (-15 -1727 ($ (-1142) (-618 (-1142)))) (-15 -1726 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1725 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-618 (-917 (-535)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1142)) (|:| |rand| (-835)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1141)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3745 (-112)) (|:| -3744 (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |blockBranch| (-618 $)) (|:| |commentBranch| (-618 (-1124))) (|:| |callBranch| (-1124)) (|:| |forBranch| (-2 (|:| -1556 (-1058 (-917 (-535)))) (|:| |span| (-917 (-535))) (|:| -3567 $))) (|:| |labelBranch| (-1086)) (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -3567 $))) (|:| |commonBranch| (-2 (|:| -3888 (-1142)) (|:| |contents| (-618 (-1142))))) (|:| |printBranch| (-618 (-835)))) $)) (-15 -1724 ((-1230) $)) (-15 -1723 ((-1069) $)) (-15 -1722 ((-1086) (-1086)))))) (T -323))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-323)))) (-1740 (*1 *1 *2 *1) (-12 (-5 *2 (-1058 (-917 (-535)))) (-5 *1 (-323)))) (-1740 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1058 (-917 (-535)))) (-5 *3 (-917 (-535))) (-5 *1 (-323)))) (-1739 (*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) (-1738 (*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) (-1737 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))) (-1736 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))) (-1735 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-323)))) (-1735 (*1 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-323)))) (-1734 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-323)))) (-1733 (*1 *1) (-5 *1 (-323))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-675))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-677))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-670))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-535))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-323)))) (-1732 (*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) (-1732 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1124)) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-677))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-675))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-670))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-677))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-675))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-670))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-677))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-675))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-670))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-677)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-675)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-670)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-677)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-675)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-670)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-677))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-675))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-670))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-535))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-371))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-166 (-371)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-535)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-371)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-166 (-371))))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-535)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-371)))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-166 (-371))))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-535))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-371))) (-5 *1 (-323)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-166 (-371)))) (-5 *1 (-323)))) (-1731 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-5 *1 (-323)))) (-1730 (*1 *1) (-5 *1 (-323))) (-1729 (*1 *1) (-5 *1 (-323))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-323)))) (-1727 (*1 *1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1142)) (-5 *1 (-323)))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-323)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-618 (-917 (-535)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1142)) (|:| |rand| (-835)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1141)) (|:| |thenClause| (-323)) (|:| |elseClause| (-323)))) (|:| |returnBranch| (-2 (|:| -3745 (-112)) (|:| -3744 (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |blockBranch| (-618 (-323))) (|:| |commentBranch| (-618 (-1124))) (|:| |callBranch| (-1124)) (|:| |forBranch| (-2 (|:| -1556 (-1058 (-917 (-535)))) (|:| |span| (-917 (-535))) (|:| -3567 (-323)))) (|:| |labelBranch| (-1086)) (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -3567 (-323)))) (|:| |commonBranch| (-2 (|:| -3888 (-1142)) (|:| |contents| (-618 (-1142))))) (|:| |printBranch| (-618 (-835))))) (-5 *1 (-323)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-323)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-323)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))))
+(-13 (-1067) (-10 -8 (-15 -4300 ((-835) $)) (-15 -1740 ($ (-1058 (-917 (-535))) $)) (-15 -1740 ($ (-1058 (-917 (-535))) (-917 (-535)) $)) (-15 -1739 ($ (-1141) $)) (-15 -1738 ($ (-1141) $)) (-15 -1737 ($ (-1086))) (-15 -1736 ($ (-1086))) (-15 -1735 ($ (-1124))) (-15 -1735 ($ (-618 (-1124)))) (-15 -1734 ($ (-1124))) (-15 -1733 ($)) (-15 -1733 ($ (-307 (-675)))) (-15 -1733 ($ (-307 (-677)))) (-15 -1733 ($ (-307 (-670)))) (-15 -1733 ($ (-307 (-371)))) (-15 -1733 ($ (-307 (-535)))) (-15 -1733 ($ (-307 (-166 (-371))))) (-15 -1732 ($ (-1141) $)) (-15 -1732 ($ (-1141) $ $)) (-15 -2905 ($ (-1142) (-1124))) (-15 -2905 ($ (-1142) (-307 (-677)))) (-15 -2905 ($ (-1142) (-307 (-675)))) (-15 -2905 ($ (-1142) (-307 (-670)))) (-15 -2905 ($ (-1142) (-665 (-677)))) (-15 -2905 ($ (-1142) (-665 (-675)))) (-15 -2905 ($ (-1142) (-665 (-670)))) (-15 -2905 ($ (-1142) (-1224 (-677)))) (-15 -2905 ($ (-1142) (-1224 (-675)))) (-15 -2905 ($ (-1142) (-1224 (-670)))) (-15 -2905 ($ (-1142) (-665 (-307 (-677))))) (-15 -2905 ($ (-1142) (-665 (-307 (-675))))) (-15 -2905 ($ (-1142) (-665 (-307 (-670))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-677))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-675))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-670))))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-677)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-675)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-670)))) (-15 -2905 ($ (-1142) (-307 (-535)))) (-15 -2905 ($ (-1142) (-307 (-371)))) (-15 -2905 ($ (-1142) (-307 (-166 (-371))))) (-15 -2905 ($ (-1142) (-665 (-307 (-535))))) (-15 -2905 ($ (-1142) (-665 (-307 (-371))))) (-15 -2905 ($ (-1142) (-665 (-307 (-166 (-371)))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-535))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-371))))) (-15 -2905 ($ (-1142) (-1224 (-307 (-166 (-371)))))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-535)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-371)))) (-15 -2905 ($ (-1142) (-618 (-917 (-535))) (-307 (-166 (-371))))) (-15 -1731 ($ (-618 $))) (-15 -1730 ($)) (-15 -1729 ($)) (-15 -1728 ($ (-618 (-835)))) (-15 -1727 ($ (-1142) (-618 (-1142)))) (-15 -1726 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1725 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-618 (-917 (-535)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1142)) (|:| |rand| (-835)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1141)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3745 (-112)) (|:| -3744 (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835)))))) (|:| |blockBranch| (-618 $)) (|:| |commentBranch| (-618 (-1124))) (|:| |callBranch| (-1124)) (|:| |forBranch| (-2 (|:| -1556 (-1058 (-917 (-535)))) (|:| |span| (-917 (-535))) (|:| -3567 $))) (|:| |labelBranch| (-1086)) (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -3567 $))) (|:| |commonBranch| (-2 (|:| -3888 (-1142)) (|:| |contents| (-618 (-1142))))) (|:| |printBranch| (-618 (-835)))) $)) (-15 -1724 ((-1230) $)) (-15 -1723 ((-1069) $)) (-15 -1722 ((-1086) (-1086)))))
+((-2887 (((-112) $ $) NIL)) (-1741 (((-112) $) 11)) (-3984 (($ |#1|) 8)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3980 (($ |#1|) 9)) (-4300 (((-835) $) 17)) (-2309 ((|#1| $) 12)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 19)))
+(((-324 |#1|) (-13 (-823) (-10 -8 (-15 -3984 ($ |#1|)) (-15 -3980 ($ |#1|)) (-15 -1741 ((-112) $)) (-15 -2309 (|#1| $)))) (-823)) (T -324))
+((-3984 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))) (-3980 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-823)))) (-2309 (*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))))
+(-13 (-823) (-10 -8 (-15 -3984 ($ |#1|)) (-15 -3980 ($ |#1|)) (-15 -1741 ((-112) $)) (-15 -2309 (|#1| $))))
+((-1742 (((-323) (-1142) (-917 (-535))) 23)) (-1743 (((-323) (-1142) (-917 (-535))) 27)) (-2400 (((-323) (-1142) (-1058 (-917 (-535))) (-1058 (-917 (-535)))) 26) (((-323) (-1142) (-917 (-535)) (-917 (-535))) 24)) (-1744 (((-323) (-1142) (-917 (-535))) 31)))
+(((-325) (-10 -7 (-15 -1742 ((-323) (-1142) (-917 (-535)))) (-15 -2400 ((-323) (-1142) (-917 (-535)) (-917 (-535)))) (-15 -2400 ((-323) (-1142) (-1058 (-917 (-535))) (-1058 (-917 (-535))))) (-15 -1743 ((-323) (-1142) (-917 (-535)))) (-15 -1744 ((-323) (-1142) (-917 (-535)))))) (T -325))
+((-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325)))) (-2400 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-1058 (-917 (-535)))) (-5 *2 (-323)) (-5 *1 (-325)))) (-2400 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325)))))
+(-10 -7 (-15 -1742 ((-323) (-1142) (-917 (-535)))) (-15 -2400 ((-323) (-1142) (-917 (-535)) (-917 (-535)))) (-15 -2400 ((-323) (-1142) (-1058 (-917 (-535))) (-1058 (-917 (-535))))) (-15 -1743 ((-323) (-1142) (-917 (-535)))) (-15 -1744 ((-323) (-1142) (-917 (-535)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4185 (($ $) 33)) (-1747 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-1745 (((-1224 |#4|) $) 125)) (-2087 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 31)) (-3577 (((-1086) $) NIL)) (-2492 (((-3 |#4| "failed") $) 36)) (-1746 (((-1224 |#4|) $) 118)) (-1748 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-535)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3777 (((-2 (|:| -2408 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4300 (((-835) $) 17)) (-2979 (($) 14 T CONST)) (-3375 (((-112) $ $) 20)) (-4180 (($ $) 27) (($ $ $) NIL)) (-4182 (($ $ $) 25)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 23)))
+(((-326 |#1| |#2| |#3| |#4|) (-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1746 ((-1224 |#4|) $)) (-15 -1745 ((-1224 |#4|) $)))) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -326))
+((-1746 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-1224 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))) (-1745 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-1224 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))))
+(-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1746 ((-1224 |#4|) $)) (-15 -1745 ((-1224 |#4|) $))))
+((-4301 (((-326 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-326 |#1| |#2| |#3| |#4|)) 33)))
+(((-327 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4301 ((-326 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-326 |#1| |#2| |#3| |#4|)))) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-356) (-1200 |#5|) (-1200 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -327))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-326 *5 *6 *7 *8)) (-4 *5 (-356)) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *9 (-356)) (-4 *10 (-1200 *9)) (-4 *11 (-1200 (-400 *10))) (-5 *2 (-326 *9 *10 *11 *12)) (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-335 *9 *10 *11)))))
+(-10 -7 (-15 -4301 ((-326 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-326 |#1| |#2| |#3| |#4|))))
+((-1747 (((-112) $) 14)))
+(((-328 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1747 ((-112) |#1|))) (-329 |#2| |#3| |#4| |#5|) (-356) (-1200 |#2|) (-1200 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -328))
+NIL
+(-10 -8 (-15 -1747 ((-112) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-4185 (($ $) 26)) (-1747 (((-112) $) 25)) (-3576 (((-1124) $) 9)) (-2087 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 32)) (-3577 (((-1086) $) 10)) (-2492 (((-3 |#4| "failed") $) 24)) (-1748 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-535)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3777 (((-2 (|:| -2408 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20)))
+(((-329 |#1| |#2| |#3| |#4|) (-138) (-356) (-1200 |t#1|) (-1200 (-400 |t#2|)) (-335 |t#1| |t#2| |t#3|)) (T -329))
+((-2087 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-406 *4 (-400 *4) *5 *6)))) (-1748 (*1 *1 *2) (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) (-4 *1 (-329 *3 *4 *5 *6)))) (-1748 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) (-1748 (*1 *1 *2 *2) (-12 (-4 *2 (-356)) (-4 *3 (-1200 *2)) (-4 *4 (-1200 (-400 *3))) (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) (-1748 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-535)) (-4 *2 (-356)) (-4 *4 (-1200 *2)) (-4 *5 (-1200 (-400 *4))) (-4 *1 (-329 *2 *4 *5 *6)) (-4 *6 (-335 *2 *4 *5)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-2 (|:| -2408 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) (-4185 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1200 *2)) (-4 *4 (-1200 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112)))) (-2492 (*1 *2 *1) (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *2 (-335 *3 *4 *5)))) (-1748 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-356)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 (-400 *3))) (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -2087 ((-406 |t#2| (-400 |t#2|) |t#3| |t#4|) $)) (-15 -1748 ($ (-406 |t#2| (-400 |t#2|) |t#3| |t#4|))) (-15 -1748 ($ |t#4|)) (-15 -1748 ($ |t#1| |t#1|)) (-15 -1748 ($ |t#1| |t#1| (-535))) (-15 -3777 ((-2 (|:| -2408 (-406 |t#2| (-400 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4185 ($ $)) (-15 -1747 ((-112) $)) (-15 -2492 ((-3 |t#4| "failed") $)) (-15 -1748 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-4110 (($ $ (-1142) |#2|) NIL) (($ $ (-618 (-1142)) (-618 |#2|)) 20) (($ $ (-618 (-286 |#2|))) 15) (($ $ (-286 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-618 |#2|) (-618 |#2|)) NIL)) (-4142 (($ $ |#2|) 11)))
+(((-330 |#1| |#2|) (-10 -8 (-15 -4142 (|#1| |#1| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#2| |#2|)) (-15 -4110 (|#1| |#1| (-286 |#2|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#2|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 |#2|))) (-15 -4110 (|#1| |#1| (-1142) |#2|))) (-331 |#2|) (-1067)) (T -330))
+NIL
+(-10 -8 (-15 -4142 (|#1| |#1| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#2| |#2|)) (-15 -4110 (|#1| |#1| (-286 |#2|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#2|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 |#2|))) (-15 -4110 (|#1| |#1| (-1142) |#2|)))
+((-4301 (($ (-1 |#1| |#1|) $) 6)) (-4110 (($ $ (-1142) |#1|) 17 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 16 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-618 (-286 |#1|))) 15 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 14 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-302 |#1|))) (($ $ (-618 |#1|) (-618 |#1|)) 12 (|has| |#1| (-302 |#1|)))) (-4142 (($ $ |#1|) 11 (|has| |#1| (-279 |#1| |#1|)))))
+(((-331 |#1|) (-138) (-1067)) (T -331))
+((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1067)))))
+(-13 (-10 -8 (-15 -4301 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-279 |t#1| |t#1|)) (-6 (-279 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-505 (-1142) |t#1|)) (-6 (-505 (-1142) |t#1|)) |%noBranch|)))
(((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2271 (((-621 (-1142)) $) NIL)) (-3909 (((-112)) 91) (((-112) (-112)) 92)) (-1980 (((-621 (-592 $)) $) NIL)) (-1663 (($ $) NIL)) (-1511 (($ $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3014 (($ $ (-287 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL)) (-2134 (($ $) NIL)) (-1639 (($ $) NIL)) (-1485 (($ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-592 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-309 |#3|)) 71) (((-3 $ "failed") (-1142)) 97) (((-3 $ "failed") (-309 (-549))) 59 (|has| |#3| (-1009 (-549)))) (((-3 $ "failed") (-400 (-923 (-549)))) 65 (|has| |#3| (-1009 (-549)))) (((-3 $ "failed") (-923 (-549))) 60 (|has| |#3| (-1009 (-549)))) (((-3 $ "failed") (-309 (-372))) 89 (|has| |#3| (-1009 (-372)))) (((-3 $ "failed") (-400 (-923 (-372)))) 83 (|has| |#3| (-1009 (-372)))) (((-3 $ "failed") (-923 (-372))) 78 (|has| |#3| (-1009 (-372))))) (-2658 (((-592 $) $) NIL) ((|#3| $) NIL) (($ (-309 |#3|)) 72) (($ (-1142)) 98) (($ (-309 (-549))) 61 (|has| |#3| (-1009 (-549)))) (($ (-400 (-923 (-549)))) 66 (|has| |#3| (-1009 (-549)))) (($ (-923 (-549))) 62 (|has| |#3| (-1009 (-549)))) (($ (-309 (-372))) 90 (|has| |#3| (-1009 (-372)))) (($ (-400 (-923 (-372)))) 84 (|has| |#3| (-1009 (-372)))) (($ (-923 (-372))) 80 (|has| |#3| (-1009 (-372))))) (-3976 (((-3 $ "failed") $) NIL)) (-1425 (($) 10)) (-3390 (($ $) NIL) (($ (-621 $)) NIL)) (-2415 (((-621 (-114)) $) NIL)) (-2015 (((-114) (-114)) NIL)) (-3987 (((-112) $) NIL)) (-3061 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-1417 (((-1138 $) (-592 $)) NIL (|has| $ (-1018)))) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2796 (($ (-1 $ $) (-592 $)) NIL)) (-3364 (((-3 (-592 $) "failed") $) NIL)) (-2299 (($ $) 94)) (-3631 (($ $) NIL)) (-2677 (((-1124) $) NIL)) (-2063 (((-621 (-592 $)) $) NIL)) (-1477 (($ (-114) $) 93) (($ (-114) (-621 $)) NIL)) (-1581 (((-112) $ (-114)) NIL) (((-112) $ (-1142)) NIL)) (-4035 (((-747) $) NIL)) (-3988 (((-1086) $) NIL)) (-4029 (((-112) $ $) NIL) (((-112) $ (-1142)) NIL)) (-2718 (($ $) NIL)) (-4062 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-2685 (($ $ (-592 $) $) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-621 (-1142)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-1142)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-1142) (-1 $ (-621 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-621 (-114)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-114) (-1 $ (-621 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3340 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-621 $)) NIL)) (-3776 (($ $) NIL) (($ $ $) NIL)) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142)) NIL)) (-2539 (($ $) NIL (|has| $ (-1018)))) (-1649 (($ $) NIL)) (-1500 (($ $) NIL)) (-3845 (((-834) $) NIL) (($ (-592 $)) NIL) (($ |#3|) NIL) (($ (-549)) NIL) (((-309 |#3|) $) 96)) (-1723 (((-747)) NIL)) (-4136 (($ $) NIL) (($ (-621 $)) NIL)) (-3234 (((-112) (-114)) NIL)) (-1585 (($ $) NIL)) (-1562 (($ $) NIL)) (-1575 (($ $) NIL)) (-3603 (($ $) NIL)) (-3275 (($) 95 T CONST)) (-3287 (($) 24 T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142)) NIL)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-2499 (($ $ $) NIL) (($ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-892)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-549) $) NIL) (($ (-747) $) NIL) (($ (-892) $) NIL)))
-(((-332 |#1| |#2| |#3|) (-13 (-295) (-38 |#3|) (-1009 |#3|) (-871 (-1142)) (-10 -8 (-15 -2658 ($ (-309 |#3|))) (-15 -2713 ((-3 $ "failed") (-309 |#3|))) (-15 -2658 ($ (-1142))) (-15 -2713 ((-3 $ "failed") (-1142))) (-15 -3845 ((-309 |#3|) $)) (IF (|has| |#3| (-1009 (-549))) (PROGN (-15 -2658 ($ (-309 (-549)))) (-15 -2713 ((-3 $ "failed") (-309 (-549)))) (-15 -2658 ($ (-400 (-923 (-549))))) (-15 -2713 ((-3 $ "failed") (-400 (-923 (-549))))) (-15 -2658 ($ (-923 (-549)))) (-15 -2713 ((-3 $ "failed") (-923 (-549))))) |%noBranch|) (IF (|has| |#3| (-1009 (-372))) (PROGN (-15 -2658 ($ (-309 (-372)))) (-15 -2713 ((-3 $ "failed") (-309 (-372)))) (-15 -2658 ($ (-400 (-923 (-372))))) (-15 -2713 ((-3 $ "failed") (-400 (-923 (-372))))) (-15 -2658 ($ (-923 (-372)))) (-15 -2713 ((-3 $ "failed") (-923 (-372))))) |%noBranch|) (-15 -3603 ($ $)) (-15 -2134 ($ $)) (-15 -2718 ($ $)) (-15 -3631 ($ $)) (-15 -2299 ($ $)) (-15 -1485 ($ $)) (-15 -1500 ($ $)) (-15 -1511 ($ $)) (-15 -1562 ($ $)) (-15 -1575 ($ $)) (-15 -1585 ($ $)) (-15 -1639 ($ $)) (-15 -1649 ($ $)) (-15 -1663 ($ $)) (-15 -1425 ($)) (-15 -2271 ((-621 (-1142)) $)) (-15 -3909 ((-112))) (-15 -3909 ((-112) (-112))))) (-621 (-1142)) (-621 (-1142)) (-380)) (T -332))
-((-2658 (*1 *1 *2) (-12 (-5 *2 (-309 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 *2)) (-14 *4 (-621 *2)) (-4 *5 (-380)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 *2)) (-14 *4 (-621 *2)) (-4 *5 (-380)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-309 *5)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-309 (-549))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-549))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-549)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-923 (-549)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-923 (-549))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-549))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-372)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-923 (-372)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-923 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-3603 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-2134 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-2718 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-3631 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-2299 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-1485 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-1500 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-1511 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-1562 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-1585 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-1639 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-1649 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-1663 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-1425 (*1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142))) (-14 *3 (-621 (-1142))) (-4 *4 (-380)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-380)))) (-3909 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380)))))
-(-13 (-295) (-38 |#3|) (-1009 |#3|) (-871 (-1142)) (-10 -8 (-15 -2658 ($ (-309 |#3|))) (-15 -2713 ((-3 $ "failed") (-309 |#3|))) (-15 -2658 ($ (-1142))) (-15 -2713 ((-3 $ "failed") (-1142))) (-15 -3845 ((-309 |#3|) $)) (IF (|has| |#3| (-1009 (-549))) (PROGN (-15 -2658 ($ (-309 (-549)))) (-15 -2713 ((-3 $ "failed") (-309 (-549)))) (-15 -2658 ($ (-400 (-923 (-549))))) (-15 -2713 ((-3 $ "failed") (-400 (-923 (-549))))) (-15 -2658 ($ (-923 (-549)))) (-15 -2713 ((-3 $ "failed") (-923 (-549))))) |%noBranch|) (IF (|has| |#3| (-1009 (-372))) (PROGN (-15 -2658 ($ (-309 (-372)))) (-15 -2713 ((-3 $ "failed") (-309 (-372)))) (-15 -2658 ($ (-400 (-923 (-372))))) (-15 -2713 ((-3 $ "failed") (-400 (-923 (-372))))) (-15 -2658 ($ (-923 (-372)))) (-15 -2713 ((-3 $ "failed") (-923 (-372))))) |%noBranch|) (-15 -3603 ($ $)) (-15 -2134 ($ $)) (-15 -2718 ($ $)) (-15 -3631 ($ $)) (-15 -2299 ($ $)) (-15 -1485 ($ $)) (-15 -1500 ($ $)) (-15 -1511 ($ $)) (-15 -1562 ($ $)) (-15 -1575 ($ $)) (-15 -1585 ($ $)) (-15 -1639 ($ $)) (-15 -1649 ($ $)) (-15 -1663 ($ $)) (-15 -1425 ($)) (-15 -2271 ((-621 (-1142)) $)) (-15 -3909 ((-112))) (-15 -3909 ((-112) (-112)))))
-((-2796 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2796 (|#8| (-1 |#5| |#1|) |#4|))) (-1183) (-1201 |#1|) (-1201 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-1183) (-1201 |#5|) (-1201 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -333))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1183)) (-4 *8 (-1183)) (-4 *6 (-1201 *5)) (-4 *7 (-1201 (-400 *6))) (-4 *9 (-1201 *8)) (-4 *2 (-335 *8 *9 *10)) (-5 *1 (-333 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-335 *5 *6 *7)) (-4 *10 (-1201 (-400 *9))))))
-(-10 -7 (-15 -2796 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2098 (((-2 (|:| |num| (-1225 |#3|)) (|:| |den| |#3|)) $) 38)) (-2127 (($ (-1225 (-400 |#3|)) (-1225 $)) NIL) (($ (-1225 (-400 |#3|))) NIL) (($ (-1225 |#3|) |#3|) 161)) (-2648 (((-1225 $) (-1225 $)) 145)) (-1559 (((-621 (-621 |#2|))) 119)) (-2479 (((-112) |#2| |#2|) 73)) (-4212 (($ $) 139)) (-1730 (((-747)) 31)) (-3823 (((-1225 $) (-1225 $)) 198)) (-1272 (((-621 (-923 |#2|)) (-1142)) 110)) (-3888 (((-112) $) 158)) (-4126 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1787 (((-3 |#3| "failed")) 50)) (-2203 (((-747)) 170)) (-3340 ((|#2| $ |#2| |#2|) 132)) (-3697 (((-3 |#3| "failed")) 68)) (-3455 (($ $ (-1 (-400 |#3|) (-400 |#3|)) (-747)) NIL) (($ $ (-1 (-400 |#3|) (-400 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-2995 (((-1225 $) (-1225 $)) 151)) (-3169 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2164 (((-112)) 33)))
-(((-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -1559 ((-621 (-621 |#2|)))) (-15 -1272 ((-621 (-923 |#2|)) (-1142))) (-15 -3169 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1787 ((-3 |#3| "failed"))) (-15 -3697 ((-3 |#3| "failed"))) (-15 -3340 (|#2| |#1| |#2| |#2|)) (-15 -4212 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4126 ((-112) |#1| |#3|)) (-15 -4126 ((-112) |#1| |#2|)) (-15 -2127 (|#1| (-1225 |#3|) |#3|)) (-15 -2098 ((-2 (|:| |num| (-1225 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2648 ((-1225 |#1|) (-1225 |#1|))) (-15 -3823 ((-1225 |#1|) (-1225 |#1|))) (-15 -2995 ((-1225 |#1|) (-1225 |#1|))) (-15 -4126 ((-112) |#1|)) (-15 -3888 ((-112) |#1|)) (-15 -2479 ((-112) |#2| |#2|)) (-15 -2164 ((-112))) (-15 -2203 ((-747))) (-15 -1730 ((-747))) (-15 -3455 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -3455 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-747))) (-15 -2127 (|#1| (-1225 (-400 |#3|)))) (-15 -2127 (|#1| (-1225 (-400 |#3|)) (-1225 |#1|)))) (-335 |#2| |#3| |#4|) (-1183) (-1201 |#2|) (-1201 (-400 |#3|))) (T -334))
-((-1730 (*1 *2) (-12 (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5))) (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-2203 (*1 *2) (-12 (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5))) (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-2164 (*1 *2) (-12 (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-2479 (*1 *2 *3 *3) (-12 (-4 *3 (-1183)) (-4 *5 (-1201 *3)) (-4 *6 (-1201 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) (-3697 (*1 *2) (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1201 (-400 *2))) (-4 *2 (-1201 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1787 (*1 *2) (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1201 (-400 *2))) (-4 *2 (-1201 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1272 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *5 (-1183)) (-4 *6 (-1201 *5)) (-4 *7 (-1201 (-400 *6))) (-5 *2 (-621 (-923 *5))) (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) (-1559 (*1 *2) (-12 (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5))) (-5 *2 (-621 (-621 *4))) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))))
-(-10 -8 (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -1559 ((-621 (-621 |#2|)))) (-15 -1272 ((-621 (-923 |#2|)) (-1142))) (-15 -3169 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1787 ((-3 |#3| "failed"))) (-15 -3697 ((-3 |#3| "failed"))) (-15 -3340 (|#2| |#1| |#2| |#2|)) (-15 -4212 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4126 ((-112) |#1| |#3|)) (-15 -4126 ((-112) |#1| |#2|)) (-15 -2127 (|#1| (-1225 |#3|) |#3|)) (-15 -2098 ((-2 (|:| |num| (-1225 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2648 ((-1225 |#1|) (-1225 |#1|))) (-15 -3823 ((-1225 |#1|) (-1225 |#1|))) (-15 -2995 ((-1225 |#1|) (-1225 |#1|))) (-15 -4126 ((-112) |#1|)) (-15 -3888 ((-112) |#1|)) (-15 -2479 ((-112) |#2| |#2|)) (-15 -2164 ((-112))) (-15 -2203 ((-747))) (-15 -1730 ((-747))) (-15 -3455 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -3455 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-747))) (-15 -2127 (|#1| (-1225 (-400 |#3|)))) (-15 -2127 (|#1| (-1225 (-400 |#3|)) (-1225 |#1|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2098 (((-2 (|:| |num| (-1225 |#2|)) (|:| |den| |#2|)) $) 193)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 91 (|has| (-400 |#2|) (-356)))) (-2408 (($ $) 92 (|has| (-400 |#2|) (-356)))) (-2477 (((-112) $) 94 (|has| (-400 |#2|) (-356)))) (-3102 (((-665 (-400 |#2|)) (-1225 $)) 44) (((-665 (-400 |#2|))) 59)) (-2905 (((-400 |#2|) $) 50)) (-2572 (((-1152 (-892) (-747)) (-549)) 144 (|has| (-400 |#2|) (-342)))) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 111 (|has| (-400 |#2|) (-356)))) (-3513 (((-411 $) $) 112 (|has| (-400 |#2|) (-356)))) (-2647 (((-112) $ $) 102 (|has| (-400 |#2|) (-356)))) (-3615 (((-747)) 85 (|has| (-400 |#2|) (-361)))) (-2163 (((-112)) 210)) (-2380 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-1705 (($) 17 T CONST)) (-2713 (((-3 (-549) "failed") $) 166 (|has| (-400 |#2|) (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 164 (|has| (-400 |#2|) (-1009 (-400 (-549))))) (((-3 (-400 |#2|) "failed") $) 163)) (-2658 (((-549) $) 167 (|has| (-400 |#2|) (-1009 (-549)))) (((-400 (-549)) $) 165 (|has| (-400 |#2|) (-1009 (-400 (-549))))) (((-400 |#2|) $) 162)) (-2127 (($ (-1225 (-400 |#2|)) (-1225 $)) 46) (($ (-1225 (-400 |#2|))) 62) (($ (-1225 |#2|) |#2|) 192)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-400 |#2|) (-342)))) (-2094 (($ $ $) 106 (|has| (-400 |#2|) (-356)))) (-2988 (((-665 (-400 |#2|)) $ (-1225 $)) 51) (((-665 (-400 |#2|)) $) 57)) (-1698 (((-665 (-549)) (-665 $)) 161 (|has| (-400 |#2|) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 160 (|has| (-400 |#2|) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-400 |#2|))) (|:| |vec| (-1225 (-400 |#2|)))) (-665 $) (-1225 $)) 159) (((-665 (-400 |#2|)) (-665 $)) 158)) (-2648 (((-1225 $) (-1225 $)) 198)) (-2558 (($ |#3|) 155) (((-3 $ "failed") (-400 |#3|)) 152 (|has| (-400 |#2|) (-356)))) (-3976 (((-3 $ "failed") $) 32)) (-1559 (((-621 (-621 |#1|))) 179 (|has| |#1| (-361)))) (-2479 (((-112) |#1| |#1|) 214)) (-3122 (((-892)) 52)) (-3238 (($) 88 (|has| (-400 |#2|) (-361)))) (-2966 (((-112)) 207)) (-3294 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-2066 (($ $ $) 105 (|has| (-400 |#2|) (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 100 (|has| (-400 |#2|) (-356)))) (-4212 (($ $) 185)) (-1327 (($) 146 (|has| (-400 |#2|) (-342)))) (-1729 (((-112) $) 147 (|has| (-400 |#2|) (-342)))) (-3225 (($ $ (-747)) 138 (|has| (-400 |#2|) (-342))) (($ $) 137 (|has| (-400 |#2|) (-342)))) (-2471 (((-112) $) 113 (|has| (-400 |#2|) (-356)))) (-2078 (((-892) $) 149 (|has| (-400 |#2|) (-342))) (((-809 (-892)) $) 135 (|has| (-400 |#2|) (-342)))) (-3987 (((-112) $) 30)) (-1730 (((-747)) 217)) (-3823 (((-1225 $) (-1225 $)) 199)) (-4117 (((-400 |#2|) $) 49)) (-1272 (((-621 (-923 |#1|)) (-1142)) 180 (|has| |#1| (-356)))) (-3982 (((-3 $ "failed") $) 139 (|has| (-400 |#2|) (-342)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 109 (|has| (-400 |#2|) (-356)))) (-4030 ((|#3| $) 42 (|has| (-400 |#2|) (-356)))) (-2723 (((-892) $) 87 (|has| (-400 |#2|) (-361)))) (-2546 ((|#3| $) 153)) (-3696 (($ (-621 $)) 98 (|has| (-400 |#2|) (-356))) (($ $ $) 97 (|has| (-400 |#2|) (-356)))) (-2677 (((-1124) $) 9)) (-1568 (((-665 (-400 |#2|))) 194)) (-3652 (((-665 (-400 |#2|))) 196)) (-1991 (($ $) 114 (|has| (-400 |#2|) (-356)))) (-4242 (($ (-1225 |#2|) |#2|) 190)) (-3000 (((-665 (-400 |#2|))) 195)) (-2865 (((-665 (-400 |#2|))) 197)) (-1345 (((-2 (|:| |num| (-665 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1880 (((-2 (|:| |num| (-1225 |#2|)) (|:| |den| |#2|)) $) 191)) (-3683 (((-1225 $)) 203)) (-2581 (((-1225 $)) 204)) (-3888 (((-112) $) 202)) (-4126 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3060 (($) 140 (|has| (-400 |#2|) (-342)) CONST)) (-3491 (($ (-892)) 86 (|has| (-400 |#2|) (-361)))) (-1787 (((-3 |#2| "failed")) 182)) (-3988 (((-1086) $) 10)) (-2203 (((-747)) 216)) (-4246 (($) 157)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 99 (|has| (-400 |#2|) (-356)))) (-3726 (($ (-621 $)) 96 (|has| (-400 |#2|) (-356))) (($ $ $) 95 (|has| (-400 |#2|) (-356)))) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) 143 (|has| (-400 |#2|) (-342)))) (-2120 (((-411 $) $) 110 (|has| (-400 |#2|) (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 107 (|has| (-400 |#2|) (-356)))) (-2038 (((-3 $ "failed") $ $) 90 (|has| (-400 |#2|) (-356)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 101 (|has| (-400 |#2|) (-356)))) (-4091 (((-747) $) 103 (|has| (-400 |#2|) (-356)))) (-3340 ((|#1| $ |#1| |#1|) 184)) (-3697 (((-3 |#2| "failed")) 183)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 104 (|has| (-400 |#2|) (-356)))) (-3086 (((-400 |#2|) (-1225 $)) 45) (((-400 |#2|)) 58)) (-2591 (((-747) $) 148 (|has| (-400 |#2|) (-342))) (((-3 (-747) "failed") $ $) 136 (|has| (-400 |#2|) (-342)))) (-3455 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) 120 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 119 (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-621 (-1142)) (-621 (-747))) 127 (-1536 (-1820 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-1820 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-1142) (-747)) 128 (-1536 (-1820 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-1820 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-621 (-1142))) 129 (-1536 (-1820 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-1820 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-1142)) 130 (-1536 (-1820 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-1820 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-747)) 132 (-1536 (-1820 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1820 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) 134 (-1536 (-1820 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1820 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-1369 (((-665 (-400 |#2|)) (-1225 $) (-1 (-400 |#2|) (-400 |#2|))) 151 (|has| (-400 |#2|) (-356)))) (-2539 ((|#3|) 156)) (-3191 (($) 145 (|has| (-400 |#2|) (-342)))) (-4163 (((-1225 (-400 |#2|)) $ (-1225 $)) 48) (((-665 (-400 |#2|)) (-1225 $) (-1225 $)) 47) (((-1225 (-400 |#2|)) $) 64) (((-665 (-400 |#2|)) (-1225 $)) 63)) (-2844 (((-1225 (-400 |#2|)) $) 61) (($ (-1225 (-400 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 142 (|has| (-400 |#2|) (-342)))) (-2995 (((-1225 $) (-1225 $)) 200)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ (-400 |#2|)) 35) (($ (-400 (-549))) 84 (-1536 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1009 (-400 (-549)))))) (($ $) 89 (|has| (-400 |#2|) (-356)))) (-3407 (($ $) 141 (|has| (-400 |#2|) (-342))) (((-3 $ "failed") $) 41 (|has| (-400 |#2|) (-143)))) (-4041 ((|#3| $) 43)) (-1723 (((-747)) 28)) (-3291 (((-112)) 213)) (-1944 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-3420 (((-1225 $)) 65)) (-4053 (((-112) $ $) 93 (|has| (-400 |#2|) (-356)))) (-3169 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-2164 (((-112)) 215)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) 122 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 121 (|has| (-400 |#2|) (-356))) (($ $ (-621 (-1142)) (-621 (-747))) 123 (-1536 (-1820 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-1820 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-1142) (-747)) 124 (-1536 (-1820 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-1820 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-621 (-1142))) 125 (-1536 (-1820 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-1820 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-1142)) 126 (-1536 (-1820 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-1820 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-747)) 131 (-1536 (-1820 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1820 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) 133 (-1536 (-1820 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1820 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2388 (((-112) $ $) 6)) (-2512 (($ $ $) 118 (|has| (-400 |#2|) (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 115 (|has| (-400 |#2|) (-356)))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 |#2|)) 37) (($ (-400 |#2|) $) 36) (($ (-400 (-549)) $) 117 (|has| (-400 |#2|) (-356))) (($ $ (-400 (-549))) 116 (|has| (-400 |#2|) (-356)))))
-(((-335 |#1| |#2| |#3|) (-138) (-1183) (-1201 |t#1|) (-1201 (-400 |t#2|))) (T -335))
-((-1730 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-747)))) (-2203 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-747)))) (-2164 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))) (-2479 (*1 *2 *3 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))) (-3291 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))) (-1944 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))) (-1944 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1201 *4)) (-4 *5 (-1201 (-400 *3))) (-5 *2 (-112)))) (-2163 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))) (-2380 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))) (-2380 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1201 *4)) (-4 *5 (-1201 (-400 *3))) (-5 *2 (-112)))) (-2966 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))) (-3294 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))) (-3294 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1201 *4)) (-4 *5 (-1201 (-400 *3))) (-5 *2 (-112)))) (-2581 (*1 *2) (-12 (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-1225 *1)) (-4 *1 (-335 *3 *4 *5)))) (-3683 (*1 *2) (-12 (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-1225 *1)) (-4 *1 (-335 *3 *4 *5)))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))) (-2995 (*1 *2 *2) (-12 (-5 *2 (-1225 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-1225 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))))) (-2648 (*1 *2 *2) (-12 (-5 *2 (-1225 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))))) (-2865 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-3652 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-3000 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-1568 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1225 *4)) (|:| |den| *4))))) (-2127 (*1 *1 *2 *3) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-1201 *4)) (-4 *4 (-1183)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1201 (-400 *3))))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1225 *4)) (|:| |den| *4))))) (-4242 (*1 *1 *2 *3) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-1201 *4)) (-4 *4 (-1183)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1201 (-400 *3))))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5))) (-5 *2 (-2 (|:| |num| (-665 *5)) (|:| |den| *5))))) (-4126 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))) (-4126 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1201 *4)) (-4 *5 (-1201 (-400 *3))) (-5 *2 (-112)))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))))) (-4212 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-1201 *2)) (-4 *4 (-1201 (-400 *3))))) (-3340 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-1201 *2)) (-4 *4 (-1201 (-400 *3))))) (-3697 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1183)) (-4 *4 (-1201 (-400 *2))) (-4 *2 (-1201 *3)))) (-1787 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1183)) (-4 *4 (-1201 (-400 *2))) (-4 *2 (-1201 *3)))) (-3169 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1201 *4)) (-4 *4 (-1183)) (-4 *6 (-1201 (-400 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-335 *4 *5 *6)))) (-1272 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5))) (-4 *4 (-356)) (-5 *2 (-621 (-923 *4))))) (-1559 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-621 (-621 *3))))))
-(-13 (-701 (-400 |t#2|) |t#3|) (-10 -8 (-15 -1730 ((-747))) (-15 -2203 ((-747))) (-15 -2164 ((-112))) (-15 -2479 ((-112) |t#1| |t#1|)) (-15 -3291 ((-112))) (-15 -1944 ((-112) |t#1|)) (-15 -1944 ((-112) |t#2|)) (-15 -2163 ((-112))) (-15 -2380 ((-112) |t#1|)) (-15 -2380 ((-112) |t#2|)) (-15 -2966 ((-112))) (-15 -3294 ((-112) |t#1|)) (-15 -3294 ((-112) |t#2|)) (-15 -2581 ((-1225 $))) (-15 -3683 ((-1225 $))) (-15 -3888 ((-112) $)) (-15 -4126 ((-112) $)) (-15 -2995 ((-1225 $) (-1225 $))) (-15 -3823 ((-1225 $) (-1225 $))) (-15 -2648 ((-1225 $) (-1225 $))) (-15 -2865 ((-665 (-400 |t#2|)))) (-15 -3652 ((-665 (-400 |t#2|)))) (-15 -3000 ((-665 (-400 |t#2|)))) (-15 -1568 ((-665 (-400 |t#2|)))) (-15 -2098 ((-2 (|:| |num| (-1225 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2127 ($ (-1225 |t#2|) |t#2|)) (-15 -1880 ((-2 (|:| |num| (-1225 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4242 ($ (-1225 |t#2|) |t#2|)) (-15 -1345 ((-2 (|:| |num| (-665 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4126 ((-112) $ |t#1|)) (-15 -4126 ((-112) $ |t#2|)) (-15 -3455 ($ $ (-1 |t#2| |t#2|))) (-15 -4212 ($ $)) (-15 -3340 (|t#1| $ |t#1| |t#1|)) (-15 -3697 ((-3 |t#2| "failed"))) (-15 -1787 ((-3 |t#2| "failed"))) (-15 -3169 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-356)) (-15 -1272 ((-621 (-923 |t#1|)) (-1142))) |%noBranch|) (IF (|has| |t#1| (-361)) (-15 -1559 ((-621 (-621 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-38 #1=(-400 |#2|)) . T) ((-38 $) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-101) . T) ((-111 #0# #0#) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-143))) ((-145) |has| (-400 |#2|) (-145)) ((-593 (-834)) . T) ((-170) . T) ((-594 |#3|) . T) ((-225 #1#) |has| (-400 |#2|) (-356)) ((-227) -1536 (|has| (-400 |#2|) (-342)) (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356)))) ((-237) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-283) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-300) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-356) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-395) |has| (-400 |#2|) (-342)) ((-361) -1536 (|has| (-400 |#2|) (-361)) (|has| (-400 |#2|) (-342))) ((-342) |has| (-400 |#2|) (-342)) ((-363 #1# |#3|) . T) ((-402 #1# |#3|) . T) ((-370 #1#) . T) ((-404 #1#) . T) ((-444) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-541) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-624 #0#) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-624 #1#) . T) ((-624 $) . T) ((-617 #1#) . T) ((-617 (-549)) |has| (-400 |#2|) (-617 (-549))) ((-694 #0#) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-694 #1#) . T) ((-694 $) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-701 #1# |#3|) . T) ((-703) . T) ((-871 (-1142)) -12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) ((-891) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-1009 (-400 (-549))) |has| (-400 |#2|) (-1009 (-400 (-549)))) ((-1009 #1#) . T) ((-1009 (-549)) |has| (-400 |#2|) (-1009 (-549))) ((-1024 #0#) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1117) |has| (-400 |#2|) (-342)) ((-1183) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2642 (((-112) $) NIL)) (-1703 (((-747)) NIL)) (-2905 (((-881 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-2572 (((-1152 (-892) (-747)) (-549)) NIL (|has| (-881 |#1|) (-361)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3615 (((-747)) NIL (|has| (-881 |#1|) (-361)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-881 |#1|) "failed") $) NIL)) (-2658 (((-881 |#1|) $) NIL)) (-2127 (($ (-1225 (-881 |#1|))) NIL)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-881 |#1|) (-361)))) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| (-881 |#1|) (-361)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-1327 (($) NIL (|has| (-881 |#1|) (-361)))) (-1729 (((-112) $) NIL (|has| (-881 |#1|) (-361)))) (-3225 (($ $ (-747)) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361)))) (($ $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-2471 (((-112) $) NIL)) (-2078 (((-892) $) NIL (|has| (-881 |#1|) (-361))) (((-809 (-892)) $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-3987 (((-112) $) NIL)) (-2308 (($) NIL (|has| (-881 |#1|) (-361)))) (-2815 (((-112) $) NIL (|has| (-881 |#1|) (-361)))) (-4117 (((-881 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-3982 (((-3 $ "failed") $) NIL (|has| (-881 |#1|) (-361)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4030 (((-1138 (-881 |#1|)) $) NIL) (((-1138 $) $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-2723 (((-892) $) NIL (|has| (-881 |#1|) (-361)))) (-4228 (((-1138 (-881 |#1|)) $) NIL (|has| (-881 |#1|) (-361)))) (-3609 (((-1138 (-881 |#1|)) $) NIL (|has| (-881 |#1|) (-361))) (((-3 (-1138 (-881 |#1|)) "failed") $ $) NIL (|has| (-881 |#1|) (-361)))) (-3289 (($ $ (-1138 (-881 |#1|))) NIL (|has| (-881 |#1|) (-361)))) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| (-881 |#1|) (-361)) CONST)) (-3491 (($ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-2360 (((-112) $) NIL)) (-3988 (((-1086) $) NIL)) (-1262 (((-929 (-1086))) NIL)) (-4246 (($) NIL (|has| (-881 |#1|) (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL (|has| (-881 |#1|) (-361)))) (-2120 (((-411 $) $) NIL)) (-3656 (((-809 (-892))) NIL) (((-892)) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2591 (((-747) $) NIL (|has| (-881 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-3128 (((-133)) NIL)) (-3455 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-3068 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2539 (((-1138 (-881 |#1|))) NIL)) (-3191 (($) NIL (|has| (-881 |#1|) (-361)))) (-3250 (($) NIL (|has| (-881 |#1|) (-361)))) (-4163 (((-1225 (-881 |#1|)) $) NIL) (((-665 (-881 |#1|)) (-1225 $)) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| (-881 |#1|) (-361)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-881 |#1|)) NIL)) (-3407 (($ $) NIL (|has| (-881 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-1723 (((-747)) NIL)) (-3420 (((-1225 $)) NIL) (((-1225 $) (-892)) NIL)) (-4053 (((-112) $ $) NIL)) (-2923 (((-112) $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-1700 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL) (($ $ (-881 |#1|)) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ (-881 |#1|)) NIL) (($ (-881 |#1|) $) NIL)))
-(((-336 |#1| |#2|) (-13 (-322 (-881 |#1|)) (-10 -7 (-15 -1262 ((-929 (-1086)))))) (-892) (-892)) (T -336))
-((-1262 (*1 *2) (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-336 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))))
-(-13 (-322 (-881 |#1|)) (-10 -7 (-15 -1262 ((-929 (-1086))))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 44)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2642 (((-112) $) NIL)) (-1703 (((-747)) NIL)) (-2905 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-2572 (((-1152 (-892) (-747)) (-549)) 41 (|has| |#1| (-361)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3615 (((-747)) NIL (|has| |#1| (-361)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) 115)) (-2658 ((|#1| $) 86)) (-2127 (($ (-1225 |#1|)) 104)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-361)))) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) 98 (|has| |#1| (-361)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-1327 (($) 129 (|has| |#1| (-361)))) (-1729 (((-112) $) 48 (|has| |#1| (-361)))) (-3225 (($ $ (-747)) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2471 (((-112) $) NIL)) (-2078 (((-892) $) 45 (|has| |#1| (-361))) (((-809 (-892)) $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3987 (((-112) $) NIL)) (-2308 (($) 131 (|has| |#1| (-361)))) (-2815 (((-112) $) NIL (|has| |#1| (-361)))) (-4117 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-3982 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4030 (((-1138 |#1|) $) 90) (((-1138 $) $ (-892)) NIL (|has| |#1| (-361)))) (-2723 (((-892) $) 139 (|has| |#1| (-361)))) (-4228 (((-1138 |#1|) $) NIL (|has| |#1| (-361)))) (-3609 (((-1138 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1138 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-3289 (($ $ (-1138 |#1|)) NIL (|has| |#1| (-361)))) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 146)) (-3060 (($) NIL (|has| |#1| (-361)) CONST)) (-3491 (($ (-892)) 71 (|has| |#1| (-361)))) (-2360 (((-112) $) 118)) (-3988 (((-1086) $) NIL)) (-1262 (((-929 (-1086))) 42)) (-4246 (($) 127 (|has| |#1| (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) 93 (|has| |#1| (-361)))) (-2120 (((-411 $) $) NIL)) (-3656 (((-809 (-892))) 67) (((-892)) 68)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2591 (((-747) $) 130 (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) 125 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3128 (((-133)) NIL)) (-3455 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3068 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2539 (((-1138 |#1|)) 96)) (-3191 (($) 128 (|has| |#1| (-361)))) (-3250 (($) 136 (|has| |#1| (-361)))) (-4163 (((-1225 |#1|) $) 59) (((-665 |#1|) (-1225 $)) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-3845 (((-834) $) 142) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) 75)) (-3407 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1723 (((-747)) 138)) (-3420 (((-1225 $)) 117) (((-1225 $) (-892)) 73)) (-4053 (((-112) $ $) NIL)) (-2923 (((-112) $) NIL)) (-3275 (($) 49 T CONST)) (-3287 (($) 46 T CONST)) (-2731 (($ $) 81 (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-1700 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2388 (((-112) $ $) 47)) (-2512 (($ $ $) 144) (($ $ |#1|) 145)) (-2499 (($ $) 126) (($ $ $) NIL)) (-2485 (($ $ $) 61)) (** (($ $ (-892)) 148) (($ $ (-747)) 149) (($ $ (-549)) 147)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 77) (($ $ $) 76) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
-(((-337 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1262 ((-929 (-1086)))))) (-342) (-1138 |#1|)) (T -337))
-((-1262 (*1 *2) (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-337 *3 *4)) (-4 *3 (-342)) (-14 *4 (-1138 *3)))))
-(-13 (-322 |#1|) (-10 -7 (-15 -1262 ((-929 (-1086))))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2642 (((-112) $) NIL)) (-1703 (((-747)) NIL)) (-2905 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-2572 (((-1152 (-892) (-747)) (-549)) NIL (|has| |#1| (-361)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3615 (((-747)) NIL (|has| |#1| (-361)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL)) (-2658 ((|#1| $) NIL)) (-2127 (($ (-1225 |#1|)) NIL)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| |#1| (-361)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-1327 (($) NIL (|has| |#1| (-361)))) (-1729 (((-112) $) NIL (|has| |#1| (-361)))) (-3225 (($ $ (-747)) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2471 (((-112) $) NIL)) (-2078 (((-892) $) NIL (|has| |#1| (-361))) (((-809 (-892)) $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3987 (((-112) $) NIL)) (-2308 (($) NIL (|has| |#1| (-361)))) (-2815 (((-112) $) NIL (|has| |#1| (-361)))) (-4117 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-3982 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4030 (((-1138 |#1|) $) NIL) (((-1138 $) $ (-892)) NIL (|has| |#1| (-361)))) (-2723 (((-892) $) NIL (|has| |#1| (-361)))) (-4228 (((-1138 |#1|) $) NIL (|has| |#1| (-361)))) (-3609 (((-1138 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1138 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-3289 (($ $ (-1138 |#1|)) NIL (|has| |#1| (-361)))) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| |#1| (-361)) CONST)) (-3491 (($ (-892)) NIL (|has| |#1| (-361)))) (-2360 (((-112) $) NIL)) (-3988 (((-1086) $) NIL)) (-1262 (((-929 (-1086))) NIL)) (-4246 (($) NIL (|has| |#1| (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL (|has| |#1| (-361)))) (-2120 (((-411 $) $) NIL)) (-3656 (((-809 (-892))) NIL) (((-892)) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2591 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3128 (((-133)) NIL)) (-3455 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3068 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2539 (((-1138 |#1|)) NIL)) (-3191 (($) NIL (|has| |#1| (-361)))) (-3250 (($) NIL (|has| |#1| (-361)))) (-4163 (((-1225 |#1|) $) NIL) (((-665 |#1|) (-1225 $)) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) NIL)) (-3407 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1723 (((-747)) NIL)) (-3420 (((-1225 $)) NIL) (((-1225 $) (-892)) NIL)) (-4053 (((-112) $ $) NIL)) (-2923 (((-112) $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-1700 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-338 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1262 ((-929 (-1086)))))) (-342) (-892)) (T -338))
-((-1262 (*1 *2) (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-338 *3 *4)) (-4 *3 (-342)) (-14 *4 (-892)))))
-(-13 (-322 |#1|) (-10 -7 (-15 -1262 ((-929 (-1086))))))
-((-3318 (((-747) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086)))))) 42)) (-1365 (((-929 (-1086)) (-1138 |#1|)) 85)) (-3669 (((-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))) (-1138 |#1|)) 78)) (-1869 (((-665 |#1|) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086)))))) 86)) (-1580 (((-3 (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))) "failed") (-892)) 13)) (-1745 (((-3 (-1138 |#1|) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086)))))) (-892)) 18)))
-(((-339 |#1|) (-10 -7 (-15 -1365 ((-929 (-1086)) (-1138 |#1|))) (-15 -3669 ((-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))) (-1138 |#1|))) (-15 -1869 ((-665 |#1|) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))))) (-15 -3318 ((-747) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))))) (-15 -1580 ((-3 (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))) "failed") (-892))) (-15 -1745 ((-3 (-1138 |#1|) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086)))))) (-892)))) (-342)) (T -339))
-((-1745 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-3 (-1138 *4) (-1225 (-621 (-2 (|:| -4160 *4) (|:| -3491 (-1086))))))) (-5 *1 (-339 *4)) (-4 *4 (-342)))) (-1580 (*1 *2 *3) (|partial| -12 (-5 *3 (-892)) (-5 *2 (-1225 (-621 (-2 (|:| -4160 *4) (|:| -3491 (-1086)))))) (-5 *1 (-339 *4)) (-4 *4 (-342)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-1225 (-621 (-2 (|:| -4160 *4) (|:| -3491 (-1086)))))) (-4 *4 (-342)) (-5 *2 (-747)) (-5 *1 (-339 *4)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-1225 (-621 (-2 (|:| -4160 *4) (|:| -3491 (-1086)))))) (-4 *4 (-342)) (-5 *2 (-665 *4)) (-5 *1 (-339 *4)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-1138 *4)) (-4 *4 (-342)) (-5 *2 (-1225 (-621 (-2 (|:| -4160 *4) (|:| -3491 (-1086)))))) (-5 *1 (-339 *4)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-1138 *4)) (-4 *4 (-342)) (-5 *2 (-929 (-1086))) (-5 *1 (-339 *4)))))
-(-10 -7 (-15 -1365 ((-929 (-1086)) (-1138 |#1|))) (-15 -3669 ((-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))) (-1138 |#1|))) (-15 -1869 ((-665 |#1|) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))))) (-15 -3318 ((-747) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))))) (-15 -1580 ((-3 (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))) "failed") (-892))) (-15 -1745 ((-3 (-1138 |#1|) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086)))))) (-892))))
-((-3845 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
-(((-340 |#1| |#2| |#3|) (-10 -7 (-15 -3845 (|#3| |#1|)) (-15 -3845 (|#1| |#3|))) (-322 |#2|) (-342) (-322 |#2|)) (T -340))
-((-3845 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *2 *4 *3)) (-4 *3 (-322 *4)))) (-3845 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *3 *4 *2)) (-4 *3 (-322 *4)))))
-(-10 -7 (-15 -3845 (|#3| |#1|)) (-15 -3845 (|#1| |#3|)))
-((-1729 (((-112) $) 51)) (-2078 (((-809 (-892)) $) 21) (((-892) $) 52)) (-3982 (((-3 $ "failed") $) 16)) (-3060 (($) 9)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 93)) (-2591 (((-3 (-747) "failed") $ $) 71) (((-747) $) 60)) (-3455 (($ $ (-747)) NIL) (($ $) 8)) (-3191 (($) 44)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 34)) (-3407 (((-3 $ "failed") $) 38) (($ $) 37)))
-(((-341 |#1|) (-10 -8 (-15 -2078 ((-892) |#1|)) (-15 -2591 ((-747) |#1|)) (-15 -1729 ((-112) |#1|)) (-15 -3191 (|#1|)) (-15 -3119 ((-3 (-1225 |#1|) "failed") (-665 |#1|))) (-15 -3407 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3060 (|#1|)) (-15 -3982 ((-3 |#1| "failed") |#1|)) (-15 -2591 ((-3 (-747) "failed") |#1| |#1|)) (-15 -2078 ((-809 (-892)) |#1|)) (-15 -3407 ((-3 |#1| "failed") |#1|)) (-15 -1443 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)))) (-342)) (T -341))
-NIL
-(-10 -8 (-15 -2078 ((-892) |#1|)) (-15 -2591 ((-747) |#1|)) (-15 -1729 ((-112) |#1|)) (-15 -3191 (|#1|)) (-15 -3119 ((-3 (-1225 |#1|) "failed") (-665 |#1|))) (-15 -3407 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3060 (|#1|)) (-15 -3982 ((-3 |#1| "failed") |#1|)) (-15 -2591 ((-3 (-747) "failed") |#1| |#1|)) (-15 -2078 ((-809 (-892)) |#1|)) (-15 -3407 ((-3 |#1| "failed") |#1|)) (-15 -1443 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2572 (((-1152 (-892) (-747)) (-549)) 90)) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 70)) (-3513 (((-411 $) $) 69)) (-2647 (((-112) $ $) 57)) (-3615 (((-747)) 100)) (-1705 (($) 17 T CONST)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2094 (($ $ $) 53)) (-3976 (((-3 $ "failed") $) 32)) (-3238 (($) 103)) (-2066 (($ $ $) 54)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-1327 (($) 88)) (-1729 (((-112) $) 87)) (-3225 (($ $) 76) (($ $ (-747)) 75)) (-2471 (((-112) $) 68)) (-2078 (((-809 (-892)) $) 78) (((-892) $) 85)) (-3987 (((-112) $) 30)) (-3982 (((-3 $ "failed") $) 99)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-2723 (((-892) $) 102)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 67)) (-3060 (($) 98 T CONST)) (-3491 (($ (-892)) 101)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) 91)) (-2120 (((-411 $) $) 71)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-4091 (((-747) $) 56)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55)) (-2591 (((-3 (-747) "failed") $ $) 77) (((-747) $) 86)) (-3455 (($ $ (-747)) 96) (($ $) 94)) (-3191 (($) 89)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 92)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63)) (-3407 (((-3 $ "failed") $) 79) (($ $) 93)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-747)) 97) (($ $) 95)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ $) 62)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64)))
-(((-342) (-138)) (T -342))
-((-3407 (*1 *1 *1) (-4 *1 (-342))) (-3119 (*1 *2 *3) (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-342)) (-5 *2 (-1225 *1)))) (-1647 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))))) (-2572 (*1 *2 *3) (-12 (-4 *1 (-342)) (-5 *3 (-549)) (-5 *2 (-1152 (-892) (-747))))) (-3191 (*1 *1) (-4 *1 (-342))) (-1327 (*1 *1) (-4 *1 (-342))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-112)))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-747)))) (-2078 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-892)))) (-3203 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-395) (-361) (-1117) (-227) (-10 -8 (-15 -3407 ($ $)) (-15 -3119 ((-3 (-1225 $) "failed") (-665 $))) (-15 -1647 ((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549)))))) (-15 -2572 ((-1152 (-892) (-747)) (-549))) (-15 -3191 ($)) (-15 -1327 ($)) (-15 -1729 ((-112) $)) (-15 -2591 ((-747) $)) (-15 -2078 ((-892) $)) (-15 -3203 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-593 (-834)) . T) ((-170) . T) ((-227) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) . T) ((-361) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1117) . T) ((-1183) . T))
-((-2675 (((-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) |#1|) 53)) (-2581 (((-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))) 51)))
-(((-343 |#1| |#2| |#3|) (-10 -7 (-15 -2581 ((-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))))) (-15 -2675 ((-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) |#1|))) (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $)))) (-1201 |#1|) (-402 |#1| |#2|)) (T -343))
-((-2675 (*1 *2 *3) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $))))) (-4 *4 (-1201 *3)) (-5 *2 (-2 (|:| -3420 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-2581 (*1 *2) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $))))) (-4 *4 (-1201 *3)) (-5 *2 (-2 (|:| -3420 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4)))))
-(-10 -7 (-15 -2581 ((-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))))) (-15 -2675 ((-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2642 (((-112) $) NIL)) (-1703 (((-747)) NIL)) (-2905 (((-881 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-2572 (((-1152 (-892) (-747)) (-549)) NIL (|has| (-881 |#1|) (-361)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-3318 (((-747)) NIL)) (-2647 (((-112) $ $) NIL)) (-3615 (((-747)) NIL (|has| (-881 |#1|) (-361)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-881 |#1|) "failed") $) NIL)) (-2658 (((-881 |#1|) $) NIL)) (-2127 (($ (-1225 (-881 |#1|))) NIL)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-881 |#1|) (-361)))) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| (-881 |#1|) (-361)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-1327 (($) NIL (|has| (-881 |#1|) (-361)))) (-1729 (((-112) $) NIL (|has| (-881 |#1|) (-361)))) (-3225 (($ $ (-747)) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361)))) (($ $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-2471 (((-112) $) NIL)) (-2078 (((-892) $) NIL (|has| (-881 |#1|) (-361))) (((-809 (-892)) $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-3987 (((-112) $) NIL)) (-2308 (($) NIL (|has| (-881 |#1|) (-361)))) (-2815 (((-112) $) NIL (|has| (-881 |#1|) (-361)))) (-4117 (((-881 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-3982 (((-3 $ "failed") $) NIL (|has| (-881 |#1|) (-361)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4030 (((-1138 (-881 |#1|)) $) NIL) (((-1138 $) $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-2723 (((-892) $) NIL (|has| (-881 |#1|) (-361)))) (-4228 (((-1138 (-881 |#1|)) $) NIL (|has| (-881 |#1|) (-361)))) (-3609 (((-1138 (-881 |#1|)) $) NIL (|has| (-881 |#1|) (-361))) (((-3 (-1138 (-881 |#1|)) "failed") $ $) NIL (|has| (-881 |#1|) (-361)))) (-3289 (($ $ (-1138 (-881 |#1|))) NIL (|has| (-881 |#1|) (-361)))) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| (-881 |#1|) (-361)) CONST)) (-3491 (($ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-2360 (((-112) $) NIL)) (-3988 (((-1086) $) NIL)) (-1702 (((-1225 (-621 (-2 (|:| -4160 (-881 |#1|)) (|:| -3491 (-1086)))))) NIL)) (-3775 (((-665 (-881 |#1|))) NIL)) (-4246 (($) NIL (|has| (-881 |#1|) (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL (|has| (-881 |#1|) (-361)))) (-2120 (((-411 $) $) NIL)) (-3656 (((-809 (-892))) NIL) (((-892)) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2591 (((-747) $) NIL (|has| (-881 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-3128 (((-133)) NIL)) (-3455 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-3068 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2539 (((-1138 (-881 |#1|))) NIL)) (-3191 (($) NIL (|has| (-881 |#1|) (-361)))) (-3250 (($) NIL (|has| (-881 |#1|) (-361)))) (-4163 (((-1225 (-881 |#1|)) $) NIL) (((-665 (-881 |#1|)) (-1225 $)) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| (-881 |#1|) (-361)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-881 |#1|)) NIL)) (-3407 (($ $) NIL (|has| (-881 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-1723 (((-747)) NIL)) (-3420 (((-1225 $)) NIL) (((-1225 $) (-892)) NIL)) (-4053 (((-112) $ $) NIL)) (-2923 (((-112) $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-1700 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL) (($ $ (-881 |#1|)) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ (-881 |#1|)) NIL) (($ (-881 |#1|) $) NIL)))
-(((-344 |#1| |#2|) (-13 (-322 (-881 |#1|)) (-10 -7 (-15 -1702 ((-1225 (-621 (-2 (|:| -4160 (-881 |#1|)) (|:| -3491 (-1086))))))) (-15 -3775 ((-665 (-881 |#1|)))) (-15 -3318 ((-747))))) (-892) (-892)) (T -344))
-((-1702 (*1 *2) (-12 (-5 *2 (-1225 (-621 (-2 (|:| -4160 (-881 *3)) (|:| -3491 (-1086)))))) (-5 *1 (-344 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))) (-3775 (*1 *2) (-12 (-5 *2 (-665 (-881 *3))) (-5 *1 (-344 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))) (-3318 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-344 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))))
-(-13 (-322 (-881 |#1|)) (-10 -7 (-15 -1702 ((-1225 (-621 (-2 (|:| -4160 (-881 |#1|)) (|:| -3491 (-1086))))))) (-15 -3775 ((-665 (-881 |#1|)))) (-15 -3318 ((-747)))))
-((-3833 (((-112) $ $) 61)) (-3166 (((-112) $) 74)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2642 (((-112) $) NIL)) (-1703 (((-747)) NIL)) (-2905 ((|#1| $) 92) (($ $ (-892)) 90 (|has| |#1| (-361)))) (-2572 (((-1152 (-892) (-747)) (-549)) 148 (|has| |#1| (-361)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-3318 (((-747)) 89)) (-2647 (((-112) $ $) NIL)) (-3615 (((-747)) 162 (|has| |#1| (-361)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) 112)) (-2658 ((|#1| $) 91)) (-2127 (($ (-1225 |#1|)) 58)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-361)))) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) 158 (|has| |#1| (-361)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-1327 (($) 149 (|has| |#1| (-361)))) (-1729 (((-112) $) NIL (|has| |#1| (-361)))) (-3225 (($ $ (-747)) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2471 (((-112) $) NIL)) (-2078 (((-892) $) NIL (|has| |#1| (-361))) (((-809 (-892)) $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3987 (((-112) $) NIL)) (-2308 (($) 98 (|has| |#1| (-361)))) (-2815 (((-112) $) 175 (|has| |#1| (-361)))) (-4117 ((|#1| $) 94) (($ $ (-892)) 93 (|has| |#1| (-361)))) (-3982 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4030 (((-1138 |#1|) $) 189) (((-1138 $) $ (-892)) NIL (|has| |#1| (-361)))) (-2723 (((-892) $) 134 (|has| |#1| (-361)))) (-4228 (((-1138 |#1|) $) 73 (|has| |#1| (-361)))) (-3609 (((-1138 |#1|) $) 70 (|has| |#1| (-361))) (((-3 (-1138 |#1|) "failed") $ $) 82 (|has| |#1| (-361)))) (-3289 (($ $ (-1138 |#1|)) 69 (|has| |#1| (-361)))) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 192)) (-3060 (($) NIL (|has| |#1| (-361)) CONST)) (-3491 (($ (-892)) 137 (|has| |#1| (-361)))) (-2360 (((-112) $) 108)) (-3988 (((-1086) $) NIL)) (-1702 (((-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086)))))) 83)) (-3775 (((-665 |#1|)) 87)) (-4246 (($) 96 (|has| |#1| (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) 150 (|has| |#1| (-361)))) (-2120 (((-411 $) $) NIL)) (-3656 (((-809 (-892))) NIL) (((-892)) 151)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2591 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3128 (((-133)) NIL)) (-3455 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3068 (((-809 (-892)) $) NIL) (((-892) $) 62)) (-2539 (((-1138 |#1|)) 152)) (-3191 (($) 133 (|has| |#1| (-361)))) (-3250 (($) NIL (|has| |#1| (-361)))) (-4163 (((-1225 |#1|) $) 106) (((-665 |#1|) (-1225 $)) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-3845 (((-834) $) 124) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) 57)) (-3407 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1723 (((-747)) 156)) (-3420 (((-1225 $)) 172) (((-1225 $) (-892)) 101)) (-4053 (((-112) $ $) NIL)) (-2923 (((-112) $) NIL)) (-3275 (($) 117 T CONST)) (-3287 (($) 33 T CONST)) (-2731 (($ $) 107 (|has| |#1| (-361))) (($ $ (-747)) 99 (|has| |#1| (-361)))) (-1700 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2388 (((-112) $ $) 183)) (-2512 (($ $ $) 104) (($ $ |#1|) 105)) (-2499 (($ $) 177) (($ $ $) 181)) (-2485 (($ $ $) 179)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 138)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 186) (($ $ $) 142) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
-(((-345 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1702 ((-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))))) (-15 -3775 ((-665 |#1|))) (-15 -3318 ((-747))))) (-342) (-3 (-1138 |#1|) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))))) (T -345))
-((-1702 (*1 *2) (-12 (-5 *2 (-1225 (-621 (-2 (|:| -4160 *3) (|:| -3491 (-1086)))))) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1138 *3) *2)))) (-3775 (*1 *2) (-12 (-5 *2 (-665 *3)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1138 *3) (-1225 (-621 (-2 (|:| -4160 *3) (|:| -3491 (-1086))))))))) (-3318 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1138 *3) (-1225 (-621 (-2 (|:| -4160 *3) (|:| -3491 (-1086))))))))))
-(-13 (-322 |#1|) (-10 -7 (-15 -1702 ((-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))))) (-15 -3775 ((-665 |#1|))) (-15 -3318 ((-747)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2642 (((-112) $) NIL)) (-1703 (((-747)) NIL)) (-2905 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-2572 (((-1152 (-892) (-747)) (-549)) NIL (|has| |#1| (-361)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-3318 (((-747)) NIL)) (-2647 (((-112) $ $) NIL)) (-3615 (((-747)) NIL (|has| |#1| (-361)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL)) (-2658 ((|#1| $) NIL)) (-2127 (($ (-1225 |#1|)) NIL)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| |#1| (-361)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-1327 (($) NIL (|has| |#1| (-361)))) (-1729 (((-112) $) NIL (|has| |#1| (-361)))) (-3225 (($ $ (-747)) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2471 (((-112) $) NIL)) (-2078 (((-892) $) NIL (|has| |#1| (-361))) (((-809 (-892)) $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3987 (((-112) $) NIL)) (-2308 (($) NIL (|has| |#1| (-361)))) (-2815 (((-112) $) NIL (|has| |#1| (-361)))) (-4117 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-3982 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4030 (((-1138 |#1|) $) NIL) (((-1138 $) $ (-892)) NIL (|has| |#1| (-361)))) (-2723 (((-892) $) NIL (|has| |#1| (-361)))) (-4228 (((-1138 |#1|) $) NIL (|has| |#1| (-361)))) (-3609 (((-1138 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1138 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-3289 (($ $ (-1138 |#1|)) NIL (|has| |#1| (-361)))) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| |#1| (-361)) CONST)) (-3491 (($ (-892)) NIL (|has| |#1| (-361)))) (-2360 (((-112) $) NIL)) (-3988 (((-1086) $) NIL)) (-1702 (((-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086)))))) NIL)) (-3775 (((-665 |#1|)) NIL)) (-4246 (($) NIL (|has| |#1| (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL (|has| |#1| (-361)))) (-2120 (((-411 $) $) NIL)) (-3656 (((-809 (-892))) NIL) (((-892)) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2591 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3128 (((-133)) NIL)) (-3455 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3068 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2539 (((-1138 |#1|)) NIL)) (-3191 (($) NIL (|has| |#1| (-361)))) (-3250 (($) NIL (|has| |#1| (-361)))) (-4163 (((-1225 |#1|) $) NIL) (((-665 |#1|) (-1225 $)) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) NIL)) (-3407 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1723 (((-747)) NIL)) (-3420 (((-1225 $)) NIL) (((-1225 $) (-892)) NIL)) (-4053 (((-112) $ $) NIL)) (-2923 (((-112) $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-1700 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-346 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1702 ((-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))))) (-15 -3775 ((-665 |#1|))) (-15 -3318 ((-747))))) (-342) (-892)) (T -346))
-((-1702 (*1 *2) (-12 (-5 *2 (-1225 (-621 (-2 (|:| -4160 *3) (|:| -3491 (-1086)))))) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-892)))) (-3775 (*1 *2) (-12 (-5 *2 (-665 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-892)))) (-3318 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-892)))))
-(-13 (-322 |#1|) (-10 -7 (-15 -1702 ((-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))))) (-15 -3775 ((-665 |#1|))) (-15 -3318 ((-747)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2642 (((-112) $) NIL)) (-1703 (((-747)) NIL)) (-2905 (((-881 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-2572 (((-1152 (-892) (-747)) (-549)) NIL (|has| (-881 |#1|) (-361)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3615 (((-747)) NIL (|has| (-881 |#1|) (-361)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-881 |#1|) "failed") $) NIL)) (-2658 (((-881 |#1|) $) NIL)) (-2127 (($ (-1225 (-881 |#1|))) NIL)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-881 |#1|) (-361)))) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| (-881 |#1|) (-361)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-1327 (($) NIL (|has| (-881 |#1|) (-361)))) (-1729 (((-112) $) NIL (|has| (-881 |#1|) (-361)))) (-3225 (($ $ (-747)) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361)))) (($ $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-2471 (((-112) $) NIL)) (-2078 (((-892) $) NIL (|has| (-881 |#1|) (-361))) (((-809 (-892)) $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-3987 (((-112) $) NIL)) (-2308 (($) NIL (|has| (-881 |#1|) (-361)))) (-2815 (((-112) $) NIL (|has| (-881 |#1|) (-361)))) (-4117 (((-881 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-3982 (((-3 $ "failed") $) NIL (|has| (-881 |#1|) (-361)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4030 (((-1138 (-881 |#1|)) $) NIL) (((-1138 $) $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-2723 (((-892) $) NIL (|has| (-881 |#1|) (-361)))) (-4228 (((-1138 (-881 |#1|)) $) NIL (|has| (-881 |#1|) (-361)))) (-3609 (((-1138 (-881 |#1|)) $) NIL (|has| (-881 |#1|) (-361))) (((-3 (-1138 (-881 |#1|)) "failed") $ $) NIL (|has| (-881 |#1|) (-361)))) (-3289 (($ $ (-1138 (-881 |#1|))) NIL (|has| (-881 |#1|) (-361)))) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| (-881 |#1|) (-361)) CONST)) (-3491 (($ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-2360 (((-112) $) NIL)) (-3988 (((-1086) $) NIL)) (-4246 (($) NIL (|has| (-881 |#1|) (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL (|has| (-881 |#1|) (-361)))) (-2120 (((-411 $) $) NIL)) (-3656 (((-809 (-892))) NIL) (((-892)) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2591 (((-747) $) NIL (|has| (-881 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-3128 (((-133)) NIL)) (-3455 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-3068 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2539 (((-1138 (-881 |#1|))) NIL)) (-3191 (($) NIL (|has| (-881 |#1|) (-361)))) (-3250 (($) NIL (|has| (-881 |#1|) (-361)))) (-4163 (((-1225 (-881 |#1|)) $) NIL) (((-665 (-881 |#1|)) (-1225 $)) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| (-881 |#1|) (-361)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-881 |#1|)) NIL)) (-3407 (($ $) NIL (|has| (-881 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-1723 (((-747)) NIL)) (-3420 (((-1225 $)) NIL) (((-1225 $) (-892)) NIL)) (-4053 (((-112) $ $) NIL)) (-2923 (((-112) $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-1700 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL) (($ $ (-881 |#1|)) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ (-881 |#1|)) NIL) (($ (-881 |#1|) $) NIL)))
-(((-347 |#1| |#2|) (-322 (-881 |#1|)) (-892) (-892)) (T -347))
-NIL
-(-322 (-881 |#1|))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2642 (((-112) $) NIL)) (-1703 (((-747)) NIL)) (-2905 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-2572 (((-1152 (-892) (-747)) (-549)) 120 (|has| |#1| (-361)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3615 (((-747)) 140 (|has| |#1| (-361)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) 93)) (-2658 ((|#1| $) 90)) (-2127 (($ (-1225 |#1|)) 85)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-361)))) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) 82 (|has| |#1| (-361)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-1327 (($) 42 (|has| |#1| (-361)))) (-1729 (((-112) $) NIL (|has| |#1| (-361)))) (-3225 (($ $ (-747)) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2471 (((-112) $) NIL)) (-2078 (((-892) $) NIL (|has| |#1| (-361))) (((-809 (-892)) $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3987 (((-112) $) NIL)) (-2308 (($) 121 (|has| |#1| (-361)))) (-2815 (((-112) $) 74 (|has| |#1| (-361)))) (-4117 ((|#1| $) 39) (($ $ (-892)) 43 (|has| |#1| (-361)))) (-3982 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4030 (((-1138 |#1|) $) 65) (((-1138 $) $ (-892)) NIL (|has| |#1| (-361)))) (-2723 (((-892) $) 97 (|has| |#1| (-361)))) (-4228 (((-1138 |#1|) $) NIL (|has| |#1| (-361)))) (-3609 (((-1138 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1138 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-3289 (($ $ (-1138 |#1|)) NIL (|has| |#1| (-361)))) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| |#1| (-361)) CONST)) (-3491 (($ (-892)) 95 (|has| |#1| (-361)))) (-2360 (((-112) $) 142)) (-3988 (((-1086) $) NIL)) (-4246 (($) 36 (|has| |#1| (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) 115 (|has| |#1| (-361)))) (-2120 (((-411 $) $) NIL)) (-3656 (((-809 (-892))) NIL) (((-892)) 139)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2591 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3128 (((-133)) NIL)) (-3455 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3068 (((-809 (-892)) $) NIL) (((-892) $) 59)) (-2539 (((-1138 |#1|)) 88)) (-3191 (($) 126 (|has| |#1| (-361)))) (-3250 (($) NIL (|has| |#1| (-361)))) (-4163 (((-1225 |#1|) $) 53) (((-665 |#1|) (-1225 $)) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-3845 (((-834) $) 138) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) 87)) (-3407 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1723 (((-747)) 144)) (-3420 (((-1225 $)) 109) (((-1225 $) (-892)) 49)) (-4053 (((-112) $ $) NIL)) (-2923 (((-112) $) NIL)) (-3275 (($) 111 T CONST)) (-3287 (($) 32 T CONST)) (-2731 (($ $) 68 (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-1700 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2388 (((-112) $ $) 107)) (-2512 (($ $ $) 99) (($ $ |#1|) 100)) (-2499 (($ $) 80) (($ $ $) 105)) (-2485 (($ $ $) 103)) (** (($ $ (-892)) NIL) (($ $ (-747)) 44) (($ $ (-549)) 130)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 78) (($ $ $) 56) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
-(((-348 |#1| |#2|) (-322 |#1|) (-342) (-1138 |#1|)) (T -348))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1142)) $) NIL)) (-1749 (((-112)) 91) (((-112) (-112)) 92)) (-1655 (((-618 (-591 $)) $) NIL)) (-3829 (($ $) NIL)) (-3985 (($ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL)) (-3358 (($ $) NIL)) (-3827 (($ $) NIL)) (-3984 (($ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-591 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-307 |#3|)) 71) (((-3 $ "failed") (-1142)) 97) (((-3 $ "failed") (-307 (-535))) 59 (|has| |#3| (-1009 (-535)))) (((-3 $ "failed") (-400 (-917 (-535)))) 65 (|has| |#3| (-1009 (-535)))) (((-3 $ "failed") (-917 (-535))) 60 (|has| |#3| (-1009 (-535)))) (((-3 $ "failed") (-307 (-371))) 89 (|has| |#3| (-1009 (-371)))) (((-3 $ "failed") (-400 (-917 (-371)))) 83 (|has| |#3| (-1009 (-371)))) (((-3 $ "failed") (-917 (-371))) 78 (|has| |#3| (-1009 (-371))))) (-3490 (((-591 $) $) NIL) ((|#3| $) NIL) (($ (-307 |#3|)) 72) (($ (-1142)) 98) (($ (-307 (-535))) 61 (|has| |#3| (-1009 (-535)))) (($ (-400 (-917 (-535)))) 66 (|has| |#3| (-1009 (-535)))) (($ (-917 (-535))) 62 (|has| |#3| (-1009 (-535)))) (($ (-307 (-371))) 90 (|has| |#3| (-1009 (-371)))) (($ (-400 (-917 (-371)))) 84 (|has| |#3| (-1009 (-371)))) (($ (-917 (-371))) 80 (|has| |#3| (-1009 (-371))))) (-3804 (((-3 $ "failed") $) NIL)) (-3973 (($) 10)) (-2892 (($ $) NIL) (($ (-618 $)) NIL)) (-1654 (((-618 (-113)) $) NIL)) (-3368 (((-113) (-113)) NIL)) (-2493 (((-112) $) NIL)) (-2994 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-1652 (((-1136 $) (-591 $)) NIL (|has| $ (-1018)))) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 $ $) (-591 $)) NIL)) (-1657 (((-3 (-591 $) "failed") $) NIL)) (-1853 (($ $) 94)) (-4285 (($ $) NIL)) (-3576 (((-1124) $) NIL)) (-1656 (((-618 (-591 $)) $) NIL)) (-2308 (($ (-113) $) 93) (($ (-113) (-618 $)) NIL)) (-2952 (((-112) $ (-113)) NIL) (((-112) $ (-1142)) NIL)) (-2922 (((-747) $) NIL)) (-3577 (((-1086) $) NIL)) (-1653 (((-112) $ $) NIL) (((-112) $ (-1142)) NIL)) (-4286 (($ $) NIL)) (-2995 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-4110 (($ $ (-591 $) $) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-1142) (-1 $ (-618 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-618 (-113)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-113) (-1 $ (-618 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4142 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-618 $)) NIL)) (-1658 (($ $) NIL) (($ $ $) NIL)) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL)) (-3519 (($ $) NIL (|has| $ (-1018)))) (-3828 (($ $) NIL)) (-3980 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-591 $)) NIL) (($ |#3|) NIL) (($ (-535)) NIL) (((-307 |#3|) $) 96)) (-3444 (((-747)) NIL)) (-2909 (($ $) NIL) (($ (-618 $)) NIL)) (-2329 (((-112) (-113)) NIL)) (-3823 (($ $) NIL)) (-3821 (($ $) NIL)) (-3822 (($ $) NIL)) (-3725 (($ $) NIL)) (-2979 (($) 95 T CONST)) (-2985 (($) 24 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-890)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-535) $) NIL) (($ (-747) $) NIL) (($ (-890) $) NIL)))
+(((-332 |#1| |#2| |#3|) (-13 (-291) (-38 |#3|) (-1009 |#3|) (-871 (-1142)) (-10 -8 (-15 -3490 ($ (-307 |#3|))) (-15 -3491 ((-3 $ "failed") (-307 |#3|))) (-15 -3490 ($ (-1142))) (-15 -3491 ((-3 $ "failed") (-1142))) (-15 -4300 ((-307 |#3|) $)) (IF (|has| |#3| (-1009 (-535))) (PROGN (-15 -3490 ($ (-307 (-535)))) (-15 -3491 ((-3 $ "failed") (-307 (-535)))) (-15 -3490 ($ (-400 (-917 (-535))))) (-15 -3491 ((-3 $ "failed") (-400 (-917 (-535))))) (-15 -3490 ($ (-917 (-535)))) (-15 -3491 ((-3 $ "failed") (-917 (-535))))) |%noBranch|) (IF (|has| |#3| (-1009 (-371))) (PROGN (-15 -3490 ($ (-307 (-371)))) (-15 -3491 ((-3 $ "failed") (-307 (-371)))) (-15 -3490 ($ (-400 (-917 (-371))))) (-15 -3491 ((-3 $ "failed") (-400 (-917 (-371))))) (-15 -3490 ($ (-917 (-371)))) (-15 -3491 ((-3 $ "failed") (-917 (-371))))) |%noBranch|) (-15 -3725 ($ $)) (-15 -3358 ($ $)) (-15 -4286 ($ $)) (-15 -4285 ($ $)) (-15 -1853 ($ $)) (-15 -3984 ($ $)) (-15 -3980 ($ $)) (-15 -3985 ($ $)) (-15 -3821 ($ $)) (-15 -3822 ($ $)) (-15 -3823 ($ $)) (-15 -3827 ($ $)) (-15 -3828 ($ $)) (-15 -3829 ($ $)) (-15 -3973 ($)) (-15 -3405 ((-618 (-1142)) $)) (-15 -1749 ((-112))) (-15 -1749 ((-112) (-112))))) (-618 (-1142)) (-618 (-1142)) (-380)) (T -332))
+((-3490 (*1 *1 *2) (-12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 *2)) (-14 *4 (-618 *2)) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 *2)) (-14 *4 (-618 *2)) (-4 *5 (-380)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-307 *5)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-307 (-535))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-535))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-535)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-917 (-535)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-917 (-535))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-535))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-371)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-917 (-371)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-917 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-3725 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3358 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-4286 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-4285 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-1853 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3984 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3980 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3985 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3821 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3822 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3823 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3827 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3828 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3829 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3973 (*1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142))) (-4 *4 (-380)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-380)))) (-1749 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380)))))
+(-13 (-291) (-38 |#3|) (-1009 |#3|) (-871 (-1142)) (-10 -8 (-15 -3490 ($ (-307 |#3|))) (-15 -3491 ((-3 $ "failed") (-307 |#3|))) (-15 -3490 ($ (-1142))) (-15 -3491 ((-3 $ "failed") (-1142))) (-15 -4300 ((-307 |#3|) $)) (IF (|has| |#3| (-1009 (-535))) (PROGN (-15 -3490 ($ (-307 (-535)))) (-15 -3491 ((-3 $ "failed") (-307 (-535)))) (-15 -3490 ($ (-400 (-917 (-535))))) (-15 -3491 ((-3 $ "failed") (-400 (-917 (-535))))) (-15 -3490 ($ (-917 (-535)))) (-15 -3491 ((-3 $ "failed") (-917 (-535))))) |%noBranch|) (IF (|has| |#3| (-1009 (-371))) (PROGN (-15 -3490 ($ (-307 (-371)))) (-15 -3491 ((-3 $ "failed") (-307 (-371)))) (-15 -3490 ($ (-400 (-917 (-371))))) (-15 -3491 ((-3 $ "failed") (-400 (-917 (-371))))) (-15 -3490 ($ (-917 (-371)))) (-15 -3491 ((-3 $ "failed") (-917 (-371))))) |%noBranch|) (-15 -3725 ($ $)) (-15 -3358 ($ $)) (-15 -4286 ($ $)) (-15 -4285 ($ $)) (-15 -1853 ($ $)) (-15 -3984 ($ $)) (-15 -3980 ($ $)) (-15 -3985 ($ $)) (-15 -3821 ($ $)) (-15 -3822 ($ $)) (-15 -3823 ($ $)) (-15 -3827 ($ $)) (-15 -3828 ($ $)) (-15 -3829 ($ $)) (-15 -3973 ($)) (-15 -3405 ((-618 (-1142)) $)) (-15 -1749 ((-112))) (-15 -1749 ((-112) (-112)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 (((-877 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-877 |#1|) (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| (-877 |#1|) (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-877 |#1|) "failed") $) NIL)) (-3490 (((-877 |#1|) $) NIL)) (-1906 (($ (-1224 (-877 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-877 |#1|) (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-877 |#1|) (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| (-877 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-877 |#1|) (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361)))) (($ $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| (-877 |#1|) (-361))) (((-808 (-890)) $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-877 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-877 |#1|) (-361)))) (-3450 (((-877 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| (-877 |#1|) (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 (-877 |#1|)) $) NIL) (((-1136 $) $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-2121 (((-890) $) NIL (|has| (-877 |#1|) (-361)))) (-1719 (((-1136 (-877 |#1|)) $) NIL (|has| (-877 |#1|) (-361)))) (-1718 (((-1136 (-877 |#1|)) $) NIL (|has| (-877 |#1|) (-361))) (((-3 (-1136 (-877 |#1|)) "failed") $ $) NIL (|has| (-877 |#1|) (-361)))) (-1720 (($ $ (-1136 (-877 |#1|))) NIL (|has| (-877 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-877 |#1|) (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-2492 (($) NIL (|has| (-877 |#1|) (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-877 |#1|) (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| (-877 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 (-877 |#1|))) NIL)) (-1785 (($) NIL (|has| (-877 |#1|) (-361)))) (-1721 (($) NIL (|has| (-877 |#1|) (-361)))) (-3558 (((-1224 (-877 |#1|)) $) NIL) (((-665 (-877 |#1|)) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| (-877 |#1|) (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-877 |#1|)) NIL)) (-3023 (($ $) NIL (|has| (-877 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-2990 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ (-877 |#1|)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ (-877 |#1|)) NIL) (($ (-877 |#1|) $) NIL)))
+(((-333 |#1| |#2|) (-322 (-877 |#1|)) (-890) (-890)) (T -333))
+NIL
+(-322 (-877 |#1|))
+((-1758 (((-2 (|:| |num| (-1224 |#3|)) (|:| |den| |#3|)) $) 38)) (-1906 (($ (-1224 (-400 |#3|)) (-1224 $)) NIL) (($ (-1224 (-400 |#3|))) NIL) (($ (-1224 |#3|) |#3|) 161)) (-1763 (((-1224 $) (-1224 $)) 145)) (-1750 (((-618 (-618 |#2|))) 119)) (-1775 (((-112) |#2| |#2|) 73)) (-3840 (($ $) 139)) (-3719 (((-747)) 31)) (-1764 (((-1224 $) (-1224 $)) 198)) (-1751 (((-618 (-917 |#2|)) (-1142)) 110)) (-1767 (((-112) $) 158)) (-1766 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1753 (((-3 |#3| "failed")) 50)) (-1777 (((-747)) 170)) (-4142 ((|#2| $ |#2| |#2|) 132)) (-1754 (((-3 |#3| "failed")) 68)) (-4153 (($ $ (-1 (-400 |#3|) (-400 |#3|)) (-747)) NIL) (($ $ (-1 (-400 |#3|) (-400 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-1765 (((-1224 $) (-1224 $)) 151)) (-1752 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1776 (((-112)) 33)))
+(((-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -1750 ((-618 (-618 |#2|)))) (-15 -1751 ((-618 (-917 |#2|)) (-1142))) (-15 -1752 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1753 ((-3 |#3| "failed"))) (-15 -1754 ((-3 |#3| "failed"))) (-15 -4142 (|#2| |#1| |#2| |#2|)) (-15 -3840 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1766 ((-112) |#1| |#3|)) (-15 -1766 ((-112) |#1| |#2|)) (-15 -1906 (|#1| (-1224 |#3|) |#3|)) (-15 -1758 ((-2 (|:| |num| (-1224 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1763 ((-1224 |#1|) (-1224 |#1|))) (-15 -1764 ((-1224 |#1|) (-1224 |#1|))) (-15 -1765 ((-1224 |#1|) (-1224 |#1|))) (-15 -1766 ((-112) |#1|)) (-15 -1767 ((-112) |#1|)) (-15 -1775 ((-112) |#2| |#2|)) (-15 -1776 ((-112))) (-15 -1777 ((-747))) (-15 -3719 ((-747))) (-15 -4153 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -4153 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-747))) (-15 -1906 (|#1| (-1224 (-400 |#3|)))) (-15 -1906 (|#1| (-1224 (-400 |#3|)) (-1224 |#1|)))) (-335 |#2| |#3| |#4|) (-1183) (-1200 |#2|) (-1200 (-400 |#3|))) (T -334))
+((-3719 (*1 *2) (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1777 (*1 *2) (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1776 (*1 *2) (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1775 (*1 *2 *3 *3) (-12 (-4 *3 (-1183)) (-4 *5 (-1200 *3)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) (-1754 (*1 *2) (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1200 (-400 *2))) (-4 *2 (-1200 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1753 (*1 *2) (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1200 (-400 *2))) (-4 *2 (-1200 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *5 (-1183)) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-5 *2 (-618 (-917 *5))) (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) (-1750 (*1 *2) (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-618 (-618 *4))) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))))
+(-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -1750 ((-618 (-618 |#2|)))) (-15 -1751 ((-618 (-917 |#2|)) (-1142))) (-15 -1752 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1753 ((-3 |#3| "failed"))) (-15 -1754 ((-3 |#3| "failed"))) (-15 -4142 (|#2| |#1| |#2| |#2|)) (-15 -3840 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1766 ((-112) |#1| |#3|)) (-15 -1766 ((-112) |#1| |#2|)) (-15 -1906 (|#1| (-1224 |#3|) |#3|)) (-15 -1758 ((-2 (|:| |num| (-1224 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1763 ((-1224 |#1|) (-1224 |#1|))) (-15 -1764 ((-1224 |#1|) (-1224 |#1|))) (-15 -1765 ((-1224 |#1|) (-1224 |#1|))) (-15 -1766 ((-112) |#1|)) (-15 -1767 ((-112) |#1|)) (-15 -1775 ((-112) |#2| |#2|)) (-15 -1776 ((-112))) (-15 -1777 ((-747))) (-15 -3719 ((-747))) (-15 -4153 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -4153 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-747))) (-15 -1906 (|#1| (-1224 (-400 |#3|)))) (-15 -1906 (|#1| (-1224 (-400 |#3|)) (-1224 |#1|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1758 (((-2 (|:| |num| (-1224 |#2|)) (|:| |den| |#2|)) $) 193)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 91 (|has| (-400 |#2|) (-356)))) (-2171 (($ $) 92 (|has| (-400 |#2|) (-356)))) (-2169 (((-112) $) 94 (|has| (-400 |#2|) (-356)))) (-1896 (((-665 (-400 |#2|)) (-1224 $)) 44) (((-665 (-400 |#2|))) 59)) (-3672 (((-400 |#2|) $) 50)) (-1786 (((-1151 (-890) (-747)) (-535)) 144 (|has| (-400 |#2|) (-343)))) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 111 (|has| (-400 |#2|) (-356)))) (-4312 (((-398 $) $) 112 (|has| (-400 |#2|) (-356)))) (-1700 (((-112) $ $) 102 (|has| (-400 |#2|) (-356)))) (-3454 (((-747)) 85 (|has| (-400 |#2|) (-361)))) (-1772 (((-112)) 210)) (-1771 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 166 (|has| (-400 |#2|) (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 164 (|has| (-400 |#2|) (-1009 (-400 (-535))))) (((-3 (-400 |#2|) #1#) $) 163)) (-3490 (((-535) $) 167 (|has| (-400 |#2|) (-1009 (-535)))) (((-400 (-535)) $) 165 (|has| (-400 |#2|) (-1009 (-400 (-535))))) (((-400 |#2|) $) 162)) (-1906 (($ (-1224 (-400 |#2|)) (-1224 $)) 46) (($ (-1224 (-400 |#2|))) 62) (($ (-1224 |#2|) |#2|) 192)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-400 |#2|) (-343)))) (-2883 (($ $ $) 106 (|has| (-400 |#2|) (-356)))) (-1895 (((-665 (-400 |#2|)) $ (-1224 $)) 51) (((-665 (-400 |#2|)) $) 57)) (-2353 (((-665 (-535)) (-665 $)) 161 (|has| (-400 |#2|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 160 (|has| (-400 |#2|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-400 |#2|))) (|:| |vec| (-1224 (-400 |#2|)))) (-665 $) (-1224 $)) 159) (((-665 (-400 |#2|)) (-665 $)) 158)) (-1763 (((-1224 $) (-1224 $)) 198)) (-4185 (($ |#3|) 155) (((-3 $ "failed") (-400 |#3|)) 152 (|has| (-400 |#2|) (-356)))) (-3804 (((-3 $ "failed") $) 32)) (-1750 (((-618 (-618 |#1|))) 179 (|has| |#1| (-361)))) (-1775 (((-112) |#1| |#1|) 214)) (-3427 (((-890)) 52)) (-3315 (($) 88 (|has| (-400 |#2|) (-361)))) (-1770 (((-112)) 207)) (-1769 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-2882 (($ $ $) 105 (|has| (-400 |#2|) (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 100 (|has| (-400 |#2|) (-356)))) (-3840 (($ $) 185)) (-3154 (($) 146 (|has| (-400 |#2|) (-343)))) (-1791 (((-112) $) 147 (|has| (-400 |#2|) (-343)))) (-1881 (($ $ (-747)) 138 (|has| (-400 |#2|) (-343))) (($ $) 137 (|has| (-400 |#2|) (-343)))) (-4069 (((-112) $) 113 (|has| (-400 |#2|) (-356)))) (-4114 (((-890) $) 149 (|has| (-400 |#2|) (-343))) (((-808 (-890)) $) 135 (|has| (-400 |#2|) (-343)))) (-2493 (((-112) $) 30)) (-3719 (((-747)) 217)) (-1764 (((-1224 $) (-1224 $)) 199)) (-3450 (((-400 |#2|) $) 49)) (-1751 (((-618 (-917 |#1|)) (-1142)) 180 (|has| |#1| (-356)))) (-3786 (((-3 $ "failed") $) 139 (|has| (-400 |#2|) (-343)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 109 (|has| (-400 |#2|) (-356)))) (-2125 ((|#3| $) 42 (|has| (-400 |#2|) (-356)))) (-2121 (((-890) $) 87 (|has| (-400 |#2|) (-361)))) (-3401 ((|#3| $) 153)) (-2008 (($ (-618 $)) 98 (|has| (-400 |#2|) (-356))) (($ $ $) 97 (|has| (-400 |#2|) (-356)))) (-3576 (((-1124) $) 9)) (-1759 (((-665 (-400 |#2|))) 194)) (-1761 (((-665 (-400 |#2|))) 196)) (-2725 (($ $) 114 (|has| (-400 |#2|) (-356)))) (-1756 (($ (-1224 |#2|) |#2|) 190)) (-1760 (((-665 (-400 |#2|))) 195)) (-1762 (((-665 (-400 |#2|))) 197)) (-1755 (((-2 (|:| |num| (-665 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1757 (((-2 (|:| |num| (-1224 |#2|)) (|:| |den| |#2|)) $) 191)) (-1768 (((-1224 $)) 203)) (-4261 (((-1224 $)) 204)) (-1767 (((-112) $) 202)) (-1766 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3787 (($) 140 (|has| (-400 |#2|) (-343)) CONST)) (-2483 (($ (-890)) 86 (|has| (-400 |#2|) (-361)))) (-1753 (((-3 |#2| "failed")) 182)) (-3577 (((-1086) $) 10)) (-1777 (((-747)) 216)) (-2492 (($) 157)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 99 (|has| (-400 |#2|) (-356)))) (-3478 (($ (-618 $)) 96 (|has| (-400 |#2|) (-356))) (($ $ $) 95 (|has| (-400 |#2|) (-356)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 143 (|has| (-400 |#2|) (-343)))) (-4075 (((-398 $) $) 110 (|has| (-400 |#2|) (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 107 (|has| (-400 |#2|) (-356)))) (-3803 (((-3 $ "failed") $ $) 90 (|has| (-400 |#2|) (-356)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 101 (|has| (-400 |#2|) (-356)))) (-1699 (((-747) $) 103 (|has| (-400 |#2|) (-356)))) (-4142 ((|#1| $ |#1| |#1|) 184)) (-1754 (((-3 |#2| "failed")) 183)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 104 (|has| (-400 |#2|) (-356)))) (-4100 (((-400 |#2|) (-1224 $)) 45) (((-400 |#2|)) 58)) (-1882 (((-747) $) 148 (|has| (-400 |#2|) (-343))) (((-3 (-747) "failed") $ $) 136 (|has| (-400 |#2|) (-343)))) (-4153 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) 120 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 119 (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-618 (-1142)) (-618 (-747))) 127 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-1142) (-747)) 128 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-618 (-1142))) 129 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-1142)) 130 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-747)) 132 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3179 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) 134 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3179 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-2491 (((-665 (-400 |#2|)) (-1224 $) (-1 (-400 |#2|) (-400 |#2|))) 151 (|has| (-400 |#2|) (-356)))) (-3519 ((|#3|) 156)) (-1785 (($) 145 (|has| (-400 |#2|) (-343)))) (-3558 (((-1224 (-400 |#2|)) $ (-1224 $)) 48) (((-665 (-400 |#2|)) (-1224 $) (-1224 $)) 47) (((-1224 (-400 |#2|)) $) 64) (((-665 (-400 |#2|)) (-1224 $)) 63)) (-4313 (((-1224 (-400 |#2|)) $) 61) (($ (-1224 (-400 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 142 (|has| (-400 |#2|) (-343)))) (-1765 (((-1224 $) (-1224 $)) 200)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 |#2|)) 35) (($ (-400 (-535))) 84 (-3874 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1009 (-400 (-535)))))) (($ $) 89 (|has| (-400 |#2|) (-356)))) (-3023 (($ $) 141 (|has| (-400 |#2|) (-343))) (((-3 $ "failed") $) 41 (|has| (-400 |#2|) (-143)))) (-2689 ((|#3| $) 43)) (-3444 (((-747)) 28)) (-1774 (((-112)) 213)) (-1773 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-2123 (((-1224 $)) 65)) (-2170 (((-112) $ $) 93 (|has| (-400 |#2|) (-356)))) (-1752 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1776 (((-112)) 215)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) 122 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 121 (|has| (-400 |#2|) (-356))) (($ $ (-618 (-1142)) (-618 (-747))) 123 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-1142) (-747)) 124 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-618 (-1142))) 125 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-1142)) 126 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) (-3179 (|has| (-400 |#2|) (-871 (-1142))) (|has| (-400 |#2|) (-356))))) (($ $ (-747)) 131 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3179 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) 133 (-3874 (-3179 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3179 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 118 (|has| (-400 |#2|) (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 115 (|has| (-400 |#2|) (-356)))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 |#2|)) 37) (($ (-400 |#2|) $) 36) (($ (-400 (-535)) $) 117 (|has| (-400 |#2|) (-356))) (($ $ (-400 (-535))) 116 (|has| (-400 |#2|) (-356)))))
+(((-335 |#1| |#2| |#3|) (-138) (-1183) (-1200 |t#1|) (-1200 (-400 |t#2|))) (T -335))
+((-3719 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-747)))) (-1777 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-747)))) (-1776 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1775 (*1 *2 *3 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1774 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1773 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1773 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112)))) (-1772 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1771 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1771 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112)))) (-1770 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1769 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1769 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112)))) (-4261 (*1 *2) (-12 (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)))) (-1768 (*1 *2) (-12 (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))))) (-1764 (*1 *2 *2) (-12 (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))))) (-1763 (*1 *2 *2) (-12 (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))))) (-1762 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-1761 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-1760 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-1759 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1224 *4)) (|:| |den| *4))))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1200 *4)) (-4 *4 (-1183)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1200 (-400 *3))))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1224 *4)) (|:| |den| *4))))) (-1756 (*1 *1 *2 *3) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1200 *4)) (-4 *4 (-1183)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1200 (-400 *3))))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-2 (|:| |num| (-665 *5)) (|:| |den| *5))))) (-1766 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))) (-1766 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-1200 *2)) (-4 *4 (-1200 (-400 *3))))) (-4142 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-1200 *2)) (-4 *4 (-1200 (-400 *3))))) (-1754 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1183)) (-4 *4 (-1200 (-400 *2))) (-4 *2 (-1200 *3)))) (-1753 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1183)) (-4 *4 (-1200 (-400 *2))) (-4 *2 (-1200 *3)))) (-1752 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-1183)) (-4 *6 (-1200 (-400 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-335 *4 *5 *6)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-4 *4 (-356)) (-5 *2 (-618 (-917 *4))))) (-1750 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-618 (-618 *3))))))
+(-13 (-701 (-400 |t#2|) |t#3|) (-10 -8 (-15 -3719 ((-747))) (-15 -1777 ((-747))) (-15 -1776 ((-112))) (-15 -1775 ((-112) |t#1| |t#1|)) (-15 -1774 ((-112))) (-15 -1773 ((-112) |t#1|)) (-15 -1773 ((-112) |t#2|)) (-15 -1772 ((-112))) (-15 -1771 ((-112) |t#1|)) (-15 -1771 ((-112) |t#2|)) (-15 -1770 ((-112))) (-15 -1769 ((-112) |t#1|)) (-15 -1769 ((-112) |t#2|)) (-15 -4261 ((-1224 $))) (-15 -1768 ((-1224 $))) (-15 -1767 ((-112) $)) (-15 -1766 ((-112) $)) (-15 -1765 ((-1224 $) (-1224 $))) (-15 -1764 ((-1224 $) (-1224 $))) (-15 -1763 ((-1224 $) (-1224 $))) (-15 -1762 ((-665 (-400 |t#2|)))) (-15 -1761 ((-665 (-400 |t#2|)))) (-15 -1760 ((-665 (-400 |t#2|)))) (-15 -1759 ((-665 (-400 |t#2|)))) (-15 -1758 ((-2 (|:| |num| (-1224 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1906 ($ (-1224 |t#2|) |t#2|)) (-15 -1757 ((-2 (|:| |num| (-1224 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1756 ($ (-1224 |t#2|) |t#2|)) (-15 -1755 ((-2 (|:| |num| (-665 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1766 ((-112) $ |t#1|)) (-15 -1766 ((-112) $ |t#2|)) (-15 -4153 ($ $ (-1 |t#2| |t#2|))) (-15 -3840 ($ $)) (-15 -4142 (|t#1| $ |t#1| |t#1|)) (-15 -1754 ((-3 |t#2| "failed"))) (-15 -1753 ((-3 |t#2| "failed"))) (-15 -1752 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-356)) (-15 -1751 ((-618 (-917 |t#1|)) (-1142))) |%noBranch|) (IF (|has| |t#1| (-361)) (-15 -1750 ((-618 (-618 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-38 #2=(-400 |#2|)) . T) ((-38 $) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-101) . T) ((-111 #1# #1#) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-143))) ((-145) |has| (-400 |#2|) (-145)) ((-593 (-835)) . T) ((-170) . T) ((-594 |#3|) . T) ((-225 #2#) |has| (-400 |#2|) (-356)) ((-227) -3874 (|has| (-400 |#2|) (-343)) (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356)))) ((-237) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-283) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-300) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-356) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-395) |has| (-400 |#2|) (-343)) ((-361) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-361))) ((-343) |has| (-400 |#2|) (-343)) ((-363 #2# |#3|) . T) ((-403 #2# |#3|) . T) ((-370 #2#) . T) ((-405 #2#) . T) ((-444) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-542) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-624 #1#) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-624 #2#) . T) ((-624 $) . T) ((-617 #2#) . T) ((-617 (-535)) |has| (-400 |#2|) (-617 (-535))) ((-694 #1#) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-694 #2#) . T) ((-694 $) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-701 #2# |#3|) . T) ((-703) . T) ((-871 (-1142)) -12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142)))) ((-892) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-1009 (-400 (-535))) |has| (-400 |#2|) (-1009 (-400 (-535)))) ((-1009 #2#) . T) ((-1009 (-535)) |has| (-400 |#2|) (-1009 (-535))) ((-1024 #1#) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-1024 #2#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) |has| (-400 |#2|) (-343)) ((-1183) -3874 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))))
+((-4301 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-336 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4301 (|#8| (-1 |#5| |#1|) |#4|))) (-1183) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-1183) (-1200 |#5|) (-1200 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -336))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1183)) (-4 *8 (-1183)) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *9 (-1200 *8)) (-4 *2 (-335 *8 *9 *10)) (-5 *1 (-336 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-335 *5 *6 *7)) (-4 *10 (-1200 (-400 *9))))))
+(-10 -7 (-15 -4301 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 (((-877 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-877 |#1|) (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| (-877 |#1|) (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-877 |#1|) "failed") $) NIL)) (-3490 (((-877 |#1|) $) NIL)) (-1906 (($ (-1224 (-877 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-877 |#1|) (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-877 |#1|) (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| (-877 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-877 |#1|) (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361)))) (($ $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| (-877 |#1|) (-361))) (((-808 (-890)) $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-877 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-877 |#1|) (-361)))) (-3450 (((-877 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| (-877 |#1|) (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 (-877 |#1|)) $) NIL) (((-1136 $) $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-2121 (((-890) $) NIL (|has| (-877 |#1|) (-361)))) (-1719 (((-1136 (-877 |#1|)) $) NIL (|has| (-877 |#1|) (-361)))) (-1718 (((-1136 (-877 |#1|)) $) NIL (|has| (-877 |#1|) (-361))) (((-3 (-1136 (-877 |#1|)) "failed") $ $) NIL (|has| (-877 |#1|) (-361)))) (-1720 (($ $ (-1136 (-877 |#1|))) NIL (|has| (-877 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-877 |#1|) (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-1778 (((-929 (-1086))) NIL)) (-2492 (($) NIL (|has| (-877 |#1|) (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-877 |#1|) (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| (-877 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 (-877 |#1|))) NIL)) (-1785 (($) NIL (|has| (-877 |#1|) (-361)))) (-1721 (($) NIL (|has| (-877 |#1|) (-361)))) (-3558 (((-1224 (-877 |#1|)) $) NIL) (((-665 (-877 |#1|)) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| (-877 |#1|) (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-877 |#1|)) NIL)) (-3023 (($ $) NIL (|has| (-877 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-2990 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ (-877 |#1|)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ (-877 |#1|)) NIL) (($ (-877 |#1|) $) NIL)))
+(((-337 |#1| |#2|) (-13 (-322 (-877 |#1|)) (-10 -7 (-15 -1778 ((-929 (-1086)))))) (-890) (-890)) (T -337))
+((-1778 (*1 *2) (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-337 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))))
+(-13 (-322 (-877 |#1|)) (-10 -7 (-15 -1778 ((-929 (-1086))))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 44)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) 41 (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) 115)) (-3490 ((|#1| $) 86)) (-1906 (($ (-1224 |#1|)) 104)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) 98 (|has| |#1| (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) 129 (|has| |#1| (-361)))) (-1791 (((-112) $) 48 (|has| |#1| (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) 45 (|has| |#1| (-361))) (((-808 (-890)) $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) 131 (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3450 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 |#1|) $) 90) (((-1136 $) $ (-890)) NIL (|has| |#1| (-361)))) (-2121 (((-890) $) 139 (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 146)) (-3787 (($) NIL (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) 71 (|has| |#1| (-361)))) (-4274 (((-112) $) 118)) (-3577 (((-1086) $) NIL)) (-1778 (((-929 (-1086))) 42)) (-2492 (($) 127 (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 93 (|has| |#1| (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) 67) (((-890)) 68)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) 130 (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) 125 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 |#1|)) 96)) (-1785 (($) 128 (|has| |#1| (-361)))) (-1721 (($) 136 (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) 59) (((-665 |#1|) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) 142) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) 75)) (-3023 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) 138)) (-2123 (((-1224 $)) 117) (((-1224 $) (-890)) 73)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) 49 T CONST)) (-2985 (($) 46 T CONST)) (-4271 (($ $) 81 (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2990 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3375 (((-112) $ $) 47)) (-4291 (($ $ $) 144) (($ $ |#1|) 145)) (-4180 (($ $) 126) (($ $ $) NIL)) (-4182 (($ $ $) 61)) (** (($ $ (-890)) 148) (($ $ (-747)) 149) (($ $ (-535)) 147)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 77) (($ $ $) 76) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
+(((-338 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-929 (-1086)))))) (-343) (-1136 |#1|)) (T -338))
+((-1778 (*1 *2) (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) (-14 *4 (-1136 *3)))))
+(-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-929 (-1086))))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-1906 (($ (-1224 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| |#1| (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| |#1| (-361))) (((-808 (-890)) $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3450 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 |#1|) $) NIL) (((-1136 $) $ (-890)) NIL (|has| |#1| (-361)))) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-1778 (((-929 (-1086))) NIL)) (-2492 (($) NIL (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| |#1| (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 |#1|)) NIL)) (-1785 (($) NIL (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) NIL) (((-665 |#1|) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) NIL)) (-3023 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2990 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-339 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-929 (-1086)))))) (-343) (-890)) (T -339))
+((-1778 (*1 *2) (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890)))))
+(-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-929 (-1086))))))
+((-1788 (((-747) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) 42)) (-1779 (((-929 (-1086)) (-1136 |#1|)) 85)) (-1780 (((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) (-1136 |#1|)) 78)) (-1781 (((-665 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) 86)) (-1782 (((-3 (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) "failed") (-890)) 13)) (-1783 (((-3 (-1136 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) (-890)) 18)))
+(((-340 |#1|) (-10 -7 (-15 -1779 ((-929 (-1086)) (-1136 |#1|))) (-15 -1780 ((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) (-1136 |#1|))) (-15 -1781 ((-665 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1788 ((-747) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1782 ((-3 (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) "failed") (-890))) (-15 -1783 ((-3 (-1136 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) (-890)))) (-343)) (T -340))
+((-1783 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-3 (-1136 *4) (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086))))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-1782 (*1 *2 *3) (|partial| -12 (-5 *3 (-890)) (-5 *2 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) (-4 *4 (-343)) (-5 *2 (-747)) (-5 *1 (-340 *4)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) (-4 *4 (-343)) (-5 *2 (-665 *4)) (-5 *1 (-340 *4)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) (-5 *1 (-340 *4)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-929 (-1086))) (-5 *1 (-340 *4)))))
+(-10 -7 (-15 -1779 ((-929 (-1086)) (-1136 |#1|))) (-15 -1780 ((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) (-1136 |#1|))) (-15 -1781 ((-665 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1788 ((-747) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1782 ((-3 (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) "failed") (-890))) (-15 -1783 ((-3 (-1136 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) (-890))))
+((-4300 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
+(((-341 |#1| |#2| |#3|) (-10 -7 (-15 -4300 (|#3| |#1|)) (-15 -4300 (|#1| |#3|))) (-322 |#2|) (-343) (-322 |#2|)) (T -341))
+((-4300 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *2 *4 *3)) (-4 *3 (-322 *4)))) (-4300 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *3 *4 *2)) (-4 *3 (-322 *4)))))
+(-10 -7 (-15 -4300 (|#3| |#1|)) (-15 -4300 (|#1| |#3|)))
+((-1791 (((-112) $) 51)) (-4114 (((-808 (-890)) $) 21) (((-890) $) 52)) (-3786 (((-3 $ "failed") $) 16)) (-3787 (($) 9)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 93)) (-1882 (((-3 (-747) "failed") $ $) 71) (((-747) $) 60)) (-4153 (($ $ (-747)) NIL) (($ $) 8)) (-1785 (($) 44)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 34)) (-3023 (((-3 $ "failed") $) 38) (($ $) 37)))
+(((-342 |#1|) (-10 -8 (-15 -4114 ((-890) |#1|)) (-15 -1882 ((-747) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -1785 (|#1|)) (-15 -3024 ((-3 (-1224 |#1|) "failed") (-665 |#1|))) (-15 -3023 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -1882 ((-3 (-747) "failed") |#1| |#1|)) (-15 -4114 ((-808 (-890)) |#1|)) (-15 -3023 ((-3 |#1| "failed") |#1|)) (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|)))) (-343)) (T -342))
+NIL
+(-10 -8 (-15 -4114 ((-890) |#1|)) (-15 -1882 ((-747) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -1785 (|#1|)) (-15 -3024 ((-3 (-1224 |#1|) "failed") (-665 |#1|))) (-15 -3023 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -1882 ((-3 (-747) "failed") |#1| |#1|)) (-15 -4114 ((-808 (-890)) |#1|)) (-15 -3023 ((-3 |#1| "failed") |#1|)) (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1786 (((-1151 (-890) (-747)) (-535)) 90)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3454 (((-747)) 100)) (-3879 (($) 17 T CONST)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-3315 (($) 103)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-3154 (($) 88)) (-1791 (((-112) $) 87)) (-1881 (($ $) 76) (($ $ (-747)) 75)) (-4069 (((-112) $) 68)) (-4114 (((-808 (-890)) $) 78) (((-890) $) 85)) (-2493 (((-112) $) 30)) (-3786 (((-3 $ "failed") $) 99)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2121 (((-890) $) 102)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3787 (($) 98 T CONST)) (-2483 (($ (-890)) 101)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 91)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-1882 (((-3 (-747) "failed") $ $) 77) (((-747) $) 86)) (-4153 (($ $ (-747)) 96) (($ $) 94)) (-1785 (($) 89)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 92)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63)) (-3023 (((-3 $ "failed") $) 79) (($ $) 93)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-747)) 97) (($ $) 95)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 62)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64)))
+(((-343) (-138)) (T -343))
+((-3023 (*1 *1 *1) (-4 *1 (-343))) (-3024 (*1 *2 *3) (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-343)) (-5 *2 (-1224 *1)))) (-1787 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))))) (-1786 (*1 *2 *3) (-12 (-4 *1 (-343)) (-5 *3 (-535)) (-5 *2 (-1151 (-890) (-747))))) (-1785 (*1 *1) (-4 *1 (-343))) (-3154 (*1 *1) (-4 *1 (-343))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-112)))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-747)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-890)))) (-1784 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-395) (-361) (-1117) (-227) (-10 -8 (-15 -3023 ($ $)) (-15 -3024 ((-3 (-1224 $) "failed") (-665 $))) (-15 -1787 ((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535)))))) (-15 -1786 ((-1151 (-890) (-747)) (-535))) (-15 -1785 ($)) (-15 -3154 ($)) (-15 -1791 ((-112) $)) (-15 -1882 ((-747) $)) (-15 -4114 ((-890) $)) (-15 -1784 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-593 (-835)) . T) ((-170) . T) ((-227) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) . T) ((-361) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) . T) ((-1183) . T))
+((-4262 (((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) |#1|) 53)) (-4261 (((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))) 51)))
+(((-344 |#1| |#2| |#3|) (-10 -7 (-15 -4261 ((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))))) (-15 -4262 ((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) |#1|))) (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $)))) (-1200 |#1|) (-403 |#1| |#2|)) (T -344))
+((-4262 (*1 *2 *3) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *2 (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-4261 (*1 *2) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *2 (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))))
+(-10 -7 (-15 -4261 ((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))))) (-15 -4262 ((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) |#1|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 (((-877 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-877 |#1|) (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1788 (((-747)) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| (-877 |#1|) (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-877 |#1|) "failed") $) NIL)) (-3490 (((-877 |#1|) $) NIL)) (-1906 (($ (-1224 (-877 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-877 |#1|) (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-877 |#1|) (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| (-877 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-877 |#1|) (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361)))) (($ $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| (-877 |#1|) (-361))) (((-808 (-890)) $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-877 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-877 |#1|) (-361)))) (-3450 (((-877 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| (-877 |#1|) (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 (-877 |#1|)) $) NIL) (((-1136 $) $ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-2121 (((-890) $) NIL (|has| (-877 |#1|) (-361)))) (-1719 (((-1136 (-877 |#1|)) $) NIL (|has| (-877 |#1|) (-361)))) (-1718 (((-1136 (-877 |#1|)) $) NIL (|has| (-877 |#1|) (-361))) (((-3 (-1136 (-877 |#1|)) "failed") $ $) NIL (|has| (-877 |#1|) (-361)))) (-1720 (($ $ (-1136 (-877 |#1|))) NIL (|has| (-877 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-877 |#1|) (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| (-877 |#1|) (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-1790 (((-1224 (-618 (-2 (|:| -3744 (-877 |#1|)) (|:| -2483 (-1086)))))) NIL)) (-1789 (((-665 (-877 |#1|))) NIL)) (-2492 (($) NIL (|has| (-877 |#1|) (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-877 |#1|) (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| (-877 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 (-877 |#1|))) NIL)) (-1785 (($) NIL (|has| (-877 |#1|) (-361)))) (-1721 (($) NIL (|has| (-877 |#1|) (-361)))) (-3558 (((-1224 (-877 |#1|)) $) NIL) (((-665 (-877 |#1|)) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| (-877 |#1|) (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-877 |#1|)) NIL)) (-3023 (($ $) NIL (|has| (-877 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| (-877 |#1|) (-143)) (|has| (-877 |#1|) (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-2990 (($ $) NIL (|has| (-877 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-877 |#1|) (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ (-877 |#1|)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ (-877 |#1|)) NIL) (($ (-877 |#1|) $) NIL)))
+(((-345 |#1| |#2|) (-13 (-322 (-877 |#1|)) (-10 -7 (-15 -1790 ((-1224 (-618 (-2 (|:| -3744 (-877 |#1|)) (|:| -2483 (-1086))))))) (-15 -1789 ((-665 (-877 |#1|)))) (-15 -1788 ((-747))))) (-890) (-890)) (T -345))
+((-1790 (*1 *2) (-12 (-5 *2 (-1224 (-618 (-2 (|:| -3744 (-877 *3)) (|:| -2483 (-1086)))))) (-5 *1 (-345 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-1789 (*1 *2) (-12 (-5 *2 (-665 (-877 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-1788 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-345 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))))
+(-13 (-322 (-877 |#1|)) (-10 -7 (-15 -1790 ((-1224 (-618 (-2 (|:| -3744 (-877 |#1|)) (|:| -2483 (-1086))))))) (-15 -1789 ((-665 (-877 |#1|)))) (-15 -1788 ((-747)))))
+((-2887 (((-112) $ $) 61)) (-3522 (((-112) $) 74)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 ((|#1| $) 92) (($ $ (-890)) 90 (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) 148 (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1788 (((-747)) 89)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) 162 (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) 112)) (-3490 ((|#1| $) 91)) (-1906 (($ (-1224 |#1|)) 58)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) 158 (|has| |#1| (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) 149 (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| |#1| (-361))) (((-808 (-890)) $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) 98 (|has| |#1| (-361)))) (-2122 (((-112) $) 175 (|has| |#1| (-361)))) (-3450 ((|#1| $) 94) (($ $ (-890)) 93 (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 |#1|) $) 189) (((-1136 $) $ (-890)) NIL (|has| |#1| (-361)))) (-2121 (((-890) $) 134 (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) 73 (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) 70 (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) 82 (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) 69 (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 192)) (-3787 (($) NIL (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) 137 (|has| |#1| (-361)))) (-4274 (((-112) $) 108)) (-3577 (((-1086) $) NIL)) (-1790 (((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) 83)) (-1789 (((-665 |#1|)) 87)) (-2492 (($) 96 (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 150 (|has| |#1| (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) 151)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) 62)) (-3519 (((-1136 |#1|)) 152)) (-1785 (($) 133 (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) 106) (((-665 |#1|) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) 124) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) 57)) (-3023 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) 156)) (-2123 (((-1224 $)) 172) (((-1224 $) (-890)) 101)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) 117 T CONST)) (-2985 (($) 33 T CONST)) (-4271 (($ $) 107 (|has| |#1| (-361))) (($ $ (-747)) 99 (|has| |#1| (-361)))) (-2990 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3375 (((-112) $ $) 183)) (-4291 (($ $ $) 104) (($ $ |#1|) 105)) (-4180 (($ $) 177) (($ $ $) 181)) (-4182 (($ $ $) 179)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 138)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 186) (($ $ $) 142) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
+(((-346 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1789 ((-665 |#1|))) (-15 -1788 ((-747))))) (-343) (-3 (-1136 |#1|) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (T -346))
+((-1790 (*1 *2) (-12 (-5 *2 (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086)))))) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1136 *3) *2)))) (-1789 (*1 *2) (-12 (-5 *2 (-665 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1136 *3) (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086))))))))) (-1788 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1136 *3) (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086))))))))))
+(-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1789 ((-665 |#1|))) (-15 -1788 ((-747)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1788 (((-747)) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-1906 (($ (-1224 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| |#1| (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| |#1| (-361))) (((-808 (-890)) $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3450 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 |#1|) $) NIL) (((-1136 $) $ (-890)) NIL (|has| |#1| (-361)))) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-1790 (((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086)))))) NIL)) (-1789 (((-665 |#1|)) NIL)) (-2492 (($) NIL (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| |#1| (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 |#1|)) NIL)) (-1785 (($) NIL (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) NIL) (((-665 |#1|) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) NIL)) (-3023 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2990 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-347 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1789 ((-665 |#1|))) (-15 -1788 ((-747))))) (-343) (-890)) (T -347))
+((-1790 (*1 *2) (-12 (-5 *2 (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890)))) (-1789 (*1 *2) (-12 (-5 *2 (-665 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890)))) (-1788 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890)))))
+(-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))))) (-15 -1789 ((-665 |#1|))) (-15 -1788 ((-747)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) 120 (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) 140 (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) 93)) (-3490 ((|#1| $) 90)) (-1906 (($ (-1224 |#1|)) 85)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) 82 (|has| |#1| (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) 42 (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| |#1| (-361))) (((-808 (-890)) $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) 121 (|has| |#1| (-361)))) (-2122 (((-112) $) 74 (|has| |#1| (-361)))) (-3450 ((|#1| $) 39) (($ $ (-890)) 43 (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 |#1|) $) 65) (((-1136 $) $ (-890)) NIL (|has| |#1| (-361)))) (-2121 (((-890) $) 97 (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) 95 (|has| |#1| (-361)))) (-4274 (((-112) $) 142)) (-3577 (((-1086) $) NIL)) (-2492 (($) 36 (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 115 (|has| |#1| (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) 139)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) 59)) (-3519 (((-1136 |#1|)) 88)) (-1785 (($) 126 (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) 53) (((-665 |#1|) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) 138) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) 87)) (-3023 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) 144)) (-2123 (((-1224 $)) 109) (((-1224 $) (-890)) 49)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) 111 T CONST)) (-2985 (($) 32 T CONST)) (-4271 (($ $) 68 (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2990 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3375 (((-112) $ $) 107)) (-4291 (($ $ $) 99) (($ $ |#1|) 100)) (-4180 (($ $) 80) (($ $ $) 105)) (-4182 (($ $ $) 103)) (** (($ $ (-890)) NIL) (($ $ (-747)) 44) (($ $ (-535)) 130)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 78) (($ $ $) 56) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
+(((-348 |#1| |#2|) (-322 |#1|) (-343) (-1136 |#1|)) (T -348))
NIL
(-322 |#1|)
-((-3794 ((|#1| (-1138 |#2|)) 52)))
-(((-349 |#1| |#2|) (-10 -7 (-15 -3794 (|#1| (-1138 |#2|)))) (-13 (-395) (-10 -7 (-15 -3845 (|#1| |#2|)) (-15 -2723 ((-892) |#1|)) (-15 -3420 ((-1225 |#1|) (-892))) (-15 -2731 (|#1| |#1|)))) (-342)) (T -349))
-((-3794 (*1 *2 *3) (-12 (-5 *3 (-1138 *4)) (-4 *4 (-342)) (-4 *2 (-13 (-395) (-10 -7 (-15 -3845 (*2 *4)) (-15 -2723 ((-892) *2)) (-15 -3420 ((-1225 *2) (-892))) (-15 -2731 (*2 *2))))) (-5 *1 (-349 *2 *4)))))
-(-10 -7 (-15 -3794 (|#1| (-1138 |#2|))))
-((-3972 (((-929 (-1138 |#1|)) (-1138 |#1|)) 36)) (-3238 (((-1138 |#1|) (-892) (-892)) 113) (((-1138 |#1|) (-892)) 112)) (-1729 (((-112) (-1138 |#1|)) 84)) (-3443 (((-892) (-892)) 71)) (-2079 (((-892) (-892)) 74)) (-1334 (((-892) (-892)) 69)) (-2815 (((-112) (-1138 |#1|)) 88)) (-2156 (((-3 (-1138 |#1|) "failed") (-1138 |#1|)) 101)) (-3219 (((-3 (-1138 |#1|) "failed") (-1138 |#1|)) 104)) (-1396 (((-3 (-1138 |#1|) "failed") (-1138 |#1|)) 103)) (-2142 (((-3 (-1138 |#1|) "failed") (-1138 |#1|)) 102)) (-2956 (((-3 (-1138 |#1|) "failed") (-1138 |#1|)) 98)) (-1851 (((-1138 |#1|) (-1138 |#1|)) 62)) (-2278 (((-1138 |#1|) (-892)) 107)) (-4004 (((-1138 |#1|) (-892)) 110)) (-2529 (((-1138 |#1|) (-892)) 109)) (-3403 (((-1138 |#1|) (-892)) 108)) (-4144 (((-1138 |#1|) (-892)) 105)))
-(((-350 |#1|) (-10 -7 (-15 -1729 ((-112) (-1138 |#1|))) (-15 -2815 ((-112) (-1138 |#1|))) (-15 -1334 ((-892) (-892))) (-15 -3443 ((-892) (-892))) (-15 -2079 ((-892) (-892))) (-15 -4144 ((-1138 |#1|) (-892))) (-15 -2278 ((-1138 |#1|) (-892))) (-15 -3403 ((-1138 |#1|) (-892))) (-15 -2529 ((-1138 |#1|) (-892))) (-15 -4004 ((-1138 |#1|) (-892))) (-15 -2956 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -2156 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -2142 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -1396 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -3219 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -3238 ((-1138 |#1|) (-892))) (-15 -3238 ((-1138 |#1|) (-892) (-892))) (-15 -1851 ((-1138 |#1|) (-1138 |#1|))) (-15 -3972 ((-929 (-1138 |#1|)) (-1138 |#1|)))) (-342)) (T -350))
-((-3972 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-929 (-1138 *4))) (-5 *1 (-350 *4)) (-5 *3 (-1138 *4)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-3238 (*1 *2 *3 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-3219 (*1 *2 *2) (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-1396 (*1 *2 *2) (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-2142 (*1 *2 *2) (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-2156 (*1 *2 *2) (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-2956 (*1 *2 *2) (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-350 *3)) (-4 *3 (-342)))) (-3443 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-350 *3)) (-4 *3 (-342)))) (-1334 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-350 *3)) (-4 *3 (-342)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-1138 *4)) (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-350 *4)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-1138 *4)) (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-350 *4)))))
-(-10 -7 (-15 -1729 ((-112) (-1138 |#1|))) (-15 -2815 ((-112) (-1138 |#1|))) (-15 -1334 ((-892) (-892))) (-15 -3443 ((-892) (-892))) (-15 -2079 ((-892) (-892))) (-15 -4144 ((-1138 |#1|) (-892))) (-15 -2278 ((-1138 |#1|) (-892))) (-15 -3403 ((-1138 |#1|) (-892))) (-15 -2529 ((-1138 |#1|) (-892))) (-15 -4004 ((-1138 |#1|) (-892))) (-15 -2956 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -2156 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -2142 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -1396 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -3219 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -3238 ((-1138 |#1|) (-892))) (-15 -3238 ((-1138 |#1|) (-892) (-892))) (-15 -1851 ((-1138 |#1|) (-1138 |#1|))) (-15 -3972 ((-929 (-1138 |#1|)) (-1138 |#1|))))
-((-1512 (((-3 (-621 |#3|) "failed") (-621 |#3|) |#3|) 34)))
-(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -1512 ((-3 (-621 |#3|) "failed") (-621 |#3|) |#3|))) (-342) (-1201 |#1|) (-1201 |#2|)) (T -351))
-((-1512 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 *3)) (-4 *3 (-1201 *5)) (-4 *5 (-1201 *4)) (-4 *4 (-342)) (-5 *1 (-351 *4 *5 *3)))))
-(-10 -7 (-15 -1512 ((-3 (-621 |#3|) "failed") (-621 |#3|) |#3|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2642 (((-112) $) NIL)) (-1703 (((-747)) NIL)) (-2905 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-2572 (((-1152 (-892) (-747)) (-549)) NIL (|has| |#1| (-361)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3615 (((-747)) NIL (|has| |#1| (-361)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL)) (-2658 ((|#1| $) NIL)) (-2127 (($ (-1225 |#1|)) NIL)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| |#1| (-361)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-1327 (($) NIL (|has| |#1| (-361)))) (-1729 (((-112) $) NIL (|has| |#1| (-361)))) (-3225 (($ $ (-747)) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2471 (((-112) $) NIL)) (-2078 (((-892) $) NIL (|has| |#1| (-361))) (((-809 (-892)) $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3987 (((-112) $) NIL)) (-2308 (($) NIL (|has| |#1| (-361)))) (-2815 (((-112) $) NIL (|has| |#1| (-361)))) (-4117 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-3982 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4030 (((-1138 |#1|) $) NIL) (((-1138 $) $ (-892)) NIL (|has| |#1| (-361)))) (-2723 (((-892) $) NIL (|has| |#1| (-361)))) (-4228 (((-1138 |#1|) $) NIL (|has| |#1| (-361)))) (-3609 (((-1138 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1138 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-3289 (($ $ (-1138 |#1|)) NIL (|has| |#1| (-361)))) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| |#1| (-361)) CONST)) (-3491 (($ (-892)) NIL (|has| |#1| (-361)))) (-2360 (((-112) $) NIL)) (-3988 (((-1086) $) NIL)) (-4246 (($) NIL (|has| |#1| (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL (|has| |#1| (-361)))) (-2120 (((-411 $) $) NIL)) (-3656 (((-809 (-892))) NIL) (((-892)) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2591 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3128 (((-133)) NIL)) (-3455 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3068 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2539 (((-1138 |#1|)) NIL)) (-3191 (($) NIL (|has| |#1| (-361)))) (-3250 (($) NIL (|has| |#1| (-361)))) (-4163 (((-1225 |#1|) $) NIL) (((-665 |#1|) (-1225 $)) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) NIL)) (-3407 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1723 (((-747)) NIL)) (-3420 (((-1225 $)) NIL) (((-1225 $) (-892)) NIL)) (-4053 (((-112) $ $) NIL)) (-2923 (((-112) $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-1700 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-352 |#1| |#2|) (-322 |#1|) (-342) (-892)) (T -352))
+((-1806 (((-929 (-1136 |#1|)) (-1136 |#1|)) 36)) (-3315 (((-1136 |#1|) (-890) (-890)) 113) (((-1136 |#1|) (-890)) 112)) (-1791 (((-112) (-1136 |#1|)) 84)) (-1793 (((-890) (-890)) 71)) (-1794 (((-890) (-890)) 74)) (-1792 (((-890) (-890)) 69)) (-2122 (((-112) (-1136 |#1|)) 88)) (-1801 (((-3 (-1136 |#1|) "failed") (-1136 |#1|)) 101)) (-1804 (((-3 (-1136 |#1|) "failed") (-1136 |#1|)) 104)) (-1803 (((-3 (-1136 |#1|) "failed") (-1136 |#1|)) 103)) (-1802 (((-3 (-1136 |#1|) "failed") (-1136 |#1|)) 102)) (-1800 (((-3 (-1136 |#1|) "failed") (-1136 |#1|)) 98)) (-1805 (((-1136 |#1|) (-1136 |#1|)) 62)) (-1796 (((-1136 |#1|) (-890)) 107)) (-1799 (((-1136 |#1|) (-890)) 110)) (-1798 (((-1136 |#1|) (-890)) 109)) (-1797 (((-1136 |#1|) (-890)) 108)) (-1795 (((-1136 |#1|) (-890)) 105)))
+(((-349 |#1|) (-10 -7 (-15 -1791 ((-112) (-1136 |#1|))) (-15 -2122 ((-112) (-1136 |#1|))) (-15 -1792 ((-890) (-890))) (-15 -1793 ((-890) (-890))) (-15 -1794 ((-890) (-890))) (-15 -1795 ((-1136 |#1|) (-890))) (-15 -1796 ((-1136 |#1|) (-890))) (-15 -1797 ((-1136 |#1|) (-890))) (-15 -1798 ((-1136 |#1|) (-890))) (-15 -1799 ((-1136 |#1|) (-890))) (-15 -1800 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1801 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1802 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1803 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1804 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -3315 ((-1136 |#1|) (-890))) (-15 -3315 ((-1136 |#1|) (-890) (-890))) (-15 -1805 ((-1136 |#1|) (-1136 |#1|))) (-15 -1806 ((-929 (-1136 |#1|)) (-1136 |#1|)))) (-343)) (T -349))
+((-1806 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-929 (-1136 *4))) (-5 *1 (-349 *4)) (-5 *3 (-1136 *4)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-3315 (*1 *2 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1804 (*1 *2 *2) (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1803 (*1 *2 *2) (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1802 (*1 *2 *2) (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1801 (*1 *2 *2) (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1800 (*1 *2 *2) (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-343)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-343)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-343)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4)))))
+(-10 -7 (-15 -1791 ((-112) (-1136 |#1|))) (-15 -2122 ((-112) (-1136 |#1|))) (-15 -1792 ((-890) (-890))) (-15 -1793 ((-890) (-890))) (-15 -1794 ((-890) (-890))) (-15 -1795 ((-1136 |#1|) (-890))) (-15 -1796 ((-1136 |#1|) (-890))) (-15 -1797 ((-1136 |#1|) (-890))) (-15 -1798 ((-1136 |#1|) (-890))) (-15 -1799 ((-1136 |#1|) (-890))) (-15 -1800 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1801 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1802 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1803 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -1804 ((-3 (-1136 |#1|) "failed") (-1136 |#1|))) (-15 -3315 ((-1136 |#1|) (-890))) (-15 -3315 ((-1136 |#1|) (-890) (-890))) (-15 -1805 ((-1136 |#1|) (-1136 |#1|))) (-15 -1806 ((-929 (-1136 |#1|)) (-1136 |#1|))))
+((-1807 ((|#1| (-1136 |#2|)) 52)))
+(((-350 |#1| |#2|) (-10 -7 (-15 -1807 (|#1| (-1136 |#2|)))) (-13 (-395) (-10 -7 (-15 -4300 (|#1| |#2|)) (-15 -2121 ((-890) |#1|)) (-15 -2123 ((-1224 |#1|) (-890))) (-15 -4271 (|#1| |#1|)))) (-343)) (T -350))
+((-1807 (*1 *2 *3) (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-4 *2 (-13 (-395) (-10 -7 (-15 -4300 (*2 *4)) (-15 -2121 ((-890) *2)) (-15 -2123 ((-1224 *2) (-890))) (-15 -4271 (*2 *2))))) (-5 *1 (-350 *2 *4)))))
+(-10 -7 (-15 -1807 (|#1| (-1136 |#2|))))
+((-3025 (((-3 (-618 |#3|) "failed") (-618 |#3|) |#3|) 34)))
+(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -3025 ((-3 (-618 |#3|) "failed") (-618 |#3|) |#3|))) (-343) (-1200 |#1|) (-1200 |#2|)) (T -351))
+((-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-343)) (-5 *1 (-351 *4 *5 *3)))))
+(-10 -7 (-15 -3025 ((-3 (-618 |#3|) "failed") (-618 |#3|) |#3|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| |#1| (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-1906 (($ (-1224 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| |#1| (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| |#1| (-361))) (((-808 (-890)) $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3450 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 |#1|) $) NIL) (((-1136 $) $ (-890)) NIL (|has| |#1| (-361)))) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-1719 (((-1136 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1136 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1136 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1136 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| |#1| (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-2492 (($) NIL (|has| |#1| (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| |#1| (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 |#1|)) NIL)) (-1785 (($) NIL (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3558 (((-1224 |#1|) $) NIL) (((-665 |#1|) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) NIL)) (-3023 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2990 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-352 |#1| |#2|) (-322 |#1|) (-343) (-890)) (T -352))
NIL
(-322 |#1|)
-((-3826 (((-112) (-621 (-923 |#1|))) 34)) (-3164 (((-621 (-923 |#1|)) (-621 (-923 |#1|))) 46)) (-2345 (((-3 (-621 (-923 |#1|)) "failed") (-621 (-923 |#1|))) 41)))
-(((-353 |#1| |#2|) (-10 -7 (-15 -3826 ((-112) (-621 (-923 |#1|)))) (-15 -2345 ((-3 (-621 (-923 |#1|)) "failed") (-621 (-923 |#1|)))) (-15 -3164 ((-621 (-923 |#1|)) (-621 (-923 |#1|))))) (-444) (-621 (-1142))) (T -353))
-((-3164 (*1 *2 *2) (-12 (-5 *2 (-621 (-923 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-621 (-1142))))) (-2345 (*1 *2 *2) (|partial| -12 (-5 *2 (-621 (-923 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-621 (-1142))))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-444)) (-5 *2 (-112)) (-5 *1 (-353 *4 *5)) (-14 *5 (-621 (-1142))))))
-(-10 -7 (-15 -3826 ((-112) (-621 (-923 |#1|)))) (-15 -2345 ((-3 (-621 (-923 |#1|)) "failed") (-621 (-923 |#1|)))) (-15 -3164 ((-621 (-923 |#1|)) (-621 (-923 |#1|)))))
-((-3833 (((-112) $ $) NIL)) (-3615 (((-747) $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL)) (-2658 ((|#1| $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3987 (((-112) $) 15)) (-3570 ((|#1| $ (-549)) NIL)) (-4162 (((-549) $ (-549)) NIL)) (-2555 (($ (-1 |#1| |#1|) $) 32)) (-4072 (($ (-1 (-549) (-549)) $) 24)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 26)) (-3988 (((-1086) $) NIL)) (-2886 (((-621 (-2 (|:| |gen| |#1|) (|:| -2718 (-549)))) $) 28)) (-2538 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-3845 (((-834) $) 38) (($ |#1|) NIL)) (-3287 (($) 9 T CONST)) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL) (($ |#1| (-549)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-354 |#1|) (-13 (-465) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-549))) (-15 -3615 ((-747) $)) (-15 -4162 ((-549) $ (-549))) (-15 -3570 (|#1| $ (-549))) (-15 -4072 ($ (-1 (-549) (-549)) $)) (-15 -2555 ($ (-1 |#1| |#1|) $)) (-15 -2886 ((-621 (-2 (|:| |gen| |#1|) (|:| -2718 (-549)))) $)))) (-1066)) (T -354))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1066)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1066)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-354 *2)) (-4 *2 (-1066)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-354 *3)) (-4 *3 (-1066)))) (-4162 (*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-354 *3)) (-4 *3 (-1066)))) (-3570 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-354 *2)) (-4 *2 (-1066)))) (-4072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-549) (-549))) (-5 *1 (-354 *3)) (-4 *3 (-1066)))) (-2555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-354 *3)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2718 (-549))))) (-5 *1 (-354 *3)) (-4 *3 (-1066)))))
-(-13 (-465) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-549))) (-15 -3615 ((-747) $)) (-15 -4162 ((-549) $ (-549))) (-15 -3570 (|#1| $ (-549))) (-15 -4072 ($ (-1 (-549) (-549)) $)) (-15 -2555 ($ (-1 |#1| |#1|) $)) (-15 -2886 ((-621 (-2 (|:| |gen| |#1|) (|:| -2718 (-549)))) $))))
-((-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 13)) (-2408 (($ $) 14)) (-3513 (((-411 $) $) 30)) (-2471 (((-112) $) 26)) (-1991 (($ $) 19)) (-3726 (($ $ $) 23) (($ (-621 $)) NIL)) (-2120 (((-411 $) $) 31)) (-2038 (((-3 $ "failed") $ $) 22)) (-4091 (((-747) $) 25)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 35)) (-4053 (((-112) $ $) 16)) (-2512 (($ $ $) 33)))
-(((-355 |#1|) (-10 -8 (-15 -2512 (|#1| |#1| |#1|)) (-15 -1991 (|#1| |#1|)) (-15 -2471 ((-112) |#1|)) (-15 -3513 ((-411 |#1|) |#1|)) (-15 -2120 ((-411 |#1|) |#1|)) (-15 -1346 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -4091 ((-747) |#1|)) (-15 -3726 (|#1| (-621 |#1|))) (-15 -3726 (|#1| |#1| |#1|)) (-15 -4053 ((-112) |#1| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -2139 ((-2 (|:| -2699 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#1|))) (-356)) (T -355))
-NIL
-(-10 -8 (-15 -2512 (|#1| |#1| |#1|)) (-15 -1991 (|#1| |#1|)) (-15 -2471 ((-112) |#1|)) (-15 -3513 ((-411 |#1|) |#1|)) (-15 -2120 ((-411 |#1|) |#1|)) (-15 -1346 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -4091 ((-747) |#1|)) (-15 -3726 (|#1| (-621 |#1|))) (-15 -3726 (|#1| |#1| |#1|)) (-15 -4053 ((-112) |#1| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -2139 ((-2 (|:| -2699 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 70)) (-3513 (((-411 $) $) 69)) (-2647 (((-112) $ $) 57)) (-1705 (($) 17 T CONST)) (-2094 (($ $ $) 53)) (-3976 (((-3 $ "failed") $) 32)) (-2066 (($ $ $) 54)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-2471 (((-112) $) 68)) (-3987 (((-112) $) 30)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 67)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-2120 (((-411 $) $) 71)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-4091 (((-747) $) 56)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ $) 62)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64)))
+((-2324 (((-112) (-618 (-917 |#1|))) 34)) (-2326 (((-618 (-917 |#1|)) (-618 (-917 |#1|))) 46)) (-2325 (((-3 (-618 (-917 |#1|)) "failed") (-618 (-917 |#1|))) 41)))
+(((-353 |#1| |#2|) (-10 -7 (-15 -2324 ((-112) (-618 (-917 |#1|)))) (-15 -2325 ((-3 (-618 (-917 |#1|)) "failed") (-618 (-917 |#1|)))) (-15 -2326 ((-618 (-917 |#1|)) (-618 (-917 |#1|))))) (-444) (-618 (-1142))) (T -353))
+((-2326 (*1 *2 *2) (-12 (-5 *2 (-618 (-917 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-618 (-1142))))) (-2325 (*1 *2 *2) (|partial| -12 (-5 *2 (-618 (-917 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-618 (-1142))))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-444)) (-5 *2 (-112)) (-5 *1 (-353 *4 *5)) (-14 *5 (-618 (-1142))))))
+(-10 -7 (-15 -2324 ((-112) (-618 (-917 |#1|)))) (-15 -2325 ((-3 (-618 (-917 |#1|)) "failed") (-618 (-917 |#1|)))) (-15 -2326 ((-618 (-917 |#1|)) (-618 (-917 |#1|)))))
+((-2887 (((-112) $ $) NIL)) (-3454 (((-747) $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) 15)) (-2759 ((|#1| $ (-535)) NIL)) (-2760 (((-535) $ (-535)) NIL)) (-2362 (($ (-1 |#1| |#1|) $) 32)) (-2363 (($ (-1 (-535) (-535)) $) 24)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 26)) (-3577 (((-1086) $) NIL)) (-2758 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-535)))) $) 28)) (-3330 (($ $ $) NIL)) (-2677 (($ $ $) NIL)) (-4300 (((-835) $) 38) (($ |#1|) NIL)) (-2985 (($) 9 T CONST)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL) (($ |#1| (-535)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-354 |#1|) (-13 (-465) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-535))) (-15 -3454 ((-747) $)) (-15 -2760 ((-535) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2363 ($ (-1 (-535) (-535)) $)) (-15 -2362 ($ (-1 |#1| |#1|) $)) (-15 -2758 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-535)))) $)))) (-1067)) (T -354))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1067)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1067)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-354 *2)) (-4 *2 (-1067)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-354 *3)) (-4 *3 (-1067)))) (-2760 (*1 *2 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-354 *3)) (-4 *3 (-1067)))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-354 *2)) (-4 *2 (-1067)))) (-2363 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-535) (-535))) (-5 *1 (-354 *3)) (-4 *3 (-1067)))) (-2362 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-354 *3)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 (-535))))) (-5 *1 (-354 *3)) (-4 *3 (-1067)))))
+(-13 (-465) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-535))) (-15 -3454 ((-747) $)) (-15 -2760 ((-535) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2363 ($ (-1 (-535) (-535)) $)) (-15 -2362 ($ (-1 |#1| |#1|) $)) (-15 -2758 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-535)))) $))))
+((-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 13)) (-2171 (($ $) 14)) (-4312 (((-398 $) $) 30)) (-4069 (((-112) $) 26)) (-2725 (($ $) 19)) (-3478 (($ $ $) 23) (($ (-618 $)) NIL)) (-4075 (((-398 $) $) 31)) (-3803 (((-3 $ "failed") $ $) 22)) (-1699 (((-747) $) 25)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 35)) (-2170 (((-112) $ $) 16)) (-4291 (($ $ $) 33)))
+(((-355 |#1|) (-10 -8 (-15 -4291 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -4069 ((-112) |#1|)) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3202 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -1699 ((-747) |#1|)) (-15 -3478 (|#1| (-618 |#1|))) (-15 -3478 (|#1| |#1| |#1|)) (-15 -2170 ((-112) |#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -2172 ((-2 (|:| -1887 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|))) (-356)) (T -355))
+NIL
+(-10 -8 (-15 -4291 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -4069 ((-112) |#1|)) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3202 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -1699 ((-747) |#1|)) (-15 -3478 (|#1| (-618 |#1|))) (-15 -3478 (|#1| |#1| |#1|)) (-15 -2170 ((-112) |#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -2172 ((-2 (|:| -1887 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4069 (((-112) $) 68)) (-2493 (((-112) $) 30)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 62)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64)))
(((-356) (-138)) (T -356))
-((-2512 (*1 *1 *1 *1) (-4 *1 (-356))))
-(-13 (-300) (-1183) (-237) (-10 -8 (-15 -2512 ($ $ $)) (-6 -4334) (-6 -4328)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1183) . T))
-((-3833 (((-112) $ $) 7)) (-1450 ((|#2| $ |#2|) 13)) (-3955 (($ $ (-1124)) 18)) (-3887 ((|#2| $) 14)) (-1358 (($ |#1|) 20) (($ |#1| (-1124)) 19)) (-2480 ((|#1| $) 16)) (-2677 (((-1124) $) 9)) (-4085 (((-1124) $) 15)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3559 (($ $) 17)) (-2388 (((-112) $ $) 6)))
-(((-357 |#1| |#2|) (-138) (-1066) (-1066)) (T -357))
-((-1358 (*1 *1 *2) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))) (-1358 (*1 *1 *2 *3) (-12 (-5 *3 (-1124)) (-4 *1 (-357 *2 *4)) (-4 *2 (-1066)) (-4 *4 (-1066)))) (-3955 (*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-357 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)))) (-3559 (*1 *1 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1066)) (-4 *2 (-1066)))) (-4085 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-5 *2 (-1124)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1066)))) (-1450 (*1 *2 *1 *2) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1066)))))
-(-13 (-1066) (-10 -8 (-15 -1358 ($ |t#1|)) (-15 -1358 ($ |t#1| (-1124))) (-15 -3955 ($ $ (-1124))) (-15 -3559 ($ $)) (-15 -2480 (|t#1| $)) (-15 -4085 ((-1124) $)) (-15 -3887 (|t#2| $)) (-15 -1450 (|t#2| $ |t#2|))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-1450 ((|#1| $ |#1|) 30)) (-3955 (($ $ (-1124)) 22)) (-3323 (((-3 |#1| "failed") $) 29)) (-3887 ((|#1| $) 27)) (-1358 (($ (-381)) 21) (($ (-381) (-1124)) 20)) (-2480 (((-381) $) 24)) (-2677 (((-1124) $) NIL)) (-4085 (((-1124) $) 25)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 19)) (-3559 (($ $) 23)) (-2388 (((-112) $ $) 18)))
-(((-358 |#1|) (-13 (-357 (-381) |#1|) (-10 -8 (-15 -3323 ((-3 |#1| "failed") $)))) (-1066)) (T -358))
-((-3323 (*1 *2 *1) (|partial| -12 (-5 *1 (-358 *2)) (-4 *2 (-1066)))))
-(-13 (-357 (-381) |#1|) (-10 -8 (-15 -3323 ((-3 |#1| "failed") $))))
-((-2818 (((-1225 (-665 |#2|)) (-1225 $)) 61)) (-1418 (((-665 |#2|) (-1225 $)) 120)) (-1399 ((|#2| $) 32)) (-2811 (((-665 |#2|) $ (-1225 $)) 123)) (-3923 (((-3 $ "failed") $) 75)) (-1618 ((|#2| $) 35)) (-4057 (((-1138 |#2|) $) 83)) (-2351 ((|#2| (-1225 $)) 106)) (-3254 (((-1138 |#2|) $) 28)) (-2186 (((-112)) 100)) (-2127 (($ (-1225 |#2|) (-1225 $)) 113)) (-3976 (((-3 $ "failed") $) 79)) (-3995 (((-112)) 95)) (-4285 (((-112)) 90)) (-3055 (((-112)) 53)) (-1779 (((-665 |#2|) (-1225 $)) 118)) (-1359 ((|#2| $) 31)) (-1315 (((-665 |#2|) $ (-1225 $)) 122)) (-2193 (((-3 $ "failed") $) 73)) (-3142 ((|#2| $) 34)) (-2568 (((-1138 |#2|) $) 82)) (-2742 ((|#2| (-1225 $)) 104)) (-2934 (((-1138 |#2|) $) 26)) (-2342 (((-112)) 99)) (-1768 (((-112)) 92)) (-4176 (((-112)) 51)) (-4086 (((-112)) 87)) (-2036 (((-112)) 101)) (-4163 (((-1225 |#2|) $ (-1225 $)) NIL) (((-665 |#2|) (-1225 $) (-1225 $)) 111)) (-2138 (((-112)) 97)) (-1600 (((-621 (-1225 |#2|))) 86)) (-3596 (((-112)) 98)) (-2221 (((-112)) 96)) (-1654 (((-112)) 46)) (-1615 (((-112)) 102)))
-(((-359 |#1| |#2|) (-10 -8 (-15 -4057 ((-1138 |#2|) |#1|)) (-15 -2568 ((-1138 |#2|) |#1|)) (-15 -1600 ((-621 (-1225 |#2|)))) (-15 -3923 ((-3 |#1| "failed") |#1|)) (-15 -2193 ((-3 |#1| "failed") |#1|)) (-15 -3976 ((-3 |#1| "failed") |#1|)) (-15 -4285 ((-112))) (-15 -1768 ((-112))) (-15 -3995 ((-112))) (-15 -4176 ((-112))) (-15 -3055 ((-112))) (-15 -4086 ((-112))) (-15 -1615 ((-112))) (-15 -2036 ((-112))) (-15 -2186 ((-112))) (-15 -2342 ((-112))) (-15 -1654 ((-112))) (-15 -3596 ((-112))) (-15 -2221 ((-112))) (-15 -2138 ((-112))) (-15 -3254 ((-1138 |#2|) |#1|)) (-15 -2934 ((-1138 |#2|) |#1|)) (-15 -1418 ((-665 |#2|) (-1225 |#1|))) (-15 -1779 ((-665 |#2|) (-1225 |#1|))) (-15 -2351 (|#2| (-1225 |#1|))) (-15 -2742 (|#2| (-1225 |#1|))) (-15 -2127 (|#1| (-1225 |#2|) (-1225 |#1|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1| (-1225 |#1|))) (-15 -1618 (|#2| |#1|)) (-15 -3142 (|#2| |#1|)) (-15 -1399 (|#2| |#1|)) (-15 -1359 (|#2| |#1|)) (-15 -2811 ((-665 |#2|) |#1| (-1225 |#1|))) (-15 -1315 ((-665 |#2|) |#1| (-1225 |#1|))) (-15 -2818 ((-1225 (-665 |#2|)) (-1225 |#1|)))) (-360 |#2|) (-170)) (T -359))
-((-2138 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2221 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3596 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1654 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2342 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2186 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2036 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1615 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-4086 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3055 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-4176 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3995 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1768 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-4285 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1600 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-621 (-1225 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))))
-(-10 -8 (-15 -4057 ((-1138 |#2|) |#1|)) (-15 -2568 ((-1138 |#2|) |#1|)) (-15 -1600 ((-621 (-1225 |#2|)))) (-15 -3923 ((-3 |#1| "failed") |#1|)) (-15 -2193 ((-3 |#1| "failed") |#1|)) (-15 -3976 ((-3 |#1| "failed") |#1|)) (-15 -4285 ((-112))) (-15 -1768 ((-112))) (-15 -3995 ((-112))) (-15 -4176 ((-112))) (-15 -3055 ((-112))) (-15 -4086 ((-112))) (-15 -1615 ((-112))) (-15 -2036 ((-112))) (-15 -2186 ((-112))) (-15 -2342 ((-112))) (-15 -1654 ((-112))) (-15 -3596 ((-112))) (-15 -2221 ((-112))) (-15 -2138 ((-112))) (-15 -3254 ((-1138 |#2|) |#1|)) (-15 -2934 ((-1138 |#2|) |#1|)) (-15 -1418 ((-665 |#2|) (-1225 |#1|))) (-15 -1779 ((-665 |#2|) (-1225 |#1|))) (-15 -2351 (|#2| (-1225 |#1|))) (-15 -2742 (|#2| (-1225 |#1|))) (-15 -2127 (|#1| (-1225 |#2|) (-1225 |#1|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1| (-1225 |#1|))) (-15 -1618 (|#2| |#1|)) (-15 -3142 (|#2| |#1|)) (-15 -1399 (|#2| |#1|)) (-15 -1359 (|#2| |#1|)) (-15 -2811 ((-665 |#2|) |#1| (-1225 |#1|))) (-15 -1315 ((-665 |#2|) |#1| (-1225 |#1|))) (-15 -2818 ((-1225 (-665 |#2|)) (-1225 |#1|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2699 (((-3 $ "failed")) 37 (|has| |#1| (-541)))) (-2384 (((-3 $ "failed") $ $) 19)) (-2818 (((-1225 (-665 |#1|)) (-1225 $)) 78)) (-1955 (((-1225 $)) 81)) (-1705 (($) 17 T CONST)) (-2983 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) 40 (|has| |#1| (-541)))) (-3917 (((-3 $ "failed")) 38 (|has| |#1| (-541)))) (-1418 (((-665 |#1|) (-1225 $)) 65)) (-1399 ((|#1| $) 74)) (-2811 (((-665 |#1|) $ (-1225 $)) 76)) (-3923 (((-3 $ "failed") $) 45 (|has| |#1| (-541)))) (-2353 (($ $ (-892)) 28)) (-1618 ((|#1| $) 72)) (-4057 (((-1138 |#1|) $) 42 (|has| |#1| (-541)))) (-2351 ((|#1| (-1225 $)) 67)) (-3254 (((-1138 |#1|) $) 63)) (-2186 (((-112)) 57)) (-2127 (($ (-1225 |#1|) (-1225 $)) 69)) (-3976 (((-3 $ "failed") $) 47 (|has| |#1| (-541)))) (-3122 (((-892)) 80)) (-1373 (((-112)) 54)) (-2377 (($ $ (-892)) 33)) (-3995 (((-112)) 50)) (-4285 (((-112)) 48)) (-3055 (((-112)) 52)) (-4263 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) 41 (|has| |#1| (-541)))) (-1497 (((-3 $ "failed")) 39 (|has| |#1| (-541)))) (-1779 (((-665 |#1|) (-1225 $)) 66)) (-1359 ((|#1| $) 75)) (-1315 (((-665 |#1|) $ (-1225 $)) 77)) (-2193 (((-3 $ "failed") $) 46 (|has| |#1| (-541)))) (-2881 (($ $ (-892)) 29)) (-3142 ((|#1| $) 73)) (-2568 (((-1138 |#1|) $) 43 (|has| |#1| (-541)))) (-2742 ((|#1| (-1225 $)) 68)) (-2934 (((-1138 |#1|) $) 64)) (-2342 (((-112)) 58)) (-2677 (((-1124) $) 9)) (-1768 (((-112)) 49)) (-4176 (((-112)) 51)) (-4086 (((-112)) 53)) (-3988 (((-1086) $) 10)) (-2036 (((-112)) 56)) (-4163 (((-1225 |#1|) $ (-1225 $)) 71) (((-665 |#1|) (-1225 $) (-1225 $)) 70)) (-3619 (((-621 (-923 |#1|)) (-1225 $)) 79)) (-1911 (($ $ $) 25)) (-2138 (((-112)) 62)) (-3845 (((-834) $) 11)) (-1600 (((-621 (-1225 |#1|))) 44 (|has| |#1| (-541)))) (-4172 (($ $ $ $) 26)) (-3596 (((-112)) 60)) (-1892 (($ $ $) 24)) (-2221 (((-112)) 61)) (-1654 (((-112)) 59)) (-1615 (((-112)) 55)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 30)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-4291 (*1 *1 *1 *1) (-4 *1 (-356))))
+(-13 (-300) (-1183) (-237) (-10 -8 (-15 -4291 ($ $ $)) (-6 -4334) (-6 -4328)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T))
+((-2887 (((-112) $ $) NIL)) (-1808 ((|#1| $ |#1|) 30)) (-1812 (($ $ (-1124)) 22)) (-3965 (((-3 |#1| "failed") $) 29)) (-1809 ((|#1| $) 27)) (-1813 (($ (-381)) 21) (($ (-381) (-1124)) 20)) (-3888 (((-381) $) 24)) (-3576 (((-1124) $) NIL)) (-1810 (((-1124) $) 25)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19)) (-1811 (($ $) 23)) (-3375 (((-112) $ $) 18)))
+(((-357 |#1|) (-13 (-358 (-381) |#1|) (-10 -8 (-15 -3965 ((-3 |#1| "failed") $)))) (-1067)) (T -357))
+((-3965 (*1 *2 *1) (|partial| -12 (-5 *1 (-357 *2)) (-4 *2 (-1067)))))
+(-13 (-358 (-381) |#1|) (-10 -8 (-15 -3965 ((-3 |#1| "failed") $))))
+((-2887 (((-112) $ $) 7)) (-1808 ((|#2| $ |#2|) 13)) (-1812 (($ $ (-1124)) 18)) (-1809 ((|#2| $) 14)) (-1813 (($ |#1|) 20) (($ |#1| (-1124)) 19)) (-3888 ((|#1| $) 16)) (-3576 (((-1124) $) 9)) (-1810 (((-1124) $) 15)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-1811 (($ $) 17)) (-3375 (((-112) $ $) 6)))
+(((-358 |#1| |#2|) (-138) (-1067) (-1067)) (T -358))
+((-1813 (*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-1813 (*1 *1 *2 *3) (-12 (-5 *3 (-1124)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1067)) (-4 *4 (-1067)))) (-1812 (*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-1811 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-1124)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-1808 (*1 *2 *1 *2) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -1813 ($ |t#1|)) (-15 -1813 ($ |t#1| (-1124))) (-15 -1812 ($ $ (-1124))) (-15 -1811 ($ $)) (-15 -3888 (|t#1| $)) (-15 -1810 ((-1124) $)) (-15 -1809 (|t#2| $)) (-15 -1808 (|t#2| $ |t#2|))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-3557 (((-1224 (-665 |#2|)) (-1224 $)) 61)) (-1902 (((-665 |#2|) (-1224 $)) 120)) (-1838 ((|#2| $) 32)) (-1900 (((-665 |#2|) $ (-1224 $)) 123)) (-2487 (((-3 $ "failed") $) 75)) (-1836 ((|#2| $) 35)) (-1816 (((-1136 |#2|) $) 83)) (-1904 ((|#2| (-1224 $)) 106)) (-1834 (((-1136 |#2|) $) 28)) (-1828 (((-112)) 100)) (-1906 (($ (-1224 |#2|) (-1224 $)) 113)) (-3804 (((-3 $ "failed") $) 79)) (-1821 (((-112)) 95)) (-1819 (((-112)) 90)) (-1823 (((-112)) 53)) (-1903 (((-665 |#2|) (-1224 $)) 118)) (-1839 ((|#2| $) 31)) (-1901 (((-665 |#2|) $ (-1224 $)) 122)) (-2488 (((-3 $ "failed") $) 73)) (-1837 ((|#2| $) 34)) (-1817 (((-1136 |#2|) $) 82)) (-1905 ((|#2| (-1224 $)) 104)) (-1835 (((-1136 |#2|) $) 26)) (-1829 (((-112)) 99)) (-1820 (((-112)) 92)) (-1822 (((-112)) 51)) (-1824 (((-112)) 87)) (-1827 (((-112)) 101)) (-3558 (((-1224 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) (-1224 $) (-1224 $)) 111)) (-1833 (((-112)) 97)) (-1818 (((-618 (-1224 |#2|))) 86)) (-1831 (((-112)) 98)) (-1832 (((-112)) 96)) (-1830 (((-112)) 46)) (-1826 (((-112)) 102)))
+(((-359 |#1| |#2|) (-10 -8 (-15 -1816 ((-1136 |#2|) |#1|)) (-15 -1817 ((-1136 |#2|) |#1|)) (-15 -1818 ((-618 (-1224 |#2|)))) (-15 -2487 ((-3 |#1| "failed") |#1|)) (-15 -2488 ((-3 |#1| "failed") |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 -1819 ((-112))) (-15 -1820 ((-112))) (-15 -1821 ((-112))) (-15 -1822 ((-112))) (-15 -1823 ((-112))) (-15 -1824 ((-112))) (-15 -1826 ((-112))) (-15 -1827 ((-112))) (-15 -1828 ((-112))) (-15 -1829 ((-112))) (-15 -1830 ((-112))) (-15 -1831 ((-112))) (-15 -1832 ((-112))) (-15 -1833 ((-112))) (-15 -1834 ((-1136 |#2|) |#1|)) (-15 -1835 ((-1136 |#2|) |#1|)) (-15 -1902 ((-665 |#2|) (-1224 |#1|))) (-15 -1903 ((-665 |#2|) (-1224 |#1|))) (-15 -1904 (|#2| (-1224 |#1|))) (-15 -1905 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1836 (|#2| |#1|)) (-15 -1837 (|#2| |#1|)) (-15 -1838 (|#2| |#1|)) (-15 -1839 (|#2| |#1|)) (-15 -1900 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -1901 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -3557 ((-1224 (-665 |#2|)) (-1224 |#1|)))) (-360 |#2|) (-170)) (T -359))
+((-1833 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1832 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1831 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1830 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1829 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1828 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1827 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1826 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1824 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1823 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1822 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1821 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1820 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1819 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1818 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-618 (-1224 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))))
+(-10 -8 (-15 -1816 ((-1136 |#2|) |#1|)) (-15 -1817 ((-1136 |#2|) |#1|)) (-15 -1818 ((-618 (-1224 |#2|)))) (-15 -2487 ((-3 |#1| "failed") |#1|)) (-15 -2488 ((-3 |#1| "failed") |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 -1819 ((-112))) (-15 -1820 ((-112))) (-15 -1821 ((-112))) (-15 -1822 ((-112))) (-15 -1823 ((-112))) (-15 -1824 ((-112))) (-15 -1826 ((-112))) (-15 -1827 ((-112))) (-15 -1828 ((-112))) (-15 -1829 ((-112))) (-15 -1830 ((-112))) (-15 -1831 ((-112))) (-15 -1832 ((-112))) (-15 -1833 ((-112))) (-15 -1834 ((-1136 |#2|) |#1|)) (-15 -1835 ((-1136 |#2|) |#1|)) (-15 -1902 ((-665 |#2|) (-1224 |#1|))) (-15 -1903 ((-665 |#2|) (-1224 |#1|))) (-15 -1904 (|#2| (-1224 |#1|))) (-15 -1905 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1836 (|#2| |#1|)) (-15 -1837 (|#2| |#1|)) (-15 -1838 (|#2| |#1|)) (-15 -1839 (|#2| |#1|)) (-15 -1900 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -1901 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -3557 ((-1224 (-665 |#2|)) (-1224 |#1|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1887 (((-3 $ "failed")) 37 (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3557 (((-1224 (-665 |#1|)) (-1224 $)) 78)) (-1840 (((-1224 $)) 81)) (-3879 (($) 17 T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed")) 40 (|has| |#1| (-542)))) (-1814 (((-3 $ "failed")) 38 (|has| |#1| (-542)))) (-1902 (((-665 |#1|) (-1224 $)) 65)) (-1838 ((|#1| $) 74)) (-1900 (((-665 |#1|) $ (-1224 $)) 76)) (-2487 (((-3 $ "failed") $) 45 (|has| |#1| (-542)))) (-2490 (($ $ (-890)) 28)) (-1836 ((|#1| $) 72)) (-1816 (((-1136 |#1|) $) 42 (|has| |#1| (-542)))) (-1904 ((|#1| (-1224 $)) 67)) (-1834 (((-1136 |#1|) $) 63)) (-1828 (((-112)) 57)) (-1906 (($ (-1224 |#1|) (-1224 $)) 69)) (-3804 (((-3 $ "failed") $) 47 (|has| |#1| (-542)))) (-3427 (((-890)) 80)) (-1825 (((-112)) 54)) (-2515 (($ $ (-890)) 33)) (-1821 (((-112)) 50)) (-1819 (((-112)) 48)) (-1823 (((-112)) 52)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed")) 41 (|has| |#1| (-542)))) (-1815 (((-3 $ "failed")) 39 (|has| |#1| (-542)))) (-1903 (((-665 |#1|) (-1224 $)) 66)) (-1839 ((|#1| $) 75)) (-1901 (((-665 |#1|) $ (-1224 $)) 77)) (-2488 (((-3 $ "failed") $) 46 (|has| |#1| (-542)))) (-2489 (($ $ (-890)) 29)) (-1837 ((|#1| $) 73)) (-1817 (((-1136 |#1|) $) 43 (|has| |#1| (-542)))) (-1905 ((|#1| (-1224 $)) 68)) (-1835 (((-1136 |#1|) $) 64)) (-1829 (((-112)) 58)) (-3576 (((-1124) $) 9)) (-1820 (((-112)) 49)) (-1822 (((-112)) 51)) (-1824 (((-112)) 53)) (-3577 (((-1086) $) 10)) (-1827 (((-112)) 56)) (-3558 (((-1224 |#1|) $ (-1224 $)) 71) (((-665 |#1|) (-1224 $) (-1224 $)) 70)) (-2009 (((-618 (-917 |#1|)) (-1224 $)) 79)) (-2677 (($ $ $) 25)) (-1833 (((-112)) 62)) (-4300 (((-835) $) 11)) (-1818 (((-618 (-1224 |#1|))) 44 (|has| |#1| (-542)))) (-2678 (($ $ $ $) 26)) (-1831 (((-112)) 60)) (-2676 (($ $ $) 24)) (-1832 (((-112)) 61)) (-1830 (((-112)) 59)) (-1826 (((-112)) 55)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-360 |#1|) (-138) (-170)) (T -360))
-((-1955 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1225 *1)) (-4 *1 (-360 *3)))) (-3122 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-892)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-621 (-923 *4))))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1225 (-665 *4))))) (-1315 (*1 *2 *1 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-2811 (*1 *2 *1 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1399 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-4163 (*1 *2 *1 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1225 *4)))) (-4163 (*1 *2 *3 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-2127 (*1 *1 *2 *3) (-12 (-5 *2 (-1225 *4)) (-5 *3 (-1225 *1)) (-4 *4 (-170)) (-4 *1 (-360 *4)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-2351 (*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-1418 (*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-2934 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1138 *3)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1138 *3)))) (-2138 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2221 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3596 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1654 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2342 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2186 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2036 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1615 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1373 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4086 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3055 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4176 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3995 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1768 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4285 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3976 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-541)))) (-2193 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-541)))) (-3923 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-541)))) (-1600 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-541)) (-5 *2 (-621 (-1225 *3))))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-541)) (-5 *2 (-1138 *3)))) (-4057 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-541)) (-5 *2 (-1138 *3)))) (-4263 (*1 *2) (|partial| -12 (-4 *3 (-541)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3420 (-621 *1)))) (-4 *1 (-360 *3)))) (-2983 (*1 *2) (|partial| -12 (-4 *3 (-541)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3420 (-621 *1)))) (-4 *1 (-360 *3)))) (-1497 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-541)) (-4 *2 (-170)))) (-3917 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-541)) (-4 *2 (-170)))) (-2699 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-541)) (-4 *2 (-170)))))
-(-13 (-721 |t#1|) (-10 -8 (-15 -1955 ((-1225 $))) (-15 -3122 ((-892))) (-15 -3619 ((-621 (-923 |t#1|)) (-1225 $))) (-15 -2818 ((-1225 (-665 |t#1|)) (-1225 $))) (-15 -1315 ((-665 |t#1|) $ (-1225 $))) (-15 -2811 ((-665 |t#1|) $ (-1225 $))) (-15 -1359 (|t#1| $)) (-15 -1399 (|t#1| $)) (-15 -3142 (|t#1| $)) (-15 -1618 (|t#1| $)) (-15 -4163 ((-1225 |t#1|) $ (-1225 $))) (-15 -4163 ((-665 |t#1|) (-1225 $) (-1225 $))) (-15 -2127 ($ (-1225 |t#1|) (-1225 $))) (-15 -2742 (|t#1| (-1225 $))) (-15 -2351 (|t#1| (-1225 $))) (-15 -1779 ((-665 |t#1|) (-1225 $))) (-15 -1418 ((-665 |t#1|) (-1225 $))) (-15 -2934 ((-1138 |t#1|) $)) (-15 -3254 ((-1138 |t#1|) $)) (-15 -2138 ((-112))) (-15 -2221 ((-112))) (-15 -3596 ((-112))) (-15 -1654 ((-112))) (-15 -2342 ((-112))) (-15 -2186 ((-112))) (-15 -2036 ((-112))) (-15 -1615 ((-112))) (-15 -1373 ((-112))) (-15 -4086 ((-112))) (-15 -3055 ((-112))) (-15 -4176 ((-112))) (-15 -3995 ((-112))) (-15 -1768 ((-112))) (-15 -4285 ((-112))) (IF (|has| |t#1| (-541)) (PROGN (-15 -3976 ((-3 $ "failed") $)) (-15 -2193 ((-3 $ "failed") $)) (-15 -3923 ((-3 $ "failed") $)) (-15 -1600 ((-621 (-1225 |t#1|)))) (-15 -2568 ((-1138 |t#1|) $)) (-15 -4057 ((-1138 |t#1|) $)) (-15 -4263 ((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed"))) (-15 -2983 ((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed"))) (-15 -1497 ((-3 $ "failed"))) (-15 -3917 ((-3 $ "failed"))) (-15 -2699 ((-3 $ "failed"))) (-6 -4333)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-697) . T) ((-721 |#1|) . T) ((-738) . T) ((-1024 |#1|) . T) ((-1066) . T))
-((-3833 (((-112) $ $) 7)) (-3615 (((-747)) 16)) (-3238 (($) 13)) (-2723 (((-892) $) 14)) (-2677 (((-1124) $) 9)) (-3491 (($ (-892)) 15)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2388 (((-112) $ $) 6)))
+((-1840 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1224 *1)) (-4 *1 (-360 *3)))) (-3427 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-890)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-618 (-917 *4))))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1224 (-665 *4))))) (-1901 (*1 *2 *1 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-1900 (*1 *2 *1 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-3558 (*1 *2 *1 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1224 *4)))) (-3558 (*1 *2 *3 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-1224 *1)) (-4 *4 (-170)) (-4 *1 (-360 *4)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1136 *3)))) (-1834 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1136 *3)))) (-1833 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1832 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1831 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1830 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1829 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1828 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1827 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1826 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1825 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1824 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1823 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1822 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1821 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1820 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1819 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3804 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-2488 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-2487 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542)))) (-1818 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-618 (-1224 *3))))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-1136 *3)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-1136 *3)))) (-2024 (*1 *2) (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-618 *1)))) (-4 *1 (-360 *3)))) (-2023 (*1 *2) (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-618 *1)))) (-4 *1 (-360 *3)))) (-1815 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))) (-1814 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))) (-1887 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))))
+(-13 (-721 |t#1|) (-10 -8 (-15 -1840 ((-1224 $))) (-15 -3427 ((-890))) (-15 -2009 ((-618 (-917 |t#1|)) (-1224 $))) (-15 -3557 ((-1224 (-665 |t#1|)) (-1224 $))) (-15 -1901 ((-665 |t#1|) $ (-1224 $))) (-15 -1900 ((-665 |t#1|) $ (-1224 $))) (-15 -1839 (|t#1| $)) (-15 -1838 (|t#1| $)) (-15 -1837 (|t#1| $)) (-15 -1836 (|t#1| $)) (-15 -3558 ((-1224 |t#1|) $ (-1224 $))) (-15 -3558 ((-665 |t#1|) (-1224 $) (-1224 $))) (-15 -1906 ($ (-1224 |t#1|) (-1224 $))) (-15 -1905 (|t#1| (-1224 $))) (-15 -1904 (|t#1| (-1224 $))) (-15 -1903 ((-665 |t#1|) (-1224 $))) (-15 -1902 ((-665 |t#1|) (-1224 $))) (-15 -1835 ((-1136 |t#1|) $)) (-15 -1834 ((-1136 |t#1|) $)) (-15 -1833 ((-112))) (-15 -1832 ((-112))) (-15 -1831 ((-112))) (-15 -1830 ((-112))) (-15 -1829 ((-112))) (-15 -1828 ((-112))) (-15 -1827 ((-112))) (-15 -1826 ((-112))) (-15 -1825 ((-112))) (-15 -1824 ((-112))) (-15 -1823 ((-112))) (-15 -1822 ((-112))) (-15 -1821 ((-112))) (-15 -1820 ((-112))) (-15 -1819 ((-112))) (IF (|has| |t#1| (-542)) (PROGN (-15 -3804 ((-3 $ "failed") $)) (-15 -2488 ((-3 $ "failed") $)) (-15 -2487 ((-3 $ "failed") $)) (-15 -1818 ((-618 (-1224 |t#1|)))) (-15 -1817 ((-1136 |t#1|) $)) (-15 -1816 ((-1136 |t#1|) $)) (-15 -2024 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed"))) (-15 -2023 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed"))) (-15 -1815 ((-3 $ "failed"))) (-15 -1814 ((-3 $ "failed"))) (-15 -1887 ((-3 $ "failed"))) (-6 -4333)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-697) . T) ((-721 |#1|) . T) ((-738) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-2887 (((-112) $ $) 7)) (-3454 (((-747)) 16)) (-3315 (($) 13)) (-2121 (((-890) $) 14)) (-3576 (((-1124) $) 9)) (-2483 (($ (-890)) 15)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)))
(((-361) (-138)) (T -361))
-((-3615 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-747)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-361)))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-892)))) (-3238 (*1 *1) (-4 *1 (-361))))
-(-13 (-1066) (-10 -8 (-15 -3615 ((-747))) (-15 -3491 ($ (-892))) (-15 -2723 ((-892) $)) (-15 -3238 ($))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3102 (((-665 |#2|) (-1225 $)) 40)) (-2127 (($ (-1225 |#2|) (-1225 $)) 34)) (-2988 (((-665 |#2|) $ (-1225 $)) 42)) (-3086 ((|#2| (-1225 $)) 13)) (-4163 (((-1225 |#2|) $ (-1225 $)) NIL) (((-665 |#2|) (-1225 $) (-1225 $)) 25)))
-(((-362 |#1| |#2| |#3|) (-10 -8 (-15 -3102 ((-665 |#2|) (-1225 |#1|))) (-15 -3086 (|#2| (-1225 |#1|))) (-15 -2127 (|#1| (-1225 |#2|) (-1225 |#1|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1| (-1225 |#1|))) (-15 -2988 ((-665 |#2|) |#1| (-1225 |#1|)))) (-363 |#2| |#3|) (-170) (-1201 |#2|)) (T -362))
-NIL
-(-10 -8 (-15 -3102 ((-665 |#2|) (-1225 |#1|))) (-15 -3086 (|#2| (-1225 |#1|))) (-15 -2127 (|#1| (-1225 |#2|) (-1225 |#1|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1| (-1225 |#1|))) (-15 -2988 ((-665 |#2|) |#1| (-1225 |#1|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-3102 (((-665 |#1|) (-1225 $)) 44)) (-2905 ((|#1| $) 50)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2127 (($ (-1225 |#1|) (-1225 $)) 46)) (-2988 (((-665 |#1|) $ (-1225 $)) 51)) (-3976 (((-3 $ "failed") $) 32)) (-3122 (((-892)) 52)) (-3987 (((-112) $) 30)) (-4117 ((|#1| $) 49)) (-4030 ((|#2| $) 42 (|has| |#1| (-356)))) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3086 ((|#1| (-1225 $)) 45)) (-4163 (((-1225 |#1|) $ (-1225 $)) 48) (((-665 |#1|) (-1225 $) (-1225 $)) 47)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35)) (-3407 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-4041 ((|#2| $) 43)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-363 |#1| |#2|) (-138) (-170) (-1201 |t#1|)) (T -363))
-((-3122 (*1 *2) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1201 *3)) (-5 *2 (-892)))) (-2988 (*1 *2 *1 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1201 *4)) (-5 *2 (-665 *4)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1201 *2)) (-4 *2 (-170)))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1201 *2)) (-4 *2 (-170)))) (-4163 (*1 *2 *1 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1201 *4)) (-5 *2 (-1225 *4)))) (-4163 (*1 *2 *3 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1201 *4)) (-5 *2 (-665 *4)))) (-2127 (*1 *1 *2 *3) (-12 (-5 *2 (-1225 *4)) (-5 *3 (-1225 *1)) (-4 *4 (-170)) (-4 *1 (-363 *4 *5)) (-4 *5 (-1201 *4)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1201 *2)) (-4 *2 (-170)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1201 *4)) (-5 *2 (-665 *4)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1201 *3)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) (-4 *2 (-1201 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -3122 ((-892))) (-15 -2988 ((-665 |t#1|) $ (-1225 $))) (-15 -2905 (|t#1| $)) (-15 -4117 (|t#1| $)) (-15 -4163 ((-1225 |t#1|) $ (-1225 $))) (-15 -4163 ((-665 |t#1|) (-1225 $) (-1225 $))) (-15 -2127 ($ (-1225 |t#1|) (-1225 $))) (-15 -3086 (|t#1| (-1225 $))) (-15 -3102 ((-665 |t#1|) (-1225 $))) (-15 -4041 (|t#2| $)) (IF (|has| |t#1| (-356)) (-15 -4030 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3076 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2558 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2796 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-364 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2796 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2558 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3076 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1179) (-366 |#1|) (-1179) (-366 |#3|)) (T -364))
-((-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1179)) (-4 *5 (-1179)) (-4 *2 (-366 *5)) (-5 *1 (-364 *6 *4 *5 *2)) (-4 *4 (-366 *6)))) (-2558 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1179)) (-4 *2 (-1179)) (-5 *1 (-364 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-4 *2 (-366 *6)) (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-366 *5)))))
-(-10 -7 (-15 -2796 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2558 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3076 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-1993 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-4106 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3193 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3063 (($ $) 25)) (-2882 (((-549) (-1 (-112) |#2|) $) NIL) (((-549) |#2| $) 11) (((-549) |#2| $ (-549)) NIL)) (-1586 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-365 |#1| |#2|) (-10 -8 (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1993 ((-112) |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -1586 (|#1| |#1| |#1|)) (-15 -2882 ((-549) |#2| |#1| (-549))) (-15 -2882 ((-549) |#2| |#1|)) (-15 -2882 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -1993 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3193 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -1586 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-366 |#2|) (-1179)) (T -365))
-NIL
-(-10 -8 (-15 -4106 (|#1| |#1|)) (-15 -4106 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1993 ((-112) |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -1586 (|#1| |#1| |#1|)) (-15 -2882 ((-549) |#2| |#1| (-549))) (-15 -2882 ((-549) |#2| |#1|)) (-15 -2882 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -1993 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3193 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -1586 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-2932 (((-1230) $ (-549) (-549)) 40 (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-4106 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1323 (((-112) $ (-747)) 8)) (-2253 ((|#1| $ (-549) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) 58 (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-4273 (($ $) 90 (|has| $ (-6 -4337)))) (-3063 (($ $) 100)) (-3675 (($ $) 78 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#1| $) 77 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) 51)) (-2882 (((-549) (-1 (-112) |#1|) $) 97) (((-549) |#1| $) 96 (|has| |#1| (-1066))) (((-549) |#1| $ (-549)) 95 (|has| |#1| (-1066)))) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3743 (($ (-747) |#1|) 69)) (-4202 (((-112) $ (-747)) 9)) (-3485 (((-549) $) 43 (|has| (-549) (-823)))) (-2862 (($ $ $) 87 (|has| |#1| (-823)))) (-1586 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 44 (|has| (-549) (-823)))) (-3574 (($ $ $) 86 (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2614 (($ |#1| $ (-549)) 60) (($ $ $ (-549)) 59)) (-3927 (((-621 (-549)) $) 46)) (-1286 (((-112) (-549) $) 47)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-3645 ((|#1| $) 42 (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3158 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) 48)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ (-549) |#1|) 50) ((|#1| $ (-549)) 49) (($ $ (-1192 (-549))) 63)) (-2166 (($ $ (-549)) 62) (($ $ (-1192 (-549))) 61)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1665 (($ $ $ (-549)) 91 (|has| $ (-6 -4337)))) (-2281 (($ $) 13)) (-2844 (((-525) $) 79 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 70)) (-1951 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 83 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-2436 (((-112) $ $) 85 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 82 (|has| |#1| (-823)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-366 |#1|) (-138) (-1179)) (T -366))
-((-1586 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1179)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1179)))) (-3193 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1179)))) (-1993 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-366 *4)) (-4 *4 (-1179)) (-5 *2 (-112)))) (-2882 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-366 *4)) (-4 *4 (-1179)) (-5 *2 (-549)))) (-2882 (*1 *2 *3 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1179)) (-4 *3 (-1066)) (-5 *2 (-549)))) (-2882 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-366 *3)) (-4 *3 (-1179)) (-4 *3 (-1066)))) (-1586 (*1 *1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1179)) (-4 *2 (-823)))) (-3193 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1179)) (-4 *2 (-823)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1179)) (-4 *3 (-823)) (-5 *2 (-112)))) (-1665 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (|has| *1 (-6 -4337)) (-4 *1 (-366 *3)) (-4 *3 (-1179)))) (-4273 (*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-366 *2)) (-4 *2 (-1179)))) (-4106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4337)) (-4 *1 (-366 *3)) (-4 *3 (-1179)))) (-4106 (*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-366 *2)) (-4 *2 (-1179)) (-4 *2 (-823)))))
-(-13 (-627 |t#1|) (-10 -8 (-6 -4336) (-15 -1586 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3063 ($ $)) (-15 -3193 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1993 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2882 ((-549) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1066)) (PROGN (-15 -2882 ((-549) |t#1| $)) (-15 -2882 ((-549) |t#1| $ (-549)))) |%noBranch|) (IF (|has| |t#1| (-823)) (PROGN (-6 (-823)) (-15 -1586 ($ $ $)) (-15 -3193 ($ $)) (-15 -1993 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4337)) (PROGN (-15 -1665 ($ $ $ (-549))) (-15 -4273 ($ $)) (-15 -4106 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-823)) (-15 -4106 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-101) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823))) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-627 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1066) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823))) ((-1179) . T))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-3303 (((-621 |#1|) $) 32)) (-3447 (($ $ (-747)) 33)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3537 (((-1249 |#1| |#2|) (-1249 |#1| |#2|) $) 36)) (-3276 (($ $) 34)) (-3434 (((-1249 |#1| |#2|) (-1249 |#1| |#2|) $) 37)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-2685 (($ $ |#1| $) 31) (($ $ (-621 |#1|) (-621 $)) 30)) (-3068 (((-747) $) 38)) (-3853 (($ $ $) 29)) (-3845 (((-834) $) 11) (($ |#1|) 41) (((-1240 |#1| |#2|) $) 40) (((-1249 |#1| |#2|) $) 39)) (-1569 ((|#2| (-1249 |#1| |#2|) $) 42)) (-3275 (($) 18 T CONST)) (-3611 (($ (-648 |#1|)) 35)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#2|) 28 (|has| |#2| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+((-3454 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-747)))) (-2483 (*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-361)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-890)))) (-3315 (*1 *1) (-4 *1 (-361))))
+(-13 (-1067) (-10 -8 (-15 -3454 ((-747))) (-15 -2483 ($ (-890))) (-15 -2121 ((-890) $)) (-15 -3315 ($))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-1896 (((-665 |#2|) (-1224 $)) 40)) (-1906 (($ (-1224 |#2|) (-1224 $)) 34)) (-1895 (((-665 |#2|) $ (-1224 $)) 42)) (-4100 ((|#2| (-1224 $)) 13)) (-3558 (((-1224 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) (-1224 $) (-1224 $)) 25)))
+(((-362 |#1| |#2| |#3|) (-10 -8 (-15 -1896 ((-665 |#2|) (-1224 |#1|))) (-15 -4100 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1895 ((-665 |#2|) |#1| (-1224 |#1|)))) (-363 |#2| |#3|) (-170) (-1200 |#2|)) (T -362))
+NIL
+(-10 -8 (-15 -1896 ((-665 |#2|) (-1224 |#1|))) (-15 -4100 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1895 ((-665 |#2|) |#1| (-1224 |#1|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1896 (((-665 |#1|) (-1224 $)) 44)) (-3672 ((|#1| $) 50)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-1906 (($ (-1224 |#1|) (-1224 $)) 46)) (-1895 (((-665 |#1|) $ (-1224 $)) 51)) (-3804 (((-3 $ "failed") $) 32)) (-3427 (((-890)) 52)) (-2493 (((-112) $) 30)) (-3450 ((|#1| $) 49)) (-2125 ((|#2| $) 42 (|has| |#1| (-356)))) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4100 ((|#1| (-1224 $)) 45)) (-3558 (((-1224 |#1|) $ (-1224 $)) 48) (((-665 |#1|) (-1224 $) (-1224 $)) 47)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35)) (-3023 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2689 ((|#2| $) 43)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-363 |#1| |#2|) (-138) (-170) (-1200 |t#1|)) (T -363))
+((-3427 (*1 *2) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-890)))) (-1895 (*1 *2 *1 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1200 *2)) (-4 *2 (-170)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1200 *2)) (-4 *2 (-170)))) (-3558 (*1 *2 *1 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *4)))) (-3558 (*1 *2 *3 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-1224 *1)) (-4 *4 (-170)) (-4 *1 (-363 *4 *5)) (-4 *5 (-1200 *4)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1200 *2)) (-4 *2 (-170)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1200 *3)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) (-4 *2 (-1200 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3427 ((-890))) (-15 -1895 ((-665 |t#1|) $ (-1224 $))) (-15 -3672 (|t#1| $)) (-15 -3450 (|t#1| $)) (-15 -3558 ((-1224 |t#1|) $ (-1224 $))) (-15 -3558 ((-665 |t#1|) (-1224 $) (-1224 $))) (-15 -1906 ($ (-1224 |t#1|) (-1224 $))) (-15 -4100 (|t#1| (-1224 $))) (-15 -1896 ((-665 |t#1|) (-1224 $))) (-15 -2689 (|t#2| $)) (IF (|has| |t#1| (-356)) (-15 -2125 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-1843 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1841 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3230 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2369 (($ $) 25)) (-3761 (((-535) (-1 (-112) |#2|) $) NIL) (((-535) |#2| $) 11) (((-535) |#2| $ (-535)) NIL)) (-3855 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-364 |#1| |#2|) (-10 -8 (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -3230 (|#1| |#1|)) (-15 -3855 (|#1| |#1| |#1|)) (-15 -3761 ((-535) |#2| |#1| (-535))) (-15 -3761 ((-535) |#2| |#1|)) (-15 -3761 ((-535) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3230 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -3855 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-365 |#2|) (-1178)) (T -364))
+NIL
+(-10 -8 (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -3230 (|#1| |#1|)) (-15 -3855 (|#1| |#1| |#1|)) (-15 -3761 ((-535) |#2| |#1| (-535))) (-15 -3761 ((-535) |#2| |#1|)) (-15 -3761 ((-535) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3230 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -3855 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2368 (($ $) 90 (|has| $ (-6 -4337)))) (-2369 (($ $) 100)) (-1394 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 51)) (-3761 (((-535) (-1 (-112) |#1|) $) 97) (((-535) |#1| $) 96 (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) 95 (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 87 (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 86 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 42 (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2297 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) |#1|) 50) ((|#1| $ (-535)) 49) (($ $ (-1191 (-535))) 63)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 91 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 70)) (-4144 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 83 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 82 (|has| |#1| (-823)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-365 |#1|) (-138) (-1178)) (T -365))
+((-3855 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1178)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1178)))) (-3230 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1178)))) (-1843 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-365 *4)) (-4 *4 (-1178)) (-5 *2 (-112)))) (-3761 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-365 *4)) (-4 *4 (-1178)) (-5 *2 (-535)))) (-3761 (*1 *2 *3 *1) (-12 (-4 *1 (-365 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-535)))) (-3761 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-365 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)))) (-3855 (*1 *1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1178)) (-4 *2 (-823)))) (-3230 (*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1178)) (-4 *2 (-823)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-365 *3)) (-4 *3 (-1178)) (-4 *3 (-823)) (-5 *2 (-112)))) (-1842 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-535)) (|has| *1 (-6 -4337)) (-4 *1 (-365 *3)) (-4 *3 (-1178)))) (-2368 (*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-365 *2)) (-4 *2 (-1178)))) (-1841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4337)) (-4 *1 (-365 *3)) (-4 *3 (-1178)))) (-1841 (*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-365 *2)) (-4 *2 (-1178)) (-4 *2 (-823)))))
+(-13 (-627 |t#1|) (-10 -8 (-6 -4336) (-15 -3855 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2369 ($ $)) (-15 -3230 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1843 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3761 ((-535) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -3761 ((-535) |t#1| $)) (-15 -3761 ((-535) |t#1| $ (-535)))) |%noBranch|) (IF (|has| |t#1| (-823)) (PROGN (-6 (-823)) (-15 -3855 ($ $ $)) (-15 -3230 ($ $)) (-15 -1843 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4337)) (PROGN (-15 -1842 ($ $ $ (-535))) (-15 -2368 ($ $)) (-15 -1841 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-823)) (-15 -1841 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-101) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1067) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1178) . T))
+((-4184 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-4185 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4301 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4185 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1178) (-365 |#1|) (-1178) (-365 |#3|)) (T -366))
+((-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1178)) (-4 *5 (-1178)) (-4 *2 (-365 *5)) (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-365 *6)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1178)) (-4 *2 (-1178)) (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-365 *5)) (-4 *6 (-365 *2)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-4 *2 (-365 *6)) (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-365 *5)))))
+(-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4185 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-4277 (((-618 |#1|) $) 32)) (-4289 (($ $ (-747)) 33)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-4282 (((-1249 |#1| |#2|) (-1249 |#1| |#2|) $) 36)) (-4279 (($ $) 34)) (-4283 (((-1249 |#1| |#2|) (-1249 |#1| |#2|) $) 37)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4110 (($ $ |#1| $) 31) (($ $ (-618 |#1|) (-618 $)) 30)) (-4290 (((-747) $) 38)) (-3867 (($ $ $) 29)) (-4300 (((-835) $) 11) (($ |#1|) 41) (((-1240 |#1| |#2|) $) 40) (((-1249 |#1| |#2|) $) 39)) (-4296 ((|#2| (-1249 |#1| |#2|) $) 42)) (-2979 (($) 18 T CONST)) (-1844 (($ (-648 |#1|)) 35)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#2|) 28 (|has| |#2| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
(((-367 |#1| |#2|) (-138) (-823) (-170)) (T -367))
-((-1569 (*1 *2 *3 *1) (-12 (-5 *3 (-1249 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-823)) (-4 *2 (-170)))) (-3845 (*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-1240 *3 *4)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-1249 *3 *4)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-747)))) (-3434 (*1 *2 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-3537 (*1 *2 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-3611 (*1 *1 *2) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-4 *1 (-367 *3 *4)) (-4 *4 (-170)))) (-3276 (*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) (-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-621 *3)))) (-2685 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) (-2685 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 *1)) (-4 *1 (-367 *4 *5)) (-4 *4 (-823)) (-4 *5 (-170)))))
-(-13 (-612 |t#2|) (-10 -8 (-15 -1569 (|t#2| (-1249 |t#1| |t#2|) $)) (-15 -3845 ($ |t#1|)) (-15 -3845 ((-1240 |t#1| |t#2|) $)) (-15 -3845 ((-1249 |t#1| |t#2|) $)) (-15 -3068 ((-747) $)) (-15 -3434 ((-1249 |t#1| |t#2|) (-1249 |t#1| |t#2|) $)) (-15 -3537 ((-1249 |t#1| |t#2|) (-1249 |t#1| |t#2|) $)) (-15 -3611 ($ (-648 |t#1|))) (-15 -3276 ($ $)) (-15 -3447 ($ $ (-747))) (-15 -3303 ((-621 |t#1|) $)) (-15 -2685 ($ $ |t#1| $)) (-15 -2685 ($ $ (-621 |t#1|) (-621 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#2|) . T) ((-612 |#2|) . T) ((-694 |#2|) . T) ((-1024 |#2|) . T) ((-1066) . T))
-((-2452 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-3378 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2589 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
-(((-368 |#1| |#2|) (-10 -7 (-15 -3378 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2589 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2452 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1179) (-13 (-366 |#1|) (-10 -7 (-6 -4337)))) (T -368))
-((-2452 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1179)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4337)))))) (-2589 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1179)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4337)))))) (-3378 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1179)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4337)))))))
-(-10 -7 (-15 -3378 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2589 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2452 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-1698 (((-665 |#2|) (-665 $)) NIL) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 22) (((-665 (-549)) (-665 $)) 14)))
-(((-369 |#1| |#2|) (-10 -8 (-15 -1698 ((-665 (-549)) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-665 |#2|) (-665 |#1|)))) (-370 |#2|) (-1018)) (T -369))
-NIL
-(-10 -8 (-15 -1698 ((-665 (-549)) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-665 |#2|) (-665 |#1|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-1698 (((-665 |#1|) (-665 $)) 34) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 33) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 41 (|has| |#1| (-617 (-549)))) (((-665 (-549)) (-665 $)) 40 (|has| |#1| (-617 (-549))))) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ (-549)) 27)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-4296 (*1 *2 *3 *1) (-12 (-5 *3 (-1249 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-823)) (-4 *2 (-170)))) (-4300 (*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) (-4300 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-1240 *3 *4)))) (-4300 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-1249 *3 *4)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-747)))) (-4283 (*1 *2 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-4282 (*1 *2 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-4 *1 (-367 *3 *4)) (-4 *4 (-170)))) (-4279 (*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) (-4289 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-4277 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-618 *3)))) (-4110 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 *1)) (-4 *1 (-367 *4 *5)) (-4 *4 (-823)) (-4 *5 (-170)))))
+(-13 (-613 |t#2|) (-10 -8 (-15 -4296 (|t#2| (-1249 |t#1| |t#2|) $)) (-15 -4300 ($ |t#1|)) (-15 -4300 ((-1240 |t#1| |t#2|) $)) (-15 -4300 ((-1249 |t#1| |t#2|) $)) (-15 -4290 ((-747) $)) (-15 -4283 ((-1249 |t#1| |t#2|) (-1249 |t#1| |t#2|) $)) (-15 -4282 ((-1249 |t#1| |t#2|) (-1249 |t#1| |t#2|) $)) (-15 -1844 ($ (-648 |t#1|))) (-15 -4279 ($ $)) (-15 -4289 ($ $ (-747))) (-15 -4277 ((-618 |t#1|) $)) (-15 -4110 ($ $ |t#1| $)) (-15 -4110 ($ $ (-618 |t#1|) (-618 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#2|) . T) ((-613 |#2|) . T) ((-694 |#2|) . T) ((-1024 |#2|) . T) ((-1067) . T))
+((-1847 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-1845 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1846 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
+(((-368 |#1| |#2|) (-10 -7 (-15 -1845 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1846 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1847 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1178) (-13 (-365 |#1|) (-10 -7 (-6 -4337)))) (T -368))
+((-1847 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337)))))) (-1846 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337)))))) (-1845 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337)))))))
+(-10 -7 (-15 -1845 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1846 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1847 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-2353 (((-665 |#2|) (-665 $)) NIL) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 22) (((-665 (-535)) (-665 $)) 14)))
+(((-369 |#1| |#2|) (-10 -8 (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 |#2|) (-665 |#1|)))) (-370 |#2|) (-1018)) (T -369))
+NIL
+(-10 -8 (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 |#2|) (-665 |#1|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2353 (((-665 |#1|) (-665 $)) 34) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 33) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 41 (|has| |#1| (-617 (-535)))) (((-665 (-535)) (-665 $)) 40 (|has| |#1| (-617 (-535))))) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-370 |#1|) (-138) (-1018)) (T -370))
NIL
-(-13 (-617 |t#1|) (-10 -7 (IF (|has| |t#1| (-617 (-549))) (-6 (-617 (-549))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3095 (((-621 (-287 (-923 (-167 |#1|)))) (-287 (-400 (-923 (-167 (-549))))) |#1|) 51) (((-621 (-287 (-923 (-167 |#1|)))) (-400 (-923 (-167 (-549)))) |#1|) 50) (((-621 (-621 (-287 (-923 (-167 |#1|))))) (-621 (-287 (-400 (-923 (-167 (-549)))))) |#1|) 47) (((-621 (-621 (-287 (-923 (-167 |#1|))))) (-621 (-400 (-923 (-167 (-549))))) |#1|) 41)) (-2136 (((-621 (-621 (-167 |#1|))) (-621 (-400 (-923 (-167 (-549))))) (-621 (-1142)) |#1|) 30) (((-621 (-167 |#1|)) (-400 (-923 (-167 (-549)))) |#1|) 18)))
-(((-371 |#1|) (-10 -7 (-15 -3095 ((-621 (-621 (-287 (-923 (-167 |#1|))))) (-621 (-400 (-923 (-167 (-549))))) |#1|)) (-15 -3095 ((-621 (-621 (-287 (-923 (-167 |#1|))))) (-621 (-287 (-400 (-923 (-167 (-549)))))) |#1|)) (-15 -3095 ((-621 (-287 (-923 (-167 |#1|)))) (-400 (-923 (-167 (-549)))) |#1|)) (-15 -3095 ((-621 (-287 (-923 (-167 |#1|)))) (-287 (-400 (-923 (-167 (-549))))) |#1|)) (-15 -2136 ((-621 (-167 |#1|)) (-400 (-923 (-167 (-549)))) |#1|)) (-15 -2136 ((-621 (-621 (-167 |#1|))) (-621 (-400 (-923 (-167 (-549))))) (-621 (-1142)) |#1|))) (-13 (-356) (-821))) (T -371))
-((-2136 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 (-400 (-923 (-167 (-549)))))) (-5 *4 (-621 (-1142))) (-5 *2 (-621 (-621 (-167 *5)))) (-5 *1 (-371 *5)) (-4 *5 (-13 (-356) (-821))))) (-2136 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 (-167 (-549))))) (-5 *2 (-621 (-167 *4))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-821))))) (-3095 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-923 (-167 (-549)))))) (-5 *2 (-621 (-287 (-923 (-167 *4))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-821))))) (-3095 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 (-167 (-549))))) (-5 *2 (-621 (-287 (-923 (-167 *4))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-821))))) (-3095 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-287 (-400 (-923 (-167 (-549))))))) (-5 *2 (-621 (-621 (-287 (-923 (-167 *4)))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-821))))) (-3095 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-400 (-923 (-167 (-549)))))) (-5 *2 (-621 (-621 (-287 (-923 (-167 *4)))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-821))))))
-(-10 -7 (-15 -3095 ((-621 (-621 (-287 (-923 (-167 |#1|))))) (-621 (-400 (-923 (-167 (-549))))) |#1|)) (-15 -3095 ((-621 (-621 (-287 (-923 (-167 |#1|))))) (-621 (-287 (-400 (-923 (-167 (-549)))))) |#1|)) (-15 -3095 ((-621 (-287 (-923 (-167 |#1|)))) (-400 (-923 (-167 (-549)))) |#1|)) (-15 -3095 ((-621 (-287 (-923 (-167 |#1|)))) (-287 (-400 (-923 (-167 (-549))))) |#1|)) (-15 -2136 ((-621 (-167 |#1|)) (-400 (-923 (-167 (-549)))) |#1|)) (-15 -2136 ((-621 (-621 (-167 |#1|))) (-621 (-400 (-923 (-167 (-549))))) (-621 (-1142)) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 33)) (-2364 (((-549) $) 55)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2305 (($ $) 110)) (-1663 (($ $) 82)) (-1511 (($ $) 71)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2134 (($ $) 44)) (-2647 (((-112) $ $) NIL)) (-1639 (($ $) 80)) (-1485 (($ $) 69)) (-3902 (((-549) $) 64)) (-1309 (($ $ (-549)) 62)) (-1685 (($ $) NIL)) (-1538 (($ $) NIL)) (-1705 (($) NIL T CONST)) (-4016 (($ $) 112)) (-2713 (((-3 (-549) "failed") $) 189) (((-3 (-400 (-549)) "failed") $) 185)) (-2658 (((-549) $) 187) (((-400 (-549)) $) 183)) (-2094 (($ $ $) NIL)) (-3699 (((-549) $ $) 102)) (-3976 (((-3 $ "failed") $) 114)) (-2522 (((-400 (-549)) $ (-747)) 190) (((-400 (-549)) $ (-747) (-747)) 182)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3235 (((-892)) 73) (((-892) (-892)) 98 (|has| $ (-6 -4327)))) (-3079 (((-112) $) 106)) (-1425 (($) 40)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL)) (-2835 (((-1230) (-747)) 152)) (-2620 (((-1230)) 157) (((-1230) (-747)) 158)) (-3576 (((-1230)) 159) (((-1230) (-747)) 160)) (-2116 (((-1230)) 155) (((-1230) (-747)) 156)) (-2078 (((-549) $) 58)) (-3987 (((-112) $) 104)) (-3930 (($ $ (-549)) NIL)) (-2758 (($ $) 48)) (-4117 (($ $) NIL)) (-2847 (((-112) $) 35)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2862 (($ $ $) NIL) (($) NIL (-12 (-4007 (|has| $ (-6 -4319))) (-4007 (|has| $ (-6 -4327)))))) (-3574 (($ $ $) NIL) (($) 99 (-12 (-4007 (|has| $ (-6 -4319))) (-4007 (|has| $ (-6 -4327)))))) (-1460 (((-549) $) 17)) (-3897 (($) 87) (($ $) 92)) (-2299 (($) 91) (($ $) 93)) (-3631 (($ $) 83)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 116)) (-3646 (((-892) (-549)) 43 (|has| $ (-6 -4327)))) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1260 (($ $) 53)) (-4060 (($ $) 109)) (-1354 (($ (-549) (-549)) 107) (($ (-549) (-549) (-892)) 108)) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3577 (((-549) $) 19)) (-4293 (($) 94)) (-2718 (($ $) 79)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-1587 (((-892)) 100) (((-892) (-892)) 101 (|has| $ (-6 -4327)))) (-3455 (($ $ (-747)) NIL) (($ $) 115)) (-2717 (((-892) (-549)) 47 (|has| $ (-6 -4327)))) (-1697 (($ $) NIL)) (-1551 (($ $) NIL)) (-1674 (($ $) NIL)) (-1525 (($ $) NIL)) (-1649 (($ $) 81)) (-1500 (($ $) 70)) (-2844 (((-372) $) 175) (((-219) $) 177) (((-863 (-372)) $) NIL) (((-1124) $) 162) (((-525) $) 173) (($ (-219)) 181)) (-3845 (((-834) $) 164) (($ (-549)) 186) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-549)) 186) (($ (-400 (-549))) NIL) (((-219) $) 178)) (-1723 (((-747)) NIL)) (-2926 (($ $) 111)) (-3960 (((-892)) 54) (((-892) (-892)) 66 (|has| $ (-6 -4327)))) (-1863 (((-892)) 103)) (-1732 (($ $) 86)) (-1585 (($ $) 46) (($ $ $) 52)) (-4053 (((-112) $ $) NIL)) (-1708 (($ $) 84)) (-1562 (($ $) 37)) (-1757 (($ $) NIL)) (-1612 (($ $) NIL)) (-1933 (($ $) NIL)) (-1625 (($ $) NIL)) (-1744 (($ $) NIL)) (-1599 (($ $) NIL)) (-1721 (($ $) 85)) (-1575 (($ $) 49)) (-3603 (($ $) 51)) (-3275 (($) 34 T CONST)) (-3287 (($) 38 T CONST)) (-3135 (((-1124) $) 27) (((-1124) $ (-112)) 29) (((-1230) (-798) $) 30) (((-1230) (-798) $ (-112)) 31)) (-1700 (($ $ (-747)) NIL) (($ $) NIL)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 39)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 42)) (-2512 (($ $ $) 45) (($ $ (-549)) 41)) (-2499 (($ $) 36) (($ $ $) 50)) (-2485 (($ $ $) 61)) (** (($ $ (-892)) 67) (($ $ (-747)) NIL) (($ $ (-549)) 88) (($ $ (-400 (-549))) 125) (($ $ $) 117)) (* (($ (-892) $) 65) (($ (-747) $) NIL) (($ (-549) $) 68) (($ $ $) 60) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
-(((-372) (-13 (-397) (-227) (-594 (-1124)) (-804) (-593 (-219)) (-1164) (-594 (-525)) (-10 -8 (-15 -2512 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -2758 ($ $)) (-15 -3699 ((-549) $ $)) (-15 -1309 ($ $ (-549))) (-15 -2522 ((-400 (-549)) $ (-747))) (-15 -2522 ((-400 (-549)) $ (-747) (-747))) (-15 -3897 ($)) (-15 -2299 ($)) (-15 -4293 ($)) (-15 -1585 ($ $ $)) (-15 -3897 ($ $)) (-15 -2299 ($ $)) (-15 -2844 ($ (-219))) (-15 -3576 ((-1230))) (-15 -3576 ((-1230) (-747))) (-15 -2116 ((-1230))) (-15 -2116 ((-1230) (-747))) (-15 -2620 ((-1230))) (-15 -2620 ((-1230) (-747))) (-15 -2835 ((-1230) (-747))) (-6 -4327) (-6 -4319)))) (T -372))
-((** (*1 *1 *1 *1) (-5 *1 (-372))) (-2512 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-372)))) (-2758 (*1 *1 *1) (-5 *1 (-372))) (-3699 (*1 *2 *1 *1) (-12 (-5 *2 (-549)) (-5 *1 (-372)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-372)))) (-2522 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-372)))) (-2522 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-372)))) (-3897 (*1 *1) (-5 *1 (-372))) (-2299 (*1 *1) (-5 *1 (-372))) (-4293 (*1 *1) (-5 *1 (-372))) (-1585 (*1 *1 *1 *1) (-5 *1 (-372))) (-3897 (*1 *1 *1) (-5 *1 (-372))) (-2299 (*1 *1 *1) (-5 *1 (-372))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-372)))) (-3576 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-372)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-372)))) (-2116 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-372)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-372)))) (-2620 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-372)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-372)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-372)))))
-(-13 (-397) (-227) (-594 (-1124)) (-804) (-593 (-219)) (-1164) (-594 (-525)) (-10 -8 (-15 -2512 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -2758 ($ $)) (-15 -3699 ((-549) $ $)) (-15 -1309 ($ $ (-549))) (-15 -2522 ((-400 (-549)) $ (-747))) (-15 -2522 ((-400 (-549)) $ (-747) (-747))) (-15 -3897 ($)) (-15 -2299 ($)) (-15 -4293 ($)) (-15 -1585 ($ $ $)) (-15 -3897 ($ $)) (-15 -2299 ($ $)) (-15 -2844 ($ (-219))) (-15 -3576 ((-1230))) (-15 -3576 ((-1230) (-747))) (-15 -2116 ((-1230))) (-15 -2116 ((-1230) (-747))) (-15 -2620 ((-1230))) (-15 -2620 ((-1230) (-747))) (-15 -2835 ((-1230) (-747))) (-6 -4327) (-6 -4319)))
-((-2808 (((-621 (-287 (-923 |#1|))) (-287 (-400 (-923 (-549)))) |#1|) 46) (((-621 (-287 (-923 |#1|))) (-400 (-923 (-549))) |#1|) 45) (((-621 (-621 (-287 (-923 |#1|)))) (-621 (-287 (-400 (-923 (-549))))) |#1|) 42) (((-621 (-621 (-287 (-923 |#1|)))) (-621 (-400 (-923 (-549)))) |#1|) 36)) (-2922 (((-621 |#1|) (-400 (-923 (-549))) |#1|) 20) (((-621 (-621 |#1|)) (-621 (-400 (-923 (-549)))) (-621 (-1142)) |#1|) 30)))
-(((-373 |#1|) (-10 -7 (-15 -2808 ((-621 (-621 (-287 (-923 |#1|)))) (-621 (-400 (-923 (-549)))) |#1|)) (-15 -2808 ((-621 (-621 (-287 (-923 |#1|)))) (-621 (-287 (-400 (-923 (-549))))) |#1|)) (-15 -2808 ((-621 (-287 (-923 |#1|))) (-400 (-923 (-549))) |#1|)) (-15 -2808 ((-621 (-287 (-923 |#1|))) (-287 (-400 (-923 (-549)))) |#1|)) (-15 -2922 ((-621 (-621 |#1|)) (-621 (-400 (-923 (-549)))) (-621 (-1142)) |#1|)) (-15 -2922 ((-621 |#1|) (-400 (-923 (-549))) |#1|))) (-13 (-821) (-356))) (T -373))
-((-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 (-549)))) (-5 *2 (-621 *4)) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-2922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 (-400 (-923 (-549))))) (-5 *4 (-621 (-1142))) (-5 *2 (-621 (-621 *5))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-821) (-356))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-923 (-549))))) (-5 *2 (-621 (-287 (-923 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 (-549)))) (-5 *2 (-621 (-287 (-923 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-287 (-400 (-923 (-549)))))) (-5 *2 (-621 (-621 (-287 (-923 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-400 (-923 (-549))))) (-5 *2 (-621 (-621 (-287 (-923 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))))
-(-10 -7 (-15 -2808 ((-621 (-621 (-287 (-923 |#1|)))) (-621 (-400 (-923 (-549)))) |#1|)) (-15 -2808 ((-621 (-621 (-287 (-923 |#1|)))) (-621 (-287 (-400 (-923 (-549))))) |#1|)) (-15 -2808 ((-621 (-287 (-923 |#1|))) (-400 (-923 (-549))) |#1|)) (-15 -2808 ((-621 (-287 (-923 |#1|))) (-287 (-400 (-923 (-549)))) |#1|)) (-15 -2922 ((-621 (-621 |#1|)) (-621 (-400 (-923 (-549)))) (-621 (-1142)) |#1|)) (-15 -2922 ((-621 |#1|) (-400 (-923 (-549))) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#2| "failed") $) 26)) (-2658 ((|#2| $) 28)) (-2069 (($ $) NIL)) (-3454 (((-747) $) 10)) (-1298 (((-621 $) $) 20)) (-2427 (((-112) $) NIL)) (-3525 (($ |#2| |#1|) 18)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-3196 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2027 ((|#2| $) 15)) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 45) (($ |#2|) 27)) (-3330 (((-621 |#1|) $) 17)) (-2944 ((|#1| $ |#2|) 47)) (-3275 (($) 29 T CONST)) (-2729 (((-621 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
-(((-374 |#1| |#2|) (-13 (-375 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1018) (-823)) (T -374))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-374 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823)))))
-(-13 (-375 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2713 (((-3 |#2| "failed") $) 44)) (-2658 ((|#2| $) 43)) (-2069 (($ $) 30)) (-3454 (((-747) $) 34)) (-1298 (((-621 $) $) 35)) (-2427 (((-112) $) 38)) (-3525 (($ |#2| |#1|) 39)) (-2796 (($ (-1 |#1| |#1|) $) 40)) (-3196 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2027 ((|#2| $) 33)) (-2042 ((|#1| $) 32)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ |#2|) 45)) (-3330 (((-621 |#1|) $) 36)) (-2944 ((|#1| $ |#2|) 41)) (-3275 (($) 18 T CONST)) (-2729 (((-621 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-375 |#1| |#2|) (-138) (-1018) (-1066)) (T -375))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1066)))) (-2944 (*1 *2 *1 *3) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1066)) (-4 *2 (-1018)))) (-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1066)))) (-3525 (*1 *1 *2 *3) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1066)))) (-2427 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1066)) (-5 *2 (-112)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1066)) (-5 *2 (-621 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1066)) (-5 *2 (-621 *3)))) (-1298 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-1066)) (-5 *2 (-621 *1)) (-4 *1 (-375 *3 *4)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1066)) (-5 *2 (-747)))) (-2027 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1066)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1066)) (-4 *2 (-1018)))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1066)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2069 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1066)))))
-(-13 (-111 |t#1| |t#1|) (-1009 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2944 (|t#1| $ |t#2|)) (-15 -2796 ($ (-1 |t#1| |t#1|) $)) (-15 -3525 ($ |t#2| |t#1|)) (-15 -2427 ((-112) $)) (-15 -2729 ((-621 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3330 ((-621 |t#1|) $)) (-15 -1298 ((-621 $) $)) (-15 -3454 ((-747) $)) (-15 -2027 (|t#2| $)) (-15 -2042 (|t#1| $)) (-15 -3196 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2069 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-694 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-694 |#1|) |has| |#1| (-170)) ((-1009 |#2|) . T) ((-1024 |#1|) . T) ((-1066) . T))
-((-3315 (((-1230) $) 7)) (-3845 (((-834) $) 8) (($ (-665 (-675))) 14) (($ (-621 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 11)))
-(((-376) (-138)) (T -376))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-665 (-675))) (-4 *1 (-376)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-376)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) (-4 *1 (-376)))))
-(-13 (-388) (-10 -8 (-15 -3845 ($ (-665 (-675)))) (-15 -3845 ($ (-621 (-323)))) (-15 -3845 ($ (-323))) (-15 -3845 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))))))
-(((-593 (-834)) . T) ((-388) . T) ((-1179) . T))
-((-2713 (((-3 $ "failed") (-665 (-309 (-372)))) 21) (((-3 $ "failed") (-665 (-309 (-549)))) 19) (((-3 $ "failed") (-665 (-923 (-372)))) 17) (((-3 $ "failed") (-665 (-923 (-549)))) 15) (((-3 $ "failed") (-665 (-400 (-923 (-372))))) 13) (((-3 $ "failed") (-665 (-400 (-923 (-549))))) 11)) (-2658 (($ (-665 (-309 (-372)))) 22) (($ (-665 (-309 (-549)))) 20) (($ (-665 (-923 (-372)))) 18) (($ (-665 (-923 (-549)))) 16) (($ (-665 (-400 (-923 (-372))))) 14) (($ (-665 (-400 (-923 (-549))))) 12)) (-3315 (((-1230) $) 7)) (-3845 (((-834) $) 8) (($ (-621 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 23)))
-(((-377) (-138)) (T -377))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-377)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-377)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) (-4 *1 (-377)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-665 (-309 (-372)))) (-4 *1 (-377)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-309 (-372)))) (-4 *1 (-377)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-665 (-309 (-549)))) (-4 *1 (-377)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-309 (-549)))) (-4 *1 (-377)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-665 (-923 (-372)))) (-4 *1 (-377)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-923 (-372)))) (-4 *1 (-377)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-665 (-923 (-549)))) (-4 *1 (-377)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-923 (-549)))) (-4 *1 (-377)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-923 (-372))))) (-4 *1 (-377)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-400 (-923 (-372))))) (-4 *1 (-377)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-923 (-549))))) (-4 *1 (-377)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-400 (-923 (-549))))) (-4 *1 (-377)))))
-(-13 (-388) (-10 -8 (-15 -3845 ($ (-621 (-323)))) (-15 -3845 ($ (-323))) (-15 -3845 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323)))))) (-15 -2658 ($ (-665 (-309 (-372))))) (-15 -2713 ((-3 $ "failed") (-665 (-309 (-372))))) (-15 -2658 ($ (-665 (-309 (-549))))) (-15 -2713 ((-3 $ "failed") (-665 (-309 (-549))))) (-15 -2658 ($ (-665 (-923 (-372))))) (-15 -2713 ((-3 $ "failed") (-665 (-923 (-372))))) (-15 -2658 ($ (-665 (-923 (-549))))) (-15 -2713 ((-3 $ "failed") (-665 (-923 (-549))))) (-15 -2658 ($ (-665 (-400 (-923 (-372)))))) (-15 -2713 ((-3 $ "failed") (-665 (-400 (-923 (-372)))))) (-15 -2658 ($ (-665 (-400 (-923 (-549)))))) (-15 -2713 ((-3 $ "failed") (-665 (-400 (-923 (-549))))))))
-(((-593 (-834)) . T) ((-388) . T) ((-1179) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2069 (($ $) NIL)) (-2244 (($ |#1| |#2|) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4083 ((|#2| $) NIL)) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 28)) (-3275 (($) 12 T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
-(((-378 |#1| |#2|) (-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|))) (-1018) (-823)) (T -378))
+(-13 (-617 |t#1|) (-10 -7 (IF (|has| |t#1| (-617 (-535))) (-6 (-617 (-535))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 33)) (-3447 (((-535) $) 55)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4113 (($ $) 110)) (-3829 (($ $) 82)) (-3985 (($ $) 71)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3358 (($ $) 44)) (-1700 (((-112) $ $) NIL)) (-3827 (($ $) 80)) (-3984 (($ $) 69)) (-3969 (((-535) $) 64)) (-2681 (($ $ (-535)) 62)) (-3831 (($ $) NIL)) (-3983 (($ $) NIL)) (-3879 (($) NIL T CONST)) (-3445 (($ $) 112)) (-3491 (((-3 (-535) #1="failed") $) 189) (((-3 (-400 (-535)) #1#) $) 185)) (-3490 (((-535) $) 187) (((-400 (-535)) $) 183)) (-2883 (($ $ $) NIL)) (-1856 (((-535) $ $) 102)) (-3804 (((-3 $ "failed") $) 114)) (-1855 (((-400 (-535)) $ (-747)) 190) (((-400 (-535)) $ (-747) (-747)) 182)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2457 (((-890)) 73) (((-890) (-890)) 98 (|has| $ (-6 -4327)))) (-3520 (((-112) $) 106)) (-3973 (($) 40)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL)) (-1848 (((-1230) (-747)) 152)) (-1849 (((-1230)) 157) (((-1230) (-747)) 158)) (-1851 (((-1230)) 159) (((-1230) (-747)) 160)) (-1850 (((-1230)) 155) (((-1230) (-747)) 156)) (-4114 (((-535) $) 58)) (-2493 (((-112) $) 104)) (-3332 (($ $ (-535)) NIL)) (-2683 (($ $) 48)) (-3450 (($ $) NIL)) (-3521 (((-112) $) 35)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL) (($) NIL (-12 (-3659 (|has| $ (-6 -4319))) (-3659 (|has| $ (-6 -4327)))))) (-3661 (($ $ $) NIL) (($) 99 (-12 (-3659 (|has| $ (-6 -4319))) (-3659 (|has| $ (-6 -4327)))))) (-2458 (((-535) $) 17)) (-1854 (($) 87) (($ $) 92)) (-1853 (($) 91) (($ $) 93)) (-4285 (($ $) 83)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 116)) (-1884 (((-890) (-535)) 43 (|has| $ (-6 -4327)))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) 53)) (-3448 (($ $) 109)) (-3588 (($ (-535) (-535)) 107) (($ (-535) (-535) (-890)) 108)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2484 (((-535) $) 19)) (-1852 (($) 94)) (-4286 (($ $) 79)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-2932 (((-890)) 100) (((-890) (-890)) 101 (|has| $ (-6 -4327)))) (-4153 (($ $ (-747)) NIL) (($ $) 115)) (-1883 (((-890) (-535)) 47 (|has| $ (-6 -4327)))) (-3832 (($ $) NIL)) (-3982 (($ $) NIL)) (-3830 (($ $) NIL)) (-3981 (($ $) NIL)) (-3828 (($ $) 81)) (-3980 (($ $) 70)) (-4313 (((-371) $) 175) (((-219) $) 177) (((-861 (-371)) $) NIL) (((-1124) $) 162) (((-524) $) 173) (($ (-219)) 181)) (-4300 (((-835) $) 164) (($ (-535)) 186) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-535)) 186) (($ (-400 (-535))) NIL) (((-219) $) 178)) (-3444 (((-747)) NIL)) (-3449 (($ $) 111)) (-1885 (((-890)) 54) (((-890) (-890)) 66 (|has| $ (-6 -4327)))) (-3015 (((-890)) 103)) (-3835 (($ $) 86)) (-3823 (($ $) 46) (($ $ $) 52)) (-2170 (((-112) $ $) NIL)) (-3833 (($ $) 84)) (-3821 (($ $) 37)) (-3837 (($ $) NIL)) (-3825 (($ $) NIL)) (-3838 (($ $) NIL)) (-3826 (($ $) NIL)) (-3836 (($ $) NIL)) (-3824 (($ $) NIL)) (-3834 (($ $) 85)) (-3822 (($ $) 49)) (-3725 (($ $) 51)) (-2979 (($) 34 T CONST)) (-2985 (($) 38 T CONST)) (-2825 (((-1124) $) 27) (((-1124) $ (-112)) 29) (((-1230) (-799) $) 30) (((-1230) (-799) $ (-112)) 31)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 39)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 42)) (-4291 (($ $ $) 45) (($ $ (-535)) 41)) (-4180 (($ $) 36) (($ $ $) 50)) (-4182 (($ $ $) 61)) (** (($ $ (-890)) 67) (($ $ (-747)) NIL) (($ $ (-535)) 88) (($ $ (-400 (-535))) 125) (($ $ $) 117)) (* (($ (-890) $) 65) (($ (-747) $) NIL) (($ (-535) $) 68) (($ $ $) 60) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL)))
+(((-371) (-13 (-397) (-227) (-594 (-1124)) (-797) (-593 (-219)) (-1164) (-594 (-524)) (-10 -8 (-15 -4291 ($ $ (-535))) (-15 ** ($ $ $)) (-15 -2683 ($ $)) (-15 -1856 ((-535) $ $)) (-15 -2681 ($ $ (-535))) (-15 -1855 ((-400 (-535)) $ (-747))) (-15 -1855 ((-400 (-535)) $ (-747) (-747))) (-15 -1854 ($)) (-15 -1853 ($)) (-15 -1852 ($)) (-15 -3823 ($ $ $)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -4313 ($ (-219))) (-15 -1851 ((-1230))) (-15 -1851 ((-1230) (-747))) (-15 -1850 ((-1230))) (-15 -1850 ((-1230) (-747))) (-15 -1849 ((-1230))) (-15 -1849 ((-1230) (-747))) (-15 -1848 ((-1230) (-747))) (-6 -4327) (-6 -4319)))) (T -371))
+((** (*1 *1 *1 *1) (-5 *1 (-371))) (-4291 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-371)))) (-2683 (*1 *1 *1) (-5 *1 (-371))) (-1856 (*1 *2 *1 *1) (-12 (-5 *2 (-535)) (-5 *1 (-371)))) (-2681 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-371)))) (-1855 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-371)))) (-1855 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-371)))) (-1854 (*1 *1) (-5 *1 (-371))) (-1853 (*1 *1) (-5 *1 (-371))) (-1852 (*1 *1) (-5 *1 (-371))) (-3823 (*1 *1 *1 *1) (-5 *1 (-371))) (-1854 (*1 *1 *1) (-5 *1 (-371))) (-1853 (*1 *1 *1) (-5 *1 (-371))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-371)))) (-1851 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-371)))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371)))) (-1850 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-371)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371)))) (-1849 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-371)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371)))))
+(-13 (-397) (-227) (-594 (-1124)) (-797) (-593 (-219)) (-1164) (-594 (-524)) (-10 -8 (-15 -4291 ($ $ (-535))) (-15 ** ($ $ $)) (-15 -2683 ($ $)) (-15 -1856 ((-535) $ $)) (-15 -2681 ($ $ (-535))) (-15 -1855 ((-400 (-535)) $ (-747))) (-15 -1855 ((-400 (-535)) $ (-747) (-747))) (-15 -1854 ($)) (-15 -1853 ($)) (-15 -1852 ($)) (-15 -3823 ($ $ $)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -4313 ($ (-219))) (-15 -1851 ((-1230))) (-15 -1851 ((-1230) (-747))) (-15 -1850 ((-1230))) (-15 -1850 ((-1230) (-747))) (-15 -1849 ((-1230))) (-15 -1849 ((-1230) (-747))) (-15 -1848 ((-1230) (-747))) (-6 -4327) (-6 -4319)))
+((-1857 (((-618 (-286 (-917 (-166 |#1|)))) (-286 (-400 (-917 (-166 (-535))))) |#1|) 51) (((-618 (-286 (-917 (-166 |#1|)))) (-400 (-917 (-166 (-535)))) |#1|) 50) (((-618 (-618 (-286 (-917 (-166 |#1|))))) (-618 (-286 (-400 (-917 (-166 (-535)))))) |#1|) 47) (((-618 (-618 (-286 (-917 (-166 |#1|))))) (-618 (-400 (-917 (-166 (-535))))) |#1|) 41)) (-1858 (((-618 (-618 (-166 |#1|))) (-618 (-400 (-917 (-166 (-535))))) (-618 (-1142)) |#1|) 30) (((-618 (-166 |#1|)) (-400 (-917 (-166 (-535)))) |#1|) 18)))
+(((-372 |#1|) (-10 -7 (-15 -1857 ((-618 (-618 (-286 (-917 (-166 |#1|))))) (-618 (-400 (-917 (-166 (-535))))) |#1|)) (-15 -1857 ((-618 (-618 (-286 (-917 (-166 |#1|))))) (-618 (-286 (-400 (-917 (-166 (-535)))))) |#1|)) (-15 -1857 ((-618 (-286 (-917 (-166 |#1|)))) (-400 (-917 (-166 (-535)))) |#1|)) (-15 -1857 ((-618 (-286 (-917 (-166 |#1|)))) (-286 (-400 (-917 (-166 (-535))))) |#1|)) (-15 -1858 ((-618 (-166 |#1|)) (-400 (-917 (-166 (-535)))) |#1|)) (-15 -1858 ((-618 (-618 (-166 |#1|))) (-618 (-400 (-917 (-166 (-535))))) (-618 (-1142)) |#1|))) (-13 (-356) (-821))) (T -372))
+((-1858 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 (-400 (-917 (-166 (-535)))))) (-5 *4 (-618 (-1142))) (-5 *2 (-618 (-618 (-166 *5)))) (-5 *1 (-372 *5)) (-4 *5 (-13 (-356) (-821))))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 (-166 (-535))))) (-5 *2 (-618 (-166 *4))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-821))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-917 (-166 (-535)))))) (-5 *2 (-618 (-286 (-917 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-821))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 (-166 (-535))))) (-5 *2 (-618 (-286 (-917 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-821))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-286 (-400 (-917 (-166 (-535))))))) (-5 *2 (-618 (-618 (-286 (-917 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-821))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-400 (-917 (-166 (-535)))))) (-5 *2 (-618 (-618 (-286 (-917 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-821))))))
+(-10 -7 (-15 -1857 ((-618 (-618 (-286 (-917 (-166 |#1|))))) (-618 (-400 (-917 (-166 (-535))))) |#1|)) (-15 -1857 ((-618 (-618 (-286 (-917 (-166 |#1|))))) (-618 (-286 (-400 (-917 (-166 (-535)))))) |#1|)) (-15 -1857 ((-618 (-286 (-917 (-166 |#1|)))) (-400 (-917 (-166 (-535)))) |#1|)) (-15 -1857 ((-618 (-286 (-917 (-166 |#1|)))) (-286 (-400 (-917 (-166 (-535))))) |#1|)) (-15 -1858 ((-618 (-166 |#1|)) (-400 (-917 (-166 (-535)))) |#1|)) (-15 -1858 ((-618 (-618 (-166 |#1|))) (-618 (-400 (-917 (-166 (-535))))) (-618 (-1142)) |#1|)))
+((-3919 (((-618 (-286 (-917 |#1|))) (-286 (-400 (-917 (-535)))) |#1|) 46) (((-618 (-286 (-917 |#1|))) (-400 (-917 (-535))) |#1|) 45) (((-618 (-618 (-286 (-917 |#1|)))) (-618 (-286 (-400 (-917 (-535))))) |#1|) 42) (((-618 (-618 (-286 (-917 |#1|)))) (-618 (-400 (-917 (-535)))) |#1|) 36)) (-1859 (((-618 |#1|) (-400 (-917 (-535))) |#1|) 20) (((-618 (-618 |#1|)) (-618 (-400 (-917 (-535)))) (-618 (-1142)) |#1|) 30)))
+(((-373 |#1|) (-10 -7 (-15 -3919 ((-618 (-618 (-286 (-917 |#1|)))) (-618 (-400 (-917 (-535)))) |#1|)) (-15 -3919 ((-618 (-618 (-286 (-917 |#1|)))) (-618 (-286 (-400 (-917 (-535))))) |#1|)) (-15 -3919 ((-618 (-286 (-917 |#1|))) (-400 (-917 (-535))) |#1|)) (-15 -3919 ((-618 (-286 (-917 |#1|))) (-286 (-400 (-917 (-535)))) |#1|)) (-15 -1859 ((-618 (-618 |#1|)) (-618 (-400 (-917 (-535)))) (-618 (-1142)) |#1|)) (-15 -1859 ((-618 |#1|) (-400 (-917 (-535))) |#1|))) (-13 (-821) (-356))) (T -373))
+((-1859 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 (-535)))) (-5 *2 (-618 *4)) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-1859 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 (-400 (-917 (-535))))) (-5 *4 (-618 (-1142))) (-5 *2 (-618 (-618 *5))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-821) (-356))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-917 (-535))))) (-5 *2 (-618 (-286 (-917 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 (-535)))) (-5 *2 (-618 (-286 (-917 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-286 (-400 (-917 (-535)))))) (-5 *2 (-618 (-618 (-286 (-917 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-400 (-917 (-535))))) (-5 *2 (-618 (-618 (-286 (-917 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))))
+(-10 -7 (-15 -3919 ((-618 (-618 (-286 (-917 |#1|)))) (-618 (-400 (-917 (-535)))) |#1|)) (-15 -3919 ((-618 (-618 (-286 (-917 |#1|)))) (-618 (-286 (-400 (-917 (-535))))) |#1|)) (-15 -3919 ((-618 (-286 (-917 |#1|))) (-400 (-917 (-535))) |#1|)) (-15 -3919 ((-618 (-286 (-917 |#1|))) (-286 (-400 (-917 (-535)))) |#1|)) (-15 -1859 ((-618 (-618 |#1|)) (-618 (-400 (-917 (-535)))) (-618 (-1142)) |#1|)) (-15 -1859 ((-618 |#1|) (-400 (-917 (-535))) |#1|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3214 (($ |#1| |#2|) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 28)) (-2979 (($) 12 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-374 |#1| |#2|) (-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|))) (-1018) (-823)) (T -374))
NIL
(-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|)))
-((-3833 (((-112) $ $) NIL)) (-3615 (((-747) $) 59)) (-1705 (($) NIL T CONST)) (-3537 (((-3 $ "failed") $ $) 61)) (-2713 (((-3 |#1| "failed") $) NIL)) (-2658 ((|#1| $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4076 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-3987 (((-112) $) 15)) (-3570 ((|#1| $ (-549)) NIL)) (-4162 (((-747) $ (-549)) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-2555 (($ (-1 |#1| |#1|) $) 38)) (-4072 (($ (-1 (-747) (-747)) $) 35)) (-3434 (((-3 $ "failed") $ $) 50)) (-2677 (((-1124) $) NIL)) (-2455 (($ $ $) 26)) (-1941 (($ $ $) 24)) (-3988 (((-1086) $) NIL)) (-2886 (((-621 (-2 (|:| |gen| |#1|) (|:| -2718 (-747)))) $) 32)) (-1346 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-3845 (((-834) $) 22) (($ |#1|) NIL)) (-3287 (($) 9 T CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) 41)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) 63 (|has| |#1| (-823)))) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ |#1| (-747)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
-(((-379 |#1|) (-13 (-703) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -1941 ($ $ $)) (-15 -2455 ($ $ $)) (-15 -3434 ((-3 $ "failed") $ $)) (-15 -3537 ((-3 $ "failed") $ $)) (-15 -1346 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4076 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3615 ((-747) $)) (-15 -2886 ((-621 (-2 (|:| |gen| |#1|) (|:| -2718 (-747)))) $)) (-15 -4162 ((-747) $ (-549))) (-15 -3570 (|#1| $ (-549))) (-15 -4072 ($ (-1 (-747) (-747)) $)) (-15 -2555 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-1066)) (T -379))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1066)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1066)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-379 *2)) (-4 *2 (-1066)))) (-1941 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1066)))) (-2455 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1066)))) (-3434 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1066)))) (-3537 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1066)))) (-1346 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1066)))) (-4076 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1066)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-379 *3)) (-4 *3 (-1066)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2718 (-747))))) (-5 *1 (-379 *3)) (-4 *3 (-1066)))) (-4162 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-747)) (-5 *1 (-379 *4)) (-4 *4 (-1066)))) (-3570 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-379 *2)) (-4 *2 (-1066)))) (-4072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-747) (-747))) (-5 *1 (-379 *3)) (-4 *3 (-1066)))) (-2555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-379 *3)))))
-(-13 (-703) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -1941 ($ $ $)) (-15 -2455 ($ $ $)) (-15 -3434 ((-3 $ "failed") $ $)) (-15 -3537 ((-3 $ "failed") $ $)) (-15 -1346 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4076 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3615 ((-747) $)) (-15 -2886 ((-621 (-2 (|:| |gen| |#1|) (|:| -2718 (-747)))) $)) (-15 -4162 ((-747) $ (-549))) (-15 -3570 (|#1| $ (-549))) (-15 -4072 ($ (-1 (-747) (-747)) $)) (-15 -2555 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2713 (((-3 (-549) "failed") $) 45)) (-2658 (((-549) $) 44)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2862 (($ $ $) 52)) (-3574 (($ $ $) 51)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-2038 (((-3 $ "failed") $ $) 40)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-549)) 46)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 49)) (-2424 (((-112) $ $) 48)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 50)) (-2411 (((-112) $ $) 47)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| "failed") $) 26)) (-3490 ((|#2| $) 28)) (-4302 (($ $) NIL)) (-2501 (((-747) $) 10)) (-3142 (((-618 $) $) 20)) (-4280 (((-112) $) NIL)) (-4281 (($ |#2| |#1|) 18)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-1860 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3215 ((|#2| $) 15)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 45) (($ |#2|) 27)) (-4160 (((-618 |#1|) $) 17)) (-4023 ((|#1| $ |#2|) 47)) (-2979 (($) 29 T CONST)) (-2984 (((-618 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
+(((-375 |#1| |#2|) (-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1018) (-823)) (T -375))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823)))))
+(-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-3722 (((-1230) $) 7)) (-4300 (((-835) $) 8) (($ (-665 (-675))) 14) (($ (-618 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 11)))
+(((-376) (-138)) (T -376))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-665 (-675))) (-4 *1 (-376)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-376)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) (-4 *1 (-376)))))
+(-13 (-389) (-10 -8 (-15 -4300 ($ (-665 (-675)))) (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-323))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))))))
+(((-593 (-835)) . T) ((-389) . T) ((-1178) . T))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#2| "failed") $) 44)) (-3490 ((|#2| $) 43)) (-4302 (($ $) 30)) (-2501 (((-747) $) 34)) (-3142 (((-618 $) $) 35)) (-4280 (((-112) $) 38)) (-4281 (($ |#2| |#1|) 39)) (-4301 (($ (-1 |#1| |#1|) $) 40)) (-1860 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3215 ((|#2| $) 33)) (-3508 ((|#1| $) 32)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ |#2|) 45)) (-4160 (((-618 |#1|) $) 36)) (-4023 ((|#1| $ |#2|) 41)) (-2979 (($) 18 T CONST)) (-2984 (((-618 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-377 |#1| |#2|) (-138) (-1018) (-1067)) (T -377))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1067)))) (-4023 (*1 *2 *1 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1018)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)))) (-4281 (*1 *1 *2 *3) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1067)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-112)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-618 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-618 *3)))) (-3142 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-618 *1)) (-4 *1 (-377 *3 *4)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-747)))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1067)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1018)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1067)))))
+(-13 (-111 |t#1| |t#1|) (-1009 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4023 (|t#1| $ |t#2|)) (-15 -4301 ($ (-1 |t#1| |t#1|) $)) (-15 -4281 ($ |t#2| |t#1|)) (-15 -4280 ((-112) $)) (-15 -2984 ((-618 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4160 ((-618 |t#1|) $)) (-15 -3142 ((-618 $) $)) (-15 -2501 ((-747) $)) (-15 -3215 (|t#2| $)) (-15 -3508 (|t#1| $)) (-15 -1860 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4302 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-694 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-694 |#1|) |has| |#1| (-170)) ((-1009 |#2|) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-3491 (((-3 $ "failed") (-665 (-307 (-371)))) 21) (((-3 $ "failed") (-665 (-307 (-535)))) 19) (((-3 $ "failed") (-665 (-917 (-371)))) 17) (((-3 $ "failed") (-665 (-917 (-535)))) 15) (((-3 $ "failed") (-665 (-400 (-917 (-371))))) 13) (((-3 $ "failed") (-665 (-400 (-917 (-535))))) 11)) (-3490 (($ (-665 (-307 (-371)))) 22) (($ (-665 (-307 (-535)))) 20) (($ (-665 (-917 (-371)))) 18) (($ (-665 (-917 (-535)))) 16) (($ (-665 (-400 (-917 (-371))))) 14) (($ (-665 (-400 (-917 (-535))))) 12)) (-3722 (((-1230) $) 7)) (-4300 (((-835) $) 8) (($ (-618 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 23)))
+(((-378) (-138)) (T -378))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-378)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-378)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) (-4 *1 (-378)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-665 (-307 (-371)))) (-4 *1 (-378)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-307 (-371)))) (-4 *1 (-378)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-665 (-307 (-535)))) (-4 *1 (-378)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-307 (-535)))) (-4 *1 (-378)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-665 (-917 (-371)))) (-4 *1 (-378)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-917 (-371)))) (-4 *1 (-378)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-665 (-917 (-535)))) (-4 *1 (-378)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-917 (-535)))) (-4 *1 (-378)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-917 (-371))))) (-4 *1 (-378)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-400 (-917 (-371))))) (-4 *1 (-378)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-917 (-535))))) (-4 *1 (-378)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-400 (-917 (-535))))) (-4 *1 (-378)))))
+(-13 (-389) (-10 -8 (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-323))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))) (-15 -3490 ($ (-665 (-307 (-371))))) (-15 -3491 ((-3 $ "failed") (-665 (-307 (-371))))) (-15 -3490 ($ (-665 (-307 (-535))))) (-15 -3491 ((-3 $ "failed") (-665 (-307 (-535))))) (-15 -3490 ($ (-665 (-917 (-371))))) (-15 -3491 ((-3 $ "failed") (-665 (-917 (-371))))) (-15 -3490 ($ (-665 (-917 (-535))))) (-15 -3491 ((-3 $ "failed") (-665 (-917 (-535))))) (-15 -3490 ($ (-665 (-400 (-917 (-371)))))) (-15 -3491 ((-3 $ "failed") (-665 (-400 (-917 (-371)))))) (-15 -3490 ($ (-665 (-400 (-917 (-535)))))) (-15 -3491 ((-3 $ "failed") (-665 (-400 (-917 (-535))))))))
+(((-593 (-835)) . T) ((-389) . T) ((-1178) . T))
+((-2887 (((-112) $ $) NIL)) (-3454 (((-747) $) 59)) (-3879 (($) NIL T CONST)) (-4282 (((-3 $ "failed") $ $) 61)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2761 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2493 (((-112) $) 15)) (-2759 ((|#1| $ (-535)) NIL)) (-2760 (((-747) $ (-535)) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2362 (($ (-1 |#1| |#1|) $) 38)) (-2363 (($ (-1 (-747) (-747)) $) 35)) (-4283 (((-3 $ "failed") $ $) 50)) (-3576 (((-1124) $) NIL)) (-2762 (($ $ $) 26)) (-2763 (($ $ $) 24)) (-3577 (((-1086) $) NIL)) (-2758 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $) 32)) (-3202 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-4300 (((-835) $) 22) (($ |#1|) NIL)) (-2985 (($) 9 T CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 41)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) 63 (|has| |#1| (-823)))) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ |#1| (-747)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
+(((-379 |#1|) (-13 (-703) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -2763 ($ $ $)) (-15 -2762 ($ $ $)) (-15 -4283 ((-3 $ "failed") $ $)) (-15 -4282 ((-3 $ "failed") $ $)) (-15 -3202 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2761 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3454 ((-747) $)) (-15 -2758 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $)) (-15 -2760 ((-747) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2363 ($ (-1 (-747) (-747)) $)) (-15 -2362 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-1067)) (T -379))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-2763 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-2762 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-4283 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-4282 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-3202 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-2761 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 (-747))))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-2760 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-747)) (-5 *1 (-379 *4)) (-4 *4 (-1067)))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-2363 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-747) (-747))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-2362 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-379 *3)))))
+(-13 (-703) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -2763 ($ $ $)) (-15 -2762 ($ $ $)) (-15 -4283 ((-3 $ "failed") $ $)) (-15 -4282 ((-3 $ "failed") $ $)) (-15 -3202 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2761 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3454 ((-747) $)) (-15 -2758 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $)) (-15 -2760 ((-747) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2363 ($ (-1 (-747) (-747)) $)) (-15 -2362 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) "failed") $) 45)) (-3490 (((-535) $) 44)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3660 (($ $ $) 52)) (-3661 (($ $ $) 51)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ $) 40)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-535)) 46)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 49)) (-2886 (((-112) $ $) 48)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 50)) (-3006 (((-112) $ $) 47)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-380) (-138)) (T -380))
NIL
-(-13 (-541) (-823) (-1009 (-549)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-823) . T) ((-1009 (-549)) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-3725 (((-112) $) 20)) (-3500 (((-112) $) 19)) (-3743 (($ (-1124) (-1124) (-1124)) 21)) (-2480 (((-1124) $) 16)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3355 (($ (-1124) (-1124) (-1124)) 14)) (-1343 (((-1124) $) 17)) (-2749 (((-112) $) 18)) (-4070 (((-1124) $) 15)) (-3845 (((-834) $) 12) (($ (-1124)) 13) (((-1124) $) 9)) (-2388 (((-112) $ $) 7)))
+(-13 (-542) (-823) (-1009 (-535)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-823) . T) ((-1009 (-535)) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-1861 (((-112) $) 20)) (-1862 (((-112) $) 19)) (-3960 (($ (-1124) (-1124) (-1124)) 21)) (-3888 (((-1124) $) 16)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1866 (($ (-1124) (-1124) (-1124)) 14)) (-1864 (((-1124) $) 17)) (-1863 (((-112) $) 18)) (-1865 (((-1124) $) 15)) (-4300 (((-835) $) 12) (($ (-1124)) 13) (((-1124) $) 9)) (-3375 (((-112) $ $) 7)))
(((-381) (-382)) (T -381))
NIL
(-382)
-((-3833 (((-112) $ $) 7)) (-3725 (((-112) $) 14)) (-3500 (((-112) $) 15)) (-3743 (($ (-1124) (-1124) (-1124)) 13)) (-2480 (((-1124) $) 18)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3355 (($ (-1124) (-1124) (-1124)) 20)) (-1343 (((-1124) $) 17)) (-2749 (((-112) $) 16)) (-4070 (((-1124) $) 19)) (-3845 (((-834) $) 11) (($ (-1124)) 22) (((-1124) $) 21)) (-2388 (((-112) $ $) 6)))
+((-2887 (((-112) $ $) 7)) (-1861 (((-112) $) 14)) (-1862 (((-112) $) 15)) (-3960 (($ (-1124) (-1124) (-1124)) 13)) (-3888 (((-1124) $) 18)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-1866 (($ (-1124) (-1124) (-1124)) 20)) (-1864 (((-1124) $) 17)) (-1863 (((-112) $) 16)) (-1865 (((-1124) $) 19)) (-4300 (((-835) $) 11) (($ (-1124)) 22) (((-1124) $) 21)) (-3375 (((-112) $ $) 6)))
(((-382) (-138)) (T -382))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) (-3355 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382)))) (-4070 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) (-1343 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) (-2749 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-3743 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382)))))
-(-13 (-1066) (-10 -8 (-15 -3845 ($ (-1124))) (-15 -3845 ((-1124) $)) (-15 -3355 ($ (-1124) (-1124) (-1124))) (-15 -4070 ((-1124) $)) (-15 -2480 ((-1124) $)) (-15 -1343 ((-1124) $)) (-15 -2749 ((-112) $)) (-15 -3500 ((-112) $)) (-15 -3725 ((-112) $)) (-15 -3743 ($ (-1124) (-1124) (-1124)))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3501 (((-834) $) 50)) (-1705 (($) NIL T CONST)) (-2353 (($ $ (-892)) NIL)) (-2377 (($ $ (-892)) NIL)) (-2881 (($ $ (-892)) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-4246 (($ (-747)) 26)) (-3128 (((-747)) 17)) (-4179 (((-834) $) 52)) (-1911 (($ $ $) NIL)) (-3845 (((-834) $) NIL)) (-4172 (($ $ $ $) NIL)) (-1892 (($ $ $) NIL)) (-3275 (($) 20 T CONST)) (-2388 (((-112) $ $) 28)) (-2499 (($ $) 34) (($ $ $) 36)) (-2485 (($ $ $) 37)) (** (($ $ (-892)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-383 |#1| |#2| |#3|) (-13 (-721 |#3|) (-10 -8 (-15 -3128 ((-747))) (-15 -4179 ((-834) $)) (-15 -3501 ((-834) $)) (-15 -4246 ($ (-747))))) (-747) (-747) (-170)) (T -383))
-((-3128 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) (-4 *5 (-170)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) (-4 *5 (-170)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))))
-(-13 (-721 |#3|) (-10 -8 (-15 -3128 ((-747))) (-15 -4179 ((-834) $)) (-15 -3501 ((-834) $)) (-15 -4246 ($ (-747)))))
-((-2817 (((-1124)) 10)) (-1360 (((-1113 (-1124))) 28)) (-3293 (((-1230) (-1124)) 25) (((-1230) (-381)) 24)) (-3300 (((-1230)) 26)) (-3769 (((-1113 (-1124))) 27)))
-(((-384) (-10 -7 (-15 -3769 ((-1113 (-1124)))) (-15 -1360 ((-1113 (-1124)))) (-15 -3300 ((-1230))) (-15 -3293 ((-1230) (-381))) (-15 -3293 ((-1230) (-1124))) (-15 -2817 ((-1124))))) (T -384))
-((-2817 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-384)))) (-3293 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-384)))) (-3293 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1230)) (-5 *1 (-384)))) (-3300 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-384)))) (-1360 (*1 *2) (-12 (-5 *2 (-1113 (-1124))) (-5 *1 (-384)))) (-3769 (*1 *2) (-12 (-5 *2 (-1113 (-1124))) (-5 *1 (-384)))))
-(-10 -7 (-15 -3769 ((-1113 (-1124)))) (-15 -1360 ((-1113 (-1124)))) (-15 -3300 ((-1230))) (-15 -3293 ((-1230) (-381))) (-15 -3293 ((-1230) (-1124))) (-15 -2817 ((-1124))))
-((-2078 (((-747) (-329 |#1| |#2| |#3| |#4|)) 16)))
-(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2078 ((-747) (-329 |#1| |#2| |#3| |#4|)))) (-13 (-361) (-356)) (-1201 |#1|) (-1201 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -385))
-((-2078 (*1 *2 *3) (-12 (-5 *3 (-329 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) (-5 *2 (-747)) (-5 *1 (-385 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2078 ((-747) (-329 |#1| |#2| |#3| |#4|))))
-((-3845 (((-387) |#1|) 11)))
-(((-386 |#1|) (-10 -7 (-15 -3845 ((-387) |#1|))) (-1066)) (T -386))
-((-3845 (*1 *2 *3) (-12 (-5 *2 (-387)) (-5 *1 (-386 *3)) (-4 *3 (-1066)))))
-(-10 -7 (-15 -3845 ((-387) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3670 (((-621 (-1124)) $ (-621 (-1124))) 38)) (-2812 (((-621 (-1124)) $ (-621 (-1124))) 39)) (-2528 (((-621 (-1124)) $ (-621 (-1124))) 40)) (-1978 (((-621 (-1124)) $) 35)) (-3743 (($) 23)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2086 (((-621 (-1124)) $) 36)) (-3153 (((-621 (-1124)) $) 37)) (-2697 (((-1230) $ (-549)) 33) (((-1230) $) 34)) (-2844 (($ (-834) (-549)) 30)) (-3845 (((-834) $) 42) (($ (-834)) 25)) (-2388 (((-112) $ $) NIL)))
-(((-387) (-13 (-1066) (-10 -8 (-15 -3845 ($ (-834))) (-15 -2844 ($ (-834) (-549))) (-15 -2697 ((-1230) $ (-549))) (-15 -2697 ((-1230) $)) (-15 -3153 ((-621 (-1124)) $)) (-15 -2086 ((-621 (-1124)) $)) (-15 -3743 ($)) (-15 -1978 ((-621 (-1124)) $)) (-15 -2528 ((-621 (-1124)) $ (-621 (-1124)))) (-15 -2812 ((-621 (-1124)) $ (-621 (-1124)))) (-15 -3670 ((-621 (-1124)) $ (-621 (-1124))))))) (T -387))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-387)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-549)) (-5 *1 (-387)))) (-2697 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-387)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-387)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-387)))) (-2086 (*1 *2 *1) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-387)))) (-3743 (*1 *1) (-5 *1 (-387))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-387)))) (-2528 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-387)))) (-2812 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-387)))) (-3670 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-387)))))
-(-13 (-1066) (-10 -8 (-15 -3845 ($ (-834))) (-15 -2844 ($ (-834) (-549))) (-15 -2697 ((-1230) $ (-549))) (-15 -2697 ((-1230) $)) (-15 -3153 ((-621 (-1124)) $)) (-15 -2086 ((-621 (-1124)) $)) (-15 -3743 ($)) (-15 -1978 ((-621 (-1124)) $)) (-15 -2528 ((-621 (-1124)) $ (-621 (-1124)))) (-15 -2812 ((-621 (-1124)) $ (-621 (-1124)))) (-15 -3670 ((-621 (-1124)) $ (-621 (-1124))))))
-((-3315 (((-1230) $) 7)) (-3845 (((-834) $) 8)))
-(((-388) (-138)) (T -388))
-((-3315 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1230)))))
-(-13 (-1179) (-593 (-834)) (-10 -8 (-15 -3315 ((-1230) $))))
-(((-593 (-834)) . T) ((-1179) . T))
-((-2713 (((-3 $ "failed") (-309 (-372))) 21) (((-3 $ "failed") (-309 (-549))) 19) (((-3 $ "failed") (-923 (-372))) 17) (((-3 $ "failed") (-923 (-549))) 15) (((-3 $ "failed") (-400 (-923 (-372)))) 13) (((-3 $ "failed") (-400 (-923 (-549)))) 11)) (-2658 (($ (-309 (-372))) 22) (($ (-309 (-549))) 20) (($ (-923 (-372))) 18) (($ (-923 (-549))) 16) (($ (-400 (-923 (-372)))) 14) (($ (-400 (-923 (-549)))) 12)) (-3315 (((-1230) $) 7)) (-3845 (((-834) $) 8) (($ (-621 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 23)))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382)))) (-4300 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) (-1866 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-3960 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382)))))
+(-13 (-1067) (-10 -8 (-15 -4300 ($ (-1124))) (-15 -4300 ((-1124) $)) (-15 -1866 ($ (-1124) (-1124) (-1124))) (-15 -1865 ((-1124) $)) (-15 -3888 ((-1124) $)) (-15 -1864 ((-1124) $)) (-15 -1863 ((-112) $)) (-15 -1862 ((-112) $)) (-15 -1861 ((-112) $)) (-15 -3960 ($ (-1124) (-1124) (-1124)))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-1867 (((-835) $) 50)) (-3879 (($) NIL T CONST)) (-2490 (($ $ (-890)) NIL)) (-2515 (($ $ (-890)) NIL)) (-2489 (($ $ (-890)) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2492 (($ (-747)) 26)) (-4254 (((-747)) 17)) (-1868 (((-835) $) 52)) (-2677 (($ $ $) NIL)) (-4300 (((-835) $) NIL)) (-2678 (($ $ $ $) NIL)) (-2676 (($ $ $) NIL)) (-2979 (($) 20 T CONST)) (-3375 (((-112) $ $) 28)) (-4180 (($ $) 34) (($ $ $) 36)) (-4182 (($ $ $) 37)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-383 |#1| |#2| |#3|) (-13 (-721 |#3|) (-10 -8 (-15 -4254 ((-747))) (-15 -1868 ((-835) $)) (-15 -1867 ((-835) $)) (-15 -2492 ($ (-747))))) (-747) (-747) (-170)) (T -383))
+((-4254 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) (-4 *5 (-170)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) (-4 *5 (-170)))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))))
+(-13 (-721 |#3|) (-10 -8 (-15 -4254 ((-747))) (-15 -1868 ((-835) $)) (-15 -1867 ((-835) $)) (-15 -2492 ($ (-747)))))
+((-1873 (((-1124)) 10)) (-1870 (((-1113 (-1124))) 28)) (-1872 (((-1230) (-1124)) 25) (((-1230) (-381)) 24)) (-1871 (((-1230)) 26)) (-1869 (((-1113 (-1124))) 27)))
+(((-384) (-10 -7 (-15 -1869 ((-1113 (-1124)))) (-15 -1870 ((-1113 (-1124)))) (-15 -1871 ((-1230))) (-15 -1872 ((-1230) (-381))) (-15 -1872 ((-1230) (-1124))) (-15 -1873 ((-1124))))) (T -384))
+((-1873 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-384)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-384)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1230)) (-5 *1 (-384)))) (-1871 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-384)))) (-1870 (*1 *2) (-12 (-5 *2 (-1113 (-1124))) (-5 *1 (-384)))) (-1869 (*1 *2) (-12 (-5 *2 (-1113 (-1124))) (-5 *1 (-384)))))
+(-10 -7 (-15 -1869 ((-1113 (-1124)))) (-15 -1870 ((-1113 (-1124)))) (-15 -1871 ((-1230))) (-15 -1872 ((-1230) (-381))) (-15 -1872 ((-1230) (-1124))) (-15 -1873 ((-1124))))
+((-4114 (((-747) (-326 |#1| |#2| |#3| |#4|)) 16)))
+(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4114 ((-747) (-326 |#1| |#2| |#3| |#4|)))) (-13 (-361) (-356)) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -385))
+((-4114 (*1 *2 *3) (-12 (-5 *3 (-326 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) (-5 *2 (-747)) (-5 *1 (-385 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4114 ((-747) (-326 |#1| |#2| |#3| |#4|))))
+((-2887 (((-112) $ $) NIL)) (-3956 (((-618 (-1124)) $ (-618 (-1124))) 38)) (-1874 (((-618 (-1124)) $ (-618 (-1124))) 39)) (-3958 (((-618 (-1124)) $ (-618 (-1124))) 40)) (-3959 (((-618 (-1124)) $) 35)) (-3960 (($) 23)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1875 (((-618 (-1124)) $) 36)) (-3962 (((-618 (-1124)) $) 37)) (-3963 (((-1230) $ (-535)) 33) (((-1230) $) 34)) (-4313 (($ (-835) (-535)) 30)) (-4300 (((-835) $) 42) (($ (-835)) 25)) (-3375 (((-112) $ $) NIL)))
+(((-386) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-835))) (-15 -4313 ($ (-835) (-535))) (-15 -3963 ((-1230) $ (-535))) (-15 -3963 ((-1230) $)) (-15 -3962 ((-618 (-1124)) $)) (-15 -1875 ((-618 (-1124)) $)) (-15 -3960 ($)) (-15 -3959 ((-618 (-1124)) $)) (-15 -3958 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -1874 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -3956 ((-618 (-1124)) $ (-618 (-1124))))))) (T -386))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-386)))) (-4313 (*1 *1 *2 *3) (-12 (-5 *2 (-835)) (-5 *3 (-535)) (-5 *1 (-386)))) (-3963 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-386)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-386)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) (-3960 (*1 *1) (-5 *1 (-386))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) (-3958 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) (-1874 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))) (-3956 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))))
+(-13 (-1067) (-10 -8 (-15 -4300 ($ (-835))) (-15 -4313 ($ (-835) (-535))) (-15 -3963 ((-1230) $ (-535))) (-15 -3963 ((-1230) $)) (-15 -3962 ((-618 (-1124)) $)) (-15 -1875 ((-618 (-1124)) $)) (-15 -3960 ($)) (-15 -3959 ((-618 (-1124)) $)) (-15 -3958 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -1874 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -3956 ((-618 (-1124)) $ (-618 (-1124))))))
+((-4300 (((-386) |#1|) 11)))
+(((-387 |#1|) (-10 -7 (-15 -4300 ((-386) |#1|))) (-1067)) (T -387))
+((-4300 (*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-387 *3)) (-4 *3 (-1067)))))
+(-10 -7 (-15 -4300 ((-386) |#1|)))
+((-1877 (((-618 (-1124)) (-618 (-1124))) 9)) (-3722 (((-1230) (-381)) 27)) (-1876 (((-1069) (-1142) (-618 (-1142)) (-1145) (-618 (-1142))) 60) (((-1069) (-1142) (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142)))) (-618 (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142))))) (-618 (-1142)) (-1142)) 35) (((-1069) (-1142) (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142)))) (-618 (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142))))) (-618 (-1142))) 34)))
+(((-388) (-10 -7 (-15 -1876 ((-1069) (-1142) (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142)))) (-618 (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142))))) (-618 (-1142)))) (-15 -1876 ((-1069) (-1142) (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142)))) (-618 (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142))))) (-618 (-1142)) (-1142))) (-15 -1876 ((-1069) (-1142) (-618 (-1142)) (-1145) (-618 (-1142)))) (-15 -3722 ((-1230) (-381))) (-15 -1877 ((-618 (-1124)) (-618 (-1124)))))) (T -388))
+((-1877 (*1 *2 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-388)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1230)) (-5 *1 (-388)))) (-1876 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-618 (-1142))) (-5 *5 (-1145)) (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-388)))) (-1876 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-618 (-618 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-618 (-3 (|:| |array| (-618 *3)) (|:| |scalar| (-1142))))) (-5 *6 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-388)))) (-1876 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-618 (-618 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-618 (-3 (|:| |array| (-618 *3)) (|:| |scalar| (-1142))))) (-5 *6 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-388)))))
+(-10 -7 (-15 -1876 ((-1069) (-1142) (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142)))) (-618 (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142))))) (-618 (-1142)))) (-15 -1876 ((-1069) (-1142) (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142)))) (-618 (-618 (-3 (|:| |array| (-618 (-1142))) (|:| |scalar| (-1142))))) (-618 (-1142)) (-1142))) (-15 -1876 ((-1069) (-1142) (-618 (-1142)) (-1145) (-618 (-1142)))) (-15 -3722 ((-1230) (-381))) (-15 -1877 ((-618 (-1124)) (-618 (-1124)))))
+((-3722 (((-1230) $) 7)) (-4300 (((-835) $) 8)))
(((-389) (-138)) (T -389))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-389)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-389)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) (-4 *1 (-389)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-4 *1 (-389)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-372))) (-4 *1 (-389)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-309 (-549))) (-4 *1 (-389)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-549))) (-4 *1 (-389)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-923 (-372))) (-4 *1 (-389)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-372))) (-4 *1 (-389)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-923 (-549))) (-4 *1 (-389)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-549))) (-4 *1 (-389)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-372)))) (-4 *1 (-389)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-923 (-372)))) (-4 *1 (-389)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-549)))) (-4 *1 (-389)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-923 (-549)))) (-4 *1 (-389)))))
-(-13 (-388) (-10 -8 (-15 -3845 ($ (-621 (-323)))) (-15 -3845 ($ (-323))) (-15 -3845 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323)))))) (-15 -2658 ($ (-309 (-372)))) (-15 -2713 ((-3 $ "failed") (-309 (-372)))) (-15 -2658 ($ (-309 (-549)))) (-15 -2713 ((-3 $ "failed") (-309 (-549)))) (-15 -2658 ($ (-923 (-372)))) (-15 -2713 ((-3 $ "failed") (-923 (-372)))) (-15 -2658 ($ (-923 (-549)))) (-15 -2713 ((-3 $ "failed") (-923 (-549)))) (-15 -2658 ($ (-400 (-923 (-372))))) (-15 -2713 ((-3 $ "failed") (-400 (-923 (-372))))) (-15 -2658 ($ (-400 (-923 (-549))))) (-15 -2713 ((-3 $ "failed") (-400 (-923 (-549)))))))
-(((-593 (-834)) . T) ((-388) . T) ((-1179) . T))
-((-3023 (((-621 (-1124)) (-621 (-1124))) 9)) (-3315 (((-1230) (-381)) 27)) (-2640 (((-1070) (-1142) (-621 (-1142)) (-1145) (-621 (-1142))) 60) (((-1070) (-1142) (-621 (-3 (|:| |array| (-621 (-1142))) (|:| |scalar| (-1142)))) (-621 (-621 (-3 (|:| |array| (-621 (-1142))) (|:| |scalar| (-1142))))) (-621 (-1142)) (-1142)) 35) (((-1070) (-1142) (-621 (-3 (|:| |array| (-621 (-1142))) (|:| |scalar| (-1142)))) (-621 (-621 (-3 (|:| |array| (-621 (-1142))) (|:| |scalar| (-1142))))) (-621 (-1142))) 34)))
-(((-390) (-10 -7 (-15 -2640 ((-1070) (-1142) (-621 (-3 (|:| |array| (-621 (-1142))) (|:| |scalar| (-1142)))) (-621 (-621 (-3 (|:| |array| (-621 (-1142))) (|:| |scalar| (-1142))))) (-621 (-1142)))) (-15 -2640 ((-1070) (-1142) (-621 (-3 (|:| |array| (-621 (-1142))) (|:| |scalar| (-1142)))) (-621 (-621 (-3 (|:| |array| (-621 (-1142))) (|:| |scalar| (-1142))))) (-621 (-1142)) (-1142))) (-15 -2640 ((-1070) (-1142) (-621 (-1142)) (-1145) (-621 (-1142)))) (-15 -3315 ((-1230) (-381))) (-15 -3023 ((-621 (-1124)) (-621 (-1124)))))) (T -390))
-((-3023 (*1 *2 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-390)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1230)) (-5 *1 (-390)))) (-2640 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-621 (-1142))) (-5 *5 (-1145)) (-5 *3 (-1142)) (-5 *2 (-1070)) (-5 *1 (-390)))) (-2640 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-621 (-621 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-621 (-3 (|:| |array| (-621 *3)) (|:| |scalar| (-1142))))) (-5 *6 (-621 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1070)) (-5 *1 (-390)))) (-2640 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-621 (-621 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-621 (-3 (|:| |array| (-621 *3)) (|:| |scalar| (-1142))))) (-5 *6 (-621 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1070)) (-5 *1 (-390)))))
-(-10 -7 (-15 -2640 ((-1070) (-1142) (-621 (-3 (|:| |array| (-621 (-1142))) (|:| |scalar| (-1142)))) (-621 (-621 (-3 (|:| |array| (-621 (-1142))) (|:| |scalar| (-1142))))) (-621 (-1142)))) (-15 -2640 ((-1070) (-1142) (-621 (-3 (|:| |array| (-621 (-1142))) (|:| |scalar| (-1142)))) (-621 (-621 (-3 (|:| |array| (-621 (-1142))) (|:| |scalar| (-1142))))) (-621 (-1142)) (-1142))) (-15 -2640 ((-1070) (-1142) (-621 (-1142)) (-1145) (-621 (-1142)))) (-15 -3315 ((-1230) (-381))) (-15 -3023 ((-621 (-1124)) (-621 (-1124)))))
-((-3315 (((-1230) $) 38)) (-3845 (((-834) $) 98) (($ (-323)) 100) (($ (-621 (-323))) 99) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 97) (($ (-309 (-677))) 54) (($ (-309 (-675))) 73) (($ (-309 (-670))) 86) (($ (-287 (-309 (-677)))) 68) (($ (-287 (-309 (-675)))) 81) (($ (-287 (-309 (-670)))) 94) (($ (-309 (-549))) 104) (($ (-309 (-372))) 117) (($ (-309 (-167 (-372)))) 130) (($ (-287 (-309 (-549)))) 112) (($ (-287 (-309 (-372)))) 125) (($ (-287 (-309 (-167 (-372))))) 138)))
-(((-391 |#1| |#2| |#3| |#4|) (-13 (-388) (-10 -8 (-15 -3845 ($ (-323))) (-15 -3845 ($ (-621 (-323)))) (-15 -3845 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323)))))) (-15 -3845 ($ (-309 (-677)))) (-15 -3845 ($ (-309 (-675)))) (-15 -3845 ($ (-309 (-670)))) (-15 -3845 ($ (-287 (-309 (-677))))) (-15 -3845 ($ (-287 (-309 (-675))))) (-15 -3845 ($ (-287 (-309 (-670))))) (-15 -3845 ($ (-309 (-549)))) (-15 -3845 ($ (-309 (-372)))) (-15 -3845 ($ (-309 (-167 (-372))))) (-15 -3845 ($ (-287 (-309 (-549))))) (-15 -3845 ($ (-287 (-309 (-372))))) (-15 -3845 ($ (-287 (-309 (-167 (-372)))))))) (-1142) (-3 (|:| |fst| (-427)) (|:| -2902 "void")) (-621 (-1142)) (-1146)) (T -391))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-309 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-309 (-675))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-309 (-670))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-675)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-670)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-309 (-549))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-549)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-372)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-167 (-372))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-14 *5 (-621 (-1142))) (-14 *6 (-1146)))))
-(-13 (-388) (-10 -8 (-15 -3845 ($ (-323))) (-15 -3845 ($ (-621 (-323)))) (-15 -3845 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323)))))) (-15 -3845 ($ (-309 (-677)))) (-15 -3845 ($ (-309 (-675)))) (-15 -3845 ($ (-309 (-670)))) (-15 -3845 ($ (-287 (-309 (-677))))) (-15 -3845 ($ (-287 (-309 (-675))))) (-15 -3845 ($ (-287 (-309 (-670))))) (-15 -3845 ($ (-309 (-549)))) (-15 -3845 ($ (-309 (-372)))) (-15 -3845 ($ (-309 (-167 (-372))))) (-15 -3845 ($ (-287 (-309 (-549))))) (-15 -3845 ($ (-287 (-309 (-372))))) (-15 -3845 ($ (-287 (-309 (-167 (-372))))))))
-((-3833 (((-112) $ $) NIL)) (-3814 ((|#2| $) 36)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2357 (($ (-400 |#2|)) 85)) (-2488 (((-621 (-2 (|:| -3577 (-747)) (|:| -2597 |#2|) (|:| |num| |#2|))) $) 37)) (-3455 (($ $) 32) (($ $ (-747)) 34)) (-2844 (((-400 |#2|) $) 46)) (-3853 (($ (-621 (-2 (|:| -3577 (-747)) (|:| -2597 |#2|) (|:| |num| |#2|)))) 31)) (-3845 (((-834) $) 120)) (-1700 (($ $) 33) (($ $ (-747)) 35)) (-2388 (((-112) $ $) NIL)) (-2485 (($ |#2| $) 39)))
-(((-392 |#1| |#2|) (-13 (-1066) (-594 (-400 |#2|)) (-10 -8 (-15 -2485 ($ |#2| $)) (-15 -2357 ($ (-400 |#2|))) (-15 -3814 (|#2| $)) (-15 -2488 ((-621 (-2 (|:| -3577 (-747)) (|:| -2597 |#2|) (|:| |num| |#2|))) $)) (-15 -3853 ($ (-621 (-2 (|:| -3577 (-747)) (|:| -2597 |#2|) (|:| |num| |#2|))))) (-15 -3455 ($ $)) (-15 -1700 ($ $)) (-15 -3455 ($ $ (-747))) (-15 -1700 ($ $ (-747))))) (-13 (-356) (-145)) (-1201 |#1|)) (T -392))
-((-2485 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) (-4 *2 (-1201 *3)))) (-2357 (*1 *1 *2) (-12 (-5 *2 (-400 *4)) (-4 *4 (-1201 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-3814 (*1 *2 *1) (-12 (-4 *2 (-1201 *3)) (-5 *1 (-392 *3 *2)) (-4 *3 (-13 (-356) (-145))))) (-2488 (*1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *2 (-621 (-2 (|:| -3577 (-747)) (|:| -2597 *4) (|:| |num| *4)))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1201 *3)))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -3577 (-747)) (|:| -2597 *4) (|:| |num| *4)))) (-4 *4 (-1201 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-3455 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1201 *2)))) (-1700 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1201 *2)))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1201 *3)))) (-1700 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1201 *3)))))
-(-13 (-1066) (-594 (-400 |#2|)) (-10 -8 (-15 -2485 ($ |#2| $)) (-15 -2357 ($ (-400 |#2|))) (-15 -3814 (|#2| $)) (-15 -2488 ((-621 (-2 (|:| -3577 (-747)) (|:| -2597 |#2|) (|:| |num| |#2|))) $)) (-15 -3853 ($ (-621 (-2 (|:| -3577 (-747)) (|:| -2597 |#2|) (|:| |num| |#2|))))) (-15 -3455 ($ $)) (-15 -1700 ($ $)) (-15 -3455 ($ $ (-747))) (-15 -1700 ($ $ (-747)))))
-((-3833 (((-112) $ $) 9 (-1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))))) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 15 (|has| |#1| (-857 (-372)))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 14 (|has| |#1| (-857 (-549))))) (-2677 (((-1124) $) 13 (-1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))))) (-3988 (((-1086) $) 12 (-1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))))) (-3845 (((-834) $) 11 (-1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))))) (-2388 (((-112) $ $) 10 (-1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))))))
-(((-393 |#1|) (-138) (-1179)) (T -393))
-NIL
-(-13 (-1179) (-10 -7 (IF (|has| |t#1| (-857 (-549))) (-6 (-857 (-549))) |%noBranch|) (IF (|has| |t#1| (-857 (-372))) (-6 (-857 (-372))) |%noBranch|)))
-(((-101) -1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))) ((-593 (-834)) -1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))) ((-857 (-372)) |has| |#1| (-857 (-372))) ((-857 (-549)) |has| |#1| (-857 (-549))) ((-1066) -1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))) ((-1179) . T))
-((-3225 (($ $) 10) (($ $ (-747)) 11)))
-(((-394 |#1|) (-10 -8 (-15 -3225 (|#1| |#1| (-747))) (-15 -3225 (|#1| |#1|))) (-395)) (T -394))
-NIL
-(-10 -8 (-15 -3225 (|#1| |#1| (-747))) (-15 -3225 (|#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 70)) (-3513 (((-411 $) $) 69)) (-2647 (((-112) $ $) 57)) (-1705 (($) 17 T CONST)) (-2094 (($ $ $) 53)) (-3976 (((-3 $ "failed") $) 32)) (-2066 (($ $ $) 54)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-3225 (($ $) 76) (($ $ (-747)) 75)) (-2471 (((-112) $) 68)) (-2078 (((-809 (-892)) $) 78)) (-3987 (((-112) $) 30)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 67)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-2120 (((-411 $) $) 71)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-4091 (((-747) $) 56)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55)) (-2591 (((-3 (-747) "failed") $ $) 77)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63)) (-3407 (((-3 $ "failed") $) 79)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ $) 62)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64)))
+((-3722 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1230)))))
+(-13 (-1178) (-593 (-835)) (-10 -8 (-15 -3722 ((-1230) $))))
+(((-593 (-835)) . T) ((-1178) . T))
+((-3491 (((-3 $ "failed") (-307 (-371))) 21) (((-3 $ "failed") (-307 (-535))) 19) (((-3 $ "failed") (-917 (-371))) 17) (((-3 $ "failed") (-917 (-535))) 15) (((-3 $ "failed") (-400 (-917 (-371)))) 13) (((-3 $ "failed") (-400 (-917 (-535)))) 11)) (-3490 (($ (-307 (-371))) 22) (($ (-307 (-535))) 20) (($ (-917 (-371))) 18) (($ (-917 (-535))) 16) (($ (-400 (-917 (-371)))) 14) (($ (-400 (-917 (-535)))) 12)) (-3722 (((-1230) $) 7)) (-4300 (((-835) $) 8) (($ (-618 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 23)))
+(((-390) (-138)) (T -390))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-390)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-390)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) (-4 *1 (-390)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-307 (-535))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-535))) (-4 *1 (-390)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-917 (-371))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-371))) (-4 *1 (-390)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-917 (-535))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-535))) (-4 *1 (-390)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-371)))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-917 (-371)))) (-4 *1 (-390)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-535)))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-917 (-535)))) (-4 *1 (-390)))))
+(-13 (-389) (-10 -8 (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-323))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))) (-15 -3490 ($ (-307 (-371)))) (-15 -3491 ((-3 $ "failed") (-307 (-371)))) (-15 -3490 ($ (-307 (-535)))) (-15 -3491 ((-3 $ "failed") (-307 (-535)))) (-15 -3490 ($ (-917 (-371)))) (-15 -3491 ((-3 $ "failed") (-917 (-371)))) (-15 -3490 ($ (-917 (-535)))) (-15 -3491 ((-3 $ "failed") (-917 (-535)))) (-15 -3490 ($ (-400 (-917 (-371))))) (-15 -3491 ((-3 $ "failed") (-400 (-917 (-371))))) (-15 -3490 ($ (-400 (-917 (-535))))) (-15 -3491 ((-3 $ "failed") (-400 (-917 (-535)))))))
+(((-593 (-835)) . T) ((-389) . T) ((-1178) . T))
+((-3722 (((-1230) $) 38)) (-4300 (((-835) $) 98) (($ (-323)) 100) (($ (-618 (-323))) 99) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 97) (($ (-307 (-677))) 54) (($ (-307 (-675))) 73) (($ (-307 (-670))) 86) (($ (-286 (-307 (-677)))) 68) (($ (-286 (-307 (-675)))) 81) (($ (-286 (-307 (-670)))) 94) (($ (-307 (-535))) 104) (($ (-307 (-371))) 117) (($ (-307 (-166 (-371)))) 130) (($ (-286 (-307 (-535)))) 112) (($ (-286 (-307 (-371)))) 125) (($ (-286 (-307 (-166 (-371))))) 138)))
+(((-391 |#1| |#2| |#3| |#4|) (-13 (-389) (-10 -8 (-15 -4300 ($ (-323))) (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))) (-15 -4300 ($ (-307 (-677)))) (-15 -4300 ($ (-307 (-675)))) (-15 -4300 ($ (-307 (-670)))) (-15 -4300 ($ (-286 (-307 (-677))))) (-15 -4300 ($ (-286 (-307 (-675))))) (-15 -4300 ($ (-286 (-307 (-670))))) (-15 -4300 ($ (-307 (-535)))) (-15 -4300 ($ (-307 (-371)))) (-15 -4300 ($ (-307 (-166 (-371))))) (-15 -4300 ($ (-286 (-307 (-535))))) (-15 -4300 ($ (-286 (-307 (-371))))) (-15 -4300 ($ (-286 (-307 (-166 (-371)))))))) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 "void")) (-618 (-1142)) (-1146)) (T -391))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1="void"))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-307 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-307 (-675))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-307 (-670))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-675)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-670)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-307 (-535))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-535)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-166 (-371))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142))) (-14 *6 (-1146)))))
+(-13 (-389) (-10 -8 (-15 -4300 ($ (-323))) (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))) (-15 -4300 ($ (-307 (-677)))) (-15 -4300 ($ (-307 (-675)))) (-15 -4300 ($ (-307 (-670)))) (-15 -4300 ($ (-286 (-307 (-677))))) (-15 -4300 ($ (-286 (-307 (-675))))) (-15 -4300 ($ (-286 (-307 (-670))))) (-15 -4300 ($ (-307 (-535)))) (-15 -4300 ($ (-307 (-371)))) (-15 -4300 ($ (-307 (-166 (-371))))) (-15 -4300 ($ (-286 (-307 (-535))))) (-15 -4300 ($ (-286 (-307 (-371))))) (-15 -4300 ($ (-286 (-307 (-166 (-371))))))))
+((-2887 (((-112) $ $) NIL)) (-1879 ((|#2| $) 36)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1880 (($ (-400 |#2|)) 85)) (-1878 (((-618 (-2 (|:| -2484 (-747)) (|:| -4115 |#2|) (|:| |num| |#2|))) $) 37)) (-4153 (($ $) 32) (($ $ (-747)) 34)) (-4313 (((-400 |#2|) $) 46)) (-3867 (($ (-618 (-2 (|:| -2484 (-747)) (|:| -4115 |#2|) (|:| |num| |#2|)))) 31)) (-4300 (((-835) $) 120)) (-2990 (($ $) 33) (($ $ (-747)) 35)) (-3375 (((-112) $ $) NIL)) (-4182 (($ |#2| $) 39)))
+(((-392 |#1| |#2|) (-13 (-1067) (-594 (-400 |#2|)) (-10 -8 (-15 -4182 ($ |#2| $)) (-15 -1880 ($ (-400 |#2|))) (-15 -1879 (|#2| $)) (-15 -1878 ((-618 (-2 (|:| -2484 (-747)) (|:| -4115 |#2|) (|:| |num| |#2|))) $)) (-15 -3867 ($ (-618 (-2 (|:| -2484 (-747)) (|:| -4115 |#2|) (|:| |num| |#2|))))) (-15 -4153 ($ $)) (-15 -2990 ($ $)) (-15 -4153 ($ $ (-747))) (-15 -2990 ($ $ (-747))))) (-13 (-356) (-145)) (-1200 |#1|)) (T -392))
+((-4182 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) (-4 *2 (-1200 *3)))) (-1880 (*1 *1 *2) (-12 (-5 *2 (-400 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-1879 (*1 *2 *1) (-12 (-4 *2 (-1200 *3)) (-5 *1 (-392 *3 *2)) (-4 *3 (-13 (-356) (-145))))) (-1878 (*1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *2 (-618 (-2 (|:| -2484 (-747)) (|:| -4115 *4) (|:| |num| *4)))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1200 *3)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -2484 (-747)) (|:| -4115 *4) (|:| |num| *4)))) (-4 *4 (-1200 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-4153 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1200 *2)))) (-2990 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1200 *2)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1200 *3)))) (-2990 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1200 *3)))))
+(-13 (-1067) (-594 (-400 |#2|)) (-10 -8 (-15 -4182 ($ |#2| $)) (-15 -1880 ($ (-400 |#2|))) (-15 -1879 (|#2| $)) (-15 -1878 ((-618 (-2 (|:| -2484 (-747)) (|:| -4115 |#2|) (|:| |num| |#2|))) $)) (-15 -3867 ($ (-618 (-2 (|:| -2484 (-747)) (|:| -4115 |#2|) (|:| |num| |#2|))))) (-15 -4153 ($ $)) (-15 -2990 ($ $)) (-15 -4153 ($ $ (-747))) (-15 -2990 ($ $ (-747)))))
+((-2887 (((-112) $ $) 9 (-3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))))) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 15 (|has| |#1| (-857 (-371)))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 14 (|has| |#1| (-857 (-535))))) (-3576 (((-1124) $) 13 (-3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))))) (-3577 (((-1086) $) 12 (-3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))))) (-4300 (((-835) $) 11 (-3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))))) (-3375 (((-112) $ $) 10 (-3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))))))
+(((-393 |#1|) (-138) (-1178)) (T -393))
+NIL
+(-13 (-1178) (-10 -7 (IF (|has| |t#1| (-857 (-535))) (-6 (-857 (-535))) |%noBranch|) (IF (|has| |t#1| (-857 (-371))) (-6 (-857 (-371))) |%noBranch|)))
+(((-101) -3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))) ((-593 (-835)) -3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))) ((-857 (-371)) |has| |#1| (-857 (-371))) ((-857 (-535)) |has| |#1| (-857 (-535))) ((-1067) -3874 (|has| |#1| (-857 (-535))) (|has| |#1| (-857 (-371)))) ((-1178) . T))
+((-1881 (($ $) 10) (($ $ (-747)) 11)))
+(((-394 |#1|) (-10 -8 (-15 -1881 (|#1| |#1| (-747))) (-15 -1881 (|#1| |#1|))) (-395)) (T -394))
+NIL
+(-10 -8 (-15 -1881 (|#1| |#1| (-747))) (-15 -1881 (|#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-1881 (($ $) 76) (($ $ (-747)) 75)) (-4069 (((-112) $) 68)) (-4114 (((-808 (-890)) $) 78)) (-2493 (((-112) $) 30)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-1882 (((-3 (-747) "failed") $ $) 77)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63)) (-3023 (((-3 $ "failed") $) 79)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 62)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64)))
(((-395) (-138)) (T -395))
-((-2078 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-809 (-892))))) (-2591 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-747)))) (-3225 (*1 *1 *1) (-4 *1 (-395))) (-3225 (*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-747)))))
-(-13 (-356) (-143) (-10 -8 (-15 -2078 ((-809 (-892)) $)) (-15 -2591 ((-3 (-747) "failed") $ $)) (-15 -3225 ($ $)) (-15 -3225 ($ $ (-747)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-593 (-834)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1183) . T))
-((-1354 (($ (-549) (-549)) 11) (($ (-549) (-549) (-892)) NIL)) (-1587 (((-892)) 16) (((-892) (-892)) NIL)))
-(((-396 |#1|) (-10 -8 (-15 -1587 ((-892) (-892))) (-15 -1587 ((-892))) (-15 -1354 (|#1| (-549) (-549) (-892))) (-15 -1354 (|#1| (-549) (-549)))) (-397)) (T -396))
-((-1587 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) (-1587 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-396 *3)) (-4 *3 (-397)))))
-(-10 -8 (-15 -1587 ((-892) (-892))) (-15 -1587 ((-892))) (-15 -1354 (|#1| (-549) (-549) (-892))) (-15 -1354 (|#1| (-549) (-549))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2364 (((-549) $) 86)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2305 (($ $) 84)) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 70)) (-3513 (((-411 $) $) 69)) (-2134 (($ $) 94)) (-2647 (((-112) $ $) 57)) (-3902 (((-549) $) 111)) (-1705 (($) 17 T CONST)) (-4016 (($ $) 83)) (-2713 (((-3 (-549) "failed") $) 99) (((-3 (-400 (-549)) "failed") $) 96)) (-2658 (((-549) $) 98) (((-400 (-549)) $) 95)) (-2094 (($ $ $) 53)) (-3976 (((-3 $ "failed") $) 32)) (-2066 (($ $ $) 54)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-2471 (((-112) $) 68)) (-3235 (((-892)) 127) (((-892) (-892)) 124 (|has| $ (-6 -4327)))) (-3079 (((-112) $) 109)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 90)) (-2078 (((-549) $) 133)) (-3987 (((-112) $) 30)) (-3930 (($ $ (-549)) 93)) (-4117 (($ $) 89)) (-2847 (((-112) $) 110)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-2862 (($ $ $) 108) (($) 121 (-12 (-4007 (|has| $ (-6 -4327))) (-4007 (|has| $ (-6 -4319)))))) (-3574 (($ $ $) 107) (($) 120 (-12 (-4007 (|has| $ (-6 -4327))) (-4007 (|has| $ (-6 -4319)))))) (-1460 (((-549) $) 130)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 67)) (-3646 (((-892) (-549)) 123 (|has| $ (-6 -4327)))) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-1260 (($ $) 85)) (-4060 (($ $) 87)) (-1354 (($ (-549) (-549)) 135) (($ (-549) (-549) (-892)) 134)) (-2120 (((-411 $) $) 71)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3577 (((-549) $) 131)) (-4091 (((-747) $) 56)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55)) (-1587 (((-892)) 128) (((-892) (-892)) 125 (|has| $ (-6 -4327)))) (-2717 (((-892) (-549)) 122 (|has| $ (-6 -4327)))) (-2844 (((-372) $) 102) (((-219) $) 101) (((-863 (-372)) $) 91)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63) (($ (-549)) 100) (($ (-400 (-549))) 97)) (-1723 (((-747)) 28)) (-2926 (($ $) 88)) (-3960 (((-892)) 129) (((-892) (-892)) 126 (|has| $ (-6 -4327)))) (-1863 (((-892)) 132)) (-4053 (((-112) $ $) 37)) (-3603 (($ $) 112)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 105)) (-2424 (((-112) $ $) 104)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 106)) (-2411 (((-112) $ $) 103)) (-2512 (($ $ $) 62)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66) (($ $ (-400 (-549))) 92)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64)))
+((-4114 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-808 (-890))))) (-1882 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-747)))) (-1881 (*1 *1 *1) (-4 *1 (-395))) (-1881 (*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-747)))))
+(-13 (-356) (-143) (-10 -8 (-15 -4114 ((-808 (-890)) $)) (-15 -1882 ((-3 (-747) "failed") $ $)) (-15 -1881 ($ $)) (-15 -1881 ($ $ (-747)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-593 (-835)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T))
+((-3588 (($ (-535) (-535)) 11) (($ (-535) (-535) (-890)) NIL)) (-2932 (((-890)) 16) (((-890) (-890)) NIL)))
+(((-396 |#1|) (-10 -8 (-15 -2932 ((-890) (-890))) (-15 -2932 ((-890))) (-15 -3588 (|#1| (-535) (-535) (-890))) (-15 -3588 (|#1| (-535) (-535)))) (-397)) (T -396))
+((-2932 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-396 *3)) (-4 *3 (-397)))))
+(-10 -8 (-15 -2932 ((-890) (-890))) (-15 -2932 ((-890))) (-15 -3588 (|#1| (-535) (-535) (-890))) (-15 -3588 (|#1| (-535) (-535))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3447 (((-535) $) 86)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-4113 (($ $) 84)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-3358 (($ $) 94)) (-1700 (((-112) $ $) 57)) (-3969 (((-535) $) 111)) (-3879 (($) 17 T CONST)) (-3445 (($ $) 83)) (-3491 (((-3 (-535) #1="failed") $) 99) (((-3 (-400 (-535)) #1#) $) 96)) (-3490 (((-535) $) 98) (((-400 (-535)) $) 95)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4069 (((-112) $) 68)) (-2457 (((-890)) 127) (((-890) (-890)) 124 (|has| $ (-6 -4327)))) (-3520 (((-112) $) 109)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 90)) (-4114 (((-535) $) 133)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 93)) (-3450 (($ $) 89)) (-3521 (((-112) $) 110)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 50)) (-3660 (($ $ $) 108) (($) 121 (-12 (-3659 (|has| $ (-6 -4327))) (-3659 (|has| $ (-6 -4319)))))) (-3661 (($ $ $) 107) (($) 120 (-12 (-3659 (|has| $ (-6 -4327))) (-3659 (|has| $ (-6 -4319)))))) (-2458 (((-535) $) 130)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-1884 (((-890) (-535)) 123 (|has| $ (-6 -4327)))) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3446 (($ $) 85)) (-3448 (($ $) 87)) (-3588 (($ (-535) (-535)) 135) (($ (-535) (-535) (-890)) 134)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-2484 (((-535) $) 131)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-2932 (((-890)) 128) (((-890) (-890)) 125 (|has| $ (-6 -4327)))) (-1883 (((-890) (-535)) 122 (|has| $ (-6 -4327)))) (-4313 (((-371) $) 102) (((-219) $) 101) (((-861 (-371)) $) 91)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63) (($ (-535)) 100) (($ (-400 (-535))) 97)) (-3444 (((-747)) 28)) (-3449 (($ $) 88)) (-1885 (((-890)) 129) (((-890) (-890)) 126 (|has| $ (-6 -4327)))) (-3015 (((-890)) 132)) (-2170 (((-112) $ $) 37)) (-3725 (($ $) 112)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 105)) (-2886 (((-112) $ $) 104)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 106)) (-3006 (((-112) $ $) 103)) (-4291 (($ $ $) 62)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66) (($ $ (-400 (-535))) 92)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64)))
(((-397) (-138)) (T -397))
-((-1354 (*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-397)))) (-1354 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-892)) (-4 *1 (-397)))) (-2078 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-549)))) (-1863 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892)))) (-3577 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-549)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-549)))) (-3960 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892)))) (-1587 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892)))) (-3235 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-892)) (|has| *1 (-6 -4327)) (-4 *1 (-397)))) (-1587 (*1 *2 *2) (-12 (-5 *2 (-892)) (|has| *1 (-6 -4327)) (-4 *1 (-397)))) (-3235 (*1 *2 *2) (-12 (-5 *2 (-892)) (|has| *1 (-6 -4327)) (-4 *1 (-397)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-549)) (|has| *1 (-6 -4327)) (-4 *1 (-397)) (-5 *2 (-892)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-549)) (|has| *1 (-6 -4327)) (-4 *1 (-397)) (-5 *2 (-892)))) (-2862 (*1 *1) (-12 (-4 *1 (-397)) (-4007 (|has| *1 (-6 -4327))) (-4007 (|has| *1 (-6 -4319))))) (-3574 (*1 *1) (-12 (-4 *1 (-397)) (-4007 (|has| *1 (-6 -4327))) (-4007 (|has| *1 (-6 -4319))))))
-(-13 (-1027) (-10 -8 (-6 -2660) (-15 -1354 ($ (-549) (-549))) (-15 -1354 ($ (-549) (-549) (-892))) (-15 -2078 ((-549) $)) (-15 -1863 ((-892))) (-15 -3577 ((-549) $)) (-15 -1460 ((-549) $)) (-15 -3960 ((-892))) (-15 -1587 ((-892))) (-15 -3235 ((-892))) (IF (|has| $ (-6 -4327)) (PROGN (-15 -3960 ((-892) (-892))) (-15 -1587 ((-892) (-892))) (-15 -3235 ((-892) (-892))) (-15 -3646 ((-892) (-549))) (-15 -2717 ((-892) (-549)))) |%noBranch|) (IF (|has| $ (-6 -4319)) |%noBranch| (IF (|has| $ (-6 -4327)) |%noBranch| (PROGN (-15 -2862 ($)) (-15 -3574 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-834)) . T) ((-170) . T) ((-594 (-219)) . T) ((-594 (-372)) . T) ((-594 (-863 (-372))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-821) . T) ((-823) . T) ((-857 (-372)) . T) ((-891) . T) ((-973) . T) ((-993) . T) ((-1027) . T) ((-1009 (-400 (-549))) . T) ((-1009 (-549)) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1183) . T))
-((-2796 (((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)) 20)))
-(((-398 |#1| |#2|) (-10 -7 (-15 -2796 ((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)))) (-541) (-541)) (T -398))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-411 *5)) (-4 *5 (-541)) (-4 *6 (-541)) (-5 *2 (-411 *6)) (-5 *1 (-398 *5 *6)))))
-(-10 -7 (-15 -2796 ((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|))))
-((-2796 (((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)) 13)))
-(((-399 |#1| |#2|) (-10 -7 (-15 -2796 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) (-541) (-541)) (T -399))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-541)) (-4 *6 (-541)) (-5 *2 (-400 *6)) (-5 *1 (-399 *5 *6)))))
-(-10 -7 (-15 -2796 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 13)) (-2364 ((|#1| $) 21 (|has| |#1| (-300)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL (|has| |#1| (-796)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) 17) (((-3 (-1142) "failed") $) NIL (|has| |#1| (-1009 (-1142)))) (((-3 (-400 (-549)) "failed") $) 70 (|has| |#1| (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549))))) (-2658 ((|#1| $) 15) (((-1142) $) NIL (|has| |#1| (-1009 (-1142)))) (((-400 (-549)) $) 67 (|has| |#1| (-1009 (-549)))) (((-549) $) NIL (|has| |#1| (-1009 (-549))))) (-2094 (($ $ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) 50)) (-3238 (($) NIL (|has| |#1| (-534)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3079 (((-112) $) NIL (|has| |#1| (-796)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| |#1| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| |#1| (-857 (-372))))) (-3987 (((-112) $) 64)) (-2053 (($ $) NIL)) (-1393 ((|#1| $) 71)) (-3982 (((-3 $ "failed") $) NIL (|has| |#1| (-1117)))) (-2847 (((-112) $) NIL (|has| |#1| (-796)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| |#1| (-1117)) CONST)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 97)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1260 (($ $) NIL (|has| |#1| (-300)))) (-4060 ((|#1| $) 28 (|has| |#1| (-534)))) (-1873 (((-411 (-1138 $)) (-1138 $)) 135 (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) 131 (|has| |#1| (-880)))) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2685 (($ $ (-621 |#1|) (-621 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1142)) (-621 |#1|)) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|)))) (-4091 (((-747) $) NIL)) (-3340 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3455 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-4288 (($ $) NIL)) (-1404 ((|#1| $) 73)) (-2844 (((-863 (-549)) $) NIL (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| |#1| (-594 (-863 (-372))))) (((-525) $) NIL (|has| |#1| (-594 (-525)))) (((-372) $) NIL (|has| |#1| (-993))) (((-219) $) NIL (|has| |#1| (-993)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) 10) (($ (-1142)) NIL (|has| |#1| (-1009 (-1142))))) (-3407 (((-3 $ "failed") $) 99 (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) 100)) (-2926 ((|#1| $) 26 (|has| |#1| (-534)))) (-4053 (((-112) $ $) NIL)) (-3603 (($ $) NIL (|has| |#1| (-796)))) (-3275 (($) 22 T CONST)) (-3287 (($) 8 T CONST)) (-3135 (((-1124) $) 43 (-12 (|has| |#1| (-534)) (|has| |#1| (-804)))) (((-1124) $ (-112)) 44 (-12 (|has| |#1| (-534)) (|has| |#1| (-804)))) (((-1230) (-798) $) 45 (-12 (|has| |#1| (-534)) (|has| |#1| (-804)))) (((-1230) (-798) $ (-112)) 46 (-12 (|has| |#1| (-534)) (|has| |#1| (-804))))) (-1700 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) 56)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) 24 (|has| |#1| (-823)))) (-2512 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2499 (($ $) 25) (($ $ $) 55)) (-2485 (($ $ $) 53)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 125)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 60) (($ $ $) 57) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-400 |#1|) (-13 (-963 |#1|) (-10 -7 (IF (|has| |#1| (-534)) (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4323)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4334)) (-6 -4323) |%noBranch|) |%noBranch|) |%noBranch|))) (-541)) (T -400))
-NIL
-(-13 (-963 |#1|) (-10 -7 (IF (|has| |#1| (-534)) (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4323)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4334)) (-6 -4323) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-3102 (((-665 |#2|) (-1225 $)) NIL) (((-665 |#2|)) 18)) (-2127 (($ (-1225 |#2|) (-1225 $)) NIL) (($ (-1225 |#2|)) 24)) (-2988 (((-665 |#2|) $ (-1225 $)) NIL) (((-665 |#2|) $) 38)) (-4030 ((|#3| $) 60)) (-3086 ((|#2| (-1225 $)) NIL) ((|#2|) 20)) (-4163 (((-1225 |#2|) $ (-1225 $)) NIL) (((-665 |#2|) (-1225 $) (-1225 $)) NIL) (((-1225 |#2|) $) 22) (((-665 |#2|) (-1225 $)) 36)) (-2844 (((-1225 |#2|) $) 11) (($ (-1225 |#2|)) 13)) (-4041 ((|#3| $) 52)))
-(((-401 |#1| |#2| |#3|) (-10 -8 (-15 -2988 ((-665 |#2|) |#1|)) (-15 -3086 (|#2|)) (-15 -3102 ((-665 |#2|))) (-15 -2844 (|#1| (-1225 |#2|))) (-15 -2844 ((-1225 |#2|) |#1|)) (-15 -2127 (|#1| (-1225 |#2|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1|)) (-15 -4030 (|#3| |#1|)) (-15 -4041 (|#3| |#1|)) (-15 -3102 ((-665 |#2|) (-1225 |#1|))) (-15 -3086 (|#2| (-1225 |#1|))) (-15 -2127 (|#1| (-1225 |#2|) (-1225 |#1|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1| (-1225 |#1|))) (-15 -2988 ((-665 |#2|) |#1| (-1225 |#1|)))) (-402 |#2| |#3|) (-170) (-1201 |#2|)) (T -401))
-((-3102 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1201 *4)) (-5 *2 (-665 *4)) (-5 *1 (-401 *3 *4 *5)) (-4 *3 (-402 *4 *5)))) (-3086 (*1 *2) (-12 (-4 *4 (-1201 *2)) (-4 *2 (-170)) (-5 *1 (-401 *3 *2 *4)) (-4 *3 (-402 *2 *4)))))
-(-10 -8 (-15 -2988 ((-665 |#2|) |#1|)) (-15 -3086 (|#2|)) (-15 -3102 ((-665 |#2|))) (-15 -2844 (|#1| (-1225 |#2|))) (-15 -2844 ((-1225 |#2|) |#1|)) (-15 -2127 (|#1| (-1225 |#2|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1|)) (-15 -4030 (|#3| |#1|)) (-15 -4041 (|#3| |#1|)) (-15 -3102 ((-665 |#2|) (-1225 |#1|))) (-15 -3086 (|#2| (-1225 |#1|))) (-15 -2127 (|#1| (-1225 |#2|) (-1225 |#1|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1| (-1225 |#1|))) (-15 -2988 ((-665 |#2|) |#1| (-1225 |#1|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-3102 (((-665 |#1|) (-1225 $)) 44) (((-665 |#1|)) 59)) (-2905 ((|#1| $) 50)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2127 (($ (-1225 |#1|) (-1225 $)) 46) (($ (-1225 |#1|)) 62)) (-2988 (((-665 |#1|) $ (-1225 $)) 51) (((-665 |#1|) $) 57)) (-3976 (((-3 $ "failed") $) 32)) (-3122 (((-892)) 52)) (-3987 (((-112) $) 30)) (-4117 ((|#1| $) 49)) (-4030 ((|#2| $) 42 (|has| |#1| (-356)))) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3086 ((|#1| (-1225 $)) 45) ((|#1|) 58)) (-4163 (((-1225 |#1|) $ (-1225 $)) 48) (((-665 |#1|) (-1225 $) (-1225 $)) 47) (((-1225 |#1|) $) 64) (((-665 |#1|) (-1225 $)) 63)) (-2844 (((-1225 |#1|) $) 61) (($ (-1225 |#1|)) 60)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35)) (-3407 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-4041 ((|#2| $) 43)) (-1723 (((-747)) 28)) (-3420 (((-1225 $)) 65)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-402 |#1| |#2|) (-138) (-170) (-1201 |t#1|)) (T -402))
-((-3420 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1201 *3)) (-5 *2 (-1225 *1)) (-4 *1 (-402 *3 *4)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1201 *3)) (-5 *2 (-1225 *3)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-402 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1201 *4)) (-5 *2 (-665 *4)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4)) (-4 *4 (-1201 *3)))) (-2844 (*1 *2 *1) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1201 *3)) (-5 *2 (-1225 *3)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4)) (-4 *4 (-1201 *3)))) (-3102 (*1 *2) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1201 *3)) (-5 *2 (-665 *3)))) (-3086 (*1 *2) (-12 (-4 *1 (-402 *2 *3)) (-4 *3 (-1201 *2)) (-4 *2 (-170)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1201 *3)) (-5 *2 (-665 *3)))))
-(-13 (-363 |t#1| |t#2|) (-10 -8 (-15 -3420 ((-1225 $))) (-15 -4163 ((-1225 |t#1|) $)) (-15 -4163 ((-665 |t#1|) (-1225 $))) (-15 -2127 ($ (-1225 |t#1|))) (-15 -2844 ((-1225 |t#1|) $)) (-15 -2844 ($ (-1225 |t#1|))) (-15 -3102 ((-665 |t#1|))) (-15 -3086 (|t#1|)) (-15 -2988 ((-665 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-363 |#1| |#2|) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-2713 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) 27) (((-3 (-549) "failed") $) 19)) (-2658 ((|#2| $) NIL) (((-400 (-549)) $) 24) (((-549) $) 14)) (-3845 (($ |#2|) NIL) (($ (-400 (-549))) 22) (($ (-549)) 11)))
-(((-403 |#1| |#2|) (-10 -8 (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -3845 (|#1| (-549))) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 (|#1| |#2|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2658 (|#2| |#1|))) (-404 |#2|) (-1179)) (T -403))
-NIL
-(-10 -8 (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -3845 (|#1| (-549))) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 (|#1| |#2|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2658 (|#2| |#1|)))
-((-2713 (((-3 |#1| "failed") $) 7) (((-3 (-400 (-549)) "failed") $) 16 (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) 13 (|has| |#1| (-1009 (-549))))) (-2658 ((|#1| $) 8) (((-400 (-549)) $) 15 (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) 12 (|has| |#1| (-1009 (-549))))) (-3845 (($ |#1|) 6) (($ (-400 (-549))) 17 (|has| |#1| (-1009 (-400 (-549))))) (($ (-549)) 14 (|has| |#1| (-1009 (-549))))))
-(((-404 |#1|) (-138) (-1179)) (T -404))
-NIL
-(-13 (-1009 |t#1|) (-10 -7 (IF (|has| |t#1| (-1009 (-549))) (-6 (-1009 (-549))) |%noBranch|) (IF (|has| |t#1| (-1009 (-400 (-549)))) (-6 (-1009 (-400 (-549)))) |%noBranch|)))
-(((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T))
-((-2796 (((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)) 33)))
-(((-405 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2796 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) (-300) (-963 |#1|) (-1201 |#2|) (-13 (-402 |#2| |#3|) (-1009 |#2|)) (-300) (-963 |#5|) (-1201 |#6|) (-13 (-402 |#6| |#7|) (-1009 |#6|))) (T -405))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300)) (-4 *6 (-963 *5)) (-4 *7 (-1201 *6)) (-4 *8 (-13 (-402 *6 *7) (-1009 *6))) (-4 *9 (-300)) (-4 *10 (-963 *9)) (-4 *11 (-1201 *10)) (-5 *2 (-406 *9 *10 *11 *12)) (-5 *1 (-405 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-402 *10 *11) (-1009 *10))))))
-(-10 -7 (-15 -2796 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|))))
-((-3833 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) NIL)) (-4157 ((|#4| (-747) (-1225 |#4|)) 56)) (-3987 (((-112) $) NIL)) (-1393 (((-1225 |#4|) $) 17)) (-4117 ((|#2| $) 54)) (-2595 (($ $) 139)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 100)) (-4296 (($ (-1225 |#4|)) 99)) (-3988 (((-1086) $) NIL)) (-1404 ((|#1| $) 18)) (-2538 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-3845 (((-834) $) 134)) (-3420 (((-1225 |#4|) $) 129)) (-3287 (($) 11 T CONST)) (-2388 (((-112) $ $) 40)) (-2512 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 122)) (* (($ $ $) 121)))
-(((-406 |#1| |#2| |#3| |#4|) (-13 (-465) (-10 -8 (-15 -4296 ($ (-1225 |#4|))) (-15 -3420 ((-1225 |#4|) $)) (-15 -4117 (|#2| $)) (-15 -1393 ((-1225 |#4|) $)) (-15 -1404 (|#1| $)) (-15 -2595 ($ $)) (-15 -4157 (|#4| (-747) (-1225 |#4|))))) (-300) (-963 |#1|) (-1201 |#2|) (-13 (-402 |#2| |#3|) (-1009 |#2|))) (T -406))
-((-4296 (*1 *1 *2) (-12 (-5 *2 (-1225 *6)) (-4 *6 (-13 (-402 *4 *5) (-1009 *4))) (-4 *4 (-963 *3)) (-4 *5 (-1201 *4)) (-4 *3 (-300)) (-5 *1 (-406 *3 *4 *5 *6)))) (-3420 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1201 *4)) (-5 *2 (-1225 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-402 *4 *5) (-1009 *4))))) (-4117 (*1 *2 *1) (-12 (-4 *4 (-1201 *2)) (-4 *2 (-963 *3)) (-5 *1 (-406 *3 *2 *4 *5)) (-4 *3 (-300)) (-4 *5 (-13 (-402 *2 *4) (-1009 *2))))) (-1393 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1201 *4)) (-5 *2 (-1225 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-402 *4 *5) (-1009 *4))))) (-1404 (*1 *2 *1) (-12 (-4 *3 (-963 *2)) (-4 *4 (-1201 *3)) (-4 *2 (-300)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1009 *3))))) (-2595 (*1 *1 *1) (-12 (-4 *2 (-300)) (-4 *3 (-963 *2)) (-4 *4 (-1201 *3)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1009 *3))))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-1225 *2)) (-4 *5 (-300)) (-4 *6 (-963 *5)) (-4 *2 (-13 (-402 *6 *7) (-1009 *6))) (-5 *1 (-406 *5 *6 *7 *2)) (-4 *7 (-1201 *6)))))
-(-13 (-465) (-10 -8 (-15 -4296 ($ (-1225 |#4|))) (-15 -3420 ((-1225 |#4|) $)) (-15 -4117 (|#2| $)) (-15 -1393 ((-1225 |#4|) $)) (-15 -1404 (|#1| $)) (-15 -2595 ($ $)) (-15 -4157 (|#4| (-747) (-1225 |#4|)))))
-((-3833 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) NIL)) (-3987 (((-112) $) NIL)) (-4117 ((|#2| $) 61)) (-3090 (($ (-1225 |#4|)) 25) (($ (-406 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1009 |#2|)))) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 34)) (-3420 (((-1225 |#4|) $) 26)) (-3287 (($) 23 T CONST)) (-2388 (((-112) $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ $ $) 72)))
-(((-407 |#1| |#2| |#3| |#4| |#5|) (-13 (-703) (-10 -8 (-15 -3420 ((-1225 |#4|) $)) (-15 -4117 (|#2| $)) (-15 -3090 ($ (-1225 |#4|))) (IF (|has| |#4| (-1009 |#2|)) (-15 -3090 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-300) (-963 |#1|) (-1201 |#2|) (-402 |#2| |#3|) (-1225 |#4|)) (T -407))
-((-3420 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1201 *4)) (-5 *2 (-1225 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7)) (-4 *6 (-402 *4 *5)) (-14 *7 *2))) (-4117 (*1 *2 *1) (-12 (-4 *4 (-1201 *2)) (-4 *2 (-963 *3)) (-5 *1 (-407 *3 *2 *4 *5 *6)) (-4 *3 (-300)) (-4 *5 (-402 *2 *4)) (-14 *6 (-1225 *5)))) (-3090 (*1 *1 *2) (-12 (-5 *2 (-1225 *6)) (-4 *6 (-402 *4 *5)) (-4 *4 (-963 *3)) (-4 *5 (-1201 *4)) (-4 *3 (-300)) (-5 *1 (-407 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3090 (*1 *1 *2) (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1009 *4)) (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1201 *4)) (-4 *6 (-402 *4 *5)) (-14 *7 (-1225 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7)))))
-(-13 (-703) (-10 -8 (-15 -3420 ((-1225 |#4|) $)) (-15 -4117 (|#2| $)) (-15 -3090 ($ (-1225 |#4|))) (IF (|has| |#4| (-1009 |#2|)) (-15 -3090 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-2796 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-408 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2796 (|#3| (-1 |#4| |#2|) |#1|))) (-410 |#2|) (-170) (-410 |#4|) (-170)) (T -408))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-410 *6)) (-5 *1 (-408 *4 *5 *2 *6)) (-4 *4 (-410 *5)))))
-(-10 -7 (-15 -2796 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2699 (((-3 $ "failed")) 86)) (-2818 (((-1225 (-665 |#2|)) (-1225 $)) NIL) (((-1225 (-665 |#2|))) 91)) (-2983 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) 85)) (-3917 (((-3 $ "failed")) 84)) (-1418 (((-665 |#2|) (-1225 $)) NIL) (((-665 |#2|)) 102)) (-2811 (((-665 |#2|) $ (-1225 $)) NIL) (((-665 |#2|) $) 110)) (-4165 (((-1138 (-923 |#2|))) 55)) (-2351 ((|#2| (-1225 $)) NIL) ((|#2|) 106)) (-2127 (($ (-1225 |#2|) (-1225 $)) NIL) (($ (-1225 |#2|)) 112)) (-4263 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) 83)) (-1497 (((-3 $ "failed")) 75)) (-1779 (((-665 |#2|) (-1225 $)) NIL) (((-665 |#2|)) 100)) (-1315 (((-665 |#2|) $ (-1225 $)) NIL) (((-665 |#2|) $) 108)) (-2014 (((-1138 (-923 |#2|))) 54)) (-2742 ((|#2| (-1225 $)) NIL) ((|#2|) 104)) (-4163 (((-1225 |#2|) $ (-1225 $)) NIL) (((-665 |#2|) (-1225 $) (-1225 $)) NIL) (((-1225 |#2|) $) 111) (((-665 |#2|) (-1225 $)) 118)) (-2844 (((-1225 |#2|) $) 96) (($ (-1225 |#2|)) 98)) (-3619 (((-621 (-923 |#2|)) (-1225 $)) NIL) (((-621 (-923 |#2|))) 94)) (-3592 (($ (-665 |#2|) $) 90)))
-(((-409 |#1| |#2|) (-10 -8 (-15 -3592 (|#1| (-665 |#2|) |#1|)) (-15 -4165 ((-1138 (-923 |#2|)))) (-15 -2014 ((-1138 (-923 |#2|)))) (-15 -2811 ((-665 |#2|) |#1|)) (-15 -1315 ((-665 |#2|) |#1|)) (-15 -1418 ((-665 |#2|))) (-15 -1779 ((-665 |#2|))) (-15 -2351 (|#2|)) (-15 -2742 (|#2|)) (-15 -2844 (|#1| (-1225 |#2|))) (-15 -2844 ((-1225 |#2|) |#1|)) (-15 -2127 (|#1| (-1225 |#2|))) (-15 -3619 ((-621 (-923 |#2|)))) (-15 -2818 ((-1225 (-665 |#2|)))) (-15 -4163 ((-665 |#2|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1|)) (-15 -2699 ((-3 |#1| "failed"))) (-15 -3917 ((-3 |#1| "failed"))) (-15 -1497 ((-3 |#1| "failed"))) (-15 -2983 ((-3 (-2 (|:| |particular| |#1|) (|:| -3420 (-621 |#1|))) "failed"))) (-15 -4263 ((-3 (-2 (|:| |particular| |#1|) (|:| -3420 (-621 |#1|))) "failed"))) (-15 -1418 ((-665 |#2|) (-1225 |#1|))) (-15 -1779 ((-665 |#2|) (-1225 |#1|))) (-15 -2351 (|#2| (-1225 |#1|))) (-15 -2742 (|#2| (-1225 |#1|))) (-15 -2127 (|#1| (-1225 |#2|) (-1225 |#1|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1| (-1225 |#1|))) (-15 -2811 ((-665 |#2|) |#1| (-1225 |#1|))) (-15 -1315 ((-665 |#2|) |#1| (-1225 |#1|))) (-15 -2818 ((-1225 (-665 |#2|)) (-1225 |#1|))) (-15 -3619 ((-621 (-923 |#2|)) (-1225 |#1|)))) (-410 |#2|) (-170)) (T -409))
-((-2818 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1225 (-665 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-3619 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-621 (-923 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-2742 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2)))) (-2351 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2)))) (-1779 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-1418 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-2014 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1138 (-923 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-4165 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1138 (-923 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))))
-(-10 -8 (-15 -3592 (|#1| (-665 |#2|) |#1|)) (-15 -4165 ((-1138 (-923 |#2|)))) (-15 -2014 ((-1138 (-923 |#2|)))) (-15 -2811 ((-665 |#2|) |#1|)) (-15 -1315 ((-665 |#2|) |#1|)) (-15 -1418 ((-665 |#2|))) (-15 -1779 ((-665 |#2|))) (-15 -2351 (|#2|)) (-15 -2742 (|#2|)) (-15 -2844 (|#1| (-1225 |#2|))) (-15 -2844 ((-1225 |#2|) |#1|)) (-15 -2127 (|#1| (-1225 |#2|))) (-15 -3619 ((-621 (-923 |#2|)))) (-15 -2818 ((-1225 (-665 |#2|)))) (-15 -4163 ((-665 |#2|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1|)) (-15 -2699 ((-3 |#1| "failed"))) (-15 -3917 ((-3 |#1| "failed"))) (-15 -1497 ((-3 |#1| "failed"))) (-15 -2983 ((-3 (-2 (|:| |particular| |#1|) (|:| -3420 (-621 |#1|))) "failed"))) (-15 -4263 ((-3 (-2 (|:| |particular| |#1|) (|:| -3420 (-621 |#1|))) "failed"))) (-15 -1418 ((-665 |#2|) (-1225 |#1|))) (-15 -1779 ((-665 |#2|) (-1225 |#1|))) (-15 -2351 (|#2| (-1225 |#1|))) (-15 -2742 (|#2| (-1225 |#1|))) (-15 -2127 (|#1| (-1225 |#2|) (-1225 |#1|))) (-15 -4163 ((-665 |#2|) (-1225 |#1|) (-1225 |#1|))) (-15 -4163 ((-1225 |#2|) |#1| (-1225 |#1|))) (-15 -2811 ((-665 |#2|) |#1| (-1225 |#1|))) (-15 -1315 ((-665 |#2|) |#1| (-1225 |#1|))) (-15 -2818 ((-1225 (-665 |#2|)) (-1225 |#1|))) (-15 -3619 ((-621 (-923 |#2|)) (-1225 |#1|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2699 (((-3 $ "failed")) 37 (|has| |#1| (-541)))) (-2384 (((-3 $ "failed") $ $) 19)) (-2818 (((-1225 (-665 |#1|)) (-1225 $)) 78) (((-1225 (-665 |#1|))) 100)) (-1955 (((-1225 $)) 81)) (-1705 (($) 17 T CONST)) (-2983 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) 40 (|has| |#1| (-541)))) (-3917 (((-3 $ "failed")) 38 (|has| |#1| (-541)))) (-1418 (((-665 |#1|) (-1225 $)) 65) (((-665 |#1|)) 92)) (-1399 ((|#1| $) 74)) (-2811 (((-665 |#1|) $ (-1225 $)) 76) (((-665 |#1|) $) 90)) (-3923 (((-3 $ "failed") $) 45 (|has| |#1| (-541)))) (-4165 (((-1138 (-923 |#1|))) 88 (|has| |#1| (-356)))) (-2353 (($ $ (-892)) 28)) (-1618 ((|#1| $) 72)) (-4057 (((-1138 |#1|) $) 42 (|has| |#1| (-541)))) (-2351 ((|#1| (-1225 $)) 67) ((|#1|) 94)) (-3254 (((-1138 |#1|) $) 63)) (-2186 (((-112)) 57)) (-2127 (($ (-1225 |#1|) (-1225 $)) 69) (($ (-1225 |#1|)) 98)) (-3976 (((-3 $ "failed") $) 47 (|has| |#1| (-541)))) (-3122 (((-892)) 80)) (-1373 (((-112)) 54)) (-2377 (($ $ (-892)) 33)) (-3995 (((-112)) 50)) (-4285 (((-112)) 48)) (-3055 (((-112)) 52)) (-4263 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) 41 (|has| |#1| (-541)))) (-1497 (((-3 $ "failed")) 39 (|has| |#1| (-541)))) (-1779 (((-665 |#1|) (-1225 $)) 66) (((-665 |#1|)) 93)) (-1359 ((|#1| $) 75)) (-1315 (((-665 |#1|) $ (-1225 $)) 77) (((-665 |#1|) $) 91)) (-2193 (((-3 $ "failed") $) 46 (|has| |#1| (-541)))) (-2014 (((-1138 (-923 |#1|))) 89 (|has| |#1| (-356)))) (-2881 (($ $ (-892)) 29)) (-3142 ((|#1| $) 73)) (-2568 (((-1138 |#1|) $) 43 (|has| |#1| (-541)))) (-2742 ((|#1| (-1225 $)) 68) ((|#1|) 95)) (-2934 (((-1138 |#1|) $) 64)) (-2342 (((-112)) 58)) (-2677 (((-1124) $) 9)) (-1768 (((-112)) 49)) (-4176 (((-112)) 51)) (-4086 (((-112)) 53)) (-3988 (((-1086) $) 10)) (-2036 (((-112)) 56)) (-3340 ((|#1| $ (-549)) 101)) (-4163 (((-1225 |#1|) $ (-1225 $)) 71) (((-665 |#1|) (-1225 $) (-1225 $)) 70) (((-1225 |#1|) $) 103) (((-665 |#1|) (-1225 $)) 102)) (-2844 (((-1225 |#1|) $) 97) (($ (-1225 |#1|)) 96)) (-3619 (((-621 (-923 |#1|)) (-1225 $)) 79) (((-621 (-923 |#1|))) 99)) (-1911 (($ $ $) 25)) (-2138 (((-112)) 62)) (-3845 (((-834) $) 11)) (-3420 (((-1225 $)) 104)) (-1600 (((-621 (-1225 |#1|))) 44 (|has| |#1| (-541)))) (-4172 (($ $ $ $) 26)) (-3596 (((-112)) 60)) (-3592 (($ (-665 |#1|) $) 87)) (-1892 (($ $ $) 24)) (-2221 (((-112)) 61)) (-1654 (((-112)) 59)) (-1615 (((-112)) 55)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 30)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-410 |#1|) (-138) (-170)) (T -410))
-((-3420 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1225 *1)) (-4 *1 (-410 *3)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1225 *3)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-410 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-410 *2)) (-4 *2 (-170)))) (-2818 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1225 (-665 *3))))) (-3619 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-621 (-923 *3))))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3)))) (-2844 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1225 *3)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3)))) (-2742 (*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170)))) (-2351 (*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170)))) (-1779 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-1418 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-1315 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-2014 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1138 (-923 *3))))) (-4165 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1138 (-923 *3))))) (-3592 (*1 *1 *2 *1) (-12 (-5 *2 (-665 *3)) (-4 *1 (-410 *3)) (-4 *3 (-170)))))
-(-13 (-360 |t#1|) (-10 -8 (-15 -3420 ((-1225 $))) (-15 -4163 ((-1225 |t#1|) $)) (-15 -4163 ((-665 |t#1|) (-1225 $))) (-15 -3340 (|t#1| $ (-549))) (-15 -2818 ((-1225 (-665 |t#1|)))) (-15 -3619 ((-621 (-923 |t#1|)))) (-15 -2127 ($ (-1225 |t#1|))) (-15 -2844 ((-1225 |t#1|) $)) (-15 -2844 ($ (-1225 |t#1|))) (-15 -2742 (|t#1|)) (-15 -2351 (|t#1|)) (-15 -1779 ((-665 |t#1|))) (-15 -1418 ((-665 |t#1|))) (-15 -1315 ((-665 |t#1|) $)) (-15 -2811 ((-665 |t#1|) $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -2014 ((-1138 (-923 |t#1|)))) (-15 -4165 ((-1138 (-923 |t#1|))))) |%noBranch|) (-15 -3592 ($ (-665 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-360 |#1|) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-697) . T) ((-721 |#1|) . T) ((-738) . T) ((-1024 |#1|) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 42)) (-2214 (($ $) 57)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 146)) (-2408 (($ $) NIL)) (-2477 (((-112) $) 36)) (-2699 ((|#1| $) 13)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL (|has| |#1| (-1183)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-1183)))) (-4167 (($ |#1| (-549)) 31)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 116)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 55)) (-3976 (((-3 $ "failed") $) 131)) (-3156 (((-3 (-400 (-549)) "failed") $) 63 (|has| |#1| (-534)))) (-3230 (((-112) $) 59 (|has| |#1| (-534)))) (-3867 (((-400 (-549)) $) 70 (|has| |#1| (-534)))) (-4101 (($ |#1| (-549)) 33)) (-2471 (((-112) $) 152 (|has| |#1| (-1183)))) (-3987 (((-112) $) 43)) (-3597 (((-747) $) 38)) (-2919 (((-3 "nil" "sqfr" "irred" "prime") $ (-549)) 137)) (-3570 ((|#1| $ (-549)) 136)) (-1735 (((-549) $ (-549)) 135)) (-1529 (($ |#1| (-549)) 30)) (-2796 (($ (-1 |#1| |#1|) $) 143)) (-3425 (($ |#1| (-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549))))) 58)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2677 (((-1124) $) NIL)) (-2394 (($ |#1| (-549)) 32)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) 147 (|has| |#1| (-444)))) (-2564 (($ |#1| (-549) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-2886 (((-621 (-2 (|:| -2120 |#1|) (|:| -3577 (-549)))) $) 54)) (-1534 (((-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))) $) 12)) (-2120 (((-411 $) $) NIL (|has| |#1| (-1183)))) (-2038 (((-3 $ "failed") $ $) 138)) (-3577 (((-549) $) 132)) (-1448 ((|#1| $) 56)) (-2685 (($ $ (-621 |#1|) (-621 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) 79 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1142)) (-621 |#1|)) 85 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) $) NIL (|has| |#1| (-505 (-1142) $))) (($ $ (-621 (-1142)) (-621 $)) 86 (|has| |#1| (-505 (-1142) $))) (($ $ (-621 (-287 $))) 82 (|has| |#1| (-302 $))) (($ $ (-287 $)) NIL (|has| |#1| (-302 $))) (($ $ $ $) NIL (|has| |#1| (-302 $))) (($ $ (-621 $) (-621 $)) NIL (|has| |#1| (-302 $)))) (-3340 (($ $ |#1|) 71 (|has| |#1| (-279 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-279 $ $)))) (-3455 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-2844 (((-525) $) 27 (|has| |#1| (-594 (-525)))) (((-372) $) 92 (|has| |#1| (-993))) (((-219) $) 95 (|has| |#1| (-993)))) (-3845 (((-834) $) 114) (($ (-549)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549)))))) (-1723 (((-747)) 48)) (-4053 (((-112) $ $) NIL)) (-3275 (($) 40 T CONST)) (-3287 (($) 39 T CONST)) (-1700 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2388 (((-112) $ $) 96)) (-2499 (($ $) 128) (($ $ $) NIL)) (-2485 (($ $ $) 140)) (** (($ $ (-892)) NIL) (($ $ (-747)) 102)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
-(((-411 |#1|) (-13 (-541) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-404 |#1|) (-10 -8 (-15 -1448 (|#1| $)) (-15 -3577 ((-549) $)) (-15 -3425 ($ |#1| (-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))))) (-15 -1534 ((-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))) $)) (-15 -1529 ($ |#1| (-549))) (-15 -2886 ((-621 (-2 (|:| -2120 |#1|) (|:| -3577 (-549)))) $)) (-15 -2394 ($ |#1| (-549))) (-15 -1735 ((-549) $ (-549))) (-15 -3570 (|#1| $ (-549))) (-15 -2919 ((-3 "nil" "sqfr" "irred" "prime") $ (-549))) (-15 -3597 ((-747) $)) (-15 -4101 ($ |#1| (-549))) (-15 -4167 ($ |#1| (-549))) (-15 -2564 ($ |#1| (-549) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2699 (|#1| $)) (-15 -2214 ($ $)) (-15 -2796 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-993)) (-6 (-993)) |%noBranch|) (IF (|has| |#1| (-1183)) (-6 (-1183)) |%noBranch|) (IF (|has| |#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3230 ((-112) $)) (-15 -3867 ((-400 (-549)) $)) (-15 -3156 ((-3 (-400 (-549)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1142) $)) (-6 (-505 (-1142) $)) |%noBranch|))) (-541)) (T -411))
-((-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-541)) (-5 *1 (-411 *3)))) (-1448 (*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-411 *3)) (-4 *3 (-541)))) (-3425 (*1 *1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-549))))) (-4 *2 (-541)) (-5 *1 (-411 *2)))) (-1534 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-549))))) (-5 *1 (-411 *3)) (-4 *3 (-541)))) (-1529 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| -2120 *3) (|:| -3577 (-549))))) (-5 *1 (-411 *3)) (-4 *3 (-541)))) (-2394 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-1735 (*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-411 *3)) (-4 *3 (-541)))) (-3570 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-2919 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-411 *4)) (-4 *4 (-541)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-411 *3)) (-4 *3 (-541)))) (-4101 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-4167 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-2564 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-549)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-2699 (*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-2214 (*1 *1 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-411 *3)) (-4 *3 (-534)) (-4 *3 (-541)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-411 *3)) (-4 *3 (-534)) (-4 *3 (-541)))) (-3156 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-411 *3)) (-4 *3 (-534)) (-4 *3 (-541)))))
-(-13 (-541) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-404 |#1|) (-10 -8 (-15 -1448 (|#1| $)) (-15 -3577 ((-549) $)) (-15 -3425 ($ |#1| (-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))))) (-15 -1534 ((-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))) $)) (-15 -1529 ($ |#1| (-549))) (-15 -2886 ((-621 (-2 (|:| -2120 |#1|) (|:| -3577 (-549)))) $)) (-15 -2394 ($ |#1| (-549))) (-15 -1735 ((-549) $ (-549))) (-15 -3570 (|#1| $ (-549))) (-15 -2919 ((-3 "nil" "sqfr" "irred" "prime") $ (-549))) (-15 -3597 ((-747) $)) (-15 -4101 ($ |#1| (-549))) (-15 -4167 ($ |#1| (-549))) (-15 -2564 ($ |#1| (-549) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2699 (|#1| $)) (-15 -2214 ($ $)) (-15 -2796 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-993)) (-6 (-993)) |%noBranch|) (IF (|has| |#1| (-1183)) (-6 (-1183)) |%noBranch|) (IF (|has| |#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3230 ((-112) $)) (-15 -3867 ((-400 (-549)) $)) (-15 -3156 ((-3 (-400 (-549)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1142) $)) (-6 (-505 (-1142) $)) |%noBranch|)))
-((-1571 (((-411 |#1|) (-411 |#1|) (-1 (-411 |#1|) |#1|)) 21)) (-3992 (((-411 |#1|) (-411 |#1|) (-411 |#1|)) 16)))
-(((-412 |#1|) (-10 -7 (-15 -1571 ((-411 |#1|) (-411 |#1|) (-1 (-411 |#1|) |#1|))) (-15 -3992 ((-411 |#1|) (-411 |#1|) (-411 |#1|)))) (-541)) (T -412))
-((-3992 (*1 *2 *2 *2) (-12 (-5 *2 (-411 *3)) (-4 *3 (-541)) (-5 *1 (-412 *3)))) (-1571 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-411 *4) *4)) (-4 *4 (-541)) (-5 *2 (-411 *4)) (-5 *1 (-412 *4)))))
-(-10 -7 (-15 -1571 ((-411 |#1|) (-411 |#1|) (-1 (-411 |#1|) |#1|))) (-15 -3992 ((-411 |#1|) (-411 |#1|) (-411 |#1|))))
-((-2858 ((|#2| |#2|) 166)) (-2641 (((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112)) 57)))
-(((-413 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2641 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112))) (-15 -2858 (|#2| |#2|))) (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1164) (-423 |#1|)) (-1142) |#2|) (T -413))
-((-2858 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1164) (-423 *3))) (-14 *4 (-1142)) (-14 *5 *2))) (-2641 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124)))))) (-5 *1 (-413 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1164) (-423 *5))) (-14 *6 (-1142)) (-14 *7 *3))))
-(-10 -7 (-15 -2641 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112))) (-15 -2858 (|#2| |#2|)))
-((-2796 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2796 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1018) (-823)) (-423 |#1|) (-13 (-1018) (-823)) (-423 |#3|)) (T -414))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1018) (-823))) (-4 *6 (-13 (-1018) (-823))) (-4 *2 (-423 *6)) (-5 *1 (-414 *5 *4 *6 *2)) (-4 *4 (-423 *5)))))
-(-10 -7 (-15 -2796 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2858 ((|#2| |#2|) 90)) (-3317 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124)) 48)) (-3221 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124)) 154)))
-(((-415 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3317 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124))) (-15 -3221 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124))) (-15 -2858 (|#2| |#2|))) (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1164) (-423 |#1|) (-10 -8 (-15 -3845 ($ |#3|)))) (-821) (-13 (-1203 |#2| |#3|) (-356) (-1164) (-10 -8 (-15 -3455 ($ $)) (-15 -1531 ($ $)))) (-954 |#4|) (-1142)) (T -415))
-((-2858 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-4 *2 (-13 (-27) (-1164) (-423 *3) (-10 -8 (-15 -3845 ($ *4))))) (-4 *4 (-821)) (-4 *5 (-13 (-1203 *2 *4) (-356) (-1164) (-10 -8 (-15 -3455 ($ $)) (-15 -1531 ($ $))))) (-5 *1 (-415 *3 *2 *4 *5 *6 *7)) (-4 *6 (-954 *5)) (-14 *7 (-1142)))) (-3221 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-4 *3 (-13 (-27) (-1164) (-423 *6) (-10 -8 (-15 -3845 ($ *7))))) (-4 *7 (-821)) (-4 *8 (-13 (-1203 *3 *7) (-356) (-1164) (-10 -8 (-15 -3455 ($ $)) (-15 -1531 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124)))))) (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1124)) (-4 *9 (-954 *8)) (-14 *10 (-1142)))) (-3317 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-4 *3 (-13 (-27) (-1164) (-423 *6) (-10 -8 (-15 -3845 ($ *7))))) (-4 *7 (-821)) (-4 *8 (-13 (-1203 *3 *7) (-356) (-1164) (-10 -8 (-15 -3455 ($ $)) (-15 -1531 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124)))))) (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1124)) (-4 *9 (-954 *8)) (-14 *10 (-1142)))))
-(-10 -7 (-15 -3317 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124))) (-15 -3221 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124))) (-15 -2858 (|#2| |#2|)))
-((-3076 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2558 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2796 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2796 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2558 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3076 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1066) (-418 |#1|) (-1066) (-418 |#3|)) (T -416))
-((-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1066)) (-4 *5 (-1066)) (-4 *2 (-418 *5)) (-5 *1 (-416 *6 *4 *5 *2)) (-4 *4 (-418 *6)))) (-2558 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1066)) (-4 *2 (-1066)) (-5 *1 (-416 *5 *4 *2 *6)) (-4 *4 (-418 *5)) (-4 *6 (-418 *2)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-418 *6)) (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-418 *5)))))
-(-10 -7 (-15 -2796 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2558 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3076 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3290 (($) 44)) (-1440 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3755 (($ $ $) 39)) (-4063 (((-112) $ $) 28)) (-3615 (((-747)) 47)) (-2787 (($ (-621 |#2|)) 20) (($) NIL)) (-3238 (($) 53)) (-1353 (((-112) $ $) 13)) (-2862 ((|#2| $) 61)) (-3574 ((|#2| $) 59)) (-2723 (((-892) $) 55)) (-1795 (($ $ $) 35)) (-3491 (($ (-892)) 50)) (-4142 (($ $ |#2|) NIL) (($ $ $) 38)) (-3997 (((-747) (-1 (-112) |#2|) $) NIL) (((-747) |#2| $) 26)) (-3853 (($ (-621 |#2|)) 24)) (-3532 (($ $) 46)) (-3845 (((-834) $) 33)) (-2343 (((-747) $) 21)) (-4118 (($ (-621 |#2|)) 19) (($) NIL)) (-2388 (((-112) $ $) 16)))
-(((-417 |#1| |#2|) (-10 -8 (-15 -3615 ((-747))) (-15 -3491 (|#1| (-892))) (-15 -2723 ((-892) |#1|)) (-15 -3238 (|#1|)) (-15 -2862 (|#2| |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -3290 (|#1|)) (-15 -3532 (|#1| |#1|)) (-15 -2343 ((-747) |#1|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -3845 ((-834) |#1|)) (-15 -1353 ((-112) |#1| |#1|)) (-15 -4118 (|#1|)) (-15 -4118 (|#1| (-621 |#2|))) (-15 -2787 (|#1|)) (-15 -2787 (|#1| (-621 |#2|))) (-15 -1795 (|#1| |#1| |#1|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -4142 (|#1| |#1| |#2|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -4063 ((-112) |#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1440 (|#1| |#1| |#2|)) (-15 -1440 (|#1| |#2| |#1|)) (-15 -3853 (|#1| (-621 |#2|))) (-15 -3997 ((-747) |#2| |#1|)) (-15 -3997 ((-747) (-1 (-112) |#2|) |#1|))) (-418 |#2|) (-1066)) (T -417))
-((-3615 (*1 *2) (-12 (-4 *4 (-1066)) (-5 *2 (-747)) (-5 *1 (-417 *3 *4)) (-4 *3 (-418 *4)))))
-(-10 -8 (-15 -3615 ((-747))) (-15 -3491 (|#1| (-892))) (-15 -2723 ((-892) |#1|)) (-15 -3238 (|#1|)) (-15 -2862 (|#2| |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -3290 (|#1|)) (-15 -3532 (|#1| |#1|)) (-15 -2343 ((-747) |#1|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -3845 ((-834) |#1|)) (-15 -1353 ((-112) |#1| |#1|)) (-15 -4118 (|#1|)) (-15 -4118 (|#1| (-621 |#2|))) (-15 -2787 (|#1|)) (-15 -2787 (|#1| (-621 |#2|))) (-15 -1795 (|#1| |#1| |#1|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -4142 (|#1| |#1| |#2|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -4063 ((-112) |#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1440 (|#1| |#1| |#2|)) (-15 -1440 (|#1| |#2| |#1|)) (-15 -3853 (|#1| (-621 |#2|))) (-15 -3997 ((-747) |#2| |#1|)) (-15 -3997 ((-747) (-1 (-112) |#2|) |#1|)))
-((-3833 (((-112) $ $) 19)) (-3290 (($) 67 (|has| |#1| (-361)))) (-1440 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3755 (($ $ $) 78)) (-4063 (((-112) $ $) 79)) (-1323 (((-112) $ (-747)) 8)) (-3615 (((-747)) 61 (|has| |#1| (-361)))) (-2787 (($ (-621 |#1|)) 74) (($) 73)) (-3069 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-3675 (($ $) 58 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-4204 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3812 (($ |#1| $) 57 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-3238 (($) 64 (|has| |#1| (-361)))) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-1353 (((-112) $ $) 70)) (-4202 (((-112) $ (-747)) 9)) (-2862 ((|#1| $) 65 (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-3574 ((|#1| $) 66 (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-2723 (((-892) $) 63 (|has| |#1| (-361)))) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22)) (-1795 (($ $ $) 75)) (-2349 ((|#1| $) 39)) (-1709 (($ |#1| $) 40)) (-3491 (($ (-892)) 62 (|has| |#1| (-361)))) (-3988 (((-1086) $) 21)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2629 ((|#1| $) 41)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-4142 (($ $ |#1|) 77) (($ $ $) 76)) (-4252 (($) 49) (($ (-621 |#1|)) 48)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-2844 (((-525) $) 59 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 50)) (-3532 (($ $) 68 (|has| |#1| (-361)))) (-3845 (((-834) $) 18)) (-2343 (((-747) $) 69)) (-4118 (($ (-621 |#1|)) 72) (($) 71)) (-1765 (($ (-621 |#1|)) 42)) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20)) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-418 |#1|) (-138) (-1066)) (T -418))
-((-2343 (*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-1066)) (-5 *2 (-747)))) (-3532 (*1 *1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1066)) (-4 *2 (-361)))) (-3290 (*1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-361)) (-4 *2 (-1066)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1066)) (-4 *2 (-823)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1066)) (-4 *2 (-823)))))
-(-13 (-223 |t#1|) (-1064 |t#1|) (-10 -8 (-6 -4336) (-15 -2343 ((-747) $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-361)) (-15 -3532 ($ $)) (-15 -3290 ($))) |%noBranch|) (IF (|has| |t#1| (-823)) (PROGN (-15 -3574 (|t#1| $)) (-15 -2862 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-593 (-834)) . T) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-223 |#1|) . T) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-361) |has| |#1| (-361)) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1064 |#1|) . T) ((-1066) . T) ((-1179) . T))
-((-2943 (((-567 |#2|) |#2| (-1142)) 36)) (-3640 (((-567 |#2|) |#2| (-1142)) 20)) (-2159 ((|#2| |#2| (-1142)) 25)))
-(((-419 |#1| |#2|) (-10 -7 (-15 -3640 ((-567 |#2|) |#2| (-1142))) (-15 -2943 ((-567 |#2|) |#2| (-1142))) (-15 -2159 (|#2| |#2| (-1142)))) (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1164) (-29 |#1|))) (T -419))
-((-2159 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-419 *4 *2)) (-4 *2 (-13 (-1164) (-29 *4))))) (-2943 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-567 *3)) (-5 *1 (-419 *5 *3)) (-4 *3 (-13 (-1164) (-29 *5))))) (-3640 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-567 *3)) (-5 *1 (-419 *5 *3)) (-4 *3 (-13 (-1164) (-29 *5))))))
-(-10 -7 (-15 -3640 ((-567 |#2|) |#2| (-1142))) (-15 -2943 ((-567 |#2|) |#2| (-1142))) (-15 -2159 (|#2| |#2| (-1142))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) NIL)) (-3987 (((-112) $) NIL)) (-2576 (($ |#2| |#1|) 35)) (-3672 (($ |#2| |#1|) 33)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-324 |#2|)) 25)) (-1723 (((-747)) NIL)) (-3275 (($) 10 T CONST)) (-3287 (($) 16 T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 34)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-420 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4323)) (IF (|has| |#1| (-6 -4323)) (-6 -4323) |%noBranch|) |%noBranch|) (-15 -3845 ($ |#1|)) (-15 -3845 ($ (-324 |#2|))) (-15 -2576 ($ |#2| |#1|)) (-15 -3672 ($ |#2| |#1|)))) (-13 (-170) (-38 (-400 (-549)))) (-13 (-823) (-21))) (T -420))
-((-3845 (*1 *1 *2) (-12 (-5 *1 (-420 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-549))))) (-4 *3 (-13 (-823) (-21))))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-823) (-21))) (-5 *1 (-420 *3 *4)) (-4 *3 (-13 (-170) (-38 (-400 (-549))))))) (-2576 (*1 *1 *2 *3) (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-549))))) (-4 *2 (-13 (-823) (-21))))) (-3672 (*1 *1 *2 *3) (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-549))))) (-4 *2 (-13 (-823) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4323)) (IF (|has| |#1| (-6 -4323)) (-6 -4323) |%noBranch|) |%noBranch|) (-15 -3845 ($ |#1|)) (-15 -3845 ($ (-324 |#2|))) (-15 -2576 ($ |#2| |#1|)) (-15 -3672 ($ |#2| |#1|))))
-((-1531 (((-3 |#2| (-621 |#2|)) |#2| (-1142)) 109)))
-(((-421 |#1| |#2|) (-10 -7 (-15 -1531 ((-3 |#2| (-621 |#2|)) |#2| (-1142)))) (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1164) (-930) (-29 |#1|))) (T -421))
-((-1531 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 *3 (-621 *3))) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1164) (-930) (-29 *5))))))
-(-10 -7 (-15 -1531 ((-3 |#2| (-621 |#2|)) |#2| (-1142))))
-((-2271 (((-621 (-1142)) $) 72)) (-2082 (((-400 (-1138 $)) $ (-592 $)) 273)) (-3014 (($ $ (-287 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-621 (-592 $)) (-621 $)) 237)) (-2713 (((-3 (-592 $) "failed") $) NIL) (((-3 (-1142) "failed") $) 75) (((-3 (-549) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-400 (-923 |#2|)) "failed") $) 324) (((-3 (-923 |#2|) "failed") $) 235) (((-3 (-400 (-549)) "failed") $) NIL)) (-2658 (((-592 $) $) NIL) (((-1142) $) 30) (((-549) $) NIL) ((|#2| $) 231) (((-400 (-923 |#2|)) $) 305) (((-923 |#2|) $) 232) (((-400 (-549)) $) NIL)) (-2015 (((-114) (-114)) 47)) (-2053 (($ $) 87)) (-3364 (((-3 (-592 $) "failed") $) 228)) (-2063 (((-621 (-592 $)) $) 229)) (-4201 (((-3 (-621 $) "failed") $) 247)) (-1572 (((-3 (-2 (|:| |val| $) (|:| -3577 (-549))) "failed") $) 254)) (-1462 (((-3 (-621 $) "failed") $) 245)) (-3505 (((-3 (-2 (|:| -1569 (-549)) (|:| |var| (-592 $))) "failed") $) 264)) (-4219 (((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $) 251) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $ (-1142)) 219)) (-2002 (((-112) $) 19)) (-2012 ((|#2| $) 21)) (-2685 (($ $ (-592 $) $) NIL) (($ $ (-621 (-592 $)) (-621 $)) 236) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-621 (-1142)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-1142)) (-621 (-1 $ (-621 $)))) 96) (($ $ (-1142) (-1 $ (-621 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-621 (-114)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-114) (-1 $ (-621 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1142)) 57) (($ $ (-621 (-1142))) 240) (($ $) 241) (($ $ (-114) $ (-1142)) 60) (($ $ (-621 (-114)) (-621 $) (-1142)) 67) (($ $ (-621 (-1142)) (-621 (-747)) (-621 (-1 $ $))) 107) (($ $ (-621 (-1142)) (-621 (-747)) (-621 (-1 $ (-621 $)))) 242) (($ $ (-1142) (-747) (-1 $ (-621 $))) 94) (($ $ (-1142) (-747) (-1 $ $)) 93)) (-3340 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-621 $)) 106)) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142)) 238)) (-4288 (($ $) 284)) (-2844 (((-863 (-549)) $) 257) (((-863 (-372)) $) 261) (($ (-411 $)) 320) (((-525) $) NIL)) (-3845 (((-834) $) 239) (($ (-592 $)) 84) (($ (-1142)) 26) (($ |#2|) NIL) (($ (-1091 |#2| (-592 $))) NIL) (($ (-400 |#2|)) 289) (($ (-923 (-400 |#2|))) 329) (($ (-400 (-923 (-400 |#2|)))) 301) (($ (-400 (-923 |#2|))) 295) (($ $) NIL) (($ (-923 |#2|)) 185) (($ (-400 (-549))) 334) (($ (-549)) NIL)) (-1723 (((-747)) 79)) (-3234 (((-112) (-114)) 41)) (-1788 (($ (-1142) $) 33) (($ (-1142) $ $) 34) (($ (-1142) $ $ $) 35) (($ (-1142) $ $ $ $) 36) (($ (-1142) (-621 $)) 39)) (* (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-549) $) NIL) (($ (-747) $) NIL) (($ (-892) $) NIL)))
-(((-422 |#1| |#2|) (-10 -8 (-15 * (|#1| (-892) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1723 ((-747))) (-15 -3845 (|#1| (-549))) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -2844 ((-525) |#1|)) (-15 -2658 ((-923 |#2|) |#1|)) (-15 -2713 ((-3 (-923 |#2|) "failed") |#1|)) (-15 -3845 (|#1| (-923 |#2|))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -2658 ((-400 (-923 |#2|)) |#1|)) (-15 -2713 ((-3 (-400 (-923 |#2|)) "failed") |#1|)) (-15 -3845 (|#1| (-400 (-923 |#2|)))) (-15 -2082 ((-400 (-1138 |#1|)) |#1| (-592 |#1|))) (-15 -3845 (|#1| (-400 (-923 (-400 |#2|))))) (-15 -3845 (|#1| (-923 (-400 |#2|)))) (-15 -3845 (|#1| (-400 |#2|))) (-15 -4288 (|#1| |#1|)) (-15 -2844 (|#1| (-411 |#1|))) (-15 -2685 (|#1| |#1| (-1142) (-747) (-1 |#1| |#1|))) (-15 -2685 (|#1| |#1| (-1142) (-747) (-1 |#1| (-621 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 (-747)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 (-747)) (-621 (-1 |#1| |#1|)))) (-15 -1572 ((-3 (-2 (|:| |val| |#1|) (|:| -3577 (-549))) "failed") |#1|)) (-15 -4219 ((-3 (-2 (|:| |var| (-592 |#1|)) (|:| -3577 (-549))) "failed") |#1| (-1142))) (-15 -4219 ((-3 (-2 (|:| |var| (-592 |#1|)) (|:| -3577 (-549))) "failed") |#1| (-114))) (-15 -2053 (|#1| |#1|)) (-15 -3845 (|#1| (-1091 |#2| (-592 |#1|)))) (-15 -3505 ((-3 (-2 (|:| -1569 (-549)) (|:| |var| (-592 |#1|))) "failed") |#1|)) (-15 -1462 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -4219 ((-3 (-2 (|:| |var| (-592 |#1|)) (|:| -3577 (-549))) "failed") |#1|)) (-15 -4201 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2685 (|#1| |#1| (-621 (-114)) (-621 |#1|) (-1142))) (-15 -2685 (|#1| |#1| (-114) |#1| (-1142))) (-15 -2685 (|#1| |#1|)) (-15 -2685 (|#1| |#1| (-621 (-1142)))) (-15 -2685 (|#1| |#1| (-1142))) (-15 -1788 (|#1| (-1142) (-621 |#1|))) (-15 -1788 (|#1| (-1142) |#1| |#1| |#1| |#1|)) (-15 -1788 (|#1| (-1142) |#1| |#1| |#1|)) (-15 -1788 (|#1| (-1142) |#1| |#1|)) (-15 -1788 (|#1| (-1142) |#1|)) (-15 -2271 ((-621 (-1142)) |#1|)) (-15 -2012 (|#2| |#1|)) (-15 -2002 ((-112) |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -2844 ((-863 (-372)) |#1|)) (-15 -2844 ((-863 (-549)) |#1|)) (-15 -2658 ((-1142) |#1|)) (-15 -2713 ((-3 (-1142) "failed") |#1|)) (-15 -3845 (|#1| (-1142))) (-15 -2685 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2685 (|#1| |#1| (-114) (-1 |#1| (-621 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2685 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| |#1|)))) (-15 -2685 (|#1| |#1| (-1142) (-1 |#1| |#1|))) (-15 -2685 (|#1| |#1| (-1142) (-1 |#1| (-621 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 (-1 |#1| |#1|)))) (-15 -3234 ((-112) (-114))) (-15 -2015 ((-114) (-114))) (-15 -2063 ((-621 (-592 |#1|)) |#1|)) (-15 -3364 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3014 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -3014 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3014 (|#1| |#1| (-287 |#1|))) (-15 -3340 (|#1| (-114) (-621 |#1|))) (-15 -3340 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3340 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3340 (|#1| (-114) |#1| |#1|)) (-15 -3340 (|#1| (-114) |#1|)) (-15 -2685 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#1| |#1|)) (-15 -2685 (|#1| |#1| (-287 |#1|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -2685 (|#1| |#1| (-592 |#1|) |#1|)) (-15 -2658 ((-592 |#1|) |#1|)) (-15 -2713 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3845 (|#1| (-592 |#1|))) (-15 -3845 ((-834) |#1|))) (-423 |#2|) (-823)) (T -422))
-((-2015 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-823)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-422 *4 *5)) (-4 *4 (-423 *5)))) (-1723 (*1 *2) (-12 (-4 *4 (-823)) (-5 *2 (-747)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))))
-(-10 -8 (-15 * (|#1| (-892) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1723 ((-747))) (-15 -3845 (|#1| (-549))) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -2844 ((-525) |#1|)) (-15 -2658 ((-923 |#2|) |#1|)) (-15 -2713 ((-3 (-923 |#2|) "failed") |#1|)) (-15 -3845 (|#1| (-923 |#2|))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -2658 ((-400 (-923 |#2|)) |#1|)) (-15 -2713 ((-3 (-400 (-923 |#2|)) "failed") |#1|)) (-15 -3845 (|#1| (-400 (-923 |#2|)))) (-15 -2082 ((-400 (-1138 |#1|)) |#1| (-592 |#1|))) (-15 -3845 (|#1| (-400 (-923 (-400 |#2|))))) (-15 -3845 (|#1| (-923 (-400 |#2|)))) (-15 -3845 (|#1| (-400 |#2|))) (-15 -4288 (|#1| |#1|)) (-15 -2844 (|#1| (-411 |#1|))) (-15 -2685 (|#1| |#1| (-1142) (-747) (-1 |#1| |#1|))) (-15 -2685 (|#1| |#1| (-1142) (-747) (-1 |#1| (-621 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 (-747)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 (-747)) (-621 (-1 |#1| |#1|)))) (-15 -1572 ((-3 (-2 (|:| |val| |#1|) (|:| -3577 (-549))) "failed") |#1|)) (-15 -4219 ((-3 (-2 (|:| |var| (-592 |#1|)) (|:| -3577 (-549))) "failed") |#1| (-1142))) (-15 -4219 ((-3 (-2 (|:| |var| (-592 |#1|)) (|:| -3577 (-549))) "failed") |#1| (-114))) (-15 -2053 (|#1| |#1|)) (-15 -3845 (|#1| (-1091 |#2| (-592 |#1|)))) (-15 -3505 ((-3 (-2 (|:| -1569 (-549)) (|:| |var| (-592 |#1|))) "failed") |#1|)) (-15 -1462 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -4219 ((-3 (-2 (|:| |var| (-592 |#1|)) (|:| -3577 (-549))) "failed") |#1|)) (-15 -4201 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2685 (|#1| |#1| (-621 (-114)) (-621 |#1|) (-1142))) (-15 -2685 (|#1| |#1| (-114) |#1| (-1142))) (-15 -2685 (|#1| |#1|)) (-15 -2685 (|#1| |#1| (-621 (-1142)))) (-15 -2685 (|#1| |#1| (-1142))) (-15 -1788 (|#1| (-1142) (-621 |#1|))) (-15 -1788 (|#1| (-1142) |#1| |#1| |#1| |#1|)) (-15 -1788 (|#1| (-1142) |#1| |#1| |#1|)) (-15 -1788 (|#1| (-1142) |#1| |#1|)) (-15 -1788 (|#1| (-1142) |#1|)) (-15 -2271 ((-621 (-1142)) |#1|)) (-15 -2012 (|#2| |#1|)) (-15 -2002 ((-112) |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -2844 ((-863 (-372)) |#1|)) (-15 -2844 ((-863 (-549)) |#1|)) (-15 -2658 ((-1142) |#1|)) (-15 -2713 ((-3 (-1142) "failed") |#1|)) (-15 -3845 (|#1| (-1142))) (-15 -2685 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2685 (|#1| |#1| (-114) (-1 |#1| (-621 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2685 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| |#1|)))) (-15 -2685 (|#1| |#1| (-1142) (-1 |#1| |#1|))) (-15 -2685 (|#1| |#1| (-1142) (-1 |#1| (-621 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2685 (|#1| |#1| (-621 (-1142)) (-621 (-1 |#1| |#1|)))) (-15 -3234 ((-112) (-114))) (-15 -2015 ((-114) (-114))) (-15 -2063 ((-621 (-592 |#1|)) |#1|)) (-15 -3364 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3014 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -3014 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3014 (|#1| |#1| (-287 |#1|))) (-15 -3340 (|#1| (-114) (-621 |#1|))) (-15 -3340 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3340 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3340 (|#1| (-114) |#1| |#1|)) (-15 -3340 (|#1| (-114) |#1|)) (-15 -2685 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#1| |#1|)) (-15 -2685 (|#1| |#1| (-287 |#1|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -2685 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -2685 (|#1| |#1| (-592 |#1|) |#1|)) (-15 -2658 ((-592 |#1|) |#1|)) (-15 -2713 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3845 (|#1| (-592 |#1|))) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 113 (|has| |#1| (-25)))) (-2271 (((-621 (-1142)) $) 200)) (-2082 (((-400 (-1138 $)) $ (-592 $)) 168 (|has| |#1| (-541)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 140 (|has| |#1| (-541)))) (-2408 (($ $) 141 (|has| |#1| (-541)))) (-2477 (((-112) $) 143 (|has| |#1| (-541)))) (-1980 (((-621 (-592 $)) $) 44)) (-2384 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-3014 (($ $ (-287 $)) 56) (($ $ (-621 (-287 $))) 55) (($ $ (-621 (-592 $)) (-621 $)) 54)) (-1912 (($ $) 160 (|has| |#1| (-541)))) (-3513 (((-411 $) $) 161 (|has| |#1| (-541)))) (-2647 (((-112) $ $) 151 (|has| |#1| (-541)))) (-1705 (($) 101 (-1536 (|has| |#1| (-1078)) (|has| |#1| (-25))) CONST)) (-2713 (((-3 (-592 $) "failed") $) 69) (((-3 (-1142) "failed") $) 213) (((-3 (-549) "failed") $) 206 (|has| |#1| (-1009 (-549)))) (((-3 |#1| "failed") $) 204) (((-3 (-400 (-923 |#1|)) "failed") $) 166 (|has| |#1| (-541))) (((-3 (-923 |#1|) "failed") $) 120 (|has| |#1| (-1018))) (((-3 (-400 (-549)) "failed") $) 95 (-1536 (-12 (|has| |#1| (-1009 (-549))) (|has| |#1| (-541))) (|has| |#1| (-1009 (-400 (-549))))))) (-2658 (((-592 $) $) 68) (((-1142) $) 212) (((-549) $) 207 (|has| |#1| (-1009 (-549)))) ((|#1| $) 203) (((-400 (-923 |#1|)) $) 165 (|has| |#1| (-541))) (((-923 |#1|) $) 119 (|has| |#1| (-1018))) (((-400 (-549)) $) 94 (-1536 (-12 (|has| |#1| (-1009 (-549))) (|has| |#1| (-541))) (|has| |#1| (-1009 (-400 (-549))))))) (-2094 (($ $ $) 155 (|has| |#1| (-541)))) (-1698 (((-665 (-549)) (-665 $)) 134 (-1820 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 133 (-1820 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 132 (|has| |#1| (-1018))) (((-665 |#1|) (-665 $)) 131 (|has| |#1| (-1018)))) (-3976 (((-3 $ "failed") $) 103 (|has| |#1| (-1078)))) (-2066 (($ $ $) 154 (|has| |#1| (-541)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 149 (|has| |#1| (-541)))) (-2471 (((-112) $) 162 (|has| |#1| (-541)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 209 (|has| |#1| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 208 (|has| |#1| (-857 (-372))))) (-3390 (($ $) 51) (($ (-621 $)) 50)) (-2415 (((-621 (-114)) $) 43)) (-2015 (((-114) (-114)) 42)) (-3987 (((-112) $) 102 (|has| |#1| (-1078)))) (-3061 (((-112) $) 22 (|has| $ (-1009 (-549))))) (-2053 (($ $) 183 (|has| |#1| (-1018)))) (-1393 (((-1091 |#1| (-592 $)) $) 184 (|has| |#1| (-1018)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 158 (|has| |#1| (-541)))) (-1417 (((-1138 $) (-592 $)) 25 (|has| $ (-1018)))) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2796 (($ (-1 $ $) (-592 $)) 36)) (-3364 (((-3 (-592 $) "failed") $) 46)) (-3696 (($ (-621 $)) 147 (|has| |#1| (-541))) (($ $ $) 146 (|has| |#1| (-541)))) (-2677 (((-1124) $) 9)) (-2063 (((-621 (-592 $)) $) 45)) (-1477 (($ (-114) $) 38) (($ (-114) (-621 $)) 37)) (-4201 (((-3 (-621 $) "failed") $) 189 (|has| |#1| (-1078)))) (-1572 (((-3 (-2 (|:| |val| $) (|:| -3577 (-549))) "failed") $) 180 (|has| |#1| (-1018)))) (-1462 (((-3 (-621 $) "failed") $) 187 (|has| |#1| (-25)))) (-3505 (((-3 (-2 (|:| -1569 (-549)) (|:| |var| (-592 $))) "failed") $) 186 (|has| |#1| (-25)))) (-4219 (((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $) 188 (|has| |#1| (-1078))) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $ (-114)) 182 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $ (-1142)) 181 (|has| |#1| (-1018)))) (-1581 (((-112) $ (-114)) 40) (((-112) $ (-1142)) 39)) (-1991 (($ $) 105 (-1536 (|has| |#1| (-465)) (|has| |#1| (-541))))) (-4035 (((-747) $) 47)) (-3988 (((-1086) $) 10)) (-2002 (((-112) $) 202)) (-2012 ((|#1| $) 201)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 148 (|has| |#1| (-541)))) (-3726 (($ (-621 $)) 145 (|has| |#1| (-541))) (($ $ $) 144 (|has| |#1| (-541)))) (-4029 (((-112) $ $) 35) (((-112) $ (-1142)) 34)) (-2120 (((-411 $) $) 159 (|has| |#1| (-541)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-541))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 156 (|has| |#1| (-541)))) (-2038 (((-3 $ "failed") $ $) 139 (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 150 (|has| |#1| (-541)))) (-4062 (((-112) $) 23 (|has| $ (-1009 (-549))))) (-2685 (($ $ (-592 $) $) 67) (($ $ (-621 (-592 $)) (-621 $)) 66) (($ $ (-621 (-287 $))) 65) (($ $ (-287 $)) 64) (($ $ $ $) 63) (($ $ (-621 $) (-621 $)) 62) (($ $ (-621 (-1142)) (-621 (-1 $ $))) 33) (($ $ (-621 (-1142)) (-621 (-1 $ (-621 $)))) 32) (($ $ (-1142) (-1 $ (-621 $))) 31) (($ $ (-1142) (-1 $ $)) 30) (($ $ (-621 (-114)) (-621 (-1 $ $))) 29) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) 28) (($ $ (-114) (-1 $ (-621 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1142)) 194 (|has| |#1| (-594 (-525)))) (($ $ (-621 (-1142))) 193 (|has| |#1| (-594 (-525)))) (($ $) 192 (|has| |#1| (-594 (-525)))) (($ $ (-114) $ (-1142)) 191 (|has| |#1| (-594 (-525)))) (($ $ (-621 (-114)) (-621 $) (-1142)) 190 (|has| |#1| (-594 (-525)))) (($ $ (-621 (-1142)) (-621 (-747)) (-621 (-1 $ $))) 179 (|has| |#1| (-1018))) (($ $ (-621 (-1142)) (-621 (-747)) (-621 (-1 $ (-621 $)))) 178 (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ (-621 $))) 177 (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ $)) 176 (|has| |#1| (-1018)))) (-4091 (((-747) $) 152 (|has| |#1| (-541)))) (-3340 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-621 $)) 57)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 153 (|has| |#1| (-541)))) (-3776 (($ $) 49) (($ $ $) 48)) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) 125 (|has| |#1| (-1018))) (($ $ (-1142) (-747)) 124 (|has| |#1| (-1018))) (($ $ (-621 (-1142))) 123 (|has| |#1| (-1018))) (($ $ (-1142)) 122 (|has| |#1| (-1018)))) (-4288 (($ $) 173 (|has| |#1| (-541)))) (-1404 (((-1091 |#1| (-592 $)) $) 174 (|has| |#1| (-541)))) (-2539 (($ $) 24 (|has| $ (-1018)))) (-2844 (((-863 (-549)) $) 211 (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) 210 (|has| |#1| (-594 (-863 (-372))))) (($ (-411 $)) 175 (|has| |#1| (-541))) (((-525) $) 97 (|has| |#1| (-594 (-525))))) (-2538 (($ $ $) 108 (|has| |#1| (-465)))) (-1911 (($ $ $) 109 (|has| |#1| (-465)))) (-3845 (((-834) $) 11) (($ (-592 $)) 70) (($ (-1142)) 214) (($ |#1|) 205) (($ (-1091 |#1| (-592 $))) 185 (|has| |#1| (-1018))) (($ (-400 |#1|)) 171 (|has| |#1| (-541))) (($ (-923 (-400 |#1|))) 170 (|has| |#1| (-541))) (($ (-400 (-923 (-400 |#1|)))) 169 (|has| |#1| (-541))) (($ (-400 (-923 |#1|))) 167 (|has| |#1| (-541))) (($ $) 138 (|has| |#1| (-541))) (($ (-923 |#1|)) 121 (|has| |#1| (-1018))) (($ (-400 (-549))) 96 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-1009 (-549))) (|has| |#1| (-541))) (|has| |#1| (-1009 (-400 (-549)))))) (($ (-549)) 93 (-1536 (|has| |#1| (-1018)) (|has| |#1| (-1009 (-549)))))) (-3407 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-1723 (((-747)) 130 (|has| |#1| (-1018)))) (-4136 (($ $) 53) (($ (-621 $)) 52)) (-3234 (((-112) (-114)) 41)) (-4053 (((-112) $ $) 142 (|has| |#1| (-541)))) (-1788 (($ (-1142) $) 199) (($ (-1142) $ $) 198) (($ (-1142) $ $ $) 197) (($ (-1142) $ $ $ $) 196) (($ (-1142) (-621 $)) 195)) (-3275 (($) 112 (|has| |#1| (-25)) CONST)) (-3287 (($) 100 (|has| |#1| (-1078)) CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) 129 (|has| |#1| (-1018))) (($ $ (-1142) (-747)) 128 (|has| |#1| (-1018))) (($ $ (-621 (-1142))) 127 (|has| |#1| (-1018))) (($ $ (-1142)) 126 (|has| |#1| (-1018)))) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)) (-2512 (($ (-1091 |#1| (-592 $)) (-1091 |#1| (-592 $))) 172 (|has| |#1| (-541))) (($ $ $) 106 (-1536 (|has| |#1| (-465)) (|has| |#1| (-541))))) (-2499 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2485 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-549)) 107 (-1536 (|has| |#1| (-465)) (|has| |#1| (-541)))) (($ $ (-747)) 104 (|has| |#1| (-1078))) (($ $ (-892)) 99 (|has| |#1| (-1078)))) (* (($ (-400 (-549)) $) 164 (|has| |#1| (-541))) (($ $ (-400 (-549))) 163 (|has| |#1| (-541))) (($ |#1| $) 137 (|has| |#1| (-170))) (($ $ |#1|) 136 (|has| |#1| (-170))) (($ (-549) $) 118 (|has| |#1| (-21))) (($ (-747) $) 114 (|has| |#1| (-25))) (($ (-892) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1078)))))
-(((-423 |#1|) (-138) (-823)) (T -423))
-((-2002 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-823)) (-5 *2 (-112)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-823)) (-5 *2 (-621 (-1142))))) (-1788 (*1 *1 *2 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-423 *3)) (-4 *3 (-823)))) (-1788 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-423 *3)) (-4 *3 (-823)))) (-1788 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-423 *3)) (-4 *3 (-823)))) (-1788 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-423 *3)) (-4 *3 (-823)))) (-1788 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-621 *1)) (-4 *1 (-423 *4)) (-4 *4 (-823)))) (-2685 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-4 *1 (-423 *3)) (-4 *3 (-823)) (-4 *3 (-594 (-525))))) (-2685 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-1142))) (-4 *1 (-423 *3)) (-4 *3 (-823)) (-4 *3 (-594 (-525))))) (-2685 (*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)) (-4 *2 (-594 (-525))))) (-2685 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1142)) (-4 *1 (-423 *4)) (-4 *4 (-823)) (-4 *4 (-594 (-525))))) (-2685 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-621 (-114))) (-5 *3 (-621 *1)) (-5 *4 (-1142)) (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-594 (-525))))) (-4201 (*1 *2 *1) (|partial| -12 (-4 *3 (-1078)) (-4 *3 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-423 *3)))) (-4219 (*1 *2 *1) (|partial| -12 (-4 *3 (-1078)) (-4 *3 (-823)) (-5 *2 (-2 (|:| |var| (-592 *1)) (|:| -3577 (-549)))) (-4 *1 (-423 *3)))) (-1462 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-423 *3)))) (-3505 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -1569 (-549)) (|:| |var| (-592 *1)))) (-4 *1 (-423 *3)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1091 *3 (-592 *1))) (-4 *3 (-1018)) (-4 *3 (-823)) (-4 *1 (-423 *3)))) (-1393 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *3 (-823)) (-5 *2 (-1091 *3 (-592 *1))) (-4 *1 (-423 *3)))) (-2053 (*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)) (-4 *2 (-1018)))) (-4219 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1018)) (-4 *4 (-823)) (-5 *2 (-2 (|:| |var| (-592 *1)) (|:| -3577 (-549)))) (-4 *1 (-423 *4)))) (-4219 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1142)) (-4 *4 (-1018)) (-4 *4 (-823)) (-5 *2 (-2 (|:| |var| (-592 *1)) (|:| -3577 (-549)))) (-4 *1 (-423 *4)))) (-1572 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-823)) (-5 *2 (-2 (|:| |val| *1) (|:| -3577 (-549)))) (-4 *1 (-423 *3)))) (-2685 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-621 (-747))) (-5 *4 (-621 (-1 *1 *1))) (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-2685 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-621 (-747))) (-5 *4 (-621 (-1 *1 (-621 *1)))) (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-2685 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *4 (-1 *1 (-621 *1))) (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-2685 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *4 (-1 *1 *1)) (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-411 *1)) (-4 *1 (-423 *3)) (-4 *3 (-541)) (-4 *3 (-823)))) (-1404 (*1 *2 *1) (-12 (-4 *3 (-541)) (-4 *3 (-823)) (-5 *2 (-1091 *3 (-592 *1))) (-4 *1 (-423 *3)))) (-4288 (*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)) (-4 *2 (-541)))) (-2512 (*1 *1 *2 *2) (-12 (-5 *2 (-1091 *3 (-592 *1))) (-4 *3 (-541)) (-4 *3 (-823)) (-4 *1 (-423 *3)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-541)) (-4 *3 (-823)) (-4 *1 (-423 *3)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-923 (-400 *3))) (-4 *3 (-541)) (-4 *3 (-823)) (-4 *1 (-423 *3)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-400 *3)))) (-4 *3 (-541)) (-4 *3 (-823)) (-4 *1 (-423 *3)))) (-2082 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-423 *4)) (-4 *4 (-823)) (-4 *4 (-541)) (-5 *2 (-400 (-1138 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-423 *3)) (-4 *3 (-823)) (-4 *3 (-1078)))))
-(-13 (-295) (-1009 (-1142)) (-855 |t#1|) (-393 |t#1|) (-404 |t#1|) (-10 -8 (-15 -2002 ((-112) $)) (-15 -2012 (|t#1| $)) (-15 -2271 ((-621 (-1142)) $)) (-15 -1788 ($ (-1142) $)) (-15 -1788 ($ (-1142) $ $)) (-15 -1788 ($ (-1142) $ $ $)) (-15 -1788 ($ (-1142) $ $ $ $)) (-15 -1788 ($ (-1142) (-621 $))) (IF (|has| |t#1| (-594 (-525))) (PROGN (-6 (-594 (-525))) (-15 -2685 ($ $ (-1142))) (-15 -2685 ($ $ (-621 (-1142)))) (-15 -2685 ($ $)) (-15 -2685 ($ $ (-114) $ (-1142))) (-15 -2685 ($ $ (-621 (-114)) (-621 $) (-1142)))) |%noBranch|) (IF (|has| |t#1| (-1078)) (PROGN (-6 (-703)) (-15 ** ($ $ (-747))) (-15 -4201 ((-3 (-621 $) "failed") $)) (-15 -4219 ((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1462 ((-3 (-621 $) "failed") $)) (-15 -3505 ((-3 (-2 (|:| -1569 (-549)) (|:| |var| (-592 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-1009 (-923 |t#1|))) (-6 (-871 (-1142))) (-6 (-370 |t#1|)) (-15 -3845 ($ (-1091 |t#1| (-592 $)))) (-15 -1393 ((-1091 |t#1| (-592 $)) $)) (-15 -2053 ($ $)) (-15 -4219 ((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $ (-114))) (-15 -4219 ((-3 (-2 (|:| |var| (-592 $)) (|:| -3577 (-549))) "failed") $ (-1142))) (-15 -1572 ((-3 (-2 (|:| |val| $) (|:| -3577 (-549))) "failed") $)) (-15 -2685 ($ $ (-621 (-1142)) (-621 (-747)) (-621 (-1 $ $)))) (-15 -2685 ($ $ (-621 (-1142)) (-621 (-747)) (-621 (-1 $ (-621 $))))) (-15 -2685 ($ $ (-1142) (-747) (-1 $ (-621 $)))) (-15 -2685 ($ $ (-1142) (-747) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-541)) (PROGN (-6 (-356)) (-6 (-1009 (-400 (-923 |t#1|)))) (-15 -2844 ($ (-411 $))) (-15 -1404 ((-1091 |t#1| (-592 $)) $)) (-15 -4288 ($ $)) (-15 -2512 ($ (-1091 |t#1| (-592 $)) (-1091 |t#1| (-592 $)))) (-15 -3845 ($ (-400 |t#1|))) (-15 -3845 ($ (-923 (-400 |t#1|)))) (-15 -3845 ($ (-400 (-923 (-400 |t#1|))))) (-15 -2082 ((-400 (-1138 $)) $ (-592 $))) (IF (|has| |t#1| (-1009 (-549))) (-6 (-1009 (-400 (-549)))) |%noBranch|)) |%noBranch|)))
-(((-21) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-400 (-549))) |has| |#1| (-541)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-541)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-541)) ((-130) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) |has| |#1| (-541)) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-594 (-863 (-372))) |has| |#1| (-594 (-863 (-372)))) ((-594 (-863 (-549))) |has| |#1| (-594 (-863 (-549)))) ((-237) |has| |#1| (-541)) ((-283) |has| |#1| (-541)) ((-300) |has| |#1| (-541)) ((-302 $) . T) ((-295) . T) ((-356) |has| |#1| (-541)) ((-370 |#1|) |has| |#1| (-1018)) ((-393 |#1|) . T) ((-404 |#1|) . T) ((-444) |has| |#1| (-541)) ((-465) |has| |#1| (-465)) ((-505 (-592 $) $) . T) ((-505 $ $) . T) ((-541) |has| |#1| (-541)) ((-624 #0#) |has| |#1| (-541)) ((-624 |#1|) |has| |#1| (-170)) ((-624 $) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-617 (-549)) -12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) ((-617 |#1|) |has| |#1| (-1018)) ((-694 #0#) |has| |#1| (-541)) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) -1536 (|has| |#1| (-1078)) (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-823) . T) ((-871 (-1142)) |has| |#1| (-1018)) ((-857 (-372)) |has| |#1| (-857 (-372))) ((-857 (-549)) |has| |#1| (-857 (-549))) ((-855 |#1|) . T) ((-891) |has| |#1| (-541)) ((-1009 (-400 (-549))) -1536 (|has| |#1| (-1009 (-400 (-549)))) (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549))))) ((-1009 (-400 (-923 |#1|))) |has| |#1| (-541)) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 (-592 $)) . T) ((-1009 (-923 |#1|)) |has| |#1| (-1018)) ((-1009 (-1142)) . T) ((-1009 |#1|) . T) ((-1024 #0#) |has| |#1| (-541)) ((-1024 |#1|) |has| |#1| (-170)) ((-1024 $) |has| |#1| (-541)) ((-1018) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1025) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1078) -1536 (|has| |#1| (-1078)) (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1066) . T) ((-1179) . T) ((-1183) |has| |#1| (-541)))
-((-3752 ((|#2| |#2| |#2|) 33)) (-2015 (((-114) (-114)) 44)) (-2280 ((|#2| |#2|) 66)) (-3605 ((|#2| |#2|) 69)) (-3272 ((|#2| |#2|) 32)) (-2047 ((|#2| |#2| |#2|) 35)) (-2730 ((|#2| |#2| |#2|) 37)) (-3232 ((|#2| |#2| |#2|) 34)) (-1940 ((|#2| |#2| |#2|) 36)) (-3234 (((-112) (-114)) 42)) (-3173 ((|#2| |#2|) 39)) (-4195 ((|#2| |#2|) 38)) (-3603 ((|#2| |#2|) 27)) (-1756 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1850 ((|#2| |#2| |#2|) 31)))
-(((-424 |#1| |#2|) (-10 -7 (-15 -3234 ((-112) (-114))) (-15 -2015 ((-114) (-114))) (-15 -3603 (|#2| |#2|)) (-15 -1756 (|#2| |#2|)) (-15 -1756 (|#2| |#2| |#2|)) (-15 -1850 (|#2| |#2| |#2|)) (-15 -3272 (|#2| |#2|)) (-15 -3752 (|#2| |#2| |#2|)) (-15 -3232 (|#2| |#2| |#2|)) (-15 -2047 (|#2| |#2| |#2|)) (-15 -1940 (|#2| |#2| |#2|)) (-15 -2730 (|#2| |#2| |#2|)) (-15 -4195 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3605 (|#2| |#2|)) (-15 -2280 (|#2| |#2|))) (-13 (-823) (-541)) (-423 |#1|)) (T -424))
-((-2280 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3605 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-4195 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-2730 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1940 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-2047 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3232 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3752 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3272 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1850 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1756 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1756 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3603 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *4)) (-4 *4 (-423 *3)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *5 (-423 *4)))))
-(-10 -7 (-15 -3234 ((-112) (-114))) (-15 -2015 ((-114) (-114))) (-15 -3603 (|#2| |#2|)) (-15 -1756 (|#2| |#2|)) (-15 -1756 (|#2| |#2| |#2|)) (-15 -1850 (|#2| |#2| |#2|)) (-15 -3272 (|#2| |#2|)) (-15 -3752 (|#2| |#2| |#2|)) (-15 -3232 (|#2| |#2| |#2|)) (-15 -2047 (|#2| |#2| |#2|)) (-15 -1940 (|#2| |#2| |#2|)) (-15 -2730 (|#2| |#2| |#2|)) (-15 -4195 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3605 (|#2| |#2|)) (-15 -2280 (|#2| |#2|)))
-((-1327 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1138 |#2|)) (|:| |pol2| (-1138 |#2|)) (|:| |prim| (-1138 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-621 (-1138 |#2|))) (|:| |prim| (-1138 |#2|))) (-621 |#2|)) 61)))
-(((-425 |#1| |#2|) (-10 -7 (-15 -1327 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-621 (-1138 |#2|))) (|:| |prim| (-1138 |#2|))) (-621 |#2|))) (IF (|has| |#2| (-27)) (-15 -1327 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1138 |#2|)) (|:| |pol2| (-1138 |#2|)) (|:| |prim| (-1138 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-541) (-823) (-145)) (-423 |#1|)) (T -425))
-((-1327 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-541) (-823) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1138 *3)) (|:| |pol2| (-1138 *3)) (|:| |prim| (-1138 *3)))) (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-423 *4)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-423 *4)) (-4 *4 (-13 (-541) (-823) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-621 (-1138 *5))) (|:| |prim| (-1138 *5)))) (-5 *1 (-425 *4 *5)))))
-(-10 -7 (-15 -1327 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-621 (-1138 |#2|))) (|:| |prim| (-1138 |#2|))) (-621 |#2|))) (IF (|has| |#2| (-27)) (-15 -1327 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1138 |#2|)) (|:| |pol2| (-1138 |#2|)) (|:| |prim| (-1138 |#2|))) |#2| |#2|)) |%noBranch|))
-((-1508 (((-1230)) 19)) (-2873 (((-1138 (-400 (-549))) |#2| (-592 |#2|)) 41) (((-400 (-549)) |#2|) 25)))
-(((-426 |#1| |#2|) (-10 -7 (-15 -2873 ((-400 (-549)) |#2|)) (-15 -2873 ((-1138 (-400 (-549))) |#2| (-592 |#2|))) (-15 -1508 ((-1230)))) (-13 (-823) (-541) (-1009 (-549))) (-423 |#1|)) (T -426))
-((-1508 (*1 *2) (-12 (-4 *3 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-1230)) (-5 *1 (-426 *3 *4)) (-4 *4 (-423 *3)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-423 *5)) (-4 *5 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-1138 (-400 (-549)))) (-5 *1 (-426 *5 *3)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-400 (-549))) (-5 *1 (-426 *4 *3)) (-4 *3 (-423 *4)))))
-(-10 -7 (-15 -2873 ((-400 (-549)) |#2|)) (-15 -2873 ((-1138 (-400 (-549))) |#2| (-592 |#2|))) (-15 -1508 ((-1230))))
-((-3113 (((-112) $) 28)) (-2402 (((-112) $) 30)) (-3985 (((-112) $) 31)) (-3181 (((-112) $) 34)) (-3852 (((-112) $) 29)) (-3531 (((-112) $) 33)) (-3845 (((-834) $) 18) (($ (-1124)) 27) (($ (-1142)) 23) (((-1142) $) 22) (((-1070) $) 21)) (-3753 (((-112) $) 32)) (-2388 (((-112) $ $) 15)))
-(((-427) (-13 (-593 (-834)) (-10 -8 (-15 -3845 ($ (-1124))) (-15 -3845 ($ (-1142))) (-15 -3845 ((-1142) $)) (-15 -3845 ((-1070) $)) (-15 -3113 ((-112) $)) (-15 -3852 ((-112) $)) (-15 -3985 ((-112) $)) (-15 -3531 ((-112) $)) (-15 -3181 ((-112) $)) (-15 -3753 ((-112) $)) (-15 -2402 ((-112) $)) (-15 -2388 ((-112) $ $))))) (T -427))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-427)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-427)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-427)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-427)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3181 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3753 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-2388 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
-(-13 (-593 (-834)) (-10 -8 (-15 -3845 ($ (-1124))) (-15 -3845 ($ (-1142))) (-15 -3845 ((-1142) $)) (-15 -3845 ((-1070) $)) (-15 -3113 ((-112) $)) (-15 -3852 ((-112) $)) (-15 -3985 ((-112) $)) (-15 -3531 ((-112) $)) (-15 -3181 ((-112) $)) (-15 -3753 ((-112) $)) (-15 -2402 ((-112) $)) (-15 -2388 ((-112) $ $))))
-((-3653 (((-3 (-411 (-1138 (-400 (-549)))) "failed") |#3|) 70)) (-3910 (((-411 |#3|) |#3|) 34)) (-3555 (((-3 (-411 (-1138 (-48))) "failed") |#3|) 46 (|has| |#2| (-1009 (-48))))) (-1877 (((-3 (|:| |overq| (-1138 (-400 (-549)))) (|:| |overan| (-1138 (-48))) (|:| -4150 (-112))) |#3|) 37)))
-(((-428 |#1| |#2| |#3|) (-10 -7 (-15 -3910 ((-411 |#3|) |#3|)) (-15 -3653 ((-3 (-411 (-1138 (-400 (-549)))) "failed") |#3|)) (-15 -1877 ((-3 (|:| |overq| (-1138 (-400 (-549)))) (|:| |overan| (-1138 (-48))) (|:| -4150 (-112))) |#3|)) (IF (|has| |#2| (-1009 (-48))) (-15 -3555 ((-3 (-411 (-1138 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-541) (-823) (-1009 (-549))) (-423 |#1|) (-1201 |#2|)) (T -428))
-((-3555 (*1 *2 *3) (|partial| -12 (-4 *5 (-1009 (-48))) (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4)) (-5 *2 (-411 (-1138 (-48)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1201 *5)))) (-1877 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4)) (-5 *2 (-3 (|:| |overq| (-1138 (-400 (-549)))) (|:| |overan| (-1138 (-48))) (|:| -4150 (-112)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1201 *5)))) (-3653 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4)) (-5 *2 (-411 (-1138 (-400 (-549))))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1201 *5)))) (-3910 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4)) (-5 *2 (-411 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1201 *5)))))
-(-10 -7 (-15 -3910 ((-411 |#3|) |#3|)) (-15 -3653 ((-3 (-411 (-1138 (-400 (-549)))) "failed") |#3|)) (-15 -1877 ((-3 (|:| |overq| (-1138 (-400 (-549)))) (|:| |overan| (-1138 (-48))) (|:| -4150 (-112))) |#3|)) (IF (|has| |#2| (-1009 (-48))) (-15 -3555 ((-3 (-411 (-1138 (-48))) "failed") |#3|)) |%noBranch|))
-((-3833 (((-112) $ $) NIL)) (-1450 (((-1124) $ (-1124)) NIL)) (-3955 (($ $ (-1124)) NIL)) (-3887 (((-1124) $) NIL)) (-4292 (((-381) (-381) (-381)) 17) (((-381) (-381)) 15)) (-1358 (($ (-381)) NIL) (($ (-381) (-1124)) NIL)) (-2480 (((-381) $) NIL)) (-2677 (((-1124) $) NIL)) (-4085 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-4050 (((-1230) (-1124)) 9)) (-2225 (((-1230) (-1124)) 10)) (-3112 (((-1230)) 11)) (-3845 (((-834) $) NIL)) (-3559 (($ $) 35)) (-2388 (((-112) $ $) NIL)))
-(((-429) (-13 (-357 (-381) (-1124)) (-10 -7 (-15 -4292 ((-381) (-381) (-381))) (-15 -4292 ((-381) (-381))) (-15 -4050 ((-1230) (-1124))) (-15 -2225 ((-1230) (-1124))) (-15 -3112 ((-1230)))))) (T -429))
-((-4292 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429)))) (-4292 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429)))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-429)))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-429)))) (-3112 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-429)))))
-(-13 (-357 (-381) (-1124)) (-10 -7 (-15 -4292 ((-381) (-381) (-381))) (-15 -4292 ((-381) (-381))) (-15 -4050 ((-1230) (-1124))) (-15 -2225 ((-1230) (-1124))) (-15 -3112 ((-1230)))))
-((-3833 (((-112) $ $) NIL)) (-4256 (((-3 (|:| |fst| (-427)) (|:| -2902 "void")) $) 11)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3347 (($) 32)) (-2247 (($) 38)) (-1355 (($) 34)) (-3448 (($) 36)) (-4012 (($) 33)) (-1694 (($) 35)) (-2751 (($) 37)) (-2745 (((-112) $) 8)) (-3167 (((-621 (-923 (-549))) $) 19)) (-3853 (($ (-3 (|:| |fst| (-427)) (|:| -2902 "void")) (-621 (-1142)) (-112)) 27) (($ (-3 (|:| |fst| (-427)) (|:| -2902 "void")) (-621 (-923 (-549))) (-112)) 28)) (-3845 (((-834) $) 23) (($ (-427)) 29)) (-2388 (((-112) $ $) NIL)))
-(((-430) (-13 (-1066) (-10 -8 (-15 -3845 ((-834) $)) (-15 -3845 ($ (-427))) (-15 -4256 ((-3 (|:| |fst| (-427)) (|:| -2902 "void")) $)) (-15 -3167 ((-621 (-923 (-549))) $)) (-15 -2745 ((-112) $)) (-15 -3853 ($ (-3 (|:| |fst| (-427)) (|:| -2902 "void")) (-621 (-1142)) (-112))) (-15 -3853 ($ (-3 (|:| |fst| (-427)) (|:| -2902 "void")) (-621 (-923 (-549))) (-112))) (-15 -3347 ($)) (-15 -4012 ($)) (-15 -1355 ($)) (-15 -2247 ($)) (-15 -1694 ($)) (-15 -3448 ($)) (-15 -2751 ($))))) (T -430))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-430)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-430)))) (-4256 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-5 *1 (-430)))) (-3167 (*1 *2 *1) (-12 (-5 *2 (-621 (-923 (-549)))) (-5 *1 (-430)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430)))) (-3853 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-5 *3 (-621 (-1142))) (-5 *4 (-112)) (-5 *1 (-430)))) (-3853 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-112)) (-5 *1 (-430)))) (-3347 (*1 *1) (-5 *1 (-430))) (-4012 (*1 *1) (-5 *1 (-430))) (-1355 (*1 *1) (-5 *1 (-430))) (-2247 (*1 *1) (-5 *1 (-430))) (-1694 (*1 *1) (-5 *1 (-430))) (-3448 (*1 *1) (-5 *1 (-430))) (-2751 (*1 *1) (-5 *1 (-430))))
-(-13 (-1066) (-10 -8 (-15 -3845 ((-834) $)) (-15 -3845 ($ (-427))) (-15 -4256 ((-3 (|:| |fst| (-427)) (|:| -2902 "void")) $)) (-15 -3167 ((-621 (-923 (-549))) $)) (-15 -2745 ((-112) $)) (-15 -3853 ($ (-3 (|:| |fst| (-427)) (|:| -2902 "void")) (-621 (-1142)) (-112))) (-15 -3853 ($ (-3 (|:| |fst| (-427)) (|:| -2902 "void")) (-621 (-923 (-549))) (-112))) (-15 -3347 ($)) (-15 -4012 ($)) (-15 -1355 ($)) (-15 -2247 ($)) (-15 -1694 ($)) (-15 -3448 ($)) (-15 -2751 ($))))
-((-3833 (((-112) $ $) NIL)) (-2480 (((-1142) $) 8)) (-2677 (((-1124) $) 16)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 11)) (-2388 (((-112) $ $) 13)))
-(((-431 |#1|) (-13 (-1066) (-10 -8 (-15 -2480 ((-1142) $)))) (-1142)) (T -431))
-((-2480 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-431 *3)) (-14 *3 *2))))
-(-13 (-1066) (-10 -8 (-15 -2480 ((-1142) $))))
-((-3315 (((-1230) $) 7)) (-3845 (((-834) $) 8) (($ (-1225 (-675))) 14) (($ (-621 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 11)))
+((-3588 (*1 *1 *2 *2) (-12 (-5 *2 (-535)) (-4 *1 (-397)))) (-3588 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-535)) (-5 *3 (-890)) (-4 *1 (-397)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-535)))) (-3015 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-535)))) (-2458 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-535)))) (-1885 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))) (-2932 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))) (-2457 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4327)) (-4 *1 (-397)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4327)) (-4 *1 (-397)))) (-2457 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4327)) (-4 *1 (-397)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-535)) (|has| *1 (-6 -4327)) (-4 *1 (-397)) (-5 *2 (-890)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-535)) (|has| *1 (-6 -4327)) (-4 *1 (-397)) (-5 *2 (-890)))) (-3660 (*1 *1) (-12 (-4 *1 (-397)) (-3659 (|has| *1 (-6 -4327))) (-3659 (|has| *1 (-6 -4319))))) (-3661 (*1 *1) (-12 (-4 *1 (-397)) (-3659 (|has| *1 (-6 -4327))) (-3659 (|has| *1 (-6 -4319))))))
+(-13 (-1027) (-10 -8 (-6 -4112) (-15 -3588 ($ (-535) (-535))) (-15 -3588 ($ (-535) (-535) (-890))) (-15 -4114 ((-535) $)) (-15 -3015 ((-890))) (-15 -2484 ((-535) $)) (-15 -2458 ((-535) $)) (-15 -1885 ((-890))) (-15 -2932 ((-890))) (-15 -2457 ((-890))) (IF (|has| $ (-6 -4327)) (PROGN (-15 -1885 ((-890) (-890))) (-15 -2932 ((-890) (-890))) (-15 -2457 ((-890) (-890))) (-15 -1884 ((-890) (-535))) (-15 -1883 ((-890) (-535)))) |%noBranch|) (IF (|has| $ (-6 -4319)) |%noBranch| (IF (|has| $ (-6 -4327)) |%noBranch| (PROGN (-15 -3660 ($)) (-15 -3661 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-835)) . T) ((-170) . T) ((-594 (-219)) . T) ((-594 (-371)) . T) ((-594 (-861 (-371))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-821) . T) ((-823) . T) ((-857 (-371)) . T) ((-892) . T) ((-973) . T) ((-991) . T) ((-1027) . T) ((-1009 (-400 (-535))) . T) ((-1009 (-535)) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 42)) (-1886 (($ $) 57)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 146)) (-2171 (($ $) NIL)) (-2169 (((-112) $) 36)) (-1887 ((|#1| $) 13)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-1183)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-1183)))) (-1889 (($ |#1| (-535)) 31)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 116)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 55)) (-3804 (((-3 $ "failed") $) 131)) (-3345 (((-3 (-400 (-535)) "failed") $) 63 (|has| |#1| (-534)))) (-3344 (((-112) $) 59 (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) 70 (|has| |#1| (-534)))) (-1890 (($ |#1| (-535)) 33)) (-4069 (((-112) $) 152 (|has| |#1| (-1183)))) (-2493 (((-112) $) 43)) (-1951 (((-747) $) 38)) (-1891 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-535)) 137)) (-2759 ((|#1| $ (-535)) 136)) (-1892 (((-535) $ (-535)) 135)) (-1894 (($ |#1| (-535)) 30)) (-4301 (($ (-1 |#1| |#1|) $) 143)) (-1948 (($ |#1| (-618 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-535))))) 58)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-1893 (($ |#1| (-535)) 32)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) 147 (|has| |#1| (-444)))) (-1888 (($ |#1| (-535) (-3 #2# #3# #4# #5#)) 29)) (-2758 (((-618 (-2 (|:| -4075 |#1|) (|:| -2484 (-535)))) $) 54)) (-2070 (((-618 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-535)))) $) 12)) (-4075 (((-398 $) $) NIL (|has| |#1| (-1183)))) (-3803 (((-3 $ "failed") $ $) 138)) (-2484 (((-535) $) 132)) (-4306 ((|#1| $) 56)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) 79 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 85 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) $) NIL (|has| |#1| (-505 (-1142) $))) (($ $ (-618 (-1142)) (-618 $)) 86 (|has| |#1| (-505 (-1142) $))) (($ $ (-618 (-286 $))) 82 (|has| |#1| (-302 $))) (($ $ (-286 $)) NIL (|has| |#1| (-302 $))) (($ $ $ $) NIL (|has| |#1| (-302 $))) (($ $ (-618 $) (-618 $)) NIL (|has| |#1| (-302 $)))) (-4142 (($ $ |#1|) 71 (|has| |#1| (-279 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-279 $ $)))) (-4153 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-4313 (((-524) $) 27 (|has| |#1| (-594 (-524)))) (((-371) $) 92 (|has| |#1| (-991))) (((-219) $) 95 (|has| |#1| (-991)))) (-4300 (((-835) $) 114) (($ (-535)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535)))))) (-3444 (((-747)) 48)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 40 T CONST)) (-2985 (($) 39 T CONST)) (-2990 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3375 (((-112) $ $) 96)) (-4180 (($ $) 128) (($ $ $) NIL)) (-4182 (($ $ $) 140)) (** (($ $ (-890)) NIL) (($ $ (-747)) 102)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
+(((-398 |#1|) (-13 (-542) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-405 |#1|) (-10 -8 (-15 -4306 (|#1| $)) (-15 -2484 ((-535) $)) (-15 -1948 ($ |#1| (-618 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-535)))))) (-15 -2070 ((-618 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-535)))) $)) (-15 -1894 ($ |#1| (-535))) (-15 -2758 ((-618 (-2 (|:| -4075 |#1|) (|:| -2484 (-535)))) $)) (-15 -1893 ($ |#1| (-535))) (-15 -1892 ((-535) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -1891 ((-3 #1# #2# #3# #4#) $ (-535))) (-15 -1951 ((-747) $)) (-15 -1890 ($ |#1| (-535))) (-15 -1889 ($ |#1| (-535))) (-15 -1888 ($ |#1| (-535) (-3 #1# #2# #3# #4#))) (-15 -1887 (|#1| $)) (-15 -1886 ($ $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |#1| (-1183)) (-6 (-1183)) |%noBranch|) (IF (|has| |#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1142) $)) (-6 (-505 (-1142) $)) |%noBranch|))) (-542)) (T -398))
+((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-542)) (-5 *1 (-398 *3)))) (-4306 (*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-398 *3)) (-4 *3 (-542)))) (-1948 (*1 *1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-535))))) (-4 *2 (-542)) (-5 *1 (-398 *2)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-535))))) (-5 *1 (-398 *3)) (-4 *3 (-542)))) (-1894 (*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| -4075 *3) (|:| -2484 (-535))))) (-5 *1 (-398 *3)) (-4 *3 (-542)))) (-1893 (*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-1892 (*1 *2 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-398 *3)) (-4 *3 (-542)))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-1891 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-398 *4)) (-4 *4 (-542)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-398 *3)) (-4 *3 (-542)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-1889 (*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-1888 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-535)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-1887 (*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-1886 (*1 *1 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-542)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-398 *3)) (-4 *3 (-534)) (-4 *3 (-542)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-398 *3)) (-4 *3 (-534)) (-4 *3 (-542)))) (-3345 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-398 *3)) (-4 *3 (-534)) (-4 *3 (-542)))))
+(-13 (-542) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-405 |#1|) (-10 -8 (-15 -4306 (|#1| $)) (-15 -2484 ((-535) $)) (-15 -1948 ($ |#1| (-618 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-535)))))) (-15 -2070 ((-618 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-535)))) $)) (-15 -1894 ($ |#1| (-535))) (-15 -2758 ((-618 (-2 (|:| -4075 |#1|) (|:| -2484 (-535)))) $)) (-15 -1893 ($ |#1| (-535))) (-15 -1892 ((-535) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -1891 ((-3 #1# #2# #3# #4#) $ (-535))) (-15 -1951 ((-747) $)) (-15 -1890 ($ |#1| (-535))) (-15 -1889 ($ |#1| (-535))) (-15 -1888 ($ |#1| (-535) (-3 #1# #2# #3# #4#))) (-15 -1887 (|#1| $)) (-15 -1886 ($ $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |#1| (-1183)) (-6 (-1183)) |%noBranch|) (IF (|has| |#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1142) $)) (-6 (-505 (-1142) $)) |%noBranch|)))
+((-4301 (((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)) 20)))
+(((-399 |#1| |#2|) (-10 -7 (-15 -4301 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)))) (-542) (-542)) (T -399))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-5 *2 (-398 *6)) (-5 *1 (-399 *5 *6)))))
+(-10 -7 (-15 -4301 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 13)) (-3447 ((|#1| $) 21 (|has| |#1| (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| |#1| (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) 17) (((-3 (-1142) #2#) $) NIL (|has| |#1| (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) 70 (|has| |#1| (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535))))) (-3490 ((|#1| $) 15) (((-1142) $) NIL (|has| |#1| (-1009 (-1142)))) (((-400 (-535)) $) 67 (|has| |#1| (-1009 (-535)))) (((-535) $) NIL (|has| |#1| (-1009 (-535))))) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) 50)) (-3315 (($) NIL (|has| |#1| (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| |#1| (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| |#1| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| |#1| (-857 (-371))))) (-2493 (((-112) $) 64)) (-3317 (($ $) NIL)) (-3319 ((|#1| $) 71)) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-1117)))) (-3521 (((-112) $) NIL (|has| |#1| (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| |#1| (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 97)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| |#1| (-300)))) (-3448 ((|#1| $) 28 (|has| |#1| (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 135 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 131 (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|)))) (-1699 (((-747) $) NIL)) (-4142 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3316 (($ $) NIL)) (-3318 ((|#1| $) 73)) (-4313 (((-861 (-535)) $) NIL (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| |#1| (-594 (-861 (-371))))) (((-524) $) NIL (|has| |#1| (-594 (-524)))) (((-371) $) NIL (|has| |#1| (-991))) (((-219) $) NIL (|has| |#1| (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) 10) (($ (-1142)) NIL (|has| |#1| (-1009 (-1142))))) (-3023 (((-3 $ #1#) $) 99 (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) 100)) (-3449 ((|#1| $) 26 (|has| |#1| (-534)))) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL (|has| |#1| (-796)))) (-2979 (($) 22 T CONST)) (-2985 (($) 8 T CONST)) (-2825 (((-1124) $) 43 (-12 (|has| |#1| (-534)) (|has| |#1| (-797)))) (((-1124) $ (-112)) 44 (-12 (|has| |#1| (-534)) (|has| |#1| (-797)))) (((-1230) (-799) $) 45 (-12 (|has| |#1| (-534)) (|has| |#1| (-797)))) (((-1230) (-799) $ (-112)) 46 (-12 (|has| |#1| (-534)) (|has| |#1| (-797))))) (-2990 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 56)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) 24 (|has| |#1| (-823)))) (-4291 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4180 (($ $) 25) (($ $ $) 55)) (-4182 (($ $ $) 53)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 125)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 60) (($ $ $) 57) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-400 |#1|) (-13 (-962 |#1|) (-10 -7 (IF (|has| |#1| (-534)) (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4323)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4334)) (-6 -4323) |%noBranch|) |%noBranch|) |%noBranch|))) (-542)) (T -400))
+NIL
+(-13 (-962 |#1|) (-10 -7 (IF (|has| |#1| (-534)) (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4323)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4334)) (-6 -4323) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-4301 (((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)) 13)))
+(((-401 |#1| |#2|) (-10 -7 (-15 -4301 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) (-542) (-542)) (T -401))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-5 *2 (-400 *6)) (-5 *1 (-401 *5 *6)))))
+(-10 -7 (-15 -4301 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|))))
+((-1896 (((-665 |#2|) (-1224 $)) NIL) (((-665 |#2|)) 18)) (-1906 (($ (-1224 |#2|) (-1224 $)) NIL) (($ (-1224 |#2|)) 24)) (-1895 (((-665 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) $) 38)) (-2125 ((|#3| $) 60)) (-4100 ((|#2| (-1224 $)) NIL) ((|#2|) 20)) (-3558 (((-1224 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) (-1224 $) (-1224 $)) NIL) (((-1224 |#2|) $) 22) (((-665 |#2|) (-1224 $)) 36)) (-4313 (((-1224 |#2|) $) 11) (($ (-1224 |#2|)) 13)) (-2689 ((|#3| $) 52)))
+(((-402 |#1| |#2| |#3|) (-10 -8 (-15 -1895 ((-665 |#2|) |#1|)) (-15 -4100 (|#2|)) (-15 -1896 ((-665 |#2|))) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -1906 (|#1| (-1224 |#2|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -2125 (|#3| |#1|)) (-15 -2689 (|#3| |#1|)) (-15 -1896 ((-665 |#2|) (-1224 |#1|))) (-15 -4100 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1895 ((-665 |#2|) |#1| (-1224 |#1|)))) (-403 |#2| |#3|) (-170) (-1200 |#2|)) (T -402))
+((-1896 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)) (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) (-4100 (*1 *2) (-12 (-4 *4 (-1200 *2)) (-4 *2 (-170)) (-5 *1 (-402 *3 *2 *4)) (-4 *3 (-403 *2 *4)))))
+(-10 -8 (-15 -1895 ((-665 |#2|) |#1|)) (-15 -4100 (|#2|)) (-15 -1896 ((-665 |#2|))) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -1906 (|#1| (-1224 |#2|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -2125 (|#3| |#1|)) (-15 -2689 (|#3| |#1|)) (-15 -1896 ((-665 |#2|) (-1224 |#1|))) (-15 -4100 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1895 ((-665 |#2|) |#1| (-1224 |#1|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1896 (((-665 |#1|) (-1224 $)) 44) (((-665 |#1|)) 59)) (-3672 ((|#1| $) 50)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-1906 (($ (-1224 |#1|) (-1224 $)) 46) (($ (-1224 |#1|)) 62)) (-1895 (((-665 |#1|) $ (-1224 $)) 51) (((-665 |#1|) $) 57)) (-3804 (((-3 $ "failed") $) 32)) (-3427 (((-890)) 52)) (-2493 (((-112) $) 30)) (-3450 ((|#1| $) 49)) (-2125 ((|#2| $) 42 (|has| |#1| (-356)))) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4100 ((|#1| (-1224 $)) 45) ((|#1|) 58)) (-3558 (((-1224 |#1|) $ (-1224 $)) 48) (((-665 |#1|) (-1224 $) (-1224 $)) 47) (((-1224 |#1|) $) 64) (((-665 |#1|) (-1224 $)) 63)) (-4313 (((-1224 |#1|) $) 61) (($ (-1224 |#1|)) 60)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35)) (-3023 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2689 ((|#2| $) 43)) (-3444 (((-747)) 28)) (-2123 (((-1224 $)) 65)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-403 |#1| |#2|) (-138) (-170) (-1200 |t#1|)) (T -403))
+((-2123 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-1224 *1)) (-4 *1 (-403 *3 *4)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-1224 *3)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-665 *4)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1200 *3)))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-1224 *3)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1200 *3)))) (-1896 (*1 *2) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-665 *3)))) (-4100 (*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1200 *2)) (-4 *2 (-170)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-665 *3)))))
+(-13 (-363 |t#1| |t#2|) (-10 -8 (-15 -2123 ((-1224 $))) (-15 -3558 ((-1224 |t#1|) $)) (-15 -3558 ((-665 |t#1|) (-1224 $))) (-15 -1906 ($ (-1224 |t#1|))) (-15 -4313 ((-1224 |t#1|) $)) (-15 -4313 ($ (-1224 |t#1|))) (-15 -1896 ((-665 |t#1|))) (-15 -4100 (|t#1|)) (-15 -1895 ((-665 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-363 |#1| |#2|) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-3491 (((-3 |#2| #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) 27) (((-3 (-535) #1#) $) 19)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) 24) (((-535) $) 14)) (-4300 (($ |#2|) NIL) (($ (-400 (-535))) 22) (($ (-535)) 11)))
+(((-404 |#1| |#2|) (-10 -8 (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1="failed") |#1|)) (-15 -4300 (|#1| (-535))) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -3490 (|#2| |#1|))) (-405 |#2|) (-1178)) (T -404))
+NIL
+(-10 -8 (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1="failed") |#1|)) (-15 -4300 (|#1| (-535))) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -3490 (|#2| |#1|)))
+((-3491 (((-3 |#1| #1="failed") $) 7) (((-3 (-400 (-535)) #1#) $) 16 (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #1#) $) 13 (|has| |#1| (-1009 (-535))))) (-3490 ((|#1| $) 8) (((-400 (-535)) $) 15 (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) 12 (|has| |#1| (-1009 (-535))))) (-4300 (($ |#1|) 6) (($ (-400 (-535))) 17 (|has| |#1| (-1009 (-400 (-535))))) (($ (-535)) 14 (|has| |#1| (-1009 (-535))))))
+(((-405 |#1|) (-138) (-1178)) (T -405))
+NIL
+(-13 (-1009 |t#1|) (-10 -7 (IF (|has| |t#1| (-1009 (-535))) (-6 (-1009 (-535))) |%noBranch|) (IF (|has| |t#1| (-1009 (-400 (-535)))) (-6 (-1009 (-400 (-535)))) |%noBranch|)))
+(((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T))
+((-2887 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-1897 ((|#4| (-747) (-1224 |#4|)) 56)) (-2493 (((-112) $) NIL)) (-3319 (((-1224 |#4|) $) 17)) (-3450 ((|#2| $) 54)) (-1898 (($ $) 139)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 100)) (-2087 (($ (-1224 |#4|)) 99)) (-3577 (((-1086) $) NIL)) (-3318 ((|#1| $) 18)) (-3330 (($ $ $) NIL)) (-2677 (($ $ $) NIL)) (-4300 (((-835) $) 134)) (-2123 (((-1224 |#4|) $) 129)) (-2985 (($) 11 T CONST)) (-3375 (((-112) $ $) 40)) (-4291 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 122)) (* (($ $ $) 121)))
+(((-406 |#1| |#2| |#3| |#4|) (-13 (-465) (-10 -8 (-15 -2087 ($ (-1224 |#4|))) (-15 -2123 ((-1224 |#4|) $)) (-15 -3450 (|#2| $)) (-15 -3319 ((-1224 |#4|) $)) (-15 -3318 (|#1| $)) (-15 -1898 ($ $)) (-15 -1897 (|#4| (-747) (-1224 |#4|))))) (-300) (-962 |#1|) (-1200 |#2|) (-13 (-403 |#2| |#3|) (-1009 |#2|))) (T -406))
+((-2087 (*1 *1 *2) (-12 (-5 *2 (-1224 *6)) (-4 *6 (-13 (-403 *4 *5) (-1009 *4))) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-4 *3 (-300)) (-5 *1 (-406 *3 *4 *5 *6)))) (-2123 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1009 *4))))) (-3450 (*1 *2 *1) (-12 (-4 *4 (-1200 *2)) (-4 *2 (-962 *3)) (-5 *1 (-406 *3 *2 *4 *5)) (-4 *3 (-300)) (-4 *5 (-13 (-403 *2 *4) (-1009 *2))))) (-3319 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1009 *4))))) (-3318 (*1 *2 *1) (-12 (-4 *3 (-962 *2)) (-4 *4 (-1200 *3)) (-4 *2 (-300)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1009 *3))))) (-1898 (*1 *1 *1) (-12 (-4 *2 (-300)) (-4 *3 (-962 *2)) (-4 *4 (-1200 *3)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1009 *3))))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-1224 *2)) (-4 *5 (-300)) (-4 *6 (-962 *5)) (-4 *2 (-13 (-403 *6 *7) (-1009 *6))) (-5 *1 (-406 *5 *6 *7 *2)) (-4 *7 (-1200 *6)))))
+(-13 (-465) (-10 -8 (-15 -2087 ($ (-1224 |#4|))) (-15 -2123 ((-1224 |#4|) $)) (-15 -3450 (|#2| $)) (-15 -3319 ((-1224 |#4|) $)) (-15 -3318 (|#1| $)) (-15 -1898 ($ $)) (-15 -1897 (|#4| (-747) (-1224 |#4|)))))
+((-4301 (((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)) 33)))
+(((-407 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4301 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) (-300) (-962 |#1|) (-1200 |#2|) (-13 (-403 |#2| |#3|) (-1009 |#2|)) (-300) (-962 |#5|) (-1200 |#6|) (-13 (-403 |#6| |#7|) (-1009 |#6|))) (T -407))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300)) (-4 *6 (-962 *5)) (-4 *7 (-1200 *6)) (-4 *8 (-13 (-403 *6 *7) (-1009 *6))) (-4 *9 (-300)) (-4 *10 (-962 *9)) (-4 *11 (-1200 *10)) (-5 *2 (-406 *9 *10 *11 *12)) (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-403 *10 *11) (-1009 *10))))))
+(-10 -7 (-15 -4301 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|))))
+((-2887 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-3450 ((|#2| $) 61)) (-1899 (($ (-1224 |#4|)) 25) (($ (-406 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1009 |#2|)))) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 34)) (-2123 (((-1224 |#4|) $) 26)) (-2985 (($) 23 T CONST)) (-3375 (((-112) $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ $ $) 72)))
+(((-408 |#1| |#2| |#3| |#4| |#5|) (-13 (-703) (-10 -8 (-15 -2123 ((-1224 |#4|) $)) (-15 -3450 (|#2| $)) (-15 -1899 ($ (-1224 |#4|))) (IF (|has| |#4| (-1009 |#2|)) (-15 -1899 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-300) (-962 |#1|) (-1200 |#2|) (-403 |#2| |#3|) (-1224 |#4|)) (T -408))
+((-2123 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-4 *6 (-403 *4 *5)) (-14 *7 *2))) (-3450 (*1 *2 *1) (-12 (-4 *4 (-1200 *2)) (-4 *2 (-962 *3)) (-5 *1 (-408 *3 *2 *4 *5 *6)) (-4 *3 (-300)) (-4 *5 (-403 *2 *4)) (-14 *6 (-1224 *5)))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-1224 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-4 *3 (-300)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1009 *4)) (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-4 *6 (-403 *4 *5)) (-14 *7 (-1224 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)))))
+(-13 (-703) (-10 -8 (-15 -2123 ((-1224 |#4|) $)) (-15 -3450 (|#2| $)) (-15 -1899 ($ (-1224 |#4|))) (IF (|has| |#4| (-1009 |#2|)) (-15 -1899 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-4301 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-409 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#3| (-1 |#4| |#2|) |#1|))) (-411 |#2|) (-170) (-411 |#4|) (-170)) (T -409))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-411 *6)) (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5)))))
+(-10 -7 (-15 -4301 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1887 (((-3 $ #1="failed")) 86)) (-3557 (((-1224 (-665 |#2|)) (-1224 $)) NIL) (((-1224 (-665 |#2|))) 91)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) 85)) (-1814 (((-3 $ #1#)) 84)) (-1902 (((-665 |#2|) (-1224 $)) NIL) (((-665 |#2|)) 102)) (-1900 (((-665 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) $) 110)) (-2017 (((-1136 (-917 |#2|))) 55)) (-1904 ((|#2| (-1224 $)) NIL) ((|#2|) 106)) (-1906 (($ (-1224 |#2|) (-1224 $)) NIL) (($ (-1224 |#2|)) 112)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) 83)) (-1815 (((-3 $ #1#)) 75)) (-1903 (((-665 |#2|) (-1224 $)) NIL) (((-665 |#2|)) 100)) (-1901 (((-665 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) $) 108)) (-2021 (((-1136 (-917 |#2|))) 54)) (-1905 ((|#2| (-1224 $)) NIL) ((|#2|) 104)) (-3558 (((-1224 |#2|) $ (-1224 $)) NIL) (((-665 |#2|) (-1224 $) (-1224 $)) NIL) (((-1224 |#2|) $) 111) (((-665 |#2|) (-1224 $)) 118)) (-4313 (((-1224 |#2|) $) 96) (($ (-1224 |#2|)) 98)) (-2009 (((-618 (-917 |#2|)) (-1224 $)) NIL) (((-618 (-917 |#2|))) 94)) (-2871 (($ (-665 |#2|) $) 90)))
+(((-410 |#1| |#2|) (-10 -8 (-15 -2871 (|#1| (-665 |#2|) |#1|)) (-15 -2017 ((-1136 (-917 |#2|)))) (-15 -2021 ((-1136 (-917 |#2|)))) (-15 -1900 ((-665 |#2|) |#1|)) (-15 -1901 ((-665 |#2|) |#1|)) (-15 -1902 ((-665 |#2|))) (-15 -1903 ((-665 |#2|))) (-15 -1904 (|#2|)) (-15 -1905 (|#2|)) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -1906 (|#1| (-1224 |#2|))) (-15 -2009 ((-618 (-917 |#2|)))) (-15 -3557 ((-1224 (-665 |#2|)))) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -1887 ((-3 |#1| #1="failed"))) (-15 -1814 ((-3 |#1| #1#))) (-15 -1815 ((-3 |#1| #1#))) (-15 -2023 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) #1#))) (-15 -2024 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) #1#))) (-15 -1902 ((-665 |#2|) (-1224 |#1|))) (-15 -1903 ((-665 |#2|) (-1224 |#1|))) (-15 -1904 (|#2| (-1224 |#1|))) (-15 -1905 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1900 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -1901 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -3557 ((-1224 (-665 |#2|)) (-1224 |#1|))) (-15 -2009 ((-618 (-917 |#2|)) (-1224 |#1|)))) (-411 |#2|) (-170)) (T -410))
+((-3557 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1224 (-665 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2009 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-618 (-917 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-1905 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-1904 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-1903 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-1902 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2021 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1136 (-917 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2017 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1136 (-917 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))))
+(-10 -8 (-15 -2871 (|#1| (-665 |#2|) |#1|)) (-15 -2017 ((-1136 (-917 |#2|)))) (-15 -2021 ((-1136 (-917 |#2|)))) (-15 -1900 ((-665 |#2|) |#1|)) (-15 -1901 ((-665 |#2|) |#1|)) (-15 -1902 ((-665 |#2|))) (-15 -1903 ((-665 |#2|))) (-15 -1904 (|#2|)) (-15 -1905 (|#2|)) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -1906 (|#1| (-1224 |#2|))) (-15 -2009 ((-618 (-917 |#2|)))) (-15 -3557 ((-1224 (-665 |#2|)))) (-15 -3558 ((-665 |#2|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1|)) (-15 -1887 ((-3 |#1| #1="failed"))) (-15 -1814 ((-3 |#1| #1#))) (-15 -1815 ((-3 |#1| #1#))) (-15 -2023 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) #1#))) (-15 -2024 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) #1#))) (-15 -1902 ((-665 |#2|) (-1224 |#1|))) (-15 -1903 ((-665 |#2|) (-1224 |#1|))) (-15 -1904 (|#2| (-1224 |#1|))) (-15 -1905 (|#2| (-1224 |#1|))) (-15 -1906 (|#1| (-1224 |#2|) (-1224 |#1|))) (-15 -3558 ((-665 |#2|) (-1224 |#1|) (-1224 |#1|))) (-15 -3558 ((-1224 |#2|) |#1| (-1224 |#1|))) (-15 -1900 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -1901 ((-665 |#2|) |#1| (-1224 |#1|))) (-15 -3557 ((-1224 (-665 |#2|)) (-1224 |#1|))) (-15 -2009 ((-618 (-917 |#2|)) (-1224 |#1|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1887 (((-3 $ #1="failed")) 37 (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3557 (((-1224 (-665 |#1|)) (-1224 $)) 78) (((-1224 (-665 |#1|))) 100)) (-1840 (((-1224 $)) 81)) (-3879 (($) 17 T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) 40 (|has| |#1| (-542)))) (-1814 (((-3 $ #1#)) 38 (|has| |#1| (-542)))) (-1902 (((-665 |#1|) (-1224 $)) 65) (((-665 |#1|)) 92)) (-1838 ((|#1| $) 74)) (-1900 (((-665 |#1|) $ (-1224 $)) 76) (((-665 |#1|) $) 90)) (-2487 (((-3 $ #1#) $) 45 (|has| |#1| (-542)))) (-2017 (((-1136 (-917 |#1|))) 88 (|has| |#1| (-356)))) (-2490 (($ $ (-890)) 28)) (-1836 ((|#1| $) 72)) (-1816 (((-1136 |#1|) $) 42 (|has| |#1| (-542)))) (-1904 ((|#1| (-1224 $)) 67) ((|#1|) 94)) (-1834 (((-1136 |#1|) $) 63)) (-1828 (((-112)) 57)) (-1906 (($ (-1224 |#1|) (-1224 $)) 69) (($ (-1224 |#1|)) 98)) (-3804 (((-3 $ #1#) $) 47 (|has| |#1| (-542)))) (-3427 (((-890)) 80)) (-1825 (((-112)) 54)) (-2515 (($ $ (-890)) 33)) (-1821 (((-112)) 50)) (-1819 (((-112)) 48)) (-1823 (((-112)) 52)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) 41 (|has| |#1| (-542)))) (-1815 (((-3 $ #1#)) 39 (|has| |#1| (-542)))) (-1903 (((-665 |#1|) (-1224 $)) 66) (((-665 |#1|)) 93)) (-1839 ((|#1| $) 75)) (-1901 (((-665 |#1|) $ (-1224 $)) 77) (((-665 |#1|) $) 91)) (-2488 (((-3 $ #1#) $) 46 (|has| |#1| (-542)))) (-2021 (((-1136 (-917 |#1|))) 89 (|has| |#1| (-356)))) (-2489 (($ $ (-890)) 29)) (-1837 ((|#1| $) 73)) (-1817 (((-1136 |#1|) $) 43 (|has| |#1| (-542)))) (-1905 ((|#1| (-1224 $)) 68) ((|#1|) 95)) (-1835 (((-1136 |#1|) $) 64)) (-1829 (((-112)) 58)) (-3576 (((-1124) $) 9)) (-1820 (((-112)) 49)) (-1822 (((-112)) 51)) (-1824 (((-112)) 53)) (-3577 (((-1086) $) 10)) (-1827 (((-112)) 56)) (-4142 ((|#1| $ (-535)) 101)) (-3558 (((-1224 |#1|) $ (-1224 $)) 71) (((-665 |#1|) (-1224 $) (-1224 $)) 70) (((-1224 |#1|) $) 103) (((-665 |#1|) (-1224 $)) 102)) (-4313 (((-1224 |#1|) $) 97) (($ (-1224 |#1|)) 96)) (-2009 (((-618 (-917 |#1|)) (-1224 $)) 79) (((-618 (-917 |#1|))) 99)) (-2677 (($ $ $) 25)) (-1833 (((-112)) 62)) (-4300 (((-835) $) 11)) (-2123 (((-1224 $)) 104)) (-1818 (((-618 (-1224 |#1|))) 44 (|has| |#1| (-542)))) (-2678 (($ $ $ $) 26)) (-1831 (((-112)) 60)) (-2871 (($ (-665 |#1|) $) 87)) (-2676 (($ $ $) 24)) (-1832 (((-112)) 61)) (-1830 (((-112)) 59)) (-1826 (((-112)) 55)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-411 |#1|) (-138) (-170)) (T -411))
+((-2123 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1224 *1)) (-4 *1 (-411 *3)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1224 *3)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-411 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-411 *2)) (-4 *2 (-170)))) (-3557 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1224 (-665 *3))))) (-2009 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-618 (-917 *3))))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3)))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1224 *3)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3)))) (-1905 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170)))) (-1904 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170)))) (-1903 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-1902 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-2021 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1136 (-917 *3))))) (-2017 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1136 (-917 *3))))) (-2871 (*1 *1 *2 *1) (-12 (-5 *2 (-665 *3)) (-4 *1 (-411 *3)) (-4 *3 (-170)))))
+(-13 (-360 |t#1|) (-10 -8 (-15 -2123 ((-1224 $))) (-15 -3558 ((-1224 |t#1|) $)) (-15 -3558 ((-665 |t#1|) (-1224 $))) (-15 -4142 (|t#1| $ (-535))) (-15 -3557 ((-1224 (-665 |t#1|)))) (-15 -2009 ((-618 (-917 |t#1|)))) (-15 -1906 ($ (-1224 |t#1|))) (-15 -4313 ((-1224 |t#1|) $)) (-15 -4313 ($ (-1224 |t#1|))) (-15 -1905 (|t#1|)) (-15 -1904 (|t#1|)) (-15 -1903 ((-665 |t#1|))) (-15 -1902 ((-665 |t#1|))) (-15 -1901 ((-665 |t#1|) $)) (-15 -1900 ((-665 |t#1|) $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -2021 ((-1136 (-917 |t#1|)))) (-15 -2017 ((-1136 (-917 |t#1|))))) |%noBranch|) (-15 -2871 ($ (-665 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-360 |#1|) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-697) . T) ((-721 |#1|) . T) ((-738) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-3452 (((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|)) 21)) (-1907 (((-398 |#1|) (-398 |#1|) (-398 |#1|)) 16)))
+(((-412 |#1|) (-10 -7 (-15 -3452 ((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|))) (-15 -1907 ((-398 |#1|) (-398 |#1|) (-398 |#1|)))) (-542)) (T -412))
+((-1907 (*1 *2 *2 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-542)) (-5 *1 (-412 *3)))) (-3452 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-398 *4) *4)) (-4 *4 (-542)) (-5 *2 (-398 *4)) (-5 *1 (-412 *4)))))
+(-10 -7 (-15 -3452 ((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|))) (-15 -1907 ((-398 |#1|) (-398 |#1|) (-398 |#1|))))
+((-3405 (((-618 (-1142)) $) 72)) (-3407 (((-400 (-1136 $)) $ (-591 $)) 273)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-618 (-591 $)) (-618 $)) 237)) (-3491 (((-3 (-591 $) #1="failed") $) NIL) (((-3 (-1142) #1#) $) 75) (((-3 (-535) #1#) $) NIL) (((-3 |#2| #1#) $) 233) (((-3 (-400 (-917 |#2|)) #1#) $) 324) (((-3 (-917 |#2|) #1#) $) 235) (((-3 (-400 (-535)) #1#) $) NIL)) (-3490 (((-591 $) $) NIL) (((-1142) $) 30) (((-535) $) NIL) ((|#2| $) 231) (((-400 (-917 |#2|)) $) 305) (((-917 |#2|) $) 232) (((-400 (-535)) $) NIL)) (-3368 (((-113) (-113)) 47)) (-3317 (($ $) 87)) (-1657 (((-3 (-591 $) "failed") $) 228)) (-1656 (((-618 (-591 $)) $) 229)) (-3144 (((-3 (-618 $) "failed") $) 247)) (-3146 (((-3 (-2 (|:| |val| $) (|:| -2484 (-535))) "failed") $) 254)) (-3143 (((-3 (-618 $) "failed") $) 245)) (-1908 (((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 $))) "failed") $) 264)) (-3145 (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $) 251) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $ (-1142)) 219)) (-1911 (((-112) $) 19)) (-1910 ((|#2| $) 21)) (-4110 (($ $ (-591 $) $) NIL) (($ $ (-618 (-591 $)) (-618 $)) 236) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) 96) (($ $ (-1142) (-1 $ (-618 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-618 (-113)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-113) (-1 $ (-618 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1142)) 57) (($ $ (-618 (-1142))) 240) (($ $) 241) (($ $ (-113) $ (-1142)) 60) (($ $ (-618 (-113)) (-618 $) (-1142)) 67) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ $))) 107) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ (-618 $)))) 242) (($ $ (-1142) (-747) (-1 $ (-618 $))) 94) (($ $ (-1142) (-747) (-1 $ $)) 93)) (-4142 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-618 $)) 106)) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) 238)) (-3316 (($ $) 284)) (-4313 (((-861 (-535)) $) 257) (((-861 (-371)) $) 261) (($ (-398 $)) 320) (((-524) $) NIL)) (-4300 (((-835) $) 239) (($ (-591 $)) 84) (($ (-1142)) 26) (($ |#2|) NIL) (($ (-1091 |#2| (-591 $))) NIL) (($ (-400 |#2|)) 289) (($ (-917 (-400 |#2|))) 329) (($ (-400 (-917 (-400 |#2|)))) 301) (($ (-400 (-917 |#2|))) 295) (($ $) NIL) (($ (-917 |#2|)) 185) (($ (-400 (-535))) 334) (($ (-535)) NIL)) (-3444 (((-747)) 79)) (-2329 (((-112) (-113)) 41)) (-1909 (($ (-1142) $) 33) (($ (-1142) $ $) 34) (($ (-1142) $ $ $) 35) (($ (-1142) $ $ $ $) 36) (($ (-1142) (-618 $)) 39)) (* (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-535) $) NIL) (($ (-747) $) NIL) (($ (-890) $) NIL)))
+(((-413 |#1| |#2|) (-10 -8 (-15 * (|#1| (-890) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3444 ((-747))) (-15 -4300 (|#1| (-535))) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1="failed") |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4313 ((-524) |#1|)) (-15 -3490 ((-917 |#2|) |#1|)) (-15 -3491 ((-3 (-917 |#2|) #1#) |#1|)) (-15 -4300 (|#1| (-917 |#2|))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4300 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -3490 ((-400 (-917 |#2|)) |#1|)) (-15 -3491 ((-3 (-400 (-917 |#2|)) #1#) |#1|)) (-15 -4300 (|#1| (-400 (-917 |#2|)))) (-15 -3407 ((-400 (-1136 |#1|)) |#1| (-591 |#1|))) (-15 -4300 (|#1| (-400 (-917 (-400 |#2|))))) (-15 -4300 (|#1| (-917 (-400 |#2|)))) (-15 -4300 (|#1| (-400 |#2|))) (-15 -3316 (|#1| |#1|)) (-15 -4313 (|#1| (-398 |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-747) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-747) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-747)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-747)) (-618 (-1 |#1| |#1|)))) (-15 -3146 ((-3 (-2 (|:| |val| |#1|) (|:| -2484 (-535))) "failed") |#1|)) (-15 -3145 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -2484 (-535))) "failed") |#1| (-1142))) (-15 -3145 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -2484 (-535))) "failed") |#1| (-113))) (-15 -3317 (|#1| |#1|)) (-15 -4300 (|#1| (-1091 |#2| (-591 |#1|)))) (-15 -1908 ((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 |#1|))) "failed") |#1|)) (-15 -3143 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3145 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -2484 (-535))) "failed") |#1|)) (-15 -3144 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 |#1|) (-1142))) (-15 -4110 (|#1| |#1| (-113) |#1| (-1142))) (-15 -4110 (|#1| |#1|)) (-15 -4110 (|#1| |#1| (-618 (-1142)))) (-15 -4110 (|#1| |#1| (-1142))) (-15 -1909 (|#1| (-1142) (-618 |#1|))) (-15 -1909 (|#1| (-1142) |#1| |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1142) |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1142) |#1| |#1|)) (-15 -1909 (|#1| (-1142) |#1|)) (-15 -3405 ((-618 (-1142)) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -3490 ((-1142) |#1|)) (-15 -3491 ((-3 (-1142) #1#) |#1|)) (-15 -4300 (|#1| (-1142))) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| |#1|)))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| |#1|)))) (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -1656 ((-618 (-591 |#1|)) |#1|)) (-15 -1657 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -1659 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -1659 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4142 (|#1| (-113) (-618 |#1|))) (-15 -4142 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -4110 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -3490 ((-591 |#1|) |#1|)) (-15 -3491 ((-3 (-591 |#1|) #1#) |#1|)) (-15 -4300 (|#1| (-591 |#1|))) (-15 -4300 ((-835) |#1|))) (-414 |#2|) (-823)) (T -413))
+((-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-823)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-413 *4 *5)) (-4 *4 (-414 *5)))) (-3444 (*1 *2) (-12 (-4 *4 (-823)) (-5 *2 (-747)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))))
+(-10 -8 (-15 * (|#1| (-890) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3444 ((-747))) (-15 -4300 (|#1| (-535))) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1="failed") |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4313 ((-524) |#1|)) (-15 -3490 ((-917 |#2|) |#1|)) (-15 -3491 ((-3 (-917 |#2|) #1#) |#1|)) (-15 -4300 (|#1| (-917 |#2|))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4300 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -3490 ((-400 (-917 |#2|)) |#1|)) (-15 -3491 ((-3 (-400 (-917 |#2|)) #1#) |#1|)) (-15 -4300 (|#1| (-400 (-917 |#2|)))) (-15 -3407 ((-400 (-1136 |#1|)) |#1| (-591 |#1|))) (-15 -4300 (|#1| (-400 (-917 (-400 |#2|))))) (-15 -4300 (|#1| (-917 (-400 |#2|)))) (-15 -4300 (|#1| (-400 |#2|))) (-15 -3316 (|#1| |#1|)) (-15 -4313 (|#1| (-398 |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-747) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-747) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-747)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-747)) (-618 (-1 |#1| |#1|)))) (-15 -3146 ((-3 (-2 (|:| |val| |#1|) (|:| -2484 (-535))) "failed") |#1|)) (-15 -3145 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -2484 (-535))) "failed") |#1| (-1142))) (-15 -3145 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -2484 (-535))) "failed") |#1| (-113))) (-15 -3317 (|#1| |#1|)) (-15 -4300 (|#1| (-1091 |#2| (-591 |#1|)))) (-15 -1908 ((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 |#1|))) "failed") |#1|)) (-15 -3143 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3145 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -2484 (-535))) "failed") |#1|)) (-15 -3144 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 |#1|) (-1142))) (-15 -4110 (|#1| |#1| (-113) |#1| (-1142))) (-15 -4110 (|#1| |#1|)) (-15 -4110 (|#1| |#1| (-618 (-1142)))) (-15 -4110 (|#1| |#1| (-1142))) (-15 -1909 (|#1| (-1142) (-618 |#1|))) (-15 -1909 (|#1| (-1142) |#1| |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1142) |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1142) |#1| |#1|)) (-15 -1909 (|#1| (-1142) |#1|)) (-15 -3405 ((-618 (-1142)) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -3490 ((-1142) |#1|)) (-15 -3491 ((-3 (-1142) #1#) |#1|)) (-15 -4300 (|#1| (-1142))) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-113) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-113)) (-618 (-1 |#1| |#1|)))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| |#1|))) (-15 -4110 (|#1| |#1| (-1142) (-1 |#1| (-618 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| (-618 |#1|))))) (-15 -4110 (|#1| |#1| (-618 (-1142)) (-618 (-1 |#1| |#1|)))) (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -1656 ((-618 (-591 |#1|)) |#1|)) (-15 -1657 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -1659 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -1659 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4142 (|#1| (-113) (-618 |#1|))) (-15 -4142 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1| |#1|)) (-15 -4142 (|#1| (-113) |#1|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4110 (|#1| |#1| (-618 (-591 |#1|)) (-618 |#1|))) (-15 -4110 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -3490 ((-591 |#1|) |#1|)) (-15 -3491 ((-3 (-591 |#1|) #1#) |#1|)) (-15 -4300 (|#1| (-591 |#1|))) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 113 (|has| |#1| (-25)))) (-3405 (((-618 (-1142)) $) 200)) (-3407 (((-400 (-1136 $)) $ (-591 $)) 168 (|has| |#1| (-542)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 140 (|has| |#1| (-542)))) (-2171 (($ $) 141 (|has| |#1| (-542)))) (-2169 (((-112) $) 143 (|has| |#1| (-542)))) (-1655 (((-618 (-591 $)) $) 44)) (-1363 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1659 (($ $ (-286 $)) 56) (($ $ (-618 (-286 $))) 55) (($ $ (-618 (-591 $)) (-618 $)) 54)) (-4117 (($ $) 160 (|has| |#1| (-542)))) (-4312 (((-398 $) $) 161 (|has| |#1| (-542)))) (-1700 (((-112) $ $) 151 (|has| |#1| (-542)))) (-3879 (($) 101 (-3874 (|has| |#1| (-1078)) (|has| |#1| (-25))) CONST)) (-3491 (((-3 (-591 $) #1="failed") $) 69) (((-3 (-1142) #1#) $) 213) (((-3 (-535) #1#) $) 206 (|has| |#1| (-1009 (-535)))) (((-3 |#1| #1#) $) 204) (((-3 (-400 (-917 |#1|)) #1#) $) 166 (|has| |#1| (-542))) (((-3 (-917 |#1|) #1#) $) 120 (|has| |#1| (-1018))) (((-3 (-400 (-535)) #1#) $) 95 (-3874 (-12 (|has| |#1| (-1009 (-535))) (|has| |#1| (-542))) (|has| |#1| (-1009 (-400 (-535))))))) (-3490 (((-591 $) $) 68) (((-1142) $) 212) (((-535) $) 207 (|has| |#1| (-1009 (-535)))) ((|#1| $) 203) (((-400 (-917 |#1|)) $) 165 (|has| |#1| (-542))) (((-917 |#1|) $) 119 (|has| |#1| (-1018))) (((-400 (-535)) $) 94 (-3874 (-12 (|has| |#1| (-1009 (-535))) (|has| |#1| (-542))) (|has| |#1| (-1009 (-400 (-535))))))) (-2883 (($ $ $) 155 (|has| |#1| (-542)))) (-2353 (((-665 (-535)) (-665 $)) 134 (-3179 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 133 (-3179 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 132 (|has| |#1| (-1018))) (((-665 |#1|) (-665 $)) 131 (|has| |#1| (-1018)))) (-3804 (((-3 $ "failed") $) 103 (|has| |#1| (-1078)))) (-2882 (($ $ $) 154 (|has| |#1| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 149 (|has| |#1| (-542)))) (-4069 (((-112) $) 162 (|has| |#1| (-542)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 209 (|has| |#1| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 208 (|has| |#1| (-857 (-371))))) (-2892 (($ $) 51) (($ (-618 $)) 50)) (-1654 (((-618 (-113)) $) 43)) (-3368 (((-113) (-113)) 42)) (-2493 (((-112) $) 102 (|has| |#1| (-1078)))) (-2994 (((-112) $) 22 (|has| $ (-1009 (-535))))) (-3317 (($ $) 183 (|has| |#1| (-1018)))) (-3319 (((-1091 |#1| (-591 $)) $) 184 (|has| |#1| (-1018)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 158 (|has| |#1| (-542)))) (-1652 (((-1136 $) (-591 $)) 25 (|has| $ (-1018)))) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-4301 (($ (-1 $ $) (-591 $)) 36)) (-1657 (((-3 (-591 $) "failed") $) 46)) (-2008 (($ (-618 $)) 147 (|has| |#1| (-542))) (($ $ $) 146 (|has| |#1| (-542)))) (-3576 (((-1124) $) 9)) (-1656 (((-618 (-591 $)) $) 45)) (-2308 (($ (-113) $) 38) (($ (-113) (-618 $)) 37)) (-3144 (((-3 (-618 $) "failed") $) 189 (|has| |#1| (-1078)))) (-3146 (((-3 (-2 (|:| |val| $) (|:| -2484 (-535))) "failed") $) 180 (|has| |#1| (-1018)))) (-3143 (((-3 (-618 $) "failed") $) 187 (|has| |#1| (-25)))) (-1908 (((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3145 (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $) 188 (|has| |#1| (-1078))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $ (-113)) 182 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $ (-1142)) 181 (|has| |#1| (-1018)))) (-2952 (((-112) $ (-113)) 40) (((-112) $ (-1142)) 39)) (-2725 (($ $) 105 (-3874 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-2922 (((-747) $) 47)) (-3577 (((-1086) $) 10)) (-1911 (((-112) $) 202)) (-1910 ((|#1| $) 201)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 148 (|has| |#1| (-542)))) (-3478 (($ (-618 $)) 145 (|has| |#1| (-542))) (($ $ $) 144 (|has| |#1| (-542)))) (-1653 (((-112) $ $) 35) (((-112) $ (-1142)) 34)) (-4075 (((-398 $) $) 159 (|has| |#1| (-542)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 157 (|has| |#1| (-542))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 156 (|has| |#1| (-542)))) (-3803 (((-3 $ "failed") $ $) 139 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 150 (|has| |#1| (-542)))) (-2995 (((-112) $) 23 (|has| $ (-1009 (-535))))) (-4110 (($ $ (-591 $) $) 67) (($ $ (-618 (-591 $)) (-618 $)) 66) (($ $ (-618 (-286 $))) 65) (($ $ (-286 $)) 64) (($ $ $ $) 63) (($ $ (-618 $) (-618 $)) 62) (($ $ (-618 (-1142)) (-618 (-1 $ $))) 33) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) 32) (($ $ (-1142) (-1 $ (-618 $))) 31) (($ $ (-1142) (-1 $ $)) 30) (($ $ (-618 (-113)) (-618 (-1 $ $))) 29) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) 28) (($ $ (-113) (-1 $ (-618 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1142)) 194 (|has| |#1| (-594 (-524)))) (($ $ (-618 (-1142))) 193 (|has| |#1| (-594 (-524)))) (($ $) 192 (|has| |#1| (-594 (-524)))) (($ $ (-113) $ (-1142)) 191 (|has| |#1| (-594 (-524)))) (($ $ (-618 (-113)) (-618 $) (-1142)) 190 (|has| |#1| (-594 (-524)))) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ $))) 179 (|has| |#1| (-1018))) (($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ (-618 $)))) 178 (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ (-618 $))) 177 (|has| |#1| (-1018))) (($ $ (-1142) (-747) (-1 $ $)) 176 (|has| |#1| (-1018)))) (-1699 (((-747) $) 152 (|has| |#1| (-542)))) (-4142 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-618 $)) 57)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 153 (|has| |#1| (-542)))) (-1658 (($ $) 49) (($ $ $) 48)) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) 125 (|has| |#1| (-1018))) (($ $ (-1142) (-747)) 124 (|has| |#1| (-1018))) (($ $ (-618 (-1142))) 123 (|has| |#1| (-1018))) (($ $ (-1142)) 122 (|has| |#1| (-1018)))) (-3316 (($ $) 173 (|has| |#1| (-542)))) (-3318 (((-1091 |#1| (-591 $)) $) 174 (|has| |#1| (-542)))) (-3519 (($ $) 24 (|has| $ (-1018)))) (-4313 (((-861 (-535)) $) 211 (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) 210 (|has| |#1| (-594 (-861 (-371))))) (($ (-398 $)) 175 (|has| |#1| (-542))) (((-524) $) 97 (|has| |#1| (-594 (-524))))) (-3330 (($ $ $) 108 (|has| |#1| (-465)))) (-2677 (($ $ $) 109 (|has| |#1| (-465)))) (-4300 (((-835) $) 11) (($ (-591 $)) 70) (($ (-1142)) 214) (($ |#1|) 205) (($ (-1091 |#1| (-591 $))) 185 (|has| |#1| (-1018))) (($ (-400 |#1|)) 171 (|has| |#1| (-542))) (($ (-917 (-400 |#1|))) 170 (|has| |#1| (-542))) (($ (-400 (-917 (-400 |#1|)))) 169 (|has| |#1| (-542))) (($ (-400 (-917 |#1|))) 167 (|has| |#1| (-542))) (($ $) 138 (|has| |#1| (-542))) (($ (-917 |#1|)) 121 (|has| |#1| (-1018))) (($ (-400 (-535))) 96 (-3874 (|has| |#1| (-542)) (-12 (|has| |#1| (-1009 (-535))) (|has| |#1| (-542))) (|has| |#1| (-1009 (-400 (-535)))))) (($ (-535)) 93 (-3874 (|has| |#1| (-1018)) (|has| |#1| (-1009 (-535)))))) (-3023 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-3444 (((-747)) 130 (|has| |#1| (-1018)))) (-2909 (($ $) 53) (($ (-618 $)) 52)) (-2329 (((-112) (-113)) 41)) (-2170 (((-112) $ $) 142 (|has| |#1| (-542)))) (-1909 (($ (-1142) $) 199) (($ (-1142) $ $) 198) (($ (-1142) $ $ $) 197) (($ (-1142) $ $ $ $) 196) (($ (-1142) (-618 $)) 195)) (-2979 (($) 112 (|has| |#1| (-25)) CONST)) (-2985 (($) 100 (|has| |#1| (-1078)) CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) 129 (|has| |#1| (-1018))) (($ $ (-1142) (-747)) 128 (|has| |#1| (-1018))) (($ $ (-618 (-1142))) 127 (|has| |#1| (-1018))) (($ $ (-1142)) 126 (|has| |#1| (-1018)))) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4291 (($ (-1091 |#1| (-591 $)) (-1091 |#1| (-591 $))) 172 (|has| |#1| (-542))) (($ $ $) 106 (-3874 (|has| |#1| (-465)) (|has| |#1| (-542))))) (-4180 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-4182 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-535)) 107 (-3874 (|has| |#1| (-465)) (|has| |#1| (-542)))) (($ $ (-747)) 104 (|has| |#1| (-1078))) (($ $ (-890)) 99 (|has| |#1| (-1078)))) (* (($ (-400 (-535)) $) 164 (|has| |#1| (-542))) (($ $ (-400 (-535))) 163 (|has| |#1| (-542))) (($ |#1| $) 137 (|has| |#1| (-170))) (($ $ |#1|) 136 (|has| |#1| (-170))) (($ (-535) $) 118 (|has| |#1| (-21))) (($ (-747) $) 114 (|has| |#1| (-25))) (($ (-890) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1078)))))
+(((-414 |#1|) (-138) (-823)) (T -414))
+((-1911 (*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-823)) (-5 *2 (-112)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-823)) (-5 *2 (-618 (-1142))))) (-1909 (*1 *1 *2 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)))) (-1909 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)))) (-1909 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)))) (-1909 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)))) (-1909 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 *1)) (-4 *1 (-414 *4)) (-4 *4 (-823)))) (-4110 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)) (-4 *3 (-594 (-524))))) (-4110 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-1142))) (-4 *1 (-414 *3)) (-4 *3 (-823)) (-4 *3 (-594 (-524))))) (-4110 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)) (-4 *2 (-594 (-524))))) (-4110 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1142)) (-4 *1 (-414 *4)) (-4 *4 (-823)) (-4 *4 (-594 (-524))))) (-4110 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-618 (-113))) (-5 *3 (-618 *1)) (-5 *4 (-1142)) (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-594 (-524))))) (-3144 (*1 *2 *1) (|partial| -12 (-4 *3 (-1078)) (-4 *3 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-414 *3)))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *3 (-1078)) (-4 *3 (-823)) (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -2484 (-535)))) (-4 *1 (-414 *3)))) (-3143 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-414 *3)))) (-1908 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -4296 (-535)) (|:| |var| (-591 *1)))) (-4 *1 (-414 *3)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1091 *3 (-591 *1))) (-4 *3 (-1018)) (-4 *3 (-823)) (-4 *1 (-414 *3)))) (-3319 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *3 (-823)) (-5 *2 (-1091 *3 (-591 *1))) (-4 *1 (-414 *3)))) (-3317 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)) (-4 *2 (-1018)))) (-3145 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1018)) (-4 *4 (-823)) (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -2484 (-535)))) (-4 *1 (-414 *4)))) (-3145 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1142)) (-4 *4 (-1018)) (-4 *4 (-823)) (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -2484 (-535)))) (-4 *1 (-414 *4)))) (-3146 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-823)) (-5 *2 (-2 (|:| |val| *1) (|:| -2484 (-535)))) (-4 *1 (-414 *3)))) (-4110 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-747))) (-5 *4 (-618 (-1 *1 *1))) (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-4110 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-747))) (-5 *4 (-618 (-1 *1 (-618 *1)))) (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-4110 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *4 (-1 *1 (-618 *1))) (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-4110 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *4 (-1 *1 *1)) (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-398 *1)) (-4 *1 (-414 *3)) (-4 *3 (-542)) (-4 *3 (-823)))) (-3318 (*1 *2 *1) (-12 (-4 *3 (-542)) (-4 *3 (-823)) (-5 *2 (-1091 *3 (-591 *1))) (-4 *1 (-414 *3)))) (-3316 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)) (-4 *2 (-542)))) (-4291 (*1 *1 *2 *2) (-12 (-5 *2 (-1091 *3 (-591 *1))) (-4 *3 (-542)) (-4 *3 (-823)) (-4 *1 (-414 *3)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-542)) (-4 *3 (-823)) (-4 *1 (-414 *3)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-917 (-400 *3))) (-4 *3 (-542)) (-4 *3 (-823)) (-4 *1 (-414 *3)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-400 *3)))) (-4 *3 (-542)) (-4 *3 (-823)) (-4 *1 (-414 *3)))) (-3407 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-414 *4)) (-4 *4 (-823)) (-4 *4 (-542)) (-5 *2 (-400 (-1136 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-414 *3)) (-4 *3 (-823)) (-4 *3 (-1078)))))
+(-13 (-291) (-1009 (-1142)) (-855 |t#1|) (-393 |t#1|) (-405 |t#1|) (-10 -8 (-15 -1911 ((-112) $)) (-15 -1910 (|t#1| $)) (-15 -3405 ((-618 (-1142)) $)) (-15 -1909 ($ (-1142) $)) (-15 -1909 ($ (-1142) $ $)) (-15 -1909 ($ (-1142) $ $ $)) (-15 -1909 ($ (-1142) $ $ $ $)) (-15 -1909 ($ (-1142) (-618 $))) (IF (|has| |t#1| (-594 (-524))) (PROGN (-6 (-594 (-524))) (-15 -4110 ($ $ (-1142))) (-15 -4110 ($ $ (-618 (-1142)))) (-15 -4110 ($ $)) (-15 -4110 ($ $ (-113) $ (-1142))) (-15 -4110 ($ $ (-618 (-113)) (-618 $) (-1142)))) |%noBranch|) (IF (|has| |t#1| (-1078)) (PROGN (-6 (-703)) (-15 ** ($ $ (-747))) (-15 -3144 ((-3 (-618 $) "failed") $)) (-15 -3145 ((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3143 ((-3 (-618 $) "failed") $)) (-15 -1908 ((-3 (-2 (|:| -4296 (-535)) (|:| |var| (-591 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-1009 (-917 |t#1|))) (-6 (-871 (-1142))) (-6 (-370 |t#1|)) (-15 -4300 ($ (-1091 |t#1| (-591 $)))) (-15 -3319 ((-1091 |t#1| (-591 $)) $)) (-15 -3317 ($ $)) (-15 -3145 ((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $ (-113))) (-15 -3145 ((-3 (-2 (|:| |var| (-591 $)) (|:| -2484 (-535))) "failed") $ (-1142))) (-15 -3146 ((-3 (-2 (|:| |val| $) (|:| -2484 (-535))) "failed") $)) (-15 -4110 ($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ $)))) (-15 -4110 ($ $ (-618 (-1142)) (-618 (-747)) (-618 (-1 $ (-618 $))))) (-15 -4110 ($ $ (-1142) (-747) (-1 $ (-618 $)))) (-15 -4110 ($ $ (-1142) (-747) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-6 (-356)) (-6 (-1009 (-400 (-917 |t#1|)))) (-15 -4313 ($ (-398 $))) (-15 -3318 ((-1091 |t#1| (-591 $)) $)) (-15 -3316 ($ $)) (-15 -4291 ($ (-1091 |t#1| (-591 $)) (-1091 |t#1| (-591 $)))) (-15 -4300 ($ (-400 |t#1|))) (-15 -4300 ($ (-917 (-400 |t#1|)))) (-15 -4300 ($ (-400 (-917 (-400 |t#1|))))) (-15 -3407 ((-400 (-1136 $)) $ (-591 $))) (IF (|has| |t#1| (-1009 (-535))) (-6 (-1009 (-400 (-535)))) |%noBranch|)) |%noBranch|)))
+(((-21) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-400 (-535))) |has| |#1| (-542)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-542)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-542)) ((-130) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) |has| |#1| (-542)) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-594 (-861 (-371))) |has| |#1| (-594 (-861 (-371)))) ((-594 (-861 (-535))) |has| |#1| (-594 (-861 (-535)))) ((-237) |has| |#1| (-542)) ((-283) |has| |#1| (-542)) ((-300) |has| |#1| (-542)) ((-302 $) . T) ((-291) . T) ((-356) |has| |#1| (-542)) ((-370 |#1|) |has| |#1| (-1018)) ((-393 |#1|) . T) ((-405 |#1|) . T) ((-444) |has| |#1| (-542)) ((-465) |has| |#1| (-465)) ((-505 (-591 $) $) . T) ((-505 $ $) . T) ((-542) |has| |#1| (-542)) ((-624 #1#) |has| |#1| (-542)) ((-624 |#1|) |has| |#1| (-170)) ((-624 $) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-617 (-535)) -12 (|has| |#1| (-617 (-535))) (|has| |#1| (-1018))) ((-617 |#1|) |has| |#1| (-1018)) ((-694 #1#) |has| |#1| (-542)) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) -3874 (|has| |#1| (-1078)) (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-823) . T) ((-871 (-1142)) |has| |#1| (-1018)) ((-857 (-371)) |has| |#1| (-857 (-371))) ((-857 (-535)) |has| |#1| (-857 (-535))) ((-855 |#1|) . T) ((-892) |has| |#1| (-542)) ((-1009 (-400 (-535))) -3874 (|has| |#1| (-1009 (-400 (-535)))) (-12 (|has| |#1| (-542)) (|has| |#1| (-1009 (-535))))) ((-1009 (-400 (-917 |#1|))) |has| |#1| (-542)) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 (-591 $)) . T) ((-1009 (-917 |#1|)) |has| |#1| (-1018)) ((-1009 (-1142)) . T) ((-1009 |#1|) . T) ((-1024 #1#) |has| |#1| (-542)) ((-1024 |#1|) |has| |#1| (-170)) ((-1024 $) |has| |#1| (-542)) ((-1018) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1025) -3874 (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1078) -3874 (|has| |#1| (-1078)) (|has| |#1| (-1018)) (|has| |#1| (-542)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1067) . T) ((-1178) . T) ((-1183) |has| |#1| (-542)))
+((-4301 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1018) (-823)) (-414 |#1|) (-13 (-1018) (-823)) (-414 |#3|)) (T -415))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1018) (-823))) (-4 *6 (-13 (-1018) (-823))) (-4 *2 (-414 *6)) (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-414 *5)))))
+(-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1915 ((|#2| |#2|) 166)) (-1912 (((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112)) 57)))
+(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1912 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112))) (-15 -1915 (|#2| |#2|))) (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|)) (-1142) |#2|) (T -416))
+((-1915 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1164) (-414 *3))) (-14 *4 (-1142)) (-14 *5 *2))) (-1912 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124)))))) (-5 *1 (-416 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1164) (-414 *5))) (-14 *6 (-1142)) (-14 *7 *3))))
+(-10 -7 (-15 -1912 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112))) (-15 -1915 (|#2| |#2|)))
+((-1915 ((|#2| |#2|) 90)) (-1913 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124)) 48)) (-1914 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124)) 154)))
+(((-417 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1913 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124))) (-15 -1914 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124))) (-15 -1915 (|#2| |#2|))) (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|) (-10 -8 (-15 -4300 ($ |#3|)))) (-821) (-13 (-1203 |#2| |#3|) (-356) (-1164) (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $)))) (-954 |#4|) (-1142)) (T -417))
+((-1915 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-4 *2 (-13 (-27) (-1164) (-414 *3) (-10 -8 (-15 -4300 ($ *4))))) (-4 *4 (-821)) (-4 *5 (-13 (-1203 *2 *4) (-356) (-1164) (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $))))) (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-954 *5)) (-14 *7 (-1142)))) (-1914 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-4 *3 (-13 (-27) (-1164) (-414 *6) (-10 -8 (-15 -4300 ($ *7))))) (-4 *7 (-821)) (-4 *8 (-13 (-1203 *3 *7) (-356) (-1164) (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1124)) (-4 *9 (-954 *8)) (-14 *10 (-1142)))) (-1913 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-4 *3 (-13 (-27) (-1164) (-414 *6) (-10 -8 (-15 -4300 ($ *7))))) (-4 *7 (-821)) (-4 *8 (-13 (-1203 *3 *7) (-356) (-1164) (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1124)) (-4 *9 (-954 *8)) (-14 *10 (-1142)))))
+(-10 -7 (-15 -1913 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124))) (-15 -1914 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))) |#2| (-112) (-1124))) (-15 -1915 (|#2| |#2|)))
+((-1916 (($) 44)) (-3568 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3570 (($ $ $) 39)) (-3569 (((-112) $ $) 28)) (-3454 (((-747)) 47)) (-3573 (($ (-618 |#2|)) 20) (($) NIL)) (-3315 (($) 53)) (-3575 (((-112) $ $) 13)) (-3660 ((|#2| $) 61)) (-3661 ((|#2| $) 59)) (-2121 (((-890) $) 55)) (-3572 (($ $ $) 35)) (-2483 (($ (-890)) 50)) (-3571 (($ $ |#2|) NIL) (($ $ $) 38)) (-2064 (((-747) (-1 (-112) |#2|) $) NIL) (((-747) |#2| $) 26)) (-3867 (($ (-618 |#2|)) 24)) (-1917 (($ $) 46)) (-4300 (((-835) $) 33)) (-1918 (((-747) $) 21)) (-3574 (($ (-618 |#2|)) 19) (($) NIL)) (-3375 (((-112) $ $) 16)))
+(((-418 |#1| |#2|) (-10 -8 (-15 -3454 ((-747))) (-15 -2483 (|#1| (-890))) (-15 -2121 ((-890) |#1|)) (-15 -3315 (|#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3661 (|#2| |#1|)) (-15 -1916 (|#1|)) (-15 -1917 (|#1| |#1|)) (-15 -1918 ((-747) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3575 ((-112) |#1| |#1|)) (-15 -3574 (|#1|)) (-15 -3574 (|#1| (-618 |#2|))) (-15 -3573 (|#1|)) (-15 -3573 (|#1| (-618 |#2|))) (-15 -3572 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#2|)) (-15 -3570 (|#1| |#1| |#1|)) (-15 -3569 ((-112) |#1| |#1|)) (-15 -3568 (|#1| |#1| |#1|)) (-15 -3568 (|#1| |#1| |#2|)) (-15 -3568 (|#1| |#2| |#1|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|))) (-419 |#2|) (-1067)) (T -418))
+((-3454 (*1 *2) (-12 (-4 *4 (-1067)) (-5 *2 (-747)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))))
+(-10 -8 (-15 -3454 ((-747))) (-15 -2483 (|#1| (-890))) (-15 -2121 ((-890) |#1|)) (-15 -3315 (|#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3661 (|#2| |#1|)) (-15 -1916 (|#1|)) (-15 -1917 (|#1| |#1|)) (-15 -1918 ((-747) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3575 ((-112) |#1| |#1|)) (-15 -3574 (|#1|)) (-15 -3574 (|#1| (-618 |#2|))) (-15 -3573 (|#1|)) (-15 -3573 (|#1| (-618 |#2|))) (-15 -3572 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#2|)) (-15 -3570 (|#1| |#1| |#1|)) (-15 -3569 ((-112) |#1| |#1|)) (-15 -3568 (|#1| |#1| |#1|)) (-15 -3568 (|#1| |#1| |#2|)) (-15 -3568 (|#1| |#2| |#1|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)))
+((-2887 (((-112) $ $) 19)) (-1916 (($) 67 (|has| |#1| (-361)))) (-3568 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3570 (($ $ $) 78)) (-3569 (((-112) $ $) 79)) (-1264 (((-112) $ (-747)) 8)) (-3454 (((-747)) 61 (|has| |#1| (-361)))) (-3573 (($ (-618 |#1|)) 74) (($) 73)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-1394 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-3315 (($) 64 (|has| |#1| (-361)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) 70)) (-4065 (((-112) $ (-747)) 9)) (-3660 ((|#1| $) 65 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3661 ((|#1| $) 66 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-2121 (((-890) $) 63 (|has| |#1| (-361)))) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22)) (-3572 (($ $ $) 75)) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-2483 (($ (-890)) 62 (|has| |#1| (-361)))) (-3577 (((-1086) $) 21)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-3571 (($ $ |#1|) 77) (($ $ $) 76)) (-1518 (($) 49) (($ (-618 |#1|)) 48)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 50)) (-1917 (($ $) 68 (|has| |#1| (-361)))) (-4300 (((-835) $) 18)) (-1918 (((-747) $) 69)) (-3574 (($ (-618 |#1|)) 72) (($) 71)) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20)) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-419 |#1|) (-138) (-1067)) (T -419))
+((-1918 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1067)) (-5 *2 (-747)))) (-1917 (*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1067)) (-4 *2 (-361)))) (-1916 (*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-361)) (-4 *2 (-1067)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1067)) (-4 *2 (-823)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1067)) (-4 *2 (-823)))))
+(-13 (-223 |t#1|) (-1065 |t#1|) (-10 -8 (-6 -4336) (-15 -1918 ((-747) $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-361)) (-15 -1917 ($ $)) (-15 -1916 ($))) |%noBranch|) (IF (|has| |t#1| (-823)) (PROGN (-15 -3661 (|t#1| $)) (-15 -3660 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-593 (-835)) . T) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-223 |#1|) . T) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-361) |has| |#1| (-361)) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1065 |#1|) . T) ((-1067) . T) ((-1178) . T))
+((-4184 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4185 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4301 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4185 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1067) (-419 |#1|) (-1067) (-419 |#3|)) (T -420))
+((-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1067)) (-4 *5 (-1067)) (-4 *2 (-419 *5)) (-5 *1 (-420 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1067)) (-4 *2 (-1067)) (-5 *1 (-420 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-419 *6)) (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-419 *5)))))
+(-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4185 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1919 (((-565 |#2|) |#2| (-1142)) 36)) (-2213 (((-565 |#2|) |#2| (-1142)) 20)) (-2252 ((|#2| |#2| (-1142)) 25)))
+(((-421 |#1| |#2|) (-10 -7 (-15 -2213 ((-565 |#2|) |#2| (-1142))) (-15 -1919 ((-565 |#2|) |#2| (-1142))) (-15 -2252 (|#2| |#2| (-1142)))) (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-29 |#1|))) (T -421))
+((-2252 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1164) (-29 *4))))) (-1919 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-565 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1164) (-29 *5))))) (-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-565 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1164) (-29 *5))))))
+(-10 -7 (-15 -2213 ((-565 |#2|) |#2| (-1142))) (-15 -1919 ((-565 |#2|) |#2| (-1142))) (-15 -2252 (|#2| |#2| (-1142))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-1921 (($ |#2| |#1|) 35)) (-1920 (($ |#2| |#1|) 33)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-324 |#2|)) 25)) (-3444 (((-747)) NIL)) (-2979 (($) 10 T CONST)) (-2985 (($) 16 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 34)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-422 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4323)) (IF (|has| |#1| (-6 -4323)) (-6 -4323) |%noBranch|) |%noBranch|) (-15 -4300 ($ |#1|)) (-15 -4300 ($ (-324 |#2|))) (-15 -1921 ($ |#2| |#1|)) (-15 -1920 ($ |#2| |#1|)))) (-13 (-170) (-38 (-400 (-535)))) (-13 (-823) (-21))) (T -422))
+((-4300 (*1 *1 *2) (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-535))))) (-4 *3 (-13 (-823) (-21))))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-823) (-21))) (-5 *1 (-422 *3 *4)) (-4 *3 (-13 (-170) (-38 (-400 (-535))))))) (-1921 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-535))))) (-4 *2 (-13 (-823) (-21))))) (-1920 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-535))))) (-4 *2 (-13 (-823) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4323)) (IF (|has| |#1| (-6 -4323)) (-6 -4323) |%noBranch|) |%noBranch|) (-15 -4300 ($ |#1|)) (-15 -4300 ($ (-324 |#2|))) (-15 -1921 ($ |#2| |#1|)) (-15 -1920 ($ |#2| |#1|))))
+((-4155 (((-3 |#2| (-618 |#2|)) |#2| (-1142)) 109)))
+(((-423 |#1| |#2|) (-10 -7 (-15 -4155 ((-3 |#2| (-618 |#2|)) |#2| (-1142)))) (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-931) (-29 |#1|))) (T -423))
+((-4155 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 *3 (-618 *3))) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1164) (-931) (-29 *5))))))
+(-10 -7 (-15 -4155 ((-3 |#2| (-618 |#2|)) |#2| (-1142))))
+((-3728 ((|#2| |#2| |#2|) 33)) (-3368 (((-113) (-113)) 44)) (-1923 ((|#2| |#2|) 66)) (-1922 ((|#2| |#2|) 69)) (-3727 ((|#2| |#2|) 32)) (-3731 ((|#2| |#2| |#2|) 35)) (-3733 ((|#2| |#2| |#2|) 37)) (-3730 ((|#2| |#2| |#2|) 34)) (-3732 ((|#2| |#2| |#2|) 36)) (-2329 (((-112) (-113)) 42)) (-3735 ((|#2| |#2|) 39)) (-3734 ((|#2| |#2|) 38)) (-3725 ((|#2| |#2|) 27)) (-3729 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3726 ((|#2| |#2| |#2|) 31)))
+(((-424 |#1| |#2|) (-10 -7 (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -3725 (|#2| |#2|)) (-15 -3729 (|#2| |#2|)) (-15 -3729 (|#2| |#2| |#2|)) (-15 -3726 (|#2| |#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3728 (|#2| |#2| |#2|)) (-15 -3730 (|#2| |#2| |#2|)) (-15 -3731 (|#2| |#2| |#2|)) (-15 -3732 (|#2| |#2| |#2|)) (-15 -3733 (|#2| |#2| |#2|)) (-15 -3734 (|#2| |#2|)) (-15 -3735 (|#2| |#2|)) (-15 -1922 (|#2| |#2|)) (-15 -1923 (|#2| |#2|))) (-13 (-823) (-542)) (-414 |#1|)) (T -424))
+((-1923 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-1922 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3735 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3734 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3733 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3732 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3731 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3730 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3728 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3726 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3729 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3729 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3725 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *4)) (-4 *4 (-414 *3)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *5 (-414 *4)))))
+(-10 -7 (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -3725 (|#2| |#2|)) (-15 -3729 (|#2| |#2|)) (-15 -3729 (|#2| |#2| |#2|)) (-15 -3726 (|#2| |#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3728 (|#2| |#2| |#2|)) (-15 -3730 (|#2| |#2| |#2|)) (-15 -3731 (|#2| |#2| |#2|)) (-15 -3732 (|#2| |#2| |#2|)) (-15 -3733 (|#2| |#2| |#2|)) (-15 -3734 (|#2| |#2|)) (-15 -3735 (|#2| |#2|)) (-15 -1922 (|#2| |#2|)) (-15 -1923 (|#2| |#2|)))
+((-3154 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1136 |#2|)) (|:| |pol2| (-1136 |#2|)) (|:| |prim| (-1136 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-618 (-1136 |#2|))) (|:| |prim| (-1136 |#2|))) (-618 |#2|)) 61)))
+(((-425 |#1| |#2|) (-10 -7 (-15 -3154 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-618 (-1136 |#2|))) (|:| |prim| (-1136 |#2|))) (-618 |#2|))) (IF (|has| |#2| (-27)) (-15 -3154 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1136 |#2|)) (|:| |pol2| (-1136 |#2|)) (|:| |prim| (-1136 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-542) (-823) (-145)) (-414 |#1|)) (T -425))
+((-3154 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-542) (-823) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1136 *3)) (|:| |pol2| (-1136 *3)) (|:| |prim| (-1136 *3)))) (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-414 *4)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-618 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-542) (-823) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-618 (-1136 *5))) (|:| |prim| (-1136 *5)))) (-5 *1 (-425 *4 *5)))))
+(-10 -7 (-15 -3154 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-618 (-1136 |#2|))) (|:| |prim| (-1136 |#2|))) (-618 |#2|))) (IF (|has| |#2| (-27)) (-15 -3154 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1136 |#2|)) (|:| |pol2| (-1136 |#2|)) (|:| |prim| (-1136 |#2|))) |#2| |#2|)) |%noBranch|))
+((-1925 (((-1230)) 19)) (-1924 (((-1136 (-400 (-535))) |#2| (-591 |#2|)) 41) (((-400 (-535)) |#2|) 25)))
+(((-426 |#1| |#2|) (-10 -7 (-15 -1924 ((-400 (-535)) |#2|)) (-15 -1924 ((-1136 (-400 (-535))) |#2| (-591 |#2|))) (-15 -1925 ((-1230)))) (-13 (-823) (-542) (-1009 (-535))) (-414 |#1|)) (T -426))
+((-1925 (*1 *2) (-12 (-4 *3 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-1230)) (-5 *1 (-426 *3 *4)) (-4 *4 (-414 *3)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-414 *5)) (-4 *5 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-426 *5 *3)))) (-1924 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-400 (-535))) (-5 *1 (-426 *4 *3)) (-4 *3 (-414 *4)))))
+(-10 -7 (-15 -1924 ((-400 (-535)) |#2|)) (-15 -1924 ((-1136 (-400 (-535))) |#2| (-591 |#2|))) (-15 -1925 ((-1230))))
+((-3991 (((-112) $) 28)) (-1926 (((-112) $) 30)) (-3593 (((-112) $) 31)) (-1928 (((-112) $) 34)) (-1930 (((-112) $) 29)) (-1929 (((-112) $) 33)) (-4300 (((-835) $) 18) (($ (-1124)) 27) (($ (-1142)) 23) (((-1142) $) 22) (((-1069) $) 21)) (-1927 (((-112) $) 32)) (-3375 (((-112) $ $) 15)))
+(((-427) (-13 (-593 (-835)) (-10 -8 (-15 -4300 ($ (-1124))) (-15 -4300 ($ (-1142))) (-15 -4300 ((-1142) $)) (-15 -4300 ((-1069) $)) (-15 -3991 ((-112) $)) (-15 -1930 ((-112) $)) (-15 -3593 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -1927 ((-112) $)) (-15 -1926 ((-112) $)) (-15 -3375 ((-112) $ $))))) (T -427))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-427)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-427)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-427)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-427)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3375 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
+(-13 (-593 (-835)) (-10 -8 (-15 -4300 ($ (-1124))) (-15 -4300 ($ (-1142))) (-15 -4300 ((-1142) $)) (-15 -4300 ((-1069) $)) (-15 -3991 ((-112) $)) (-15 -1930 ((-112) $)) (-15 -3593 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -1927 ((-112) $)) (-15 -1926 ((-112) $)) (-15 -3375 ((-112) $ $))))
+((-1932 (((-3 (-398 (-1136 (-400 (-535)))) "failed") |#3|) 70)) (-1931 (((-398 |#3|) |#3|) 34)) (-1934 (((-3 (-398 (-1136 (-48))) "failed") |#3|) 46 (|has| |#2| (-1009 (-48))))) (-1933 (((-3 (|:| |overq| (-1136 (-400 (-535)))) (|:| |overan| (-1136 (-48))) (|:| -2958 (-112))) |#3|) 37)))
+(((-428 |#1| |#2| |#3|) (-10 -7 (-15 -1931 ((-398 |#3|) |#3|)) (-15 -1932 ((-3 (-398 (-1136 (-400 (-535)))) "failed") |#3|)) (-15 -1933 ((-3 (|:| |overq| (-1136 (-400 (-535)))) (|:| |overan| (-1136 (-48))) (|:| -2958 (-112))) |#3|)) (IF (|has| |#2| (-1009 (-48))) (-15 -1934 ((-3 (-398 (-1136 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-542) (-823) (-1009 (-535))) (-414 |#1|) (-1200 |#2|)) (T -428))
+((-1934 (*1 *2 *3) (|partial| -12 (-4 *5 (-1009 (-48))) (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4)) (-5 *2 (-398 (-1136 (-48)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5)))) (-1933 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4)) (-5 *2 (-3 (|:| |overq| (-1136 (-400 (-535)))) (|:| |overan| (-1136 (-48))) (|:| -2958 (-112)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5)))) (-1932 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4)) (-5 *2 (-398 (-1136 (-400 (-535))))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5)))) (-1931 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4)) (-5 *2 (-398 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5)))))
+(-10 -7 (-15 -1931 ((-398 |#3|) |#3|)) (-15 -1932 ((-3 (-398 (-1136 (-400 (-535)))) "failed") |#3|)) (-15 -1933 ((-3 (|:| |overq| (-1136 (-400 (-535)))) (|:| |overan| (-1136 (-48))) (|:| -2958 (-112))) |#3|)) (IF (|has| |#2| (-1009 (-48))) (-15 -1934 ((-3 (-398 (-1136 (-48))) "failed") |#3|)) |%noBranch|))
+((-2887 (((-112) $ $) NIL)) (-1943 (((-3 (|:| |fst| (-427)) (|:| -4253 #1="void")) $) 11)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1941 (($) 32)) (-1938 (($) 38)) (-1939 (($) 34)) (-1936 (($) 36)) (-1940 (($) 33)) (-1937 (($) 35)) (-1935 (($) 37)) (-1942 (((-112) $) 8)) (-2673 (((-618 (-917 (-535))) $) 19)) (-3867 (($ (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-618 (-1142)) (-112)) 27) (($ (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-618 (-917 (-535))) (-112)) 28)) (-4300 (((-835) $) 23) (($ (-427)) 29)) (-3375 (((-112) $ $) NIL)))
+(((-429) (-13 (-1067) (-10 -8 (-15 -4300 ((-835) $)) (-15 -4300 ($ (-427))) (-15 -1943 ((-3 (|:| |fst| (-427)) (|:| -4253 #1="void")) $)) (-15 -2673 ((-618 (-917 (-535))) $)) (-15 -1942 ((-112) $)) (-15 -3867 ($ (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-618 (-1142)) (-112))) (-15 -3867 ($ (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-618 (-917 (-535))) (-112))) (-15 -1941 ($)) (-15 -1940 ($)) (-15 -1939 ($)) (-15 -1938 ($)) (-15 -1937 ($)) (-15 -1936 ($)) (-15 -1935 ($))))) (T -429))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-429)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-429)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 #1="void"))) (-5 *1 (-429)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-618 (-917 (-535)))) (-5 *1 (-429)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3867 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-5 *3 (-618 (-1142))) (-5 *4 (-112)) (-5 *1 (-429)))) (-3867 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-112)) (-5 *1 (-429)))) (-1941 (*1 *1) (-5 *1 (-429))) (-1940 (*1 *1) (-5 *1 (-429))) (-1939 (*1 *1) (-5 *1 (-429))) (-1938 (*1 *1) (-5 *1 (-429))) (-1937 (*1 *1) (-5 *1 (-429))) (-1936 (*1 *1) (-5 *1 (-429))) (-1935 (*1 *1) (-5 *1 (-429))))
+(-13 (-1067) (-10 -8 (-15 -4300 ((-835) $)) (-15 -4300 ($ (-427))) (-15 -1943 ((-3 (|:| |fst| (-427)) (|:| -4253 #1="void")) $)) (-15 -2673 ((-618 (-917 (-535))) $)) (-15 -1942 ((-112) $)) (-15 -3867 ($ (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-618 (-1142)) (-112))) (-15 -3867 ($ (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-618 (-917 (-535))) (-112))) (-15 -1941 ($)) (-15 -1940 ($)) (-15 -1939 ($)) (-15 -1938 ($)) (-15 -1937 ($)) (-15 -1936 ($)) (-15 -1935 ($))))
+((-2887 (((-112) $ $) NIL)) (-1808 (((-1124) $ (-1124)) NIL)) (-1812 (($ $ (-1124)) NIL)) (-1809 (((-1124) $) NIL)) (-1947 (((-381) (-381) (-381)) 17) (((-381) (-381)) 15)) (-1813 (($ (-381)) NIL) (($ (-381) (-1124)) NIL)) (-3888 (((-381) $) NIL)) (-3576 (((-1124) $) NIL)) (-1810 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1946 (((-1230) (-1124)) 9)) (-1945 (((-1230) (-1124)) 10)) (-1944 (((-1230)) 11)) (-4300 (((-835) $) NIL)) (-1811 (($ $) 35)) (-3375 (((-112) $ $) NIL)))
+(((-430) (-13 (-358 (-381) (-1124)) (-10 -7 (-15 -1947 ((-381) (-381) (-381))) (-15 -1947 ((-381) (-381))) (-15 -1946 ((-1230) (-1124))) (-15 -1945 ((-1230) (-1124))) (-15 -1944 ((-1230)))))) (T -430))
+((-1947 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-430)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-430)))) (-1944 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-430)))))
+(-13 (-358 (-381) (-1124)) (-10 -7 (-15 -1947 ((-381) (-381) (-381))) (-15 -1947 ((-381) (-381))) (-15 -1946 ((-1230) (-1124))) (-15 -1945 ((-1230) (-1124))) (-15 -1944 ((-1230)))))
+((-2887 (((-112) $ $) NIL)) (-3888 (((-1142) $) 8)) (-3576 (((-1124) $) 16)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 13)))
+(((-431 |#1|) (-13 (-1067) (-10 -8 (-15 -3888 ((-1142) $)))) (-1142)) (T -431))
+((-3888 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-431 *3)) (-14 *3 *2))))
+(-13 (-1067) (-10 -8 (-15 -3888 ((-1142) $))))
+((-3722 (((-1230) $) 7)) (-4300 (((-835) $) 8) (($ (-1224 (-675))) 14) (($ (-618 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 11)))
(((-432) (-138)) (T -432))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-675))) (-4 *1 (-432)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-432)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) (-4 *1 (-432)))))
-(-13 (-388) (-10 -8 (-15 -3845 ($ (-1225 (-675)))) (-15 -3845 ($ (-621 (-323)))) (-15 -3845 ($ (-323))) (-15 -3845 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))))))
-(((-593 (-834)) . T) ((-388) . T) ((-1179) . T))
-((-2713 (((-3 $ "failed") (-1225 (-309 (-372)))) 21) (((-3 $ "failed") (-1225 (-309 (-549)))) 19) (((-3 $ "failed") (-1225 (-923 (-372)))) 17) (((-3 $ "failed") (-1225 (-923 (-549)))) 15) (((-3 $ "failed") (-1225 (-400 (-923 (-372))))) 13) (((-3 $ "failed") (-1225 (-400 (-923 (-549))))) 11)) (-2658 (($ (-1225 (-309 (-372)))) 22) (($ (-1225 (-309 (-549)))) 20) (($ (-1225 (-923 (-372)))) 18) (($ (-1225 (-923 (-549)))) 16) (($ (-1225 (-400 (-923 (-372))))) 14) (($ (-1225 (-400 (-923 (-549))))) 12)) (-3315 (((-1230) $) 7)) (-3845 (((-834) $) 8) (($ (-621 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) 23)))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-675))) (-4 *1 (-432)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-432)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) (-4 *1 (-432)))))
+(-13 (-389) (-10 -8 (-15 -4300 ($ (-1224 (-675)))) (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-323))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))))))
+(((-593 (-835)) . T) ((-389) . T) ((-1178) . T))
+((-3491 (((-3 $ "failed") (-1224 (-307 (-371)))) 21) (((-3 $ "failed") (-1224 (-307 (-535)))) 19) (((-3 $ "failed") (-1224 (-917 (-371)))) 17) (((-3 $ "failed") (-1224 (-917 (-535)))) 15) (((-3 $ "failed") (-1224 (-400 (-917 (-371))))) 13) (((-3 $ "failed") (-1224 (-400 (-917 (-535))))) 11)) (-3490 (($ (-1224 (-307 (-371)))) 22) (($ (-1224 (-307 (-535)))) 20) (($ (-1224 (-917 (-371)))) 18) (($ (-1224 (-917 (-535)))) 16) (($ (-1224 (-400 (-917 (-371))))) 14) (($ (-1224 (-400 (-917 (-535))))) 12)) (-3722 (((-1230) $) 7)) (-4300 (((-835) $) 8) (($ (-618 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) 23)))
(((-433) (-138)) (T -433))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-433)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323))))) (-4 *1 (-433)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-1225 (-309 (-372)))) (-4 *1 (-433)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-1225 (-309 (-372)))) (-4 *1 (-433)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-1225 (-309 (-549)))) (-4 *1 (-433)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-1225 (-309 (-549)))) (-4 *1 (-433)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-1225 (-923 (-372)))) (-4 *1 (-433)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-1225 (-923 (-372)))) (-4 *1 (-433)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-1225 (-923 (-549)))) (-4 *1 (-433)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-1225 (-923 (-549)))) (-4 *1 (-433)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-1225 (-400 (-923 (-372))))) (-4 *1 (-433)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-1225 (-400 (-923 (-372))))) (-4 *1 (-433)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-1225 (-400 (-923 (-549))))) (-4 *1 (-433)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-1225 (-400 (-923 (-549))))) (-4 *1 (-433)))))
-(-13 (-388) (-10 -8 (-15 -3845 ($ (-621 (-323)))) (-15 -3845 ($ (-323))) (-15 -3845 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323)))))) (-15 -2658 ($ (-1225 (-309 (-372))))) (-15 -2713 ((-3 $ "failed") (-1225 (-309 (-372))))) (-15 -2658 ($ (-1225 (-309 (-549))))) (-15 -2713 ((-3 $ "failed") (-1225 (-309 (-549))))) (-15 -2658 ($ (-1225 (-923 (-372))))) (-15 -2713 ((-3 $ "failed") (-1225 (-923 (-372))))) (-15 -2658 ($ (-1225 (-923 (-549))))) (-15 -2713 ((-3 $ "failed") (-1225 (-923 (-549))))) (-15 -2658 ($ (-1225 (-400 (-923 (-372)))))) (-15 -2713 ((-3 $ "failed") (-1225 (-400 (-923 (-372)))))) (-15 -2658 ($ (-1225 (-400 (-923 (-549)))))) (-15 -2713 ((-3 $ "failed") (-1225 (-400 (-923 (-549))))))))
-(((-593 (-834)) . T) ((-388) . T) ((-1179) . T))
-((-4261 (((-112)) 17)) (-2081 (((-112) (-112)) 18)) (-3900 (((-112)) 13)) (-3372 (((-112) (-112)) 14)) (-1751 (((-112)) 15)) (-3967 (((-112) (-112)) 16)) (-3205 (((-892) (-892)) 21) (((-892)) 20)) (-3597 (((-747) (-621 (-2 (|:| -2120 |#1|) (|:| -3068 (-549))))) 42)) (-1380 (((-892) (-892)) 23) (((-892)) 22)) (-2669 (((-2 (|:| -3368 (-549)) (|:| -2886 (-621 |#1|))) |#1|) 62)) (-3425 (((-411 |#1|) (-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| |#1|) (|:| -3533 (-549))))))) 126)) (-2231 (((-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| |#1|) (|:| -3533 (-549)))))) |#1| (-112)) 152)) (-1961 (((-411 |#1|) |#1| (-747) (-747)) 165) (((-411 |#1|) |#1| (-621 (-747)) (-747)) 162) (((-411 |#1|) |#1| (-621 (-747))) 164) (((-411 |#1|) |#1| (-747)) 163) (((-411 |#1|) |#1|) 161)) (-3793 (((-3 |#1| "failed") (-892) |#1| (-621 (-747)) (-747) (-112)) 167) (((-3 |#1| "failed") (-892) |#1| (-621 (-747)) (-747)) 168) (((-3 |#1| "failed") (-892) |#1| (-621 (-747))) 170) (((-3 |#1| "failed") (-892) |#1| (-747)) 169) (((-3 |#1| "failed") (-892) |#1|) 171)) (-2120 (((-411 |#1|) |#1| (-747) (-747)) 160) (((-411 |#1|) |#1| (-621 (-747)) (-747)) 156) (((-411 |#1|) |#1| (-621 (-747))) 158) (((-411 |#1|) |#1| (-747)) 157) (((-411 |#1|) |#1|) 155)) (-2006 (((-112) |#1|) 37)) (-2969 (((-714 (-747)) (-621 (-2 (|:| -2120 |#1|) (|:| -3068 (-549))))) 67)) (-2635 (((-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| |#1|) (|:| -3533 (-549)))))) |#1| (-112) (-1068 (-747)) (-747)) 154)))
-(((-434 |#1|) (-10 -7 (-15 -3425 ((-411 |#1|) (-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| |#1|) (|:| -3533 (-549)))))))) (-15 -2969 ((-714 (-747)) (-621 (-2 (|:| -2120 |#1|) (|:| -3068 (-549)))))) (-15 -1380 ((-892))) (-15 -1380 ((-892) (-892))) (-15 -3205 ((-892))) (-15 -3205 ((-892) (-892))) (-15 -3597 ((-747) (-621 (-2 (|:| -2120 |#1|) (|:| -3068 (-549)))))) (-15 -2669 ((-2 (|:| -3368 (-549)) (|:| -2886 (-621 |#1|))) |#1|)) (-15 -4261 ((-112))) (-15 -2081 ((-112) (-112))) (-15 -3900 ((-112))) (-15 -3372 ((-112) (-112))) (-15 -2006 ((-112) |#1|)) (-15 -1751 ((-112))) (-15 -3967 ((-112) (-112))) (-15 -2120 ((-411 |#1|) |#1|)) (-15 -2120 ((-411 |#1|) |#1| (-747))) (-15 -2120 ((-411 |#1|) |#1| (-621 (-747)))) (-15 -2120 ((-411 |#1|) |#1| (-621 (-747)) (-747))) (-15 -2120 ((-411 |#1|) |#1| (-747) (-747))) (-15 -1961 ((-411 |#1|) |#1|)) (-15 -1961 ((-411 |#1|) |#1| (-747))) (-15 -1961 ((-411 |#1|) |#1| (-621 (-747)))) (-15 -1961 ((-411 |#1|) |#1| (-621 (-747)) (-747))) (-15 -1961 ((-411 |#1|) |#1| (-747) (-747))) (-15 -3793 ((-3 |#1| "failed") (-892) |#1|)) (-15 -3793 ((-3 |#1| "failed") (-892) |#1| (-747))) (-15 -3793 ((-3 |#1| "failed") (-892) |#1| (-621 (-747)))) (-15 -3793 ((-3 |#1| "failed") (-892) |#1| (-621 (-747)) (-747))) (-15 -3793 ((-3 |#1| "failed") (-892) |#1| (-621 (-747)) (-747) (-112))) (-15 -2231 ((-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| |#1|) (|:| -3533 (-549)))))) |#1| (-112))) (-15 -2635 ((-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| |#1|) (|:| -3533 (-549)))))) |#1| (-112) (-1068 (-747)) (-747)))) (-1201 (-549))) (T -434))
-((-2635 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1068 (-747))) (-5 *6 (-747)) (-5 *2 (-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| *3) (|:| -3533 (-549))))))) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-2231 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| *3) (|:| -3533 (-549))))))) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-3793 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-892)) (-5 *4 (-621 (-747))) (-5 *5 (-747)) (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1201 (-549))))) (-3793 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-892)) (-5 *4 (-621 (-747))) (-5 *5 (-747)) (-5 *1 (-434 *2)) (-4 *2 (-1201 (-549))))) (-3793 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-892)) (-5 *4 (-621 (-747))) (-5 *1 (-434 *2)) (-4 *2 (-1201 (-549))))) (-3793 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-892)) (-5 *4 (-747)) (-5 *1 (-434 *2)) (-4 *2 (-1201 (-549))))) (-3793 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-892)) (-5 *1 (-434 *2)) (-4 *2 (-1201 (-549))))) (-1961 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-1961 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-621 (-747))) (-5 *5 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-1961 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-747))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-1961 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-1961 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-2120 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-2120 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-621 (-747))) (-5 *5 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-747))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-2120 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-3967 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-1751 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-2006 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-3372 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-3900 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-4261 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-2669 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3368 (-549)) (|:| -2886 (-621 *3)))) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -2120 *4) (|:| -3068 (-549))))) (-4 *4 (-1201 (-549))) (-5 *2 (-747)) (-5 *1 (-434 *4)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-3205 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-1380 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-1380 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -2120 *4) (|:| -3068 (-549))))) (-4 *4 (-1201 (-549))) (-5 *2 (-714 (-747))) (-5 *1 (-434 *4)))) (-3425 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| *4) (|:| -3533 (-549))))))) (-4 *4 (-1201 (-549))) (-5 *2 (-411 *4)) (-5 *1 (-434 *4)))))
-(-10 -7 (-15 -3425 ((-411 |#1|) (-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| |#1|) (|:| -3533 (-549)))))))) (-15 -2969 ((-714 (-747)) (-621 (-2 (|:| -2120 |#1|) (|:| -3068 (-549)))))) (-15 -1380 ((-892))) (-15 -1380 ((-892) (-892))) (-15 -3205 ((-892))) (-15 -3205 ((-892) (-892))) (-15 -3597 ((-747) (-621 (-2 (|:| -2120 |#1|) (|:| -3068 (-549)))))) (-15 -2669 ((-2 (|:| -3368 (-549)) (|:| -2886 (-621 |#1|))) |#1|)) (-15 -4261 ((-112))) (-15 -2081 ((-112) (-112))) (-15 -3900 ((-112))) (-15 -3372 ((-112) (-112))) (-15 -2006 ((-112) |#1|)) (-15 -1751 ((-112))) (-15 -3967 ((-112) (-112))) (-15 -2120 ((-411 |#1|) |#1|)) (-15 -2120 ((-411 |#1|) |#1| (-747))) (-15 -2120 ((-411 |#1|) |#1| (-621 (-747)))) (-15 -2120 ((-411 |#1|) |#1| (-621 (-747)) (-747))) (-15 -2120 ((-411 |#1|) |#1| (-747) (-747))) (-15 -1961 ((-411 |#1|) |#1|)) (-15 -1961 ((-411 |#1|) |#1| (-747))) (-15 -1961 ((-411 |#1|) |#1| (-621 (-747)))) (-15 -1961 ((-411 |#1|) |#1| (-621 (-747)) (-747))) (-15 -1961 ((-411 |#1|) |#1| (-747) (-747))) (-15 -3793 ((-3 |#1| "failed") (-892) |#1|)) (-15 -3793 ((-3 |#1| "failed") (-892) |#1| (-747))) (-15 -3793 ((-3 |#1| "failed") (-892) |#1| (-621 (-747)))) (-15 -3793 ((-3 |#1| "failed") (-892) |#1| (-621 (-747)) (-747))) (-15 -3793 ((-3 |#1| "failed") (-892) |#1| (-621 (-747)) (-747) (-112))) (-15 -2231 ((-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| |#1|) (|:| -3533 (-549)))))) |#1| (-112))) (-15 -2635 ((-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| |#1|) (|:| -3533 (-549)))))) |#1| (-112) (-1068 (-747)) (-747))))
-((-3993 (((-549) |#2|) 48) (((-549) |#2| (-747)) 47)) (-3906 (((-549) |#2|) 55)) (-2489 ((|#3| |#2|) 25)) (-4117 ((|#3| |#2| (-892)) 14)) (-4209 ((|#3| |#2|) 15)) (-2904 ((|#3| |#2|) 9)) (-4035 ((|#3| |#2|) 10)) (-3689 ((|#3| |#2| (-892)) 62) ((|#3| |#2|) 30)) (-3111 (((-549) |#2|) 57)))
-(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -3111 ((-549) |#2|)) (-15 -3689 (|#3| |#2|)) (-15 -3689 (|#3| |#2| (-892))) (-15 -3906 ((-549) |#2|)) (-15 -3993 ((-549) |#2| (-747))) (-15 -3993 ((-549) |#2|)) (-15 -4117 (|#3| |#2| (-892))) (-15 -2489 (|#3| |#2|)) (-15 -2904 (|#3| |#2|)) (-15 -4035 (|#3| |#2|)) (-15 -4209 (|#3| |#2|))) (-1018) (-1201 |#1|) (-13 (-397) (-1009 |#1|) (-356) (-1164) (-277))) (T -435))
-((-4209 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1201 *4)))) (-4035 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1201 *4)))) (-2904 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1201 *4)))) (-2489 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1201 *4)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-4 *5 (-1018)) (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1164) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1201 *5)))) (-3993 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1201 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))) (-3993 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *5 *3 *6)) (-4 *3 (-1201 *5)) (-4 *6 (-13 (-397) (-1009 *5) (-356) (-1164) (-277))))) (-3906 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1201 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))) (-3689 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-4 *5 (-1018)) (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1164) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1201 *5)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1201 *4)))) (-3111 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1201 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))))
-(-10 -7 (-15 -3111 ((-549) |#2|)) (-15 -3689 (|#3| |#2|)) (-15 -3689 (|#3| |#2| (-892))) (-15 -3906 ((-549) |#2|)) (-15 -3993 ((-549) |#2| (-747))) (-15 -3993 ((-549) |#2|)) (-15 -4117 (|#3| |#2| (-892))) (-15 -2489 (|#3| |#2|)) (-15 -2904 (|#3| |#2|)) (-15 -4035 (|#3| |#2|)) (-15 -4209 (|#3| |#2|)))
-((-3206 ((|#2| (-1225 |#1|)) 36)) (-2649 ((|#2| |#2| |#1|) 49)) (-1775 ((|#2| |#2| |#1|) 41)) (-3063 ((|#2| |#2|) 38)) (-3147 (((-112) |#2|) 30)) (-1675 (((-621 |#2|) (-892) (-411 |#2|)) 17)) (-3793 ((|#2| (-892) (-411 |#2|)) 21)) (-2969 (((-714 (-747)) (-411 |#2|)) 25)))
-(((-436 |#1| |#2|) (-10 -7 (-15 -3147 ((-112) |#2|)) (-15 -3206 (|#2| (-1225 |#1|))) (-15 -3063 (|#2| |#2|)) (-15 -1775 (|#2| |#2| |#1|)) (-15 -2649 (|#2| |#2| |#1|)) (-15 -2969 ((-714 (-747)) (-411 |#2|))) (-15 -3793 (|#2| (-892) (-411 |#2|))) (-15 -1675 ((-621 |#2|) (-892) (-411 |#2|)))) (-1018) (-1201 |#1|)) (T -436))
-((-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-411 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-1018)) (-5 *2 (-621 *6)) (-5 *1 (-436 *5 *6)))) (-3793 (*1 *2 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-411 *2)) (-4 *2 (-1201 *5)) (-5 *1 (-436 *5 *2)) (-4 *5 (-1018)))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-411 *5)) (-4 *5 (-1201 *4)) (-4 *4 (-1018)) (-5 *2 (-714 (-747))) (-5 *1 (-436 *4 *5)))) (-2649 (*1 *2 *2 *3) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1201 *3)))) (-1775 (*1 *2 *2 *3) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1201 *3)))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1201 *3)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-1225 *4)) (-4 *4 (-1018)) (-4 *2 (-1201 *4)) (-5 *1 (-436 *4 *2)))) (-3147 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) (-4 *3 (-1201 *4)))))
-(-10 -7 (-15 -3147 ((-112) |#2|)) (-15 -3206 (|#2| (-1225 |#1|))) (-15 -3063 (|#2| |#2|)) (-15 -1775 (|#2| |#2| |#1|)) (-15 -2649 (|#2| |#2| |#1|)) (-15 -2969 ((-714 (-747)) (-411 |#2|))) (-15 -3793 (|#2| (-892) (-411 |#2|))) (-15 -1675 ((-621 |#2|) (-892) (-411 |#2|))))
-((-2072 (((-747)) 41)) (-4271 (((-747)) 23 (|has| |#1| (-397))) (((-747) (-747)) 22 (|has| |#1| (-397)))) (-1356 (((-549) |#1|) 18 (|has| |#1| (-397)))) (-1591 (((-549) |#1|) 20 (|has| |#1| (-397)))) (-3649 (((-747)) 40) (((-747) (-747)) 39)) (-3528 ((|#1| (-747) (-549)) 29)) (-3497 (((-1230)) 43)))
-(((-437 |#1|) (-10 -7 (-15 -3528 (|#1| (-747) (-549))) (-15 -3649 ((-747) (-747))) (-15 -3649 ((-747))) (-15 -2072 ((-747))) (-15 -3497 ((-1230))) (IF (|has| |#1| (-397)) (PROGN (-15 -1591 ((-549) |#1|)) (-15 -1356 ((-549) |#1|)) (-15 -4271 ((-747) (-747))) (-15 -4271 ((-747)))) |%noBranch|)) (-1018)) (T -437))
-((-4271 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-4271 (*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-1356 (*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-1591 (*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-3497 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-2072 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-3649 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-3649 (*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-3528 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-549)) (-5 *1 (-437 *2)) (-4 *2 (-1018)))))
-(-10 -7 (-15 -3528 (|#1| (-747) (-549))) (-15 -3649 ((-747) (-747))) (-15 -3649 ((-747))) (-15 -2072 ((-747))) (-15 -3497 ((-1230))) (IF (|has| |#1| (-397)) (PROGN (-15 -1591 ((-549) |#1|)) (-15 -1356 ((-549) |#1|)) (-15 -4271 ((-747) (-747))) (-15 -4271 ((-747)))) |%noBranch|))
-((-2519 (((-621 (-549)) (-549)) 61)) (-2471 (((-112) (-167 (-549))) 65)) (-2120 (((-411 (-167 (-549))) (-167 (-549))) 60)))
-(((-438) (-10 -7 (-15 -2120 ((-411 (-167 (-549))) (-167 (-549)))) (-15 -2519 ((-621 (-549)) (-549))) (-15 -2471 ((-112) (-167 (-549)))))) (T -438))
-((-2471 (*1 *2 *3) (-12 (-5 *3 (-167 (-549))) (-5 *2 (-112)) (-5 *1 (-438)))) (-2519 (*1 *2 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-438)) (-5 *3 (-549)))) (-2120 (*1 *2 *3) (-12 (-5 *2 (-411 (-167 (-549)))) (-5 *1 (-438)) (-5 *3 (-167 (-549))))))
-(-10 -7 (-15 -2120 ((-411 (-167 (-549))) (-167 (-549)))) (-15 -2519 ((-621 (-549)) (-549))) (-15 -2471 ((-112) (-167 (-549)))))
-((-2285 ((|#4| |#4| (-621 |#4|)) 61)) (-3186 (((-621 |#4|) (-621 |#4|) (-1124) (-1124)) 17) (((-621 |#4|) (-621 |#4|) (-1124)) 16) (((-621 |#4|) (-621 |#4|)) 11)))
-(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2285 (|#4| |#4| (-621 |#4|))) (-15 -3186 ((-621 |#4|) (-621 |#4|))) (-15 -3186 ((-621 |#4|) (-621 |#4|) (-1124))) (-15 -3186 ((-621 |#4|) (-621 |#4|) (-1124) (-1124)))) (-300) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -439))
-((-3186 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-1124)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *7)))) (-3186 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-1124)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *7)))) (-3186 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-439 *3 *4 *5 *6)))) (-2285 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2285 (|#4| |#4| (-621 |#4|))) (-15 -3186 ((-621 |#4|) (-621 |#4|))) (-15 -3186 ((-621 |#4|) (-621 |#4|) (-1124))) (-15 -3186 ((-621 |#4|) (-621 |#4|) (-1124) (-1124))))
-((-2893 (((-621 (-621 |#4|)) (-621 |#4|) (-112)) 73) (((-621 (-621 |#4|)) (-621 |#4|)) 72) (((-621 (-621 |#4|)) (-621 |#4|) (-621 |#4|) (-112)) 66) (((-621 (-621 |#4|)) (-621 |#4|) (-621 |#4|)) 67)) (-3194 (((-621 (-621 |#4|)) (-621 |#4|) (-112)) 42) (((-621 (-621 |#4|)) (-621 |#4|)) 63)))
-(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3194 ((-621 (-621 |#4|)) (-621 |#4|))) (-15 -3194 ((-621 (-621 |#4|)) (-621 |#4|) (-112))) (-15 -2893 ((-621 (-621 |#4|)) (-621 |#4|) (-621 |#4|))) (-15 -2893 ((-621 (-621 |#4|)) (-621 |#4|) (-621 |#4|) (-112))) (-15 -2893 ((-621 (-621 |#4|)) (-621 |#4|))) (-15 -2893 ((-621 (-621 |#4|)) (-621 |#4|) (-112)))) (-13 (-300) (-145)) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -440))
-((-2893 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-621 (-621 *8))) (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-621 *8)))) (-2893 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-621 (-621 *7))) (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-2893 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-621 (-621 *8))) (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-621 *8)))) (-2893 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-621 (-621 *7))) (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-3194 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-621 (-621 *8))) (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-621 *8)))) (-3194 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-621 (-621 *7))) (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
-(-10 -7 (-15 -3194 ((-621 (-621 |#4|)) (-621 |#4|))) (-15 -3194 ((-621 (-621 |#4|)) (-621 |#4|) (-112))) (-15 -2893 ((-621 (-621 |#4|)) (-621 |#4|) (-621 |#4|))) (-15 -2893 ((-621 (-621 |#4|)) (-621 |#4|) (-621 |#4|) (-112))) (-15 -2893 ((-621 (-621 |#4|)) (-621 |#4|))) (-15 -2893 ((-621 (-621 |#4|)) (-621 |#4|) (-112))))
-((-3188 (((-747) |#4|) 12)) (-1374 (((-621 (-2 (|:| |totdeg| (-747)) (|:| -4267 |#4|))) |#4| (-747) (-621 (-2 (|:| |totdeg| (-747)) (|:| -4267 |#4|)))) 31)) (-3938 (((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2111 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1799 ((|#4| |#4| (-621 |#4|)) 40)) (-1801 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-621 |#4|)) 70)) (-3540 (((-1230) |#4|) 42)) (-2842 (((-1230) (-621 |#4|)) 51)) (-2335 (((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549)) 48)) (-2830 (((-1230) (-549)) 79)) (-2417 (((-621 |#4|) (-621 |#4|)) 77)) (-2358 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-747)) (|:| -4267 |#4|)) |#4| (-747)) 25)) (-1465 (((-549) |#4|) 78)) (-4230 ((|#4| |#4|) 29)) (-3310 (((-621 |#4|) (-621 |#4|) (-549) (-549)) 56)) (-4046 (((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549) (-549)) 89)) (-2172 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-4203 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-3598 (((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1798 (((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2365 (((-112) |#2| |#2|) 57)) (-2148 (((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3343 (((-112) |#2| |#2| |#2| |#2|) 60)) (-3463 ((|#4| |#4| (-621 |#4|)) 71)))
-(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3463 (|#4| |#4| (-621 |#4|))) (-15 -1799 (|#4| |#4| (-621 |#4|))) (-15 -3310 ((-621 |#4|) (-621 |#4|) (-549) (-549))) (-15 -4203 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2365 ((-112) |#2| |#2|)) (-15 -3343 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2148 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1798 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3598 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1801 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-621 |#4|))) (-15 -4230 (|#4| |#4|)) (-15 -1374 ((-621 (-2 (|:| |totdeg| (-747)) (|:| -4267 |#4|))) |#4| (-747) (-621 (-2 (|:| |totdeg| (-747)) (|:| -4267 |#4|))))) (-15 -2111 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3938 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2417 ((-621 |#4|) (-621 |#4|))) (-15 -1465 ((-549) |#4|)) (-15 -3540 ((-1230) |#4|)) (-15 -2335 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549))) (-15 -4046 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549) (-549))) (-15 -2842 ((-1230) (-621 |#4|))) (-15 -2830 ((-1230) (-549))) (-15 -2172 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2358 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-747)) (|:| -4267 |#4|)) |#4| (-747))) (-15 -3188 ((-747) |#4|))) (-444) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -441))
-((-3188 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))) (-2358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-747)) (|:| -4267 *4))) (-5 *5 (-747)) (-4 *4 (-920 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-441 *6 *7 *8 *4)))) (-2172 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-769)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))) (-2842 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230)) (-5 *1 (-441 *4 *5 *6 *7)))) (-4046 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-769)) (-4 *4 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823)) (-5 *1 (-441 *5 *6 *7 *4)))) (-2335 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-769)) (-4 *4 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823)) (-5 *1 (-441 *5 *6 *7 *4)))) (-3540 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))) (-1465 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-549)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))) (-2417 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-441 *3 *4 *5 *6)))) (-3938 (*1 *2 *2 *2) (-12 (-5 *2 (-621 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-769)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823)) (-5 *1 (-441 *3 *4 *5 *6)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-769)) (-4 *2 (-920 *4 *5 *6)) (-5 *1 (-441 *4 *5 *6 *2)) (-4 *4 (-444)) (-4 *6 (-823)))) (-1374 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-621 (-2 (|:| |totdeg| (-747)) (|:| -4267 *3)))) (-5 *4 (-747)) (-4 *3 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-441 *5 *6 *7 *3)))) (-4230 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-920 *3 *4 *5)))) (-1801 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-441 *5 *6 *7 *3)))) (-3598 (*1 *2 *3 *2) (-12 (-5 *2 (-621 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-747)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-769)) (-4 *6 (-920 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-823)) (-5 *1 (-441 *4 *3 *5 *6)))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-621 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-769)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823)) (-5 *1 (-441 *3 *4 *5 *6)))) (-2148 (*1 *2 *3 *2) (-12 (-5 *2 (-621 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-769)) (-4 *3 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) (-5 *1 (-441 *4 *5 *6 *3)))) (-3343 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-920 *4 *3 *5)))) (-2365 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-920 *4 *3 *5)))) (-4203 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-769)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7)))) (-3310 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-549)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-441 *4 *5 *6 *7)))) (-1799 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-441 *4 *5 *6 *2)))) (-3463 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-441 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3463 (|#4| |#4| (-621 |#4|))) (-15 -1799 (|#4| |#4| (-621 |#4|))) (-15 -3310 ((-621 |#4|) (-621 |#4|) (-549) (-549))) (-15 -4203 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2365 ((-112) |#2| |#2|)) (-15 -3343 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2148 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1798 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3598 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1801 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-621 |#4|))) (-15 -4230 (|#4| |#4|)) (-15 -1374 ((-621 (-2 (|:| |totdeg| (-747)) (|:| -4267 |#4|))) |#4| (-747) (-621 (-2 (|:| |totdeg| (-747)) (|:| -4267 |#4|))))) (-15 -2111 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3938 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2417 ((-621 |#4|) (-621 |#4|))) (-15 -1465 ((-549) |#4|)) (-15 -3540 ((-1230) |#4|)) (-15 -2335 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549))) (-15 -4046 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549) (-549))) (-15 -2842 ((-1230) (-621 |#4|))) (-15 -2830 ((-1230) (-549))) (-15 -2172 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2358 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-747)) (|:| -4267 |#4|)) |#4| (-747))) (-15 -3188 ((-747) |#4|)))
-((-4128 ((|#4| |#4| (-621 |#4|)) 22 (|has| |#1| (-356)))) (-3164 (((-621 |#4|) (-621 |#4|) (-1124) (-1124)) 41) (((-621 |#4|) (-621 |#4|) (-1124)) 40) (((-621 |#4|) (-621 |#4|)) 35)))
-(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3164 ((-621 |#4|) (-621 |#4|))) (-15 -3164 ((-621 |#4|) (-621 |#4|) (-1124))) (-15 -3164 ((-621 |#4|) (-621 |#4|) (-1124) (-1124))) (IF (|has| |#1| (-356)) (-15 -4128 (|#4| |#4| (-621 |#4|))) |%noBranch|)) (-444) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -442))
-((-4128 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-356)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *2)))) (-3164 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-1124)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *7)))) (-3164 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-1124)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *7)))) (-3164 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3164 ((-621 |#4|) (-621 |#4|))) (-15 -3164 ((-621 |#4|) (-621 |#4|) (-1124))) (-15 -3164 ((-621 |#4|) (-621 |#4|) (-1124) (-1124))) (IF (|has| |#1| (-356)) (-15 -4128 (|#4| |#4| (-621 |#4|))) |%noBranch|))
-((-3696 (($ $ $) 14) (($ (-621 $)) 21)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 41)) (-3726 (($ $ $) NIL) (($ (-621 $)) 22)))
-(((-443 |#1|) (-10 -8 (-15 -1443 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -3696 (|#1| (-621 |#1|))) (-15 -3696 (|#1| |#1| |#1|)) (-15 -3726 (|#1| (-621 |#1|))) (-15 -3726 (|#1| |#1| |#1|))) (-444)) (T -443))
-NIL
-(-10 -8 (-15 -1443 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -3696 (|#1| (-621 |#1|))) (-15 -3696 (|#1| |#1| |#1|)) (-15 -3726 (|#1| (-621 |#1|))) (-15 -3726 (|#1| |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-2038 (((-3 $ "failed") $ $) 40)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-433)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323))))) (-4 *1 (-433)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1224 (-307 (-371)))) (-4 *1 (-433)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-307 (-371)))) (-4 *1 (-433)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1224 (-307 (-535)))) (-4 *1 (-433)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-307 (-535)))) (-4 *1 (-433)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1224 (-917 (-371)))) (-4 *1 (-433)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-917 (-371)))) (-4 *1 (-433)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1224 (-917 (-535)))) (-4 *1 (-433)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-917 (-535)))) (-4 *1 (-433)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1224 (-400 (-917 (-371))))) (-4 *1 (-433)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-400 (-917 (-371))))) (-4 *1 (-433)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1224 (-400 (-917 (-535))))) (-4 *1 (-433)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-400 (-917 (-535))))) (-4 *1 (-433)))))
+(-13 (-389) (-10 -8 (-15 -4300 ($ (-618 (-323)))) (-15 -4300 ($ (-323))) (-15 -4300 ($ (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))) (-15 -3490 ($ (-1224 (-307 (-371))))) (-15 -3491 ((-3 $ "failed") (-1224 (-307 (-371))))) (-15 -3490 ($ (-1224 (-307 (-535))))) (-15 -3491 ((-3 $ "failed") (-1224 (-307 (-535))))) (-15 -3490 ($ (-1224 (-917 (-371))))) (-15 -3491 ((-3 $ "failed") (-1224 (-917 (-371))))) (-15 -3490 ($ (-1224 (-917 (-535))))) (-15 -3491 ((-3 $ "failed") (-1224 (-917 (-535))))) (-15 -3490 ($ (-1224 (-400 (-917 (-371)))))) (-15 -3491 ((-3 $ "failed") (-1224 (-400 (-917 (-371)))))) (-15 -3490 ($ (-1224 (-400 (-917 (-535)))))) (-15 -3491 ((-3 $ "failed") (-1224 (-400 (-917 (-535))))))))
+(((-593 (-835)) . T) ((-389) . T) ((-1178) . T))
+((-1953 (((-112)) 17)) (-1954 (((-112) (-112)) 18)) (-1955 (((-112)) 13)) (-1956 (((-112) (-112)) 14)) (-1958 (((-112)) 15)) (-1959 (((-112) (-112)) 16)) (-1950 (((-890) (-890)) 21) (((-890)) 20)) (-1951 (((-747) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535))))) 42)) (-1949 (((-890) (-890)) 23) (((-890)) 22)) (-1952 (((-2 (|:| -2897 (-535)) (|:| -2758 (-618 |#1|))) |#1|) 62)) (-1948 (((-398 |#1|) (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535))))))) 126)) (-4077 (((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112)) 152)) (-4076 (((-398 |#1|) |#1| (-747) (-747)) 165) (((-398 |#1|) |#1| (-618 (-747)) (-747)) 162) (((-398 |#1|) |#1| (-618 (-747))) 164) (((-398 |#1|) |#1| (-747)) 163) (((-398 |#1|) |#1|) 161)) (-1970 (((-3 |#1| "failed") (-890) |#1| (-618 (-747)) (-747) (-112)) 167) (((-3 |#1| "failed") (-890) |#1| (-618 (-747)) (-747)) 168) (((-3 |#1| "failed") (-890) |#1| (-618 (-747))) 170) (((-3 |#1| "failed") (-890) |#1| (-747)) 169) (((-3 |#1| "failed") (-890) |#1|) 171)) (-4075 (((-398 |#1|) |#1| (-747) (-747)) 160) (((-398 |#1|) |#1| (-618 (-747)) (-747)) 156) (((-398 |#1|) |#1| (-618 (-747))) 158) (((-398 |#1|) |#1| (-747)) 157) (((-398 |#1|) |#1|) 155)) (-1957 (((-112) |#1|) 37)) (-1969 (((-713 (-747)) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535))))) 67)) (-1960 (((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112) (-1063 (-747)) (-747)) 154)))
+(((-434 |#1|) (-10 -7 (-15 -1948 ((-398 |#1|) (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))))) (-15 -1969 ((-713 (-747)) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))))) (-15 -1949 ((-890))) (-15 -1949 ((-890) (-890))) (-15 -1950 ((-890))) (-15 -1950 ((-890) (-890))) (-15 -1951 ((-747) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))))) (-15 -1952 ((-2 (|:| -2897 (-535)) (|:| -2758 (-618 |#1|))) |#1|)) (-15 -1953 ((-112))) (-15 -1954 ((-112) (-112))) (-15 -1955 ((-112))) (-15 -1956 ((-112) (-112))) (-15 -1957 ((-112) |#1|)) (-15 -1958 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4075 ((-398 |#1|) |#1| (-747))) (-15 -4075 ((-398 |#1|) |#1| (-618 (-747)))) (-15 -4075 ((-398 |#1|) |#1| (-618 (-747)) (-747))) (-15 -4075 ((-398 |#1|) |#1| (-747) (-747))) (-15 -4076 ((-398 |#1|) |#1|)) (-15 -4076 ((-398 |#1|) |#1| (-747))) (-15 -4076 ((-398 |#1|) |#1| (-618 (-747)))) (-15 -4076 ((-398 |#1|) |#1| (-618 (-747)) (-747))) (-15 -4076 ((-398 |#1|) |#1| (-747) (-747))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1|)) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-747))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-618 (-747)))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-618 (-747)) (-747))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-618 (-747)) (-747) (-112))) (-15 -4077 ((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112))) (-15 -1960 ((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112) (-1063 (-747)) (-747)))) (-1200 (-535))) (T -434))
+((-1960 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1063 (-747))) (-5 *6 (-747)) (-5 *2 (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535))))))) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535))))))) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1970 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-618 (-747))) (-5 *5 (-747)) (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) (-1970 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-618 (-747))) (-5 *5 (-747)) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) (-1970 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-618 (-747))) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) (-1970 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-747)) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) (-1970 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-890)) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535))))) (-4076 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4076 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-618 (-747))) (-5 *5 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4076 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-747))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4076 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4076 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4075 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4075 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-618 (-747))) (-5 *5 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-747))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1958 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1957 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1956 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1955 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1954 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1953 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1952 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2897 (-535)) (|:| -2758 (-618 *3)))) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -4075 *4) (|:| -4290 (-535))))) (-4 *4 (-1200 (-535))) (-5 *2 (-747)) (-5 *1 (-434 *4)))) (-1950 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1950 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1949 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -4075 *4) (|:| -4290 (-535))))) (-4 *4 (-1200 (-535))) (-5 *2 (-713 (-747))) (-5 *1 (-434 *4)))) (-1948 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| *4) (|:| -2478 (-535))))))) (-4 *4 (-1200 (-535))) (-5 *2 (-398 *4)) (-5 *1 (-434 *4)))))
+(-10 -7 (-15 -1948 ((-398 |#1|) (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))))) (-15 -1969 ((-713 (-747)) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))))) (-15 -1949 ((-890))) (-15 -1949 ((-890) (-890))) (-15 -1950 ((-890))) (-15 -1950 ((-890) (-890))) (-15 -1951 ((-747) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))))) (-15 -1952 ((-2 (|:| -2897 (-535)) (|:| -2758 (-618 |#1|))) |#1|)) (-15 -1953 ((-112))) (-15 -1954 ((-112) (-112))) (-15 -1955 ((-112))) (-15 -1956 ((-112) (-112))) (-15 -1957 ((-112) |#1|)) (-15 -1958 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4075 ((-398 |#1|) |#1| (-747))) (-15 -4075 ((-398 |#1|) |#1| (-618 (-747)))) (-15 -4075 ((-398 |#1|) |#1| (-618 (-747)) (-747))) (-15 -4075 ((-398 |#1|) |#1| (-747) (-747))) (-15 -4076 ((-398 |#1|) |#1|)) (-15 -4076 ((-398 |#1|) |#1| (-747))) (-15 -4076 ((-398 |#1|) |#1| (-618 (-747)))) (-15 -4076 ((-398 |#1|) |#1| (-618 (-747)) (-747))) (-15 -4076 ((-398 |#1|) |#1| (-747) (-747))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1|)) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-747))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-618 (-747)))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-618 (-747)) (-747))) (-15 -1970 ((-3 |#1| "failed") (-890) |#1| (-618 (-747)) (-747) (-112))) (-15 -4077 ((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112))) (-15 -1960 ((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112) (-1063 (-747)) (-747))))
+((-1964 (((-535) |#2|) 48) (((-535) |#2| (-747)) 47)) (-1963 (((-535) |#2|) 55)) (-1965 ((|#3| |#2|) 25)) (-3450 ((|#3| |#2| (-890)) 14)) (-4176 ((|#3| |#2|) 15)) (-1966 ((|#3| |#2|) 9)) (-2922 ((|#3| |#2|) 10)) (-1962 ((|#3| |#2| (-890)) 62) ((|#3| |#2|) 30)) (-1961 (((-535) |#2|) 57)))
+(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -1961 ((-535) |#2|)) (-15 -1962 (|#3| |#2|)) (-15 -1962 (|#3| |#2| (-890))) (-15 -1963 ((-535) |#2|)) (-15 -1964 ((-535) |#2| (-747))) (-15 -1964 ((-535) |#2|)) (-15 -3450 (|#3| |#2| (-890))) (-15 -1965 (|#3| |#2|)) (-15 -1966 (|#3| |#2|)) (-15 -2922 (|#3| |#2|)) (-15 -4176 (|#3| |#2|))) (-1018) (-1200 |#1|) (-13 (-397) (-1009 |#1|) (-356) (-1164) (-277))) (T -435))
+((-4176 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) (-2922 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) (-1966 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) (-1965 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) (-3450 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1164) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1200 *5)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1200 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))) (-1964 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *5 *3 *6)) (-4 *3 (-1200 *5)) (-4 *6 (-13 (-397) (-1009 *5) (-356) (-1164) (-277))))) (-1963 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1200 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))) (-1962 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1164) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1200 *5)))) (-1962 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))) (-1961 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1200 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))))
+(-10 -7 (-15 -1961 ((-535) |#2|)) (-15 -1962 (|#3| |#2|)) (-15 -1962 (|#3| |#2| (-890))) (-15 -1963 ((-535) |#2|)) (-15 -1964 ((-535) |#2| (-747))) (-15 -1964 ((-535) |#2|)) (-15 -3450 (|#3| |#2| (-890))) (-15 -1965 (|#3| |#2|)) (-15 -1966 (|#3| |#2|)) (-15 -2922 (|#3| |#2|)) (-15 -4176 (|#3| |#2|)))
+((-3696 ((|#2| (-1224 |#1|)) 36)) (-1968 ((|#2| |#2| |#1|) 49)) (-1967 ((|#2| |#2| |#1|) 41)) (-2369 ((|#2| |#2|) 38)) (-3507 (((-112) |#2|) 30)) (-1971 (((-618 |#2|) (-890) (-398 |#2|)) 17)) (-1970 ((|#2| (-890) (-398 |#2|)) 21)) (-1969 (((-713 (-747)) (-398 |#2|)) 25)))
+(((-436 |#1| |#2|) (-10 -7 (-15 -3507 ((-112) |#2|)) (-15 -3696 (|#2| (-1224 |#1|))) (-15 -2369 (|#2| |#2|)) (-15 -1967 (|#2| |#2| |#1|)) (-15 -1968 (|#2| |#2| |#1|)) (-15 -1969 ((-713 (-747)) (-398 |#2|))) (-15 -1970 (|#2| (-890) (-398 |#2|))) (-15 -1971 ((-618 |#2|) (-890) (-398 |#2|)))) (-1018) (-1200 |#1|)) (T -436))
+((-1971 (*1 *2 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-398 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-1018)) (-5 *2 (-618 *6)) (-5 *1 (-436 *5 *6)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-398 *2)) (-4 *2 (-1200 *5)) (-5 *1 (-436 *5 *2)) (-4 *5 (-1018)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-398 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-1018)) (-5 *2 (-713 (-747))) (-5 *1 (-436 *4 *5)))) (-1968 (*1 *2 *2 *3) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1200 *3)))) (-1967 (*1 *2 *2 *3) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1200 *3)))) (-2369 (*1 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1200 *3)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-1224 *4)) (-4 *4 (-1018)) (-4 *2 (-1200 *4)) (-5 *1 (-436 *4 *2)))) (-3507 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) (-4 *3 (-1200 *4)))))
+(-10 -7 (-15 -3507 ((-112) |#2|)) (-15 -3696 (|#2| (-1224 |#1|))) (-15 -2369 (|#2| |#2|)) (-15 -1967 (|#2| |#2| |#1|)) (-15 -1968 (|#2| |#2| |#1|)) (-15 -1969 ((-713 (-747)) (-398 |#2|))) (-15 -1970 (|#2| (-890) (-398 |#2|))) (-15 -1971 ((-618 |#2|) (-890) (-398 |#2|))))
+((-1974 (((-747)) 41)) (-1978 (((-747)) 23 (|has| |#1| (-397))) (((-747) (-747)) 22 (|has| |#1| (-397)))) (-1977 (((-535) |#1|) 18 (|has| |#1| (-397)))) (-1976 (((-535) |#1|) 20 (|has| |#1| (-397)))) (-1973 (((-747)) 40) (((-747) (-747)) 39)) (-1972 ((|#1| (-747) (-535)) 29)) (-1975 (((-1230)) 43)))
+(((-437 |#1|) (-10 -7 (-15 -1972 (|#1| (-747) (-535))) (-15 -1973 ((-747) (-747))) (-15 -1973 ((-747))) (-15 -1974 ((-747))) (-15 -1975 ((-1230))) (IF (|has| |#1| (-397)) (PROGN (-15 -1976 ((-535) |#1|)) (-15 -1977 ((-535) |#1|)) (-15 -1978 ((-747) (-747))) (-15 -1978 ((-747)))) |%noBranch|)) (-1018)) (T -437))
+((-1978 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-1977 (*1 *2 *3) (-12 (-5 *2 (-535)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-1976 (*1 *2 *3) (-12 (-5 *2 (-535)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-1975 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-1974 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-1973 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-1973 (*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-1972 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-535)) (-5 *1 (-437 *2)) (-4 *2 (-1018)))))
+(-10 -7 (-15 -1972 (|#1| (-747) (-535))) (-15 -1973 ((-747) (-747))) (-15 -1973 ((-747))) (-15 -1974 ((-747))) (-15 -1975 ((-1230))) (IF (|has| |#1| (-397)) (PROGN (-15 -1976 ((-535) |#1|)) (-15 -1977 ((-535) |#1|)) (-15 -1978 ((-747) (-747))) (-15 -1978 ((-747)))) |%noBranch|))
+((-1979 (((-618 (-535)) (-535)) 61)) (-4069 (((-112) (-166 (-535))) 65)) (-4075 (((-398 (-166 (-535))) (-166 (-535))) 60)))
+(((-438) (-10 -7 (-15 -4075 ((-398 (-166 (-535))) (-166 (-535)))) (-15 -1979 ((-618 (-535)) (-535))) (-15 -4069 ((-112) (-166 (-535)))))) (T -438))
+((-4069 (*1 *2 *3) (-12 (-5 *3 (-166 (-535))) (-5 *2 (-112)) (-5 *1 (-438)))) (-1979 (*1 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-438)) (-5 *3 (-535)))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-398 (-166 (-535)))) (-5 *1 (-438)) (-5 *3 (-166 (-535))))))
+(-10 -7 (-15 -4075 ((-398 (-166 (-535))) (-166 (-535)))) (-15 -1979 ((-618 (-535)) (-535))) (-15 -4069 ((-112) (-166 (-535)))))
+((-3267 ((|#4| |#4| (-618 |#4|)) 22 (|has| |#1| (-356)))) (-2326 (((-618 |#4|) (-618 |#4|) (-1124) (-1124)) 41) (((-618 |#4|) (-618 |#4|) (-1124)) 40) (((-618 |#4|) (-618 |#4|)) 35)))
+(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2326 ((-618 |#4|) (-618 |#4|))) (-15 -2326 ((-618 |#4|) (-618 |#4|) (-1124))) (-15 -2326 ((-618 |#4|) (-618 |#4|) (-1124) (-1124))) (IF (|has| |#1| (-356)) (-15 -3267 (|#4| |#4| (-618 |#4|))) |%noBranch|)) (-444) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -439))
+((-3267 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-356)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *2)))) (-2326 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2326 (*1 *2 *2 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2326 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-439 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2326 ((-618 |#4|) (-618 |#4|))) (-15 -2326 ((-618 |#4|) (-618 |#4|) (-1124))) (-15 -2326 ((-618 |#4|) (-618 |#4|) (-1124) (-1124))) (IF (|has| |#1| (-356)) (-15 -3267 (|#4| |#4| (-618 |#4|))) |%noBranch|))
+((-1980 ((|#4| |#4| (-618 |#4|)) 61)) (-1981 (((-618 |#4|) (-618 |#4|) (-1124) (-1124)) 17) (((-618 |#4|) (-618 |#4|) (-1124)) 16) (((-618 |#4|) (-618 |#4|)) 11)))
+(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1980 (|#4| |#4| (-618 |#4|))) (-15 -1981 ((-618 |#4|) (-618 |#4|))) (-15 -1981 ((-618 |#4|) (-618 |#4|) (-1124))) (-15 -1981 ((-618 |#4|) (-618 |#4|) (-1124) (-1124)))) (-300) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -440))
+((-1981 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-440 *4 *5 *6 *7)))) (-1981 (*1 *2 *2 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-440 *4 *5 *6 *7)))) (-1981 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-440 *3 *4 *5 *6)))) (-1980 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-440 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1980 (|#4| |#4| (-618 |#4|))) (-15 -1981 ((-618 |#4|) (-618 |#4|))) (-15 -1981 ((-618 |#4|) (-618 |#4|) (-1124))) (-15 -1981 ((-618 |#4|) (-618 |#4|) (-1124) (-1124))))
+((-1983 (((-618 (-618 |#4|)) (-618 |#4|) (-112)) 73) (((-618 (-618 |#4|)) (-618 |#4|)) 72) (((-618 (-618 |#4|)) (-618 |#4|) (-618 |#4|) (-112)) 66) (((-618 (-618 |#4|)) (-618 |#4|) (-618 |#4|)) 67)) (-1982 (((-618 (-618 |#4|)) (-618 |#4|) (-112)) 42) (((-618 (-618 |#4|)) (-618 |#4|)) 63)))
+(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1982 ((-618 (-618 |#4|)) (-618 |#4|))) (-15 -1982 ((-618 (-618 |#4|)) (-618 |#4|) (-112))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|) (-618 |#4|))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|) (-618 |#4|) (-112))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|) (-112)))) (-13 (-300) (-145)) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -441))
+((-1983 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-618 (-618 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-618 *8)))) (-1983 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-1983 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-618 (-618 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-618 *8)))) (-1983 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-1982 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-618 (-618 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-618 *8)))) (-1982 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-618 *7)))))
+(-10 -7 (-15 -1982 ((-618 (-618 |#4|)) (-618 |#4|))) (-15 -1982 ((-618 (-618 |#4|)) (-618 |#4|) (-112))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|) (-618 |#4|))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|) (-618 |#4|) (-112))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|))) (-15 -1983 ((-618 (-618 |#4|)) (-618 |#4|) (-112))))
+((-2007 (((-747) |#4|) 12)) (-1995 (((-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|))) |#4| (-747) (-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|)))) 31)) (-1997 (((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1996 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1985 ((|#4| |#4| (-618 |#4|)) 40)) (-1993 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-618 |#4|)) 70)) (-2000 (((-1230) |#4|) 42)) (-2003 (((-1230) (-618 |#4|)) 51)) (-2001 (((-535) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-535) (-535) (-535)) 48)) (-2004 (((-1230) (-535)) 79)) (-1998 (((-618 |#4|) (-618 |#4|)) 77)) (-2006 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|)) |#4| (-747)) 25)) (-1999 (((-535) |#4|) 78)) (-1994 ((|#4| |#4|) 29)) (-1986 (((-618 |#4|) (-618 |#4|) (-535) (-535)) 56)) (-2002 (((-535) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-535) (-535) (-535) (-535)) 89)) (-2005 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1987 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1992 (((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1991 (((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1988 (((-112) |#2| |#2|) 57)) (-1990 (((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1989 (((-112) |#2| |#2| |#2| |#2|) 60)) (-1984 ((|#4| |#4| (-618 |#4|)) 71)))
+(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1984 (|#4| |#4| (-618 |#4|))) (-15 -1985 (|#4| |#4| (-618 |#4|))) (-15 -1986 ((-618 |#4|) (-618 |#4|) (-535) (-535))) (-15 -1987 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1988 ((-112) |#2| |#2|)) (-15 -1989 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1990 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1991 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1992 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1993 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-618 |#4|))) (-15 -1994 (|#4| |#4|)) (-15 -1995 ((-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|))) |#4| (-747) (-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|))))) (-15 -1996 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1997 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1998 ((-618 |#4|) (-618 |#4|))) (-15 -1999 ((-535) |#4|)) (-15 -2000 ((-1230) |#4|)) (-15 -2001 ((-535) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-535) (-535) (-535))) (-15 -2002 ((-535) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-535) (-535) (-535) (-535))) (-15 -2003 ((-1230) (-618 |#4|))) (-15 -2004 ((-1230) (-535))) (-15 -2005 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2006 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|)) |#4| (-747))) (-15 -2007 ((-747) |#4|))) (-444) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -442))
+((-2007 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))) (-2006 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-747)) (|:| -2115 *4))) (-5 *5 (-747)) (-4 *4 (-921 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-442 *6 *7 *8 *4)))) (-2005 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-769)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-535)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2002 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-769)) (-4 *4 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823)) (-5 *1 (-442 *5 *6 *7 *4)))) (-2001 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-769)) (-4 *4 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823)) (-5 *1 (-442 *5 *6 *7 *4)))) (-2000 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))) (-1999 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-535)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1997 (*1 *2 *2 *2) (-12 (-5 *2 (-618 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-769)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-769)) (-4 *2 (-921 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) (-4 *4 (-444)) (-4 *6 (-823)))) (-1995 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 *3)))) (-5 *4 (-747)) (-4 *3 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-442 *5 *6 *7 *3)))) (-1994 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-921 *3 *4 *5)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-442 *5 *6 *7 *3)))) (-1992 (*1 *2 *3 *2) (-12 (-5 *2 (-618 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-747)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-769)) (-4 *6 (-921 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-823)) (-5 *1 (-442 *4 *3 *5 *6)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-618 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-769)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1990 (*1 *2 *3 *2) (-12 (-5 *2 (-618 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-769)) (-4 *3 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *3)))) (-1989 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-921 *4 *3 *5)))) (-1988 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-921 *4 *3 *5)))) (-1987 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-769)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1986 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-535)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1985 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *2)))) (-1984 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1984 (|#4| |#4| (-618 |#4|))) (-15 -1985 (|#4| |#4| (-618 |#4|))) (-15 -1986 ((-618 |#4|) (-618 |#4|) (-535) (-535))) (-15 -1987 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1988 ((-112) |#2| |#2|)) (-15 -1989 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1990 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1991 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1992 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1993 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-618 |#4|))) (-15 -1994 (|#4| |#4|)) (-15 -1995 ((-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|))) |#4| (-747) (-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|))))) (-15 -1996 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1997 ((-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-618 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1998 ((-618 |#4|) (-618 |#4|))) (-15 -1999 ((-535) |#4|)) (-15 -2000 ((-1230) |#4|)) (-15 -2001 ((-535) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-535) (-535) (-535))) (-15 -2002 ((-535) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-535) (-535) (-535) (-535))) (-15 -2003 ((-1230) (-618 |#4|))) (-15 -2004 ((-1230) (-535))) (-15 -2005 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2006 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-747)) (|:| -2115 |#4|)) |#4| (-747))) (-15 -2007 ((-747) |#4|)))
+((-2008 (($ $ $) 14) (($ (-618 $)) 21)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 41)) (-3478 (($ $ $) NIL) (($ (-618 $)) 22)))
+(((-443 |#1|) (-10 -8 (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))) (-15 -2008 (|#1| (-618 |#1|))) (-15 -2008 (|#1| |#1| |#1|)) (-15 -3478 (|#1| (-618 |#1|))) (-15 -3478 (|#1| |#1| |#1|))) (-444)) (T -443))
+NIL
+(-10 -8 (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))) (-15 -2008 (|#1| (-618 |#1|))) (-15 -2008 (|#1| |#1| |#1|)) (-15 -3478 (|#1| (-618 |#1|))) (-15 -3478 (|#1| |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3803 (((-3 $ "failed") $ $) 40)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-444) (-138)) (T -444))
-((-3726 (*1 *1 *1 *1) (-4 *1 (-444))) (-3726 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-444)))) (-3696 (*1 *1 *1 *1) (-4 *1 (-444))) (-3696 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-444)))) (-1443 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *1)) (-4 *1 (-444)))))
-(-13 (-541) (-10 -8 (-15 -3726 ($ $ $)) (-15 -3726 ($ (-621 $))) (-15 -3696 ($ $ $)) (-15 -3696 ($ (-621 $))) (-15 -1443 ((-1138 $) (-1138 $) (-1138 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2699 (((-3 $ "failed")) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2818 (((-1225 (-665 (-400 (-923 |#1|)))) (-1225 $)) NIL) (((-1225 (-665 (-400 (-923 |#1|))))) NIL)) (-1955 (((-1225 $)) NIL)) (-1705 (($) NIL T CONST)) (-2983 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) NIL)) (-3917 (((-3 $ "failed")) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-1418 (((-665 (-400 (-923 |#1|))) (-1225 $)) NIL) (((-665 (-400 (-923 |#1|)))) NIL)) (-1399 (((-400 (-923 |#1|)) $) NIL)) (-2811 (((-665 (-400 (-923 |#1|))) $ (-1225 $)) NIL) (((-665 (-400 (-923 |#1|))) $) NIL)) (-3923 (((-3 $ "failed") $) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-4165 (((-1138 (-923 (-400 (-923 |#1|))))) NIL (|has| (-400 (-923 |#1|)) (-356))) (((-1138 (-400 (-923 |#1|)))) 84 (|has| |#1| (-541)))) (-2353 (($ $ (-892)) NIL)) (-1618 (((-400 (-923 |#1|)) $) NIL)) (-4057 (((-1138 (-400 (-923 |#1|))) $) 82 (|has| (-400 (-923 |#1|)) (-541)))) (-2351 (((-400 (-923 |#1|)) (-1225 $)) NIL) (((-400 (-923 |#1|))) NIL)) (-3254 (((-1138 (-400 (-923 |#1|))) $) NIL)) (-2186 (((-112)) NIL)) (-2127 (($ (-1225 (-400 (-923 |#1|))) (-1225 $)) 103) (($ (-1225 (-400 (-923 |#1|)))) NIL)) (-3976 (((-3 $ "failed") $) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-3122 (((-892)) NIL)) (-1373 (((-112)) NIL)) (-2377 (($ $ (-892)) NIL)) (-3995 (((-112)) NIL)) (-4285 (((-112)) NIL)) (-3055 (((-112)) NIL)) (-4263 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) NIL)) (-1497 (((-3 $ "failed")) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-1779 (((-665 (-400 (-923 |#1|))) (-1225 $)) NIL) (((-665 (-400 (-923 |#1|)))) NIL)) (-1359 (((-400 (-923 |#1|)) $) NIL)) (-1315 (((-665 (-400 (-923 |#1|))) $ (-1225 $)) NIL) (((-665 (-400 (-923 |#1|))) $) NIL)) (-2193 (((-3 $ "failed") $) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-2014 (((-1138 (-923 (-400 (-923 |#1|))))) NIL (|has| (-400 (-923 |#1|)) (-356))) (((-1138 (-400 (-923 |#1|)))) 83 (|has| |#1| (-541)))) (-2881 (($ $ (-892)) NIL)) (-3142 (((-400 (-923 |#1|)) $) NIL)) (-2568 (((-1138 (-400 (-923 |#1|))) $) 77 (|has| (-400 (-923 |#1|)) (-541)))) (-2742 (((-400 (-923 |#1|)) (-1225 $)) NIL) (((-400 (-923 |#1|))) NIL)) (-2934 (((-1138 (-400 (-923 |#1|))) $) NIL)) (-2342 (((-112)) NIL)) (-2677 (((-1124) $) NIL)) (-1768 (((-112)) NIL)) (-4176 (((-112)) NIL)) (-4086 (((-112)) NIL)) (-3988 (((-1086) $) NIL)) (-2295 (((-400 (-923 |#1|)) $ $) 71 (|has| |#1| (-541)))) (-1981 (((-400 (-923 |#1|)) $) 93 (|has| |#1| (-541)))) (-2129 (((-400 (-923 |#1|)) $) 95 (|has| |#1| (-541)))) (-3365 (((-1138 (-400 (-923 |#1|))) $) 88 (|has| |#1| (-541)))) (-2404 (((-400 (-923 |#1|))) 72 (|has| |#1| (-541)))) (-2406 (((-400 (-923 |#1|)) $ $) 64 (|has| |#1| (-541)))) (-1367 (((-400 (-923 |#1|)) $) 92 (|has| |#1| (-541)))) (-4010 (((-400 (-923 |#1|)) $) 94 (|has| |#1| (-541)))) (-1426 (((-1138 (-400 (-923 |#1|))) $) 87 (|has| |#1| (-541)))) (-1764 (((-400 (-923 |#1|))) 68 (|has| |#1| (-541)))) (-3926 (($) 101) (($ (-1142)) 107) (($ (-1225 (-1142))) 106) (($ (-1225 $)) 96) (($ (-1142) (-1225 $)) 105) (($ (-1225 (-1142)) (-1225 $)) 104)) (-2036 (((-112)) NIL)) (-3340 (((-400 (-923 |#1|)) $ (-549)) NIL)) (-4163 (((-1225 (-400 (-923 |#1|))) $ (-1225 $)) 98) (((-665 (-400 (-923 |#1|))) (-1225 $) (-1225 $)) NIL) (((-1225 (-400 (-923 |#1|))) $) 40) (((-665 (-400 (-923 |#1|))) (-1225 $)) NIL)) (-2844 (((-1225 (-400 (-923 |#1|))) $) NIL) (($ (-1225 (-400 (-923 |#1|)))) 37)) (-3619 (((-621 (-923 (-400 (-923 |#1|)))) (-1225 $)) NIL) (((-621 (-923 (-400 (-923 |#1|))))) NIL) (((-621 (-923 |#1|)) (-1225 $)) 99 (|has| |#1| (-541))) (((-621 (-923 |#1|))) 100 (|has| |#1| (-541)))) (-1911 (($ $ $) NIL)) (-2138 (((-112)) NIL)) (-3845 (((-834) $) NIL) (($ (-1225 (-400 (-923 |#1|)))) NIL)) (-3420 (((-1225 $)) 60)) (-1600 (((-621 (-1225 (-400 (-923 |#1|))))) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-4172 (($ $ $ $) NIL)) (-3596 (((-112)) NIL)) (-3592 (($ (-665 (-400 (-923 |#1|))) $) NIL)) (-1892 (($ $ $) NIL)) (-2221 (((-112)) NIL)) (-1654 (((-112)) NIL)) (-1615 (((-112)) NIL)) (-3275 (($) NIL T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) 97)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 56) (($ $ (-400 (-923 |#1|))) NIL) (($ (-400 (-923 |#1|)) $) NIL) (($ (-1108 |#2| (-400 (-923 |#1|))) $) NIL)))
-(((-445 |#1| |#2| |#3| |#4|) (-13 (-410 (-400 (-923 |#1|))) (-624 (-1108 |#2| (-400 (-923 |#1|)))) (-10 -8 (-15 -3845 ($ (-1225 (-400 (-923 |#1|))))) (-15 -4263 ((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed"))) (-15 -2983 ((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed"))) (-15 -3926 ($)) (-15 -3926 ($ (-1142))) (-15 -3926 ($ (-1225 (-1142)))) (-15 -3926 ($ (-1225 $))) (-15 -3926 ($ (-1142) (-1225 $))) (-15 -3926 ($ (-1225 (-1142)) (-1225 $))) (IF (|has| |#1| (-541)) (PROGN (-15 -2014 ((-1138 (-400 (-923 |#1|))))) (-15 -1426 ((-1138 (-400 (-923 |#1|))) $)) (-15 -1367 ((-400 (-923 |#1|)) $)) (-15 -4010 ((-400 (-923 |#1|)) $)) (-15 -4165 ((-1138 (-400 (-923 |#1|))))) (-15 -3365 ((-1138 (-400 (-923 |#1|))) $)) (-15 -1981 ((-400 (-923 |#1|)) $)) (-15 -2129 ((-400 (-923 |#1|)) $)) (-15 -2406 ((-400 (-923 |#1|)) $ $)) (-15 -1764 ((-400 (-923 |#1|)))) (-15 -2295 ((-400 (-923 |#1|)) $ $)) (-15 -2404 ((-400 (-923 |#1|)))) (-15 -3619 ((-621 (-923 |#1|)) (-1225 $))) (-15 -3619 ((-621 (-923 |#1|))))) |%noBranch|))) (-170) (-892) (-621 (-1142)) (-1225 (-665 |#1|))) (T -445))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1225 (-400 (-923 *3)))) (-4 *3 (-170)) (-14 *6 (-1225 (-665 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))))) (-4263 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -3420 (-621 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-2983 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -3420 (-621 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-3926 (*1 *1) (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-892)) (-14 *4 (-621 (-1142))) (-14 *5 (-1225 (-665 *2))))) (-3926 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 *2)) (-14 *6 (-1225 (-665 *3))))) (-3926 (*1 *1 *2) (-12 (-5 *2 (-1225 (-1142))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-3926 (*1 *1 *2) (-12 (-5 *2 (-1225 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-3926 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-892)) (-14 *6 (-621 *2)) (-14 *7 (-1225 (-665 *4))))) (-3926 (*1 *1 *2 *3) (-12 (-5 *2 (-1225 (-1142))) (-5 *3 (-1225 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-892)) (-14 *6 (-621 (-1142))) (-14 *7 (-1225 (-665 *4))))) (-2014 (*1 *2) (-12 (-5 *2 (-1138 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-1138 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-4165 (*1 *2) (-12 (-5 *2 (-1138 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-3365 (*1 *2 *1) (-12 (-5 *2 (-1138 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-2406 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-1764 (*1 *2) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-2295 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-2404 (*1 *2) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-1225 (-445 *4 *5 *6 *7))) (-5 *2 (-621 (-923 *4))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-541)) (-4 *4 (-170)) (-14 *5 (-892)) (-14 *6 (-621 (-1142))) (-14 *7 (-1225 (-665 *4))))) (-3619 (*1 *2) (-12 (-5 *2 (-621 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(-13 (-410 (-400 (-923 |#1|))) (-624 (-1108 |#2| (-400 (-923 |#1|)))) (-10 -8 (-15 -3845 ($ (-1225 (-400 (-923 |#1|))))) (-15 -4263 ((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed"))) (-15 -2983 ((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed"))) (-15 -3926 ($)) (-15 -3926 ($ (-1142))) (-15 -3926 ($ (-1225 (-1142)))) (-15 -3926 ($ (-1225 $))) (-15 -3926 ($ (-1142) (-1225 $))) (-15 -3926 ($ (-1225 (-1142)) (-1225 $))) (IF (|has| |#1| (-541)) (PROGN (-15 -2014 ((-1138 (-400 (-923 |#1|))))) (-15 -1426 ((-1138 (-400 (-923 |#1|))) $)) (-15 -1367 ((-400 (-923 |#1|)) $)) (-15 -4010 ((-400 (-923 |#1|)) $)) (-15 -4165 ((-1138 (-400 (-923 |#1|))))) (-15 -3365 ((-1138 (-400 (-923 |#1|))) $)) (-15 -1981 ((-400 (-923 |#1|)) $)) (-15 -2129 ((-400 (-923 |#1|)) $)) (-15 -2406 ((-400 (-923 |#1|)) $ $)) (-15 -1764 ((-400 (-923 |#1|)))) (-15 -2295 ((-400 (-923 |#1|)) $ $)) (-15 -2404 ((-400 (-923 |#1|)))) (-15 -3619 ((-621 (-923 |#1|)) (-1225 $))) (-15 -3619 ((-621 (-923 |#1|))))) |%noBranch|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 13)) (-2271 (((-621 (-836 |#1|)) $) 75)) (-2082 (((-1138 $) $ (-836 |#1|)) 46) (((-1138 |#2|) $) 118)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-541)))) (-2408 (($ $) NIL (|has| |#2| (-541)))) (-2477 (((-112) $) NIL (|has| |#2| (-541)))) (-1689 (((-747) $) 21) (((-747) $ (-621 (-836 |#1|))) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-1912 (($ $) NIL (|has| |#2| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#2| "failed") $) 44) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-836 |#1|) "failed") $) NIL)) (-2658 ((|#2| $) 42) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-836 |#1|) $) NIL)) (-2252 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-3664 (($ $ (-621 (-549))) 80)) (-2069 (($ $) 68)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#2| (-880)))) (-3744 (($ $ |#2| |#3| $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) 58)) (-2258 (($ (-1138 |#2|) (-836 |#1|)) 123) (($ (-1138 $) (-836 |#1|)) 52)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) 59)) (-2244 (($ |#2| |#3|) 28) (($ $ (-836 |#1|) (-747)) 30) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ (-836 |#1|)) NIL)) (-2856 ((|#3| $) NIL) (((-747) $ (-836 |#1|)) 50) (((-621 (-747)) $ (-621 (-836 |#1|))) 57)) (-2862 (($ $ $) NIL (|has| |#2| (-823)))) (-3574 (($ $ $) NIL (|has| |#2| (-823)))) (-4058 (($ (-1 |#3| |#3|) $) NIL)) (-2796 (($ (-1 |#2| |#2|) $) NIL)) (-1790 (((-3 (-836 |#1|) "failed") $) 39)) (-2027 (($ $) NIL)) (-2042 ((|#2| $) 41)) (-3696 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2677 (((-1124) $) NIL)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -3577 (-747))) "failed") $) NIL)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) 40)) (-2012 ((|#2| $) 116)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#2| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) 128 (|has| |#2| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#2| (-880)))) (-2038 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-541)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-836 |#1|) |#2|) 87) (($ $ (-621 (-836 |#1|)) (-621 |#2|)) 90) (($ $ (-836 |#1|) $) 85) (($ $ (-621 (-836 |#1|)) (-621 $)) 106)) (-3086 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-3455 (($ $ (-836 |#1|)) 53) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3068 ((|#3| $) 67) (((-747) $ (-836 |#1|)) 37) (((-621 (-747)) $ (-621 (-836 |#1|))) 56)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-836 |#1|) (-594 (-525))) (|has| |#2| (-594 (-525)))))) (-1931 ((|#2| $) 125 (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880))))) (-3845 (((-834) $) 145) (($ (-549)) NIL) (($ |#2|) 86) (($ (-836 |#1|)) 31) (($ (-400 (-549))) NIL (-1536 (|has| |#2| (-38 (-400 (-549)))) (|has| |#2| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#2| (-541)))) (-3330 (((-621 |#2|) $) NIL)) (-2944 ((|#2| $ |#3|) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#2| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#2| (-541)))) (-3275 (($) 17 T CONST)) (-3287 (($) 25 T CONST)) (-1700 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2512 (($ $ |#2|) 64 (|has| |#2| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 111)) (** (($ $ (-892)) NIL) (($ $ (-747)) 109)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 29) (($ $ (-400 (-549))) NIL (|has| |#2| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#2| (-38 (-400 (-549))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-446 |#1| |#2| |#3|) (-13 (-920 |#2| |#3| (-836 |#1|)) (-10 -8 (-15 -3664 ($ $ (-621 (-549)))))) (-621 (-1142)) (-1018) (-232 (-3774 |#1|) (-747))) (T -446))
-((-3664 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-14 *3 (-621 (-1142))) (-5 *1 (-446 *3 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-232 (-3774 *3) (-747))))))
-(-13 (-920 |#2| |#3| (-836 |#1|)) (-10 -8 (-15 -3664 ($ $ (-621 (-549))))))
-((-3551 (((-112) |#1| (-621 |#2|)) 69)) (-2222 (((-3 (-1225 (-621 |#2|)) "failed") (-747) |#1| (-621 |#2|)) 78)) (-2008 (((-3 (-621 |#2|) "failed") |#2| |#1| (-1225 (-621 |#2|))) 80)) (-1998 ((|#2| |#2| |#1|) 28)) (-2930 (((-747) |#2| (-621 |#2|)) 20)))
-(((-447 |#1| |#2|) (-10 -7 (-15 -1998 (|#2| |#2| |#1|)) (-15 -2930 ((-747) |#2| (-621 |#2|))) (-15 -2222 ((-3 (-1225 (-621 |#2|)) "failed") (-747) |#1| (-621 |#2|))) (-15 -2008 ((-3 (-621 |#2|) "failed") |#2| |#1| (-1225 (-621 |#2|)))) (-15 -3551 ((-112) |#1| (-621 |#2|)))) (-300) (-1201 |#1|)) (T -447))
-((-3551 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *5)) (-4 *5 (-1201 *3)) (-4 *3 (-300)) (-5 *2 (-112)) (-5 *1 (-447 *3 *5)))) (-2008 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1225 (-621 *3))) (-4 *4 (-300)) (-5 *2 (-621 *3)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1201 *4)))) (-2222 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-747)) (-4 *4 (-300)) (-4 *6 (-1201 *4)) (-5 *2 (-1225 (-621 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-621 *6)))) (-2930 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-1201 *5)) (-4 *5 (-300)) (-5 *2 (-747)) (-5 *1 (-447 *5 *3)))) (-1998 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1201 *3)))))
-(-10 -7 (-15 -1998 (|#2| |#2| |#1|)) (-15 -2930 ((-747) |#2| (-621 |#2|))) (-15 -2222 ((-3 (-1225 (-621 |#2|)) "failed") (-747) |#1| (-621 |#2|))) (-15 -2008 ((-3 (-621 |#2|) "failed") |#2| |#1| (-1225 (-621 |#2|)))) (-15 -3551 ((-112) |#1| (-621 |#2|))))
-((-2120 (((-411 |#5|) |#5|) 24)))
-(((-448 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2120 ((-411 |#5|) |#5|))) (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $)) (-15 -3010 ((-3 $ "failed") (-1142))))) (-769) (-541) (-541) (-920 |#4| |#2| |#1|)) (T -448))
-((-2120 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $)) (-15 -3010 ((-3 $ "failed") (-1142)))))) (-4 *5 (-769)) (-4 *7 (-541)) (-5 *2 (-411 *3)) (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-541)) (-4 *3 (-920 *7 *5 *4)))))
-(-10 -7 (-15 -2120 ((-411 |#5|) |#5|)))
-((-1584 ((|#3|) 37)) (-1443 (((-1138 |#4|) (-1138 |#4|) (-1138 |#4|)) 33)))
-(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1443 ((-1138 |#4|) (-1138 |#4|) (-1138 |#4|))) (-15 -1584 (|#3|))) (-769) (-823) (-880) (-920 |#3| |#1| |#2|)) (T -449))
-((-1584 (*1 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-880)) (-5 *1 (-449 *3 *4 *2 *5)) (-4 *5 (-920 *2 *3 *4)))) (-1443 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *6)) (-4 *6 (-920 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-880)) (-5 *1 (-449 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1443 ((-1138 |#4|) (-1138 |#4|) (-1138 |#4|))) (-15 -1584 (|#3|)))
-((-2120 (((-411 (-1138 |#1|)) (-1138 |#1|)) 43)))
-(((-450 |#1|) (-10 -7 (-15 -2120 ((-411 (-1138 |#1|)) (-1138 |#1|)))) (-300)) (T -450))
-((-2120 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-411 (-1138 *4))) (-5 *1 (-450 *4)) (-5 *3 (-1138 *4)))))
-(-10 -7 (-15 -2120 ((-411 (-1138 |#1|)) (-1138 |#1|))))
-((-2339 (((-52) |#2| (-1142) (-287 |#2|) (-1192 (-747))) 42) (((-52) (-1 |#2| (-549)) (-287 |#2|) (-1192 (-747))) 41) (((-52) |#2| (-1142) (-287 |#2|)) 35) (((-52) (-1 |#2| (-549)) (-287 |#2|)) 28)) (-2825 (((-52) |#2| (-1142) (-287 |#2|) (-1192 (-400 (-549))) (-400 (-549))) 80) (((-52) (-1 |#2| (-400 (-549))) (-287 |#2|) (-1192 (-400 (-549))) (-400 (-549))) 79) (((-52) |#2| (-1142) (-287 |#2|) (-1192 (-549))) 78) (((-52) (-1 |#2| (-549)) (-287 |#2|) (-1192 (-549))) 77) (((-52) |#2| (-1142) (-287 |#2|)) 72) (((-52) (-1 |#2| (-549)) (-287 |#2|)) 71)) (-2366 (((-52) |#2| (-1142) (-287 |#2|) (-1192 (-400 (-549))) (-400 (-549))) 66) (((-52) (-1 |#2| (-400 (-549))) (-287 |#2|) (-1192 (-400 (-549))) (-400 (-549))) 64)) (-2354 (((-52) |#2| (-1142) (-287 |#2|) (-1192 (-549))) 48) (((-52) (-1 |#2| (-549)) (-287 |#2|) (-1192 (-549))) 47)))
-(((-451 |#1| |#2|) (-10 -7 (-15 -2339 ((-52) (-1 |#2| (-549)) (-287 |#2|))) (-15 -2339 ((-52) |#2| (-1142) (-287 |#2|))) (-15 -2339 ((-52) (-1 |#2| (-549)) (-287 |#2|) (-1192 (-747)))) (-15 -2339 ((-52) |#2| (-1142) (-287 |#2|) (-1192 (-747)))) (-15 -2354 ((-52) (-1 |#2| (-549)) (-287 |#2|) (-1192 (-549)))) (-15 -2354 ((-52) |#2| (-1142) (-287 |#2|) (-1192 (-549)))) (-15 -2366 ((-52) (-1 |#2| (-400 (-549))) (-287 |#2|) (-1192 (-400 (-549))) (-400 (-549)))) (-15 -2366 ((-52) |#2| (-1142) (-287 |#2|) (-1192 (-400 (-549))) (-400 (-549)))) (-15 -2825 ((-52) (-1 |#2| (-549)) (-287 |#2|))) (-15 -2825 ((-52) |#2| (-1142) (-287 |#2|))) (-15 -2825 ((-52) (-1 |#2| (-549)) (-287 |#2|) (-1192 (-549)))) (-15 -2825 ((-52) |#2| (-1142) (-287 |#2|) (-1192 (-549)))) (-15 -2825 ((-52) (-1 |#2| (-400 (-549))) (-287 |#2|) (-1192 (-400 (-549))) (-400 (-549)))) (-15 -2825 ((-52) |#2| (-1142) (-287 |#2|) (-1192 (-400 (-549))) (-400 (-549))))) (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1164) (-423 |#1|))) (T -451))
-((-2825 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3)) (-5 *6 (-1192 (-400 (-549)))) (-5 *7 (-400 (-549))) (-4 *3 (-13 (-27) (-1164) (-423 *8))) (-4 *8 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *8 *3)))) (-2825 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-549)))) (-5 *4 (-287 *8)) (-5 *5 (-1192 (-400 (-549)))) (-5 *6 (-400 (-549))) (-4 *8 (-13 (-27) (-1164) (-423 *7))) (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *8)))) (-2825 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3)) (-5 *6 (-1192 (-549))) (-4 *3 (-13 (-27) (-1164) (-423 *7))) (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) (-2825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-287 *7)) (-5 *5 (-1192 (-549))) (-4 *7 (-13 (-27) (-1164) (-423 *6))) (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) (-2825 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *6))) (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *3)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-287 *6)) (-4 *6 (-13 (-27) (-1164) (-423 *5))) (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *5 *6)))) (-2366 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3)) (-5 *6 (-1192 (-400 (-549)))) (-5 *7 (-400 (-549))) (-4 *3 (-13 (-27) (-1164) (-423 *8))) (-4 *8 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *8 *3)))) (-2366 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-549)))) (-5 *4 (-287 *8)) (-5 *5 (-1192 (-400 (-549)))) (-5 *6 (-400 (-549))) (-4 *8 (-13 (-27) (-1164) (-423 *7))) (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *8)))) (-2354 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3)) (-5 *6 (-1192 (-549))) (-4 *3 (-13 (-27) (-1164) (-423 *7))) (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) (-2354 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-287 *7)) (-5 *5 (-1192 (-549))) (-4 *7 (-13 (-27) (-1164) (-423 *6))) (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) (-2339 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3)) (-5 *6 (-1192 (-747))) (-4 *3 (-13 (-27) (-1164) (-423 *7))) (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) (-2339 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-287 *7)) (-5 *5 (-1192 (-747))) (-4 *7 (-13 (-27) (-1164) (-423 *6))) (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) (-2339 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *6))) (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *3)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-287 *6)) (-4 *6 (-13 (-27) (-1164) (-423 *5))) (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *5 *6)))))
-(-10 -7 (-15 -2339 ((-52) (-1 |#2| (-549)) (-287 |#2|))) (-15 -2339 ((-52) |#2| (-1142) (-287 |#2|))) (-15 -2339 ((-52) (-1 |#2| (-549)) (-287 |#2|) (-1192 (-747)))) (-15 -2339 ((-52) |#2| (-1142) (-287 |#2|) (-1192 (-747)))) (-15 -2354 ((-52) (-1 |#2| (-549)) (-287 |#2|) (-1192 (-549)))) (-15 -2354 ((-52) |#2| (-1142) (-287 |#2|) (-1192 (-549)))) (-15 -2366 ((-52) (-1 |#2| (-400 (-549))) (-287 |#2|) (-1192 (-400 (-549))) (-400 (-549)))) (-15 -2366 ((-52) |#2| (-1142) (-287 |#2|) (-1192 (-400 (-549))) (-400 (-549)))) (-15 -2825 ((-52) (-1 |#2| (-549)) (-287 |#2|))) (-15 -2825 ((-52) |#2| (-1142) (-287 |#2|))) (-15 -2825 ((-52) (-1 |#2| (-549)) (-287 |#2|) (-1192 (-549)))) (-15 -2825 ((-52) |#2| (-1142) (-287 |#2|) (-1192 (-549)))) (-15 -2825 ((-52) (-1 |#2| (-400 (-549))) (-287 |#2|) (-1192 (-400 (-549))) (-400 (-549)))) (-15 -2825 ((-52) |#2| (-1142) (-287 |#2|) (-1192 (-400 (-549))) (-400 (-549)))))
-((-1998 ((|#2| |#2| |#1|) 15)) (-2583 (((-621 |#2|) |#2| (-621 |#2|) |#1| (-892)) 69)) (-2239 (((-2 (|:| |plist| (-621 |#2|)) (|:| |modulo| |#1|)) |#2| (-621 |#2|) |#1| (-892)) 60)))
-(((-452 |#1| |#2|) (-10 -7 (-15 -2239 ((-2 (|:| |plist| (-621 |#2|)) (|:| |modulo| |#1|)) |#2| (-621 |#2|) |#1| (-892))) (-15 -2583 ((-621 |#2|) |#2| (-621 |#2|) |#1| (-892))) (-15 -1998 (|#2| |#2| |#1|))) (-300) (-1201 |#1|)) (T -452))
-((-1998 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1201 *3)))) (-2583 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-621 *3)) (-5 *5 (-892)) (-4 *3 (-1201 *4)) (-4 *4 (-300)) (-5 *1 (-452 *4 *3)))) (-2239 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-892)) (-4 *5 (-300)) (-4 *3 (-1201 *5)) (-5 *2 (-2 (|:| |plist| (-621 *3)) (|:| |modulo| *5))) (-5 *1 (-452 *5 *3)) (-5 *4 (-621 *3)))))
-(-10 -7 (-15 -2239 ((-2 (|:| |plist| (-621 |#2|)) (|:| |modulo| |#1|)) |#2| (-621 |#2|) |#1| (-892))) (-15 -2583 ((-621 |#2|) |#2| (-621 |#2|) |#1| (-892))) (-15 -1998 (|#2| |#2| |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 28)) (-3195 (($ |#3|) 25)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2069 (($ $) 32)) (-2577 (($ |#2| |#4| $) 33)) (-2244 (($ |#2| (-690 |#3| |#4| |#5|)) 24)) (-2027 (((-690 |#3| |#4| |#5|) $) 15)) (-2704 ((|#3| $) 19)) (-2853 ((|#4| $) 17)) (-2042 ((|#2| $) 29)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-1784 (($ |#2| |#3| |#4|) 26)) (-3275 (($) 36 T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 34)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-453 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-694 |#6|) (-694 |#2|) (-10 -8 (-15 -2042 (|#2| $)) (-15 -2027 ((-690 |#3| |#4| |#5|) $)) (-15 -2853 (|#4| $)) (-15 -2704 (|#3| $)) (-15 -2069 ($ $)) (-15 -2244 ($ |#2| (-690 |#3| |#4| |#5|))) (-15 -3195 ($ |#3|)) (-15 -1784 ($ |#2| |#3| |#4|)) (-15 -2577 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-621 (-1142)) (-170) (-823) (-232 (-3774 |#1|) (-747)) (-1 (-112) (-2 (|:| -3491 |#3|) (|:| -3577 |#4|)) (-2 (|:| -3491 |#3|) (|:| -3577 |#4|))) (-920 |#2| |#4| (-836 |#1|))) (T -453))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-621 (-1142))) (-4 *4 (-170)) (-4 *6 (-232 (-3774 *3) (-747))) (-14 *7 (-1 (-112) (-2 (|:| -3491 *5) (|:| -3577 *6)) (-2 (|:| -3491 *5) (|:| -3577 *6)))) (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-823)) (-4 *2 (-920 *4 *6 (-836 *3))))) (-2042 (*1 *2 *1) (-12 (-14 *3 (-621 (-1142))) (-4 *5 (-232 (-3774 *3) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -3491 *4) (|:| -3577 *5)) (-2 (|:| -3491 *4) (|:| -3577 *5)))) (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-823)) (-4 *7 (-920 *2 *5 (-836 *3))))) (-2027 (*1 *2 *1) (-12 (-14 *3 (-621 (-1142))) (-4 *4 (-170)) (-4 *6 (-232 (-3774 *3) (-747))) (-14 *7 (-1 (-112) (-2 (|:| -3491 *5) (|:| -3577 *6)) (-2 (|:| -3491 *5) (|:| -3577 *6)))) (-5 *2 (-690 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) (-4 *5 (-823)) (-4 *8 (-920 *4 *6 (-836 *3))))) (-2853 (*1 *2 *1) (-12 (-14 *3 (-621 (-1142))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -3491 *5) (|:| -3577 *2)) (-2 (|:| -3491 *5) (|:| -3577 *2)))) (-4 *2 (-232 (-3774 *3) (-747))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) (-4 *5 (-823)) (-4 *7 (-920 *4 *2 (-836 *3))))) (-2704 (*1 *2 *1) (-12 (-14 *3 (-621 (-1142))) (-4 *4 (-170)) (-4 *5 (-232 (-3774 *3) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -3491 *2) (|:| -3577 *5)) (-2 (|:| -3491 *2) (|:| -3577 *5)))) (-4 *2 (-823)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *7 (-920 *4 *5 (-836 *3))))) (-2069 (*1 *1 *1) (-12 (-14 *2 (-621 (-1142))) (-4 *3 (-170)) (-4 *5 (-232 (-3774 *2) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -3491 *4) (|:| -3577 *5)) (-2 (|:| -3491 *4) (|:| -3577 *5)))) (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-823)) (-4 *7 (-920 *3 *5 (-836 *2))))) (-2244 (*1 *1 *2 *3) (-12 (-5 *3 (-690 *5 *6 *7)) (-4 *5 (-823)) (-4 *6 (-232 (-3774 *4) (-747))) (-14 *7 (-1 (-112) (-2 (|:| -3491 *5) (|:| -3577 *6)) (-2 (|:| -3491 *5) (|:| -3577 *6)))) (-14 *4 (-621 (-1142))) (-4 *2 (-170)) (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) (-4 *8 (-920 *2 *6 (-836 *4))))) (-3195 (*1 *1 *2) (-12 (-14 *3 (-621 (-1142))) (-4 *4 (-170)) (-4 *5 (-232 (-3774 *3) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -3491 *2) (|:| -3577 *5)) (-2 (|:| -3491 *2) (|:| -3577 *5)))) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-823)) (-4 *7 (-920 *4 *5 (-836 *3))))) (-1784 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-621 (-1142))) (-4 *2 (-170)) (-4 *4 (-232 (-3774 *5) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -3491 *3) (|:| -3577 *4)) (-2 (|:| -3491 *3) (|:| -3577 *4)))) (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-823)) (-4 *7 (-920 *2 *4 (-836 *5))))) (-2577 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-621 (-1142))) (-4 *2 (-170)) (-4 *3 (-232 (-3774 *4) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -3491 *5) (|:| -3577 *3)) (-2 (|:| -3491 *5) (|:| -3577 *3)))) (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-823)) (-4 *7 (-920 *2 *3 (-836 *4))))))
-(-13 (-694 |#6|) (-694 |#2|) (-10 -8 (-15 -2042 (|#2| $)) (-15 -2027 ((-690 |#3| |#4| |#5|) $)) (-15 -2853 (|#4| $)) (-15 -2704 (|#3| $)) (-15 -2069 ($ $)) (-15 -2244 ($ |#2| (-690 |#3| |#4| |#5|))) (-15 -3195 ($ |#3|)) (-15 -1784 ($ |#2| |#3| |#4|)) (-15 -2577 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-2684 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
-(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2684 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-769) (-823) (-541) (-920 |#3| |#1| |#2|) (-13 (-1009 (-400 (-549))) (-356) (-10 -8 (-15 -3845 ($ |#4|)) (-15 -1393 (|#4| $)) (-15 -1404 (|#4| $))))) (T -454))
-((-2684 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-823)) (-4 *5 (-769)) (-4 *6 (-541)) (-4 *7 (-920 *6 *5 *3)) (-5 *1 (-454 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1009 (-400 (-549))) (-356) (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $))))))))
-(-10 -7 (-15 -2684 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-3833 (((-112) $ $) NIL)) (-2271 (((-621 |#3|) $) 41)) (-3863 (((-112) $) NIL)) (-1771 (((-112) $) NIL (|has| |#1| (-541)))) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |#3|) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-1488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-1717 (((-112) $) NIL (|has| |#1| (-541)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2498 (((-112) $) NIL (|has| |#1| (-541)))) (-1436 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-3001 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2713 (((-3 $ "failed") (-621 |#4|)) 47)) (-2658 (($ (-621 |#4|)) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-3812 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3249 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-2558 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336)))) (-2990 (((-621 |#4|) $) 18 (|has| $ (-6 -4336)))) (-4170 ((|#3| $) 45)) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#4|) $) 14 (|has| $ (-6 -4336)))) (-2273 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-1865 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#4| |#4|) $) 21)) (-1670 (((-621 |#3|) $) NIL)) (-2911 (((-112) |#3| $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-2205 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-3988 (((-1086) $) NIL)) (-1917 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2470 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#4|) (-621 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-621 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 39)) (-1461 (($) 17)) (-3997 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) 16)) (-2844 (((-525) $) NIL (|has| |#4| (-594 (-525)))) (($ (-621 |#4|)) 49)) (-3853 (($ (-621 |#4|)) 13)) (-1651 (($ $ |#3|) NIL)) (-3183 (($ $ |#3|) NIL)) (-2432 (($ $ |#3|) NIL)) (-3845 (((-834) $) 38) (((-621 |#4|) $) 48)) (-2150 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 30)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-455 |#1| |#2| |#3| |#4|) (-13 (-947 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2844 ($ (-621 |#4|))) (-6 -4336) (-6 -4337))) (-1018) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -455))
-((-2844 (*1 *1 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-455 *3 *4 *5 *6)))))
-(-13 (-947 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2844 ($ (-621 |#4|))) (-6 -4336) (-6 -4337)))
-((-3275 (($) 11)) (-3287 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-456 |#1| |#2| |#3|) (-10 -8 (-15 -3287 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3275 (|#1|))) (-457 |#2| |#3|) (-170) (-23)) (T -456))
-NIL
-(-10 -8 (-15 -3287 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3275 (|#1|)))
-((-3833 (((-112) $ $) 7)) (-2713 (((-3 |#1| "failed") $) 26)) (-2658 ((|#1| $) 25)) (-1626 (($ $ $) 23)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3068 ((|#2| $) 19)) (-3845 (((-834) $) 11) (($ |#1|) 27)) (-3275 (($) 18 T CONST)) (-3287 (($) 24 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 15) (($ $ $) 13)) (-2485 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-3478 (*1 *1 *1 *1) (-4 *1 (-444))) (-3478 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-444)))) (-2008 (*1 *1 *1 *1) (-4 *1 (-444))) (-2008 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-444)))) (-3029 (*1 *2 *2 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-444)))))
+(-13 (-542) (-10 -8 (-15 -3478 ($ $ $)) (-15 -3478 ($ (-618 $))) (-15 -2008 ($ $ $)) (-15 -2008 ($ (-618 $))) (-15 -3029 ((-1136 $) (-1136 $) (-1136 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3557 (((-1224 (-665 (-400 (-917 |#1|)))) (-1224 $)) NIL) (((-1224 (-665 (-400 (-917 |#1|))))) NIL)) (-1840 (((-1224 $)) NIL)) (-3879 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed")) NIL)) (-1814 (((-3 $ #1#)) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-1902 (((-665 (-400 (-917 |#1|))) (-1224 $)) NIL) (((-665 (-400 (-917 |#1|)))) NIL)) (-1838 (((-400 (-917 |#1|)) $) NIL)) (-1900 (((-665 (-400 (-917 |#1|))) $ (-1224 $)) NIL) (((-665 (-400 (-917 |#1|))) $) NIL)) (-2487 (((-3 $ #1#) $) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-2017 (((-1136 (-917 (-400 (-917 |#1|))))) NIL (|has| (-400 (-917 |#1|)) (-356))) (((-1136 (-400 (-917 |#1|)))) 84 (|has| |#1| (-542)))) (-2490 (($ $ (-890)) NIL)) (-1836 (((-400 (-917 |#1|)) $) NIL)) (-1816 (((-1136 (-400 (-917 |#1|))) $) 82 (|has| (-400 (-917 |#1|)) (-542)))) (-1904 (((-400 (-917 |#1|)) (-1224 $)) NIL) (((-400 (-917 |#1|))) NIL)) (-1834 (((-1136 (-400 (-917 |#1|))) $) NIL)) (-1828 (((-112)) NIL)) (-1906 (($ (-1224 (-400 (-917 |#1|))) (-1224 $)) 103) (($ (-1224 (-400 (-917 |#1|)))) NIL)) (-3804 (((-3 $ #1#) $) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-3427 (((-890)) NIL)) (-1825 (((-112)) NIL)) (-2515 (($ $ (-890)) NIL)) (-1821 (((-112)) NIL)) (-1819 (((-112)) NIL)) (-1823 (((-112)) NIL)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed")) NIL)) (-1815 (((-3 $ #1#)) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-1903 (((-665 (-400 (-917 |#1|))) (-1224 $)) NIL) (((-665 (-400 (-917 |#1|)))) NIL)) (-1839 (((-400 (-917 |#1|)) $) NIL)) (-1901 (((-665 (-400 (-917 |#1|))) $ (-1224 $)) NIL) (((-665 (-400 (-917 |#1|))) $) NIL)) (-2488 (((-3 $ #1#) $) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-2021 (((-1136 (-917 (-400 (-917 |#1|))))) NIL (|has| (-400 (-917 |#1|)) (-356))) (((-1136 (-400 (-917 |#1|)))) 83 (|has| |#1| (-542)))) (-2489 (($ $ (-890)) NIL)) (-1837 (((-400 (-917 |#1|)) $) NIL)) (-1817 (((-1136 (-400 (-917 |#1|))) $) 77 (|has| (-400 (-917 |#1|)) (-542)))) (-1905 (((-400 (-917 |#1|)) (-1224 $)) NIL) (((-400 (-917 |#1|))) NIL)) (-1835 (((-1136 (-400 (-917 |#1|))) $) NIL)) (-1829 (((-112)) NIL)) (-3576 (((-1124) $) NIL)) (-1820 (((-112)) NIL)) (-1822 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-3577 (((-1086) $) NIL)) (-2011 (((-400 (-917 |#1|)) $ $) 71 (|has| |#1| (-542)))) (-2015 (((-400 (-917 |#1|)) $) 93 (|has| |#1| (-542)))) (-2014 (((-400 (-917 |#1|)) $) 95 (|has| |#1| (-542)))) (-2016 (((-1136 (-400 (-917 |#1|))) $) 88 (|has| |#1| (-542)))) (-2010 (((-400 (-917 |#1|))) 72 (|has| |#1| (-542)))) (-2013 (((-400 (-917 |#1|)) $ $) 64 (|has| |#1| (-542)))) (-2019 (((-400 (-917 |#1|)) $) 92 (|has| |#1| (-542)))) (-2018 (((-400 (-917 |#1|)) $) 94 (|has| |#1| (-542)))) (-2020 (((-1136 (-400 (-917 |#1|))) $) 87 (|has| |#1| (-542)))) (-2012 (((-400 (-917 |#1|))) 68 (|has| |#1| (-542)))) (-2022 (($) 101) (($ (-1142)) 107) (($ (-1224 (-1142))) 106) (($ (-1224 $)) 96) (($ (-1142) (-1224 $)) 105) (($ (-1224 (-1142)) (-1224 $)) 104)) (-1827 (((-112)) NIL)) (-4142 (((-400 (-917 |#1|)) $ (-535)) NIL)) (-3558 (((-1224 (-400 (-917 |#1|))) $ (-1224 $)) 98) (((-665 (-400 (-917 |#1|))) (-1224 $) (-1224 $)) NIL) (((-1224 (-400 (-917 |#1|))) $) 40) (((-665 (-400 (-917 |#1|))) (-1224 $)) NIL)) (-4313 (((-1224 (-400 (-917 |#1|))) $) NIL) (($ (-1224 (-400 (-917 |#1|)))) 37)) (-2009 (((-618 (-917 (-400 (-917 |#1|)))) (-1224 $)) NIL) (((-618 (-917 (-400 (-917 |#1|))))) NIL) (((-618 (-917 |#1|)) (-1224 $)) 99 (|has| |#1| (-542))) (((-618 (-917 |#1|))) 100 (|has| |#1| (-542)))) (-2677 (($ $ $) NIL)) (-1833 (((-112)) NIL)) (-4300 (((-835) $) NIL) (($ (-1224 (-400 (-917 |#1|)))) NIL)) (-2123 (((-1224 $)) 60)) (-1818 (((-618 (-1224 (-400 (-917 |#1|))))) NIL (|has| (-400 (-917 |#1|)) (-542)))) (-2678 (($ $ $ $) NIL)) (-1831 (((-112)) NIL)) (-2871 (($ (-665 (-400 (-917 |#1|))) $) NIL)) (-2676 (($ $ $) NIL)) (-1832 (((-112)) NIL)) (-1830 (((-112)) NIL)) (-1826 (((-112)) NIL)) (-2979 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) 97)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 56) (($ $ (-400 (-917 |#1|))) NIL) (($ (-400 (-917 |#1|)) $) NIL) (($ (-1108 |#2| (-400 (-917 |#1|))) $) NIL)))
+(((-445 |#1| |#2| |#3| |#4|) (-13 (-411 (-400 (-917 |#1|))) (-624 (-1108 |#2| (-400 (-917 |#1|)))) (-10 -8 (-15 -4300 ($ (-1224 (-400 (-917 |#1|))))) (-15 -2024 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed"))) (-15 -2023 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed"))) (-15 -2022 ($)) (-15 -2022 ($ (-1142))) (-15 -2022 ($ (-1224 (-1142)))) (-15 -2022 ($ (-1224 $))) (-15 -2022 ($ (-1142) (-1224 $))) (-15 -2022 ($ (-1224 (-1142)) (-1224 $))) (IF (|has| |#1| (-542)) (PROGN (-15 -2021 ((-1136 (-400 (-917 |#1|))))) (-15 -2020 ((-1136 (-400 (-917 |#1|))) $)) (-15 -2019 ((-400 (-917 |#1|)) $)) (-15 -2018 ((-400 (-917 |#1|)) $)) (-15 -2017 ((-1136 (-400 (-917 |#1|))))) (-15 -2016 ((-1136 (-400 (-917 |#1|))) $)) (-15 -2015 ((-400 (-917 |#1|)) $)) (-15 -2014 ((-400 (-917 |#1|)) $)) (-15 -2013 ((-400 (-917 |#1|)) $ $)) (-15 -2012 ((-400 (-917 |#1|)))) (-15 -2011 ((-400 (-917 |#1|)) $ $)) (-15 -2010 ((-400 (-917 |#1|)))) (-15 -2009 ((-618 (-917 |#1|)) (-1224 $))) (-15 -2009 ((-618 (-917 |#1|))))) |%noBranch|))) (-170) (-890) (-618 (-1142)) (-1224 (-665 |#1|))) (T -445))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1224 (-400 (-917 *3)))) (-4 *3 (-170)) (-14 *6 (-1224 (-665 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))))) (-2024 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -2123 (-618 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2023 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -2123 (-618 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2022 (*1 *1) (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-890)) (-14 *4 (-618 (-1142))) (-14 *5 (-1224 (-665 *2))))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 *2)) (-14 *6 (-1224 (-665 *3))))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1224 (-1142))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1224 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2022 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-890)) (-14 *6 (-618 *2)) (-14 *7 (-1224 (-665 *4))))) (-2022 (*1 *1 *2 *3) (-12 (-5 *2 (-1224 (-1142))) (-5 *3 (-1224 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-890)) (-14 *6 (-618 (-1142))) (-14 *7 (-1224 (-665 *4))))) (-2021 (*1 *2) (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2017 (*1 *2) (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2013 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2012 (*1 *2) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2011 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2010 (*1 *2) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1224 (-445 *4 *5 *6 *7))) (-5 *2 (-618 (-917 *4))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-542)) (-4 *4 (-170)) (-14 *5 (-890)) (-14 *6 (-618 (-1142))) (-14 *7 (-1224 (-665 *4))))) (-2009 (*1 *2) (-12 (-5 *2 (-618 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))))
+(-13 (-411 (-400 (-917 |#1|))) (-624 (-1108 |#2| (-400 (-917 |#1|)))) (-10 -8 (-15 -4300 ($ (-1224 (-400 (-917 |#1|))))) (-15 -2024 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed"))) (-15 -2023 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) "failed"))) (-15 -2022 ($)) (-15 -2022 ($ (-1142))) (-15 -2022 ($ (-1224 (-1142)))) (-15 -2022 ($ (-1224 $))) (-15 -2022 ($ (-1142) (-1224 $))) (-15 -2022 ($ (-1224 (-1142)) (-1224 $))) (IF (|has| |#1| (-542)) (PROGN (-15 -2021 ((-1136 (-400 (-917 |#1|))))) (-15 -2020 ((-1136 (-400 (-917 |#1|))) $)) (-15 -2019 ((-400 (-917 |#1|)) $)) (-15 -2018 ((-400 (-917 |#1|)) $)) (-15 -2017 ((-1136 (-400 (-917 |#1|))))) (-15 -2016 ((-1136 (-400 (-917 |#1|))) $)) (-15 -2015 ((-400 (-917 |#1|)) $)) (-15 -2014 ((-400 (-917 |#1|)) $)) (-15 -2013 ((-400 (-917 |#1|)) $ $)) (-15 -2012 ((-400 (-917 |#1|)))) (-15 -2011 ((-400 (-917 |#1|)) $ $)) (-15 -2010 ((-400 (-917 |#1|)))) (-15 -2009 ((-618 (-917 |#1|)) (-1224 $))) (-15 -2009 ((-618 (-917 |#1|))))) |%noBranch|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 13)) (-3405 (((-618 (-836 |#1|)) $) 75)) (-3407 (((-1136 $) $ (-836 |#1|)) 46) (((-1136 |#2|) $) 118)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-2171 (($ $) NIL (|has| |#2| (-542)))) (-2169 (((-112) $) NIL (|has| |#2| (-542)))) (-3140 (((-747) $) 21) (((-747) $ (-618 (-836 |#1|))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4117 (($ $) NIL (|has| |#2| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) 44) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-836 |#1|) #2#) $) NIL)) (-3490 ((|#2| $) 42) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-836 |#1|) $) NIL)) (-4099 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-2054 (($ $ (-618 (-535))) 80)) (-4302 (($ $) 68)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#2| (-881)))) (-1716 (($ $ |#2| |#3| $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) 58)) (-3408 (($ (-1136 |#2|) (-836 |#1|)) 123) (($ (-1136 $) (-836 |#1|)) 52)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) 59)) (-3214 (($ |#2| |#3|) 28) (($ $ (-836 |#1|) (-747)) 30) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-836 |#1|)) NIL)) (-3141 ((|#3| $) NIL) (((-747) $ (-836 |#1|)) 50) (((-618 (-747)) $ (-618 (-836 |#1|))) 57)) (-3660 (($ $ $) NIL (|has| |#2| (-823)))) (-3661 (($ $ $) NIL (|has| |#2| (-823)))) (-1717 (($ (-1 |#3| |#3|) $) NIL)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-3406 (((-3 (-836 |#1|) #3="failed") $) 39)) (-3215 (($ $) NIL)) (-3508 ((|#2| $) 41)) (-2008 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -2484 (-747))) #3#) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) 40)) (-1910 ((|#2| $) 116)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#2| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) 128 (|has| |#2| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#2| (-881)))) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-836 |#1|) |#2|) 87) (($ $ (-618 (-836 |#1|)) (-618 |#2|)) 90) (($ $ (-836 |#1|) $) 85) (($ $ (-618 (-836 |#1|)) (-618 $)) 106)) (-4100 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-4153 (($ $ (-836 |#1|)) 53) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4290 ((|#3| $) 67) (((-747) $ (-836 |#1|)) 37) (((-618 (-747)) $ (-618 (-836 |#1|))) 56)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-836 |#1|) (-594 (-524))) (|has| |#2| (-594 (-524)))))) (-3138 ((|#2| $) 125 (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-881))))) (-4300 (((-835) $) 145) (($ (-535)) NIL) (($ |#2|) 86) (($ (-836 |#1|)) 31) (($ (-400 (-535))) NIL (-3874 (|has| |#2| (-38 (-400 (-535)))) (|has| |#2| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#2| (-542)))) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ |#3|) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#2| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2979 (($) 17 T CONST)) (-2985 (($) 25 T CONST)) (-2990 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#2| (-823)))) (-4291 (($ $ |#2|) 64 (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 111)) (** (($ $ (-890)) NIL) (($ $ (-747)) 109)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 29) (($ $ (-400 (-535))) NIL (|has| |#2| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#2| (-38 (-400 (-535))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-446 |#1| |#2| |#3|) (-13 (-921 |#2| |#3| (-836 |#1|)) (-10 -8 (-15 -2054 ($ $ (-618 (-535)))))) (-618 (-1142)) (-1018) (-232 (-4299 |#1|) (-747))) (T -446))
+((-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-14 *3 (-618 (-1142))) (-5 *1 (-446 *3 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-232 (-4299 *3) (-747))))))
+(-13 (-921 |#2| |#3| (-836 |#1|)) (-10 -8 (-15 -2054 ($ $ (-618 (-535))))))
+((-2028 (((-112) |#1| (-618 |#2|)) 69)) (-2026 (((-3 (-1224 (-618 |#2|)) "failed") (-747) |#1| (-618 |#2|)) 78)) (-2027 (((-3 (-618 |#2|) "failed") |#2| |#1| (-1224 (-618 |#2|))) 80)) (-2145 ((|#2| |#2| |#1|) 28)) (-2025 (((-747) |#2| (-618 |#2|)) 20)))
+(((-447 |#1| |#2|) (-10 -7 (-15 -2145 (|#2| |#2| |#1|)) (-15 -2025 ((-747) |#2| (-618 |#2|))) (-15 -2026 ((-3 (-1224 (-618 |#2|)) "failed") (-747) |#1| (-618 |#2|))) (-15 -2027 ((-3 (-618 |#2|) "failed") |#2| |#1| (-1224 (-618 |#2|)))) (-15 -2028 ((-112) |#1| (-618 |#2|)))) (-300) (-1200 |#1|)) (T -447))
+((-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *5)) (-4 *5 (-1200 *3)) (-4 *3 (-300)) (-5 *2 (-112)) (-5 *1 (-447 *3 *5)))) (-2027 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1224 (-618 *3))) (-4 *4 (-300)) (-5 *2 (-618 *3)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1200 *4)))) (-2026 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-747)) (-4 *4 (-300)) (-4 *6 (-1200 *4)) (-5 *2 (-1224 (-618 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-618 *6)))) (-2025 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-300)) (-5 *2 (-747)) (-5 *1 (-447 *5 *3)))) (-2145 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1200 *3)))))
+(-10 -7 (-15 -2145 (|#2| |#2| |#1|)) (-15 -2025 ((-747) |#2| (-618 |#2|))) (-15 -2026 ((-3 (-1224 (-618 |#2|)) "failed") (-747) |#1| (-618 |#2|))) (-15 -2027 ((-3 (-618 |#2|) "failed") |#2| |#1| (-1224 (-618 |#2|)))) (-15 -2028 ((-112) |#1| (-618 |#2|))))
+((-4075 (((-398 |#5|) |#5|) 24)))
+(((-448 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4075 ((-398 |#5|) |#5|))) (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142))))) (-769) (-542) (-542) (-921 |#4| |#2| |#1|)) (T -448))
+((-4075 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142)))))) (-4 *5 (-769)) (-4 *7 (-542)) (-5 *2 (-398 *3)) (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-542)) (-4 *3 (-921 *7 *5 *4)))))
+(-10 -7 (-15 -4075 ((-398 |#5|) |#5|)))
+((-3021 ((|#3|) 37)) (-3029 (((-1136 |#4|) (-1136 |#4|) (-1136 |#4|)) 33)))
+(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3029 ((-1136 |#4|) (-1136 |#4|) (-1136 |#4|))) (-15 -3021 (|#3|))) (-769) (-823) (-881) (-921 |#3| |#1| |#2|)) (T -449))
+((-3021 (*1 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-881)) (-5 *1 (-449 *3 *4 *2 *5)) (-4 *5 (-921 *2 *3 *4)))) (-3029 (*1 *2 *2 *2) (-12 (-5 *2 (-1136 *6)) (-4 *6 (-921 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-881)) (-5 *1 (-449 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3029 ((-1136 |#4|) (-1136 |#4|) (-1136 |#4|))) (-15 -3021 (|#3|)))
+((-4075 (((-398 (-1136 |#1|)) (-1136 |#1|)) 43)))
+(((-450 |#1|) (-10 -7 (-15 -4075 ((-398 (-1136 |#1|)) (-1136 |#1|)))) (-300)) (T -450))
+((-4075 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-398 (-1136 *4))) (-5 *1 (-450 *4)) (-5 *3 (-1136 *4)))))
+(-10 -7 (-15 -4075 ((-398 (-1136 |#1|)) (-1136 |#1|))))
+((-4072 (((-51) |#2| (-1142) (-286 |#2|) (-1191 (-747))) 42) (((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-747))) 41) (((-51) |#2| (-1142) (-286 |#2|)) 35) (((-51) (-1 |#2| (-535)) (-286 |#2|)) 28)) (-4161 (((-51) |#2| (-1142) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535))) 80) (((-51) (-1 |#2| (-400 (-535))) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535))) 79) (((-51) |#2| (-1142) (-286 |#2|) (-1191 (-535))) 78) (((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-535))) 77) (((-51) |#2| (-1142) (-286 |#2|)) 72) (((-51) (-1 |#2| (-535)) (-286 |#2|)) 71)) (-4124 (((-51) |#2| (-1142) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535))) 66) (((-51) (-1 |#2| (-400 (-535))) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535))) 64)) (-4121 (((-51) |#2| (-1142) (-286 |#2|) (-1191 (-535))) 48) (((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-535))) 47)))
+(((-451 |#1| |#2|) (-10 -7 (-15 -4072 ((-51) (-1 |#2| (-535)) (-286 |#2|))) (-15 -4072 ((-51) |#2| (-1142) (-286 |#2|))) (-15 -4072 ((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-747)))) (-15 -4072 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-747)))) (-15 -4121 ((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-535)))) (-15 -4121 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-535)))) (-15 -4124 ((-51) (-1 |#2| (-400 (-535))) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))) (-15 -4124 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))) (-15 -4161 ((-51) (-1 |#2| (-535)) (-286 |#2|))) (-15 -4161 ((-51) |#2| (-1142) (-286 |#2|))) (-15 -4161 ((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-535)))) (-15 -4161 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-535)))) (-15 -4161 ((-51) (-1 |#2| (-400 (-535))) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))) (-15 -4161 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535))))) (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -451))
+((-4161 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-400 (-535)))) (-5 *7 (-400 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *8))) (-4 *8 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *8 *3)))) (-4161 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-535)))) (-5 *4 (-286 *8)) (-5 *5 (-1191 (-400 (-535)))) (-5 *6 (-400 (-535))) (-4 *8 (-13 (-27) (-1164) (-414 *7))) (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *8)))) (-4161 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *7))) (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *3)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-535))) (-5 *4 (-286 *7)) (-5 *5 (-1191 (-535))) (-4 *7 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *7)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-535))) (-5 *4 (-286 *6)) (-4 *6 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *5 *6)))) (-4124 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-400 (-535)))) (-5 *7 (-400 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *8))) (-4 *8 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *8 *3)))) (-4124 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-535)))) (-5 *4 (-286 *8)) (-5 *5 (-1191 (-400 (-535)))) (-5 *6 (-400 (-535))) (-4 *8 (-13 (-27) (-1164) (-414 *7))) (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *8)))) (-4121 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *7))) (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *3)))) (-4121 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-535))) (-5 *4 (-286 *7)) (-5 *5 (-1191 (-535))) (-4 *7 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *7)))) (-4072 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-747))) (-4 *3 (-13 (-27) (-1164) (-414 *7))) (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *3)))) (-4072 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-535))) (-5 *4 (-286 *7)) (-5 *5 (-1191 (-747))) (-4 *7 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *7)))) (-4072 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *3)))) (-4072 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-535))) (-5 *4 (-286 *6)) (-4 *6 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51)) (-5 *1 (-451 *5 *6)))))
+(-10 -7 (-15 -4072 ((-51) (-1 |#2| (-535)) (-286 |#2|))) (-15 -4072 ((-51) |#2| (-1142) (-286 |#2|))) (-15 -4072 ((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-747)))) (-15 -4072 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-747)))) (-15 -4121 ((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-535)))) (-15 -4121 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-535)))) (-15 -4124 ((-51) (-1 |#2| (-400 (-535))) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))) (-15 -4124 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))) (-15 -4161 ((-51) (-1 |#2| (-535)) (-286 |#2|))) (-15 -4161 ((-51) |#2| (-1142) (-286 |#2|))) (-15 -4161 ((-51) (-1 |#2| (-535)) (-286 |#2|) (-1191 (-535)))) (-15 -4161 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-535)))) (-15 -4161 ((-51) (-1 |#2| (-400 (-535))) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))) (-15 -4161 ((-51) |#2| (-1142) (-286 |#2|) (-1191 (-400 (-535))) (-400 (-535)))))
+((-2145 ((|#2| |#2| |#1|) 15)) (-2030 (((-618 |#2|) |#2| (-618 |#2|) |#1| (-890)) 69)) (-2029 (((-2 (|:| |plist| (-618 |#2|)) (|:| |modulo| |#1|)) |#2| (-618 |#2|) |#1| (-890)) 60)))
+(((-452 |#1| |#2|) (-10 -7 (-15 -2029 ((-2 (|:| |plist| (-618 |#2|)) (|:| |modulo| |#1|)) |#2| (-618 |#2|) |#1| (-890))) (-15 -2030 ((-618 |#2|) |#2| (-618 |#2|) |#1| (-890))) (-15 -2145 (|#2| |#2| |#1|))) (-300) (-1200 |#1|)) (T -452))
+((-2145 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1200 *3)))) (-2030 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-618 *3)) (-5 *5 (-890)) (-4 *3 (-1200 *4)) (-4 *4 (-300)) (-5 *1 (-452 *4 *3)))) (-2029 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-890)) (-4 *5 (-300)) (-4 *3 (-1200 *5)) (-5 *2 (-2 (|:| |plist| (-618 *3)) (|:| |modulo| *5))) (-5 *1 (-452 *5 *3)) (-5 *4 (-618 *3)))))
+(-10 -7 (-15 -2029 ((-2 (|:| |plist| (-618 |#2|)) (|:| |modulo| |#1|)) |#2| (-618 |#2|) |#1| (-890))) (-15 -2030 ((-618 |#2|) |#2| (-618 |#2|) |#1| (-890))) (-15 -2145 (|#2| |#2| |#1|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 28)) (-4053 (($ |#3|) 25)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4302 (($ $) 32)) (-2031 (($ |#2| |#4| $) 33)) (-3214 (($ |#2| (-690 |#3| |#4| |#5|)) 24)) (-3215 (((-690 |#3| |#4| |#5|) $) 15)) (-2033 ((|#3| $) 19)) (-2034 ((|#4| $) 17)) (-3508 ((|#2| $) 29)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2032 (($ |#2| |#3| |#4|) 26)) (-2979 (($) 36 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 34)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-453 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-694 |#6|) (-694 |#2|) (-10 -8 (-15 -3508 (|#2| $)) (-15 -3215 ((-690 |#3| |#4| |#5|) $)) (-15 -2034 (|#4| $)) (-15 -2033 (|#3| $)) (-15 -4302 ($ $)) (-15 -3214 ($ |#2| (-690 |#3| |#4| |#5|))) (-15 -4053 ($ |#3|)) (-15 -2032 ($ |#2| |#3| |#4|)) (-15 -2031 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-618 (-1142)) (-170) (-823) (-232 (-4299 |#1|) (-747)) (-1 (-112) (-2 (|:| -2483 |#3|) (|:| -2484 |#4|)) (-2 (|:| -2483 |#3|) (|:| -2484 |#4|))) (-921 |#2| |#4| (-836 |#1|))) (T -453))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *6 (-232 (-4299 *3) (-747))) (-14 *7 (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *6)) (-2 (|:| -2483 *5) (|:| -2484 *6)))) (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-823)) (-4 *2 (-921 *4 *6 (-836 *3))))) (-3508 (*1 *2 *1) (-12 (-14 *3 (-618 (-1142))) (-4 *5 (-232 (-4299 *3) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -2483 *4) (|:| -2484 *5)) (-2 (|:| -2483 *4) (|:| -2484 *5)))) (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-823)) (-4 *7 (-921 *2 *5 (-836 *3))))) (-3215 (*1 *2 *1) (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *6 (-232 (-4299 *3) (-747))) (-14 *7 (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *6)) (-2 (|:| -2483 *5) (|:| -2484 *6)))) (-5 *2 (-690 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) (-4 *5 (-823)) (-4 *8 (-921 *4 *6 (-836 *3))))) (-2034 (*1 *2 *1) (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *2)) (-2 (|:| -2483 *5) (|:| -2484 *2)))) (-4 *2 (-232 (-4299 *3) (-747))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) (-4 *5 (-823)) (-4 *7 (-921 *4 *2 (-836 *3))))) (-2033 (*1 *2 *1) (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *5 (-232 (-4299 *3) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *5)) (-2 (|:| -2483 *2) (|:| -2484 *5)))) (-4 *2 (-823)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *7 (-921 *4 *5 (-836 *3))))) (-4302 (*1 *1 *1) (-12 (-14 *2 (-618 (-1142))) (-4 *3 (-170)) (-4 *5 (-232 (-4299 *2) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -2483 *4) (|:| -2484 *5)) (-2 (|:| -2483 *4) (|:| -2484 *5)))) (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-823)) (-4 *7 (-921 *3 *5 (-836 *2))))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-690 *5 *6 *7)) (-4 *5 (-823)) (-4 *6 (-232 (-4299 *4) (-747))) (-14 *7 (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *6)) (-2 (|:| -2483 *5) (|:| -2484 *6)))) (-14 *4 (-618 (-1142))) (-4 *2 (-170)) (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) (-4 *8 (-921 *2 *6 (-836 *4))))) (-4053 (*1 *1 *2) (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *5 (-232 (-4299 *3) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *5)) (-2 (|:| -2483 *2) (|:| -2484 *5)))) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-823)) (-4 *7 (-921 *4 *5 (-836 *3))))) (-2032 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-618 (-1142))) (-4 *2 (-170)) (-4 *4 (-232 (-4299 *5) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -2483 *3) (|:| -2484 *4)) (-2 (|:| -2483 *3) (|:| -2484 *4)))) (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-823)) (-4 *7 (-921 *2 *4 (-836 *5))))) (-2031 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-618 (-1142))) (-4 *2 (-170)) (-4 *3 (-232 (-4299 *4) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *3)) (-2 (|:| -2483 *5) (|:| -2484 *3)))) (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-823)) (-4 *7 (-921 *2 *3 (-836 *4))))))
+(-13 (-694 |#6|) (-694 |#2|) (-10 -8 (-15 -3508 (|#2| $)) (-15 -3215 ((-690 |#3| |#4| |#5|) $)) (-15 -2034 (|#4| $)) (-15 -2033 (|#3| $)) (-15 -4302 ($ $)) (-15 -3214 ($ |#2| (-690 |#3| |#4| |#5|))) (-15 -4053 ($ |#3|)) (-15 -2032 ($ |#2| |#3| |#4|)) (-15 -2031 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-2035 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
+(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2035 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-769) (-823) (-542) (-921 |#3| |#1| |#2|) (-13 (-1009 (-400 (-535))) (-356) (-10 -8 (-15 -4300 ($ |#4|)) (-15 -3319 (|#4| $)) (-15 -3318 (|#4| $))))) (T -454))
+((-2035 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-823)) (-4 *5 (-769)) (-4 *6 (-542)) (-4 *7 (-921 *6 *5 *3)) (-5 *1 (-454 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1009 (-400 (-535))) (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))))
+(-10 -7 (-15 -2035 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2887 (((-112) $ $) NIL)) (-3405 (((-618 |#3|) $) 41)) (-3229 (((-112) $) NIL)) (-3220 (((-112) $) NIL (|has| |#1| (-542)))) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4056 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-3225 (((-112) $) NIL (|has| |#1| (-542)))) (-3227 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3226 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3228 (((-112) $) NIL (|has| |#1| (-542)))) (-3221 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 47)) (-3490 (($ (-618 |#4|)) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-3748 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336)))) (-2063 (((-618 |#4|) $) 18 (|has| $ (-6 -4336)))) (-3514 ((|#3| $) 45)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#4|) $) 14 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 21)) (-3235 (((-618 |#3|) $) NIL)) (-3234 (((-112) |#3| $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-3577 (((-1086) $) NIL)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 39)) (-3911 (($) 17)) (-2064 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) 16)) (-4313 (((-524) $) NIL (|has| |#4| (-594 (-524)))) (($ (-618 |#4|)) 49)) (-3867 (($ (-618 |#4|)) 13)) (-3231 (($ $ |#3|) NIL)) (-3233 (($ $ |#3|) NIL)) (-3232 (($ $ |#3|) NIL)) (-4300 (((-835) $) 38) (((-618 |#4|) $) 48)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 30)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-455 |#1| |#2| |#3| |#4|) (-13 (-947 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4313 ($ (-618 |#4|))) (-6 -4336) (-6 -4337))) (-1018) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -455))
+((-4313 (*1 *1 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-455 *3 *4 *5 *6)))))
+(-13 (-947 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4313 ($ (-618 |#4|))) (-6 -4336) (-6 -4337)))
+((-2979 (($) 11)) (-2985 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-456 |#1| |#2| |#3|) (-10 -8 (-15 -2985 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2979 (|#1|))) (-457 |#2| |#3|) (-170) (-23)) (T -456))
+NIL
+(-10 -8 (-15 -2985 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2979 (|#1|)))
+((-2887 (((-112) $ $) 7)) (-3491 (((-3 |#1| "failed") $) 26)) (-3490 ((|#1| $) 25)) (-4287 (($ $ $) 23)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4290 ((|#2| $) 19)) (-4300 (((-835) $) 11) (($ |#1|) 27)) (-2979 (($) 18 T CONST)) (-2985 (($) 24 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 15) (($ $ $) 13)) (-4182 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-457 |#1| |#2|) (-138) (-170) (-23)) (T -457))
-((-3287 (*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-1626 (*1 *1 *1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))))
-(-13 (-462 |t#1| |t#2|) (-1009 |t#1|) (-10 -8 (-15 (-3287) ($) -2588) (-15 -1626 ($ $ $))))
-(((-101) . T) ((-593 (-834)) . T) ((-462 |#1| |#2|) . T) ((-1009 |#1|) . T) ((-1066) . T))
-((-4305 (((-1225 (-1225 (-549))) (-1225 (-1225 (-549))) (-892)) 18)) (-3445 (((-1225 (-1225 (-549))) (-892)) 16)))
-(((-458) (-10 -7 (-15 -4305 ((-1225 (-1225 (-549))) (-1225 (-1225 (-549))) (-892))) (-15 -3445 ((-1225 (-1225 (-549))) (-892))))) (T -458))
-((-3445 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1225 (-1225 (-549)))) (-5 *1 (-458)))) (-4305 (*1 *2 *2 *3) (-12 (-5 *2 (-1225 (-1225 (-549)))) (-5 *3 (-892)) (-5 *1 (-458)))))
-(-10 -7 (-15 -4305 ((-1225 (-1225 (-549))) (-1225 (-1225 (-549))) (-892))) (-15 -3445 ((-1225 (-1225 (-549))) (-892))))
-((-3036 (((-549) (-549)) 30) (((-549)) 22)) (-2096 (((-549) (-549)) 26) (((-549)) 18)) (-3920 (((-549) (-549)) 28) (((-549)) 20)) (-2131 (((-112) (-112)) 12) (((-112)) 10)) (-2363 (((-112) (-112)) 11) (((-112)) 9)) (-2169 (((-112) (-112)) 24) (((-112)) 15)))
-(((-459) (-10 -7 (-15 -2363 ((-112))) (-15 -2131 ((-112))) (-15 -2363 ((-112) (-112))) (-15 -2131 ((-112) (-112))) (-15 -2169 ((-112))) (-15 -3920 ((-549))) (-15 -2096 ((-549))) (-15 -3036 ((-549))) (-15 -2169 ((-112) (-112))) (-15 -3920 ((-549) (-549))) (-15 -2096 ((-549) (-549))) (-15 -3036 ((-549) (-549))))) (T -459))
-((-3036 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459)))) (-2096 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459)))) (-2169 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-3036 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459)))) (-2096 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459)))) (-3920 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459)))) (-2169 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2363 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2131 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2363 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))))
-(-10 -7 (-15 -2363 ((-112))) (-15 -2131 ((-112))) (-15 -2363 ((-112) (-112))) (-15 -2131 ((-112) (-112))) (-15 -2169 ((-112))) (-15 -3920 ((-549))) (-15 -2096 ((-549))) (-15 -3036 ((-549))) (-15 -2169 ((-112) (-112))) (-15 -3920 ((-549) (-549))) (-15 -2096 ((-549) (-549))) (-15 -3036 ((-549) (-549))))
-((-3833 (((-112) $ $) NIL)) (-2035 (((-621 (-372)) $) 28) (((-621 (-372)) $ (-621 (-372))) 96)) (-3922 (((-621 (-1060 (-372))) $) 16) (((-621 (-1060 (-372))) $ (-621 (-1060 (-372)))) 94)) (-3783 (((-621 (-621 (-914 (-219)))) (-621 (-621 (-914 (-219)))) (-621 (-845))) 45)) (-2469 (((-621 (-621 (-914 (-219)))) $) 90)) (-2797 (((-1230) $ (-914 (-219)) (-845)) 108)) (-4257 (($ $) 89) (($ (-621 (-621 (-914 (-219))))) 99) (($ (-621 (-621 (-914 (-219)))) (-621 (-845)) (-621 (-845)) (-621 (-892))) 98) (($ (-621 (-621 (-914 (-219)))) (-621 (-845)) (-621 (-845)) (-621 (-892)) (-621 (-256))) 100)) (-2677 (((-1124) $) NIL)) (-3337 (((-549) $) 71)) (-3988 (((-1086) $) NIL)) (-4156 (($) 97)) (-2279 (((-621 (-219)) (-621 (-621 (-914 (-219))))) 56)) (-2711 (((-1230) $ (-621 (-914 (-219))) (-845) (-845) (-892)) 102) (((-1230) $ (-914 (-219))) 104) (((-1230) $ (-914 (-219)) (-845) (-845) (-892)) 103)) (-3845 (((-834) $) 114) (($ (-621 (-621 (-914 (-219))))) 109)) (-3521 (((-1230) $ (-914 (-219))) 107)) (-2388 (((-112) $ $) NIL)))
-(((-460) (-13 (-1066) (-10 -8 (-15 -4156 ($)) (-15 -4257 ($ $)) (-15 -4257 ($ (-621 (-621 (-914 (-219)))))) (-15 -4257 ($ (-621 (-621 (-914 (-219)))) (-621 (-845)) (-621 (-845)) (-621 (-892)))) (-15 -4257 ($ (-621 (-621 (-914 (-219)))) (-621 (-845)) (-621 (-845)) (-621 (-892)) (-621 (-256)))) (-15 -2469 ((-621 (-621 (-914 (-219)))) $)) (-15 -3337 ((-549) $)) (-15 -3922 ((-621 (-1060 (-372))) $)) (-15 -3922 ((-621 (-1060 (-372))) $ (-621 (-1060 (-372))))) (-15 -2035 ((-621 (-372)) $)) (-15 -2035 ((-621 (-372)) $ (-621 (-372)))) (-15 -2711 ((-1230) $ (-621 (-914 (-219))) (-845) (-845) (-892))) (-15 -2711 ((-1230) $ (-914 (-219)))) (-15 -2711 ((-1230) $ (-914 (-219)) (-845) (-845) (-892))) (-15 -3521 ((-1230) $ (-914 (-219)))) (-15 -2797 ((-1230) $ (-914 (-219)) (-845))) (-15 -3845 ($ (-621 (-621 (-914 (-219)))))) (-15 -3845 ((-834) $)) (-15 -3783 ((-621 (-621 (-914 (-219)))) (-621 (-621 (-914 (-219)))) (-621 (-845)))) (-15 -2279 ((-621 (-219)) (-621 (-621 (-914 (-219))))))))) (T -460))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-460)))) (-4156 (*1 *1) (-5 *1 (-460))) (-4257 (*1 *1 *1) (-5 *1 (-460))) (-4257 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-460)))) (-4257 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *3 (-621 (-845))) (-5 *4 (-621 (-892))) (-5 *1 (-460)))) (-4257 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *3 (-621 (-845))) (-5 *4 (-621 (-892))) (-5 *5 (-621 (-256))) (-5 *1 (-460)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-460)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-460)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-621 (-1060 (-372)))) (-5 *1 (-460)))) (-3922 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1060 (-372)))) (-5 *1 (-460)))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-621 (-372))) (-5 *1 (-460)))) (-2035 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-372))) (-5 *1 (-460)))) (-2711 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-621 (-914 (-219)))) (-5 *4 (-845)) (-5 *5 (-892)) (-5 *2 (-1230)) (-5 *1 (-460)))) (-2711 (*1 *2 *1 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-460)))) (-2711 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *5 (-892)) (-5 *2 (-1230)) (-5 *1 (-460)))) (-3521 (*1 *2 *1 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-460)))) (-2797 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-460)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-460)))) (-3783 (*1 *2 *2 *3) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *3 (-621 (-845))) (-5 *1 (-460)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *2 (-621 (-219))) (-5 *1 (-460)))))
-(-13 (-1066) (-10 -8 (-15 -4156 ($)) (-15 -4257 ($ $)) (-15 -4257 ($ (-621 (-621 (-914 (-219)))))) (-15 -4257 ($ (-621 (-621 (-914 (-219)))) (-621 (-845)) (-621 (-845)) (-621 (-892)))) (-15 -4257 ($ (-621 (-621 (-914 (-219)))) (-621 (-845)) (-621 (-845)) (-621 (-892)) (-621 (-256)))) (-15 -2469 ((-621 (-621 (-914 (-219)))) $)) (-15 -3337 ((-549) $)) (-15 -3922 ((-621 (-1060 (-372))) $)) (-15 -3922 ((-621 (-1060 (-372))) $ (-621 (-1060 (-372))))) (-15 -2035 ((-621 (-372)) $)) (-15 -2035 ((-621 (-372)) $ (-621 (-372)))) (-15 -2711 ((-1230) $ (-621 (-914 (-219))) (-845) (-845) (-892))) (-15 -2711 ((-1230) $ (-914 (-219)))) (-15 -2711 ((-1230) $ (-914 (-219)) (-845) (-845) (-892))) (-15 -3521 ((-1230) $ (-914 (-219)))) (-15 -2797 ((-1230) $ (-914 (-219)) (-845))) (-15 -3845 ($ (-621 (-621 (-914 (-219)))))) (-15 -3845 ((-834) $)) (-15 -3783 ((-621 (-621 (-914 (-219)))) (-621 (-621 (-914 (-219)))) (-621 (-845)))) (-15 -2279 ((-621 (-219)) (-621 (-621 (-914 (-219))))))))
-((-2499 (($ $) NIL) (($ $ $) 11)))
-(((-461 |#1| |#2| |#3|) (-10 -8 (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|))) (-462 |#2| |#3|) (-170) (-23)) (T -461))
-NIL
-(-10 -8 (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3068 ((|#2| $) 19)) (-3845 (((-834) $) 11)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 15) (($ $ $) 13)) (-2485 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-2985 (*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4287 (*1 *1 *1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))))
+(-13 (-462 |t#1| |t#2|) (-1009 |t#1|) (-10 -8 (-15 (-2985) ($) -4294) (-15 -4287 ($ $ $))))
+(((-101) . T) ((-593 (-835)) . T) ((-462 |#1| |#2|) . T) ((-1009 |#1|) . T) ((-1067) . T))
+((-2036 (((-1224 (-1224 (-535))) (-1224 (-1224 (-535))) (-890)) 18)) (-2037 (((-1224 (-1224 (-535))) (-890)) 16)))
+(((-458) (-10 -7 (-15 -2036 ((-1224 (-1224 (-535))) (-1224 (-1224 (-535))) (-890))) (-15 -2037 ((-1224 (-1224 (-535))) (-890))))) (T -458))
+((-2037 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224 (-1224 (-535)))) (-5 *1 (-458)))) (-2036 (*1 *2 *2 *3) (-12 (-5 *2 (-1224 (-1224 (-535)))) (-5 *3 (-890)) (-5 *1 (-458)))))
+(-10 -7 (-15 -2036 ((-1224 (-1224 (-535))) (-1224 (-1224 (-535))) (-890))) (-15 -2037 ((-1224 (-1224 (-535))) (-890))))
+((-3091 (((-535) (-535)) 30) (((-535)) 22)) (-3095 (((-535) (-535)) 26) (((-535)) 18)) (-3093 (((-535) (-535)) 28) (((-535)) 20)) (-2039 (((-112) (-112)) 12) (((-112)) 10)) (-2038 (((-112) (-112)) 11) (((-112)) 9)) (-2040 (((-112) (-112)) 24) (((-112)) 15)))
+(((-459) (-10 -7 (-15 -2038 ((-112))) (-15 -2039 ((-112))) (-15 -2038 ((-112) (-112))) (-15 -2039 ((-112) (-112))) (-15 -2040 ((-112))) (-15 -3093 ((-535))) (-15 -3095 ((-535))) (-15 -3091 ((-535))) (-15 -2040 ((-112) (-112))) (-15 -3093 ((-535) (-535))) (-15 -3095 ((-535) (-535))) (-15 -3091 ((-535) (-535))))) (T -459))
+((-3091 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-3091 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) (-3095 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) (-3093 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459)))) (-2040 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2038 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2039 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2038 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))))
+(-10 -7 (-15 -2038 ((-112))) (-15 -2039 ((-112))) (-15 -2038 ((-112) (-112))) (-15 -2039 ((-112) (-112))) (-15 -2040 ((-112))) (-15 -3093 ((-535))) (-15 -3095 ((-535))) (-15 -3091 ((-535))) (-15 -2040 ((-112) (-112))) (-15 -3093 ((-535) (-535))) (-15 -3095 ((-535) (-535))) (-15 -3091 ((-535) (-535))))
+((-2887 (((-112) $ $) NIL)) (-4194 (((-618 (-371)) $) 28) (((-618 (-371)) $ (-618 (-371))) 96)) (-2045 (((-618 (-1055 (-371))) $) 16) (((-618 (-1055 (-371))) $ (-618 (-1055 (-371)))) 94)) (-2042 (((-618 (-618 (-914 (-219)))) (-618 (-618 (-914 (-219)))) (-618 (-845))) 45)) (-2046 (((-618 (-618 (-914 (-219)))) $) 90)) (-4052 (((-1230) $ (-914 (-219)) (-845)) 108)) (-2047 (($ $) 89) (($ (-618 (-618 (-914 (-219))))) 99) (($ (-618 (-618 (-914 (-219)))) (-618 (-845)) (-618 (-845)) (-618 (-890))) 98) (($ (-618 (-618 (-914 (-219)))) (-618 (-845)) (-618 (-845)) (-618 (-890)) (-618 (-254))) 100)) (-3576 (((-1124) $) NIL)) (-4203 (((-535) $) 71)) (-3577 (((-1086) $) NIL)) (-2048 (($) 97)) (-2041 (((-618 (-219)) (-618 (-618 (-914 (-219))))) 56)) (-2044 (((-1230) $ (-618 (-914 (-219))) (-845) (-845) (-890)) 102) (((-1230) $ (-914 (-219))) 104) (((-1230) $ (-914 (-219)) (-845) (-845) (-890)) 103)) (-4300 (((-835) $) 114) (($ (-618 (-618 (-914 (-219))))) 109)) (-2043 (((-1230) $ (-914 (-219))) 107)) (-3375 (((-112) $ $) NIL)))
+(((-460) (-13 (-1067) (-10 -8 (-15 -2048 ($)) (-15 -2047 ($ $)) (-15 -2047 ($ (-618 (-618 (-914 (-219)))))) (-15 -2047 ($ (-618 (-618 (-914 (-219)))) (-618 (-845)) (-618 (-845)) (-618 (-890)))) (-15 -2047 ($ (-618 (-618 (-914 (-219)))) (-618 (-845)) (-618 (-845)) (-618 (-890)) (-618 (-254)))) (-15 -2046 ((-618 (-618 (-914 (-219)))) $)) (-15 -4203 ((-535) $)) (-15 -2045 ((-618 (-1055 (-371))) $)) (-15 -2045 ((-618 (-1055 (-371))) $ (-618 (-1055 (-371))))) (-15 -4194 ((-618 (-371)) $)) (-15 -4194 ((-618 (-371)) $ (-618 (-371)))) (-15 -2044 ((-1230) $ (-618 (-914 (-219))) (-845) (-845) (-890))) (-15 -2044 ((-1230) $ (-914 (-219)))) (-15 -2044 ((-1230) $ (-914 (-219)) (-845) (-845) (-890))) (-15 -2043 ((-1230) $ (-914 (-219)))) (-15 -4052 ((-1230) $ (-914 (-219)) (-845))) (-15 -4300 ($ (-618 (-618 (-914 (-219)))))) (-15 -4300 ((-835) $)) (-15 -2042 ((-618 (-618 (-914 (-219)))) (-618 (-618 (-914 (-219)))) (-618 (-845)))) (-15 -2041 ((-618 (-219)) (-618 (-618 (-914 (-219))))))))) (T -460))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-460)))) (-2048 (*1 *1) (-5 *1 (-460))) (-2047 (*1 *1 *1) (-5 *1 (-460))) (-2047 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-460)))) (-2047 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *3 (-618 (-845))) (-5 *4 (-618 (-890))) (-5 *1 (-460)))) (-2047 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *3 (-618 (-845))) (-5 *4 (-618 (-890))) (-5 *5 (-618 (-254))) (-5 *1 (-460)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-460)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-460)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-460)))) (-2045 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-460)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-618 (-371))) (-5 *1 (-460)))) (-4194 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-371))) (-5 *1 (-460)))) (-2044 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-618 (-914 (-219)))) (-5 *4 (-845)) (-5 *5 (-890)) (-5 *2 (-1230)) (-5 *1 (-460)))) (-2044 (*1 *2 *1 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-460)))) (-2044 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *5 (-890)) (-5 *2 (-1230)) (-5 *1 (-460)))) (-2043 (*1 *2 *1 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-460)))) (-4052 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-460)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-460)))) (-2042 (*1 *2 *2 *3) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *3 (-618 (-845))) (-5 *1 (-460)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *2 (-618 (-219))) (-5 *1 (-460)))))
+(-13 (-1067) (-10 -8 (-15 -2048 ($)) (-15 -2047 ($ $)) (-15 -2047 ($ (-618 (-618 (-914 (-219)))))) (-15 -2047 ($ (-618 (-618 (-914 (-219)))) (-618 (-845)) (-618 (-845)) (-618 (-890)))) (-15 -2047 ($ (-618 (-618 (-914 (-219)))) (-618 (-845)) (-618 (-845)) (-618 (-890)) (-618 (-254)))) (-15 -2046 ((-618 (-618 (-914 (-219)))) $)) (-15 -4203 ((-535) $)) (-15 -2045 ((-618 (-1055 (-371))) $)) (-15 -2045 ((-618 (-1055 (-371))) $ (-618 (-1055 (-371))))) (-15 -4194 ((-618 (-371)) $)) (-15 -4194 ((-618 (-371)) $ (-618 (-371)))) (-15 -2044 ((-1230) $ (-618 (-914 (-219))) (-845) (-845) (-890))) (-15 -2044 ((-1230) $ (-914 (-219)))) (-15 -2044 ((-1230) $ (-914 (-219)) (-845) (-845) (-890))) (-15 -2043 ((-1230) $ (-914 (-219)))) (-15 -4052 ((-1230) $ (-914 (-219)) (-845))) (-15 -4300 ($ (-618 (-618 (-914 (-219)))))) (-15 -4300 ((-835) $)) (-15 -2042 ((-618 (-618 (-914 (-219)))) (-618 (-618 (-914 (-219)))) (-618 (-845)))) (-15 -2041 ((-618 (-219)) (-618 (-618 (-914 (-219))))))))
+((-4180 (($ $) NIL) (($ $ $) 11)))
+(((-461 |#1| |#2| |#3|) (-10 -8 (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|))) (-462 |#2| |#3|) (-170) (-23)) (T -461))
+NIL
+(-10 -8 (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4290 ((|#2| $) 19)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 15) (($ $ $) 13)) (-4182 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-462 |#1| |#2|) (-138) (-170) (-23)) (T -462))
-((-3068 (*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-3275 (*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2499 (*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2485 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2499 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))))
-(-13 (-1066) (-10 -8 (-15 -3068 (|t#2| $)) (-15 (-3275) ($) -2588) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2499 ($ $)) (-15 -2485 ($ $ $)) (-15 -2499 ($ $ $))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3884 (((-3 (-621 (-473 |#1| |#2|)) "failed") (-621 (-473 |#1| |#2|)) (-621 (-836 |#1|))) 92)) (-3470 (((-621 (-621 (-241 |#1| |#2|))) (-621 (-241 |#1| |#2|)) (-621 (-836 |#1|))) 90)) (-2633 (((-2 (|:| |dpolys| (-621 (-241 |#1| |#2|))) (|:| |coords| (-621 (-549)))) (-621 (-241 |#1| |#2|)) (-621 (-836 |#1|))) 61)))
-(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -3470 ((-621 (-621 (-241 |#1| |#2|))) (-621 (-241 |#1| |#2|)) (-621 (-836 |#1|)))) (-15 -3884 ((-3 (-621 (-473 |#1| |#2|)) "failed") (-621 (-473 |#1| |#2|)) (-621 (-836 |#1|)))) (-15 -2633 ((-2 (|:| |dpolys| (-621 (-241 |#1| |#2|))) (|:| |coords| (-621 (-549)))) (-621 (-241 |#1| |#2|)) (-621 (-836 |#1|))))) (-621 (-1142)) (-444) (-444)) (T -463))
-((-2633 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-836 *5))) (-14 *5 (-621 (-1142))) (-4 *6 (-444)) (-5 *2 (-2 (|:| |dpolys| (-621 (-241 *5 *6))) (|:| |coords| (-621 (-549))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-621 (-241 *5 *6))) (-4 *7 (-444)))) (-3884 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-473 *4 *5))) (-5 *3 (-621 (-836 *4))) (-14 *4 (-621 (-1142))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) (-4 *6 (-444)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-836 *5))) (-14 *5 (-621 (-1142))) (-4 *6 (-444)) (-5 *2 (-621 (-621 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-621 (-241 *5 *6))) (-4 *7 (-444)))))
-(-10 -7 (-15 -3470 ((-621 (-621 (-241 |#1| |#2|))) (-621 (-241 |#1| |#2|)) (-621 (-836 |#1|)))) (-15 -3884 ((-3 (-621 (-473 |#1| |#2|)) "failed") (-621 (-473 |#1| |#2|)) (-621 (-836 |#1|)))) (-15 -2633 ((-2 (|:| |dpolys| (-621 (-241 |#1| |#2|))) (|:| |coords| (-621 (-549)))) (-621 (-241 |#1| |#2|)) (-621 (-836 |#1|)))))
-((-3976 (((-3 $ "failed") $) 11)) (-2538 (($ $ $) 18)) (-1911 (($ $ $) 19)) (-2512 (($ $ $) 9)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 17)))
-(((-464 |#1|) (-10 -8 (-15 -1911 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -2512 (|#1| |#1| |#1|)) (-15 -3976 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892)))) (-465)) (T -464))
-NIL
-(-10 -8 (-15 -1911 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -2512 (|#1| |#1| |#1|)) (-15 -3976 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892))))
-((-3833 (((-112) $ $) 7)) (-1705 (($) 18 T CONST)) (-3976 (((-3 $ "failed") $) 15)) (-3987 (((-112) $) 17)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 24)) (-3988 (((-1086) $) 10)) (-2538 (($ $ $) 21)) (-1911 (($ $ $) 20)) (-3845 (((-834) $) 11)) (-3287 (($) 19 T CONST)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ $) 23)) (** (($ $ (-892)) 13) (($ $ (-747)) 16) (($ $ (-549)) 22)) (* (($ $ $) 14)))
+((-4290 (*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-2979 (*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4180 (*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4180 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))))
+(-13 (-1067) (-10 -8 (-15 -4290 (|t#2| $)) (-15 (-2979) ($) -4294) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4180 ($ $)) (-15 -4182 ($ $ $)) (-15 -4180 ($ $ $))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2050 (((-3 (-618 (-473 |#1| |#2|)) "failed") (-618 (-473 |#1| |#2|)) (-618 (-836 |#1|))) 92)) (-2049 (((-618 (-618 (-241 |#1| |#2|))) (-618 (-241 |#1| |#2|)) (-618 (-836 |#1|))) 90)) (-2051 (((-2 (|:| |dpolys| (-618 (-241 |#1| |#2|))) (|:| |coords| (-618 (-535)))) (-618 (-241 |#1| |#2|)) (-618 (-836 |#1|))) 61)))
+(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -2049 ((-618 (-618 (-241 |#1| |#2|))) (-618 (-241 |#1| |#2|)) (-618 (-836 |#1|)))) (-15 -2050 ((-3 (-618 (-473 |#1| |#2|)) "failed") (-618 (-473 |#1| |#2|)) (-618 (-836 |#1|)))) (-15 -2051 ((-2 (|:| |dpolys| (-618 (-241 |#1| |#2|))) (|:| |coords| (-618 (-535)))) (-618 (-241 |#1| |#2|)) (-618 (-836 |#1|))))) (-618 (-1142)) (-444) (-444)) (T -463))
+((-2051 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-836 *5))) (-14 *5 (-618 (-1142))) (-4 *6 (-444)) (-5 *2 (-2 (|:| |dpolys| (-618 (-241 *5 *6))) (|:| |coords| (-618 (-535))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-618 (-241 *5 *6))) (-4 *7 (-444)))) (-2050 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-473 *4 *5))) (-5 *3 (-618 (-836 *4))) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) (-4 *6 (-444)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-836 *5))) (-14 *5 (-618 (-1142))) (-4 *6 (-444)) (-5 *2 (-618 (-618 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-618 (-241 *5 *6))) (-4 *7 (-444)))))
+(-10 -7 (-15 -2049 ((-618 (-618 (-241 |#1| |#2|))) (-618 (-241 |#1| |#2|)) (-618 (-836 |#1|)))) (-15 -2050 ((-3 (-618 (-473 |#1| |#2|)) "failed") (-618 (-473 |#1| |#2|)) (-618 (-836 |#1|)))) (-15 -2051 ((-2 (|:| |dpolys| (-618 (-241 |#1| |#2|))) (|:| |coords| (-618 (-535)))) (-618 (-241 |#1| |#2|)) (-618 (-836 |#1|)))))
+((-3804 (((-3 $ "failed") $) 11)) (-3330 (($ $ $) 18)) (-2677 (($ $ $) 19)) (-4291 (($ $ $) 9)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 17)))
+(((-464 |#1|) (-10 -8 (-15 -2677 (|#1| |#1| |#1|)) (-15 -3330 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 -4291 (|#1| |#1| |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890)))) (-465)) (T -464))
+NIL
+(-10 -8 (-15 -2677 (|#1| |#1| |#1|)) (-15 -3330 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 -4291 (|#1| |#1| |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890))))
+((-2887 (((-112) $ $) 7)) (-3879 (($) 18 T CONST)) (-3804 (((-3 $ "failed") $) 15)) (-2493 (((-112) $) 17)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 24)) (-3577 (((-1086) $) 10)) (-3330 (($ $ $) 21)) (-2677 (($ $ $) 20)) (-4300 (((-835) $) 11)) (-2985 (($) 19 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 23)) (** (($ $ (-890)) 13) (($ $ (-747)) 16) (($ $ (-535)) 22)) (* (($ $ $) 14)))
(((-465) (-138)) (T -465))
-((-1991 (*1 *1 *1) (-4 *1 (-465))) (-2512 (*1 *1 *1 *1) (-4 *1 (-465))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-549)))) (-2538 (*1 *1 *1 *1) (-4 *1 (-465))) (-1911 (*1 *1 *1 *1) (-4 *1 (-465))))
-(-13 (-703) (-10 -8 (-15 -1991 ($ $)) (-15 -2512 ($ $ $)) (-15 ** ($ $ (-549))) (-6 -4333) (-15 -2538 ($ $ $)) (-15 -1911 ($ $ $))))
-(((-101) . T) ((-593 (-834)) . T) ((-703) . T) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2271 (((-621 (-1048)) $) NIL)) (-3010 (((-1142) $) 17)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-2305 (($ $ (-400 (-549))) NIL) (($ $ (-400 (-549)) (-400 (-549))) NIL)) (-1480 (((-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) NIL)) (-1663 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL (|has| |#1| (-356)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1639 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2825 (($ (-747) (-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) NIL)) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) NIL T CONST)) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-2471 (((-112) $) NIL (|has| |#1| (-356)))) (-3155 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-400 (-549)) $) NIL) (((-400 (-549)) $ (-400 (-549))) NIL)) (-3987 (((-112) $) NIL)) (-3930 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2769 (($ $ (-892)) NIL) (($ $ (-400 (-549))) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-400 (-549))) NIL) (($ $ (-1048) (-400 (-549))) NIL) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) NIL)) (-2796 (($ (-1 |#1| |#1|) $) 22)) (-3631 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL (|has| |#1| (-356)))) (-1531 (($ $) 26 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) 33 (-1536 (-12 (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1164))))) (($ $ (-1221 |#2|)) 27 (|has| |#1| (-38 (-400 (-549)))))) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-356)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2975 (($ $ (-400 (-549))) NIL)) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2718 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-4091 (((-747) $) NIL (|has| |#1| (-356)))) (-3340 ((|#1| $ (-400 (-549))) NIL) (($ $ $) NIL (|has| (-400 (-549)) (-1078)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) 25 (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $ (-1221 |#2|)) 15)) (-3068 (((-400 (-549)) $) NIL)) (-1697 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1221 |#2|)) NIL) (($ (-1210 |#1| |#2| |#3|)) 9) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541)))) (-2944 ((|#1| $ (-400 (-549))) NIL)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-2597 ((|#1| $) 18)) (-1732 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1708 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-400 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) 24)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-466 |#1| |#2| |#3|) (-13 (-1206 |#1|) (-10 -8 (-15 -3845 ($ (-1221 |#2|))) (-15 -3845 ($ (-1210 |#1| |#2| |#3|))) (-15 -3455 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -466))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1210 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-466 *3 *4 *5)))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-1531 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
-(-13 (-1206 |#1|) (-10 -8 (-15 -3845 ($ (-1221 |#2|))) (-15 -3845 ($ (-1210 |#1| |#2| |#3|))) (-15 -3455 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|)))
-((-3833 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3732 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2932 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#2| $ |#1| |#2|) 18)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3489 (((-3 |#2| "failed") |#1| $) 19)) (-1705 (($) NIL T CONST)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-4204 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| "failed") |#1| $) 16)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#2| $ |#1|) NIL)) (-2990 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 ((|#1| $) NIL (|has| |#1| (-823)))) (-1958 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1548 ((|#1| $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3449 (((-621 |#1|) $) NIL)) (-3665 (((-112) |#1| $) NIL)) (-2349 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-3927 (((-621 |#1|) $) NIL)) (-1286 (((-112) |#1| $) NIL)) (-3988 (((-1086) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3645 ((|#2| $) NIL (|has| |#1| (-823)))) (-1917 (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL)) (-3158 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1738 (((-621 |#2|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-4252 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3845 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-1765 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-467 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2|) (-1066) (-1066) (-1155 |#1| |#2|) |#2|) (T -467))
+((-2725 (*1 *1 *1) (-4 *1 (-465))) (-4291 (*1 *1 *1 *1) (-4 *1 (-465))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-535)))) (-3330 (*1 *1 *1 *1) (-4 *1 (-465))) (-2677 (*1 *1 *1 *1) (-4 *1 (-465))))
+(-13 (-703) (-10 -8 (-15 -2725 ($ $)) (-15 -4291 ($ $ $)) (-15 ** ($ $ (-535))) (-6 -4333) (-15 -3330 ($ $ $)) (-15 -2677 ($ $ $))))
+(((-101) . T) ((-593 (-835)) . T) ((-703) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 17)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) NIL) (($ $ (-400 (-535)) (-400 (-535))) NIL)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) NIL)) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) NIL) (((-400 (-535)) $ (-400 (-535))) NIL)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) NIL) (($ $ (-400 (-535))) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-400 (-535))) NIL) (($ $ (-1048) (-400 (-535))) NIL) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) 22)) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-4155 (($ $) 26 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 33 (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 27 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) NIL) (($ $ $) NIL (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) 25 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $ (-1221 |#2|)) 15)) (-4290 (((-400 (-535)) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1221 |#2|)) NIL) (($ (-1205 |#1| |#2| |#3|)) 9) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 18)) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) 24)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-466 |#1| |#2| |#3|) (-13 (-1207 |#1|) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4300 ($ (-1205 |#1| |#2| |#3|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -466))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1205 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-466 *3 *4 *5)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1207 |#1|) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4300 ($ (-1205 |#1| |#2| |#3|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|)))
+((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#2| $ |#1| |#2|) 18)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) 19)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) 16)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2735 (((-618 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2301 (((-618 |#1|) $) NIL)) (-2302 (((-112) |#1| $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-467 |#1| |#2| |#3| |#4|) (-1155 |#1| |#2|) (-1067) (-1067) (-1155 |#1| |#2|) |#2|) (T -467))
NIL
(-1155 |#1| |#2|)
-((-3833 (((-112) $ $) NIL)) (-3684 (((-621 (-2 (|:| -2680 $) (|:| -1358 (-621 |#4|)))) (-621 |#4|)) NIL)) (-3840 (((-621 $) (-621 |#4|)) NIL)) (-2271 (((-621 |#3|) $) NIL)) (-3863 (((-112) $) NIL)) (-1771 (((-112) $) NIL (|has| |#1| (-541)))) (-2344 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1305 ((|#4| |#4| $) NIL)) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |#3|) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-1488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1705 (($) NIL T CONST)) (-1717 (((-112) $) 26 (|has| |#1| (-541)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2498 (((-112) $) NIL (|has| |#1| (-541)))) (-3074 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1436 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-3001 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2713 (((-3 $ "failed") (-621 |#4|)) NIL)) (-2658 (($ (-621 |#4|)) NIL)) (-3655 (((-3 $ "failed") $) 39)) (-2514 ((|#4| |#4| $) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-3812 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3249 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-4042 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3678 ((|#4| |#4| $) NIL)) (-2558 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2235 (((-2 (|:| -2680 (-621 |#4|)) (|:| -1358 (-621 |#4|))) $) NIL)) (-2990 (((-621 |#4|) $) 16 (|has| $ (-6 -4336)))) (-3929 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4170 ((|#3| $) 33)) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#4|) $) 17 (|has| $ (-6 -4336)))) (-2273 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-1865 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#4| |#4|) $) 21)) (-1670 (((-621 |#3|) $) NIL)) (-2911 (((-112) |#3| $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-3828 (((-3 |#4| "failed") $) 37)) (-4069 (((-621 |#4|) $) NIL)) (-3130 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2741 ((|#4| |#4| $) NIL)) (-3739 (((-112) $ $) NIL)) (-2205 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-1582 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3952 ((|#4| |#4| $) NIL)) (-3988 (((-1086) $) NIL)) (-3645 (((-3 |#4| "failed") $) 35)) (-1917 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1762 (((-3 $ "failed") $ |#4|) 47)) (-2975 (($ $ |#4|) NIL)) (-2470 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#4|) (-621 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-621 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 15)) (-1461 (($) 13)) (-3068 (((-747) $) NIL)) (-3997 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) 12)) (-2844 (((-525) $) NIL (|has| |#4| (-594 (-525))))) (-3853 (($ (-621 |#4|)) 20)) (-1651 (($ $ |#3|) 42)) (-3183 (($ $ |#3|) 44)) (-1821 (($ $) NIL)) (-2432 (($ $ |#3|) NIL)) (-3845 (((-834) $) 31) (((-621 |#4|) $) 40)) (-1509 (((-747) $) NIL (|has| |#3| (-361)))) (-3472 (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2197 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) NIL)) (-2150 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2691 (((-621 |#3|) $) NIL)) (-2923 (((-112) |#3| $) NIL)) (-2388 (((-112) $ $) NIL)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-468 |#1| |#2| |#3| |#4|) (-1172 |#1| |#2| |#3| |#4|) (-541) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -468))
-NIL
-(-1172 |#1| |#2| |#3| |#4|)
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL)) (-2658 (((-549) $) NIL) (((-400 (-549)) $) NIL)) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-1425 (($) 18)) (-3987 (((-112) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2844 (((-372) $) 22) (((-219) $) 25) (((-400 (-1138 (-549))) $) 19) (((-525) $) 52)) (-3845 (((-834) $) 50) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (((-219) $) 24) (((-372) $) 21)) (-1723 (((-747)) NIL)) (-4053 (((-112) $ $) NIL)) (-3275 (($) 36 T CONST)) (-3287 (($) 11 T CONST)) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
-(((-469) (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))) (-993) (-593 (-219)) (-593 (-372)) (-594 (-400 (-1138 (-549)))) (-594 (-525)) (-10 -8 (-15 -1425 ($))))) (T -469))
-((-1425 (*1 *1) (-5 *1 (-469))))
-(-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))) (-993) (-593 (-219)) (-593 (-372)) (-594 (-400 (-1138 (-549)))) (-594 (-525)) (-10 -8 (-15 -1425 ($))))
-((-3833 (((-112) $ $) NIL)) (-2202 (((-1101) $) 11)) (-2189 (((-1101) $) 9)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-470) (-13 (-1049) (-10 -8 (-15 -2189 ((-1101) $)) (-15 -2202 ((-1101) $))))) (T -470))
-((-2189 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-470)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-470)))))
-(-13 (-1049) (-10 -8 (-15 -2189 ((-1101) $)) (-15 -2202 ((-1101) $))))
-((-3833 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3732 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2932 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#2| $ |#1| |#2|) 16)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3489 (((-3 |#2| "failed") |#1| $) 20)) (-1705 (($) NIL T CONST)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-4204 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| "failed") |#1| $) 18)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#2| $ |#1|) NIL)) (-2990 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 ((|#1| $) NIL (|has| |#1| (-823)))) (-1958 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1548 ((|#1| $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3449 (((-621 |#1|) $) 13)) (-3665 (((-112) |#1| $) NIL)) (-2349 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-3927 (((-621 |#1|) $) NIL)) (-1286 (((-112) |#1| $) NIL)) (-3988 (((-1086) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3645 ((|#2| $) NIL (|has| |#1| (-823)))) (-1917 (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL)) (-3158 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1738 (((-621 |#2|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) 19)) (-3340 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4252 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3845 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-1765 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 11 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3774 (((-747) $) 15 (|has| $ (-6 -4336)))))
-(((-471 |#1| |#2| |#3|) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) (-1066) (-1066) (-1124)) (T -471))
+((-2887 (((-112) $ $) NIL)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) NIL)) (-4028 (((-618 $) (-618 |#4|)) NIL)) (-3405 (((-618 |#3|) $) NIL)) (-3229 (((-112) $) NIL)) (-3220 (((-112) $) NIL (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4034 ((|#4| |#4| $) NIL)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4056 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3879 (($) NIL T CONST)) (-3225 (((-112) $) 26 (|has| |#1| (-542)))) (-3227 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3226 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3228 (((-112) $) NIL (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3221 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) NIL)) (-3490 (($ (-618 |#4|)) NIL)) (-4141 (((-3 $ #1#) $) 39)) (-4031 ((|#4| |#4| $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-3748 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4029 ((|#4| |#4| $) NIL)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) NIL)) (-2063 (((-618 |#4|) $) 16 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3514 ((|#3| $) 33)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#4|) $) 17 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 21)) (-3235 (((-618 |#3|) $) NIL)) (-3234 (((-112) |#3| $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-4140 (((-3 |#4| #1#) $) 37)) (-4043 (((-618 |#4|) $) NIL)) (-4037 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4032 ((|#4| |#4| $) NIL)) (-4045 (((-112) $ $) NIL)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4033 ((|#4| |#4| $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-3 |#4| #1#) $) 35)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4025 (((-3 $ #1#) $ |#4|) 47)) (-4111 (($ $ |#4|) NIL)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 15)) (-3911 (($) 13)) (-4290 (((-747) $) NIL)) (-2064 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) 12)) (-4313 (((-524) $) NIL (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 20)) (-3231 (($ $ |#3|) 42)) (-3233 (($ $ |#3|) 44)) (-4030 (($ $) NIL)) (-3232 (($ $ |#3|) NIL)) (-4300 (((-835) $) 31) (((-618 |#4|) $) 40)) (-4024 (((-747) $) NIL (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) NIL)) (-4276 (((-112) |#3| $) NIL)) (-3375 (((-112) $ $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-468 |#1| |#2| |#3| |#4|) (-1173 |#1| |#2| |#3| |#4|) (-542) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -468))
+NIL
+(-1173 |#1| |#2| |#3| |#4|)
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL)) (-3490 (((-535) $) NIL) (((-400 (-535)) $) NIL)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3973 (($) 18)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4313 (((-371) $) 22) (((-219) $) 25) (((-400 (-1136 (-535))) $) 19) (((-524) $) 52)) (-4300 (((-835) $) 50) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (((-219) $) 24) (((-371) $) 21)) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 36 T CONST)) (-2985 (($) 11 T CONST)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL)))
+(((-469) (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))) (-991) (-593 (-219)) (-593 (-371)) (-594 (-400 (-1136 (-535)))) (-594 (-524)) (-10 -8 (-15 -3973 ($))))) (T -469))
+((-3973 (*1 *1) (-5 *1 (-469))))
+(-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))) (-991) (-593 (-219)) (-593 (-371)) (-594 (-400 (-1136 (-535)))) (-594 (-524)) (-10 -8 (-15 -3973 ($))))
+((-2887 (((-112) $ $) NIL)) (-3865 (((-1101) $) 11)) (-3866 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-470) (-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $))))) (T -470))
+((-3866 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-470)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-470)))))
+(-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $))))
+((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#2| $ |#1| |#2|) 16)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) 20)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) 18)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2735 (((-618 |#1|) $) 13)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2301 (((-618 |#1|) $) NIL)) (-2302 (((-112) |#1| $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 19)) (-4142 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 11 (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4299 (((-747) $) 15 (|has| $ (-6 -4336)))))
+(((-471 |#1| |#2| |#3|) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) (-1067) (-1067) (-1124)) (T -471))
NIL
(-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336)))
-((-3865 (((-549) (-549) (-549)) 7)) (-4168 (((-112) (-549) (-549) (-549) (-549)) 11)) (-1411 (((-1225 (-621 (-549))) (-747) (-747)) 23)))
-(((-472) (-10 -7 (-15 -3865 ((-549) (-549) (-549))) (-15 -4168 ((-112) (-549) (-549) (-549) (-549))) (-15 -1411 ((-1225 (-621 (-549))) (-747) (-747))))) (T -472))
-((-1411 (*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1225 (-621 (-549)))) (-5 *1 (-472)))) (-4168 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-472)))) (-3865 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-472)))))
-(-10 -7 (-15 -3865 ((-549) (-549) (-549))) (-15 -4168 ((-112) (-549) (-549) (-549) (-549))) (-15 -1411 ((-1225 (-621 (-549))) (-747) (-747))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2271 (((-621 (-836 |#1|)) $) NIL)) (-2082 (((-1138 $) $ (-836 |#1|)) NIL) (((-1138 |#2|) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-541)))) (-2408 (($ $) NIL (|has| |#2| (-541)))) (-2477 (((-112) $) NIL (|has| |#2| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 (-836 |#1|))) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-1912 (($ $) NIL (|has| |#2| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-836 |#1|) "failed") $) NIL)) (-2658 ((|#2| $) NIL) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-836 |#1|) $) NIL)) (-2252 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-3664 (($ $ (-621 (-549))) NIL)) (-2069 (($ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#2| (-880)))) (-3744 (($ $ |#2| (-474 (-3774 |#1|) (-747)) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-2258 (($ (-1138 |#2|) (-836 |#1|)) NIL) (($ (-1138 $) (-836 |#1|)) NIL)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#2| (-474 (-3774 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ (-836 |#1|)) NIL)) (-2856 (((-474 (-3774 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-621 (-747)) $ (-621 (-836 |#1|))) NIL)) (-2862 (($ $ $) NIL (|has| |#2| (-823)))) (-3574 (($ $ $) NIL (|has| |#2| (-823)))) (-4058 (($ (-1 (-474 (-3774 |#1|) (-747)) (-474 (-3774 |#1|) (-747))) $) NIL)) (-2796 (($ (-1 |#2| |#2|) $) NIL)) (-1790 (((-3 (-836 |#1|) "failed") $) NIL)) (-2027 (($ $) NIL)) (-2042 ((|#2| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2677 (((-1124) $) NIL)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -3577 (-747))) "failed") $) NIL)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) NIL)) (-2012 ((|#2| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#2| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#2| (-880)))) (-2038 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-541)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-836 |#1|) |#2|) NIL) (($ $ (-621 (-836 |#1|)) (-621 |#2|)) NIL) (($ $ (-836 |#1|) $) NIL) (($ $ (-621 (-836 |#1|)) (-621 $)) NIL)) (-3086 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-3455 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3068 (((-474 (-3774 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-621 (-747)) $ (-621 (-836 |#1|))) NIL)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-836 |#1|) (-594 (-525))) (|has| |#2| (-594 (-525)))))) (-1931 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-836 |#1|)) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#2| (-38 (-400 (-549)))) (|has| |#2| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#2| (-541)))) (-3330 (((-621 |#2|) $) NIL)) (-2944 ((|#2| $ (-474 (-3774 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#2| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#2| (-541)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2512 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#2| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#2| (-38 (-400 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-473 |#1| |#2|) (-13 (-920 |#2| (-474 (-3774 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -3664 ($ $ (-621 (-549)))))) (-621 (-1142)) (-1018)) (T -473))
-((-3664 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-473 *3 *4)) (-14 *3 (-621 (-1142))) (-4 *4 (-1018)))))
-(-13 (-920 |#2| (-474 (-3774 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -3664 ($ $ (-621 (-549))))))
-((-3833 (((-112) $ $) NIL (|has| |#2| (-1066)))) (-3166 (((-112) $) NIL (|has| |#2| (-130)))) (-3195 (($ (-892)) NIL (|has| |#2| (-1018)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-3100 (($ $ $) NIL (|has| |#2| (-769)))) (-2384 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1323 (((-112) $ (-747)) NIL)) (-3615 (((-747)) NIL (|has| |#2| (-361)))) (-3902 (((-549) $) NIL (|has| |#2| (-821)))) (-2253 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1066)))) (-2658 (((-549) $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066)))) (((-400 (-549)) $) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066)))) ((|#2| $) NIL (|has| |#2| (-1066)))) (-1698 (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) NIL (|has| |#2| (-1018)))) (-3976 (((-3 $ "failed") $) NIL (|has| |#2| (-703)))) (-3238 (($) NIL (|has| |#2| (-361)))) (-1878 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#2| $ (-549)) 11)) (-3079 (((-112) $) NIL (|has| |#2| (-821)))) (-2990 (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3987 (((-112) $) NIL (|has| |#2| (-703)))) (-2847 (((-112) $) NIL (|has| |#2| (-821)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-1958 (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-1865 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#2| |#2|) $) NIL)) (-2723 (((-892) $) NIL (|has| |#2| (-361)))) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#2| (-1066)))) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3491 (($ (-892)) NIL (|has| |#2| (-361)))) (-3988 (((-1086) $) NIL (|has| |#2| (-1066)))) (-3645 ((|#2| $) NIL (|has| (-549) (-823)))) (-3158 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1738 (((-621 |#2|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) NIL)) (-4140 ((|#2| $ $) NIL (|has| |#2| (-1018)))) (-2168 (($ (-1225 |#2|)) NIL)) (-3128 (((-133)) NIL (|has| |#2| (-356)))) (-3455 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-3997 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-1225 |#2|) $) NIL) (($ (-549)) NIL (-1536 (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066))) (|has| |#2| (-1018)))) (($ (-400 (-549))) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066)))) (($ |#2|) NIL (|has| |#2| (-1066))) (((-834) $) NIL (|has| |#2| (-593 (-834))))) (-1723 (((-747)) NIL (|has| |#2| (-1018)))) (-2150 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3603 (($ $) NIL (|has| |#2| (-821)))) (-3275 (($) NIL (|has| |#2| (-130)) CONST)) (-3287 (($) NIL (|has| |#2| (-703)) CONST)) (-1700 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2448 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2424 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2388 (((-112) $ $) NIL (|has| |#2| (-1066)))) (-2436 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2411 (((-112) $ $) 15 (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2512 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2499 (($ $ $) NIL (|has| |#2| (-1018))) (($ $) NIL (|has| |#2| (-1018)))) (-2485 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-747)) NIL (|has| |#2| (-703))) (($ $ (-892)) NIL (|has| |#2| (-703)))) (* (($ (-549) $) NIL (|has| |#2| (-1018))) (($ $ $) NIL (|has| |#2| (-703))) (($ $ |#2|) NIL (|has| |#2| (-703))) (($ |#2| $) NIL (|has| |#2| (-703))) (($ (-747) $) NIL (|has| |#2| (-130))) (($ (-892) $) NIL (|has| |#2| (-25)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
+((-2052 (((-535) (-535) (-535)) 7)) (-2053 (((-112) (-535) (-535) (-535) (-535)) 11)) (-3794 (((-1224 (-618 (-535))) (-747) (-747)) 23)))
+(((-472) (-10 -7 (-15 -2052 ((-535) (-535) (-535))) (-15 -2053 ((-112) (-535) (-535) (-535) (-535))) (-15 -3794 ((-1224 (-618 (-535))) (-747) (-747))))) (T -472))
+((-3794 (*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1224 (-618 (-535)))) (-5 *1 (-472)))) (-2053 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-112)) (-5 *1 (-472)))) (-2052 (*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-472)))))
+(-10 -7 (-15 -2052 ((-535) (-535) (-535))) (-15 -2053 ((-112) (-535) (-535) (-535) (-535))) (-15 -3794 ((-1224 (-618 (-535))) (-747) (-747))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-836 |#1|)) $) NIL)) (-3407 (((-1136 $) $ (-836 |#1|)) NIL) (((-1136 |#2|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-2171 (($ $) NIL (|has| |#2| (-542)))) (-2169 (((-112) $) NIL (|has| |#2| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-836 |#1|))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4117 (($ $) NIL (|has| |#2| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-836 |#1|) #2#) $) NIL)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-836 |#1|) $) NIL)) (-4099 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-2054 (($ $ (-618 (-535))) NIL)) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#2| (-881)))) (-1716 (($ $ |#2| (-474 (-4299 |#1|) (-747)) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#2|) (-836 |#1|)) NIL) (($ (-1136 $) (-836 |#1|)) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#2| (-474 (-4299 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-836 |#1|)) NIL)) (-3141 (((-474 (-4299 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-618 (-747)) $ (-618 (-836 |#1|))) NIL)) (-3660 (($ $ $) NIL (|has| |#2| (-823)))) (-3661 (($ $ $) NIL (|has| |#2| (-823)))) (-1717 (($ (-1 (-474 (-4299 |#1|) (-747)) (-474 (-4299 |#1|) (-747))) $) NIL)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-3406 (((-3 (-836 |#1|) #3="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#2| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -2484 (-747))) #3#) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#2| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#2| (-881)))) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-836 |#1|) |#2|) NIL) (($ $ (-618 (-836 |#1|)) (-618 |#2|)) NIL) (($ $ (-836 |#1|) $) NIL) (($ $ (-618 (-836 |#1|)) (-618 $)) NIL)) (-4100 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-4153 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4290 (((-474 (-4299 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-618 (-747)) $ (-618 (-836 |#1|))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-836 |#1|) (-594 (-524))) (|has| |#2| (-594 (-524)))))) (-3138 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) NIL) (($ (-836 |#1|)) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#2| (-38 (-400 (-535)))) (|has| |#2| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#2| (-542)))) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-474 (-4299 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#2| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#2| (-823)))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#2| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#2| (-38 (-400 (-535))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-473 |#1| |#2|) (-13 (-921 |#2| (-474 (-4299 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -2054 ($ $ (-618 (-535)))))) (-618 (-1142)) (-1018)) (T -473))
+((-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-473 *3 *4)) (-14 *3 (-618 (-1142))) (-4 *4 (-1018)))))
+(-13 (-921 |#2| (-474 (-4299 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -2054 ($ $ (-618 (-535))))))
+((-2887 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-3522 (((-112) $) NIL (|has| |#2| (-130)))) (-4053 (($ (-890)) NIL (|has| |#2| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-2724 (($ $ $) NIL (|has| |#2| (-769)))) (-1363 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| |#2| (-361)))) (-3969 (((-535) $) NIL (|has| |#2| (-821)))) (-4130 ((|#2| $ (-535) |#2|) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-3 (-400 (-535)) #1#) $) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1067)))) (-3490 (((-535) $) NIL (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-400 (-535)) $) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) ((|#2| $) NIL (|has| |#2| (-1067)))) (-2353 (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) NIL (|has| |#2| (-1018)))) (-3804 (((-3 $ "failed") $) NIL (|has| |#2| (-703)))) (-3315 (($) NIL (|has| |#2| (-361)))) (-1632 ((|#2| $ (-535) |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ (-535)) 11)) (-3520 (((-112) $) NIL (|has| |#2| (-821)))) (-2063 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL (|has| |#2| (-703)))) (-3521 (((-112) $) NIL (|has| |#2| (-821)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2502 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#2| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#2| (-1067)))) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-2483 (($ (-890)) NIL (|has| |#2| (-361)))) (-3577 (((-1086) $) NIL (|has| |#2| (-1067)))) (-4143 ((|#2| $) NIL (|has| (-535) (-823)))) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ (-535) |#2|) NIL) ((|#2| $ (-535)) NIL)) (-4179 ((|#2| $ $) NIL (|has| |#2| (-1018)))) (-1520 (($ (-1224 |#2|)) NIL)) (-4254 (((-133)) NIL (|has| |#2| (-356)))) (-4153 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2064 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1224 |#2|) $) NIL) (($ (-535)) NIL (-3874 (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (|has| |#2| (-1018)))) (($ (-400 (-535))) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (($ |#2|) NIL (|has| |#2| (-1067))) (((-835) $) NIL (|has| |#2| (-593 (-835))))) (-3444 (((-747)) NIL (|has| |#2| (-1018)))) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3725 (($ $) NIL (|has| |#2| (-821)))) (-2979 (($) NIL (|has| |#2| (-130)) CONST)) (-2985 (($) NIL (|has| |#2| (-703)) CONST)) (-2990 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2885 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-3375 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-3005 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-3006 (((-112) $ $) 15 (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $ $) NIL (|has| |#2| (-1018))) (($ $) NIL (|has| |#2| (-1018)))) (-4182 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-747)) NIL (|has| |#2| (-703))) (($ $ (-890)) NIL (|has| |#2| (-703)))) (* (($ (-535) $) NIL (|has| |#2| (-1018))) (($ $ $) NIL (|has| |#2| (-703))) (($ $ |#2|) NIL (|has| |#2| (-703))) (($ |#2| $) NIL (|has| |#2| (-703))) (($ (-747) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
(((-474 |#1| |#2|) (-232 |#1| |#2|) (-747) (-769)) (T -474))
NIL
(-232 |#1| |#2|)
-((-3833 (((-112) $ $) NIL)) (-2903 (((-621 (-497)) $) 11)) (-2480 (((-497) $) 10)) (-2677 (((-1124) $) NIL)) (-2776 (($ (-497) (-621 (-497))) 9)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 20) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-475) (-13 (-1049) (-10 -8 (-15 -2776 ($ (-497) (-621 (-497)))) (-15 -2480 ((-497) $)) (-15 -2903 ((-621 (-497)) $))))) (T -475))
-((-2776 (*1 *1 *2 *3) (-12 (-5 *3 (-621 (-497))) (-5 *2 (-497)) (-5 *1 (-475)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-621 (-497))) (-5 *1 (-475)))))
-(-13 (-1049) (-10 -8 (-15 -2776 ($ (-497) (-621 (-497)))) (-15 -2480 ((-497) $)) (-15 -2903 ((-621 (-497)) $))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) NIL)) (-1705 (($) NIL T CONST)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-3019 (($ $ $) 32)) (-1586 (($ $ $) 31)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-3574 ((|#1| $) 26)) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2349 ((|#1| $) 27)) (-1709 (($ |#1| $) 10)) (-2562 (($ (-621 |#1|)) 12)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2629 ((|#1| $) 23)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) 9)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-1765 (($ (-621 |#1|)) 29)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3774 (((-747) $) 21 (|has| $ (-6 -4336)))))
-(((-476 |#1|) (-13 (-939 |#1|) (-10 -8 (-15 -2562 ($ (-621 |#1|))))) (-823)) (T -476))
-((-2562 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-476 *3)))))
-(-13 (-939 |#1|) (-10 -8 (-15 -2562 ($ (-621 |#1|)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2558 (($ $) 69)) (-3718 (((-112) $) NIL)) (-2677 (((-1124) $) NIL)) (-4296 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 44)) (-3988 (((-1086) $) NIL)) (-4246 (((-3 |#4| "failed") $) 107)) (-3868 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-549)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3702 (((-2 (|:| -3713 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-3845 (((-834) $) 102)) (-3275 (($) 33 T CONST)) (-2388 (((-112) $ $) 109)) (-2499 (($ $) 72) (($ $ $) NIL)) (-2485 (($ $ $) 70)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 73)))
-(((-477 |#1| |#2| |#3| |#4|) (-328 |#1| |#2| |#3| |#4|) (-356) (-1201 |#1|) (-1201 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -477))
-NIL
-(-328 |#1| |#2| |#3| |#4|)
-((-3627 (((-549) (-621 (-549))) 30)) (-1947 ((|#1| (-621 |#1|)) 56)) (-1310 (((-621 |#1|) (-621 |#1|)) 57)) (-1886 (((-621 |#1|) (-621 |#1|)) 59)) (-3726 ((|#1| (-621 |#1|)) 58)) (-1931 (((-621 (-549)) (-621 |#1|)) 33)))
-(((-478 |#1|) (-10 -7 (-15 -3726 (|#1| (-621 |#1|))) (-15 -1947 (|#1| (-621 |#1|))) (-15 -1886 ((-621 |#1|) (-621 |#1|))) (-15 -1310 ((-621 |#1|) (-621 |#1|))) (-15 -1931 ((-621 (-549)) (-621 |#1|))) (-15 -3627 ((-549) (-621 (-549))))) (-1201 (-549))) (T -478))
-((-3627 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-549)) (-5 *1 (-478 *4)) (-4 *4 (-1201 *2)))) (-1931 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-1201 (-549))) (-5 *2 (-621 (-549))) (-5 *1 (-478 *4)))) (-1310 (*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1201 (-549))) (-5 *1 (-478 *3)))) (-1886 (*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1201 (-549))) (-5 *1 (-478 *3)))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1201 (-549))))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1201 (-549))))))
-(-10 -7 (-15 -3726 (|#1| (-621 |#1|))) (-15 -1947 (|#1| (-621 |#1|))) (-15 -1886 ((-621 |#1|) (-621 |#1|))) (-15 -1310 ((-621 |#1|) (-621 |#1|))) (-15 -1931 ((-621 (-549)) (-621 |#1|))) (-15 -3627 ((-549) (-621 (-549)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2364 (((-549) $) NIL (|has| (-549) (-300)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL (|has| (-549) (-796)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL) (((-3 (-1142) "failed") $) NIL (|has| (-549) (-1009 (-1142)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-549) (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| (-549) (-1009 (-549))))) (-2658 (((-549) $) NIL) (((-1142) $) NIL (|has| (-549) (-1009 (-1142)))) (((-400 (-549)) $) NIL (|has| (-549) (-1009 (-549)))) (((-549) $) NIL (|has| (-549) (-1009 (-549))))) (-2094 (($ $ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL) (((-665 (-549)) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| (-549) (-534)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3079 (((-112) $) NIL (|has| (-549) (-796)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-549) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-549) (-857 (-372))))) (-3987 (((-112) $) NIL)) (-2053 (($ $) NIL)) (-1393 (((-549) $) NIL)) (-3982 (((-3 $ "failed") $) NIL (|has| (-549) (-1117)))) (-2847 (((-112) $) NIL (|has| (-549) (-796)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2862 (($ $ $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| (-549) (-823)))) (-2796 (($ (-1 (-549) (-549)) $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| (-549) (-1117)) CONST)) (-4213 (($ (-400 (-549))) 9)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1260 (($ $) NIL (|has| (-549) (-300))) (((-400 (-549)) $) NIL)) (-4060 (((-549) $) NIL (|has| (-549) (-534)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2685 (($ $ (-621 (-549)) (-621 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-302 (-549)))) (($ $ (-287 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-287 (-549)))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-1142)) (-621 (-549))) NIL (|has| (-549) (-505 (-1142) (-549)))) (($ $ (-1142) (-549)) NIL (|has| (-549) (-505 (-1142) (-549))))) (-4091 (((-747) $) NIL)) (-3340 (($ $ (-549)) NIL (|has| (-549) (-279 (-549) (-549))))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3455 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1142)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-4288 (($ $) NIL)) (-1404 (((-549) $) NIL)) (-2844 (((-863 (-549)) $) NIL (|has| (-549) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-549) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-549) (-594 (-525)))) (((-372) $) NIL (|has| (-549) (-993))) (((-219) $) NIL (|has| (-549) (-993)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-549) (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) 8) (($ (-549)) NIL) (($ (-1142)) NIL (|has| (-549) (-1009 (-1142)))) (((-400 (-549)) $) NIL) (((-975 16) $) 10)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-549) (-880))) (|has| (-549) (-143))))) (-1723 (((-747)) NIL)) (-2926 (((-549) $) NIL (|has| (-549) (-534)))) (-4053 (((-112) $ $) NIL)) (-3603 (($ $) NIL (|has| (-549) (-796)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1142)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2424 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2411 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2512 (($ $ $) NIL) (($ (-549) (-549)) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL)))
-(((-479) (-13 (-963 (-549)) (-10 -8 (-15 -3845 ((-400 (-549)) $)) (-15 -3845 ((-975 16) $)) (-15 -1260 ((-400 (-549)) $)) (-15 -4213 ($ (-400 (-549))))))) (T -479))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-479)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-975 16)) (-5 *1 (-479)))) (-1260 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-479)))) (-4213 (*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-479)))))
-(-13 (-963 (-549)) (-10 -8 (-15 -3845 ((-400 (-549)) $)) (-15 -3845 ((-975 16) $)) (-15 -1260 ((-400 (-549)) $)) (-15 -4213 ($ (-400 (-549))))))
-((-1958 (((-621 |#2|) $) 23)) (-2273 (((-112) |#2| $) 28)) (-2470 (((-112) (-1 (-112) |#2|) $) 21)) (-2685 (($ $ (-621 (-287 |#2|))) 13) (($ $ (-287 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-621 |#2|) (-621 |#2|)) NIL)) (-3997 (((-747) (-1 (-112) |#2|) $) 22) (((-747) |#2| $) 26)) (-3845 (((-834) $) 37)) (-2150 (((-112) (-1 (-112) |#2|) $) 20)) (-2388 (((-112) $ $) 31)) (-3774 (((-747) $) 17)))
-(((-480 |#1| |#2|) (-10 -8 (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -2685 (|#1| |#1| (-621 |#2|) (-621 |#2|))) (-15 -2685 (|#1| |#1| |#2| |#2|)) (-15 -2685 (|#1| |#1| (-287 |#2|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#2|)))) (-15 -2273 ((-112) |#2| |#1|)) (-15 -3997 ((-747) |#2| |#1|)) (-15 -1958 ((-621 |#2|) |#1|)) (-15 -3997 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2470 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2150 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3774 ((-747) |#1|))) (-481 |#2|) (-1179)) (T -480))
-NIL
-(-10 -8 (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -2685 (|#1| |#1| (-621 |#2|) (-621 |#2|))) (-15 -2685 (|#1| |#1| |#2| |#2|)) (-15 -2685 (|#1| |#1| (-287 |#2|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#2|)))) (-15 -2273 ((-112) |#2| |#1|)) (-15 -3997 ((-747) |#2| |#1|)) (-15 -1958 ((-621 |#2|) |#1|)) (-15 -3997 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2470 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2150 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3774 ((-747) |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) 8)) (-1705 (($) 7 T CONST)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-481 |#1|) (-138) (-1179)) (T -481))
-((-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1179)))) (-1865 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4337)) (-4 *1 (-481 *3)) (-4 *3 (-1179)))) (-2150 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4)) (-4 *4 (-1179)) (-5 *2 (-112)))) (-2470 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4)) (-4 *4 (-1179)) (-5 *2 (-112)))) (-3997 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4)) (-4 *4 (-1179)) (-5 *2 (-747)))) (-2990 (*1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1179)) (-5 *2 (-621 *3)))) (-1958 (*1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1179)) (-5 *2 (-621 *3)))) (-3997 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1179)) (-4 *3 (-1066)) (-5 *2 (-747)))) (-2273 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1179)) (-4 *3 (-1066)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-593 (-834))) (-6 (-593 (-834))) |%noBranch|) (IF (|has| |t#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |t#1| (-1066)) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2796 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4337)) (-15 -1865 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4336)) (PROGN (-15 -2150 ((-112) (-1 (-112) |t#1|) $)) (-15 -2470 ((-112) (-1 (-112) |t#1|) $)) (-15 -3997 ((-747) (-1 (-112) |t#1|) $)) (-15 -2990 ((-621 |t#1|) $)) (-15 -1958 ((-621 |t#1|) $)) (IF (|has| |t#1| (-1066)) (PROGN (-15 -3997 ((-747) |t#1| $)) (-15 -2273 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-2774 (($ (-1124)) 8)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 14) (((-1124) $) 11)) (-2388 (((-112) $ $) 10)))
-(((-482) (-13 (-1066) (-593 (-1124)) (-10 -8 (-15 -2774 ($ (-1124)))))) (T -482))
-((-2774 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-482)))))
-(-13 (-1066) (-593 (-1124)) (-10 -8 (-15 -2774 ($ (-1124)))))
-((-1663 (($ $) 15)) (-1639 (($ $) 24)) (-1685 (($ $) 12)) (-1697 (($ $) 10)) (-1674 (($ $) 17)) (-1649 (($ $) 22)))
-(((-483 |#1|) (-10 -8 (-15 -1649 (|#1| |#1|)) (-15 -1674 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1663 (|#1| |#1|))) (-484)) (T -483))
-NIL
-(-10 -8 (-15 -1649 (|#1| |#1|)) (-15 -1674 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1663 (|#1| |#1|)))
-((-1663 (($ $) 11)) (-1639 (($ $) 10)) (-1685 (($ $) 9)) (-1697 (($ $) 8)) (-1674 (($ $) 7)) (-1649 (($ $) 6)))
+((-2887 (((-112) $ $) NIL)) (-2055 (((-618 (-497)) $) 11)) (-3888 (((-497) $) 10)) (-3576 (((-1124) $) NIL)) (-2056 (($ (-497) (-618 (-497))) 9)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-475) (-13 (-1049) (-10 -8 (-15 -2056 ($ (-497) (-618 (-497)))) (-15 -3888 ((-497) $)) (-15 -2055 ((-618 (-497)) $))))) (T -475))
+((-2056 (*1 *1 *2 *3) (-12 (-5 *3 (-618 (-497))) (-5 *2 (-497)) (-5 *1 (-475)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-618 (-497))) (-5 *1 (-475)))))
+(-13 (-1049) (-10 -8 (-15 -2056 ($ (-497) (-618 (-497)))) (-15 -3888 ((-497) $)) (-15 -2055 ((-618 (-497)) $))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) NIL)) (-3879 (($) NIL T CONST)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-3180 (($ $ $) 32)) (-3855 (($ $ $) 31)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3661 ((|#1| $) 26)) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1326 ((|#1| $) 27)) (-3953 (($ |#1| $) 10)) (-2057 (($ (-618 |#1|)) 12)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-1327 ((|#1| $) 23)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 9)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 29)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) 21 (|has| $ (-6 -4336)))))
+(((-476 |#1|) (-13 (-939 |#1|) (-10 -8 (-15 -2057 ($ (-618 |#1|))))) (-823)) (T -476))
+((-2057 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-476 *3)))))
+(-13 (-939 |#1|) (-10 -8 (-15 -2057 ($ (-618 |#1|)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4185 (($ $) 69)) (-1747 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-2087 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 44)) (-3577 (((-1086) $) NIL)) (-2492 (((-3 |#4| "failed") $) 107)) (-1748 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-535)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3777 (((-2 (|:| -2408 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4300 (((-835) $) 102)) (-2979 (($) 33 T CONST)) (-3375 (((-112) $ $) 109)) (-4180 (($ $) 72) (($ $ $) NIL)) (-4182 (($ $ $) 70)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 73)))
+(((-477 |#1| |#2| |#3| |#4|) (-329 |#1| |#2| |#3| |#4|) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -477))
+NIL
+(-329 |#1| |#2| |#3| |#4|)
+((-2061 (((-535) (-618 (-535))) 30)) (-2058 ((|#1| (-618 |#1|)) 56)) (-2060 (((-618 |#1|) (-618 |#1|)) 57)) (-2059 (((-618 |#1|) (-618 |#1|)) 59)) (-3478 ((|#1| (-618 |#1|)) 58)) (-3138 (((-618 (-535)) (-618 |#1|)) 33)))
+(((-478 |#1|) (-10 -7 (-15 -3478 (|#1| (-618 |#1|))) (-15 -2058 (|#1| (-618 |#1|))) (-15 -2059 ((-618 |#1|) (-618 |#1|))) (-15 -2060 ((-618 |#1|) (-618 |#1|))) (-15 -3138 ((-618 (-535)) (-618 |#1|))) (-15 -2061 ((-535) (-618 (-535))))) (-1200 (-535))) (T -478))
+((-2061 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-535)) (-5 *1 (-478 *4)) (-4 *4 (-1200 *2)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-1200 (-535))) (-5 *2 (-618 (-535))) (-5 *1 (-478 *4)))) (-2060 (*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1200 (-535))) (-5 *1 (-478 *3)))) (-2059 (*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1200 (-535))) (-5 *1 (-478 *3)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1200 (-535))))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1200 (-535))))))
+(-10 -7 (-15 -3478 (|#1| (-618 |#1|))) (-15 -2058 (|#1| (-618 |#1|))) (-15 -2059 ((-618 |#1|) (-618 |#1|))) (-15 -2060 ((-618 |#1|) (-618 |#1|))) (-15 -3138 ((-618 (-535)) (-618 |#1|))) (-15 -2061 ((-535) (-618 (-535)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-535) $) NIL (|has| (-535) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-535) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| (-535) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-535) (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| (-535) (-1009 (-535))))) (-3490 (((-535) $) NIL) (((-1142) $) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-535) (-1009 (-535)))) (((-535) $) NIL (|has| (-535) (-1009 (-535))))) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-535) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| (-535) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-535) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-535) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-535) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| (-535) (-1117)))) (-3521 (((-112) $) NIL (|has| (-535) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-535) (-823)))) (-4301 (($ (-1 (-535) (-535)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-535) (-1117)) CONST)) (-2062 (($ (-400 (-535))) 9)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-535) (-300))) (((-400 (-535)) $) NIL)) (-3448 (((-535) $) NIL (|has| (-535) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-535)) (-618 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-535) (-535)) NIL (|has| (-535) (-302 (-535)))) (($ $ (-286 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-286 (-535)))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-1142)) (-618 (-535))) NIL (|has| (-535) (-505 (-1142) (-535)))) (($ $ (-1142) (-535)) NIL (|has| (-535) (-505 (-1142) (-535))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-535)) NIL (|has| (-535) (-279 (-535) (-535))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-535) $) NIL)) (-4313 (((-861 (-535)) $) NIL (|has| (-535) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-535) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-535) (-594 (-524)))) (((-371) $) NIL (|has| (-535) (-991))) (((-219) $) NIL (|has| (-535) (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-535) (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) 8) (($ (-535)) NIL) (($ (-1142)) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL) (((-975 16) $) 10)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-535) (-881))) (|has| (-535) (-143))))) (-3444 (((-747)) NIL)) (-3449 (((-535) $) NIL (|has| (-535) (-534)))) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL (|has| (-535) (-796)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-535) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-535) (-823)))) (-4291 (($ $ $) NIL) (($ (-535) (-535)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-535) $) NIL) (($ $ (-535)) NIL)))
+(((-479) (-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -4300 ((-975 16) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -2062 ($ (-400 (-535))))))) (T -479))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-479)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-975 16)) (-5 *1 (-479)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-479)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-479)))))
+(-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -4300 ((-975 16) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -2062 ($ (-400 (-535))))))
+((-2502 (((-618 |#2|) $) 23)) (-3579 (((-112) |#2| $) 28)) (-2065 (((-112) (-1 (-112) |#2|) $) 21)) (-4110 (($ $ (-618 (-286 |#2|))) 13) (($ $ (-286 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-618 |#2|) (-618 |#2|)) NIL)) (-2064 (((-747) (-1 (-112) |#2|) $) 22) (((-747) |#2| $) 26)) (-4300 (((-835) $) 37)) (-2066 (((-112) (-1 (-112) |#2|) $) 20)) (-3375 (((-112) $ $) 31)) (-4299 (((-747) $) 17)))
+(((-480 |#1| |#2|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#2| |#2|)) (-15 -4110 (|#1| |#1| (-286 |#2|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#2|)))) (-15 -3579 ((-112) |#2| |#1|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2502 ((-618 |#2|) |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4299 ((-747) |#1|))) (-481 |#2|) (-1178)) (T -480))
+NIL
+(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#2| |#2|)) (-15 -4110 (|#1| |#1| (-286 |#2|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#2|)))) (-15 -3579 ((-112) |#2| |#1|)) (-15 -2064 ((-747) |#2| |#1|)) (-15 -2502 ((-618 |#2|) |#1|)) (-15 -2064 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4299 ((-747) |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-481 |#1|) (-138) (-1178)) (T -481))
+((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1178)))) (-2067 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4337)) (-4 *1 (-481 *3)) (-4 *3 (-1178)))) (-2066 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4)) (-4 *4 (-1178)) (-5 *2 (-112)))) (-2065 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4)) (-4 *4 (-1178)) (-5 *2 (-112)))) (-2064 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4)) (-4 *4 (-1178)) (-5 *2 (-747)))) (-2063 (*1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) (-5 *2 (-618 *3)))) (-2502 (*1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) (-5 *2 (-618 *3)))) (-2064 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-747)))) (-3579 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-593 (-835))) (-6 (-593 (-835))) |%noBranch|) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-1067)) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4301 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4337)) (-15 -2067 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4336)) (PROGN (-15 -2066 ((-112) (-1 (-112) |t#1|) $)) (-15 -2065 ((-112) (-1 (-112) |t#1|) $)) (-15 -2064 ((-747) (-1 (-112) |t#1|) $)) (-15 -2063 ((-618 |t#1|) $)) (-15 -2502 ((-618 |t#1|) $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -2064 ((-747) |t#1| $)) (-15 -3579 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2068 (($ (-1124)) 8)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 14) (((-1124) $) 11)) (-3375 (((-112) $ $) 10)))
+(((-482) (-13 (-1067) (-593 (-1124)) (-10 -8 (-15 -2068 ($ (-1124)))))) (T -482))
+((-2068 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-482)))))
+(-13 (-1067) (-593 (-1124)) (-10 -8 (-15 -2068 ($ (-1124)))))
+((-3829 (($ $) 15)) (-3827 (($ $) 24)) (-3831 (($ $) 12)) (-3832 (($ $) 10)) (-3830 (($ $) 17)) (-3828 (($ $) 22)))
+(((-483 |#1|) (-10 -8 (-15 -3828 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3832 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3829 (|#1| |#1|))) (-484)) (T -483))
+NIL
+(-10 -8 (-15 -3828 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3832 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)))
+((-3829 (($ $) 11)) (-3827 (($ $) 10)) (-3831 (($ $) 9)) (-3832 (($ $) 8)) (-3830 (($ $) 7)) (-3828 (($ $) 6)))
(((-484) (-138)) (T -484))
-((-1663 (*1 *1 *1) (-4 *1 (-484))) (-1639 (*1 *1 *1) (-4 *1 (-484))) (-1685 (*1 *1 *1) (-4 *1 (-484))) (-1697 (*1 *1 *1) (-4 *1 (-484))) (-1674 (*1 *1 *1) (-4 *1 (-484))) (-1649 (*1 *1 *1) (-4 *1 (-484))))
-(-13 (-10 -8 (-15 -1649 ($ $)) (-15 -1674 ($ $)) (-15 -1697 ($ $)) (-15 -1685 ($ $)) (-15 -1639 ($ $)) (-15 -1663 ($ $))))
-((-2120 (((-411 |#4|) |#4| (-1 (-411 |#2|) |#2|)) 42)))
-(((-485 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2120 ((-411 |#4|) |#4| (-1 (-411 |#2|) |#2|)))) (-356) (-1201 |#1|) (-13 (-356) (-145) (-701 |#1| |#2|)) (-1201 |#3|)) (T -485))
-((-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1201 *5)) (-4 *5 (-356)) (-4 *7 (-13 (-356) (-145) (-701 *5 *6))) (-5 *2 (-411 *3)) (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1201 *7)))))
-(-10 -7 (-15 -2120 ((-411 |#4|) |#4| (-1 (-411 |#2|) |#2|))))
-((-3833 (((-112) $ $) NIL)) (-2379 (((-621 $) (-1138 $) (-1142)) NIL) (((-621 $) (-1138 $)) NIL) (((-621 $) (-923 $)) NIL)) (-2767 (($ (-1138 $) (-1142)) NIL) (($ (-1138 $)) NIL) (($ (-923 $)) NIL)) (-3166 (((-112) $) 39)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-3361 (((-112) $ $) 64)) (-1980 (((-621 (-592 $)) $) 48)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3014 (($ $ (-287 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2134 (($ $) NIL)) (-2647 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-3810 (((-621 $) (-1138 $) (-1142)) NIL) (((-621 $) (-1138 $)) NIL) (((-621 $) (-923 $)) NIL)) (-1681 (($ (-1138 $) (-1142)) NIL) (($ (-1138 $)) NIL) (($ (-923 $)) NIL)) (-2713 (((-3 (-592 $) "failed") $) NIL) (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL)) (-2658 (((-592 $) $) NIL) (((-549) $) NIL) (((-400 (-549)) $) 50)) (-2094 (($ $ $) NIL)) (-1698 (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL) (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -1859 (-665 (-400 (-549)))) (|:| |vec| (-1225 (-400 (-549))))) (-665 $) (-1225 $)) NIL) (((-665 (-400 (-549))) (-665 $)) NIL)) (-2558 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3390 (($ $) NIL) (($ (-621 $)) NIL)) (-2415 (((-621 (-114)) $) NIL)) (-2015 (((-114) (-114)) NIL)) (-3987 (((-112) $) 42)) (-3061 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-1393 (((-1091 (-549) (-592 $)) $) 37)) (-3930 (($ $ (-549)) NIL)) (-4117 (((-1138 $) (-1138 $) (-592 $)) 78) (((-1138 $) (-1138 $) (-621 (-592 $))) 55) (($ $ (-592 $)) 67) (($ $ (-621 (-592 $))) 68)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-1417 (((-1138 $) (-592 $)) 65 (|has| $ (-1018)))) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2796 (($ (-1 $ $) (-592 $)) NIL)) (-3364 (((-3 (-592 $) "failed") $) NIL)) (-3696 (($ (-621 $)) NIL) (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-2063 (((-621 (-592 $)) $) NIL)) (-1477 (($ (-114) $) NIL) (($ (-114) (-621 $)) NIL)) (-1581 (((-112) $ (-114)) NIL) (((-112) $ (-1142)) NIL)) (-1991 (($ $) NIL)) (-4035 (((-747) $) NIL)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ (-621 $)) NIL) (($ $ $) NIL)) (-4029 (((-112) $ $) NIL) (((-112) $ (-1142)) NIL)) (-2120 (((-411 $) $) NIL)) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4062 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-2685 (($ $ (-592 $) $) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-621 (-1142)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-1142)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-1142) (-1 $ (-621 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-621 (-114)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-114) (-1 $ (-621 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4091 (((-747) $) NIL)) (-3340 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-621 $)) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3776 (($ $) NIL) (($ $ $) NIL)) (-3455 (($ $ (-747)) NIL) (($ $) 36)) (-1404 (((-1091 (-549) (-592 $)) $) 20)) (-2539 (($ $) NIL (|has| $ (-1018)))) (-2844 (((-372) $) 92) (((-219) $) 100) (((-167 (-372)) $) 108)) (-3845 (((-834) $) NIL) (($ (-592 $)) NIL) (($ (-400 (-549))) NIL) (($ $) NIL) (($ (-549)) NIL) (($ (-1091 (-549) (-592 $))) 21)) (-1723 (((-747)) NIL)) (-4136 (($ $) NIL) (($ (-621 $)) NIL)) (-3234 (((-112) (-114)) 84)) (-4053 (((-112) $ $) NIL)) (-3275 (($) 10 T CONST)) (-3287 (($) 22 T CONST)) (-1700 (($ $ (-747)) NIL) (($ $) NIL)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 24)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-2512 (($ $ $) 44)) (-2499 (($ $ $) NIL) (($ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-400 (-549))) NIL) (($ $ (-549)) 46) (($ $ (-747)) NIL) (($ $ (-892)) NIL)) (* (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL) (($ $ $) 27) (($ (-549) $) NIL) (($ (-747) $) NIL) (($ (-892) $) NIL)))
-(((-486) (-13 (-295) (-27) (-1009 (-549)) (-1009 (-400 (-549))) (-617 (-549)) (-993) (-617 (-400 (-549))) (-145) (-594 (-167 (-372))) (-227) (-10 -8 (-15 -3845 ($ (-1091 (-549) (-592 $)))) (-15 -1393 ((-1091 (-549) (-592 $)) $)) (-15 -1404 ((-1091 (-549) (-592 $)) $)) (-15 -2558 ($ $)) (-15 -3361 ((-112) $ $)) (-15 -4117 ((-1138 $) (-1138 $) (-592 $))) (-15 -4117 ((-1138 $) (-1138 $) (-621 (-592 $)))) (-15 -4117 ($ $ (-592 $))) (-15 -4117 ($ $ (-621 (-592 $))))))) (T -486))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1091 (-549) (-592 (-486)))) (-5 *1 (-486)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-1091 (-549) (-592 (-486)))) (-5 *1 (-486)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-1091 (-549) (-592 (-486)))) (-5 *1 (-486)))) (-2558 (*1 *1 *1) (-5 *1 (-486))) (-3361 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486)))) (-4117 (*1 *2 *2 *3) (-12 (-5 *2 (-1138 (-486))) (-5 *3 (-592 (-486))) (-5 *1 (-486)))) (-4117 (*1 *2 *2 *3) (-12 (-5 *2 (-1138 (-486))) (-5 *3 (-621 (-592 (-486)))) (-5 *1 (-486)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-486))) (-5 *1 (-486)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-592 (-486)))) (-5 *1 (-486)))))
-(-13 (-295) (-27) (-1009 (-549)) (-1009 (-400 (-549))) (-617 (-549)) (-993) (-617 (-400 (-549))) (-145) (-594 (-167 (-372))) (-227) (-10 -8 (-15 -3845 ($ (-1091 (-549) (-592 $)))) (-15 -1393 ((-1091 (-549) (-592 $)) $)) (-15 -1404 ((-1091 (-549) (-592 $)) $)) (-15 -2558 ($ $)) (-15 -3361 ((-112) $ $)) (-15 -4117 ((-1138 $) (-1138 $) (-592 $))) (-15 -4117 ((-1138 $) (-1138 $) (-621 (-592 $)))) (-15 -4117 ($ $ (-592 $))) (-15 -4117 ($ $ (-621 (-592 $))))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4106 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#1| $ (-549) |#1|) 25 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) NIL (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) 22 (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) 21)) (-2882 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1066))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1066)))) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3743 (($ (-747) |#1|) 14)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) 12 (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-1586 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-549) $) 23 (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2614 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3645 ((|#1| $) NIL (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3158 (($ $ |#1|) 10 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) 13)) (-3340 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 24) (($ $ (-1192 (-549))) NIL)) (-2166 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) NIL)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3774 (((-747) $) 9 (|has| $ (-6 -4336)))))
-(((-487 |#1| |#2|) (-19 |#1|) (-1179) (-549)) (T -487))
+((-3829 (*1 *1 *1) (-4 *1 (-484))) (-3827 (*1 *1 *1) (-4 *1 (-484))) (-3831 (*1 *1 *1) (-4 *1 (-484))) (-3832 (*1 *1 *1) (-4 *1 (-484))) (-3830 (*1 *1 *1) (-4 *1 (-484))) (-3828 (*1 *1 *1) (-4 *1 (-484))))
+(-13 (-10 -8 (-15 -3828 ($ $)) (-15 -3830 ($ $)) (-15 -3832 ($ $)) (-15 -3831 ($ $)) (-15 -3827 ($ $)) (-15 -3829 ($ $))))
+((-4075 (((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)) 42)))
+(((-485 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)))) (-356) (-1200 |#1|) (-13 (-356) (-145) (-701 |#1| |#2|)) (-1200 |#3|)) (T -485))
+((-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) (-4 *7 (-13 (-356) (-145) (-701 *5 *6))) (-5 *2 (-398 *3)) (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1200 *7)))))
+(-10 -7 (-15 -4075 ((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|))))
+((-2887 (((-112) $ $) NIL)) (-1662 (((-618 $) (-1136 $) (-1142)) NIL) (((-618 $) (-1136 $)) NIL) (((-618 $) (-917 $)) NIL)) (-1258 (($ (-1136 $) (-1142)) NIL) (($ (-1136 $)) NIL) (($ (-917 $)) NIL)) (-3522 (((-112) $) 39)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-2069 (((-112) $ $) 64)) (-1655 (((-618 (-591 $)) $) 48)) (-1363 (((-3 $ "failed") $ $) NIL)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3358 (($ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-1259 (((-618 $) (-1136 $) (-1142)) NIL) (((-618 $) (-1136 $)) NIL) (((-618 $) (-917 $)) NIL)) (-3517 (($ (-1136 $) (-1142)) NIL) (($ (-1136 $)) NIL) (($ (-917 $)) NIL)) (-3491 (((-3 (-591 $) #1="failed") $) NIL) (((-3 (-535) #1#) $) NIL) (((-3 (-400 (-535)) #1#) $) NIL)) (-3490 (((-591 $) $) NIL) (((-535) $) NIL) (((-400 (-535)) $) 50)) (-2883 (($ $ $) NIL)) (-2353 (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-400 (-535)))) (|:| |vec| (-1224 (-400 (-535))))) (-665 $) (-1224 $)) NIL) (((-665 (-400 (-535))) (-665 $)) NIL)) (-4185 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2892 (($ $) NIL) (($ (-618 $)) NIL)) (-1654 (((-618 (-113)) $) NIL)) (-3368 (((-113) (-113)) NIL)) (-2493 (((-112) $) 42)) (-2994 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-3319 (((-1091 (-535) (-591 $)) $) 37)) (-3332 (($ $ (-535)) NIL)) (-3450 (((-1136 $) (-1136 $) (-591 $)) 78) (((-1136 $) (-1136 $) (-618 (-591 $))) 55) (($ $ (-591 $)) 67) (($ $ (-618 (-591 $))) 68)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL)) (-1652 (((-1136 $) (-591 $)) 65 (|has| $ (-1018)))) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 $ $) (-591 $)) NIL)) (-1657 (((-3 (-591 $) "failed") $) NIL)) (-2008 (($ (-618 $)) NIL) (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-1656 (((-618 (-591 $)) $) NIL)) (-2308 (($ (-113) $) NIL) (($ (-113) (-618 $)) NIL)) (-2952 (((-112) $ (-113)) NIL) (((-112) $ (-1142)) NIL)) (-2725 (($ $) NIL)) (-2922 (((-747) $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ (-618 $)) NIL) (($ $ $) NIL)) (-1653 (((-112) $ $) NIL) (((-112) $ (-1142)) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2995 (((-112) $) NIL (|has| $ (-1009 (-535))))) (-4110 (($ $ (-591 $) $) NIL) (($ $ (-618 (-591 $)) (-618 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-1142)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-1142) (-1 $ (-618 $))) NIL) (($ $ (-1142) (-1 $ $)) NIL) (($ $ (-618 (-113)) (-618 (-1 $ $))) NIL) (($ $ (-618 (-113)) (-618 (-1 $ (-618 $)))) NIL) (($ $ (-113) (-1 $ (-618 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1699 (((-747) $) NIL)) (-4142 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-618 $)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1658 (($ $) NIL) (($ $ $) NIL)) (-4153 (($ $ (-747)) NIL) (($ $) 36)) (-3318 (((-1091 (-535) (-591 $)) $) 20)) (-3519 (($ $) NIL (|has| $ (-1018)))) (-4313 (((-371) $) 92) (((-219) $) 100) (((-166 (-371)) $) 108)) (-4300 (((-835) $) NIL) (($ (-591 $)) NIL) (($ (-400 (-535))) NIL) (($ $) NIL) (($ (-535)) NIL) (($ (-1091 (-535) (-591 $))) 21)) (-3444 (((-747)) NIL)) (-2909 (($ $) NIL) (($ (-618 $)) NIL)) (-2329 (((-112) (-113)) 84)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 10 T CONST)) (-2985 (($) 22 T CONST)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 24)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4291 (($ $ $) 44)) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-400 (-535))) NIL) (($ $ (-535)) 46) (($ $ (-747)) NIL) (($ $ (-890)) NIL)) (* (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL) (($ $ $) 27) (($ (-535) $) NIL) (($ (-747) $) NIL) (($ (-890) $) NIL)))
+(((-486) (-13 (-291) (-27) (-1009 (-535)) (-1009 (-400 (-535))) (-617 (-535)) (-991) (-617 (-400 (-535))) (-145) (-594 (-166 (-371))) (-227) (-10 -8 (-15 -4300 ($ (-1091 (-535) (-591 $)))) (-15 -3319 ((-1091 (-535) (-591 $)) $)) (-15 -3318 ((-1091 (-535) (-591 $)) $)) (-15 -4185 ($ $)) (-15 -2069 ((-112) $ $)) (-15 -3450 ((-1136 $) (-1136 $) (-591 $))) (-15 -3450 ((-1136 $) (-1136 $) (-618 (-591 $)))) (-15 -3450 ($ $ (-591 $))) (-15 -3450 ($ $ (-618 (-591 $))))))) (T -486))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1091 (-535) (-591 (-486)))) (-5 *1 (-486)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-486)))) (-5 *1 (-486)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-486)))) (-5 *1 (-486)))) (-4185 (*1 *1 *1) (-5 *1 (-486))) (-2069 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-1136 (-486))) (-5 *3 (-591 (-486))) (-5 *1 (-486)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-1136 (-486))) (-5 *3 (-618 (-591 (-486)))) (-5 *1 (-486)))) (-3450 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-486))) (-5 *1 (-486)))) (-3450 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-591 (-486)))) (-5 *1 (-486)))))
+(-13 (-291) (-27) (-1009 (-535)) (-1009 (-400 (-535))) (-617 (-535)) (-991) (-617 (-400 (-535))) (-145) (-594 (-166 (-371))) (-227) (-10 -8 (-15 -4300 ($ (-1091 (-535) (-591 $)))) (-15 -3319 ((-1091 (-535) (-591 $)) $)) (-15 -3318 ((-1091 (-535) (-591 $)) $)) (-15 -4185 ($ $)) (-15 -2069 ((-112) $ $)) (-15 -3450 ((-1136 $) (-1136 $) (-591 $))) (-15 -3450 ((-1136 $) (-1136 $) (-618 (-591 $)))) (-15 -3450 ($ $ (-591 $))) (-15 -3450 ($ $ (-618 (-591 $))))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) |#1|) 25 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 22 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 21)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 14)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 12 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) 23 (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) 10 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 13)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) 24) (($ $ (-1191 (-535))) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) 9 (|has| $ (-6 -4336)))))
+(((-487 |#1| |#2|) (-19 |#1|) (-1178) (-535)) (T -487))
NIL
(-19 |#1|)
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1915 (($ $ (-549) (-487 |#1| |#3|)) NIL)) (-2058 (($ $ (-549) (-487 |#1| |#2|)) NIL)) (-1705 (($) NIL T CONST)) (-2413 (((-487 |#1| |#3|) $ (-549)) NIL)) (-1878 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1808 ((|#1| $ (-549) (-549)) NIL)) (-2990 (((-621 |#1|) $) NIL)) (-2141 (((-747) $) NIL)) (-3743 (($ (-747) (-747) |#1|) NIL)) (-2154 (((-747) $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-2437 (((-549) $) NIL)) (-2103 (((-549) $) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2303 (((-549) $) NIL)) (-2362 (((-549) $) NIL)) (-1865 (($ (-1 |#1| |#1|) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3158 (($ $ |#1|) NIL)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-4102 (((-487 |#1| |#2|) $ (-549)) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-488 |#1| |#2| |#3|) (-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) (-1179) (-549) (-549)) (T -488))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) (-535) |#1|) NIL)) (-1302 (($ $ (-535) (-487 |#1| |#3|)) NIL)) (-1301 (($ $ (-535) (-487 |#1| |#2|)) NIL)) (-3879 (($) NIL T CONST)) (-3430 (((-487 |#1| |#3|) $ (-535)) NIL)) (-1632 ((|#1| $ (-535) (-535) |#1|) NIL)) (-3431 ((|#1| $ (-535) (-535)) NIL)) (-2063 (((-618 |#1|) $) NIL)) (-3433 (((-747) $) NIL)) (-3960 (($ (-747) (-747) |#1|) NIL)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3437 (((-535) $) NIL)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3436 (((-535) $) NIL)) (-3434 (((-535) $) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) (-535)) NIL) ((|#1| $ (-535) (-535) |#1|) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-3429 (((-487 |#1| |#2|) $ (-535)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-488 |#1| |#2| |#3|) (-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) (-1178) (-535) (-535)) (T -488))
NIL
(-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|))
-((-1592 (((-621 (-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-747) (-747)) 27)) (-1534 (((-621 (-1138 |#1|)) |#1| (-747) (-747) (-747)) 34)) (-2593 (((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-621 |#3|) (-621 (-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-747)) 85)))
-(((-489 |#1| |#2| |#3|) (-10 -7 (-15 -1534 ((-621 (-1138 |#1|)) |#1| (-747) (-747) (-747))) (-15 -1592 ((-621 (-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-747) (-747))) (-15 -2593 ((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-621 |#3|) (-621 (-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-747)))) (-342) (-1201 |#1|) (-1201 |#2|)) (T -489))
-((-2593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 (-2 (|:| -3420 (-665 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-665 *7))))) (-5 *5 (-747)) (-4 *8 (-1201 *7)) (-4 *7 (-1201 *6)) (-4 *6 (-342)) (-5 *2 (-2 (|:| -3420 (-665 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-665 *7)))) (-5 *1 (-489 *6 *7 *8)))) (-1592 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-747)) (-4 *5 (-342)) (-4 *6 (-1201 *5)) (-5 *2 (-621 (-2 (|:| -3420 (-665 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-665 *6))))) (-5 *1 (-489 *5 *6 *7)) (-5 *3 (-2 (|:| -3420 (-665 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-665 *6)))) (-4 *7 (-1201 *6)))) (-1534 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-747)) (-4 *3 (-342)) (-4 *5 (-1201 *3)) (-5 *2 (-621 (-1138 *3))) (-5 *1 (-489 *3 *5 *6)) (-4 *6 (-1201 *5)))))
-(-10 -7 (-15 -1534 ((-621 (-1138 |#1|)) |#1| (-747) (-747) (-747))) (-15 -1592 ((-621 (-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-747) (-747))) (-15 -2593 ((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-621 |#3|) (-621 (-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-747))))
-((-2060 (((-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))) 62)) (-1678 ((|#1| (-665 |#1|) |#1| (-747)) 25)) (-2385 (((-747) (-747) (-747)) 30)) (-2287 (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 42)) (-3625 (((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|) 50) (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 47)) (-3346 ((|#1| (-665 |#1|) (-665 |#1|) |#1| (-549)) 29)) (-4254 ((|#1| (-665 |#1|)) 18)))
-(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -4254 (|#1| (-665 |#1|))) (-15 -1678 (|#1| (-665 |#1|) |#1| (-747))) (-15 -3346 (|#1| (-665 |#1|) (-665 |#1|) |#1| (-549))) (-15 -2385 ((-747) (-747) (-747))) (-15 -3625 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3625 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2287 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2060 ((-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))))) (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $)))) (-1201 |#1|) (-402 |#1| |#2|)) (T -490))
-((-2060 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3420 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $))))) (-4 *4 (-1201 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-2287 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $))))) (-4 *4 (-1201 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-3625 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $))))) (-4 *4 (-1201 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-3625 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $))))) (-4 *4 (-1201 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-2385 (*1 *2 *2 *2) (-12 (-5 *2 (-747)) (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $))))) (-4 *4 (-1201 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-3346 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-665 *2)) (-5 *4 (-549)) (-4 *2 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $))))) (-4 *5 (-1201 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5)))) (-1678 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-665 *2)) (-5 *4 (-747)) (-4 *2 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $))))) (-4 *5 (-1201 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5)))) (-4254 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *4 (-1201 *2)) (-4 *2 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $))))) (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-402 *2 *4)))))
-(-10 -7 (-15 -4254 (|#1| (-665 |#1|))) (-15 -1678 (|#1| (-665 |#1|) |#1| (-747))) (-15 -3346 (|#1| (-665 |#1|) (-665 |#1|) |#1| (-549))) (-15 -2385 ((-747) (-747) (-747))) (-15 -3625 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3625 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2287 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2060 ((-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -3420 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))))))
-((-3833 (((-112) $ $) NIL)) (-1339 (($ $) NIL)) (-2463 (($ $ $) 35)) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) $) NIL (|has| (-112) (-823))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4106 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-823)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-3193 (($ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-2253 (((-112) $ (-1192 (-549)) (-112)) NIL (|has| $ (-6 -4337))) (((-112) $ (-549) (-112)) 36 (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066))))) (-3812 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066))))) (-2558 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066))))) (-1878 (((-112) $ (-549) (-112)) NIL (|has| $ (-6 -4337)))) (-1808 (((-112) $ (-549)) NIL)) (-2882 (((-549) (-112) $ (-549)) NIL (|has| (-112) (-1066))) (((-549) (-112) $) NIL (|has| (-112) (-1066))) (((-549) (-1 (-112) (-112)) $) NIL)) (-2990 (((-621 (-112)) $) NIL (|has| $ (-6 -4336)))) (-4205 (($ $ $) 33)) (-4007 (($ $) NIL)) (-4034 (($ $ $) NIL)) (-3743 (($ (-747) (-112)) 23)) (-1589 (($ $ $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) 8 (|has| (-549) (-823)))) (-2862 (($ $ $) NIL)) (-1586 (($ $ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1958 (((-621 (-112)) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL)) (-1865 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-2614 (($ $ $ (-549)) NIL) (($ (-112) $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL)) (-3645 (((-112) $) NIL (|has| (-549) (-823)))) (-1917 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3158 (($ $ (-112)) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-112)) (-621 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066)))) (($ $ (-287 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066)))) (($ $ (-621 (-287 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066))))) (-1738 (((-621 (-112)) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) 24)) (-3340 (($ $ (-1192 (-549))) NIL) (((-112) $ (-549)) 18) (((-112) $ (-549) (-112)) NIL)) (-2166 (($ $ (-1192 (-549))) NIL) (($ $ (-549)) NIL)) (-3997 (((-747) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1066)))) (((-747) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) 25)) (-2844 (((-525) $) NIL (|has| (-112) (-594 (-525))))) (-3853 (($ (-621 (-112))) NIL)) (-1951 (($ (-621 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3845 (((-834) $) 22)) (-2150 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-1820 (($ $ $) 31)) (-3705 (($ $ $) NIL)) (-3798 (($ $ $) 39)) (-3808 (($ $) 37)) (-3788 (($ $ $) 38)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 26)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 27)) (-3695 (($ $ $) NIL)) (-3774 (((-747) $) 10 (|has| $ (-6 -4336)))))
-(((-491 |#1|) (-13 (-123) (-10 -8 (-15 -3808 ($ $)) (-15 -3798 ($ $ $)) (-15 -3788 ($ $ $)))) (-549)) (T -491))
-((-3808 (*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-549)))) (-3798 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-549)))) (-3788 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-549)))))
-(-13 (-123) (-10 -8 (-15 -3808 ($ $)) (-15 -3798 ($ $ $)) (-15 -3788 ($ $ $))))
-((-4302 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1138 |#4|)) 35)) (-1405 (((-1138 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1138 |#4|)) 22)) (-3003 (((-3 (-665 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-665 (-1138 |#4|))) 46)) (-2952 (((-1138 (-1138 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1405 (|#2| (-1 |#1| |#4|) (-1138 |#4|))) (-15 -1405 ((-1138 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4302 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1138 |#4|))) (-15 -3003 ((-3 (-665 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-665 (-1138 |#4|)))) (-15 -2952 ((-1138 (-1138 |#4|)) (-1 |#4| |#1|) |#3|))) (-1018) (-1201 |#1|) (-1201 |#2|) (-1018)) (T -492))
-((-2952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *6 (-1201 *5)) (-5 *2 (-1138 (-1138 *7))) (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1201 *6)))) (-3003 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-665 (-1138 *8))) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-1201 *5)) (-5 *2 (-665 *6)) (-5 *1 (-492 *5 *6 *7 *8)) (-4 *7 (-1201 *6)))) (-4302 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1138 *7)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *2 (-1201 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1201 *2)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *4 (-1201 *5)) (-5 *2 (-1138 *7)) (-5 *1 (-492 *5 *4 *6 *7)) (-4 *6 (-1201 *4)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1138 *7)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *2 (-1201 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1201 *2)))))
-(-10 -7 (-15 -1405 (|#2| (-1 |#1| |#4|) (-1138 |#4|))) (-15 -1405 ((-1138 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4302 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1138 |#4|))) (-15 -3003 ((-3 (-665 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-665 (-1138 |#4|)))) (-15 -2952 ((-1138 (-1138 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-3833 (((-112) $ $) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3431 (((-1230) $) 19)) (-3340 (((-1124) $ (-1142)) 23)) (-2697 (((-1230) $) 15)) (-3845 (((-834) $) 21) (($ (-1124)) 20)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 9)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 8)))
-(((-493) (-13 (-823) (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 ((-1230) $)) (-15 -3431 ((-1230) $)) (-15 -3845 ($ (-1124)))))) (T -493))
-((-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1124)) (-5 *1 (-493)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-493)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-493)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-493)))))
-(-13 (-823) (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 ((-1230) $)) (-15 -3431 ((-1230) $)) (-15 -3845 ($ (-1124)))))
-((-2840 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2632 ((|#1| |#4|) 10)) (-2715 ((|#3| |#4|) 17)))
-(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2632 (|#1| |#4|)) (-15 -2715 (|#3| |#4|)) (-15 -2840 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-541) (-963 |#1|) (-366 |#1|) (-366 |#2|)) (T -494))
-((-2840 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-963 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-494 *4 *5 *6 *3)) (-4 *6 (-366 *4)) (-4 *3 (-366 *5)))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-963 *4)) (-4 *2 (-366 *4)) (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-366 *5)))) (-2632 (*1 *2 *3) (-12 (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-494 *2 *4 *5 *3)) (-4 *5 (-366 *2)) (-4 *3 (-366 *4)))))
-(-10 -7 (-15 -2632 (|#1| |#4|)) (-15 -2715 (|#3| |#4|)) (-15 -2840 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-3833 (((-112) $ $) NIL)) (-1803 (((-112) $ (-621 |#3|)) 105) (((-112) $) 106)) (-3166 (((-112) $) 149)) (-3843 (($ $ |#4|) 97) (($ $ |#4| (-621 |#3|)) 101)) (-1655 (((-1131 (-621 (-923 |#1|)) (-621 (-287 (-923 |#1|)))) (-621 |#4|)) 142 (|has| |#3| (-594 (-1142))))) (-2112 (($ $ $) 91) (($ $ |#4|) 89)) (-3987 (((-112) $) 148)) (-2883 (($ $) 109)) (-2677 (((-1124) $) NIL)) (-1795 (($ $ $) 83) (($ (-621 $)) 85)) (-3882 (((-112) |#4| $) 108)) (-2900 (((-112) $ $) 72)) (-4296 (($ (-621 |#4|)) 90)) (-3988 (((-1086) $) NIL)) (-3971 (($ (-621 |#4|)) 146)) (-3384 (((-112) $) 147)) (-3164 (($ $) 74)) (-1914 (((-621 |#4|) $) 63)) (-1428 (((-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)) $ (-621 |#3|)) NIL)) (-2073 (((-112) |#4| $) 77)) (-3128 (((-549) $ (-621 |#3|)) 110) (((-549) $) 111)) (-3845 (((-834) $) 145) (($ (-621 |#4|)) 86)) (-2897 (($ (-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $))) NIL)) (-2388 (((-112) $ $) 73)) (-2485 (($ $ $) 93)) (** (($ $ (-747)) 96)) (* (($ $ $) 95)))
-(((-495 |#1| |#2| |#3| |#4|) (-13 (-1066) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 -2485 ($ $ $)) (-15 -3987 ((-112) $)) (-15 -3166 ((-112) $)) (-15 -2073 ((-112) |#4| $)) (-15 -2900 ((-112) $ $)) (-15 -3882 ((-112) |#4| $)) (-15 -1803 ((-112) $ (-621 |#3|))) (-15 -1803 ((-112) $)) (-15 -1795 ($ $ $)) (-15 -1795 ($ (-621 $))) (-15 -2112 ($ $ $)) (-15 -2112 ($ $ |#4|)) (-15 -3164 ($ $)) (-15 -1428 ((-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)) $ (-621 |#3|))) (-15 -2897 ($ (-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)))) (-15 -3128 ((-549) $ (-621 |#3|))) (-15 -3128 ((-549) $)) (-15 -2883 ($ $)) (-15 -4296 ($ (-621 |#4|))) (-15 -3971 ($ (-621 |#4|))) (-15 -3384 ((-112) $)) (-15 -1914 ((-621 |#4|) $)) (-15 -3845 ($ (-621 |#4|))) (-15 -3843 ($ $ |#4|)) (-15 -3843 ($ $ |#4| (-621 |#3|))) (IF (|has| |#3| (-594 (-1142))) (-15 -1655 ((-1131 (-621 (-923 |#1|)) (-621 (-287 (-923 |#1|)))) (-621 |#4|))) |%noBranch|))) (-356) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -495))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-2485 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (-3987 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-3166 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-2073 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))) (-2900 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-3882 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))) (-1803 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))) (-1803 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-1795 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (-1795 (*1 *1 *2) (-12 (-5 *2 (-621 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-2112 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (-2112 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-920 *3 *4 *5)))) (-3164 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (-1428 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *2 (-2 (|:| |mval| (-665 *4)) (|:| |invmval| (-665 *4)) (|:| |genIdeal| (-495 *4 *5 *6 *7)))) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))) (-2897 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-665 *3)) (|:| |invmval| (-665 *3)) (|:| |genIdeal| (-495 *3 *4 *5 *6)))) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-3128 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *2 (-549)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))) (-3128 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-549)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-2883 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (-4296 (*1 *1 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) (-3384 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-1914 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *6)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) (-3843 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-920 *3 *4 *5)))) (-3843 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-920 *4 *5 *6)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *5 *6)) (-4 *6 (-594 (-1142))) (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1131 (-621 (-923 *4)) (-621 (-287 (-923 *4))))) (-5 *1 (-495 *4 *5 *6 *7)))))
-(-13 (-1066) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 -2485 ($ $ $)) (-15 -3987 ((-112) $)) (-15 -3166 ((-112) $)) (-15 -2073 ((-112) |#4| $)) (-15 -2900 ((-112) $ $)) (-15 -3882 ((-112) |#4| $)) (-15 -1803 ((-112) $ (-621 |#3|))) (-15 -1803 ((-112) $)) (-15 -1795 ($ $ $)) (-15 -1795 ($ (-621 $))) (-15 -2112 ($ $ $)) (-15 -2112 ($ $ |#4|)) (-15 -3164 ($ $)) (-15 -1428 ((-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)) $ (-621 |#3|))) (-15 -2897 ($ (-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)))) (-15 -3128 ((-549) $ (-621 |#3|))) (-15 -3128 ((-549) $)) (-15 -2883 ($ $)) (-15 -4296 ($ (-621 |#4|))) (-15 -3971 ($ (-621 |#4|))) (-15 -3384 ((-112) $)) (-15 -1914 ((-621 |#4|) $)) (-15 -3845 ($ (-621 |#4|))) (-15 -3843 ($ $ |#4|)) (-15 -3843 ($ $ |#4| (-621 |#3|))) (IF (|has| |#3| (-594 (-1142))) (-15 -1655 ((-1131 (-621 (-923 |#1|)) (-621 (-287 (-923 |#1|)))) (-621 |#4|))) |%noBranch|)))
-((-4224 (((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) 150)) (-3395 (((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) 151)) (-1630 (((-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) 108)) (-2471 (((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) NIL)) (-1475 (((-621 (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) 153)) (-1429 (((-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-621 (-836 |#1|))) 165)))
-(((-496 |#1| |#2|) (-10 -7 (-15 -4224 ((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -3395 ((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -2471 ((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -1630 ((-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -1475 ((-621 (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -1429 ((-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-621 (-836 |#1|))))) (-621 (-1142)) (-747)) (T -496))
-((-1429 (*1 *2 *2 *3) (-12 (-5 *2 (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4) (-241 *4 (-400 (-549))))) (-5 *3 (-621 (-836 *4))) (-14 *4 (-621 (-1142))) (-14 *5 (-747)) (-5 *1 (-496 *4 *5)))) (-1475 (*1 *2 *3) (-12 (-14 *4 (-621 (-1142))) (-14 *5 (-747)) (-5 *2 (-621 (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4) (-241 *4 (-400 (-549)))))) (-5 *1 (-496 *4 *5)) (-5 *3 (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4) (-241 *4 (-400 (-549))))))) (-1630 (*1 *2 *2) (-12 (-5 *2 (-495 (-400 (-549)) (-234 *4 (-747)) (-836 *3) (-241 *3 (-400 (-549))))) (-14 *3 (-621 (-1142))) (-14 *4 (-747)) (-5 *1 (-496 *3 *4)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4) (-241 *4 (-400 (-549))))) (-14 *4 (-621 (-1142))) (-14 *5 (-747)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4) (-241 *4 (-400 (-549))))) (-14 *4 (-621 (-1142))) (-14 *5 (-747)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-4224 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4) (-241 *4 (-400 (-549))))) (-14 *4 (-621 (-1142))) (-14 *5 (-747)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))))
-(-10 -7 (-15 -4224 ((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -3395 ((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -2471 ((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -1630 ((-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -1475 ((-621 (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -1429 ((-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-621 (-836 |#1|)))))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 11) (((-1147) $) NIL) (($ (-1147)) NIL) (((-1142) $) 8)) (-2388 (((-112) $ $) NIL)))
+((-2071 (((-618 (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-747) (-747)) 27)) (-2070 (((-618 (-1136 |#1|)) |#1| (-747) (-747) (-747)) 34)) (-2190 (((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-618 |#3|) (-618 (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-747)) 85)))
+(((-489 |#1| |#2| |#3|) (-10 -7 (-15 -2070 ((-618 (-1136 |#1|)) |#1| (-747) (-747) (-747))) (-15 -2071 ((-618 (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-747) (-747))) (-15 -2190 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-618 |#3|) (-618 (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-747)))) (-343) (-1200 |#1|) (-1200 |#2|)) (T -489))
+((-2190 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 (-2 (|:| -2123 (-665 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-665 *7))))) (-5 *5 (-747)) (-4 *8 (-1200 *7)) (-4 *7 (-1200 *6)) (-4 *6 (-343)) (-5 *2 (-2 (|:| -2123 (-665 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-665 *7)))) (-5 *1 (-489 *6 *7 *8)))) (-2071 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-747)) (-4 *5 (-343)) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-2 (|:| -2123 (-665 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-665 *6))))) (-5 *1 (-489 *5 *6 *7)) (-5 *3 (-2 (|:| -2123 (-665 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-665 *6)))) (-4 *7 (-1200 *6)))) (-2070 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-747)) (-4 *3 (-343)) (-4 *5 (-1200 *3)) (-5 *2 (-618 (-1136 *3))) (-5 *1 (-489 *3 *5 *6)) (-4 *6 (-1200 *5)))))
+(-10 -7 (-15 -2070 ((-618 (-1136 |#1|)) |#1| (-747) (-747) (-747))) (-15 -2071 ((-618 (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-747) (-747))) (-15 -2190 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-618 |#3|) (-618 (-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-747))))
+((-2077 (((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))) 62)) (-2072 ((|#1| (-665 |#1|) |#1| (-747)) 25)) (-2074 (((-747) (-747) (-747)) 30)) (-2076 (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 42)) (-2075 (((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|) 50) (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 47)) (-2073 ((|#1| (-665 |#1|) (-665 |#1|) |#1| (-535)) 29)) (-3671 ((|#1| (-665 |#1|)) 18)))
+(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -3671 (|#1| (-665 |#1|))) (-15 -2072 (|#1| (-665 |#1|) |#1| (-747))) (-15 -2073 (|#1| (-665 |#1|) (-665 |#1|) |#1| (-535))) (-15 -2074 ((-747) (-747) (-747))) (-15 -2075 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2075 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2076 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2077 ((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))))) (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $)))) (-1200 |#1|) (-403 |#1| |#2|)) (T -490))
+((-2077 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2076 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2075 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2075 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2074 (*1 *2 *2 *2) (-12 (-5 *2 (-747)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2073 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-665 *2)) (-5 *4 (-535)) (-4 *2 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *5 (-1200 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-2072 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-665 *2)) (-5 *4 (-747)) (-4 *2 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *5 (-1200 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *4 (-1200 *2)) (-4 *2 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-403 *2 *4)))))
+(-10 -7 (-15 -3671 (|#1| (-665 |#1|))) (-15 -2072 (|#1| (-665 |#1|) |#1| (-747))) (-15 -2073 (|#1| (-665 |#1|) (-665 |#1|) |#1| (-535))) (-15 -2074 ((-747) (-747) (-747))) (-15 -2075 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2075 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2076 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2077 ((-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -2123 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))))))
+((-2887 (((-112) $ $) NIL)) (-3662 (($ $) NIL)) (-3658 (($ $ $) 35)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) $) NIL (|has| (-112) (-823))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-823)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-3230 (($ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4130 (((-112) $ (-1191 (-535)) (-112)) NIL (|has| $ (-6 -4337))) (((-112) $ (-535) (-112)) 36 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-3748 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-4185 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-1632 (((-112) $ (-535) (-112)) NIL (|has| $ (-6 -4337)))) (-3431 (((-112) $ (-535)) NIL)) (-3761 (((-535) (-112) $ (-535)) NIL (|has| (-112) (-1067))) (((-535) (-112) $) NIL (|has| (-112) (-1067))) (((-535) (-1 (-112) (-112)) $) NIL)) (-2063 (((-618 (-112)) $) NIL (|has| $ (-6 -4336)))) (-3178 (($ $ $) 33)) (-3659 (($ $) NIL)) (-1355 (($ $ $) NIL)) (-3960 (($ (-747) (-112)) 23)) (-1356 (($ $ $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 8 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL)) (-3855 (($ $ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2502 (((-618 (-112)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL)) (-2067 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-2373 (($ $ $ (-535)) NIL) (($ (-112) $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-112) $) NIL (|has| (-535) (-823)))) (-1395 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2297 (($ $ (-112)) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-112)) (-618 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-286 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-618 (-286 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067))))) (-2303 (((-618 (-112)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 24)) (-4142 (($ $ (-1191 (-535))) NIL) (((-112) $ (-535)) 18) (((-112) $ (-535) (-112)) NIL)) (-2374 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-2064 (((-747) (-112) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-112) (-1067)))) (((-747) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) 25)) (-4313 (((-524) $) NIL (|has| (-112) (-594 (-524))))) (-3867 (($ (-618 (-112))) NIL)) (-4144 (($ (-618 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4300 (((-835) $) 22)) (-2066 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4336)))) (-3179 (($ $ $) 31)) (-3664 (($ $ $) NIL)) (-3655 (($ $ $) 39)) (-3657 (($ $) 37)) (-3656 (($ $ $) 38)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 26)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 27)) (-3663 (($ $ $) NIL)) (-4299 (((-747) $) 10 (|has| $ (-6 -4336)))))
+(((-491 |#1|) (-13 (-123) (-10 -8 (-15 -3657 ($ $)) (-15 -3655 ($ $ $)) (-15 -3656 ($ $ $)))) (-535)) (T -491))
+((-3657 (*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-535)))) (-3655 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-535)))) (-3656 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-535)))))
+(-13 (-123) (-10 -8 (-15 -3657 ($ $)) (-15 -3655 ($ $ $)) (-15 -3656 ($ $ $))))
+((-2079 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1136 |#4|)) 35)) (-2078 (((-1136 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1136 |#4|)) 22)) (-2080 (((-3 (-665 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-665 (-1136 |#4|))) 46)) (-2081 (((-1136 (-1136 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2078 (|#2| (-1 |#1| |#4|) (-1136 |#4|))) (-15 -2078 ((-1136 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2079 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1136 |#4|))) (-15 -2080 ((-3 (-665 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-665 (-1136 |#4|)))) (-15 -2081 ((-1136 (-1136 |#4|)) (-1 |#4| |#1|) |#3|))) (-1018) (-1200 |#1|) (-1200 |#2|) (-1018)) (T -492))
+((-2081 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *6 (-1200 *5)) (-5 *2 (-1136 (-1136 *7))) (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1200 *6)))) (-2080 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-665 (-1136 *8))) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-1200 *5)) (-5 *2 (-665 *6)) (-5 *1 (-492 *5 *6 *7 *8)) (-4 *7 (-1200 *6)))) (-2079 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1136 *7)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *2 (-1200 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1200 *2)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *4 (-1200 *5)) (-5 *2 (-1136 *7)) (-5 *1 (-492 *5 *4 *6 *7)) (-4 *6 (-1200 *4)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1136 *7)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *2 (-1200 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1200 *2)))))
+(-10 -7 (-15 -2078 (|#2| (-1 |#1| |#4|) (-1136 |#4|))) (-15 -2078 ((-1136 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2079 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1136 |#4|))) (-15 -2080 ((-3 (-665 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-665 (-1136 |#4|)))) (-15 -2081 ((-1136 (-1136 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2887 (((-112) $ $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2082 (((-1230) $) 19)) (-4142 (((-1124) $ (-1142)) 23)) (-3963 (((-1230) $) 15)) (-4300 (((-835) $) 21) (($ (-1124)) 20)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 9)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 8)))
+(((-493) (-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $)) (-15 -4300 ($ (-1124)))))) (T -493))
+((-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1124)) (-5 *1 (-493)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-493)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-493)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-493)))))
+(-13 (-823) (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $)) (-15 -2082 ((-1230) $)) (-15 -4300 ($ (-1124)))))
+((-4084 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4082 ((|#1| |#4|) 10)) (-4083 ((|#3| |#4|) 17)))
+(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4082 (|#1| |#4|)) (-15 -4083 (|#3| |#4|)) (-15 -4084 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-542) (-962 |#1|) (-365 |#1|) (-365 |#2|)) (T -494))
+((-4084 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-494 *4 *5 *6 *3)) (-4 *6 (-365 *4)) (-4 *3 (-365 *5)))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) (-4 *2 (-365 *4)) (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-365 *5)))) (-4082 (*1 *2 *3) (-12 (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-494 *2 *4 *5 *3)) (-4 *5 (-365 *2)) (-4 *3 (-365 *4)))))
+(-10 -7 (-15 -4082 (|#1| |#4|)) (-15 -4083 (|#3| |#4|)) (-15 -4084 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2887 (((-112) $ $) NIL)) (-2092 (((-112) $ (-618 |#3|)) 105) (((-112) $) 106)) (-3522 (((-112) $) 149)) (-2084 (($ $ |#4|) 97) (($ $ |#4| (-618 |#3|)) 101)) (-2083 (((-1131 (-618 (-917 |#1|)) (-618 (-286 (-917 |#1|)))) (-618 |#4|)) 142 (|has| |#3| (-594 (-1142))))) (-2091 (($ $ $) 91) (($ $ |#4|) 89)) (-2493 (((-112) $) 148)) (-2088 (($ $) 109)) (-3576 (((-1124) $) NIL)) (-3572 (($ $ $) 83) (($ (-618 $)) 85)) (-2093 (((-112) |#4| $) 108)) (-2094 (((-112) $ $) 72)) (-2087 (($ (-618 |#4|)) 90)) (-3577 (((-1086) $) NIL)) (-2086 (($ (-618 |#4|)) 146)) (-2085 (((-112) $) 147)) (-2326 (($ $) 74)) (-3016 (((-618 |#4|) $) 63)) (-2090 (((-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)) $ (-618 |#3|)) NIL)) (-2095 (((-112) |#4| $) 77)) (-4254 (((-535) $ (-618 |#3|)) 110) (((-535) $) 111)) (-4300 (((-835) $) 145) (($ (-618 |#4|)) 86)) (-2089 (($ (-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $))) NIL)) (-3375 (((-112) $ $) 73)) (-4182 (($ $ $) 93)) (** (($ $ (-747)) 96)) (* (($ $ $) 95)))
+(((-495 |#1| |#2| |#3| |#4|) (-13 (-1067) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 -4182 ($ $ $)) (-15 -2493 ((-112) $)) (-15 -3522 ((-112) $)) (-15 -2095 ((-112) |#4| $)) (-15 -2094 ((-112) $ $)) (-15 -2093 ((-112) |#4| $)) (-15 -2092 ((-112) $ (-618 |#3|))) (-15 -2092 ((-112) $)) (-15 -3572 ($ $ $)) (-15 -3572 ($ (-618 $))) (-15 -2091 ($ $ $)) (-15 -2091 ($ $ |#4|)) (-15 -2326 ($ $)) (-15 -2090 ((-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)) $ (-618 |#3|))) (-15 -2089 ($ (-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)))) (-15 -4254 ((-535) $ (-618 |#3|))) (-15 -4254 ((-535) $)) (-15 -2088 ($ $)) (-15 -2087 ($ (-618 |#4|))) (-15 -2086 ($ (-618 |#4|))) (-15 -2085 ((-112) $)) (-15 -3016 ((-618 |#4|) $)) (-15 -4300 ($ (-618 |#4|))) (-15 -2084 ($ $ |#4|)) (-15 -2084 ($ $ |#4| (-618 |#3|))) (IF (|has| |#3| (-594 (-1142))) (-15 -2083 ((-1131 (-618 (-917 |#1|)) (-618 (-286 (-917 |#1|)))) (-618 |#4|))) |%noBranch|))) (-356) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -495))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (-2493 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-3522 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-2095 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))) (-2094 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-2093 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))) (-2092 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6)))) (-2092 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-3572 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-618 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-2091 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (-2091 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-921 *3 *4 *5)))) (-2326 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (-2090 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *2 (-2 (|:| |mval| (-665 *4)) (|:| |invmval| (-665 *4)) (|:| |genIdeal| (-495 *4 *5 *6 *7)))) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6)))) (-2089 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-665 *3)) (|:| |invmval| (-665 *3)) (|:| |genIdeal| (-495 *3 *4 *5 *6)))) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-4254 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *2 (-535)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6)))) (-4254 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-535)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-2088 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (-2087 (*1 *1 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2086 (*1 *1 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2085 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-3016 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *6)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2084 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-921 *3 *4 *5)))) (-2084 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-921 *4 *5 *6)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *5 *6)) (-4 *6 (-594 (-1142))) (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1131 (-618 (-917 *4)) (-618 (-286 (-917 *4))))) (-5 *1 (-495 *4 *5 *6 *7)))))
+(-13 (-1067) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 -4182 ($ $ $)) (-15 -2493 ((-112) $)) (-15 -3522 ((-112) $)) (-15 -2095 ((-112) |#4| $)) (-15 -2094 ((-112) $ $)) (-15 -2093 ((-112) |#4| $)) (-15 -2092 ((-112) $ (-618 |#3|))) (-15 -2092 ((-112) $)) (-15 -3572 ($ $ $)) (-15 -3572 ($ (-618 $))) (-15 -2091 ($ $ $)) (-15 -2091 ($ $ |#4|)) (-15 -2326 ($ $)) (-15 -2090 ((-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)) $ (-618 |#3|))) (-15 -2089 ($ (-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)))) (-15 -4254 ((-535) $ (-618 |#3|))) (-15 -4254 ((-535) $)) (-15 -2088 ($ $)) (-15 -2087 ($ (-618 |#4|))) (-15 -2086 ($ (-618 |#4|))) (-15 -2085 ((-112) $)) (-15 -3016 ((-618 |#4|) $)) (-15 -4300 ($ (-618 |#4|))) (-15 -2084 ($ $ |#4|)) (-15 -2084 ($ $ |#4| (-618 |#3|))) (IF (|has| |#3| (-594 (-1142))) (-15 -2083 ((-1131 (-618 (-917 |#1|)) (-618 (-286 (-917 |#1|)))) (-618 |#4|))) |%noBranch|)))
+((-2096 (((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) 150)) (-2097 (((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) 151)) (-2098 (((-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) 108)) (-4069 (((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) NIL)) (-2099 (((-618 (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) 153)) (-2100 (((-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-618 (-836 |#1|))) 165)))
+(((-496 |#1| |#2|) (-10 -7 (-15 -2096 ((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2097 ((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -4069 ((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2098 ((-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2099 ((-618 (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2100 ((-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-618 (-836 |#1|))))) (-618 (-1142)) (-747)) (T -496))
+((-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))) (-5 *3 (-618 (-836 *4))) (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *1 (-496 *4 *5)))) (-2099 (*1 *2 *3) (-12 (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-618 (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535)))))) (-5 *1 (-496 *4 *5)) (-5 *3 (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-495 (-400 (-535)) (-233 *4 (-747)) (-836 *3) (-241 *3 (-400 (-535))))) (-14 *3 (-618 (-1142))) (-14 *4 (-747)) (-5 *1 (-496 *3 *4)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))) (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))) (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))) (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))))
+(-10 -7 (-15 -2096 ((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2097 ((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -4069 ((-112) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2098 ((-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2099 ((-618 (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535))))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))))) (-15 -2100 ((-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-495 (-400 (-535)) (-233 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-535)))) (-618 (-836 |#1|)))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 11) (((-1147) $) NIL) (($ (-1147)) NIL) (((-1142) $) 8)) (-3375 (((-112) $ $) NIL)))
(((-497) (-13 (-1049) (-593 (-1142)))) (T -497))
NIL
(-13 (-1049) (-593 (-1142)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2069 (($ $) NIL)) (-2244 (($ |#1| |#2|) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4083 ((|#2| $) NIL)) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-3275 (($) 12 T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) 11) (($ $ $) 24)) (-2485 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 18)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3214 (($ |#1| |#2|) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2979 (($) 12 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) 11) (($ $ $) 24)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 18)))
(((-498 |#1| |#2|) (-13 (-21) (-500 |#1| |#2|)) (-21) (-823)) (T -498))
NIL
(-13 (-21) (-500 |#1| |#2|))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 12)) (-1705 (($) NIL T CONST)) (-2069 (($ $) 28)) (-2244 (($ |#1| |#2|) 25)) (-2796 (($ (-1 |#1| |#1|) $) 27)) (-4083 ((|#2| $) NIL)) (-2042 ((|#1| $) 29)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-3275 (($) 10 T CONST)) (-2388 (((-112) $ $) NIL)) (-2485 (($ $ $) 18)) (* (($ (-892) $) NIL) (($ (-747) $) 23)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 12)) (-3879 (($) NIL T CONST)) (-4302 (($ $) 28)) (-3214 (($ |#1| |#2|) 25)) (-4301 (($ (-1 |#1| |#1|) $) 27)) (-2101 ((|#2| $) NIL)) (-3508 ((|#1| $) 29)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2979 (($) 10 T CONST)) (-3375 (((-112) $ $) NIL)) (-4182 (($ $ $) 18)) (* (($ (-890) $) NIL) (($ (-747) $) 23)))
(((-499 |#1| |#2|) (-13 (-23) (-500 |#1| |#2|)) (-23) (-823)) (T -499))
NIL
(-13 (-23) (-500 |#1| |#2|))
-((-3833 (((-112) $ $) 7)) (-2069 (($ $) 13)) (-2244 (($ |#1| |#2|) 16)) (-2796 (($ (-1 |#1| |#1|) $) 17)) (-4083 ((|#2| $) 14)) (-2042 ((|#1| $) 15)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2388 (((-112) $ $) 6)))
-(((-500 |#1| |#2|) (-138) (-1066) (-823)) (T -500))
-((-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-823)))) (-2244 (*1 *1 *2 *3) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-823)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1066)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-823)))) (-2069 (*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-823)))))
-(-13 (-1066) (-10 -8 (-15 -2796 ($ (-1 |t#1| |t#1|) $)) (-15 -2244 ($ |t#1| |t#2|)) (-15 -2042 (|t#1| $)) (-15 -4083 (|t#2| $)) (-15 -2069 ($ $))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-1705 (($) NIL T CONST)) (-2069 (($ $) NIL)) (-2244 (($ |#1| |#2|) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4083 ((|#2| $) NIL)) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-3275 (($) NIL T CONST)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 13)) (-2485 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL)))
-(((-501 |#1| |#2|) (-13 (-768) (-500 |#1| |#2|)) (-768) (-823)) (T -501))
+((-2887 (((-112) $ $) 7)) (-4302 (($ $) 13)) (-3214 (($ |#1| |#2|) 16)) (-4301 (($ (-1 |#1| |#1|) $) 17)) (-2101 ((|#2| $) 14)) (-3508 ((|#1| $) 15)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)))
+(((-500 |#1| |#2|) (-138) (-1067) (-823)) (T -500))
+((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-823)))) (-3214 (*1 *1 *2 *3) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-823)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1067)))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-823)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-823)))))
+(-13 (-1067) (-10 -8 (-15 -4301 ($ (-1 |t#1| |t#1|) $)) (-15 -3214 ($ |t#1| |t#2|)) (-15 -3508 (|t#1| $)) (-15 -2101 (|t#2| $)) (-15 -4302 ($ $))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-4302 (($ $) 25)) (-3214 (($ |#1| |#2|) 22)) (-4301 (($ (-1 |#1| |#1|) $) 24)) (-2101 ((|#2| $) 27)) (-3508 ((|#1| $) 26)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 21)) (-3375 (((-112) $ $) 14)))
+(((-501 |#1| |#2|) (-500 |#1| |#2|) (-1067) (-823)) (T -501))
+NIL
+(-500 |#1| |#2|)
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3214 (($ |#1| |#2|) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2979 (($) NIL T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 13)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL)))
+(((-502 |#1| |#2|) (-13 (-768) (-500 |#1| |#2|)) (-768) (-823)) (T -502))
NIL
(-13 (-768) (-500 |#1| |#2|))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3100 (($ $ $) 16)) (-2384 (((-3 $ "failed") $ $) 13)) (-1705 (($) NIL T CONST)) (-2069 (($ $) NIL)) (-2244 (($ |#1| |#2|) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4083 ((|#2| $) NIL)) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL)) (-3275 (($) NIL T CONST)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-2485 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL)))
-(((-502 |#1| |#2|) (-13 (-769) (-500 |#1| |#2|)) (-769) (-823)) (T -502))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2724 (($ $ $) 16)) (-1363 (((-3 $ "failed") $ $) 13)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3214 (($ |#1| |#2|) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL)) (-2979 (($) NIL T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL)))
+(((-503 |#1| |#2|) (-13 (-769) (-500 |#1| |#2|)) (-769) (-823)) (T -503))
NIL
(-13 (-769) (-500 |#1| |#2|))
-((-3833 (((-112) $ $) NIL)) (-2069 (($ $) 25)) (-2244 (($ |#1| |#2|) 22)) (-2796 (($ (-1 |#1| |#1|) $) 24)) (-4083 ((|#2| $) 27)) (-2042 ((|#1| $) 26)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 21)) (-2388 (((-112) $ $) 14)))
-(((-503 |#1| |#2|) (-500 |#1| |#2|) (-1066) (-823)) (T -503))
+((-4110 (($ $ (-618 |#2|) (-618 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-504 |#1| |#2| |#3|) (-10 -8 (-15 -4110 (|#1| |#1| |#2| |#3|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#3|)))) (-505 |#2| |#3|) (-1067) (-1178)) (T -504))
NIL
-(-500 |#1| |#2|)
-((-2685 (($ $ (-621 |#2|) (-621 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-504 |#1| |#2| |#3|) (-10 -8 (-15 -2685 (|#1| |#1| |#2| |#3|)) (-15 -2685 (|#1| |#1| (-621 |#2|) (-621 |#3|)))) (-505 |#2| |#3|) (-1066) (-1179)) (T -504))
-NIL
-(-10 -8 (-15 -2685 (|#1| |#1| |#2| |#3|)) (-15 -2685 (|#1| |#1| (-621 |#2|) (-621 |#3|))))
-((-2685 (($ $ (-621 |#1|) (-621 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-505 |#1| |#2|) (-138) (-1066) (-1179)) (T -505))
-((-2685 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 *5)) (-4 *1 (-505 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-1179)))) (-2685 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1179)))))
-(-13 (-10 -8 (-15 -2685 ($ $ |t#1| |t#2|)) (-15 -2685 ($ $ (-621 |t#1|) (-621 |t#2|)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 16)) (-1480 (((-621 (-2 (|:| |gen| |#1|) (|:| -2718 |#2|))) $) 18)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3615 (((-747) $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL)) (-2658 ((|#1| $) NIL)) (-3570 ((|#1| $ (-549)) 23)) (-3299 ((|#2| $ (-549)) 21)) (-2555 (($ (-1 |#1| |#1|) $) 46)) (-1753 (($ (-1 |#2| |#2|) $) 43)) (-2677 (((-1124) $) NIL)) (-4089 (($ $ $) 53 (|has| |#2| (-768)))) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 42) (($ |#1|) NIL)) (-2944 ((|#2| |#1| $) 49)) (-3275 (($) 11 T CONST)) (-2388 (((-112) $ $) 29)) (-2485 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-892) $) NIL) (($ (-747) $) 36) (($ |#2| |#1|) 31)))
-(((-506 |#1| |#2| |#3|) (-316 |#1| |#2|) (-1066) (-130) |#2|) (T -506))
+(-10 -8 (-15 -4110 (|#1| |#1| |#2| |#3|)) (-15 -4110 (|#1| |#1| (-618 |#2|) (-618 |#3|))))
+((-4110 (($ $ (-618 |#1|) (-618 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-505 |#1| |#2|) (-138) (-1067) (-1178)) (T -505))
+((-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 *5)) (-4 *1 (-505 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1178)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1178)))))
+(-13 (-10 -8 (-15 -4110 ($ $ |t#1| |t#2|)) (-15 -4110 ($ $ (-618 |t#1|) (-618 |t#2|)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 16)) (-4116 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))) $) 18)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3454 (((-747) $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2759 ((|#1| $ (-535)) 23)) (-1714 ((|#2| $ (-535)) 21)) (-2362 (($ (-1 |#1| |#1|) $) 46)) (-1713 (($ (-1 |#2| |#2|) $) 43)) (-3576 (((-1124) $) NIL)) (-1712 (($ $ $) 53 (|has| |#2| (-768)))) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 42) (($ |#1|) NIL)) (-4023 ((|#2| |#1| $) 49)) (-2979 (($) 11 T CONST)) (-3375 (((-112) $ $) 29)) (-4182 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-890) $) NIL) (($ (-747) $) 36) (($ |#2| |#1|) 31)))
+(((-506 |#1| |#2| |#3|) (-316 |#1| |#2|) (-1067) (-130) |#2|) (T -506))
NIL
(-316 |#1| |#2|)
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4106 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1323 (((-112) $ (-747)) NIL)) (-4269 (((-112) (-112)) 25)) (-2253 ((|#1| $ (-549) |#1|) 28 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) NIL (|has| $ (-6 -4337)))) (-3069 (($ (-1 (-112) |#1|) $) 52)) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-2992 (($ $) 56 (|has| |#1| (-1066)))) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-4204 (($ |#1| $) NIL (|has| |#1| (-1066))) (($ (-1 (-112) |#1|) $) 44)) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) NIL)) (-2882 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1066))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1066)))) (-2925 (($ $ (-549)) 13)) (-2964 (((-747) $) 11)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3743 (($ (-747) |#1|) 23)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) 21 (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3019 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-1586 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-549) $) 20 (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-1709 (($ $ $ (-549)) 51) (($ |#1| $ (-549)) 37)) (-2614 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2654 (($ (-621 |#1|)) 29)) (-3645 ((|#1| $) NIL (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3158 (($ $ |#1|) 19 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 40)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) 16)) (-3340 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 33) (($ $ (-1192 (-549))) NIL)) (-1876 (($ $ (-1192 (-549))) 50) (($ $ (-549)) 45)) (-2166 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1665 (($ $ $ (-549)) 41 (|has| $ (-6 -4337)))) (-2281 (($ $) 32)) (-2844 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) NIL)) (-3091 (($ $ $) 42) (($ $ |#1|) 39)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3774 (((-747) $) 17 (|has| $ (-6 -4336)))))
-(((-507 |#1| |#2|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2654 ($ (-621 |#1|))) (-15 -2964 ((-747) $)) (-15 -2925 ($ $ (-549))) (-15 -4269 ((-112) (-112))))) (-1179) (-549)) (T -507))
-((-2654 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-507 *3 *4)) (-14 *4 (-549)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1179)) (-14 *4 (-549)))) (-2925 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1179)) (-14 *4 *2))) (-4269 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1179)) (-14 *4 (-549)))))
-(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2654 ($ (-621 |#1|))) (-15 -2964 ((-747) $)) (-15 -2925 ($ $ (-549))) (-15 -4269 ((-112) (-112)))))
-((-3833 (((-112) $ $) NIL)) (-2442 (((-1101) $) 11)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1317 (((-1101) $) 13)) (-1926 (((-1101) $) 9)) (-3845 (((-834) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-508) (-13 (-1049) (-10 -8 (-15 -1926 ((-1101) $)) (-15 -2442 ((-1101) $)) (-15 -1317 ((-1101) $))))) (T -508))
-((-1926 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))))
-(-13 (-1049) (-10 -8 (-15 -1926 ((-1101) $)) (-15 -2442 ((-1101) $)) (-15 -1317 ((-1101) $))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2642 (((-112) $) NIL)) (-1703 (((-747)) NIL)) (-2905 (((-563 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-563 |#1|) (-361)))) (-2572 (((-1152 (-892) (-747)) (-549)) NIL (|has| (-563 |#1|) (-361)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3615 (((-747)) NIL (|has| (-563 |#1|) (-361)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-563 |#1|) "failed") $) NIL)) (-2658 (((-563 |#1|) $) NIL)) (-2127 (($ (-1225 (-563 |#1|))) NIL)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-563 |#1|) (-361)))) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| (-563 |#1|) (-361)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-1327 (($) NIL (|has| (-563 |#1|) (-361)))) (-1729 (((-112) $) NIL (|has| (-563 |#1|) (-361)))) (-3225 (($ $ (-747)) NIL (-1536 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361)))) (($ $) NIL (-1536 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-2471 (((-112) $) NIL)) (-2078 (((-892) $) NIL (|has| (-563 |#1|) (-361))) (((-809 (-892)) $) NIL (-1536 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-3987 (((-112) $) NIL)) (-2308 (($) NIL (|has| (-563 |#1|) (-361)))) (-2815 (((-112) $) NIL (|has| (-563 |#1|) (-361)))) (-4117 (((-563 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-563 |#1|) (-361)))) (-3982 (((-3 $ "failed") $) NIL (|has| (-563 |#1|) (-361)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4030 (((-1138 (-563 |#1|)) $) NIL) (((-1138 $) $ (-892)) NIL (|has| (-563 |#1|) (-361)))) (-2723 (((-892) $) NIL (|has| (-563 |#1|) (-361)))) (-4228 (((-1138 (-563 |#1|)) $) NIL (|has| (-563 |#1|) (-361)))) (-3609 (((-1138 (-563 |#1|)) $) NIL (|has| (-563 |#1|) (-361))) (((-3 (-1138 (-563 |#1|)) "failed") $ $) NIL (|has| (-563 |#1|) (-361)))) (-3289 (($ $ (-1138 (-563 |#1|))) NIL (|has| (-563 |#1|) (-361)))) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| (-563 |#1|) (-361)) CONST)) (-3491 (($ (-892)) NIL (|has| (-563 |#1|) (-361)))) (-2360 (((-112) $) NIL)) (-3988 (((-1086) $) NIL)) (-4246 (($) NIL (|has| (-563 |#1|) (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL (|has| (-563 |#1|) (-361)))) (-2120 (((-411 $) $) NIL)) (-3656 (((-809 (-892))) NIL) (((-892)) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2591 (((-747) $) NIL (|has| (-563 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-3128 (((-133)) NIL)) (-3455 (($ $) NIL (|has| (-563 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-563 |#1|) (-361)))) (-3068 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2539 (((-1138 (-563 |#1|))) NIL)) (-3191 (($) NIL (|has| (-563 |#1|) (-361)))) (-3250 (($) NIL (|has| (-563 |#1|) (-361)))) (-4163 (((-1225 (-563 |#1|)) $) NIL) (((-665 (-563 |#1|)) (-1225 $)) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| (-563 |#1|) (-361)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-563 |#1|)) NIL)) (-3407 (($ $) NIL (|has| (-563 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-1723 (((-747)) NIL)) (-3420 (((-1225 $)) NIL) (((-1225 $) (-892)) NIL)) (-4053 (((-112) $ $) NIL)) (-2923 (((-112) $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-563 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-563 |#1|) (-361)))) (-1700 (($ $) NIL (|has| (-563 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-563 |#1|) (-361)))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL) (($ $ (-563 |#1|)) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ (-563 |#1|)) NIL) (($ (-563 |#1|) $) NIL)))
-(((-509 |#1| |#2|) (-322 (-563 |#1|)) (-892) (-892)) (T -509))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-2102 (((-112) (-112)) 25)) (-4130 ((|#1| $ (-535) |#1|) 28 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) |#1|) $) 52)) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-2446 (($ $) 56 (|has| |#1| (-1067)))) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) 44)) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2103 (($ $ (-535)) 13)) (-2104 (((-747) $) 11)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 23)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 21 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3180 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) 20 (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3953 (($ $ $ (-535)) 51) (($ |#1| $ (-535)) 37)) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2105 (($ (-618 |#1|)) 29)) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) 19 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 40)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 16)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) 33) (($ $ (-1191 (-535))) NIL)) (-1627 (($ $ (-1191 (-535))) 50) (($ $ (-535)) 45)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) 41 (|has| $ (-6 -4337)))) (-3742 (($ $) 32)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4133 (($ $ $) 42) (($ $ |#1|) 39)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) 17 (|has| $ (-6 -4336)))))
+(((-507 |#1| |#2|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-618 |#1|))) (-15 -2104 ((-747) $)) (-15 -2103 ($ $ (-535))) (-15 -2102 ((-112) (-112))))) (-1178) (-535)) (T -507))
+((-2105 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-507 *3 *4)) (-14 *4 (-535)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1178)) (-14 *4 (-535)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1178)) (-14 *4 *2))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1178)) (-14 *4 (-535)))))
+(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-618 |#1|))) (-15 -2104 ((-747) $)) (-15 -2103 ($ $ (-535))) (-15 -2102 ((-112) (-112)))))
+((-2887 (((-112) $ $) NIL)) (-2107 (((-1101) $) 11)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2106 (((-1101) $) 13)) (-4265 (((-1101) $) 9)) (-4300 (((-835) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-508) (-13 (-1049) (-10 -8 (-15 -4265 ((-1101) $)) (-15 -2107 ((-1101) $)) (-15 -2106 ((-1101) $))))) (T -508))
+((-4265 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))))
+(-13 (-1049) (-10 -8 (-15 -4265 ((-1101) $)) (-15 -2107 ((-1101) $)) (-15 -2106 ((-1101) $))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 (((-563 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-563 |#1|) (-361)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-563 |#1|) (-361)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL (|has| (-563 |#1|) (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-563 |#1|) "failed") $) NIL)) (-3490 (((-563 |#1|) $) NIL)) (-1906 (($ (-1224 (-563 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-563 |#1|) (-361)))) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-563 |#1|) (-361)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL (|has| (-563 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-563 |#1|) (-361)))) (-1881 (($ $ (-747)) NIL (-3874 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361)))) (($ $) NIL (-3874 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-4069 (((-112) $) NIL)) (-4114 (((-890) $) NIL (|has| (-563 |#1|) (-361))) (((-808 (-890)) $) NIL (-3874 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-563 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-563 |#1|) (-361)))) (-3450 (((-563 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-563 |#1|) (-361)))) (-3786 (((-3 $ "failed") $) NIL (|has| (-563 |#1|) (-361)))) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 (-563 |#1|)) $) NIL) (((-1136 $) $ (-890)) NIL (|has| (-563 |#1|) (-361)))) (-2121 (((-890) $) NIL (|has| (-563 |#1|) (-361)))) (-1719 (((-1136 (-563 |#1|)) $) NIL (|has| (-563 |#1|) (-361)))) (-1718 (((-1136 (-563 |#1|)) $) NIL (|has| (-563 |#1|) (-361))) (((-3 (-1136 (-563 |#1|)) "failed") $ $) NIL (|has| (-563 |#1|) (-361)))) (-1720 (($ $ (-1136 (-563 |#1|))) NIL (|has| (-563 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-563 |#1|) (-361)) CONST)) (-2483 (($ (-890)) NIL (|has| (-563 |#1|) (-361)))) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-2492 (($) NIL (|has| (-563 |#1|) (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-563 |#1|) (-361)))) (-4075 (((-398 $) $) NIL)) (-4273 (((-808 (-890))) NIL) (((-890)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-747) $) NIL (|has| (-563 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-3874 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-4254 (((-133)) NIL)) (-4153 (($ $) NIL (|has| (-563 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-563 |#1|) (-361)))) (-4290 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-3519 (((-1136 (-563 |#1|))) NIL)) (-1785 (($) NIL (|has| (-563 |#1|) (-361)))) (-1721 (($) NIL (|has| (-563 |#1|) (-361)))) (-3558 (((-1224 (-563 |#1|)) $) NIL) (((-665 (-563 |#1|)) (-1224 $)) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| (-563 |#1|) (-361)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-563 |#1|)) NIL)) (-3023 (($ $) NIL (|has| (-563 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3874 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL) (((-1224 $) (-890)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $) NIL (|has| (-563 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-563 |#1|) (-361)))) (-2990 (($ $) NIL (|has| (-563 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-563 |#1|) (-361)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL) (($ $ (-563 |#1|)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ $ (-563 |#1|)) NIL) (($ (-563 |#1|) $) NIL)))
+(((-509 |#1| |#2|) (-322 (-563 |#1|)) (-890) (-890)) (T -509))
NIL
(-322 (-563 |#1|))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#1| $ (-549) (-549) |#1|) 35)) (-1915 (($ $ (-549) |#4|) NIL)) (-2058 (($ $ (-549) |#5|) NIL)) (-1705 (($) NIL T CONST)) (-2413 ((|#4| $ (-549)) NIL)) (-1878 ((|#1| $ (-549) (-549) |#1|) 34)) (-1808 ((|#1| $ (-549) (-549)) 32)) (-2990 (((-621 |#1|) $) NIL)) (-2141 (((-747) $) 28)) (-3743 (($ (-747) (-747) |#1|) 25)) (-2154 (((-747) $) 30)) (-4202 (((-112) $ (-747)) NIL)) (-2437 (((-549) $) 26)) (-2103 (((-549) $) 27)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2303 (((-549) $) 29)) (-2362 (((-549) $) 31)) (-1865 (($ (-1 |#1| |#1|) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) 38 (|has| |#1| (-1066)))) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3158 (($ $ |#1|) NIL)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 14)) (-1461 (($) 16)) (-3340 ((|#1| $ (-549) (-549)) 33) ((|#1| $ (-549) (-549) |#1|) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-4102 ((|#5| $ (-549)) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-510 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1179) (-549) (-549) (-366 |#1|) (-366 |#1|)) (T -510))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) (-535) |#1|) 35)) (-1302 (($ $ (-535) |#4|) NIL)) (-1301 (($ $ (-535) |#5|) NIL)) (-3879 (($) NIL T CONST)) (-3430 ((|#4| $ (-535)) NIL)) (-1632 ((|#1| $ (-535) (-535) |#1|) 34)) (-3431 ((|#1| $ (-535) (-535)) 32)) (-2063 (((-618 |#1|) $) NIL)) (-3433 (((-747) $) 28)) (-3960 (($ (-747) (-747) |#1|) 25)) (-3432 (((-747) $) 30)) (-4065 (((-112) $ (-747)) NIL)) (-3437 (((-535) $) 26)) (-3435 (((-535) $) 27)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3436 (((-535) $) 29)) (-3434 (((-535) $) 31)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) 38 (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 14)) (-3911 (($) 16)) (-4142 ((|#1| $ (-535) (-535)) 33) ((|#1| $ (-535) (-535) |#1|) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-3429 ((|#5| $ (-535)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-510 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1178) (-535) (-535) (-365 |#1|) (-365 |#1|)) (T -510))
NIL
(-56 |#1| |#4| |#5|)
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-4160 ((|#1| $) NIL)) (-2838 ((|#1| $) NIL)) (-1342 (($ $) NIL)) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-3637 (($ $ (-549)) 59 (|has| $ (-6 -4337)))) (-1993 (((-112) $) NIL (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4106 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4337)))) (-3193 (($ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-3751 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-1362 (($ $ $) 23 (|has| $ (-6 -4337)))) (-4277 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-2627 ((|#1| $ |#1|) 21 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4337))) (($ $ "rest" $) 24 (|has| $ (-6 -4337))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) NIL (|has| $ (-6 -4337)))) (-3069 (($ (-1 (-112) |#1|) $) NIL)) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2828 ((|#1| $) NIL)) (-1705 (($) NIL T CONST)) (-4273 (($ $) 28 (|has| $ (-6 -4337)))) (-3063 (($ $) 29)) (-3655 (($ $) 18) (($ $ (-747)) 32)) (-2992 (($ $) 55 (|has| |#1| (-1066)))) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-4204 (($ |#1| $) NIL (|has| |#1| (-1066))) (($ (-1 (-112) |#1|) $) NIL)) (-3812 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1878 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) NIL)) (-3149 (((-112) $) NIL)) (-2882 (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1066))) (((-549) |#1| $) NIL (|has| |#1| (-1066))) (((-549) (-1 (-112) |#1|) $) NIL)) (-2990 (((-621 |#1|) $) 27 (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) NIL)) (-1742 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3743 (($ (-747) |#1|) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) 31 (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3019 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-1586 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3524 (($ |#1|) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-3590 (((-621 |#1|) $) NIL)) (-2456 (((-112) $) NIL)) (-2677 (((-1124) $) 51 (|has| |#1| (-1066)))) (-3828 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-1709 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2614 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3645 ((|#1| $) 13) (($ $ (-747)) NIL)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3158 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-3342 (((-112) $) NIL)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 12)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) 17)) (-1461 (($) 16)) (-3340 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1192 (-549))) NIL) ((|#1| $ (-549)) NIL) ((|#1| $ (-549) |#1|) NIL)) (-1953 (((-549) $ $) NIL)) (-1876 (($ $ (-1192 (-549))) NIL) (($ $ (-549)) NIL)) (-2166 (($ $ (-1192 (-549))) NIL) (($ $ (-549)) NIL)) (-4187 (((-112) $) 34)) (-1811 (($ $) NIL)) (-1679 (($ $) NIL (|has| $ (-6 -4337)))) (-2041 (((-747) $) NIL)) (-2277 (($ $) 36)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) 35)) (-2844 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 26)) (-3091 (($ $ $) 54) (($ $ |#1|) NIL)) (-1951 (($ $ $) NIL) (($ |#1| $) 10) (($ (-621 $)) NIL) (($ $ |#1|) NIL)) (-3845 (((-834) $) 46 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) NIL)) (-2937 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) 48 (|has| |#1| (-1066)))) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3774 (((-747) $) 9 (|has| $ (-6 -4336)))))
-(((-511 |#1| |#2|) (-642 |#1|) (-1179) (-549)) (T -511))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) NIL)) (-4137 ((|#1| $) NIL)) (-4139 (($ $) NIL)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) 59 (|has| $ (-6 -4337)))) (-1843 (((-112) $) NIL (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4337)))) (-3230 (($ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4129 (($ $ $) 23 (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) 21 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4337))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4138 ((|#1| $) NIL)) (-3879 (($) NIL T CONST)) (-2368 (($ $) 28 (|has| $ (-6 -4337)))) (-2369 (($ $) 29)) (-4141 (($ $) 18) (($ $ (-747)) 32)) (-2446 (($ $) 55 (|has| |#1| (-1067)))) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) NIL)) (-3748 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3784 (((-112) $) NIL)) (-3761 (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067))) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) (-1 (-112) |#1|) $) NIL)) (-2063 (((-618 |#1|) $) 27 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 31 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3180 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3855 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3880 (($ |#1|) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) NIL)) (-3576 (((-1124) $) 51 (|has| |#1| (-1067)))) (-4140 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-3953 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2373 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) 13) (($ $ (-747)) NIL)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-3785 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 12)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) 17)) (-3911 (($) 16)) (-4142 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1191 (-535))) NIL) ((|#1| $ (-535)) NIL) ((|#1| $ (-535) |#1|) NIL)) (-3350 (((-535) $ $) NIL)) (-1627 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-2374 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-3979 (((-112) $) 34)) (-4134 (($ $) NIL)) (-4132 (($ $) NIL (|has| $ (-6 -4337)))) (-4135 (((-747) $) NIL)) (-4136 (($ $) 36)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) 35)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 26)) (-4133 (($ $ $) 54) (($ $ |#1|) NIL)) (-4144 (($ $ $) NIL) (($ |#1| $) 10) (($ (-618 $)) NIL) (($ $ |#1|) NIL)) (-4300 (((-835) $) 46 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 48 (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) 9 (|has| $ (-6 -4336)))))
+(((-511 |#1| |#2|) (-642 |#1|) (-1178) (-535)) (T -511))
NIL
(-642 |#1|)
-((-2226 ((|#4| |#4|) 27)) (-3122 (((-747) |#4|) 32)) (-1746 (((-747) |#4|) 33)) (-1701 (((-621 |#3|) |#4|) 40 (|has| |#3| (-6 -4337)))) (-3733 (((-3 |#4| "failed") |#4|) 51)) (-4028 ((|#4| |#4|) 44)) (-3097 ((|#1| |#4|) 43)))
-(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2226 (|#4| |#4|)) (-15 -3122 ((-747) |#4|)) (-15 -1746 ((-747) |#4|)) (IF (|has| |#3| (-6 -4337)) (-15 -1701 ((-621 |#3|) |#4|)) |%noBranch|) (-15 -3097 (|#1| |#4|)) (-15 -4028 (|#4| |#4|)) (-15 -3733 ((-3 |#4| "failed") |#4|))) (-356) (-366 |#1|) (-366 |#1|) (-663 |#1| |#2| |#3|)) (T -512))
-((-3733 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-4028 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-3097 (*1 *2 *3) (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-356)) (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-663 *2 *4 *5)))) (-1701 (*1 *2 *3) (-12 (|has| *6 (-6 -4337)) (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-621 *6)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-1746 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-747)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-3122 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-747)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-2226 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
-(-10 -7 (-15 -2226 (|#4| |#4|)) (-15 -3122 ((-747) |#4|)) (-15 -1746 ((-747) |#4|)) (IF (|has| |#3| (-6 -4337)) (-15 -1701 ((-621 |#3|) |#4|)) |%noBranch|) (-15 -3097 (|#1| |#4|)) (-15 -4028 (|#4| |#4|)) (-15 -3733 ((-3 |#4| "failed") |#4|)))
-((-2226 ((|#8| |#4|) 20)) (-1701 (((-621 |#3|) |#4|) 29 (|has| |#7| (-6 -4337)))) (-3733 (((-3 |#8| "failed") |#4|) 23)))
-(((-513 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2226 (|#8| |#4|)) (-15 -3733 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4337)) (-15 -1701 ((-621 |#3|) |#4|)) |%noBranch|)) (-541) (-366 |#1|) (-366 |#1|) (-663 |#1| |#2| |#3|) (-963 |#1|) (-366 |#5|) (-366 |#5|) (-663 |#5| |#6| |#7|)) (T -513))
-((-1701 (*1 *2 *3) (-12 (|has| *9 (-6 -4337)) (-4 *4 (-541)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-4 *7 (-963 *4)) (-4 *8 (-366 *7)) (-4 *9 (-366 *7)) (-5 *2 (-621 *6)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-663 *4 *5 *6)) (-4 *10 (-663 *7 *8 *9)))) (-3733 (*1 *2 *3) (|partial| -12 (-4 *4 (-541)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-4 *7 (-963 *4)) (-4 *2 (-663 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-663 *4 *5 *6)) (-4 *8 (-366 *7)) (-4 *9 (-366 *7)))) (-2226 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-4 *7 (-963 *4)) (-4 *2 (-663 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-663 *4 *5 *6)) (-4 *8 (-366 *7)) (-4 *9 (-366 *7)))))
-(-10 -7 (-15 -2226 (|#8| |#4|)) (-15 -3733 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4337)) (-15 -1701 ((-621 |#3|) |#4|)) |%noBranch|))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3768 (($ (-747) (-747)) NIL)) (-3876 (($ $ $) NIL)) (-2429 (($ (-582 |#1| |#3|)) NIL) (($ $) NIL)) (-1818 (((-112) $) NIL)) (-1846 (($ $ (-549) (-549)) 12)) (-3295 (($ $ (-549) (-549)) NIL)) (-1910 (($ $ (-549) (-549) (-549) (-549)) NIL)) (-3931 (($ $) NIL)) (-3893 (((-112) $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-1667 (($ $ (-549) (-549) $) NIL)) (-2253 ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-621 (-549)) (-621 (-549)) $) NIL)) (-1915 (($ $ (-549) (-582 |#1| |#3|)) NIL)) (-2058 (($ $ (-549) (-582 |#1| |#2|)) NIL)) (-2005 (($ (-747) |#1|) NIL)) (-1705 (($) NIL T CONST)) (-2226 (($ $) 21 (|has| |#1| (-300)))) (-2413 (((-582 |#1| |#3|) $ (-549)) NIL)) (-3122 (((-747) $) 24 (|has| |#1| (-541)))) (-1878 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1808 ((|#1| $ (-549) (-549)) NIL)) (-2990 (((-621 |#1|) $) NIL)) (-1746 (((-747) $) 26 (|has| |#1| (-541)))) (-1701 (((-621 (-582 |#1| |#2|)) $) 29 (|has| |#1| (-541)))) (-2141 (((-747) $) NIL)) (-3743 (($ (-747) (-747) |#1|) NIL)) (-2154 (((-747) $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-1542 ((|#1| $) 19 (|has| |#1| (-6 (-4338 "*"))))) (-2437 (((-549) $) 10)) (-2103 (((-549) $) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2303 (((-549) $) 11)) (-2362 (((-549) $) NIL)) (-3945 (($ (-621 (-621 |#1|))) NIL)) (-1865 (($ (-1 |#1| |#1|) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3595 (((-621 (-621 |#1|)) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3733 (((-3 $ "failed") $) 33 (|has| |#1| (-356)))) (-4294 (($ $ $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3158 (($ $ |#1|) NIL)) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-621 (-549)) (-621 (-549))) NIL)) (-1601 (($ (-621 |#1|)) NIL) (($ (-621 $)) NIL)) (-2798 (((-112) $) NIL)) (-3097 ((|#1| $) 17 (|has| |#1| (-6 (-4338 "*"))))) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-4102 (((-582 |#1| |#2|) $ (-549)) NIL)) (-3845 (($ (-582 |#1| |#2|)) NIL) (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2901 (((-112) $) NIL)) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $ $) NIL) (($ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-549) $) NIL) (((-582 |#1| |#2|) $ (-582 |#1| |#2|)) NIL) (((-582 |#1| |#3|) (-582 |#1| |#3|) $) NIL)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-514 |#1| |#2| |#3|) (-663 |#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) (-1018) (-549) (-549)) (T -514))
-NIL
-(-663 |#1| (-582 |#1| |#3|) (-582 |#1| |#2|))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3478 (((-621 (-1178)) $) 13)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 20) (((-1147) $) NIL) (($ (-1147)) NIL) (($ (-621 (-1178))) 11)) (-2388 (((-112) $ $) NIL)))
-(((-515) (-13 (-1049) (-10 -8 (-15 -3845 ($ (-621 (-1178)))) (-15 -3478 ((-621 (-1178)) $))))) (T -515))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-1178))) (-5 *1 (-515)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-621 (-1178))) (-5 *1 (-515)))))
-(-13 (-1049) (-10 -8 (-15 -3845 ($ (-621 (-1178)))) (-15 -3478 ((-621 (-1178)) $))))
-((-3833 (((-112) $ $) NIL)) (-1454 (((-1101) $) 14)) (-2677 (((-1124) $) NIL)) (-1520 (((-1142) $) 11)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-516) (-13 (-1049) (-10 -8 (-15 -1520 ((-1142) $)) (-15 -1454 ((-1101) $))))) (T -516))
-((-1520 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-516)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-516)))))
-(-13 (-1049) (-10 -8 (-15 -1520 ((-1142) $)) (-15 -1454 ((-1101) $))))
-((-1321 (((-1086) $ (-128)) 17)))
-(((-517 |#1|) (-10 -8 (-15 -1321 ((-1086) |#1| (-128)))) (-518)) (T -517))
-NIL
-(-10 -8 (-15 -1321 ((-1086) |#1| (-128))))
-((-1321 (((-1086) $ (-128)) 7)) (-1824 (((-1086) $) 8)) (-3559 (($ $) 6)))
+((-3428 ((|#4| |#4|) 27)) (-3427 (((-747) |#4|) 32)) (-3426 (((-747) |#4|) 33)) (-3425 (((-618 |#3|) |#4|) 40 (|has| |#3| (-6 -4337)))) (-3935 (((-3 |#4| "failed") |#4|) 51)) (-2108 ((|#4| |#4|) 44)) (-3670 ((|#1| |#4|) 43)))
+(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3428 (|#4| |#4|)) (-15 -3427 ((-747) |#4|)) (-15 -3426 ((-747) |#4|)) (IF (|has| |#3| (-6 -4337)) (-15 -3425 ((-618 |#3|) |#4|)) |%noBranch|) (-15 -3670 (|#1| |#4|)) (-15 -2108 (|#4| |#4|)) (-15 -3935 ((-3 |#4| "failed") |#4|))) (-356) (-365 |#1|) (-365 |#1|) (-662 |#1| |#2| |#3|)) (T -512))
+((-3935 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-2108 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-3670 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-356)) (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-662 *2 *4 *5)))) (-3425 (*1 *2 *3) (-12 (|has| *6 (-6 -4337)) (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-618 *6)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-747)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3427 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-747)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3428 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))))
+(-10 -7 (-15 -3428 (|#4| |#4|)) (-15 -3427 ((-747) |#4|)) (-15 -3426 ((-747) |#4|)) (IF (|has| |#3| (-6 -4337)) (-15 -3425 ((-618 |#3|) |#4|)) |%noBranch|) (-15 -3670 (|#1| |#4|)) (-15 -2108 (|#4| |#4|)) (-15 -3935 ((-3 |#4| "failed") |#4|)))
+((-3428 ((|#8| |#4|) 20)) (-3425 (((-618 |#3|) |#4|) 29 (|has| |#7| (-6 -4337)))) (-3935 (((-3 |#8| "failed") |#4|) 23)))
+(((-513 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3428 (|#8| |#4|)) (-15 -3935 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4337)) (-15 -3425 ((-618 |#3|) |#4|)) |%noBranch|)) (-542) (-365 |#1|) (-365 |#1|) (-662 |#1| |#2| |#3|) (-962 |#1|) (-365 |#5|) (-365 |#5|) (-662 |#5| |#6| |#7|)) (T -513))
+((-3425 (*1 *2 *3) (-12 (|has| *9 (-6 -4337)) (-4 *4 (-542)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-962 *4)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)) (-5 *2 (-618 *6)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-662 *4 *5 *6)) (-4 *10 (-662 *7 *8 *9)))) (-3935 (*1 *2 *3) (|partial| -12 (-4 *4 (-542)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-962 *4)) (-4 *2 (-662 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-662 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) (-3428 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-962 *4)) (-4 *2 (-662 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-662 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))))
+(-10 -7 (-15 -3428 (|#8| |#4|)) (-15 -3935 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4337)) (-15 -3425 ((-618 |#3|) |#4|)) |%noBranch|))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4181 (($ (-747) (-747)) NIL)) (-2422 (($ $ $) NIL)) (-3756 (($ (-582 |#1| |#3|)) NIL) (($ $) NIL)) (-3439 (((-112) $) NIL)) (-2421 (($ $ (-535) (-535)) 12)) (-2420 (($ $ (-535) (-535)) NIL)) (-2419 (($ $ (-535) (-535) (-535) (-535)) NIL)) (-2424 (($ $) NIL)) (-3441 (((-112) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-2418 (($ $ (-535) (-535) $) NIL)) (-4130 ((|#1| $ (-535) (-535) |#1|) NIL) (($ $ (-618 (-535)) (-618 (-535)) $) NIL)) (-1302 (($ $ (-535) (-582 |#1| |#3|)) NIL)) (-1301 (($ $ (-535) (-582 |#1| |#2|)) NIL)) (-3675 (($ (-747) |#1|) NIL)) (-3879 (($) NIL T CONST)) (-3428 (($ $) 21 (|has| |#1| (-300)))) (-3430 (((-582 |#1| |#3|) $ (-535)) NIL)) (-3427 (((-747) $) 24 (|has| |#1| (-542)))) (-1632 ((|#1| $ (-535) (-535) |#1|) NIL)) (-3431 ((|#1| $ (-535) (-535)) NIL)) (-2063 (((-618 |#1|) $) NIL)) (-3426 (((-747) $) 26 (|has| |#1| (-542)))) (-3425 (((-618 (-582 |#1| |#2|)) $) 29 (|has| |#1| (-542)))) (-3433 (((-747) $) NIL)) (-3960 (($ (-747) (-747) |#1|) NIL)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3669 ((|#1| $) 19 (|has| |#1| (-6 (-4338 #1="*"))))) (-3437 (((-535) $) 10)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3436 (((-535) $) 11)) (-3434 (((-535) $) NIL)) (-3442 (($ (-618 (-618 |#1|))) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3939 (((-618 (-618 |#1|)) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3935 (((-3 $ #2="failed") $) 33 (|has| |#1| (-356)))) (-2423 (($ $ $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) NIL)) (-3803 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-542)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) (-535)) NIL) ((|#1| $ (-535) (-535) |#1|) NIL) (($ $ (-618 (-535)) (-618 (-535))) NIL)) (-3674 (($ (-618 |#1|)) NIL) (($ (-618 $)) NIL)) (-3440 (((-112) $) NIL)) (-3670 ((|#1| $) 17 (|has| |#1| (-6 (-4338 #1#))))) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-3429 (((-582 |#1| |#2|) $ (-535)) NIL)) (-4300 (($ (-582 |#1| |#2|)) NIL) (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3438 (((-112) $) NIL)) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-535) $) NIL) (((-582 |#1| |#2|) $ (-582 |#1| |#2|)) NIL) (((-582 |#1| |#3|) (-582 |#1| |#3|) $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-514 |#1| |#2| |#3|) (-662 |#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) (-1018) (-535) (-535)) (T -514))
+NIL
+(-662 |#1| (-582 |#1| |#3|) (-582 |#1| |#2|))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2109 (((-618 (-1179)) $) 13)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20) (((-1147) $) NIL) (($ (-1147)) NIL) (($ (-618 (-1179))) 11)) (-3375 (((-112) $ $) NIL)))
+(((-515) (-13 (-1049) (-10 -8 (-15 -4300 ($ (-618 (-1179)))) (-15 -2109 ((-618 (-1179)) $))))) (T -515))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-515)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-515)))))
+(-13 (-1049) (-10 -8 (-15 -4300 ($ (-618 (-1179)))) (-15 -2109 ((-618 (-1179)) $))))
+((-2887 (((-112) $ $) NIL)) (-2110 (((-1101) $) 14)) (-3576 (((-1124) $) NIL)) (-2111 (((-1142) $) 11)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-516) (-13 (-1049) (-10 -8 (-15 -2111 ((-1142) $)) (-15 -2110 ((-1101) $))))) (T -516))
+((-2111 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-516)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-516)))))
+(-13 (-1049) (-10 -8 (-15 -2111 ((-1142) $)) (-15 -2110 ((-1101) $))))
+((-2112 (((-1086) $ (-129)) 17)))
+(((-517 |#1|) (-10 -8 (-15 -2112 ((-1086) |#1| (-129)))) (-518)) (T -517))
+NIL
+(-10 -8 (-15 -2112 ((-1086) |#1| (-129))))
+((-2112 (((-1086) $ (-129)) 7)) (-2113 (((-1086) $) 8)) (-1811 (($ $) 6)))
(((-518) (-138)) (T -518))
-((-1824 (*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1086)))) (-1321 (*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-128)) (-5 *2 (-1086)))))
-(-13 (-171) (-10 -8 (-15 -1824 ((-1086) $)) (-15 -1321 ((-1086) $ (-128)))))
+((-2113 (*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1086)))) (-2112 (*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-129)) (-5 *2 (-1086)))))
+(-13 (-171) (-10 -8 (-15 -2113 ((-1086) $)) (-15 -2112 ((-1086) $ (-129)))))
(((-171) . T))
-((-1348 (((-1138 |#1|) (-747)) 76)) (-2905 (((-1225 |#1|) (-1225 |#1|) (-892)) 69)) (-2686 (((-1230) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))) |#1|) 84)) (-2403 (((-1225 |#1|) (-1225 |#1|) (-747)) 36)) (-3238 (((-1225 |#1|) (-892)) 71)) (-1482 (((-1225 |#1|) (-1225 |#1|) (-549)) 24)) (-4267 (((-1138 |#1|) (-1225 |#1|)) 77)) (-2308 (((-1225 |#1|) (-892)) 95)) (-2815 (((-112) (-1225 |#1|)) 80)) (-4117 (((-1225 |#1|) (-1225 |#1|) (-892)) 62)) (-4030 (((-1138 |#1|) (-1225 |#1|)) 89)) (-2723 (((-892) (-1225 |#1|)) 59)) (-1991 (((-1225 |#1|) (-1225 |#1|)) 30)) (-3491 (((-1225 |#1|) (-892) (-892)) 97)) (-4019 (((-1225 |#1|) (-1225 |#1|) (-1086) (-1086)) 23)) (-2194 (((-1225 |#1|) (-1225 |#1|) (-747) (-1086)) 37)) (-3420 (((-1225 (-1225 |#1|)) (-892)) 94)) (-2512 (((-1225 |#1|) (-1225 |#1|) (-1225 |#1|)) 81)) (** (((-1225 |#1|) (-1225 |#1|) (-549)) 45)) (* (((-1225 |#1|) (-1225 |#1|) (-1225 |#1|)) 25)))
-(((-519 |#1|) (-10 -7 (-15 -2686 ((-1230) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))) |#1|)) (-15 -3238 ((-1225 |#1|) (-892))) (-15 -3491 ((-1225 |#1|) (-892) (-892))) (-15 -4267 ((-1138 |#1|) (-1225 |#1|))) (-15 -1348 ((-1138 |#1|) (-747))) (-15 -2194 ((-1225 |#1|) (-1225 |#1|) (-747) (-1086))) (-15 -2403 ((-1225 |#1|) (-1225 |#1|) (-747))) (-15 -4019 ((-1225 |#1|) (-1225 |#1|) (-1086) (-1086))) (-15 -1482 ((-1225 |#1|) (-1225 |#1|) (-549))) (-15 ** ((-1225 |#1|) (-1225 |#1|) (-549))) (-15 * ((-1225 |#1|) (-1225 |#1|) (-1225 |#1|))) (-15 -2512 ((-1225 |#1|) (-1225 |#1|) (-1225 |#1|))) (-15 -4117 ((-1225 |#1|) (-1225 |#1|) (-892))) (-15 -2905 ((-1225 |#1|) (-1225 |#1|) (-892))) (-15 -1991 ((-1225 |#1|) (-1225 |#1|))) (-15 -2723 ((-892) (-1225 |#1|))) (-15 -2815 ((-112) (-1225 |#1|))) (-15 -3420 ((-1225 (-1225 |#1|)) (-892))) (-15 -2308 ((-1225 |#1|) (-892))) (-15 -4030 ((-1138 |#1|) (-1225 |#1|)))) (-342)) (T -519))
-((-4030 (*1 *2 *3) (-12 (-5 *3 (-1225 *4)) (-4 *4 (-342)) (-5 *2 (-1138 *4)) (-5 *1 (-519 *4)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1225 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1225 (-1225 *4))) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-1225 *4)) (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-519 *4)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-1225 *4)) (-4 *4 (-342)) (-5 *2 (-892)) (-5 *1 (-519 *4)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) (-2905 (*1 *2 *2 *3) (-12 (-5 *2 (-1225 *4)) (-5 *3 (-892)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-4117 (*1 *2 *2 *3) (-12 (-5 *2 (-1225 *4)) (-5 *3 (-892)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-2512 (*1 *2 *2 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1225 *4)) (-5 *3 (-549)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-1482 (*1 *2 *2 *3) (-12 (-5 *2 (-1225 *4)) (-5 *3 (-549)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-4019 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1225 *4)) (-5 *3 (-1086)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-2403 (*1 *2 *2 *3) (-12 (-5 *2 (-1225 *4)) (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-2194 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1225 *5)) (-5 *3 (-747)) (-5 *4 (-1086)) (-4 *5 (-342)) (-5 *1 (-519 *5)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1138 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-4267 (*1 *2 *3) (-12 (-5 *3 (-1225 *4)) (-4 *4 (-342)) (-5 *2 (-1138 *4)) (-5 *1 (-519 *4)))) (-3491 (*1 *2 *3 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1225 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1225 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-2686 (*1 *2 *3 *4) (-12 (-5 *3 (-1225 (-621 (-2 (|:| -4160 *4) (|:| -3491 (-1086)))))) (-4 *4 (-342)) (-5 *2 (-1230)) (-5 *1 (-519 *4)))))
-(-10 -7 (-15 -2686 ((-1230) (-1225 (-621 (-2 (|:| -4160 |#1|) (|:| -3491 (-1086))))) |#1|)) (-15 -3238 ((-1225 |#1|) (-892))) (-15 -3491 ((-1225 |#1|) (-892) (-892))) (-15 -4267 ((-1138 |#1|) (-1225 |#1|))) (-15 -1348 ((-1138 |#1|) (-747))) (-15 -2194 ((-1225 |#1|) (-1225 |#1|) (-747) (-1086))) (-15 -2403 ((-1225 |#1|) (-1225 |#1|) (-747))) (-15 -4019 ((-1225 |#1|) (-1225 |#1|) (-1086) (-1086))) (-15 -1482 ((-1225 |#1|) (-1225 |#1|) (-549))) (-15 ** ((-1225 |#1|) (-1225 |#1|) (-549))) (-15 * ((-1225 |#1|) (-1225 |#1|) (-1225 |#1|))) (-15 -2512 ((-1225 |#1|) (-1225 |#1|) (-1225 |#1|))) (-15 -4117 ((-1225 |#1|) (-1225 |#1|) (-892))) (-15 -2905 ((-1225 |#1|) (-1225 |#1|) (-892))) (-15 -1991 ((-1225 |#1|) (-1225 |#1|))) (-15 -2723 ((-892) (-1225 |#1|))) (-15 -2815 ((-112) (-1225 |#1|))) (-15 -3420 ((-1225 (-1225 |#1|)) (-892))) (-15 -2308 ((-1225 |#1|) (-892))) (-15 -4030 ((-1138 |#1|) (-1225 |#1|))))
-((-1433 (((-1 |#1| |#1|) |#1|) 11)) (-2418 (((-1 |#1| |#1|)) 10)))
-(((-520 |#1|) (-10 -7 (-15 -2418 ((-1 |#1| |#1|))) (-15 -1433 ((-1 |#1| |#1|) |#1|))) (-13 (-703) (-25))) (T -520))
-((-1433 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))) (-2418 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))))
-(-10 -7 (-15 -2418 ((-1 |#1| |#1|))) (-15 -1433 ((-1 |#1| |#1|) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3100 (($ $ $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2069 (($ $) NIL)) (-2244 (($ (-747) |#1|) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2796 (($ (-1 (-747) (-747)) $) NIL)) (-4083 ((|#1| $) NIL)) (-2042 (((-747) $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 20)) (-3275 (($) NIL T CONST)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-2485 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL)))
+((-2116 (((-1136 |#1|) (-747)) 76)) (-3672 (((-1224 |#1|) (-1224 |#1|) (-890)) 69)) (-2114 (((-1230) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) |#1|) 84)) (-2118 (((-1224 |#1|) (-1224 |#1|) (-747)) 36)) (-3315 (((-1224 |#1|) (-890)) 71)) (-2120 (((-1224 |#1|) (-1224 |#1|) (-535)) 24)) (-2115 (((-1136 |#1|) (-1224 |#1|)) 77)) (-2124 (((-1224 |#1|) (-890)) 95)) (-2122 (((-112) (-1224 |#1|)) 80)) (-3450 (((-1224 |#1|) (-1224 |#1|) (-890)) 62)) (-2125 (((-1136 |#1|) (-1224 |#1|)) 89)) (-2121 (((-890) (-1224 |#1|)) 59)) (-2725 (((-1224 |#1|) (-1224 |#1|)) 30)) (-2483 (((-1224 |#1|) (-890) (-890)) 97)) (-2119 (((-1224 |#1|) (-1224 |#1|) (-1086) (-1086)) 23)) (-2117 (((-1224 |#1|) (-1224 |#1|) (-747) (-1086)) 37)) (-2123 (((-1224 (-1224 |#1|)) (-890)) 94)) (-4291 (((-1224 |#1|) (-1224 |#1|) (-1224 |#1|)) 81)) (** (((-1224 |#1|) (-1224 |#1|) (-535)) 45)) (* (((-1224 |#1|) (-1224 |#1|) (-1224 |#1|)) 25)))
+(((-519 |#1|) (-10 -7 (-15 -2114 ((-1230) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) |#1|)) (-15 -3315 ((-1224 |#1|) (-890))) (-15 -2483 ((-1224 |#1|) (-890) (-890))) (-15 -2115 ((-1136 |#1|) (-1224 |#1|))) (-15 -2116 ((-1136 |#1|) (-747))) (-15 -2117 ((-1224 |#1|) (-1224 |#1|) (-747) (-1086))) (-15 -2118 ((-1224 |#1|) (-1224 |#1|) (-747))) (-15 -2119 ((-1224 |#1|) (-1224 |#1|) (-1086) (-1086))) (-15 -2120 ((-1224 |#1|) (-1224 |#1|) (-535))) (-15 ** ((-1224 |#1|) (-1224 |#1|) (-535))) (-15 * ((-1224 |#1|) (-1224 |#1|) (-1224 |#1|))) (-15 -4291 ((-1224 |#1|) (-1224 |#1|) (-1224 |#1|))) (-15 -3450 ((-1224 |#1|) (-1224 |#1|) (-890))) (-15 -3672 ((-1224 |#1|) (-1224 |#1|) (-890))) (-15 -2725 ((-1224 |#1|) (-1224 |#1|))) (-15 -2121 ((-890) (-1224 |#1|))) (-15 -2122 ((-112) (-1224 |#1|))) (-15 -2123 ((-1224 (-1224 |#1|)) (-890))) (-15 -2124 ((-1224 |#1|) (-890))) (-15 -2125 ((-1136 |#1|) (-1224 |#1|)))) (-343)) (T -519))
+((-2125 (*1 *2 *3) (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-1136 *4)) (-5 *1 (-519 *4)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224 (-1224 *4))) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-519 *4)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-890)) (-5 *1 (-519 *4)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) (-3672 (*1 *2 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-890)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-890)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-4291 (*1 *2 *2 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-535)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2120 (*1 *2 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-535)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2119 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-1086)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2118 (*1 *2 *2 *3) (-12 (-5 *2 (-1224 *4)) (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2117 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1224 *5)) (-5 *3 (-747)) (-5 *4 (-1086)) (-4 *5 (-343)) (-5 *1 (-519 *5)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1136 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-1136 *4)) (-5 *1 (-519 *4)))) (-2483 (*1 *2 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2114 (*1 *2 *3 *4) (-12 (-5 *3 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))) (-4 *4 (-343)) (-5 *2 (-1230)) (-5 *1 (-519 *4)))))
+(-10 -7 (-15 -2114 ((-1230) (-1224 (-618 (-2 (|:| -3744 |#1|) (|:| -2483 (-1086))))) |#1|)) (-15 -3315 ((-1224 |#1|) (-890))) (-15 -2483 ((-1224 |#1|) (-890) (-890))) (-15 -2115 ((-1136 |#1|) (-1224 |#1|))) (-15 -2116 ((-1136 |#1|) (-747))) (-15 -2117 ((-1224 |#1|) (-1224 |#1|) (-747) (-1086))) (-15 -2118 ((-1224 |#1|) (-1224 |#1|) (-747))) (-15 -2119 ((-1224 |#1|) (-1224 |#1|) (-1086) (-1086))) (-15 -2120 ((-1224 |#1|) (-1224 |#1|) (-535))) (-15 ** ((-1224 |#1|) (-1224 |#1|) (-535))) (-15 * ((-1224 |#1|) (-1224 |#1|) (-1224 |#1|))) (-15 -4291 ((-1224 |#1|) (-1224 |#1|) (-1224 |#1|))) (-15 -3450 ((-1224 |#1|) (-1224 |#1|) (-890))) (-15 -3672 ((-1224 |#1|) (-1224 |#1|) (-890))) (-15 -2725 ((-1224 |#1|) (-1224 |#1|))) (-15 -2121 ((-890) (-1224 |#1|))) (-15 -2122 ((-112) (-1224 |#1|))) (-15 -2123 ((-1224 (-1224 |#1|)) (-890))) (-15 -2124 ((-1224 |#1|) (-890))) (-15 -2125 ((-1136 |#1|) (-1224 |#1|))))
+((-2127 (((-1 |#1| |#1|) |#1|) 11)) (-2126 (((-1 |#1| |#1|)) 10)))
+(((-520 |#1|) (-10 -7 (-15 -2126 ((-1 |#1| |#1|))) (-15 -2127 ((-1 |#1| |#1|) |#1|))) (-13 (-703) (-25))) (T -520))
+((-2127 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))) (-2126 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))))
+(-10 -7 (-15 -2126 ((-1 |#1| |#1|))) (-15 -2127 ((-1 |#1| |#1|) |#1|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2724 (($ $ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3214 (($ (-747) |#1|) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 (-747) (-747)) $) NIL)) (-2101 ((|#1| $) NIL)) (-3508 (((-747) $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20)) (-2979 (($) NIL T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL)))
(((-521 |#1|) (-13 (-769) (-500 (-747) |#1|)) (-823)) (T -521))
NIL
(-13 (-769) (-500 (-747) |#1|))
-((-1378 (((-621 |#2|) (-1138 |#1|) |#3|) 83)) (-3357 (((-621 (-2 (|:| |outval| |#2|) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 |#2|))))) (-665 |#1|) |#3| (-1 (-411 (-1138 |#1|)) (-1138 |#1|))) 100)) (-2831 (((-1138 |#1|) (-665 |#1|)) 95)))
-(((-522 |#1| |#2| |#3|) (-10 -7 (-15 -2831 ((-1138 |#1|) (-665 |#1|))) (-15 -1378 ((-621 |#2|) (-1138 |#1|) |#3|)) (-15 -3357 ((-621 (-2 (|:| |outval| |#2|) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 |#2|))))) (-665 |#1|) |#3| (-1 (-411 (-1138 |#1|)) (-1138 |#1|))))) (-356) (-356) (-13 (-356) (-821))) (T -522))
-((-3357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *6)) (-5 *5 (-1 (-411 (-1138 *6)) (-1138 *6))) (-4 *6 (-356)) (-5 *2 (-621 (-2 (|:| |outval| *7) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 *7)))))) (-5 *1 (-522 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-821))))) (-1378 (*1 *2 *3 *4) (-12 (-5 *3 (-1138 *5)) (-4 *5 (-356)) (-5 *2 (-621 *6)) (-5 *1 (-522 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-356)) (-5 *2 (-1138 *4)) (-5 *1 (-522 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-821))))))
-(-10 -7 (-15 -2831 ((-1138 |#1|) (-665 |#1|))) (-15 -1378 ((-621 |#2|) (-1138 |#1|) |#3|)) (-15 -3357 ((-621 (-2 (|:| |outval| |#2|) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 |#2|))))) (-665 |#1|) |#3| (-1 (-411 (-1138 |#1|)) (-1138 |#1|)))))
-((-3045 (((-816 (-549))) 12)) (-3058 (((-816 (-549))) 14)) (-1437 (((-809 (-549))) 9)))
-(((-523) (-10 -7 (-15 -1437 ((-809 (-549)))) (-15 -3045 ((-816 (-549)))) (-15 -3058 ((-816 (-549)))))) (T -523))
-((-3058 (*1 *2) (-12 (-5 *2 (-816 (-549))) (-5 *1 (-523)))) (-3045 (*1 *2) (-12 (-5 *2 (-816 (-549))) (-5 *1 (-523)))) (-1437 (*1 *2) (-12 (-5 *2 (-809 (-549))) (-5 *1 (-523)))))
-(-10 -7 (-15 -1437 ((-809 (-549)))) (-15 -3045 ((-816 (-549)))) (-15 -3058 ((-816 (-549)))))
-((-2876 (((-525) (-1142)) 15)) (-2859 ((|#1| (-525)) 20)))
-(((-524 |#1|) (-10 -7 (-15 -2876 ((-525) (-1142))) (-15 -2859 (|#1| (-525)))) (-1179)) (T -524))
-((-2859 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-524 *2)) (-4 *2 (-1179)))) (-2876 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-525)) (-5 *1 (-524 *4)) (-4 *4 (-1179)))))
-(-10 -7 (-15 -2876 ((-525) (-1142))) (-15 -2859 (|#1| (-525))))
-((-3833 (((-112) $ $) NIL)) (-2307 (((-1124) $) 48)) (-1874 (((-112) $) 43)) (-3943 (((-1142) $) 44)) (-2298 (((-112) $) 41)) (-1524 (((-1124) $) 42)) (-3256 (($ (-1124)) 49)) (-2425 (((-112) $) NIL)) (-2043 (((-112) $) NIL)) (-2250 (((-112) $) NIL)) (-2677 (((-1124) $) NIL)) (-2724 (($ $ (-621 (-1142))) 20)) (-2859 (((-52) $) 22)) (-3985 (((-112) $) NIL)) (-3964 (((-549) $) NIL)) (-3988 (((-1086) $) NIL)) (-3567 (($ $ (-621 (-1142)) (-1142)) 61)) (-3231 (((-112) $) NIL)) (-1354 (((-219) $) NIL)) (-3939 (($ $) 38)) (-2976 (((-834) $) NIL)) (-2650 (((-112) $ $) NIL)) (-3340 (($ $ (-549)) NIL) (($ $ (-621 (-549))) NIL)) (-2196 (((-621 $) $) 28)) (-3547 (((-1142) (-621 $)) 50)) (-2844 (($ (-621 $)) 54) (($ (-1124)) NIL) (($ (-1142)) 18) (($ (-549)) 8) (($ (-219)) 25) (($ (-834)) NIL) (((-1070) $) 11) (($ (-1070)) 12)) (-2090 (((-1142) (-1142) (-621 $)) 53)) (-3845 (((-834) $) 46)) (-3545 (($ $) 52)) (-3534 (($ $) 51)) (-1889 (($ $ (-621 $)) 58)) (-2802 (((-112) $) 27)) (-3275 (($) 9 T CONST)) (-3287 (($) 10 T CONST)) (-2388 (((-112) $ $) 62)) (-2512 (($ $ $) 67)) (-2485 (($ $ $) 63)) (** (($ $ (-747)) 66) (($ $ (-549)) 65)) (* (($ $ $) 64)) (-3774 (((-549) $) NIL)))
-(((-525) (-13 (-1069 (-1124) (-1142) (-549) (-219) (-834)) (-594 (-1070)) (-10 -8 (-15 -2859 ((-52) $)) (-15 -2844 ($ (-1070))) (-15 -1889 ($ $ (-621 $))) (-15 -3567 ($ $ (-621 (-1142)) (-1142))) (-15 -2724 ($ $ (-621 (-1142)))) (-15 -2485 ($ $ $)) (-15 * ($ $ $)) (-15 -2512 ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ (-549))) (-15 0 ($) -2588) (-15 1 ($) -2588) (-15 -3939 ($ $)) (-15 -2307 ((-1124) $)) (-15 -3256 ($ (-1124))) (-15 -3547 ((-1142) (-621 $))) (-15 -2090 ((-1142) (-1142) (-621 $)))))) (T -525))
-((-2859 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-525)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-525)))) (-1889 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-525))) (-5 *1 (-525)))) (-3567 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-1142)) (-5 *1 (-525)))) (-2724 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-525)))) (-2485 (*1 *1 *1 *1) (-5 *1 (-525))) (* (*1 *1 *1 *1) (-5 *1 (-525))) (-2512 (*1 *1 *1 *1) (-5 *1 (-525))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-525)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-525)))) (-3275 (*1 *1) (-5 *1 (-525))) (-3287 (*1 *1) (-5 *1 (-525))) (-3939 (*1 *1 *1) (-5 *1 (-525))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-525)))) (-3256 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-525)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-621 (-525))) (-5 *2 (-1142)) (-5 *1 (-525)))) (-2090 (*1 *2 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-525))) (-5 *1 (-525)))))
-(-13 (-1069 (-1124) (-1142) (-549) (-219) (-834)) (-594 (-1070)) (-10 -8 (-15 -2859 ((-52) $)) (-15 -2844 ($ (-1070))) (-15 -1889 ($ $ (-621 $))) (-15 -3567 ($ $ (-621 (-1142)) (-1142))) (-15 -2724 ($ $ (-621 (-1142)))) (-15 -2485 ($ $ $)) (-15 * ($ $ $)) (-15 -2512 ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ (-549))) (-15 (-3275) ($) -2588) (-15 (-3287) ($) -2588) (-15 -3939 ($ $)) (-15 -2307 ((-1124) $)) (-15 -3256 ($ (-1124))) (-15 -3547 ((-1142) (-621 $))) (-15 -2090 ((-1142) (-1142) (-621 $)))))
-((-2733 ((|#2| |#2|) 17)) (-2880 ((|#2| |#2|) 13)) (-2007 ((|#2| |#2| (-549) (-549)) 20)) (-1614 ((|#2| |#2|) 15)))
-(((-526 |#1| |#2|) (-10 -7 (-15 -2880 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2007 (|#2| |#2| (-549) (-549)))) (-13 (-541) (-145)) (-1216 |#1|)) (T -526))
-((-2007 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-13 (-541) (-145))) (-5 *1 (-526 *4 *2)) (-4 *2 (-1216 *4)))) (-2733 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1216 *3)))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1216 *3)))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1216 *3)))))
-(-10 -7 (-15 -2880 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2007 (|#2| |#2| (-549) (-549))))
-((-1826 (((-621 (-287 (-923 |#2|))) (-621 |#2|) (-621 (-1142))) 32)) (-3451 (((-621 |#2|) (-923 |#1|) |#3|) 53) (((-621 |#2|) (-1138 |#1|) |#3|) 52)) (-1714 (((-621 (-621 |#2|)) (-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1142)) |#3|) 91)))
-(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -3451 ((-621 |#2|) (-1138 |#1|) |#3|)) (-15 -3451 ((-621 |#2|) (-923 |#1|) |#3|)) (-15 -1714 ((-621 (-621 |#2|)) (-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1142)) |#3|)) (-15 -1826 ((-621 (-287 (-923 |#2|))) (-621 |#2|) (-621 (-1142))))) (-444) (-356) (-13 (-356) (-821))) (T -527))
-((-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 (-1142))) (-4 *6 (-356)) (-5 *2 (-621 (-287 (-923 *6)))) (-5 *1 (-527 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-13 (-356) (-821))))) (-1714 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-621 (-923 *6))) (-5 *4 (-621 (-1142))) (-4 *6 (-444)) (-5 *2 (-621 (-621 *7))) (-5 *1 (-527 *6 *7 *5)) (-4 *7 (-356)) (-4 *5 (-13 (-356) (-821))))) (-3451 (*1 *2 *3 *4) (-12 (-5 *3 (-923 *5)) (-4 *5 (-444)) (-5 *2 (-621 *6)) (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))) (-3451 (*1 *2 *3 *4) (-12 (-5 *3 (-1138 *5)) (-4 *5 (-444)) (-5 *2 (-621 *6)) (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))))
-(-10 -7 (-15 -3451 ((-621 |#2|) (-1138 |#1|) |#3|)) (-15 -3451 ((-621 |#2|) (-923 |#1|) |#3|)) (-15 -1714 ((-621 (-621 |#2|)) (-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1142)) |#3|)) (-15 -1826 ((-621 (-287 (-923 |#2|))) (-621 |#2|) (-621 (-1142)))))
-((-1998 ((|#2| |#2| |#1|) 17)) (-2182 ((|#2| (-621 |#2|)) 27)) (-1890 ((|#2| (-621 |#2|)) 46)))
-(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2182 (|#2| (-621 |#2|))) (-15 -1890 (|#2| (-621 |#2|))) (-15 -1998 (|#2| |#2| |#1|))) (-300) (-1201 |#1|) |#1| (-1 |#1| |#1| (-747))) (T -528))
-((-1998 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-747))) (-5 *1 (-528 *3 *2 *4 *5)) (-4 *2 (-1201 *3)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-1201 *4)) (-5 *1 (-528 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-1201 *4)) (-5 *1 (-528 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))))
-(-10 -7 (-15 -2182 (|#2| (-621 |#2|))) (-15 -1890 (|#2| (-621 |#2|))) (-15 -1998 (|#2| |#2| |#1|)))
-((-2120 (((-411 (-1138 |#4|)) (-1138 |#4|) (-1 (-411 (-1138 |#3|)) (-1138 |#3|))) 80) (((-411 |#4|) |#4| (-1 (-411 (-1138 |#3|)) (-1138 |#3|))) 169)))
-(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2120 ((-411 |#4|) |#4| (-1 (-411 (-1138 |#3|)) (-1138 |#3|)))) (-15 -2120 ((-411 (-1138 |#4|)) (-1138 |#4|) (-1 (-411 (-1138 |#3|)) (-1138 |#3|))))) (-823) (-769) (-13 (-300) (-145)) (-920 |#3| |#2| |#1|)) (T -529))
-((-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 (-1138 *7)) (-1138 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *8 (-920 *7 *6 *5)) (-5 *2 (-411 (-1138 *8))) (-5 *1 (-529 *5 *6 *7 *8)) (-5 *3 (-1138 *8)))) (-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 (-1138 *7)) (-1138 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *2 (-411 *3)) (-5 *1 (-529 *5 *6 *7 *3)) (-4 *3 (-920 *7 *6 *5)))))
-(-10 -7 (-15 -2120 ((-411 |#4|) |#4| (-1 (-411 (-1138 |#3|)) (-1138 |#3|)))) (-15 -2120 ((-411 (-1138 |#4|)) (-1138 |#4|) (-1 (-411 (-1138 |#3|)) (-1138 |#3|)))))
-((-2733 ((|#4| |#4|) 74)) (-2880 ((|#4| |#4|) 70)) (-2007 ((|#4| |#4| (-549) (-549)) 76)) (-1614 ((|#4| |#4|) 72)))
-(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2880 (|#4| |#4|)) (-15 -1614 (|#4| |#4|)) (-15 -2733 (|#4| |#4|)) (-15 -2007 (|#4| |#4| (-549) (-549)))) (-13 (-356) (-361) (-594 (-549))) (-1201 |#1|) (-701 |#1| |#2|) (-1216 |#3|)) (T -530))
-((-2007 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-13 (-356) (-361) (-594 *3))) (-4 *5 (-1201 *4)) (-4 *6 (-701 *4 *5)) (-5 *1 (-530 *4 *5 *6 *2)) (-4 *2 (-1216 *6)))) (-2733 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-4 *4 (-1201 *3)) (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1216 *5)))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-4 *4 (-1201 *3)) (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1216 *5)))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-4 *4 (-1201 *3)) (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1216 *5)))))
-(-10 -7 (-15 -2880 (|#4| |#4|)) (-15 -1614 (|#4| |#4|)) (-15 -2733 (|#4| |#4|)) (-15 -2007 (|#4| |#4| (-549) (-549))))
-((-2733 ((|#2| |#2|) 27)) (-2880 ((|#2| |#2|) 23)) (-2007 ((|#2| |#2| (-549) (-549)) 29)) (-1614 ((|#2| |#2|) 25)))
-(((-531 |#1| |#2|) (-10 -7 (-15 -2880 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2007 (|#2| |#2| (-549) (-549)))) (-13 (-356) (-361) (-594 (-549))) (-1216 |#1|)) (T -531))
-((-2007 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-13 (-356) (-361) (-594 *3))) (-5 *1 (-531 *4 *2)) (-4 *2 (-1216 *4)))) (-2733 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1216 *3)))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1216 *3)))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1216 *3)))))
-(-10 -7 (-15 -2880 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2007 (|#2| |#2| (-549) (-549))))
-((-2175 (((-3 (-549) "failed") |#2| |#1| (-1 (-3 (-549) "failed") |#1|)) 14) (((-3 (-549) "failed") |#2| |#1| (-549) (-1 (-3 (-549) "failed") |#1|)) 13) (((-3 (-549) "failed") |#2| (-549) (-1 (-3 (-549) "failed") |#1|)) 26)))
-(((-532 |#1| |#2|) (-10 -7 (-15 -2175 ((-3 (-549) "failed") |#2| (-549) (-1 (-3 (-549) "failed") |#1|))) (-15 -2175 ((-3 (-549) "failed") |#2| |#1| (-549) (-1 (-3 (-549) "failed") |#1|))) (-15 -2175 ((-3 (-549) "failed") |#2| |#1| (-1 (-3 (-549) "failed") |#1|)))) (-1018) (-1201 |#1|)) (T -532))
-((-2175 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-549) "failed") *4)) (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-532 *4 *3)) (-4 *3 (-1201 *4)))) (-2175 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-549) "failed") *4)) (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-532 *4 *3)) (-4 *3 (-1201 *4)))) (-2175 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-549) "failed") *5)) (-4 *5 (-1018)) (-5 *2 (-549)) (-5 *1 (-532 *5 *3)) (-4 *3 (-1201 *5)))))
-(-10 -7 (-15 -2175 ((-3 (-549) "failed") |#2| (-549) (-1 (-3 (-549) "failed") |#1|))) (-15 -2175 ((-3 (-549) "failed") |#2| |#1| (-549) (-1 (-3 (-549) "failed") |#1|))) (-15 -2175 ((-3 (-549) "failed") |#2| |#1| (-1 (-3 (-549) "failed") |#1|))))
-((-4121 (($ $ $) 79)) (-3513 (((-411 $) $) 47)) (-2713 (((-3 (-549) "failed") $) 59)) (-2658 (((-549) $) 37)) (-3156 (((-3 (-400 (-549)) "failed") $) 74)) (-3230 (((-112) $) 24)) (-3867 (((-400 (-549)) $) 72)) (-2471 (((-112) $) 50)) (-3084 (($ $ $ $) 86)) (-3079 (((-112) $) 16)) (-3969 (($ $ $) 57)) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 69)) (-3982 (((-3 $ "failed") $) 64)) (-2428 (($ $) 23)) (-1263 (($ $ $) 84)) (-3060 (($) 60)) (-1692 (($ $) 53)) (-2120 (((-411 $) $) 45)) (-4062 (((-112) $) 14)) (-4091 (((-747) $) 28)) (-3455 (($ $ (-747)) NIL) (($ $) 10)) (-2281 (($ $) 17)) (-2844 (((-549) $) NIL) (((-525) $) 36) (((-863 (-549)) $) 40) (((-372) $) 31) (((-219) $) 33)) (-1723 (((-747)) 8)) (-2807 (((-112) $ $) 20)) (-2224 (($ $ $) 55)))
-(((-533 |#1|) (-10 -8 (-15 -1263 (|#1| |#1| |#1|)) (-15 -3084 (|#1| |#1| |#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -3156 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3867 ((-400 (-549)) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 -4121 (|#1| |#1| |#1|)) (-15 -2807 ((-112) |#1| |#1|)) (-15 -4062 ((-112) |#1|)) (-15 -3060 (|#1|)) (-15 -3982 ((-3 |#1| "failed") |#1|)) (-15 -2844 ((-219) |#1|)) (-15 -2844 ((-372) |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -2224 (|#1| |#1| |#1|)) (-15 -1289 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2844 ((-863 (-549)) |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2844 ((-549) |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3079 ((-112) |#1|)) (-15 -4091 ((-747) |#1|)) (-15 -2120 ((-411 |#1|) |#1|)) (-15 -3513 ((-411 |#1|) |#1|)) (-15 -2471 ((-112) |#1|)) (-15 -1723 ((-747)))) (-534)) (T -533))
-((-1723 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-533 *3)) (-4 *3 (-534)))))
-(-10 -8 (-15 -1263 (|#1| |#1| |#1|)) (-15 -3084 (|#1| |#1| |#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -3156 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3867 ((-400 (-549)) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 -4121 (|#1| |#1| |#1|)) (-15 -2807 ((-112) |#1| |#1|)) (-15 -4062 ((-112) |#1|)) (-15 -3060 (|#1|)) (-15 -3982 ((-3 |#1| "failed") |#1|)) (-15 -2844 ((-219) |#1|)) (-15 -2844 ((-372) |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -2224 (|#1| |#1| |#1|)) (-15 -1289 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2844 ((-863 (-549)) |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2844 ((-549) |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3079 ((-112) |#1|)) (-15 -4091 ((-747) |#1|)) (-15 -2120 ((-411 |#1|) |#1|)) (-15 -3513 ((-411 |#1|) |#1|)) (-15 -2471 ((-112) |#1|)) (-15 -1723 ((-747))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-4121 (($ $ $) 82)) (-2384 (((-3 $ "failed") $ $) 19)) (-3673 (($ $ $ $) 71)) (-1912 (($ $) 49)) (-3513 (((-411 $) $) 50)) (-2647 (((-112) $ $) 122)) (-3902 (((-549) $) 111)) (-1309 (($ $ $) 85)) (-1705 (($) 17 T CONST)) (-2713 (((-3 (-549) "failed") $) 103)) (-2658 (((-549) $) 102)) (-2094 (($ $ $) 126)) (-1698 (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 101) (((-665 (-549)) (-665 $)) 100)) (-3976 (((-3 $ "failed") $) 32)) (-3156 (((-3 (-400 (-549)) "failed") $) 79)) (-3230 (((-112) $) 81)) (-3867 (((-400 (-549)) $) 80)) (-3238 (($) 78) (($ $) 77)) (-2066 (($ $ $) 125)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 120)) (-2471 (((-112) $) 51)) (-3084 (($ $ $ $) 69)) (-1278 (($ $ $) 83)) (-3079 (((-112) $) 113)) (-3969 (($ $ $) 94)) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 97)) (-3987 (((-112) $) 30)) (-3061 (((-112) $) 89)) (-3982 (((-3 $ "failed") $) 91)) (-2847 (((-112) $) 112)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 129)) (-2088 (($ $ $ $) 70)) (-2862 (($ $ $) 114)) (-3574 (($ $ $) 115)) (-2428 (($ $) 73)) (-4209 (($ $) 86)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-1263 (($ $ $) 68)) (-3060 (($) 90 T CONST)) (-3780 (($ $) 75)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-1692 (($ $) 95)) (-2120 (((-411 $) $) 48)) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 127)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 121)) (-4062 (((-112) $) 88)) (-4091 (((-747) $) 123)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 124)) (-3455 (($ $ (-747)) 108) (($ $) 106)) (-1897 (($ $) 74)) (-2281 (($ $) 76)) (-2844 (((-549) $) 105) (((-525) $) 99) (((-863 (-549)) $) 98) (((-372) $) 93) (((-219) $) 92)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-549)) 104)) (-1723 (((-747)) 28)) (-2807 (((-112) $ $) 84)) (-2224 (($ $ $) 96)) (-1863 (($) 87)) (-4053 (((-112) $ $) 37)) (-2232 (($ $ $ $) 72)) (-3603 (($ $) 110)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-747)) 109) (($ $) 107)) (-2448 (((-112) $ $) 117)) (-2424 (((-112) $ $) 118)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 116)) (-2411 (((-112) $ $) 119)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-2129 (((-618 |#2|) (-1136 |#1|) |#3|) 83)) (-2130 (((-618 (-2 (|:| |outval| |#2|) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 |#2|))))) (-665 |#1|) |#3| (-1 (-398 (-1136 |#1|)) (-1136 |#1|))) 100)) (-2128 (((-1136 |#1|) (-665 |#1|)) 95)))
+(((-522 |#1| |#2| |#3|) (-10 -7 (-15 -2128 ((-1136 |#1|) (-665 |#1|))) (-15 -2129 ((-618 |#2|) (-1136 |#1|) |#3|)) (-15 -2130 ((-618 (-2 (|:| |outval| |#2|) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 |#2|))))) (-665 |#1|) |#3| (-1 (-398 (-1136 |#1|)) (-1136 |#1|))))) (-356) (-356) (-13 (-356) (-821))) (T -522))
+((-2130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *6)) (-5 *5 (-1 (-398 (-1136 *6)) (-1136 *6))) (-4 *6 (-356)) (-5 *2 (-618 (-2 (|:| |outval| *7) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 *7)))))) (-5 *1 (-522 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-821))))) (-2129 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *5)) (-4 *5 (-356)) (-5 *2 (-618 *6)) (-5 *1 (-522 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-356)) (-5 *2 (-1136 *4)) (-5 *1 (-522 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-821))))))
+(-10 -7 (-15 -2128 ((-1136 |#1|) (-665 |#1|))) (-15 -2129 ((-618 |#2|) (-1136 |#1|) |#3|)) (-15 -2130 ((-618 (-2 (|:| |outval| |#2|) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 |#2|))))) (-665 |#1|) |#3| (-1 (-398 (-1136 |#1|)) (-1136 |#1|)))))
+((-2854 (((-815 (-535))) 12)) (-2853 (((-815 (-535))) 14)) (-2839 (((-808 (-535))) 9)))
+(((-523) (-10 -7 (-15 -2839 ((-808 (-535)))) (-15 -2854 ((-815 (-535)))) (-15 -2853 ((-815 (-535)))))) (T -523))
+((-2853 (*1 *2) (-12 (-5 *2 (-815 (-535))) (-5 *1 (-523)))) (-2854 (*1 *2) (-12 (-5 *2 (-815 (-535))) (-5 *1 (-523)))) (-2839 (*1 *2) (-12 (-5 *2 (-808 (-535))) (-5 *1 (-523)))))
+(-10 -7 (-15 -2839 ((-808 (-535)))) (-15 -2854 ((-815 (-535)))) (-15 -2853 ((-815 (-535)))))
+((-2887 (((-112) $ $) NIL)) (-2134 (((-1124) $) 48)) (-3594 (((-112) $) 43)) (-3590 (((-1142) $) 44)) (-3595 (((-112) $) 41)) (-3881 (((-1124) $) 42)) (-2133 (($ (-1124)) 49)) (-3597 (((-112) $) NIL)) (-3599 (((-112) $) NIL)) (-3596 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-2136 (($ $ (-618 (-1142))) 20)) (-2139 (((-51) $) 22)) (-3593 (((-112) $) NIL)) (-3589 (((-535) $) NIL)) (-3577 (((-1086) $) NIL)) (-2466 (($ $ (-618 (-1142)) (-1142)) 61)) (-3592 (((-112) $) NIL)) (-3588 (((-219) $) NIL)) (-2135 (($ $) 38)) (-3587 (((-835) $) NIL)) (-3600 (((-112) $ $) NIL)) (-4142 (($ $ (-535)) NIL) (($ $ (-618 (-535))) NIL)) (-3591 (((-618 $) $) 28)) (-2132 (((-1142) (-618 $)) 50)) (-4313 (($ (-618 $)) 54) (($ (-1124)) NIL) (($ (-1142)) 18) (($ (-535)) 8) (($ (-219)) 25) (($ (-835)) NIL) (((-1069) $) 11) (($ (-1069)) 12)) (-2131 (((-1142) (-1142) (-618 $)) 53)) (-4300 (((-835) $) 46)) (-3585 (($ $) 52)) (-3586 (($ $) 51)) (-2137 (($ $ (-618 $)) 58)) (-3598 (((-112) $) 27)) (-2979 (($) 9 T CONST)) (-2985 (($) 10 T CONST)) (-3375 (((-112) $ $) 62)) (-4291 (($ $ $) 67)) (-4182 (($ $ $) 63)) (** (($ $ (-747)) 66) (($ $ (-535)) 65)) (* (($ $ $) 64)) (-4299 (((-535) $) NIL)))
+(((-524) (-13 (-1070 (-1124) (-1142) (-535) (-219) (-835)) (-594 (-1069)) (-10 -8 (-15 -2139 ((-51) $)) (-15 -4313 ($ (-1069))) (-15 -2137 ($ $ (-618 $))) (-15 -2466 ($ $ (-618 (-1142)) (-1142))) (-15 -2136 ($ $ (-618 (-1142)))) (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 -4291 ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ (-535))) (-15 0 ($) -4294) (-15 1 ($) -4294) (-15 -2135 ($ $)) (-15 -2134 ((-1124) $)) (-15 -2133 ($ (-1124))) (-15 -2132 ((-1142) (-618 $))) (-15 -2131 ((-1142) (-1142) (-618 $)))))) (T -524))
+((-2139 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-524)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-1069)) (-5 *1 (-524)))) (-2137 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-524))) (-5 *1 (-524)))) (-2466 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-1142)) (-5 *1 (-524)))) (-2136 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-524)))) (-4182 (*1 *1 *1 *1) (-5 *1 (-524))) (* (*1 *1 *1 *1) (-5 *1 (-524))) (-4291 (*1 *1 *1 *1) (-5 *1 (-524))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-524)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-524)))) (-2979 (*1 *1) (-5 *1 (-524))) (-2985 (*1 *1) (-5 *1 (-524))) (-2135 (*1 *1 *1) (-5 *1 (-524))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-524)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-524)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-618 (-524))) (-5 *2 (-1142)) (-5 *1 (-524)))) (-2131 (*1 *2 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-524))) (-5 *1 (-524)))))
+(-13 (-1070 (-1124) (-1142) (-535) (-219) (-835)) (-594 (-1069)) (-10 -8 (-15 -2139 ((-51) $)) (-15 -4313 ($ (-1069))) (-15 -2137 ($ $ (-618 $))) (-15 -2466 ($ $ (-618 (-1142)) (-1142))) (-15 -2136 ($ $ (-618 (-1142)))) (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 -4291 ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ (-535))) (-15 (-2979) ($) -4294) (-15 (-2985) ($) -4294) (-15 -2135 ($ $)) (-15 -2134 ((-1124) $)) (-15 -2133 ($ (-1124))) (-15 -2132 ((-1142) (-618 $))) (-15 -2131 ((-1142) (-1142) (-618 $)))))
+((-2138 (((-524) (-1142)) 15)) (-2139 ((|#1| (-524)) 20)))
+(((-525 |#1|) (-10 -7 (-15 -2138 ((-524) (-1142))) (-15 -2139 (|#1| (-524)))) (-1178)) (T -525))
+((-2139 (*1 *2 *3) (-12 (-5 *3 (-524)) (-5 *1 (-525 *2)) (-4 *2 (-1178)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-524)) (-5 *1 (-525 *4)) (-4 *4 (-1178)))))
+(-10 -7 (-15 -2138 ((-524) (-1142))) (-15 -2139 (|#1| (-524))))
+((-3790 ((|#2| |#2|) 17)) (-3788 ((|#2| |#2|) 13)) (-3791 ((|#2| |#2| (-535) (-535)) 20)) (-3789 ((|#2| |#2|) 15)))
+(((-526 |#1| |#2|) (-10 -7 (-15 -3788 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3790 (|#2| |#2|)) (-15 -3791 (|#2| |#2| (-535) (-535)))) (-13 (-542) (-145)) (-1217 |#1|)) (T -526))
+((-3791 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-535)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-526 *4 *2)) (-4 *2 (-1217 *4)))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3)))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3)))))
+(-10 -7 (-15 -3788 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3790 (|#2| |#2|)) (-15 -3791 (|#2| |#2| (-535) (-535))))
+((-2142 (((-618 (-286 (-917 |#2|))) (-618 |#2|) (-618 (-1142))) 32)) (-2140 (((-618 |#2|) (-917 |#1|) |#3|) 53) (((-618 |#2|) (-1136 |#1|) |#3|) 52)) (-2141 (((-618 (-618 |#2|)) (-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142)) |#3|) 91)))
+(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -2140 ((-618 |#2|) (-1136 |#1|) |#3|)) (-15 -2140 ((-618 |#2|) (-917 |#1|) |#3|)) (-15 -2141 ((-618 (-618 |#2|)) (-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142)) |#3|)) (-15 -2142 ((-618 (-286 (-917 |#2|))) (-618 |#2|) (-618 (-1142))))) (-444) (-356) (-13 (-356) (-821))) (T -527))
+((-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 (-1142))) (-4 *6 (-356)) (-5 *2 (-618 (-286 (-917 *6)))) (-5 *1 (-527 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-13 (-356) (-821))))) (-2141 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-618 (-917 *6))) (-5 *4 (-618 (-1142))) (-4 *6 (-444)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-527 *6 *7 *5)) (-4 *7 (-356)) (-4 *5 (-13 (-356) (-821))))) (-2140 (*1 *2 *3 *4) (-12 (-5 *3 (-917 *5)) (-4 *5 (-444)) (-5 *2 (-618 *6)) (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))) (-2140 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *5)) (-4 *5 (-444)) (-5 *2 (-618 *6)) (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))))
+(-10 -7 (-15 -2140 ((-618 |#2|) (-1136 |#1|) |#3|)) (-15 -2140 ((-618 |#2|) (-917 |#1|) |#3|)) (-15 -2141 ((-618 (-618 |#2|)) (-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142)) |#3|)) (-15 -2142 ((-618 (-286 (-917 |#2|))) (-618 |#2|) (-618 (-1142)))))
+((-2145 ((|#2| |#2| |#1|) 17)) (-2143 ((|#2| (-618 |#2|)) 27)) (-2144 ((|#2| (-618 |#2|)) 46)))
+(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2143 (|#2| (-618 |#2|))) (-15 -2144 (|#2| (-618 |#2|))) (-15 -2145 (|#2| |#2| |#1|))) (-300) (-1200 |#1|) |#1| (-1 |#1| |#1| (-747))) (T -528))
+((-2145 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-747))) (-5 *1 (-528 *3 *2 *4 *5)) (-4 *2 (-1200 *3)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-528 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-528 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))))
+(-10 -7 (-15 -2143 (|#2| (-618 |#2|))) (-15 -2144 (|#2| (-618 |#2|))) (-15 -2145 (|#2| |#2| |#1|)))
+((-4075 (((-398 (-1136 |#4|)) (-1136 |#4|) (-1 (-398 (-1136 |#3|)) (-1136 |#3|))) 80) (((-398 |#4|) |#4| (-1 (-398 (-1136 |#3|)) (-1136 |#3|))) 169)))
+(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 |#4|) |#4| (-1 (-398 (-1136 |#3|)) (-1136 |#3|)))) (-15 -4075 ((-398 (-1136 |#4|)) (-1136 |#4|) (-1 (-398 (-1136 |#3|)) (-1136 |#3|))))) (-823) (-769) (-13 (-300) (-145)) (-921 |#3| |#2| |#1|)) (T -529))
+((-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 (-1136 *7)) (-1136 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *8 (-921 *7 *6 *5)) (-5 *2 (-398 (-1136 *8))) (-5 *1 (-529 *5 *6 *7 *8)) (-5 *3 (-1136 *8)))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 (-1136 *7)) (-1136 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *2 (-398 *3)) (-5 *1 (-529 *5 *6 *7 *3)) (-4 *3 (-921 *7 *6 *5)))))
+(-10 -7 (-15 -4075 ((-398 |#4|) |#4| (-1 (-398 (-1136 |#3|)) (-1136 |#3|)))) (-15 -4075 ((-398 (-1136 |#4|)) (-1136 |#4|) (-1 (-398 (-1136 |#3|)) (-1136 |#3|)))))
+((-3790 ((|#4| |#4|) 74)) (-3788 ((|#4| |#4|) 70)) (-3791 ((|#4| |#4| (-535) (-535)) 76)) (-3789 ((|#4| |#4|) 72)))
+(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3788 (|#4| |#4|)) (-15 -3789 (|#4| |#4|)) (-15 -3790 (|#4| |#4|)) (-15 -3791 (|#4| |#4| (-535) (-535)))) (-13 (-356) (-361) (-594 (-535))) (-1200 |#1|) (-701 |#1| |#2|) (-1217 |#3|)) (T -530))
+((-3791 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-535)) (-4 *4 (-13 (-356) (-361) (-594 *3))) (-4 *5 (-1200 *4)) (-4 *6 (-701 *4 *5)) (-5 *1 (-530 *4 *5 *6 *2)) (-4 *2 (-1217 *6)))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-4 *4 (-1200 *3)) (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-4 *4 (-1200 *3)) (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5)))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-4 *4 (-1200 *3)) (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5)))))
+(-10 -7 (-15 -3788 (|#4| |#4|)) (-15 -3789 (|#4| |#4|)) (-15 -3790 (|#4| |#4|)) (-15 -3791 (|#4| |#4| (-535) (-535))))
+((-3790 ((|#2| |#2|) 27)) (-3788 ((|#2| |#2|) 23)) (-3791 ((|#2| |#2| (-535) (-535)) 29)) (-3789 ((|#2| |#2|) 25)))
+(((-531 |#1| |#2|) (-10 -7 (-15 -3788 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3790 (|#2| |#2|)) (-15 -3791 (|#2| |#2| (-535) (-535)))) (-13 (-356) (-361) (-594 (-535))) (-1217 |#1|)) (T -531))
+((-3791 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-535)) (-4 *4 (-13 (-356) (-361) (-594 *3))) (-5 *1 (-531 *4 *2)) (-4 *2 (-1217 *4)))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1217 *3)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1217 *3)))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1217 *3)))))
+(-10 -7 (-15 -3788 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3790 (|#2| |#2|)) (-15 -3791 (|#2| |#2| (-535) (-535))))
+((-2146 (((-3 (-535) #1="failed") |#2| |#1| (-1 (-3 (-535) #1#) |#1|)) 14) (((-3 (-535) #1#) |#2| |#1| (-535) (-1 (-3 (-535) #1#) |#1|)) 13) (((-3 (-535) #1#) |#2| (-535) (-1 (-3 (-535) #1#) |#1|)) 26)))
+(((-532 |#1| |#2|) (-10 -7 (-15 -2146 ((-3 (-535) #1="failed") |#2| (-535) (-1 (-3 (-535) #1#) |#1|))) (-15 -2146 ((-3 (-535) #1#) |#2| |#1| (-535) (-1 (-3 (-535) #1#) |#1|))) (-15 -2146 ((-3 (-535) #1#) |#2| |#1| (-1 (-3 (-535) #1#) |#1|)))) (-1018) (-1200 |#1|)) (T -532))
+((-2146 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-535) #1="failed") *4)) (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-532 *4 *3)) (-4 *3 (-1200 *4)))) (-2146 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-535) #1#) *4)) (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-532 *4 *3)) (-4 *3 (-1200 *4)))) (-2146 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-535) #1#) *5)) (-4 *5 (-1018)) (-5 *2 (-535)) (-5 *1 (-532 *5 *3)) (-4 *3 (-1200 *5)))))
+(-10 -7 (-15 -2146 ((-3 (-535) #1="failed") |#2| (-535) (-1 (-3 (-535) #1#) |#1|))) (-15 -2146 ((-3 (-535) #1#) |#2| |#1| (-535) (-1 (-3 (-535) #1#) |#1|))) (-15 -2146 ((-3 (-535) #1#) |#2| |#1| (-1 (-3 (-535) #1#) |#1|))))
+((-2155 (($ $ $) 79)) (-4312 (((-398 $) $) 47)) (-3491 (((-3 (-535) "failed") $) 59)) (-3490 (((-535) $) 37)) (-3345 (((-3 (-400 (-535)) "failed") $) 74)) (-3344 (((-112) $) 24)) (-3343 (((-400 (-535)) $) 72)) (-4069 (((-112) $) 50)) (-2148 (($ $ $ $) 86)) (-3520 (((-112) $) 16)) (-1413 (($ $ $) 57)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 69)) (-3786 (((-3 $ "failed") $) 64)) (-2152 (($ $) 23)) (-2147 (($ $ $) 84)) (-3787 (($) 60)) (-1411 (($ $) 53)) (-4075 (((-398 $) $) 45)) (-2995 (((-112) $) 14)) (-1699 (((-747) $) 28)) (-4153 (($ $ (-747)) NIL) (($ $) 10)) (-3742 (($ $) 17)) (-4313 (((-535) $) NIL) (((-524) $) 36) (((-861 (-535)) $) 40) (((-371) $) 31) (((-219) $) 33)) (-3444 (((-747)) 8)) (-2157 (((-112) $ $) 20)) (-3420 (($ $ $) 55)))
+(((-533 |#1|) (-10 -8 (-15 -2147 (|#1| |#1| |#1|)) (-15 -2148 (|#1| |#1| |#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -2155 (|#1| |#1| |#1|)) (-15 -2157 ((-112) |#1| |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -4313 ((-219) |#1|)) (-15 -4313 ((-371) |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1|)) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) "failed") |#1|)) (-15 -4313 ((-535) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -3520 ((-112) |#1|)) (-15 -1699 ((-747) |#1|)) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4069 ((-112) |#1|)) (-15 -3444 ((-747)))) (-534)) (T -533))
+((-3444 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-533 *3)) (-4 *3 (-534)))))
+(-10 -8 (-15 -2147 (|#1| |#1| |#1|)) (-15 -2148 (|#1| |#1| |#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -2155 (|#1| |#1| |#1|)) (-15 -2157 ((-112) |#1| |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -4313 ((-219) |#1|)) (-15 -4313 ((-371) |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1|)) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) "failed") |#1|)) (-15 -4313 ((-535) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -3520 ((-112) |#1|)) (-15 -1699 ((-747) |#1|)) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4069 ((-112) |#1|)) (-15 -3444 ((-747))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-2155 (($ $ $) 82)) (-1363 (((-3 $ "failed") $ $) 19)) (-2150 (($ $ $ $) 71)) (-4117 (($ $) 49)) (-4312 (((-398 $) $) 50)) (-1700 (((-112) $ $) 122)) (-3969 (((-535) $) 111)) (-2681 (($ $ $) 85)) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) "failed") $) 103)) (-3490 (((-535) $) 102)) (-2883 (($ $ $) 126)) (-2353 (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 101) (((-665 (-535)) (-665 $)) 100)) (-3804 (((-3 $ "failed") $) 32)) (-3345 (((-3 (-400 (-535)) "failed") $) 79)) (-3344 (((-112) $) 81)) (-3343 (((-400 (-535)) $) 80)) (-3315 (($) 78) (($ $) 77)) (-2882 (($ $ $) 125)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 120)) (-4069 (((-112) $) 51)) (-2148 (($ $ $ $) 69)) (-2156 (($ $ $) 83)) (-3520 (((-112) $) 113)) (-1413 (($ $ $) 94)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 97)) (-2493 (((-112) $) 30)) (-2994 (((-112) $) 89)) (-3786 (((-3 $ "failed") $) 91)) (-3521 (((-112) $) 112)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 129)) (-2149 (($ $ $ $) 70)) (-3660 (($ $ $) 114)) (-3661 (($ $ $) 115)) (-2152 (($ $) 73)) (-4176 (($ $) 86)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2147 (($ $ $) 68)) (-3787 (($) 90 T CONST)) (-2154 (($ $) 75)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-1411 (($ $) 95)) (-4075 (((-398 $) $) 48)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 127)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 121)) (-2995 (((-112) $) 88)) (-1699 (((-747) $) 123)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 124)) (-4153 (($ $ (-747)) 108) (($ $) 106)) (-2153 (($ $) 74)) (-3742 (($ $) 76)) (-4313 (((-535) $) 105) (((-524) $) 99) (((-861 (-535)) $) 98) (((-371) $) 93) (((-219) $) 92)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-535)) 104)) (-3444 (((-747)) 28)) (-2157 (((-112) $ $) 84)) (-3420 (($ $ $) 96)) (-3015 (($) 87)) (-2170 (((-112) $ $) 37)) (-2151 (($ $ $ $) 72)) (-3725 (($ $) 110)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-747)) 109) (($ $) 107)) (-2885 (((-112) $ $) 117)) (-2886 (((-112) $ $) 118)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 116)) (-3006 (((-112) $ $) 119)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-534) (-138)) (T -534))
-((-3061 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-4062 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-1863 (*1 *1) (-4 *1 (-534))) (-4209 (*1 *1 *1) (-4 *1 (-534))) (-1309 (*1 *1 *1 *1) (-4 *1 (-534))) (-2807 (*1 *2 *1 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-1278 (*1 *1 *1 *1) (-4 *1 (-534))) (-4121 (*1 *1 *1 *1) (-4 *1 (-534))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-400 (-549))))) (-3156 (*1 *2 *1) (|partial| -12 (-4 *1 (-534)) (-5 *2 (-400 (-549))))) (-3238 (*1 *1) (-4 *1 (-534))) (-3238 (*1 *1 *1) (-4 *1 (-534))) (-2281 (*1 *1 *1) (-4 *1 (-534))) (-3780 (*1 *1 *1) (-4 *1 (-534))) (-1897 (*1 *1 *1) (-4 *1 (-534))) (-2428 (*1 *1 *1) (-4 *1 (-534))) (-2232 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-3673 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-2088 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-3084 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-1263 (*1 *1 *1 *1) (-4 *1 (-534))))
-(-13 (-1183) (-300) (-796) (-227) (-594 (-549)) (-1009 (-549)) (-617 (-549)) (-594 (-525)) (-594 (-863 (-549))) (-857 (-549)) (-141) (-993) (-145) (-1117) (-10 -8 (-15 -3061 ((-112) $)) (-15 -4062 ((-112) $)) (-6 -4335) (-15 -1863 ($)) (-15 -4209 ($ $)) (-15 -1309 ($ $ $)) (-15 -2807 ((-112) $ $)) (-15 -1278 ($ $ $)) (-15 -4121 ($ $ $)) (-15 -3230 ((-112) $)) (-15 -3867 ((-400 (-549)) $)) (-15 -3156 ((-3 (-400 (-549)) "failed") $)) (-15 -3238 ($)) (-15 -3238 ($ $)) (-15 -2281 ($ $)) (-15 -3780 ($ $)) (-15 -1897 ($ $)) (-15 -2428 ($ $)) (-15 -2232 ($ $ $ $)) (-15 -3673 ($ $ $ $)) (-15 -2088 ($ $ $ $)) (-15 -3084 ($ $ $ $)) (-15 -1263 ($ $ $)) (-6 -4334)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-834)) . T) ((-141) . T) ((-170) . T) ((-594 (-219)) . T) ((-594 (-372)) . T) ((-594 (-525)) . T) ((-594 (-549)) . T) ((-594 (-863 (-549))) . T) ((-227) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-541) . T) ((-624 $) . T) ((-617 (-549)) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-796) . T) ((-821) . T) ((-823) . T) ((-857 (-549)) . T) ((-891) . T) ((-993) . T) ((-1009 (-549)) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1117) . T) ((-1183) . T))
-((-3833 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3732 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2932 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#2| $ |#1| |#2|) NIL)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3489 (((-3 |#2| "failed") |#1| $) NIL)) (-1705 (($) NIL T CONST)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-4204 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| "failed") |#1| $) NIL)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#2| $ |#1|) NIL)) (-2990 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 ((|#1| $) NIL (|has| |#1| (-823)))) (-1958 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1548 ((|#1| $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3449 (((-621 |#1|) $) NIL)) (-3665 (((-112) |#1| $) NIL)) (-2349 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-3927 (((-621 |#1|) $) NIL)) (-1286 (((-112) |#1| $) NIL)) (-3988 (((-1086) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3645 ((|#2| $) NIL (|has| |#1| (-823)))) (-1917 (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL)) (-3158 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1738 (((-621 |#2|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4252 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3845 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-1765 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-535 |#1| |#2| |#3|) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) (-1066) (-1066) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336)))) (T -535))
+((-2994 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-3015 (*1 *1) (-4 *1 (-534))) (-4176 (*1 *1 *1) (-4 *1 (-534))) (-2681 (*1 *1 *1 *1) (-4 *1 (-534))) (-2157 (*1 *2 *1 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-2156 (*1 *1 *1 *1) (-4 *1 (-534))) (-2155 (*1 *1 *1 *1) (-4 *1 (-534))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-400 (-535))))) (-3345 (*1 *2 *1) (|partial| -12 (-4 *1 (-534)) (-5 *2 (-400 (-535))))) (-3315 (*1 *1) (-4 *1 (-534))) (-3315 (*1 *1 *1) (-4 *1 (-534))) (-3742 (*1 *1 *1) (-4 *1 (-534))) (-2154 (*1 *1 *1) (-4 *1 (-534))) (-2153 (*1 *1 *1) (-4 *1 (-534))) (-2152 (*1 *1 *1) (-4 *1 (-534))) (-2151 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-2150 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-2149 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-2148 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-2147 (*1 *1 *1 *1) (-4 *1 (-534))))
+(-13 (-1183) (-300) (-796) (-227) (-594 (-535)) (-1009 (-535)) (-617 (-535)) (-594 (-524)) (-594 (-861 (-535))) (-857 (-535)) (-141) (-991) (-145) (-1117) (-10 -8 (-15 -2994 ((-112) $)) (-15 -2995 ((-112) $)) (-6 -4335) (-15 -3015 ($)) (-15 -4176 ($ $)) (-15 -2681 ($ $ $)) (-15 -2157 ((-112) $ $)) (-15 -2156 ($ $ $)) (-15 -2155 ($ $ $)) (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $)) (-15 -3315 ($)) (-15 -3315 ($ $)) (-15 -3742 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $)) (-15 -2152 ($ $)) (-15 -2151 ($ $ $ $)) (-15 -2150 ($ $ $ $)) (-15 -2149 ($ $ $ $)) (-15 -2148 ($ $ $ $)) (-15 -2147 ($ $ $)) (-6 -4334)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-835)) . T) ((-141) . T) ((-170) . T) ((-594 (-219)) . T) ((-594 (-371)) . T) ((-594 (-524)) . T) ((-594 (-535)) . T) ((-594 (-861 (-535))) . T) ((-227) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-542) . T) ((-624 $) . T) ((-617 (-535)) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-796) . T) ((-821) . T) ((-823) . T) ((-857 (-535)) . T) ((-892) . T) ((-991) . T) ((-1009 (-535)) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) . T) ((-1183) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 25)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 88)) (-2171 (($ $) 89)) (-2169 (((-112) $) NIL)) (-2155 (($ $ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-2150 (($ $ $ $) 43)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL)) (-2681 (($ $ $) 82)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) "failed") $) NIL)) (-3490 (((-535) $) NIL)) (-2883 (($ $ $) 81)) (-2353 (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 62) (((-665 (-535)) (-665 $)) 58)) (-3804 (((-3 $ "failed") $) 85)) (-3345 (((-3 (-400 (-535)) "failed") $) NIL)) (-3344 (((-112) $) NIL)) (-3343 (((-400 (-535)) $) NIL)) (-3315 (($) 64) (($ $) 65)) (-2882 (($ $ $) 80)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2148 (($ $ $ $) NIL)) (-2156 (($ $ $) 55)) (-3520 (((-112) $) NIL)) (-1413 (($ $ $) NIL)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL)) (-2493 (((-112) $) 26)) (-2994 (((-112) $) 75)) (-3786 (((-3 $ "failed") $) NIL)) (-3521 (((-112) $) 35)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2149 (($ $ $ $) 44)) (-3660 (($ $ $) 77)) (-3661 (($ $ $) 76)) (-2152 (($ $) NIL)) (-4176 (($ $) 41)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) 54)) (-2147 (($ $ $) NIL)) (-3787 (($) NIL T CONST)) (-2154 (($ $) 31)) (-3577 (((-1086) $) 34)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 119)) (-3478 (($ $ $) 86) (($ (-618 $)) NIL)) (-1411 (($ $) NIL)) (-4075 (((-398 $) $) 105)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) 84)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2995 (((-112) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 79)) (-4153 (($ $ (-747)) NIL) (($ $) NIL)) (-2153 (($ $) 32)) (-3742 (($ $) 30)) (-4313 (((-535) $) 40) (((-524) $) 52) (((-861 (-535)) $) NIL) (((-371) $) 47) (((-219) $) 49) (((-1124) $) 53)) (-4300 (((-835) $) 38) (($ (-535)) 39) (($ $) NIL) (($ (-535)) 39)) (-3444 (((-747)) NIL)) (-2157 (((-112) $ $) NIL)) (-3420 (($ $ $) NIL)) (-3015 (($) 29)) (-2170 (((-112) $ $) NIL)) (-2151 (($ $ $ $) 42)) (-3725 (($ $) 63)) (-2979 (($) 27 T CONST)) (-2985 (($) 28 T CONST)) (-2825 (((-1124) $) 20) (((-1124) $ (-112)) 22) (((-1230) (-799) $) 23) (((-1230) (-799) $ (-112)) 24)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 66)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 67)) (-4180 (($ $) 68) (($ $ $) 70)) (-4182 (($ $ $) 69)) (** (($ $ (-890)) NIL) (($ $ (-747)) 74)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 72) (($ $ $) 71)))
+(((-535) (-13 (-534) (-594 (-1124)) (-797) (-10 -8 (-15 -3315 ($ $)) (-6 -4323) (-6 -4328) (-6 -4324) (-6 -4318)))) (T -535))
+((-3315 (*1 *1 *1) (-5 *1 (-535))))
+(-13 (-534) (-594 (-1124)) (-797) (-10 -8 (-15 -3315 ($ $)) (-6 -4323) (-6 -4328) (-6 -4324) (-6 -4318)))
+((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) NIL)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2735 (((-618 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2301 (((-618 |#1|) $) NIL)) (-2302 (((-112) |#1| $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-536 |#1| |#2| |#3|) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) (-1067) (-1067) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336)))) (T -536))
NIL
(-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336)))
-((-1431 (((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) (-1 (-1138 |#2|) (-1138 |#2|))) 51)))
-(((-536 |#1| |#2|) (-10 -7 (-15 -1431 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) (-1 (-1138 |#2|) (-1138 |#2|))))) (-13 (-823) (-541)) (-13 (-27) (-423 |#1|))) (T -536))
-((-1431 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-592 *3)) (-5 *5 (-1 (-1138 *3) (-1138 *3))) (-4 *3 (-13 (-27) (-423 *6))) (-4 *6 (-13 (-823) (-541))) (-5 *2 (-567 *3)) (-5 *1 (-536 *6 *3)))))
-(-10 -7 (-15 -1431 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) (-1 (-1138 |#2|) (-1138 |#2|)))))
-((-1845 (((-567 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2459 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-3393 (((-567 |#5|) |#5| (-1 |#3| |#3|)) 202)))
-(((-537 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3393 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1845 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2459 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-823) (-541) (-1009 (-549))) (-13 (-27) (-423 |#1|)) (-1201 |#2|) (-1201 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -537))
-((-2459 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-13 (-27) (-423 *4))) (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-4 *7 (-1201 (-400 *6))) (-5 *1 (-537 *4 *5 *6 *7 *2)) (-4 *2 (-335 *5 *6 *7)))) (-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1201 *6)) (-4 *6 (-13 (-27) (-423 *5))) (-4 *5 (-13 (-823) (-541) (-1009 (-549)))) (-4 *8 (-1201 (-400 *7))) (-5 *2 (-567 *3)) (-5 *1 (-537 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))) (-3393 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1201 *6)) (-4 *6 (-13 (-27) (-423 *5))) (-4 *5 (-13 (-823) (-541) (-1009 (-549)))) (-4 *8 (-1201 (-400 *7))) (-5 *2 (-567 *3)) (-5 *1 (-537 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))))
-(-10 -7 (-15 -3393 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1845 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2459 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-2230 (((-112) (-549) (-549)) 10)) (-3820 (((-549) (-549)) 7)) (-2821 (((-549) (-549) (-549)) 8)))
-(((-538) (-10 -7 (-15 -3820 ((-549) (-549))) (-15 -2821 ((-549) (-549) (-549))) (-15 -2230 ((-112) (-549) (-549))))) (T -538))
-((-2230 (*1 *2 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-538)))) (-2821 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-538)))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-538)))))
-(-10 -7 (-15 -3820 ((-549) (-549))) (-15 -2821 ((-549) (-549) (-549))) (-15 -2230 ((-112) (-549) (-549))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2341 ((|#1| $) 59)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-1663 (($ $) 89)) (-1511 (($ $) 72)) (-3100 ((|#1| $) 60)) (-2384 (((-3 $ "failed") $ $) 19)) (-2134 (($ $) 71)) (-1639 (($ $) 88)) (-1485 (($ $) 73)) (-1685 (($ $) 87)) (-1538 (($ $) 74)) (-1705 (($) 17 T CONST)) (-2713 (((-3 (-549) "failed") $) 67)) (-2658 (((-549) $) 66)) (-3976 (((-3 $ "failed") $) 32)) (-2532 (($ |#1| |#1|) 64)) (-3079 (((-112) $) 58)) (-1425 (($) 99)) (-3987 (((-112) $) 30)) (-3930 (($ $ (-549)) 70)) (-2847 (((-112) $) 57)) (-2862 (($ $ $) 105)) (-3574 (($ $ $) 104)) (-3631 (($ $) 96)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-1706 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-400 (-549))) 62)) (-3304 ((|#1| $) 61)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-2038 (((-3 $ "failed") $ $) 40)) (-2718 (($ $) 97)) (-1697 (($ $) 86)) (-1551 (($ $) 75)) (-1674 (($ $) 85)) (-1525 (($ $) 76)) (-1649 (($ $) 84)) (-1500 (($ $) 77)) (-1968 (((-112) $ |#1|) 56)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-549)) 68)) (-1723 (((-747)) 28)) (-1732 (($ $) 95)) (-1585 (($ $) 83)) (-4053 (((-112) $ $) 37)) (-1708 (($ $) 94)) (-1562 (($ $) 82)) (-1757 (($ $) 93)) (-1612 (($ $) 81)) (-1933 (($ $) 92)) (-1625 (($ $) 80)) (-1744 (($ $) 91)) (-1599 (($ $) 79)) (-1721 (($ $) 90)) (-1575 (($ $) 78)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 102)) (-2424 (((-112) $ $) 101)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 103)) (-2411 (((-112) $ $) 100)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ $) 98) (($ $ (-400 (-549))) 69)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
-(((-539 |#1|) (-138) (-13 (-397) (-1164))) (T -539))
-((-1706 (*1 *1 *2 *2) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1164))))) (-2532 (*1 *1 *2 *2) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1164))))) (-1706 (*1 *1 *2) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1164))))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1164))))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1164))))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1164))))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1164))))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112)))) (-1968 (*1 *2 *1 *3) (-12 (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112)))))
-(-13 (-444) (-823) (-1164) (-973) (-1009 (-549)) (-10 -8 (-6 -2660) (-15 -1706 ($ |t#1| |t#1|)) (-15 -2532 ($ |t#1| |t#1|)) (-15 -1706 ($ |t#1|)) (-15 -1706 ($ (-400 (-549)))) (-15 -3304 (|t#1| $)) (-15 -3100 (|t#1| $)) (-15 -2341 (|t#1| $)) (-15 -3079 ((-112) $)) (-15 -2847 ((-112) $)) (-15 -1968 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-277) . T) ((-283) . T) ((-444) . T) ((-484) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-823) . T) ((-973) . T) ((-1009 (-549)) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1164) . T) ((-1167) . T))
-((-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 9)) (-2408 (($ $) 11)) (-2477 (((-112) $) 18)) (-3976 (((-3 $ "failed") $) 16)) (-4053 (((-112) $ $) 20)))
-(((-540 |#1|) (-10 -8 (-15 -2477 ((-112) |#1|)) (-15 -4053 ((-112) |#1| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -2139 ((-2 (|:| -2699 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3976 ((-3 |#1| "failed") |#1|))) (-541)) (T -540))
-NIL
-(-10 -8 (-15 -2477 ((-112) |#1|)) (-15 -4053 ((-112) |#1| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -2139 ((-2 (|:| -2699 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3976 ((-3 |#1| "failed") |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-2038 (((-3 $ "failed") $ $) 40)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
-(((-541) (-138)) (T -541))
-((-2038 (*1 *1 *1 *1) (|partial| -4 *1 (-541))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2699 *1) (|:| -4323 *1) (|:| |associate| *1))) (-4 *1 (-541)))) (-2408 (*1 *1 *1) (-4 *1 (-541))) (-4053 (*1 *2 *1 *1) (-12 (-4 *1 (-541)) (-5 *2 (-112)))) (-2477 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-112)))))
-(-13 (-170) (-38 $) (-283) (-10 -8 (-15 -2038 ((-3 $ "failed") $ $)) (-15 -2139 ((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $)) (-15 -2408 ($ $)) (-15 -4053 ((-112) $ $)) (-15 -2477 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3259 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1142) (-621 |#2|)) 37)) (-3466 (((-567 |#2|) |#2| (-1142)) 62)) (-3550 (((-3 |#2| "failed") |#2| (-1142)) 152)) (-3396 (((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1142) (-592 |#2|) (-621 (-592 |#2|))) 155)) (-3160 (((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1142) |#2|) 40)))
-(((-542 |#1| |#2|) (-10 -7 (-15 -3160 ((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1142) |#2|)) (-15 -3259 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1142) (-621 |#2|))) (-15 -3550 ((-3 |#2| "failed") |#2| (-1142))) (-15 -3466 ((-567 |#2|) |#2| (-1142))) (-15 -3396 ((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1142) (-592 |#2|) (-621 (-592 |#2|))))) (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1164) (-423 |#1|))) (T -542))
-((-3396 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1142)) (-5 *6 (-621 (-592 *3))) (-5 *5 (-592 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *7))) (-4 *7 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-2 (|:| -2460 *3) (|:| |coeff| *3))) (-5 *1 (-542 *7 *3)))) (-3466 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-567 *3)) (-5 *1 (-542 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))))) (-3550 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-542 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4))))) (-3259 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-621 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *6))) (-4 *6 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-542 *6 *3)))) (-3160 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-2 (|:| -2460 *3) (|:| |coeff| *3))) (-5 *1 (-542 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))))))
-(-10 -7 (-15 -3160 ((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1142) |#2|)) (-15 -3259 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1142) (-621 |#2|))) (-15 -3550 ((-3 |#2| "failed") |#2| (-1142))) (-15 -3466 ((-567 |#2|) |#2| (-1142))) (-15 -3396 ((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1142) (-592 |#2|) (-621 (-592 |#2|)))))
-((-3513 (((-411 |#1|) |#1|) 18)) (-2120 (((-411 |#1|) |#1|) 33)) (-3099 (((-3 |#1| "failed") |#1|) 44)) (-1304 (((-411 |#1|) |#1|) 51)))
-(((-543 |#1|) (-10 -7 (-15 -2120 ((-411 |#1|) |#1|)) (-15 -3513 ((-411 |#1|) |#1|)) (-15 -1304 ((-411 |#1|) |#1|)) (-15 -3099 ((-3 |#1| "failed") |#1|))) (-534)) (T -543))
-((-3099 (*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-534)))) (-1304 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-543 *3)) (-4 *3 (-534)))) (-3513 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-543 *3)) (-4 *3 (-534)))) (-2120 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-543 *3)) (-4 *3 (-534)))))
-(-10 -7 (-15 -2120 ((-411 |#1|) |#1|)) (-15 -3513 ((-411 |#1|) |#1|)) (-15 -1304 ((-411 |#1|) |#1|)) (-15 -3099 ((-3 |#1| "failed") |#1|)))
-((-3978 (($) 9)) (-2763 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 35)) (-3449 (((-621 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 32)) (-1709 (($ (-2 (|:| -3337 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1539 (($ (-621 (-2 (|:| -3337 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1792 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-1738 (((-621 (-2 (|:| -3337 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3356 (((-1230)) 12)))
-(((-544) (-10 -8 (-15 -3978 ($)) (-15 -3356 ((-1230))) (-15 -3449 ((-621 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -1539 ($ (-621 (-2 (|:| -3337 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1709 ($ (-2 (|:| -3337 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2763 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1738 ((-621 (-2 (|:| -3337 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1792 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -544))
-((-1792 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-544)))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| -3337 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-544)))) (-2763 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-544)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3337 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-544)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -3337 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-544)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-544)))) (-3356 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-544)))) (-3978 (*1 *1) (-5 *1 (-544))))
-(-10 -8 (-15 -3978 ($)) (-15 -3356 ((-1230))) (-15 -3449 ((-621 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -1539 ($ (-621 (-2 (|:| -3337 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1709 ($ (-2 (|:| -3337 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2763 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1738 ((-621 (-2 (|:| -3337 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1792 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1122 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2062 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
-((-2082 (((-1138 (-400 (-1138 |#2|))) |#2| (-592 |#2|) (-592 |#2|) (-1138 |#2|)) 32)) (-3777 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|) (-592 |#2|) |#2| (-400 (-1138 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|) |#2| (-1138 |#2|)) 110)) (-3351 (((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) (-592 |#2|) |#2| (-400 (-1138 |#2|))) 80) (((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) |#2| (-1138 |#2|)) 52)) (-2152 (((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2| (-592 |#2|) |#2| (-400 (-1138 |#2|))) 87) (((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2| |#2| (-1138 |#2|)) 109)) (-3362 (((-3 |#2| "failed") |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1142)) (-592 |#2|) |#2| (-400 (-1138 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1142)) |#2| (-1138 |#2|)) 111)) (-3730 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3420 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) (-592 |#2|) |#2| (-400 (-1138 |#2|))) 128 (|has| |#3| (-632 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3420 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) |#2| (-1138 |#2|)) 127 (|has| |#3| (-632 |#2|)))) (-2258 ((|#2| (-1138 (-400 (-1138 |#2|))) (-592 |#2|) |#2|) 50)) (-2546 (((-1138 (-400 (-1138 |#2|))) (-1138 |#2|) (-592 |#2|)) 31)))
-(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -3351 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) |#2| (-1138 |#2|))) (-15 -3351 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) (-592 |#2|) |#2| (-400 (-1138 |#2|)))) (-15 -2152 ((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2| |#2| (-1138 |#2|))) (-15 -2152 ((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2| (-592 |#2|) |#2| (-400 (-1138 |#2|)))) (-15 -3777 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|) |#2| (-1138 |#2|))) (-15 -3777 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|) (-592 |#2|) |#2| (-400 (-1138 |#2|)))) (-15 -3362 ((-3 |#2| "failed") |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1142)) |#2| (-1138 |#2|))) (-15 -3362 ((-3 |#2| "failed") |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1142)) (-592 |#2|) |#2| (-400 (-1138 |#2|)))) (-15 -2082 ((-1138 (-400 (-1138 |#2|))) |#2| (-592 |#2|) (-592 |#2|) (-1138 |#2|))) (-15 -2258 (|#2| (-1138 (-400 (-1138 |#2|))) (-592 |#2|) |#2|)) (-15 -2546 ((-1138 (-400 (-1138 |#2|))) (-1138 |#2|) (-592 |#2|))) (IF (|has| |#3| (-632 |#2|)) (PROGN (-15 -3730 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3420 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) |#2| (-1138 |#2|))) (-15 -3730 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3420 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) (-592 |#2|) |#2| (-400 (-1138 |#2|))))) |%noBranch|)) (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))) (-13 (-423 |#1|) (-27) (-1164)) (-1066)) (T -545))
-((-3730 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-592 *4)) (-5 *6 (-400 (-1138 *4))) (-4 *4 (-13 (-423 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4)))) (-5 *1 (-545 *7 *4 *3)) (-4 *3 (-632 *4)) (-4 *3 (-1066)))) (-3730 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-592 *4)) (-5 *6 (-1138 *4)) (-4 *4 (-13 (-423 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4)))) (-5 *1 (-545 *7 *4 *3)) (-4 *3 (-632 *4)) (-4 *3 (-1066)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *6)) (-4 *6 (-13 (-423 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-1138 (-400 (-1138 *6)))) (-5 *1 (-545 *5 *6 *7)) (-5 *3 (-1138 *6)) (-4 *7 (-1066)))) (-2258 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1138 (-400 (-1138 *2)))) (-5 *4 (-592 *2)) (-4 *2 (-13 (-423 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *1 (-545 *5 *2 *6)) (-4 *6 (-1066)))) (-2082 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-1138 (-400 (-1138 *3)))) (-5 *1 (-545 *6 *3 *7)) (-5 *5 (-1138 *3)) (-4 *7 (-1066)))) (-3362 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1142))) (-5 *5 (-400 (-1138 *2))) (-4 *2 (-13 (-423 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *1 (-545 *6 *2 *7)) (-4 *7 (-1066)))) (-3362 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1142))) (-5 *5 (-1138 *2)) (-4 *2 (-13 (-423 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *1 (-545 *6 *2 *7)) (-4 *7 (-1066)))) (-3777 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-621 *3)) (-5 *6 (-400 (-1138 *3))) (-4 *3 (-13 (-423 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-545 *7 *3 *8)) (-4 *8 (-1066)))) (-3777 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-621 *3)) (-5 *6 (-1138 *3)) (-4 *3 (-13 (-423 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-545 *7 *3 *8)) (-4 *8 (-1066)))) (-2152 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-400 (-1138 *3))) (-4 *3 (-13 (-423 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| -2460 *3) (|:| |coeff| *3))) (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1066)))) (-2152 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-1138 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| -2460 *3) (|:| |coeff| *3))) (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1066)))) (-3351 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-592 *3)) (-5 *5 (-400 (-1138 *3))) (-4 *3 (-13 (-423 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-567 *3)) (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1066)))) (-3351 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-592 *3)) (-5 *5 (-1138 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-567 *3)) (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1066)))))
-(-10 -7 (-15 -3351 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) |#2| (-1138 |#2|))) (-15 -3351 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) (-592 |#2|) |#2| (-400 (-1138 |#2|)))) (-15 -2152 ((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2| |#2| (-1138 |#2|))) (-15 -2152 ((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2| (-592 |#2|) |#2| (-400 (-1138 |#2|)))) (-15 -3777 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|) |#2| (-1138 |#2|))) (-15 -3777 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|) (-592 |#2|) |#2| (-400 (-1138 |#2|)))) (-15 -3362 ((-3 |#2| "failed") |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1142)) |#2| (-1138 |#2|))) (-15 -3362 ((-3 |#2| "failed") |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1142)) (-592 |#2|) |#2| (-400 (-1138 |#2|)))) (-15 -2082 ((-1138 (-400 (-1138 |#2|))) |#2| (-592 |#2|) (-592 |#2|) (-1138 |#2|))) (-15 -2258 (|#2| (-1138 (-400 (-1138 |#2|))) (-592 |#2|) |#2|)) (-15 -2546 ((-1138 (-400 (-1138 |#2|))) (-1138 |#2|) (-592 |#2|))) (IF (|has| |#3| (-632 |#2|)) (PROGN (-15 -3730 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3420 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) |#2| (-1138 |#2|))) (-15 -3730 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3420 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) (-592 |#2|) |#2| (-400 (-1138 |#2|))))) |%noBranch|))
-((-4075 (((-549) (-549) (-747)) 66)) (-2518 (((-549) (-549)) 65)) (-2822 (((-549) (-549)) 64)) (-1636 (((-549) (-549)) 69)) (-1902 (((-549) (-549) (-549)) 49)) (-2374 (((-549) (-549) (-549)) 46)) (-2332 (((-400 (-549)) (-549)) 20)) (-4286 (((-549) (-549)) 21)) (-1619 (((-549) (-549)) 58)) (-3148 (((-549) (-549)) 32)) (-1368 (((-621 (-549)) (-549)) 63)) (-2593 (((-549) (-549) (-549) (-549) (-549)) 44)) (-1414 (((-400 (-549)) (-549)) 41)))
-(((-546) (-10 -7 (-15 -1414 ((-400 (-549)) (-549))) (-15 -2593 ((-549) (-549) (-549) (-549) (-549))) (-15 -1368 ((-621 (-549)) (-549))) (-15 -3148 ((-549) (-549))) (-15 -1619 ((-549) (-549))) (-15 -4286 ((-549) (-549))) (-15 -2332 ((-400 (-549)) (-549))) (-15 -2374 ((-549) (-549) (-549))) (-15 -1902 ((-549) (-549) (-549))) (-15 -1636 ((-549) (-549))) (-15 -2822 ((-549) (-549))) (-15 -2518 ((-549) (-549))) (-15 -4075 ((-549) (-549) (-747))))) (T -546))
-((-4075 (*1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-747)) (-5 *1 (-546)))) (-2518 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-2822 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-1902 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-2374 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-2332 (*1 *2 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-546)) (-5 *3 (-549)))) (-4286 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-3148 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-1368 (*1 *2 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-546)) (-5 *3 (-549)))) (-2593 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-1414 (*1 *2 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-546)) (-5 *3 (-549)))))
-(-10 -7 (-15 -1414 ((-400 (-549)) (-549))) (-15 -2593 ((-549) (-549) (-549) (-549) (-549))) (-15 -1368 ((-621 (-549)) (-549))) (-15 -3148 ((-549) (-549))) (-15 -1619 ((-549) (-549))) (-15 -4286 ((-549) (-549))) (-15 -2332 ((-400 (-549)) (-549))) (-15 -2374 ((-549) (-549) (-549))) (-15 -1902 ((-549) (-549) (-549))) (-15 -1636 ((-549) (-549))) (-15 -2822 ((-549) (-549))) (-15 -2518 ((-549) (-549))) (-15 -4075 ((-549) (-549) (-747))))
-((-3564 (((-2 (|:| |answer| |#4|) (|:| -3050 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-547 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3564 ((-2 (|:| |answer| |#4|) (|:| -3050 |#4|)) |#4| (-1 |#2| |#2|)))) (-356) (-1201 |#1|) (-1201 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -547))
-((-3564 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-356)) (-4 *7 (-1201 (-400 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3050 *3))) (-5 *1 (-547 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7)))))
-(-10 -7 (-15 -3564 ((-2 (|:| |answer| |#4|) (|:| -3050 |#4|)) |#4| (-1 |#2| |#2|))))
-((-3564 (((-2 (|:| |answer| (-400 |#2|)) (|:| -3050 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 18)))
-(((-548 |#1| |#2|) (-10 -7 (-15 -3564 ((-2 (|:| |answer| (-400 |#2|)) (|:| -3050 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1201 |#1|)) (T -548))
-((-3564 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| (-400 *6)) (|:| -3050 (-400 *6)) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-548 *5 *6)) (-5 *3 (-400 *6)))))
-(-10 -7 (-15 -3564 ((-2 (|:| |answer| (-400 |#2|)) (|:| -3050 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 25)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 88)) (-2408 (($ $) 89)) (-2477 (((-112) $) NIL)) (-4121 (($ $ $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3673 (($ $ $ $) 43)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL)) (-1309 (($ $ $) 82)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL)) (-2658 (((-549) $) NIL)) (-2094 (($ $ $) 81)) (-1698 (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 62) (((-665 (-549)) (-665 $)) 58)) (-3976 (((-3 $ "failed") $) 85)) (-3156 (((-3 (-400 (-549)) "failed") $) NIL)) (-3230 (((-112) $) NIL)) (-3867 (((-400 (-549)) $) NIL)) (-3238 (($) 64) (($ $) 65)) (-2066 (($ $ $) 80)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3084 (($ $ $ $) NIL)) (-1278 (($ $ $) 55)) (-3079 (((-112) $) NIL)) (-3969 (($ $ $) NIL)) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL)) (-3987 (((-112) $) 26)) (-3061 (((-112) $) 75)) (-3982 (((-3 $ "failed") $) NIL)) (-2847 (((-112) $) 35)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2088 (($ $ $ $) 44)) (-2862 (($ $ $) 77)) (-3574 (($ $ $) 76)) (-2428 (($ $) NIL)) (-4209 (($ $) 41)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) 54)) (-1263 (($ $ $) NIL)) (-3060 (($) NIL T CONST)) (-3780 (($ $) 31)) (-3988 (((-1086) $) 34)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 119)) (-3726 (($ $ $) 86) (($ (-621 $)) NIL)) (-1692 (($ $) NIL)) (-2120 (((-411 $) $) 105)) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL)) (-2038 (((-3 $ "failed") $ $) 84)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4062 (((-112) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 79)) (-3455 (($ $ (-747)) NIL) (($ $) NIL)) (-1897 (($ $) 32)) (-2281 (($ $) 30)) (-2844 (((-549) $) 40) (((-525) $) 52) (((-863 (-549)) $) NIL) (((-372) $) 47) (((-219) $) 49) (((-1124) $) 53)) (-3845 (((-834) $) 38) (($ (-549)) 39) (($ $) NIL) (($ (-549)) 39)) (-1723 (((-747)) NIL)) (-2807 (((-112) $ $) NIL)) (-2224 (($ $ $) NIL)) (-1863 (($) 29)) (-4053 (((-112) $ $) NIL)) (-2232 (($ $ $ $) 42)) (-3603 (($ $) 63)) (-3275 (($) 27 T CONST)) (-3287 (($) 28 T CONST)) (-3135 (((-1124) $) 20) (((-1124) $ (-112)) 22) (((-1230) (-798) $) 23) (((-1230) (-798) $ (-112)) 24)) (-1700 (($ $ (-747)) NIL) (($ $) NIL)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 66)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 67)) (-2499 (($ $) 68) (($ $ $) 70)) (-2485 (($ $ $) 69)) (** (($ $ (-892)) NIL) (($ $ (-747)) 74)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 72) (($ $ $) 71)))
-(((-549) (-13 (-534) (-594 (-1124)) (-804) (-10 -8 (-15 -3238 ($ $)) (-6 -4323) (-6 -4328) (-6 -4324) (-6 -4318)))) (T -549))
-((-3238 (*1 *1 *1) (-5 *1 (-549))))
-(-13 (-534) (-594 (-1124)) (-804) (-10 -8 (-15 -3238 ($ $)) (-6 -4323) (-6 -4328) (-6 -4324) (-6 -4318)))
-((-3467 (((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006))) (-745) (-1030)) 108) (((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006))) (-745)) 110)) (-1531 (((-3 (-1006) "failed") (-309 (-372)) (-1058 (-816 (-372))) (-1142)) 172) (((-3 (-1006) "failed") (-309 (-372)) (-1058 (-816 (-372))) (-1124)) 171) (((-1006) (-309 (-372)) (-621 (-1060 (-816 (-372)))) (-372) (-372) (-1030)) 176) (((-1006) (-309 (-372)) (-621 (-1060 (-816 (-372)))) (-372) (-372)) 177) (((-1006) (-309 (-372)) (-621 (-1060 (-816 (-372)))) (-372)) 178) (((-1006) (-309 (-372)) (-621 (-1060 (-816 (-372))))) 179) (((-1006) (-309 (-372)) (-1060 (-816 (-372)))) 167) (((-1006) (-309 (-372)) (-1060 (-816 (-372))) (-372)) 166) (((-1006) (-309 (-372)) (-1060 (-816 (-372))) (-372) (-372)) 162) (((-1006) (-745)) 155) (((-1006) (-309 (-372)) (-1060 (-816 (-372))) (-372) (-372) (-1030)) 161)))
-(((-550) (-10 -7 (-15 -1531 ((-1006) (-309 (-372)) (-1060 (-816 (-372))) (-372) (-372) (-1030))) (-15 -1531 ((-1006) (-745))) (-15 -1531 ((-1006) (-309 (-372)) (-1060 (-816 (-372))) (-372) (-372))) (-15 -1531 ((-1006) (-309 (-372)) (-1060 (-816 (-372))) (-372))) (-15 -1531 ((-1006) (-309 (-372)) (-1060 (-816 (-372))))) (-15 -1531 ((-1006) (-309 (-372)) (-621 (-1060 (-816 (-372)))))) (-15 -1531 ((-1006) (-309 (-372)) (-621 (-1060 (-816 (-372)))) (-372))) (-15 -1531 ((-1006) (-309 (-372)) (-621 (-1060 (-816 (-372)))) (-372) (-372))) (-15 -1531 ((-1006) (-309 (-372)) (-621 (-1060 (-816 (-372)))) (-372) (-372) (-1030))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006))) (-745))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006))) (-745) (-1030))) (-15 -1531 ((-3 (-1006) "failed") (-309 (-372)) (-1058 (-816 (-372))) (-1124))) (-15 -1531 ((-3 (-1006) "failed") (-309 (-372)) (-1058 (-816 (-372))) (-1142))))) (T -550))
-((-1531 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1058 (-816 (-372)))) (-5 *5 (-1142)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-1531 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1058 (-816 (-372)))) (-5 *5 (-1124)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006)))) (-5 *1 (-550)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006)))) (-5 *1 (-550)))) (-1531 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1060 (-816 (-372))))) (-5 *5 (-372)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-1531 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1060 (-816 (-372))))) (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-1531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1060 (-816 (-372))))) (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-1531 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1060 (-816 (-372))))) (-5 *2 (-1006)) (-5 *1 (-550)))) (-1531 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1060 (-816 (-372)))) (-5 *2 (-1006)) (-5 *1 (-550)))) (-1531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1060 (-816 (-372)))) (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-1531 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1060 (-816 (-372)))) (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-1531 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-1531 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1060 (-816 (-372)))) (-5 *5 (-372)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550)))))
-(-10 -7 (-15 -1531 ((-1006) (-309 (-372)) (-1060 (-816 (-372))) (-372) (-372) (-1030))) (-15 -1531 ((-1006) (-745))) (-15 -1531 ((-1006) (-309 (-372)) (-1060 (-816 (-372))) (-372) (-372))) (-15 -1531 ((-1006) (-309 (-372)) (-1060 (-816 (-372))) (-372))) (-15 -1531 ((-1006) (-309 (-372)) (-1060 (-816 (-372))))) (-15 -1531 ((-1006) (-309 (-372)) (-621 (-1060 (-816 (-372)))))) (-15 -1531 ((-1006) (-309 (-372)) (-621 (-1060 (-816 (-372)))) (-372))) (-15 -1531 ((-1006) (-309 (-372)) (-621 (-1060 (-816 (-372)))) (-372) (-372))) (-15 -1531 ((-1006) (-309 (-372)) (-621 (-1060 (-816 (-372)))) (-372) (-372) (-1030))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006))) (-745))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006))) (-745) (-1030))) (-15 -1531 ((-3 (-1006) "failed") (-309 (-372)) (-1058 (-816 (-372))) (-1124))) (-15 -1531 ((-3 (-1006) "failed") (-309 (-372)) (-1058 (-816 (-372))) (-1142))))
-((-3033 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|)) 184)) (-3216 (((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|)) 98)) (-4094 (((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2|) 180)) (-3319 (((-3 |#2| "failed") |#2| |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1142))) 189)) (-1330 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3420 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) (-1142)) 197 (|has| |#3| (-632 |#2|)))))
-(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -3216 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|))) (-15 -4094 ((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2|)) (-15 -3033 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|))) (-15 -3319 ((-3 |#2| "failed") |#2| |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1142)))) (IF (|has| |#3| (-632 |#2|)) (-15 -1330 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3420 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) (-1142))) |%noBranch|)) (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))) (-13 (-423 |#1|) (-27) (-1164)) (-1066)) (T -551))
-((-1330 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-592 *4)) (-5 *6 (-1142)) (-4 *4 (-13 (-423 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4)))) (-5 *1 (-551 *7 *4 *3)) (-4 *3 (-632 *4)) (-4 *3 (-1066)))) (-3319 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1142))) (-4 *2 (-13 (-423 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *1 (-551 *5 *2 *6)) (-4 *6 (-1066)))) (-3033 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-621 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-551 *6 *3 *7)) (-4 *7 (-1066)))) (-4094 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-423 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| -2460 *3) (|:| |coeff| *3))) (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1066)))) (-3216 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-423 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-567 *3)) (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1066)))))
-(-10 -7 (-15 -3216 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|))) (-15 -4094 ((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2|)) (-15 -3033 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|))) (-15 -3319 ((-3 |#2| "failed") |#2| |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1142)))) (IF (|has| |#3| (-632 |#2|)) (-15 -1330 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3420 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) (-1142))) |%noBranch|))
-((-2157 (((-2 (|:| -4098 |#2|) (|:| |nconst| |#2|)) |#2| (-1142)) 64)) (-3349 (((-3 |#2| "failed") |#2| (-1142) (-816 |#2|) (-816 |#2|)) 164 (-12 (|has| |#2| (-1105)) (|has| |#1| (-594 (-863 (-549)))) (|has| |#1| (-857 (-549))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)) 147 (-12 (|has| |#2| (-607)) (|has| |#1| (-594 (-863 (-549)))) (|has| |#1| (-857 (-549)))))) (-2270 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)) 148 (-12 (|has| |#2| (-607)) (|has| |#1| (-594 (-863 (-549)))) (|has| |#1| (-857 (-549)))))))
-(((-552 |#1| |#2|) (-10 -7 (-15 -2157 ((-2 (|:| -4098 |#2|) (|:| |nconst| |#2|)) |#2| (-1142))) (IF (|has| |#1| (-594 (-863 (-549)))) (IF (|has| |#1| (-857 (-549))) (PROGN (IF (|has| |#2| (-607)) (PROGN (-15 -2270 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142))) (-15 -3349 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)))) |%noBranch|) (IF (|has| |#2| (-1105)) (-15 -3349 ((-3 |#2| "failed") |#2| (-1142) (-816 |#2|) (-816 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-823) (-1009 (-549)) (-444) (-617 (-549))) (-13 (-27) (-1164) (-423 |#1|))) (T -552))
-((-3349 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1142)) (-5 *4 (-816 *2)) (-4 *2 (-1105)) (-4 *2 (-13 (-27) (-1164) (-423 *5))) (-4 *5 (-594 (-863 (-549)))) (-4 *5 (-857 (-549))) (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549)))) (-5 *1 (-552 *5 *2)))) (-3349 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-594 (-863 (-549)))) (-4 *5 (-857 (-549))) (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-552 *5 *3)) (-4 *3 (-607)) (-4 *3 (-13 (-27) (-1164) (-423 *5))))) (-2270 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-594 (-863 (-549)))) (-4 *5 (-857 (-549))) (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-552 *5 *3)) (-4 *3 (-607)) (-4 *3 (-13 (-27) (-1164) (-423 *5))))) (-2157 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549)))) (-5 *2 (-2 (|:| -4098 *3) (|:| |nconst| *3))) (-5 *1 (-552 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))))))
-(-10 -7 (-15 -2157 ((-2 (|:| -4098 |#2|) (|:| |nconst| |#2|)) |#2| (-1142))) (IF (|has| |#1| (-594 (-863 (-549)))) (IF (|has| |#1| (-857 (-549))) (PROGN (IF (|has| |#2| (-607)) (PROGN (-15 -2270 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142))) (-15 -3349 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)))) |%noBranch|) (IF (|has| |#2| (-1105)) (-15 -3349 ((-3 |#2| "failed") |#2| (-1142) (-816 |#2|) (-816 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-3456 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-621 (-400 |#2|))) 41)) (-1531 (((-567 (-400 |#2|)) (-400 |#2|)) 28)) (-1468 (((-3 (-400 |#2|) "failed") (-400 |#2|)) 17)) (-2176 (((-3 (-2 (|:| -2460 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|)) 48)))
-(((-553 |#1| |#2|) (-10 -7 (-15 -1531 ((-567 (-400 |#2|)) (-400 |#2|))) (-15 -1468 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -2176 ((-3 (-2 (|:| -2460 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -3456 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-621 (-400 |#2|))))) (-13 (-356) (-145) (-1009 (-549))) (-1201 |#1|)) (T -553))
-((-3456 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-621 (-400 *6))) (-5 *3 (-400 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-553 *5 *6)))) (-2176 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-549)))) (-4 *5 (-1201 *4)) (-5 *2 (-2 (|:| -2460 (-400 *5)) (|:| |coeff| (-400 *5)))) (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5)))) (-1468 (*1 *2 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1201 *3)) (-4 *3 (-13 (-356) (-145) (-1009 (-549)))) (-5 *1 (-553 *3 *4)))) (-1531 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-549)))) (-4 *5 (-1201 *4)) (-5 *2 (-567 (-400 *5))) (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5)))))
-(-10 -7 (-15 -1531 ((-567 (-400 |#2|)) (-400 |#2|))) (-15 -1468 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -2176 ((-3 (-2 (|:| -2460 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -3456 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-621 (-400 |#2|)))))
-((-3360 (((-3 (-549) "failed") |#1|) 14)) (-3985 (((-112) |#1|) 13)) (-3964 (((-549) |#1|) 9)))
-(((-554 |#1|) (-10 -7 (-15 -3964 ((-549) |#1|)) (-15 -3985 ((-112) |#1|)) (-15 -3360 ((-3 (-549) "failed") |#1|))) (-1009 (-549))) (T -554))
-((-3360 (*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2)))) (-3985 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-554 *3)) (-4 *3 (-1009 (-549))))) (-3964 (*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2)))))
-(-10 -7 (-15 -3964 ((-549) |#1|)) (-15 -3985 ((-112) |#1|)) (-15 -3360 ((-3 (-549) "failed") |#1|)))
-((-1397 (((-3 (-2 (|:| |mainpart| (-400 (-923 |#1|))) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 (-923 |#1|))) (|:| |logand| (-400 (-923 |#1|))))))) "failed") (-400 (-923 |#1|)) (-1142) (-621 (-400 (-923 |#1|)))) 48)) (-3640 (((-567 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-1142)) 28)) (-3778 (((-3 (-400 (-923 |#1|)) "failed") (-400 (-923 |#1|)) (-1142)) 23)) (-1521 (((-3 (-2 (|:| -2460 (-400 (-923 |#1|))) (|:| |coeff| (-400 (-923 |#1|)))) "failed") (-400 (-923 |#1|)) (-1142) (-400 (-923 |#1|))) 35)))
-(((-555 |#1|) (-10 -7 (-15 -3640 ((-567 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-1142))) (-15 -3778 ((-3 (-400 (-923 |#1|)) "failed") (-400 (-923 |#1|)) (-1142))) (-15 -1397 ((-3 (-2 (|:| |mainpart| (-400 (-923 |#1|))) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 (-923 |#1|))) (|:| |logand| (-400 (-923 |#1|))))))) "failed") (-400 (-923 |#1|)) (-1142) (-621 (-400 (-923 |#1|))))) (-15 -1521 ((-3 (-2 (|:| -2460 (-400 (-923 |#1|))) (|:| |coeff| (-400 (-923 |#1|)))) "failed") (-400 (-923 |#1|)) (-1142) (-400 (-923 |#1|))))) (-13 (-541) (-1009 (-549)) (-145))) (T -555))
-((-1521 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-13 (-541) (-1009 (-549)) (-145))) (-5 *2 (-2 (|:| -2460 (-400 (-923 *5))) (|:| |coeff| (-400 (-923 *5))))) (-5 *1 (-555 *5)) (-5 *3 (-400 (-923 *5))))) (-1397 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-621 (-400 (-923 *6)))) (-5 *3 (-400 (-923 *6))) (-4 *6 (-13 (-541) (-1009 (-549)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-555 *6)))) (-3778 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-400 (-923 *4))) (-5 *3 (-1142)) (-4 *4 (-13 (-541) (-1009 (-549)) (-145))) (-5 *1 (-555 *4)))) (-3640 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-541) (-1009 (-549)) (-145))) (-5 *2 (-567 (-400 (-923 *5)))) (-5 *1 (-555 *5)) (-5 *3 (-400 (-923 *5))))))
-(-10 -7 (-15 -3640 ((-567 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-1142))) (-15 -3778 ((-3 (-400 (-923 |#1|)) "failed") (-400 (-923 |#1|)) (-1142))) (-15 -1397 ((-3 (-2 (|:| |mainpart| (-400 (-923 |#1|))) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 (-923 |#1|))) (|:| |logand| (-400 (-923 |#1|))))))) "failed") (-400 (-923 |#1|)) (-1142) (-621 (-400 (-923 |#1|))))) (-15 -1521 ((-3 (-2 (|:| -2460 (-400 (-923 |#1|))) (|:| |coeff| (-400 (-923 |#1|)))) "failed") (-400 (-923 |#1|)) (-1142) (-400 (-923 |#1|)))))
-((-3833 (((-112) $ $) 58)) (-3166 (((-112) $) 36)) (-2341 ((|#1| $) 30)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) 62)) (-1663 (($ $) 122)) (-1511 (($ $) 102)) (-3100 ((|#1| $) 28)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $) NIL)) (-1639 (($ $) 124)) (-1485 (($ $) 98)) (-1685 (($ $) 126)) (-1538 (($ $) 106)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) 77)) (-2658 (((-549) $) 79)) (-3976 (((-3 $ "failed") $) 61)) (-2532 (($ |#1| |#1|) 26)) (-3079 (((-112) $) 33)) (-1425 (($) 88)) (-3987 (((-112) $) 43)) (-3930 (($ $ (-549)) NIL)) (-2847 (((-112) $) 34)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-3631 (($ $) 90)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1706 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-400 (-549))) 76)) (-3304 ((|#1| $) 27)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) 64) (($ (-621 $)) NIL)) (-2038 (((-3 $ "failed") $ $) 63)) (-2718 (($ $) 92)) (-1697 (($ $) 130)) (-1551 (($ $) 104)) (-1674 (($ $) 132)) (-1525 (($ $) 108)) (-1649 (($ $) 128)) (-1500 (($ $) 100)) (-1968 (((-112) $ |#1|) 31)) (-3845 (((-834) $) 84) (($ (-549)) 66) (($ $) NIL) (($ (-549)) 66)) (-1723 (((-747)) 86)) (-1732 (($ $) 144)) (-1585 (($ $) 114)) (-4053 (((-112) $ $) NIL)) (-1708 (($ $) 142)) (-1562 (($ $) 110)) (-1757 (($ $) 140)) (-1612 (($ $) 120)) (-1933 (($ $) 138)) (-1625 (($ $) 118)) (-1744 (($ $) 136)) (-1599 (($ $) 116)) (-1721 (($ $) 134)) (-1575 (($ $) 112)) (-3275 (($) 21 T CONST)) (-3287 (($) 10 T CONST)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 37)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 35)) (-2499 (($ $) 41) (($ $ $) 42)) (-2485 (($ $ $) 40)) (** (($ $ (-892)) 54) (($ $ (-747)) NIL) (($ $ $) 94) (($ $ (-400 (-549))) 146)) (* (($ (-892) $) 51) (($ (-747) $) NIL) (($ (-549) $) 50) (($ $ $) 48)))
-(((-556 |#1|) (-539 |#1|) (-13 (-397) (-1164))) (T -556))
-NIL
-(-539 |#1|)
-((-1512 (((-3 (-621 (-1138 (-549))) "failed") (-621 (-1138 (-549))) (-1138 (-549))) 24)))
-(((-557) (-10 -7 (-15 -1512 ((-3 (-621 (-1138 (-549))) "failed") (-621 (-1138 (-549))) (-1138 (-549)))))) (T -557))
-((-1512 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-1138 (-549)))) (-5 *3 (-1138 (-549))) (-5 *1 (-557)))))
-(-10 -7 (-15 -1512 ((-3 (-621 (-1138 (-549))) "failed") (-621 (-1138 (-549))) (-1138 (-549)))))
-((-3138 (((-621 (-592 |#2|)) (-621 (-592 |#2|)) (-1142)) 19)) (-2839 (((-621 (-592 |#2|)) (-621 |#2|) (-1142)) 23)) (-1440 (((-621 (-592 |#2|)) (-621 (-592 |#2|)) (-621 (-592 |#2|))) 11)) (-4232 ((|#2| |#2| (-1142)) 54 (|has| |#1| (-541)))) (-1555 ((|#2| |#2| (-1142)) 78 (-12 (|has| |#2| (-277)) (|has| |#1| (-444))))) (-2130 (((-592 |#2|) (-592 |#2|) (-621 (-592 |#2|)) (-1142)) 25)) (-4039 (((-592 |#2|) (-621 (-592 |#2|))) 24)) (-3855 (((-567 |#2|) |#2| (-1142) (-1 (-567 |#2|) |#2| (-1142)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142))) 103 (-12 (|has| |#2| (-277)) (|has| |#2| (-607)) (|has| |#2| (-1009 (-1142))) (|has| |#1| (-594 (-863 (-549)))) (|has| |#1| (-444)) (|has| |#1| (-857 (-549)))))))
-(((-558 |#1| |#2|) (-10 -7 (-15 -3138 ((-621 (-592 |#2|)) (-621 (-592 |#2|)) (-1142))) (-15 -4039 ((-592 |#2|) (-621 (-592 |#2|)))) (-15 -2130 ((-592 |#2|) (-592 |#2|) (-621 (-592 |#2|)) (-1142))) (-15 -1440 ((-621 (-592 |#2|)) (-621 (-592 |#2|)) (-621 (-592 |#2|)))) (-15 -2839 ((-621 (-592 |#2|)) (-621 |#2|) (-1142))) (IF (|has| |#1| (-541)) (-15 -4232 (|#2| |#2| (-1142))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -1555 (|#2| |#2| (-1142))) (IF (|has| |#1| (-594 (-863 (-549)))) (IF (|has| |#1| (-857 (-549))) (IF (|has| |#2| (-607)) (IF (|has| |#2| (-1009 (-1142))) (-15 -3855 ((-567 |#2|) |#2| (-1142) (-1 (-567 |#2|) |#2| (-1142)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-823) (-423 |#1|)) (T -558))
-((-3855 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-567 *3) *3 (-1142))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1142))) (-4 *3 (-277)) (-4 *3 (-607)) (-4 *3 (-1009 *4)) (-4 *3 (-423 *7)) (-5 *4 (-1142)) (-4 *7 (-594 (-863 (-549)))) (-4 *7 (-444)) (-4 *7 (-857 (-549))) (-4 *7 (-823)) (-5 *2 (-567 *3)) (-5 *1 (-558 *7 *3)))) (-1555 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-444)) (-4 *4 (-823)) (-5 *1 (-558 *4 *2)) (-4 *2 (-277)) (-4 *2 (-423 *4)))) (-4232 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-541)) (-4 *4 (-823)) (-5 *1 (-558 *4 *2)) (-4 *2 (-423 *4)))) (-2839 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6)) (-5 *4 (-1142)) (-4 *6 (-423 *5)) (-4 *5 (-823)) (-5 *2 (-621 (-592 *6))) (-5 *1 (-558 *5 *6)))) (-1440 (*1 *2 *2 *2) (-12 (-5 *2 (-621 (-592 *4))) (-4 *4 (-423 *3)) (-4 *3 (-823)) (-5 *1 (-558 *3 *4)))) (-2130 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-621 (-592 *6))) (-5 *4 (-1142)) (-5 *2 (-592 *6)) (-4 *6 (-423 *5)) (-4 *5 (-823)) (-5 *1 (-558 *5 *6)))) (-4039 (*1 *2 *3) (-12 (-5 *3 (-621 (-592 *5))) (-4 *4 (-823)) (-5 *2 (-592 *5)) (-5 *1 (-558 *4 *5)) (-4 *5 (-423 *4)))) (-3138 (*1 *2 *2 *3) (-12 (-5 *2 (-621 (-592 *5))) (-5 *3 (-1142)) (-4 *5 (-423 *4)) (-4 *4 (-823)) (-5 *1 (-558 *4 *5)))))
-(-10 -7 (-15 -3138 ((-621 (-592 |#2|)) (-621 (-592 |#2|)) (-1142))) (-15 -4039 ((-592 |#2|) (-621 (-592 |#2|)))) (-15 -2130 ((-592 |#2|) (-592 |#2|) (-621 (-592 |#2|)) (-1142))) (-15 -1440 ((-621 (-592 |#2|)) (-621 (-592 |#2|)) (-621 (-592 |#2|)))) (-15 -2839 ((-621 (-592 |#2|)) (-621 |#2|) (-1142))) (IF (|has| |#1| (-541)) (-15 -4232 (|#2| |#2| (-1142))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -1555 (|#2| |#2| (-1142))) (IF (|has| |#1| (-594 (-863 (-549)))) (IF (|has| |#1| (-857 (-549))) (IF (|has| |#2| (-607)) (IF (|has| |#2| (-1009 (-1142))) (-15 -3855 ((-567 |#2|) |#2| (-1142) (-1 (-567 |#2|) |#2| (-1142)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-3832 (((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-621 |#1|) "failed") (-549) |#1| |#1|)) 172)) (-3220 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-621 (-400 |#2|))) 148)) (-1515 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-621 (-400 |#2|))) 145)) (-4233 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2618 (((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3210 (((-3 (-2 (|:| -2460 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|)) 175)) (-3439 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2460 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-400 |#2|)) 178)) (-2898 (((-2 (|:| |ir| (-567 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 84)) (-4084 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-1386 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3847 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-621 (-400 |#2|))) 152)) (-1518 (((-3 (-601 |#1| |#2|) "failed") (-601 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3847 |#1|) (|:| |sol?| (-112))) (-549) |#1|)) 137)) (-2549 (((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3847 |#1|) (|:| |sol?| (-112))) (-549) |#1|)) 162)) (-1331 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2460 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3847 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-400 |#2|)) 183)))
-(((-559 |#1| |#2|) (-10 -7 (-15 -2618 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2549 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3847 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -3832 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-621 |#1|) "failed") (-549) |#1| |#1|))) (-15 -3439 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2460 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-400 |#2|))) (-15 -1331 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2460 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3847 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-400 |#2|))) (-15 -3220 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-621 (-400 |#2|)))) (-15 -1386 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3847 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-621 (-400 |#2|)))) (-15 -3210 ((-3 (-2 (|:| -2460 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -1515 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-621 (-400 |#2|)))) (-15 -4233 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1518 ((-3 (-601 |#1| |#2|) "failed") (-601 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3847 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2898 ((-2 (|:| |ir| (-567 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -4084 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-356) (-1201 |#1|)) (T -559))
-((-4084 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1201 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-559 *5 *3)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |ir| (-567 (-400 *6))) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))) (-1518 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-601 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3847 *4) (|:| |sol?| (-112))) (-549) *4)) (-4 *4 (-356)) (-4 *5 (-1201 *4)) (-5 *1 (-559 *4 *5)))) (-4233 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2460 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-356)) (-5 *1 (-559 *4 *2)) (-4 *2 (-1201 *4)))) (-1515 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-621 (-400 *7))) (-4 *7 (-1201 *6)) (-5 *3 (-400 *7)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *6 *7)))) (-3210 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -2460 (-400 *6)) (|:| |coeff| (-400 *6)))) (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))) (-1386 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3847 *7) (|:| |sol?| (-112))) (-549) *7)) (-5 *6 (-621 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1201 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-559 *7 *8)))) (-3220 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2460 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-621 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1201 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-559 *7 *8)))) (-1331 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3847 *6) (|:| |sol?| (-112))) (-549) *6)) (-4 *6 (-356)) (-4 *7 (-1201 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -2460 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-3439 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2460 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-356)) (-4 *7 (-1201 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -2460 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-3832 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-621 *6) "failed") (-549) *6 *6)) (-4 *6 (-356)) (-4 *7 (-1201 *6)) (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-2549 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3847 *6) (|:| |sol?| (-112))) (-549) *6)) (-4 *6 (-356)) (-4 *7 (-1201 *6)) (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-2618 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2460 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-356)) (-4 *7 (-1201 *6)) (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
-(-10 -7 (-15 -2618 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2549 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3847 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -3832 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-621 |#1|) "failed") (-549) |#1| |#1|))) (-15 -3439 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2460 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-400 |#2|))) (-15 -1331 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2460 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3847 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-400 |#2|))) (-15 -3220 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-621 (-400 |#2|)))) (-15 -1386 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3847 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-621 (-400 |#2|)))) (-15 -3210 ((-3 (-2 (|:| -2460 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -1515 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-621 (-400 |#2|)))) (-15 -4233 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1518 ((-3 (-601 |#1| |#2|) "failed") (-601 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3847 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2898 ((-2 (|:| |ir| (-567 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -4084 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-3192 (((-3 |#2| "failed") |#2| (-1142) (-1142)) 10)))
-(((-560 |#1| |#2|) (-10 -7 (-15 -3192 ((-3 |#2| "failed") |#2| (-1142) (-1142)))) (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1164) (-930) (-1105) (-29 |#1|))) (T -560))
-((-3192 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1142)) (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-1164) (-930) (-1105) (-29 *4))))))
-(-10 -7 (-15 -3192 ((-3 |#2| "failed") |#2| (-1142) (-1142))))
-((-1258 (((-1086) $ (-128)) 12)) (-1607 (((-1086) $ (-129)) 11)) (-1321 (((-1086) $ (-128)) 7)) (-1824 (((-1086) $) 8)) (-3559 (($ $) 6)))
+((-2158 (((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-1 (-1136 |#2|) (-1136 |#2|))) 51)))
+(((-537 |#1| |#2|) (-10 -7 (-15 -2158 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-1 (-1136 |#2|) (-1136 |#2|))))) (-13 (-823) (-542)) (-13 (-27) (-414 |#1|))) (T -537))
+((-2158 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-591 *3)) (-5 *5 (-1 (-1136 *3) (-1136 *3))) (-4 *3 (-13 (-27) (-414 *6))) (-4 *6 (-13 (-823) (-542))) (-5 *2 (-565 *3)) (-5 *1 (-537 *6 *3)))))
+(-10 -7 (-15 -2158 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-1 (-1136 |#2|) (-1136 |#2|)))))
+((-2160 (((-565 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2161 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2159 (((-565 |#5|) |#5| (-1 |#3| |#3|)) 202)))
+(((-538 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2159 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2160 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2161 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-823) (-542) (-1009 (-535))) (-13 (-27) (-414 |#1|)) (-1200 |#2|) (-1200 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -538))
+((-2161 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-27) (-414 *4))) (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-4 *7 (-1200 (-400 *6))) (-5 *1 (-538 *4 *5 *6 *7 *2)) (-4 *2 (-335 *5 *6 *7)))) (-2160 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1200 *6)) (-4 *6 (-13 (-27) (-414 *5))) (-4 *5 (-13 (-823) (-542) (-1009 (-535)))) (-4 *8 (-1200 (-400 *7))) (-5 *2 (-565 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1200 *6)) (-4 *6 (-13 (-27) (-414 *5))) (-4 *5 (-13 (-823) (-542) (-1009 (-535)))) (-4 *8 (-1200 (-400 *7))) (-5 *2 (-565 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))))
+(-10 -7 (-15 -2159 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2160 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2161 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-2164 (((-112) (-535) (-535)) 10)) (-2162 (((-535) (-535)) 7)) (-2163 (((-535) (-535) (-535)) 8)))
+(((-539) (-10 -7 (-15 -2162 ((-535) (-535))) (-15 -2163 ((-535) (-535) (-535))) (-15 -2164 ((-112) (-535) (-535))))) (T -539))
+((-2164 (*1 *2 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-112)) (-5 *1 (-539)))) (-2163 (*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-539)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-539)))))
+(-10 -7 (-15 -2162 ((-535) (-535))) (-15 -2163 ((-535) (-535) (-535))) (-15 -2164 ((-112) (-535) (-535))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2923 ((|#1| $) 59)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-3829 (($ $) 89)) (-3985 (($ $) 72)) (-2724 ((|#1| $) 60)) (-1363 (((-3 $ "failed") $ $) 19)) (-3358 (($ $) 71)) (-3827 (($ $) 88)) (-3984 (($ $) 73)) (-3831 (($ $) 87)) (-3983 (($ $) 74)) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) "failed") $) 67)) (-3490 (((-535) $) 66)) (-3804 (((-3 $ "failed") $) 32)) (-2167 (($ |#1| |#1|) 64)) (-3520 (((-112) $) 58)) (-3973 (($) 99)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 70)) (-3521 (((-112) $) 57)) (-3660 (($ $ $) 105)) (-3661 (($ $ $) 104)) (-4285 (($ $) 96)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2168 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-400 (-535))) 62)) (-2166 ((|#1| $) 61)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3803 (((-3 $ "failed") $ $) 40)) (-4286 (($ $) 97)) (-3832 (($ $) 86)) (-3982 (($ $) 75)) (-3830 (($ $) 85)) (-3981 (($ $) 76)) (-3828 (($ $) 84)) (-3980 (($ $) 77)) (-2165 (((-112) $ |#1|) 56)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-535)) 68)) (-3444 (((-747)) 28)) (-3835 (($ $) 95)) (-3823 (($ $) 83)) (-2170 (((-112) $ $) 37)) (-3833 (($ $) 94)) (-3821 (($ $) 82)) (-3837 (($ $) 93)) (-3825 (($ $) 81)) (-3838 (($ $) 92)) (-3826 (($ $) 80)) (-3836 (($ $) 91)) (-3824 (($ $) 79)) (-3834 (($ $) 90)) (-3822 (($ $) 78)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 102)) (-2886 (((-112) $ $) 101)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 103)) (-3006 (((-112) $ $) 100)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ $) 98) (($ $ (-400 (-535))) 69)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
+(((-540 |#1|) (-138) (-13 (-397) (-1164))) (T -540))
+((-2168 (*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) (-2167 (*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) (-2168 (*1 *1 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) (-2168 (*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112)))) (-2165 (*1 *2 *1 *3) (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112)))))
+(-13 (-444) (-823) (-1164) (-973) (-1009 (-535)) (-10 -8 (-6 -4112) (-15 -2168 ($ |t#1| |t#1|)) (-15 -2167 ($ |t#1| |t#1|)) (-15 -2168 ($ |t#1|)) (-15 -2168 ($ (-400 (-535)))) (-15 -2166 (|t#1| $)) (-15 -2724 (|t#1| $)) (-15 -2923 (|t#1| $)) (-15 -3520 ((-112) $)) (-15 -3521 ((-112) $)) (-15 -2165 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-277) . T) ((-283) . T) ((-444) . T) ((-484) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-823) . T) ((-973) . T) ((-1009 (-535)) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1164) . T) ((-1167) . T))
+((-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 9)) (-2171 (($ $) 11)) (-2169 (((-112) $) 18)) (-3804 (((-3 $ "failed") $) 16)) (-2170 (((-112) $ $) 20)))
+(((-541 |#1|) (-10 -8 (-15 -2169 ((-112) |#1|)) (-15 -2170 ((-112) |#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -2172 ((-2 (|:| -1887 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|))) (-542)) (T -541))
+NIL
+(-10 -8 (-15 -2169 ((-112) |#1|)) (-15 -2170 ((-112) |#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -2172 ((-2 (|:| -1887 |#1|) (|:| -4323 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ $) 40)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
+(((-542) (-138)) (T -542))
+((-3803 (*1 *1 *1 *1) (|partial| -4 *1 (-542))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1887 *1) (|:| -4323 *1) (|:| |associate| *1))) (-4 *1 (-542)))) (-2171 (*1 *1 *1) (-4 *1 (-542))) (-2170 (*1 *2 *1 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112)))))
+(-13 (-170) (-38 $) (-283) (-10 -8 (-15 -3803 ((-3 $ "failed") $ $)) (-15 -2172 ((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $)) (-15 -2171 ($ $)) (-15 -2170 ((-112) $ $)) (-15 -2169 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2174 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1142) (-618 |#2|)) 37)) (-2176 (((-565 |#2|) |#2| (-1142)) 62)) (-2175 (((-3 |#2| "failed") |#2| (-1142)) 152)) (-2177 (((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1142) (-591 |#2|) (-618 (-591 |#2|))) 155)) (-2173 (((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1142) |#2|) 40)))
+(((-543 |#1| |#2|) (-10 -7 (-15 -2173 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1142) |#2|)) (-15 -2174 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1142) (-618 |#2|))) (-15 -2175 ((-3 |#2| "failed") |#2| (-1142))) (-15 -2176 ((-565 |#2|) |#2| (-1142))) (-15 -2177 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1142) (-591 |#2|) (-618 (-591 |#2|))))) (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -543))
+((-2177 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1142)) (-5 *6 (-618 (-591 *3))) (-5 *5 (-591 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *7))) (-4 *7 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-543 *7 *3)))) (-2176 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-565 *3)) (-5 *1 (-543 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-2175 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-543 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) (-2174 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-618 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-543 *6 *3)))) (-2173 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-543 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))))
+(-10 -7 (-15 -2173 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1142) |#2|)) (-15 -2174 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1142) (-618 |#2|))) (-15 -2175 ((-3 |#2| "failed") |#2| (-1142))) (-15 -2176 ((-565 |#2|) |#2| (-1142))) (-15 -2177 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1142) (-591 |#2|) (-618 (-591 |#2|)))))
+((-4312 (((-398 |#1|) |#1|) 18)) (-4075 (((-398 |#1|) |#1|) 33)) (-2179 (((-3 |#1| "failed") |#1|) 44)) (-2178 (((-398 |#1|) |#1|) 51)))
+(((-544 |#1|) (-10 -7 (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -2178 ((-398 |#1|) |#1|)) (-15 -2179 ((-3 |#1| "failed") |#1|))) (-534)) (T -544))
+((-2179 (*1 *2 *2) (|partial| -12 (-5 *1 (-544 *2)) (-4 *2 (-534)))) (-2178 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-544 *3)) (-4 *3 (-534)))) (-4312 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-544 *3)) (-4 *3 (-534)))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-544 *3)) (-4 *3 (-534)))))
+(-10 -7 (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -2178 ((-398 |#1|) |#1|)) (-15 -2179 ((-3 |#1| "failed") |#1|)))
+((-2180 (($) 9)) (-2183 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 35)) (-2735 (((-618 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 32)) (-3953 (($ (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 29)) (-2182 (($ (-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 27)) (-2184 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-2303 (((-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 37)) (-2181 (((-1230)) 12)))
+(((-545) (-10 -8 (-15 -2180 ($)) (-15 -2181 ((-1230))) (-15 -2735 ((-618 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2182 ($ (-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3953 ($ (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2183 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2303 ((-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2184 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -545))
+((-2184 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-545)))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-545)))) (-2183 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-545)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-545)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-545)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-545)))) (-2181 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-545)))) (-2180 (*1 *1) (-5 *1 (-545))))
+(-10 -8 (-15 -2180 ($)) (-15 -2181 ((-1230))) (-15 -2735 ((-618 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2182 ($ (-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3953 ($ (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2183 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2303 ((-618 (-2 (|:| -4203 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2184 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1119 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
+((-3407 (((-1136 (-400 (-1136 |#2|))) |#2| (-591 |#2|) (-591 |#2|) (-1136 |#2|)) 32)) (-2187 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|) |#2| (-1136 |#2|)) 110)) (-2185 (((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|))) 80) (((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) |#2| (-1136 |#2|)) 52)) (-2186 (((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-591 |#2|) (-591 |#2|) |#2| (-591 |#2|) |#2| (-400 (-1136 |#2|))) 87) (((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-591 |#2|) (-591 |#2|) |#2| |#2| (-1136 |#2|)) 109)) (-2188 (((-3 |#2| #3="failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1142)) (-591 |#2|) |#2| (-400 (-1136 |#2|))) 105) (((-3 |#2| #3#) |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1142)) |#2| (-1136 |#2|)) 111)) (-2189 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|))) 128 (|has| |#3| (-634 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) |#2| (-1136 |#2|)) 127 (|has| |#3| (-634 |#2|)))) (-3408 ((|#2| (-1136 (-400 (-1136 |#2|))) (-591 |#2|) |#2|) 50)) (-3401 (((-1136 (-400 (-1136 |#2|))) (-1136 |#2|) (-591 |#2|)) 31)))
+(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -2185 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) |#2| (-1136 |#2|))) (-15 -2185 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -2186 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-591 |#2|) (-591 |#2|) |#2| |#2| (-1136 |#2|))) (-15 -2186 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-591 |#2|) (-591 |#2|) |#2| (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -2187 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|) |#2| (-1136 |#2|))) (-15 -2187 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -2188 ((-3 |#2| #3="failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1142)) |#2| (-1136 |#2|))) (-15 -2188 ((-3 |#2| #3#) |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1142)) (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -3407 ((-1136 (-400 (-1136 |#2|))) |#2| (-591 |#2|) (-591 |#2|) (-1136 |#2|))) (-15 -3408 (|#2| (-1136 (-400 (-1136 |#2|))) (-591 |#2|) |#2|)) (-15 -3401 ((-1136 (-400 (-1136 |#2|))) (-1136 |#2|) (-591 |#2|))) (IF (|has| |#3| (-634 |#2|)) (PROGN (-15 -2189 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) |#2| (-1136 |#2|))) (-15 -2189 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|))))) |%noBranch|)) (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))) (-13 (-414 |#1|) (-27) (-1164)) (-1067)) (T -546))
+((-2189 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-591 *4)) (-5 *6 (-400 (-1136 *4))) (-4 *4 (-13 (-414 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-618 *4)))) (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1067)))) (-2189 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-591 *4)) (-5 *6 (-1136 *4)) (-4 *4 (-13 (-414 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-618 *4)))) (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1067)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *6)) (-4 *6 (-13 (-414 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-1136 (-400 (-1136 *6)))) (-5 *1 (-546 *5 *6 *7)) (-5 *3 (-1136 *6)) (-4 *7 (-1067)))) (-3408 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1136 (-400 (-1136 *2)))) (-5 *4 (-591 *2)) (-4 *2 (-13 (-414 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *1 (-546 *5 *2 *6)) (-4 *6 (-1067)))) (-3407 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-1136 (-400 (-1136 *3)))) (-5 *1 (-546 *6 *3 *7)) (-5 *5 (-1136 *3)) (-4 *7 (-1067)))) (-2188 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1142))) (-5 *5 (-400 (-1136 *2))) (-4 *2 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1067)))) (-2188 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1142))) (-5 *5 (-1136 *2)) (-4 *2 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1067)))) (-2187 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-618 *3)) (-5 *6 (-400 (-1136 *3))) (-4 *3 (-13 (-414 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1067)))) (-2187 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-618 *3)) (-5 *6 (-1136 *3)) (-4 *3 (-13 (-414 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1067)))) (-2186 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-400 (-1136 *3))) (-4 *3 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1067)))) (-2186 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-1136 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1067)))) (-2185 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-591 *3)) (-5 *5 (-400 (-1136 *3))) (-4 *3 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-565 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1067)))) (-2185 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-591 *3)) (-5 *5 (-1136 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-565 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1067)))))
+(-10 -7 (-15 -2185 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) |#2| (-1136 |#2|))) (-15 -2185 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -2186 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-591 |#2|) (-591 |#2|) |#2| |#2| (-1136 |#2|))) (-15 -2186 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-591 |#2|) (-591 |#2|) |#2| (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -2187 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|) |#2| (-1136 |#2|))) (-15 -2187 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -2188 ((-3 |#2| #3="failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1142)) |#2| (-1136 |#2|))) (-15 -2188 ((-3 |#2| #3#) |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1142)) (-591 |#2|) |#2| (-400 (-1136 |#2|)))) (-15 -3407 ((-1136 (-400 (-1136 |#2|))) |#2| (-591 |#2|) (-591 |#2|) (-1136 |#2|))) (-15 -3408 (|#2| (-1136 (-400 (-1136 |#2|))) (-591 |#2|) |#2|)) (-15 -3401 ((-1136 (-400 (-1136 |#2|))) (-1136 |#2|) (-591 |#2|))) (IF (|has| |#3| (-634 |#2|)) (PROGN (-15 -2189 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) |#2| (-1136 |#2|))) (-15 -2189 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-400 (-1136 |#2|))))) |%noBranch|))
+((-2199 (((-535) (-535) (-747)) 66)) (-2198 (((-535) (-535)) 65)) (-2197 (((-535) (-535)) 64)) (-2196 (((-535) (-535)) 69)) (-3126 (((-535) (-535) (-535)) 49)) (-2195 (((-535) (-535) (-535)) 46)) (-2194 (((-400 (-535)) (-535)) 20)) (-2193 (((-535) (-535)) 21)) (-2192 (((-535) (-535)) 58)) (-3123 (((-535) (-535)) 32)) (-2191 (((-618 (-535)) (-535)) 63)) (-2190 (((-535) (-535) (-535) (-535) (-535)) 44)) (-3119 (((-400 (-535)) (-535)) 41)))
+(((-547) (-10 -7 (-15 -3119 ((-400 (-535)) (-535))) (-15 -2190 ((-535) (-535) (-535) (-535) (-535))) (-15 -2191 ((-618 (-535)) (-535))) (-15 -3123 ((-535) (-535))) (-15 -2192 ((-535) (-535))) (-15 -2193 ((-535) (-535))) (-15 -2194 ((-400 (-535)) (-535))) (-15 -2195 ((-535) (-535) (-535))) (-15 -3126 ((-535) (-535) (-535))) (-15 -2196 ((-535) (-535))) (-15 -2197 ((-535) (-535))) (-15 -2198 ((-535) (-535))) (-15 -2199 ((-535) (-535) (-747))))) (T -547))
+((-2199 (*1 *2 *2 *3) (-12 (-5 *2 (-535)) (-5 *3 (-747)) (-5 *1 (-547)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-2197 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-2196 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-3126 (*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-2195 (*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-2194 (*1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-547)) (-5 *3 (-535)))) (-2193 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-2192 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-3123 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-2191 (*1 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-547)) (-5 *3 (-535)))) (-2190 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))) (-3119 (*1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-547)) (-5 *3 (-535)))))
+(-10 -7 (-15 -3119 ((-400 (-535)) (-535))) (-15 -2190 ((-535) (-535) (-535) (-535) (-535))) (-15 -2191 ((-618 (-535)) (-535))) (-15 -3123 ((-535) (-535))) (-15 -2192 ((-535) (-535))) (-15 -2193 ((-535) (-535))) (-15 -2194 ((-400 (-535)) (-535))) (-15 -2195 ((-535) (-535) (-535))) (-15 -3126 ((-535) (-535) (-535))) (-15 -2196 ((-535) (-535))) (-15 -2197 ((-535) (-535))) (-15 -2198 ((-535) (-535))) (-15 -2199 ((-535) (-535) (-747))))
+((-2200 (((-2 (|:| |answer| |#4|) (|:| -2241 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-548 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2200 ((-2 (|:| |answer| |#4|) (|:| -2241 |#4|)) |#4| (-1 |#2| |#2|)))) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -548))
+((-2200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) (-4 *7 (-1200 (-400 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2241 *3))) (-5 *1 (-548 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7)))))
+(-10 -7 (-15 -2200 ((-2 (|:| |answer| |#4|) (|:| -2241 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2200 (((-2 (|:| |answer| (-400 |#2|)) (|:| -2241 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 18)))
+(((-549 |#1| |#2|) (-10 -7 (-15 -2200 ((-2 (|:| |answer| (-400 |#2|)) (|:| -2241 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1200 |#1|)) (T -549))
+((-2200 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| (-400 *6)) (|:| -2241 (-400 *6)) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-549 *5 *6)) (-5 *3 (-400 *6)))))
+(-10 -7 (-15 -2200 ((-2 (|:| |answer| (-400 |#2|)) (|:| -2241 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))))
+((-2989 (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))) (-745) (-1030)) 108) (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))) (-745)) 110)) (-4155 (((-3 (-1006) "failed") (-307 (-371)) (-1058 (-815 (-371))) (-1142)) 172) (((-3 (-1006) "failed") (-307 (-371)) (-1058 (-815 (-371))) (-1124)) 171) (((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371) (-371) (-1030)) 176) (((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371) (-371)) 177) (((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371)) 178) (((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371))))) 179) (((-1006) (-307 (-371)) (-1055 (-815 (-371)))) 167) (((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371)) 166) (((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371) (-371)) 162) (((-1006) (-745)) 155) (((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371) (-371) (-1030)) 161)))
+(((-550) (-10 -7 (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371) (-371) (-1030))) (-15 -4155 ((-1006) (-745))) (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371) (-371) (-1030))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))) (-745))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))) (-745) (-1030))) (-15 -4155 ((-3 (-1006) "failed") (-307 (-371)) (-1058 (-815 (-371))) (-1124))) (-15 -4155 ((-3 (-1006) "failed") (-307 (-371)) (-1058 (-815 (-371))) (-1142))))) (T -550))
+((-4155 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1058 (-815 (-371)))) (-5 *5 (-1142)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1058 (-815 (-371)))) (-5 *5 (-1124)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-2989 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006)))) (-5 *1 (-550)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006)))) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371))))) (-5 *5 (-371)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371))))) (-5 *5 (-371)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371))))) (-5 *5 (-371)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371))))) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *5 (-371)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *5 (-371)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-4155 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *5 (-371)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550)))))
+(-10 -7 (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371) (-371) (-1030))) (-15 -4155 ((-1006) (-745))) (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-1055 (-815 (-371))))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371) (-371))) (-15 -4155 ((-1006) (-307 (-371)) (-618 (-1055 (-815 (-371)))) (-371) (-371) (-1030))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))) (-745))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))) (-745) (-1030))) (-15 -4155 ((-3 (-1006) "failed") (-307 (-371)) (-1058 (-815 (-371))) (-1124))) (-15 -4155 ((-3 (-1006) "failed") (-307 (-371)) (-1058 (-815 (-371))) (-1142))))
+((-2203 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|)) 184)) (-2201 (((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|)) 98)) (-2202 (((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2|) 180)) (-2204 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1142))) 189)) (-2205 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-1142)) 197 (|has| |#3| (-634 |#2|)))))
+(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -2201 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|))) (-15 -2202 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2|)) (-15 -2203 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|))) (-15 -2204 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1142)))) (IF (|has| |#3| (-634 |#2|)) (-15 -2205 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-1142))) |%noBranch|)) (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))) (-13 (-414 |#1|) (-27) (-1164)) (-1067)) (T -551))
+((-2205 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-591 *4)) (-5 *6 (-1142)) (-4 *4 (-13 (-414 *7) (-27) (-1164))) (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-618 *4)))) (-5 *1 (-551 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1067)))) (-2204 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1142))) (-4 *2 (-13 (-414 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *1 (-551 *5 *2 *6)) (-4 *6 (-1067)))) (-2203 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-618 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1164))) (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-551 *6 *3 *7)) (-4 *7 (-1067)))) (-2202 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1067)))) (-2201 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1164))) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535)))) (-5 *2 (-565 *3)) (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1067)))))
+(-10 -7 (-15 -2201 ((-565 |#2|) |#2| (-591 |#2|) (-591 |#2|))) (-15 -2202 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2|)) (-15 -2203 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-618 |#2|))) (-15 -2204 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1142)))) (IF (|has| |#3| (-634 |#2|)) (-15 -2205 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2123 (-618 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-1142))) |%noBranch|))
+((-2206 (((-2 (|:| -2410 |#2|) (|:| |nconst| |#2|)) |#2| (-1142)) 64)) (-2208 (((-3 |#2| "failed") |#2| (-1142) (-815 |#2|) (-815 |#2|)) 164 (-12 (|has| |#2| (-1105)) (|has| |#1| (-594 (-861 (-535)))) (|has| |#1| (-857 (-535))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)) 147 (-12 (|has| |#2| (-608)) (|has| |#1| (-594 (-861 (-535)))) (|has| |#1| (-857 (-535)))))) (-2207 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)) 148 (-12 (|has| |#2| (-608)) (|has| |#1| (-594 (-861 (-535)))) (|has| |#1| (-857 (-535)))))))
+(((-552 |#1| |#2|) (-10 -7 (-15 -2206 ((-2 (|:| -2410 |#2|) (|:| |nconst| |#2|)) |#2| (-1142))) (IF (|has| |#1| (-594 (-861 (-535)))) (IF (|has| |#1| (-857 (-535))) (PROGN (IF (|has| |#2| (-608)) (PROGN (-15 -2207 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142))) (-15 -2208 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)))) |%noBranch|) (IF (|has| |#2| (-1105)) (-15 -2208 ((-3 |#2| "failed") |#2| (-1142) (-815 |#2|) (-815 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-823) (-1009 (-535)) (-444) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -552))
+((-2208 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1142)) (-5 *4 (-815 *2)) (-4 *2 (-1105)) (-4 *2 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-594 (-861 (-535)))) (-4 *5 (-857 (-535))) (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535)))) (-5 *1 (-552 *5 *2)))) (-2208 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-594 (-861 (-535)))) (-4 *5 (-857 (-535))) (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-552 *5 *3)) (-4 *3 (-608)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-2207 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-594 (-861 (-535)))) (-4 *5 (-857 (-535))) (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-552 *5 *3)) (-4 *3 (-608)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-2206 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535)))) (-5 *2 (-2 (|:| -2410 *3) (|:| |nconst| *3))) (-5 *1 (-552 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))))
+(-10 -7 (-15 -2206 ((-2 (|:| -2410 |#2|) (|:| |nconst| |#2|)) |#2| (-1142))) (IF (|has| |#1| (-594 (-861 (-535)))) (IF (|has| |#1| (-857 (-535))) (PROGN (IF (|has| |#2| (-608)) (PROGN (-15 -2207 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142))) (-15 -2208 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)))) |%noBranch|) (IF (|has| |#2| (-1105)) (-15 -2208 ((-3 |#2| "failed") |#2| (-1142) (-815 |#2|) (-815 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2211 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-618 (-400 |#2|))) 41)) (-4155 (((-565 (-400 |#2|)) (-400 |#2|)) 28)) (-2209 (((-3 (-400 |#2|) "failed") (-400 |#2|)) 17)) (-2210 (((-3 (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|)) 48)))
+(((-553 |#1| |#2|) (-10 -7 (-15 -4155 ((-565 (-400 |#2|)) (-400 |#2|))) (-15 -2209 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -2210 ((-3 (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -2211 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-618 (-400 |#2|))))) (-13 (-356) (-145) (-1009 (-535))) (-1200 |#1|)) (T -553))
+((-2211 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-618 (-400 *6))) (-5 *3 (-400 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-553 *5 *6)))) (-2210 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| -2242 (-400 *5)) (|:| |coeff| (-400 *5)))) (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5)))) (-2209 (*1 *2 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-13 (-356) (-145) (-1009 (-535)))) (-5 *1 (-553 *3 *4)))) (-4155 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4)) (-5 *2 (-565 (-400 *5))) (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5)))))
+(-10 -7 (-15 -4155 ((-565 (-400 |#2|)) (-400 |#2|))) (-15 -2209 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -2210 ((-3 (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -2211 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-618 (-400 |#2|)))))
+((-2212 (((-3 (-535) "failed") |#1|) 14)) (-3593 (((-112) |#1|) 13)) (-3589 (((-535) |#1|) 9)))
+(((-554 |#1|) (-10 -7 (-15 -3589 ((-535) |#1|)) (-15 -3593 ((-112) |#1|)) (-15 -2212 ((-3 (-535) "failed") |#1|))) (-1009 (-535))) (T -554))
+((-2212 (*1 *2 *3) (|partial| -12 (-5 *2 (-535)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2)))) (-3593 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-554 *3)) (-4 *3 (-1009 (-535))))) (-3589 (*1 *2 *3) (-12 (-5 *2 (-535)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2)))))
+(-10 -7 (-15 -3589 ((-535) |#1|)) (-15 -3593 ((-112) |#1|)) (-15 -2212 ((-3 (-535) "failed") |#1|)))
+((-2215 (((-3 (-2 (|:| |mainpart| (-400 (-917 |#1|))) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 (-917 |#1|))) (|:| |logand| (-400 (-917 |#1|))))))) "failed") (-400 (-917 |#1|)) (-1142) (-618 (-400 (-917 |#1|)))) 48)) (-2213 (((-565 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-1142)) 28)) (-2214 (((-3 (-400 (-917 |#1|)) "failed") (-400 (-917 |#1|)) (-1142)) 23)) (-2216 (((-3 (-2 (|:| -2242 (-400 (-917 |#1|))) (|:| |coeff| (-400 (-917 |#1|)))) "failed") (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|))) 35)))
+(((-555 |#1|) (-10 -7 (-15 -2213 ((-565 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-1142))) (-15 -2214 ((-3 (-400 (-917 |#1|)) "failed") (-400 (-917 |#1|)) (-1142))) (-15 -2215 ((-3 (-2 (|:| |mainpart| (-400 (-917 |#1|))) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 (-917 |#1|))) (|:| |logand| (-400 (-917 |#1|))))))) "failed") (-400 (-917 |#1|)) (-1142) (-618 (-400 (-917 |#1|))))) (-15 -2216 ((-3 (-2 (|:| -2242 (-400 (-917 |#1|))) (|:| |coeff| (-400 (-917 |#1|)))) "failed") (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|))))) (-13 (-542) (-1009 (-535)) (-145))) (T -555))
+((-2216 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-1009 (-535)) (-145))) (-5 *2 (-2 (|:| -2242 (-400 (-917 *5))) (|:| |coeff| (-400 (-917 *5))))) (-5 *1 (-555 *5)) (-5 *3 (-400 (-917 *5))))) (-2215 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-618 (-400 (-917 *6)))) (-5 *3 (-400 (-917 *6))) (-4 *6 (-13 (-542) (-1009 (-535)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-555 *6)))) (-2214 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-400 (-917 *4))) (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-1009 (-535)) (-145))) (-5 *1 (-555 *4)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-1009 (-535)) (-145))) (-5 *2 (-565 (-400 (-917 *5)))) (-5 *1 (-555 *5)) (-5 *3 (-400 (-917 *5))))))
+(-10 -7 (-15 -2213 ((-565 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-1142))) (-15 -2214 ((-3 (-400 (-917 |#1|)) "failed") (-400 (-917 |#1|)) (-1142))) (-15 -2215 ((-3 (-2 (|:| |mainpart| (-400 (-917 |#1|))) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 (-917 |#1|))) (|:| |logand| (-400 (-917 |#1|))))))) "failed") (-400 (-917 |#1|)) (-1142) (-618 (-400 (-917 |#1|))))) (-15 -2216 ((-3 (-2 (|:| -2242 (-400 (-917 |#1|))) (|:| |coeff| (-400 (-917 |#1|)))) "failed") (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|)))))
+((-2887 (((-112) $ $) 58)) (-3522 (((-112) $) 36)) (-2923 ((|#1| $) 30)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) 62)) (-3829 (($ $) 122)) (-3985 (($ $) 102)) (-2724 ((|#1| $) 28)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $) NIL)) (-3827 (($ $) 124)) (-3984 (($ $) 98)) (-3831 (($ $) 126)) (-3983 (($ $) 106)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) "failed") $) 77)) (-3490 (((-535) $) 79)) (-3804 (((-3 $ "failed") $) 61)) (-2167 (($ |#1| |#1|) 26)) (-3520 (((-112) $) 33)) (-3973 (($) 88)) (-2493 (((-112) $) 43)) (-3332 (($ $ (-535)) NIL)) (-3521 (((-112) $) 34)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4285 (($ $) 90)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2168 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-400 (-535))) 76)) (-2166 ((|#1| $) 27)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) 64) (($ (-618 $)) NIL)) (-3803 (((-3 $ "failed") $ $) 63)) (-4286 (($ $) 92)) (-3832 (($ $) 130)) (-3982 (($ $) 104)) (-3830 (($ $) 132)) (-3981 (($ $) 108)) (-3828 (($ $) 128)) (-3980 (($ $) 100)) (-2165 (((-112) $ |#1|) 31)) (-4300 (((-835) $) 84) (($ (-535)) 66) (($ $) NIL) (($ (-535)) 66)) (-3444 (((-747)) 86)) (-3835 (($ $) 144)) (-3823 (($ $) 114)) (-2170 (((-112) $ $) NIL)) (-3833 (($ $) 142)) (-3821 (($ $) 110)) (-3837 (($ $) 140)) (-3825 (($ $) 120)) (-3838 (($ $) 138)) (-3826 (($ $) 118)) (-3836 (($ $) 136)) (-3824 (($ $) 116)) (-3834 (($ $) 134)) (-3822 (($ $) 112)) (-2979 (($) 21 T CONST)) (-2985 (($) 10 T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 37)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 35)) (-4180 (($ $) 41) (($ $ $) 42)) (-4182 (($ $ $) 40)) (** (($ $ (-890)) 54) (($ $ (-747)) NIL) (($ $ $) 94) (($ $ (-400 (-535))) 146)) (* (($ (-890) $) 51) (($ (-747) $) NIL) (($ (-535) $) 50) (($ $ $) 48)))
+(((-556 |#1|) (-540 |#1|) (-13 (-397) (-1164))) (T -556))
+NIL
+(-540 |#1|)
+((-3025 (((-3 (-618 (-1136 (-535))) "failed") (-618 (-1136 (-535))) (-1136 (-535))) 24)))
+(((-557) (-10 -7 (-15 -3025 ((-3 (-618 (-1136 (-535))) "failed") (-618 (-1136 (-535))) (-1136 (-535)))))) (T -557))
+((-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-1136 (-535)))) (-5 *3 (-1136 (-535))) (-5 *1 (-557)))))
+(-10 -7 (-15 -3025 ((-3 (-618 (-1136 (-535))) "failed") (-618 (-1136 (-535))) (-1136 (-535)))))
+((-2217 (((-618 (-591 |#2|)) (-618 (-591 |#2|)) (-1142)) 19)) (-2220 (((-618 (-591 |#2|)) (-618 |#2|) (-1142)) 23)) (-3568 (((-618 (-591 |#2|)) (-618 (-591 |#2|)) (-618 (-591 |#2|))) 11)) (-2221 ((|#2| |#2| (-1142)) 54 (|has| |#1| (-542)))) (-2222 ((|#2| |#2| (-1142)) 78 (-12 (|has| |#2| (-277)) (|has| |#1| (-444))))) (-2219 (((-591 |#2|) (-591 |#2|) (-618 (-591 |#2|)) (-1142)) 25)) (-2218 (((-591 |#2|) (-618 (-591 |#2|))) 24)) (-2223 (((-565 |#2|) |#2| (-1142) (-1 (-565 |#2|) |#2| (-1142)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142))) 103 (-12 (|has| |#2| (-277)) (|has| |#2| (-608)) (|has| |#2| (-1009 (-1142))) (|has| |#1| (-594 (-861 (-535)))) (|has| |#1| (-444)) (|has| |#1| (-857 (-535)))))))
+(((-558 |#1| |#2|) (-10 -7 (-15 -2217 ((-618 (-591 |#2|)) (-618 (-591 |#2|)) (-1142))) (-15 -2218 ((-591 |#2|) (-618 (-591 |#2|)))) (-15 -2219 ((-591 |#2|) (-591 |#2|) (-618 (-591 |#2|)) (-1142))) (-15 -3568 ((-618 (-591 |#2|)) (-618 (-591 |#2|)) (-618 (-591 |#2|)))) (-15 -2220 ((-618 (-591 |#2|)) (-618 |#2|) (-1142))) (IF (|has| |#1| (-542)) (-15 -2221 (|#2| |#2| (-1142))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -2222 (|#2| |#2| (-1142))) (IF (|has| |#1| (-594 (-861 (-535)))) (IF (|has| |#1| (-857 (-535))) (IF (|has| |#2| (-608)) (IF (|has| |#2| (-1009 (-1142))) (-15 -2223 ((-565 |#2|) |#2| (-1142) (-1 (-565 |#2|) |#2| (-1142)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-823) (-414 |#1|)) (T -558))
+((-2223 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-565 *3) *3 (-1142))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1142))) (-4 *3 (-277)) (-4 *3 (-608)) (-4 *3 (-1009 *4)) (-4 *3 (-414 *7)) (-5 *4 (-1142)) (-4 *7 (-594 (-861 (-535)))) (-4 *7 (-444)) (-4 *7 (-857 (-535))) (-4 *7 (-823)) (-5 *2 (-565 *3)) (-5 *1 (-558 *7 *3)))) (-2222 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-444)) (-4 *4 (-823)) (-5 *1 (-558 *4 *2)) (-4 *2 (-277)) (-4 *2 (-414 *4)))) (-2221 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-542)) (-4 *4 (-823)) (-5 *1 (-558 *4 *2)) (-4 *2 (-414 *4)))) (-2220 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *6)) (-5 *4 (-1142)) (-4 *6 (-414 *5)) (-4 *5 (-823)) (-5 *2 (-618 (-591 *6))) (-5 *1 (-558 *5 *6)))) (-3568 (*1 *2 *2 *2) (-12 (-5 *2 (-618 (-591 *4))) (-4 *4 (-414 *3)) (-4 *3 (-823)) (-5 *1 (-558 *3 *4)))) (-2219 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-618 (-591 *6))) (-5 *4 (-1142)) (-5 *2 (-591 *6)) (-4 *6 (-414 *5)) (-4 *5 (-823)) (-5 *1 (-558 *5 *6)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-618 (-591 *5))) (-4 *4 (-823)) (-5 *2 (-591 *5)) (-5 *1 (-558 *4 *5)) (-4 *5 (-414 *4)))) (-2217 (*1 *2 *2 *3) (-12 (-5 *2 (-618 (-591 *5))) (-5 *3 (-1142)) (-4 *5 (-414 *4)) (-4 *4 (-823)) (-5 *1 (-558 *4 *5)))))
+(-10 -7 (-15 -2217 ((-618 (-591 |#2|)) (-618 (-591 |#2|)) (-1142))) (-15 -2218 ((-591 |#2|) (-618 (-591 |#2|)))) (-15 -2219 ((-591 |#2|) (-591 |#2|) (-618 (-591 |#2|)) (-1142))) (-15 -3568 ((-618 (-591 |#2|)) (-618 (-591 |#2|)) (-618 (-591 |#2|)))) (-15 -2220 ((-618 (-591 |#2|)) (-618 |#2|) (-1142))) (IF (|has| |#1| (-542)) (-15 -2221 (|#2| |#2| (-1142))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -2222 (|#2| |#2| (-1142))) (IF (|has| |#1| (-594 (-861 (-535)))) (IF (|has| |#1| (-857 (-535))) (IF (|has| |#2| (-608)) (IF (|has| |#2| (-1009 (-1142))) (-15 -2223 ((-565 |#2|) |#2| (-1142) (-1 (-565 |#2|) |#2| (-1142)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1142)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2226 (((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-618 |#1|) "failed") (-535) |#1| |#1|)) 172)) (-2229 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-618 (-400 |#2|))) 148)) (-2232 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-618 (-400 |#2|))) 145)) (-2233 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 133)) (-2224 (((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 158)) (-2231 (((-3 (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|)) 175)) (-2227 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-400 |#2|)) 178)) (-2235 (((-2 (|:| |ir| (-565 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 84)) (-2236 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2230 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|) (-618 (-400 |#2|))) 152)) (-2234 (((-3 (-601 |#1| |#2|) "failed") (-601 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|)) 137)) (-2225 (((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|)) 162)) (-2228 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|) (-400 |#2|)) 183)))
+(((-559 |#1| |#2|) (-10 -7 (-15 -2224 ((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2225 ((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|))) (-15 -2226 ((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-618 |#1|) "failed") (-535) |#1| |#1|))) (-15 -2227 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-400 |#2|))) (-15 -2228 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|) (-400 |#2|))) (-15 -2229 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-618 (-400 |#2|)))) (-15 -2230 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|) (-618 (-400 |#2|)))) (-15 -2231 ((-3 (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -2232 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-618 (-400 |#2|)))) (-15 -2233 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2234 ((-3 (-601 |#1| |#2|) "failed") (-601 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|))) (-15 -2235 ((-2 (|:| |ir| (-565 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2236 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-356) (-1200 |#1|)) (T -559))
+((-2236 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-559 *5 *3)))) (-2235 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |ir| (-565 (-400 *6))) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))) (-2234 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-601 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3455 *4) (|:| |sol?| (-112))) (-535) *4)) (-4 *4 (-356)) (-4 *5 (-1200 *4)) (-5 *1 (-559 *4 *5)))) (-2233 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2242 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-356)) (-5 *1 (-559 *4 *2)) (-4 *2 (-1200 *4)))) (-2232 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-618 (-400 *7))) (-4 *7 (-1200 *6)) (-5 *3 (-400 *7)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *6 *7)))) (-2231 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -2242 (-400 *6)) (|:| |coeff| (-400 *6)))) (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))) (-2230 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3455 *7) (|:| |sol?| (-112))) (-535) *7)) (-5 *6 (-618 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1200 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-559 *7 *8)))) (-2229 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2242 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-618 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1200 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-559 *7 *8)))) (-2228 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3455 *6) (|:| |sol?| (-112))) (-535) *6)) (-4 *6 (-356)) (-4 *7 (-1200 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -2242 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-2227 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2242 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-356)) (-4 *7 (-1200 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -2242 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-2226 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-618 *6) "failed") (-535) *6 *6)) (-4 *6 (-356)) (-4 *7 (-1200 *6)) (-5 *2 (-2 (|:| |answer| (-565 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-2225 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3455 *6) (|:| |sol?| (-112))) (-535) *6)) (-4 *6 (-356)) (-4 *7 (-1200 *6)) (-5 *2 (-2 (|:| |answer| (-565 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-2224 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2242 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-356)) (-4 *7 (-1200 *6)) (-5 *2 (-2 (|:| |answer| (-565 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
+(-10 -7 (-15 -2224 ((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2225 ((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|))) (-15 -2226 ((-2 (|:| |answer| (-565 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-618 |#1|) "failed") (-535) |#1| |#1|))) (-15 -2227 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-400 |#2|))) (-15 -2228 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|) (-400 |#2|))) (-15 -2229 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-618 (-400 |#2|)))) (-15 -2230 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|) (-618 (-400 |#2|)))) (-15 -2231 ((-3 (-2 (|:| -2242 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -2232 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-618 (-400 |#2|)))) (-15 -2233 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2234 ((-3 (-601 |#1| |#2|) "failed") (-601 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3455 |#1|) (|:| |sol?| (-112))) (-535) |#1|))) (-15 -2235 ((-2 (|:| |ir| (-565 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2236 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-2237 (((-3 |#2| "failed") |#2| (-1142) (-1142)) 10)))
+(((-560 |#1| |#2|) (-10 -7 (-15 -2237 ((-3 |#2| "failed") |#2| (-1142) (-1142)))) (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-931) (-1105) (-29 |#1|))) (T -560))
+((-2237 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1142)) (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-1164) (-931) (-1105) (-29 *4))))))
+(-10 -7 (-15 -2237 ((-3 |#2| "failed") |#2| (-1142) (-1142))))
+((-2880 (((-1086) $ (-129)) 12)) (-2881 (((-1086) $ (-128)) 11)) (-2112 (((-1086) $ (-129)) 7)) (-2113 (((-1086) $) 8)) (-1811 (($ $) 6)))
(((-561) (-138)) (T -561))
NIL
-(-13 (-518) (-833))
-(((-171) . T) ((-518) . T) ((-833) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $ (-549)) 66)) (-2647 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-3932 (($ (-1138 (-549)) (-549)) 72)) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) 58)) (-3504 (($ $) 34)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2078 (((-747) $) 15)) (-3987 (((-112) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2968 (((-549)) 29)) (-2013 (((-549) $) 32)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2975 (($ $ (-549)) 21)) (-2038 (((-3 $ "failed") $ $) 59)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) 16)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 61)) (-1587 (((-1122 (-549)) $) 18)) (-1814 (($ $) 23)) (-3845 (((-834) $) 87) (($ (-549)) 52) (($ $) NIL)) (-1723 (((-747)) 14)) (-4053 (((-112) $ $) NIL)) (-2660 (((-549) $ (-549)) 36)) (-3275 (($) 35 T CONST)) (-3287 (($) 19 T CONST)) (-2388 (((-112) $ $) 39)) (-2499 (($ $) 51) (($ $ $) 37)) (-2485 (($ $ $) 50)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 54) (($ $ $) 55)))
-(((-562 |#1| |#2|) (-840 |#1|) (-549) (-112)) (T -562))
-NIL
-(-840 |#1|)
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 21)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2642 (((-112) $) NIL)) (-1703 (((-747)) NIL)) (-2905 (($ $ (-892)) NIL (|has| $ (-361))) (($ $) NIL)) (-2572 (((-1152 (-892) (-747)) (-549)) 47)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3615 (((-747)) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 $ "failed") $) 75)) (-2658 (($ $) 74)) (-2127 (($ (-1225 $)) 73)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) 32)) (-3238 (($) NIL)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-1327 (($) 49)) (-1729 (((-112) $) NIL)) (-3225 (($ $) NIL) (($ $ (-747)) NIL)) (-2471 (((-112) $) NIL)) (-2078 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-3987 (((-112) $) NIL)) (-2308 (($) 37 (|has| $ (-361)))) (-2815 (((-112) $) NIL (|has| $ (-361)))) (-4117 (($ $ (-892)) NIL (|has| $ (-361))) (($ $) NIL)) (-3982 (((-3 $ "failed") $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4030 (((-1138 $) $ (-892)) NIL (|has| $ (-361))) (((-1138 $) $) 83)) (-2723 (((-892) $) 55)) (-4228 (((-1138 $) $) NIL (|has| $ (-361)))) (-3609 (((-3 (-1138 $) "failed") $ $) NIL (|has| $ (-361))) (((-1138 $) $) NIL (|has| $ (-361)))) (-3289 (($ $ (-1138 $)) NIL (|has| $ (-361)))) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL T CONST)) (-3491 (($ (-892)) 48)) (-2360 (((-112) $) 67)) (-3988 (((-1086) $) NIL)) (-4246 (($) 19 (|has| $ (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) 42)) (-2120 (((-411 $) $) NIL)) (-3656 (((-892)) 66) (((-809 (-892))) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2591 (((-3 (-747) "failed") $ $) NIL) (((-747) $) NIL)) (-3128 (((-133)) NIL)) (-3455 (($ $ (-747)) NIL) (($ $) NIL)) (-3068 (((-892) $) 65) (((-809 (-892)) $) NIL)) (-2539 (((-1138 $)) 82)) (-3191 (($) 54)) (-3250 (($) 38 (|has| $ (-361)))) (-4163 (((-665 $) (-1225 $)) NIL) (((-1225 $) $) 71)) (-2844 (((-549) $) 28)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) 30) (($ $) NIL) (($ (-400 (-549))) NIL)) (-3407 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1723 (((-747)) 39)) (-3420 (((-1225 $) (-892)) 77) (((-1225 $)) 76)) (-4053 (((-112) $ $) NIL)) (-2923 (((-112) $) NIL)) (-3275 (($) 22 T CONST)) (-3287 (($) 18 T CONST)) (-2731 (($ $ (-747)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-1700 (($ $ (-747)) NIL) (($ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 26)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 61) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
-(((-563 |#1|) (-13 (-342) (-322 $) (-594 (-549))) (-892)) (T -563))
-NIL
-(-13 (-342) (-322 $) (-594 (-549)))
-((-3327 (((-1230) (-1124)) 10)))
-(((-564) (-10 -7 (-15 -3327 ((-1230) (-1124))))) (T -564))
-((-3327 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-564)))))
-(-10 -7 (-15 -3327 ((-1230) (-1124))))
-((-1445 (((-567 |#2|) (-567 |#2|)) 40)) (-1448 (((-621 |#2|) (-567 |#2|)) 42)) (-3975 ((|#2| (-567 |#2|)) 48)))
-(((-565 |#1| |#2|) (-10 -7 (-15 -1445 ((-567 |#2|) (-567 |#2|))) (-15 -1448 ((-621 |#2|) (-567 |#2|))) (-15 -3975 (|#2| (-567 |#2|)))) (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))) (-13 (-29 |#1|) (-1164))) (T -565))
-((-3975 (*1 *2 *3) (-12 (-5 *3 (-567 *2)) (-4 *2 (-13 (-29 *4) (-1164))) (-5 *1 (-565 *4 *2)) (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-567 *5)) (-4 *5 (-13 (-29 *4) (-1164))) (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *2 (-621 *5)) (-5 *1 (-565 *4 *5)))) (-1445 (*1 *2 *2) (-12 (-5 *2 (-567 *4)) (-4 *4 (-13 (-29 *3) (-1164))) (-4 *3 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *1 (-565 *3 *4)))))
-(-10 -7 (-15 -1445 ((-567 |#2|) (-567 |#2|))) (-15 -1448 ((-621 |#2|) (-567 |#2|))) (-15 -3975 (|#2| (-567 |#2|))))
-((-2796 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|)) 30)))
-(((-566 |#1| |#2|) (-10 -7 (-15 -2796 ((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|))) (-15 -2796 ((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2796 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2796 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-356) (-356)) (T -566))
-((-2796 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-566 *5 *6)))) (-2796 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-356)) (-4 *2 (-356)) (-5 *1 (-566 *5 *2)))) (-2796 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2460 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| -2460 *6) (|:| |coeff| *6))) (-5 *1 (-566 *5 *6)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-567 *5)) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-567 *6)) (-5 *1 (-566 *5 *6)))))
-(-10 -7 (-15 -2796 ((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|))) (-15 -2796 ((-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2460 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2796 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2796 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) 69)) (-2658 ((|#1| $) NIL)) (-2460 ((|#1| $) 26)) (-2970 (((-621 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-4033 (($ |#1| (-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1138 |#1|)) (|:| |logand| (-1138 |#1|)))) (-621 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3050 (((-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1138 |#1|)) (|:| |logand| (-1138 |#1|)))) $) 27)) (-2677 (((-1124) $) NIL)) (-4211 (($ |#1| |#1|) 33) (($ |#1| (-1142)) 44 (|has| |#1| (-1009 (-1142))))) (-3988 (((-1086) $) NIL)) (-2972 (((-112) $) 30)) (-3455 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1142)) 82 (|has| |#1| (-871 (-1142))))) (-3845 (((-834) $) 96) (($ |#1|) 25)) (-3275 (($) 16 T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) 15) (($ $ $) NIL)) (-2485 (($ $ $) 78)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 14) (($ (-400 (-549)) $) 36) (($ $ (-400 (-549))) NIL)))
-(((-567 |#1|) (-13 (-694 (-400 (-549))) (-1009 |#1|) (-10 -8 (-15 -4033 ($ |#1| (-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1138 |#1|)) (|:| |logand| (-1138 |#1|)))) (-621 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2460 (|#1| $)) (-15 -3050 ((-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1138 |#1|)) (|:| |logand| (-1138 |#1|)))) $)) (-15 -2970 ((-621 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2972 ((-112) $)) (-15 -4211 ($ |#1| |#1|)) (-15 -3455 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-871 (-1142))) (-15 -3455 (|#1| $ (-1142))) |%noBranch|) (IF (|has| |#1| (-1009 (-1142))) (-15 -4211 ($ |#1| (-1142))) |%noBranch|))) (-356)) (T -567))
-((-4033 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1138 *2)) (|:| |logand| (-1138 *2))))) (-5 *4 (-621 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-356)) (-5 *1 (-567 *2)))) (-2460 (*1 *2 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356)))) (-3050 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1138 *3)) (|:| |logand| (-1138 *3))))) (-5 *1 (-567 *3)) (-4 *3 (-356)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-567 *3)) (-4 *3 (-356)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-356)))) (-4211 (*1 *1 *2 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356)))) (-3455 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-567 *2)) (-4 *2 (-356)))) (-3455 (*1 *2 *1 *3) (-12 (-4 *2 (-356)) (-4 *2 (-871 *3)) (-5 *1 (-567 *2)) (-5 *3 (-1142)))) (-4211 (*1 *1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *1 (-567 *2)) (-4 *2 (-1009 *3)) (-4 *2 (-356)))))
-(-13 (-694 (-400 (-549))) (-1009 |#1|) (-10 -8 (-15 -4033 ($ |#1| (-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1138 |#1|)) (|:| |logand| (-1138 |#1|)))) (-621 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2460 (|#1| $)) (-15 -3050 ((-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1138 |#1|)) (|:| |logand| (-1138 |#1|)))) $)) (-15 -2970 ((-621 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2972 ((-112) $)) (-15 -4211 ($ |#1| |#1|)) (-15 -3455 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-871 (-1142))) (-15 -3455 (|#1| $ (-1142))) |%noBranch|) (IF (|has| |#1| (-1009 (-1142))) (-15 -4211 ($ |#1| (-1142))) |%noBranch|)))
-((-2537 (((-112) |#1|) 16)) (-3606 (((-3 |#1| "failed") |#1|) 14)) (-1828 (((-2 (|:| -1863 |#1|) (|:| -3577 (-747))) |#1|) 31) (((-3 |#1| "failed") |#1| (-747)) 18)) (-2217 (((-112) |#1| (-747)) 19)) (-4096 ((|#1| |#1|) 32)) (-2814 ((|#1| |#1| (-747)) 34)))
-(((-568 |#1|) (-10 -7 (-15 -2217 ((-112) |#1| (-747))) (-15 -1828 ((-3 |#1| "failed") |#1| (-747))) (-15 -1828 ((-2 (|:| -1863 |#1|) (|:| -3577 (-747))) |#1|)) (-15 -2814 (|#1| |#1| (-747))) (-15 -2537 ((-112) |#1|)) (-15 -3606 ((-3 |#1| "failed") |#1|)) (-15 -4096 (|#1| |#1|))) (-534)) (T -568))
-((-4096 (*1 *2 *2) (-12 (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-3606 (*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-2537 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))) (-2814 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1863 *3) (|:| -3577 (-747)))) (-5 *1 (-568 *3)) (-4 *3 (-534)))) (-1828 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-2217 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))))
-(-10 -7 (-15 -2217 ((-112) |#1| (-747))) (-15 -1828 ((-3 |#1| "failed") |#1| (-747))) (-15 -1828 ((-2 (|:| -1863 |#1|) (|:| -3577 (-747))) |#1|)) (-15 -2814 (|#1| |#1| (-747))) (-15 -2537 ((-112) |#1|)) (-15 -3606 ((-3 |#1| "failed") |#1|)) (-15 -4096 (|#1| |#1|)))
-((-2516 (((-1138 |#1|) (-892)) 27)))
-(((-569 |#1|) (-10 -7 (-15 -2516 ((-1138 |#1|) (-892)))) (-342)) (T -569))
-((-2516 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-569 *4)) (-4 *4 (-342)))))
-(-10 -7 (-15 -2516 ((-1138 |#1|) (-892))))
-((-1445 (((-567 (-400 (-923 |#1|))) (-567 (-400 (-923 |#1|)))) 27)) (-1531 (((-3 (-309 |#1|) (-621 (-309 |#1|))) (-400 (-923 |#1|)) (-1142)) 34 (|has| |#1| (-145)))) (-1448 (((-621 (-309 |#1|)) (-567 (-400 (-923 |#1|)))) 19)) (-2159 (((-309 |#1|) (-400 (-923 |#1|)) (-1142)) 32 (|has| |#1| (-145)))) (-3975 (((-309 |#1|) (-567 (-400 (-923 |#1|)))) 21)))
-(((-570 |#1|) (-10 -7 (-15 -1445 ((-567 (-400 (-923 |#1|))) (-567 (-400 (-923 |#1|))))) (-15 -1448 ((-621 (-309 |#1|)) (-567 (-400 (-923 |#1|))))) (-15 -3975 ((-309 |#1|) (-567 (-400 (-923 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -1531 ((-3 (-309 |#1|) (-621 (-309 |#1|))) (-400 (-923 |#1|)) (-1142))) (-15 -2159 ((-309 |#1|) (-400 (-923 |#1|)) (-1142)))) |%noBranch|)) (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (T -570))
-((-2159 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1142)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *2 (-309 *5)) (-5 *1 (-570 *5)))) (-1531 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1142)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *2 (-3 (-309 *5) (-621 (-309 *5)))) (-5 *1 (-570 *5)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-567 (-400 (-923 *4)))) (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *2 (-309 *4)) (-5 *1 (-570 *4)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-567 (-400 (-923 *4)))) (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *2 (-621 (-309 *4))) (-5 *1 (-570 *4)))) (-1445 (*1 *2 *2) (-12 (-5 *2 (-567 (-400 (-923 *3)))) (-4 *3 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *1 (-570 *3)))))
-(-10 -7 (-15 -1445 ((-567 (-400 (-923 |#1|))) (-567 (-400 (-923 |#1|))))) (-15 -1448 ((-621 (-309 |#1|)) (-567 (-400 (-923 |#1|))))) (-15 -3975 ((-309 |#1|) (-567 (-400 (-923 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -1531 ((-3 (-309 |#1|) (-621 (-309 |#1|))) (-400 (-923 |#1|)) (-1142))) (-15 -2159 ((-309 |#1|) (-400 (-923 |#1|)) (-1142)))) |%noBranch|))
-((-2178 (((-621 (-665 (-549))) (-621 (-549)) (-621 (-876 (-549)))) 46) (((-621 (-665 (-549))) (-621 (-549))) 47) (((-665 (-549)) (-621 (-549)) (-876 (-549))) 42)) (-2003 (((-747) (-621 (-549))) 40)))
-(((-571) (-10 -7 (-15 -2003 ((-747) (-621 (-549)))) (-15 -2178 ((-665 (-549)) (-621 (-549)) (-876 (-549)))) (-15 -2178 ((-621 (-665 (-549))) (-621 (-549)))) (-15 -2178 ((-621 (-665 (-549))) (-621 (-549)) (-621 (-876 (-549))))))) (T -571))
-((-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-549))) (-5 *4 (-621 (-876 (-549)))) (-5 *2 (-621 (-665 (-549)))) (-5 *1 (-571)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-621 (-665 (-549)))) (-5 *1 (-571)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-549))) (-5 *4 (-876 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-571)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-747)) (-5 *1 (-571)))))
-(-10 -7 (-15 -2003 ((-747) (-621 (-549)))) (-15 -2178 ((-665 (-549)) (-621 (-549)) (-876 (-549)))) (-15 -2178 ((-621 (-665 (-549))) (-621 (-549)))) (-15 -2178 ((-621 (-665 (-549))) (-621 (-549)) (-621 (-876 (-549))))))
-((-2979 (((-621 |#5|) |#5| (-112)) 73)) (-1292 (((-112) |#5| (-621 |#5|)) 30)))
-(((-572 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2979 ((-621 |#5|) |#5| (-112))) (-15 -1292 ((-112) |#5| (-621 |#5|)))) (-13 (-300) (-145)) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|)) (T -572))
-((-1292 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-1075 *5 *6 *7 *8)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-572 *5 *6 *7 *8 *3)))) (-2979 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-621 *3)) (-5 *1 (-572 *5 *6 *7 *8 *3)) (-4 *3 (-1075 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2979 ((-621 |#5|) |#5| (-112))) (-15 -1292 ((-112) |#5| (-621 |#5|))))
-((-3833 (((-112) $ $) NIL)) (-2202 (((-1101) $) 11)) (-2189 (((-1101) $) 9)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-573) (-13 (-1049) (-10 -8 (-15 -2189 ((-1101) $)) (-15 -2202 ((-1101) $))))) (T -573))
-((-2189 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-573)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-573)))))
-(-13 (-1049) (-10 -8 (-15 -2189 ((-1101) $)) (-15 -2202 ((-1101) $))))
-((-3833 (((-112) $ $) NIL (|has| (-142) (-1066)))) (-2359 (($ $) 34)) (-1966 (($ $) NIL)) (-2089 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-2319 (((-112) $ $) 51)) (-2292 (((-112) $ $ (-549)) 46)) (-1445 (((-621 $) $ (-142)) 60) (((-621 $) $ (-139)) 61)) (-1993 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-823)))) (-4106 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-823))))) (-3193 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-823)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 (((-142) $ (-549) (-142)) 45 (|has| $ (-6 -4337))) (((-142) $ (-1192 (-549)) (-142)) NIL (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-3589 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-4125 (($ $ (-1192 (-549)) $) 44)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-3812 (($ (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4336)))) (-1878 (((-142) $ (-549) (-142)) NIL (|has| $ (-6 -4337)))) (-1808 (((-142) $ (-549)) NIL)) (-2348 (((-112) $ $) 72)) (-2882 (((-549) (-1 (-112) (-142)) $) NIL) (((-549) (-142) $) NIL (|has| (-142) (-1066))) (((-549) (-142) $ (-549)) 48 (|has| (-142) (-1066))) (((-549) $ $ (-549)) 47) (((-549) (-139) $ (-549)) 50)) (-2990 (((-621 (-142)) $) NIL (|has| $ (-6 -4336)))) (-3743 (($ (-747) (-142)) 9)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) 28 (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| (-142) (-823)))) (-1586 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-823)))) (-1958 (((-621 (-142)) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-1548 (((-549) $) 42 (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| (-142) (-823)))) (-2311 (((-112) $ $ (-142)) 73)) (-2474 (((-747) $ $ (-142)) 70)) (-1865 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3484 (($ $) 37)) (-2495 (($ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-3602 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-2677 (((-1124) $) 38 (|has| (-142) (-1066)))) (-2614 (($ (-142) $ (-549)) NIL) (($ $ $ (-549)) 23)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-549) $) 69) (((-1086) $) NIL (|has| (-142) (-1066)))) (-3645 (((-142) $) NIL (|has| (-549) (-823)))) (-1917 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-3158 (($ $ (-142)) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-287 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-621 (-142)) (-621 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-1738 (((-621 (-142)) $) NIL)) (-1807 (((-112) $) 12)) (-1461 (($) 10)) (-3340 (((-142) $ (-549) (-142)) NIL) (((-142) $ (-549)) 52) (($ $ (-1192 (-549))) 21) (($ $ $) NIL)) (-2166 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-3997 (((-747) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336))) (((-747) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-1665 (($ $ $ (-549)) 66 (|has| $ (-6 -4337)))) (-2281 (($ $) 17)) (-2844 (((-525) $) NIL (|has| (-142) (-594 (-525))))) (-3853 (($ (-621 (-142))) NIL)) (-1951 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-621 $)) 67)) (-3845 (($ (-142)) NIL) (((-834) $) 27 (|has| (-142) (-593 (-834))))) (-2150 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2424 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2388 (((-112) $ $) 14 (|has| (-142) (-1066)))) (-2436 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2411 (((-112) $ $) 15 (|has| (-142) (-823)))) (-3774 (((-747) $) 13 (|has| $ (-6 -4336)))))
-(((-574 |#1|) (-13 (-1110) (-10 -8 (-15 -3988 ((-549) $)))) (-549)) (T -574))
-((-3988 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-574 *3)) (-14 *3 *2))))
-(-13 (-1110) (-10 -8 (-15 -3988 ((-549) $))))
-((-2820 (((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2| (-1060 |#4|)) 32)))
-(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2820 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2| (-1060 |#4|))) (-15 -2820 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2|))) (-769) (-823) (-541) (-920 |#3| |#1| |#2|)) (T -575))
-((-2820 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-541)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549)))) (-5 *1 (-575 *5 *4 *6 *3)) (-4 *3 (-920 *6 *5 *4)))) (-2820 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1060 *3)) (-4 *3 (-920 *7 *6 *4)) (-4 *6 (-769)) (-4 *4 (-823)) (-4 *7 (-541)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549)))) (-5 *1 (-575 *6 *4 *7 *3)))))
-(-10 -7 (-15 -2820 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2| (-1060 |#4|))) (-15 -2820 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 63)) (-2271 (((-621 (-1048)) $) NIL)) (-3010 (((-1142) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-2305 (($ $ (-549)) 54) (($ $ (-549) (-549)) 55)) (-1480 (((-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 60)) (-1816 (($ $) 100)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2017 (((-834) (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) (-997 (-816 (-549))) (-1142) |#1| (-400 (-549))) 224)) (-2825 (($ (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 34)) (-1705 (($) NIL T CONST)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3155 (((-112) $) NIL)) (-2078 (((-549) $) 58) (((-549) $ (-549)) 59)) (-3987 (((-112) $) NIL)) (-2769 (($ $ (-892)) 76)) (-4299 (($ (-1 |#1| (-549)) $) 73)) (-2427 (((-112) $) 25)) (-2244 (($ |#1| (-549)) 22) (($ $ (-1048) (-549)) NIL) (($ $ (-621 (-1048)) (-621 (-549))) NIL)) (-2796 (($ (-1 |#1| |#1|) $) 67)) (-1631 (($ (-997 (-816 (-549))) (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 13)) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-1531 (($ $) 150 (|has| |#1| (-38 (-400 (-549)))))) (-2848 (((-3 $ "failed") $ $ (-112)) 99)) (-2978 (($ $ $) 108)) (-3988 (((-1086) $) NIL)) (-2809 (((-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 15)) (-2371 (((-997 (-816 (-549))) $) 14)) (-2975 (($ $ (-549)) 45)) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2685 (((-1122 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-549)))))) (-3340 ((|#1| $ (-549)) 57) (($ $ $) NIL (|has| (-549) (-1078)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-3068 (((-549) $) NIL)) (-1814 (($ $) 46)) (-3845 (((-834) $) NIL) (($ (-549)) 28) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541))) (($ |#1|) 27 (|has| |#1| (-170)))) (-2944 ((|#1| $ (-549)) 56)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) 37)) (-2597 ((|#1| $) NIL)) (-2598 (($ $) 186 (|has| |#1| (-38 (-400 (-549)))))) (-3986 (($ $) 158 (|has| |#1| (-38 (-400 (-549)))))) (-4290 (($ $) 190 (|has| |#1| (-38 (-400 (-549)))))) (-4087 (($ $) 163 (|has| |#1| (-38 (-400 (-549)))))) (-3389 (($ $) 189 (|has| |#1| (-38 (-400 (-549)))))) (-4149 (($ $) 162 (|has| |#1| (-38 (-400 (-549)))))) (-3629 (($ $ (-400 (-549))) 166 (|has| |#1| (-38 (-400 (-549)))))) (-3998 (($ $ |#1|) 146 (|has| |#1| (-38 (-400 (-549)))))) (-2692 (($ $) 192 (|has| |#1| (-38 (-400 (-549)))))) (-2509 (($ $) 149 (|has| |#1| (-38 (-400 (-549)))))) (-3588 (($ $) 191 (|has| |#1| (-38 (-400 (-549)))))) (-2333 (($ $) 164 (|has| |#1| (-38 (-400 (-549)))))) (-2140 (($ $) 187 (|has| |#1| (-38 (-400 (-549)))))) (-4092 (($ $) 160 (|has| |#1| (-38 (-400 (-549)))))) (-1279 (($ $) 188 (|has| |#1| (-38 (-400 (-549)))))) (-2560 (($ $) 161 (|has| |#1| (-38 (-400 (-549)))))) (-2492 (($ $) 197 (|has| |#1| (-38 (-400 (-549)))))) (-3623 (($ $) 173 (|has| |#1| (-38 (-400 (-549)))))) (-2091 (($ $) 194 (|has| |#1| (-38 (-400 (-549)))))) (-4314 (($ $) 168 (|has| |#1| (-38 (-400 (-549)))))) (-1823 (($ $) 201 (|has| |#1| (-38 (-400 (-549)))))) (-3883 (($ $) 177 (|has| |#1| (-38 (-400 (-549)))))) (-2725 (($ $) 203 (|has| |#1| (-38 (-400 (-549)))))) (-2884 (($ $) 179 (|has| |#1| (-38 (-400 (-549)))))) (-2694 (($ $) 199 (|has| |#1| (-38 (-400 (-549)))))) (-1274 (($ $) 175 (|has| |#1| (-38 (-400 (-549)))))) (-3121 (($ $) 196 (|has| |#1| (-38 (-400 (-549)))))) (-1423 (($ $) 171 (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2660 ((|#1| $ (-549)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-3275 (($) 29 T CONST)) (-3287 (($) 38 T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-2388 (((-112) $ $) 65)) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $) 84) (($ $ $) 64)) (-2485 (($ $ $) 81)) (** (($ $ (-892)) NIL) (($ $ (-747)) 103)) (* (($ (-892) $) 89) (($ (-747) $) 87) (($ (-549) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-576 |#1|) (-13 (-1203 |#1| (-549)) (-10 -8 (-15 -1631 ($ (-997 (-816 (-549))) (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -2371 ((-997 (-816 (-549))) $)) (-15 -2809 ((-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $)) (-15 -2825 ($ (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -2427 ((-112) $)) (-15 -4299 ($ (-1 |#1| (-549)) $)) (-15 -2848 ((-3 $ "failed") $ $ (-112))) (-15 -1816 ($ $)) (-15 -2978 ($ $ $)) (-15 -2017 ((-834) (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) (-997 (-816 (-549))) (-1142) |#1| (-400 (-549)))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -1531 ($ $)) (-15 -3998 ($ $ |#1|)) (-15 -3629 ($ $ (-400 (-549)))) (-15 -2509 ($ $)) (-15 -2692 ($ $)) (-15 -4087 ($ $)) (-15 -2560 ($ $)) (-15 -3986 ($ $)) (-15 -4092 ($ $)) (-15 -4149 ($ $)) (-15 -2333 ($ $)) (-15 -4314 ($ $)) (-15 -1423 ($ $)) (-15 -3623 ($ $)) (-15 -1274 ($ $)) (-15 -3883 ($ $)) (-15 -2884 ($ $)) (-15 -4290 ($ $)) (-15 -1279 ($ $)) (-15 -2598 ($ $)) (-15 -2140 ($ $)) (-15 -3389 ($ $)) (-15 -3588 ($ $)) (-15 -2091 ($ $)) (-15 -3121 ($ $)) (-15 -2492 ($ $)) (-15 -2694 ($ $)) (-15 -1823 ($ $)) (-15 -2725 ($ $))) |%noBranch|))) (-1018)) (T -576))
-((-2427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-1631 (*1 *1 *2 *3) (-12 (-5 *2 (-997 (-816 (-549)))) (-5 *3 (-1122 (-2 (|:| |k| (-549)) (|:| |c| *4)))) (-4 *4 (-1018)) (-5 *1 (-576 *4)))) (-2371 (*1 *2 *1) (-12 (-5 *2 (-997 (-816 (-549)))) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-1122 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-2825 (*1 *1 *2) (-12 (-5 *2 (-1122 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-4 *3 (-1018)) (-5 *1 (-576 *3)))) (-4299 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *3 (-1018)) (-5 *1 (-576 *3)))) (-2848 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-1816 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))) (-2978 (*1 *1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))) (-2017 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1122 (-2 (|:| |k| (-549)) (|:| |c| *6)))) (-5 *4 (-997 (-816 (-549)))) (-5 *5 (-1142)) (-5 *7 (-400 (-549))) (-4 *6 (-1018)) (-5 *2 (-834)) (-5 *1 (-576 *6)))) (-1531 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-3998 (*1 *1 *1 *2) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-576 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1018)))) (-2509 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2692 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-4087 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2560 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-3986 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-4092 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-4149 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2333 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-4314 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-1423 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-3623 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-1274 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-3883 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2884 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-4290 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-1279 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2598 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2140 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-3389 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-3588 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2091 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2492 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2694 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-1823 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2725 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(-13 (-1203 |#1| (-549)) (-10 -8 (-15 -1631 ($ (-997 (-816 (-549))) (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -2371 ((-997 (-816 (-549))) $)) (-15 -2809 ((-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $)) (-15 -2825 ($ (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -2427 ((-112) $)) (-15 -4299 ($ (-1 |#1| (-549)) $)) (-15 -2848 ((-3 $ "failed") $ $ (-112))) (-15 -1816 ($ $)) (-15 -2978 ($ $ $)) (-15 -2017 ((-834) (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) (-997 (-816 (-549))) (-1142) |#1| (-400 (-549)))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -1531 ($ $)) (-15 -3998 ($ $ |#1|)) (-15 -3629 ($ $ (-400 (-549)))) (-15 -2509 ($ $)) (-15 -2692 ($ $)) (-15 -4087 ($ $)) (-15 -2560 ($ $)) (-15 -3986 ($ $)) (-15 -4092 ($ $)) (-15 -4149 ($ $)) (-15 -2333 ($ $)) (-15 -4314 ($ $)) (-15 -1423 ($ $)) (-15 -3623 ($ $)) (-15 -1274 ($ $)) (-15 -3883 ($ $)) (-15 -2884 ($ $)) (-15 -4290 ($ $)) (-15 -1279 ($ $)) (-15 -2598 ($ $)) (-15 -2140 ($ $)) (-15 -3389 ($ $)) (-15 -3588 ($ $)) (-15 -2091 ($ $)) (-15 -3121 ($ $)) (-15 -2492 ($ $)) (-15 -2694 ($ $)) (-15 -1823 ($ $)) (-15 -2725 ($ $))) |%noBranch|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2825 (($ (-1122 |#1|)) 9)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) 42)) (-3155 (((-112) $) 52)) (-2078 (((-747) $) 55) (((-747) $ (-747)) 54)) (-3987 (((-112) $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2038 (((-3 $ "failed") $ $) 44 (|has| |#1| (-541)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL (|has| |#1| (-541)))) (-3330 (((-1122 |#1|) $) 23)) (-1723 (((-747)) 51)) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3275 (($) 10 T CONST)) (-3287 (($) 14 T CONST)) (-2388 (((-112) $ $) 22)) (-2499 (($ $) 30) (($ $ $) 16)) (-2485 (($ $ $) 25)) (** (($ $ (-892)) NIL) (($ $ (-747)) 49)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-549)) 36)))
-(((-577 |#1|) (-13 (-1018) (-10 -8 (-15 -3330 ((-1122 |#1|) $)) (-15 -2825 ($ (-1122 |#1|))) (-15 -3155 ((-112) $)) (-15 -2078 ((-747) $)) (-15 -2078 ((-747) $ (-747))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-549))) (IF (|has| |#1| (-541)) (-6 (-541)) |%noBranch|))) (-1018)) (T -577))
-((-3330 (*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (-2825 (*1 *1 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-577 *3)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (-2078 (*1 *2 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))))
-(-13 (-1018) (-10 -8 (-15 -3330 ((-1122 |#1|) $)) (-15 -2825 ($ (-1122 |#1|))) (-15 -3155 ((-112) $)) (-15 -2078 ((-747) $)) (-15 -2078 ((-747) $ (-747))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-549))) (IF (|has| |#1| (-541)) (-6 (-541)) |%noBranch|)))
-((-2796 (((-581 |#2|) (-1 |#2| |#1|) (-581 |#1|)) 15)))
-(((-578 |#1| |#2|) (-10 -7 (-15 -2796 ((-581 |#2|) (-1 |#2| |#1|) (-581 |#1|)))) (-1179) (-1179)) (T -578))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-581 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-581 *6)) (-5 *1 (-578 *5 *6)))))
-(-10 -7 (-15 -2796 ((-581 |#2|) (-1 |#2| |#1|) (-581 |#1|))))
-((-2796 (((-1122 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-1122 |#2|)) 20) (((-1122 |#3|) (-1 |#3| |#1| |#2|) (-1122 |#1|) (-581 |#2|)) 19) (((-581 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-581 |#2|)) 18)))
-(((-579 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-581 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-581 |#2|))) (-15 -2796 ((-1122 |#3|) (-1 |#3| |#1| |#2|) (-1122 |#1|) (-581 |#2|))) (-15 -2796 ((-1122 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-1122 |#2|)))) (-1179) (-1179) (-1179)) (T -579))
-((-2796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-1122 *7)) (-4 *6 (-1179)) (-4 *7 (-1179)) (-4 *8 (-1179)) (-5 *2 (-1122 *8)) (-5 *1 (-579 *6 *7 *8)))) (-2796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1122 *6)) (-5 *5 (-581 *7)) (-4 *6 (-1179)) (-4 *7 (-1179)) (-4 *8 (-1179)) (-5 *2 (-1122 *8)) (-5 *1 (-579 *6 *7 *8)))) (-2796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-581 *7)) (-4 *6 (-1179)) (-4 *7 (-1179)) (-4 *8 (-1179)) (-5 *2 (-581 *8)) (-5 *1 (-579 *6 *7 *8)))))
-(-10 -7 (-15 -2796 ((-581 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-581 |#2|))) (-15 -2796 ((-1122 |#3|) (-1 |#3| |#1| |#2|) (-1122 |#1|) (-581 |#2|))) (-15 -2796 ((-1122 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-1122 |#2|))))
-((-3950 ((|#3| |#3| (-621 (-592 |#3|)) (-621 (-1142))) 55)) (-3320 (((-167 |#2|) |#3|) 117)) (-2951 ((|#3| (-167 |#2|)) 44)) (-3085 ((|#2| |#3|) 19)) (-3057 ((|#3| |#2|) 33)))
-(((-580 |#1| |#2| |#3|) (-10 -7 (-15 -2951 (|#3| (-167 |#2|))) (-15 -3085 (|#2| |#3|)) (-15 -3057 (|#3| |#2|)) (-15 -3320 ((-167 |#2|) |#3|)) (-15 -3950 (|#3| |#3| (-621 (-592 |#3|)) (-621 (-1142))))) (-13 (-541) (-823)) (-13 (-423 |#1|) (-973) (-1164)) (-13 (-423 (-167 |#1|)) (-973) (-1164))) (T -580))
-((-3950 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-621 (-592 *2))) (-5 *4 (-621 (-1142))) (-4 *2 (-13 (-423 (-167 *5)) (-973) (-1164))) (-4 *5 (-13 (-541) (-823))) (-5 *1 (-580 *5 *6 *2)) (-4 *6 (-13 (-423 *5) (-973) (-1164))))) (-3320 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823))) (-5 *2 (-167 *5)) (-5 *1 (-580 *4 *5 *3)) (-4 *5 (-13 (-423 *4) (-973) (-1164))) (-4 *3 (-13 (-423 (-167 *4)) (-973) (-1164))))) (-3057 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823))) (-4 *2 (-13 (-423 (-167 *4)) (-973) (-1164))) (-5 *1 (-580 *4 *3 *2)) (-4 *3 (-13 (-423 *4) (-973) (-1164))))) (-3085 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823))) (-4 *2 (-13 (-423 *4) (-973) (-1164))) (-5 *1 (-580 *4 *2 *3)) (-4 *3 (-13 (-423 (-167 *4)) (-973) (-1164))))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-423 *4) (-973) (-1164))) (-4 *4 (-13 (-541) (-823))) (-4 *2 (-13 (-423 (-167 *4)) (-973) (-1164))) (-5 *1 (-580 *4 *5 *2)))))
-(-10 -7 (-15 -2951 (|#3| (-167 |#2|))) (-15 -3085 (|#2| |#3|)) (-15 -3057 (|#3| |#2|)) (-15 -3320 ((-167 |#2|) |#3|)) (-15 -3950 (|#3| |#3| (-621 (-592 |#3|)) (-621 (-1142)))))
-((-1488 (($ (-1 (-112) |#1|) $) 17)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-1411 (($ (-1 |#1| |#1|) |#1|) 9)) (-1459 (($ (-1 (-112) |#1|) $) 13)) (-1473 (($ (-1 (-112) |#1|) $) 15)) (-3853 (((-1122 |#1|) $) 18)) (-3845 (((-834) $) NIL)))
-(((-581 |#1|) (-13 (-593 (-834)) (-10 -8 (-15 -2796 ($ (-1 |#1| |#1|) $)) (-15 -1459 ($ (-1 (-112) |#1|) $)) (-15 -1473 ($ (-1 (-112) |#1|) $)) (-15 -1488 ($ (-1 (-112) |#1|) $)) (-15 -1411 ($ (-1 |#1| |#1|) |#1|)) (-15 -3853 ((-1122 |#1|) $)))) (-1179)) (T -581))
-((-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1179)) (-5 *1 (-581 *3)))) (-1459 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1179)) (-5 *1 (-581 *3)))) (-1473 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1179)) (-5 *1 (-581 *3)))) (-1488 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1179)) (-5 *1 (-581 *3)))) (-1411 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1179)) (-5 *1 (-581 *3)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1179)))))
-(-13 (-593 (-834)) (-10 -8 (-15 -2796 ($ (-1 |#1| |#1|) $)) (-15 -1459 ($ (-1 (-112) |#1|) $)) (-15 -1473 ($ (-1 (-112) |#1|) $)) (-15 -1488 ($ (-1 (-112) |#1|) $)) (-15 -1411 ($ (-1 |#1| |#1|) |#1|)) (-15 -3853 ((-1122 |#1|) $))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3768 (($ (-747)) NIL (|has| |#1| (-23)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4106 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) NIL (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) NIL)) (-2882 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1066))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1066)))) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4049 (((-665 |#1|) $ $) NIL (|has| |#1| (-1018)))) (-3743 (($ (-747) |#1|) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-1586 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3054 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-4289 (((-112) $ (-747)) NIL)) (-4209 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2614 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3645 ((|#1| $) NIL (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3158 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-4140 ((|#1| $ $) NIL (|has| |#1| (-1018)))) (-2166 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-1420 (($ $ $) NIL (|has| |#1| (-1018)))) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) NIL)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2499 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2485 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-549) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-703))) (($ $ |#1|) NIL (|has| |#1| (-703)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-582 |#1| |#2|) (-1223 |#1|) (-1179) (-549)) (T -582))
+(-13 (-518) (-834))
+(((-171) . T) ((-518) . T) ((-834) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $ (-535)) 66)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2928 (($ (-1136 (-535)) (-535)) 72)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) 58)) (-2929 (($ $) 34)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4114 (((-747) $) 15)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2931 (((-535)) 29)) (-2930 (((-535) $) 32)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4111 (($ $ (-535)) 21)) (-3803 (((-3 $ "failed") $ $) 59)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) 16)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 61)) (-2932 (((-1119 (-535)) $) 18)) (-3212 (($ $) 23)) (-4300 (((-835) $) 87) (($ (-535)) 52) (($ $) NIL)) (-3444 (((-747)) 14)) (-2170 (((-112) $ $) NIL)) (-4112 (((-535) $ (-535)) 36)) (-2979 (($) 35 T CONST)) (-2985 (($) 19 T CONST)) (-3375 (((-112) $ $) 39)) (-4180 (($ $) 51) (($ $ $) 37)) (-4182 (($ $ $) 50)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 54) (($ $ $) 55)))
+(((-562 |#1| |#2|) (-841 |#1|) (-535) (-112)) (T -562))
+NIL
+(-841 |#1|)
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 21)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 (($ $ (-890)) NIL (|has| $ (-361))) (($ $) NIL)) (-1786 (((-1151 (-890) (-747)) (-535)) 47)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 $ "failed") $) 75)) (-3490 (($ $) 74)) (-1906 (($ (-1224 $)) 73)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) 32)) (-3315 (($) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) 49)) (-1791 (((-112) $) NIL)) (-1881 (($ $) NIL) (($ $ (-747)) NIL)) (-4069 (((-112) $) NIL)) (-4114 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-2493 (((-112) $) NIL)) (-2124 (($) 37 (|has| $ (-361)))) (-2122 (((-112) $) NIL (|has| $ (-361)))) (-3450 (($ $ (-890)) NIL (|has| $ (-361))) (($ $) NIL)) (-3786 (((-3 $ "failed") $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 $) $ (-890)) NIL (|has| $ (-361))) (((-1136 $) $) 83)) (-2121 (((-890) $) 55)) (-1719 (((-1136 $) $) NIL (|has| $ (-361)))) (-1718 (((-3 (-1136 $) "failed") $ $) NIL (|has| $ (-361))) (((-1136 $) $) NIL (|has| $ (-361)))) (-1720 (($ $ (-1136 $)) NIL (|has| $ (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL T CONST)) (-2483 (($ (-890)) 48)) (-4274 (((-112) $) 67)) (-3577 (((-1086) $) NIL)) (-2492 (($) 19 (|has| $ (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 42)) (-4075 (((-398 $) $) NIL)) (-4273 (((-890)) 66) (((-808 (-890))) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-3 (-747) "failed") $ $) NIL) (((-747) $) NIL)) (-4254 (((-133)) NIL)) (-4153 (($ $ (-747)) NIL) (($ $) NIL)) (-4290 (((-890) $) 65) (((-808 (-890)) $) NIL)) (-3519 (((-1136 $)) 82)) (-1785 (($) 54)) (-1721 (($) 38 (|has| $ (-361)))) (-3558 (((-665 $) (-1224 $)) NIL) (((-1224 $) $) 71)) (-4313 (((-535) $) 28)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) 30) (($ $) NIL) (($ (-400 (-535))) NIL)) (-3023 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3444 (((-747)) 39)) (-2123 (((-1224 $) (-890)) 77) (((-1224 $)) 76)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) 22 T CONST)) (-2985 (($) 18 T CONST)) (-4271 (($ $ (-747)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 26)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 61) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL)))
+(((-563 |#1|) (-13 (-343) (-322 $) (-594 (-535))) (-890)) (T -563))
+NIL
+(-13 (-343) (-322 $) (-594 (-535)))
+((-2238 (((-1230) (-1124)) 10)))
+(((-564) (-10 -7 (-15 -2238 ((-1230) (-1124))))) (T -564))
+((-2238 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-564)))))
+(-10 -7 (-15 -2238 ((-1230) (-1124))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| "failed") $) 69)) (-3490 ((|#1| $) NIL)) (-2242 ((|#1| $) 26)) (-2240 (((-618 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2243 (($ |#1| (-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 |#1|)) (|:| |logand| (-1136 |#1|)))) (-618 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2241 (((-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 |#1|)) (|:| |logand| (-1136 |#1|)))) $) 27)) (-3576 (((-1124) $) NIL)) (-3153 (($ |#1| |#1|) 33) (($ |#1| (-1142)) 44 (|has| |#1| (-1009 (-1142))))) (-3577 (((-1086) $) NIL)) (-2239 (((-112) $) 30)) (-4153 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1142)) 82 (|has| |#1| (-871 (-1142))))) (-4300 (((-835) $) 96) (($ |#1|) 25)) (-2979 (($) 16 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) 15) (($ $ $) NIL)) (-4182 (($ $ $) 78)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 14) (($ (-400 (-535)) $) 36) (($ $ (-400 (-535))) NIL)))
+(((-565 |#1|) (-13 (-694 (-400 (-535))) (-1009 |#1|) (-10 -8 (-15 -2243 ($ |#1| (-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 |#1|)) (|:| |logand| (-1136 |#1|)))) (-618 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2242 (|#1| $)) (-15 -2241 ((-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 |#1|)) (|:| |logand| (-1136 |#1|)))) $)) (-15 -2240 ((-618 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2239 ((-112) $)) (-15 -3153 ($ |#1| |#1|)) (-15 -4153 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-871 (-1142))) (-15 -4153 (|#1| $ (-1142))) |%noBranch|) (IF (|has| |#1| (-1009 (-1142))) (-15 -3153 ($ |#1| (-1142))) |%noBranch|))) (-356)) (T -565))
+((-2243 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 *2)) (|:| |logand| (-1136 *2))))) (-5 *4 (-618 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-356)) (-5 *1 (-565 *2)))) (-2242 (*1 *2 *1) (-12 (-5 *1 (-565 *2)) (-4 *2 (-356)))) (-2241 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 *3)) (|:| |logand| (-1136 *3))))) (-5 *1 (-565 *3)) (-4 *3 (-356)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-565 *3)) (-4 *3 (-356)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-565 *3)) (-4 *3 (-356)))) (-3153 (*1 *1 *2 *2) (-12 (-5 *1 (-565 *2)) (-4 *2 (-356)))) (-4153 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-565 *2)) (-4 *2 (-356)))) (-4153 (*1 *2 *1 *3) (-12 (-4 *2 (-356)) (-4 *2 (-871 *3)) (-5 *1 (-565 *2)) (-5 *3 (-1142)))) (-3153 (*1 *1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *1 (-565 *2)) (-4 *2 (-1009 *3)) (-4 *2 (-356)))))
+(-13 (-694 (-400 (-535))) (-1009 |#1|) (-10 -8 (-15 -2243 ($ |#1| (-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 |#1|)) (|:| |logand| (-1136 |#1|)))) (-618 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2242 (|#1| $)) (-15 -2241 ((-618 (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 |#1|)) (|:| |logand| (-1136 |#1|)))) $)) (-15 -2240 ((-618 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2239 ((-112) $)) (-15 -3153 ($ |#1| |#1|)) (-15 -4153 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-871 (-1142))) (-15 -4153 (|#1| $ (-1142))) |%noBranch|) (IF (|has| |#1| (-1009 (-1142))) (-15 -3153 ($ |#1| (-1142))) |%noBranch|)))
+((-4301 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-565 |#2|) (-1 |#2| |#1|) (-565 |#1|)) 30)))
+(((-566 |#1| |#2|) (-10 -7 (-15 -4301 ((-565 |#2|) (-1 |#2| |#1|) (-565 |#1|))) (-15 -4301 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4301 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-356) (-356)) (T -566))
+((-4301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-566 *5 *6)))) (-4301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-356)) (-4 *2 (-356)) (-5 *1 (-566 *5 *2)))) (-4301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2242 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| -2242 *6) (|:| |coeff| *6))) (-5 *1 (-566 *5 *6)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-565 *5)) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-565 *6)) (-5 *1 (-566 *5 *6)))))
+(-10 -7 (-15 -4301 ((-565 |#2|) (-1 |#2| |#1|) (-565 |#1|))) (-15 -4301 ((-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2242 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4301 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-3760 (((-565 |#2|) (-565 |#2|)) 40)) (-4306 (((-618 |#2|) (-565 |#2|)) 42)) (-2251 ((|#2| (-565 |#2|)) 48)))
+(((-567 |#1| |#2|) (-10 -7 (-15 -3760 ((-565 |#2|) (-565 |#2|))) (-15 -4306 ((-618 |#2|) (-565 |#2|))) (-15 -2251 (|#2| (-565 |#2|)))) (-13 (-444) (-1009 (-535)) (-823) (-617 (-535))) (-13 (-29 |#1|) (-1164))) (T -567))
+((-2251 (*1 *2 *3) (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-29 *4) (-1164))) (-5 *1 (-567 *4 *2)) (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-565 *5)) (-4 *5 (-13 (-29 *4) (-1164))) (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-618 *5)) (-5 *1 (-567 *4 *5)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-565 *4)) (-4 *4 (-13 (-29 *3) (-1164))) (-4 *3 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *1 (-567 *3 *4)))))
+(-10 -7 (-15 -3760 ((-565 |#2|) (-565 |#2|))) (-15 -4306 ((-618 |#2|) (-565 |#2|))) (-15 -2251 (|#2| (-565 |#2|))))
+((-2247 (((-112) |#1|) 16)) (-2248 (((-3 |#1| "failed") |#1|) 14)) (-2245 (((-2 (|:| -3015 |#1|) (|:| -2484 (-747))) |#1|) 31) (((-3 |#1| "failed") |#1| (-747)) 18)) (-2244 (((-112) |#1| (-747)) 19)) (-2249 ((|#1| |#1|) 32)) (-2246 ((|#1| |#1| (-747)) 34)))
+(((-568 |#1|) (-10 -7 (-15 -2244 ((-112) |#1| (-747))) (-15 -2245 ((-3 |#1| "failed") |#1| (-747))) (-15 -2245 ((-2 (|:| -3015 |#1|) (|:| -2484 (-747))) |#1|)) (-15 -2246 (|#1| |#1| (-747))) (-15 -2247 ((-112) |#1|)) (-15 -2248 ((-3 |#1| "failed") |#1|)) (-15 -2249 (|#1| |#1|))) (-534)) (T -568))
+((-2249 (*1 *2 *2) (-12 (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-2248 (*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-2247 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))) (-2246 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-2245 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3015 *3) (|:| -2484 (-747)))) (-5 *1 (-568 *3)) (-4 *3 (-534)))) (-2245 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-2244 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))))
+(-10 -7 (-15 -2244 ((-112) |#1| (-747))) (-15 -2245 ((-3 |#1| "failed") |#1| (-747))) (-15 -2245 ((-2 (|:| -3015 |#1|) (|:| -2484 (-747))) |#1|)) (-15 -2246 (|#1| |#1| (-747))) (-15 -2247 ((-112) |#1|)) (-15 -2248 ((-3 |#1| "failed") |#1|)) (-15 -2249 (|#1| |#1|)))
+((-2250 (((-1136 |#1|) (-890)) 27)))
+(((-569 |#1|) (-10 -7 (-15 -2250 ((-1136 |#1|) (-890)))) (-343)) (T -569))
+((-2250 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-569 *4)) (-4 *4 (-343)))))
+(-10 -7 (-15 -2250 ((-1136 |#1|) (-890))))
+((-3760 (((-565 (-400 (-917 |#1|))) (-565 (-400 (-917 |#1|)))) 27)) (-4155 (((-3 (-307 |#1|) (-618 (-307 |#1|))) (-400 (-917 |#1|)) (-1142)) 34 (|has| |#1| (-145)))) (-4306 (((-618 (-307 |#1|)) (-565 (-400 (-917 |#1|)))) 19)) (-2252 (((-307 |#1|) (-400 (-917 |#1|)) (-1142)) 32 (|has| |#1| (-145)))) (-2251 (((-307 |#1|) (-565 (-400 (-917 |#1|)))) 21)))
+(((-570 |#1|) (-10 -7 (-15 -3760 ((-565 (-400 (-917 |#1|))) (-565 (-400 (-917 |#1|))))) (-15 -4306 ((-618 (-307 |#1|)) (-565 (-400 (-917 |#1|))))) (-15 -2251 ((-307 |#1|) (-565 (-400 (-917 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -4155 ((-3 (-307 |#1|) (-618 (-307 |#1|))) (-400 (-917 |#1|)) (-1142))) (-15 -2252 ((-307 |#1|) (-400 (-917 |#1|)) (-1142)))) |%noBranch|)) (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (T -570))
+((-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-307 *5)) (-5 *1 (-570 *5)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-3 (-307 *5) (-618 (-307 *5)))) (-5 *1 (-570 *5)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-565 (-400 (-917 *4)))) (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-307 *4)) (-5 *1 (-570 *4)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-565 (-400 (-917 *4)))) (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-618 (-307 *4))) (-5 *1 (-570 *4)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-565 (-400 (-917 *3)))) (-4 *3 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *1 (-570 *3)))))
+(-10 -7 (-15 -3760 ((-565 (-400 (-917 |#1|))) (-565 (-400 (-917 |#1|))))) (-15 -4306 ((-618 (-307 |#1|)) (-565 (-400 (-917 |#1|))))) (-15 -2251 ((-307 |#1|) (-565 (-400 (-917 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -4155 ((-3 (-307 |#1|) (-618 (-307 |#1|))) (-400 (-917 |#1|)) (-1142))) (-15 -2252 ((-307 |#1|) (-400 (-917 |#1|)) (-1142)))) |%noBranch|))
+((-2254 (((-618 (-665 (-535))) (-618 (-535)) (-618 (-873 (-535)))) 46) (((-618 (-665 (-535))) (-618 (-535))) 47) (((-665 (-535)) (-618 (-535)) (-873 (-535))) 42)) (-2253 (((-747) (-618 (-535))) 40)))
+(((-571) (-10 -7 (-15 -2253 ((-747) (-618 (-535)))) (-15 -2254 ((-665 (-535)) (-618 (-535)) (-873 (-535)))) (-15 -2254 ((-618 (-665 (-535))) (-618 (-535)))) (-15 -2254 ((-618 (-665 (-535))) (-618 (-535)) (-618 (-873 (-535))))))) (T -571))
+((-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-535))) (-5 *4 (-618 (-873 (-535)))) (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-571)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-571)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-535))) (-5 *4 (-873 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-571)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-747)) (-5 *1 (-571)))))
+(-10 -7 (-15 -2253 ((-747) (-618 (-535)))) (-15 -2254 ((-665 (-535)) (-618 (-535)) (-873 (-535)))) (-15 -2254 ((-618 (-665 (-535))) (-618 (-535)))) (-15 -2254 ((-618 (-665 (-535))) (-618 (-535)) (-618 (-873 (-535))))))
+((-3547 (((-618 |#5|) |#5| (-112)) 73)) (-2255 (((-112) |#5| (-618 |#5|)) 30)))
+(((-572 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3547 ((-618 |#5|) |#5| (-112))) (-15 -2255 ((-112) |#5| (-618 |#5|)))) (-13 (-300) (-145)) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|)) (T -572))
+((-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-1075 *5 *6 *7 *8)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-572 *5 *6 *7 *8 *3)))) (-3547 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-618 *3)) (-5 *1 (-572 *5 *6 *7 *8 *3)) (-4 *3 (-1075 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3547 ((-618 |#5|) |#5| (-112))) (-15 -2255 ((-112) |#5| (-618 |#5|))))
+((-2887 (((-112) $ $) NIL)) (-3865 (((-1101) $) 11)) (-3866 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-573) (-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $))))) (T -573))
+((-3866 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-573)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-573)))))
+(-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $))))
+((-2887 (((-112) $ $) NIL (|has| (-142) (-1067)))) (-3768 (($ $) 34)) (-3769 (($ $) NIL)) (-3759 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-3766 (((-112) $ $) 51)) (-3765 (((-112) $ $ (-535)) 46)) (-3760 (((-618 $) $ (-142)) 60) (((-618 $) $ (-139)) 61)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-823)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-823))))) (-3230 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 (((-142) $ (-535) (-142)) 45 (|has| $ (-6 -4337))) (((-142) $ (-1191 (-535)) (-142)) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-3757 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-3762 (($ $ (-1191 (-535)) $) 44)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-3748 (($ (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4336)))) (-1632 (((-142) $ (-535) (-142)) NIL (|has| $ (-6 -4337)))) (-3431 (((-142) $ (-535)) NIL)) (-3767 (((-112) $ $) 72)) (-3761 (((-535) (-1 (-112) (-142)) $) NIL) (((-535) (-142) $) NIL (|has| (-142) (-1067))) (((-535) (-142) $ (-535)) 48 (|has| (-142) (-1067))) (((-535) $ $ (-535)) 47) (((-535) (-139) $ (-535)) 50)) (-2063 (((-618 (-142)) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) (-142)) 9)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 28 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| (-142) (-823)))) (-3855 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-823)))) (-2502 (((-618 (-142)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-2299 (((-535) $) 42 (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-142) (-823)))) (-3763 (((-112) $ $ (-142)) 73)) (-3764 (((-747) $ $ (-142)) 70)) (-2067 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3770 (($ $) 37)) (-3771 (($ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3758 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-3576 (((-1124) $) 38 (|has| (-142) (-1067)))) (-2373 (($ (-142) $ (-535)) NIL) (($ $ $ (-535)) 23)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-535) $) 69) (((-1086) $) NIL (|has| (-142) (-1067)))) (-4143 (((-142) $) NIL (|has| (-535) (-823)))) (-1395 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2297 (($ $ (-142)) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-618 (-142)) (-618 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-2303 (((-618 (-142)) $) NIL)) (-3745 (((-112) $) 12)) (-3911 (($) 10)) (-4142 (((-142) $ (-535) (-142)) NIL) (((-142) $ (-535)) 52) (($ $ (-1191 (-535))) 21) (($ $ $) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336))) (((-747) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-1842 (($ $ $ (-535)) 66 (|has| $ (-6 -4337)))) (-3742 (($ $) 17)) (-4313 (((-524) $) NIL (|has| (-142) (-594 (-524))))) (-3867 (($ (-618 (-142))) NIL)) (-4144 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-618 $)) 67)) (-4300 (($ (-142)) NIL) (((-835) $) 27 (|has| (-142) (-593 (-835))))) (-2066 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-142) (-823)))) (-3375 (((-112) $ $) 14 (|has| (-142) (-1067)))) (-3005 (((-112) $ $) NIL (|has| (-142) (-823)))) (-3006 (((-112) $ $) 15 (|has| (-142) (-823)))) (-4299 (((-747) $) 13 (|has| $ (-6 -4336)))))
+(((-574 |#1|) (-13 (-1110) (-10 -8 (-15 -3577 ((-535) $)))) (-535)) (T -574))
+((-3577 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-574 *3)) (-14 *3 *2))))
+(-13 (-1110) (-10 -8 (-15 -3577 ((-535) $))))
+((-3869 (((-2 (|:| |num| |#4|) (|:| |den| (-535))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-535))) |#4| |#2| (-1055 |#4|)) 32)))
+(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3869 ((-2 (|:| |num| |#4|) (|:| |den| (-535))) |#4| |#2| (-1055 |#4|))) (-15 -3869 ((-2 (|:| |num| |#4|) (|:| |den| (-535))) |#4| |#2|))) (-769) (-823) (-542) (-921 |#3| |#1| |#2|)) (T -575))
+((-3869 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-535)))) (-5 *1 (-575 *5 *4 *6 *3)) (-4 *3 (-921 *6 *5 *4)))) (-3869 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1055 *3)) (-4 *3 (-921 *7 *6 *4)) (-4 *6 (-769)) (-4 *4 (-823)) (-4 *7 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-535)))) (-5 *1 (-575 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3869 ((-2 (|:| |num| |#4|) (|:| |den| (-535))) |#4| |#2| (-1055 |#4|))) (-15 -3869 ((-2 (|:| |num| |#4|) (|:| |den| (-535))) |#4| |#2|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 63)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-535)) 54) (($ $ (-535) (-535)) 55)) (-4116 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) 60)) (-2286 (($ $) 100)) (-1363 (((-3 $ "failed") $ $) NIL)) (-2284 (((-835) (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) (-997 (-815 (-535))) (-1142) |#1| (-400 (-535))) 224)) (-4161 (($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) 34)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3213 (((-112) $) NIL)) (-4114 (((-535) $) 58) (((-535) $ (-535)) 59)) (-2493 (((-112) $) NIL)) (-4119 (($ $ (-890)) 76)) (-4158 (($ (-1 |#1| (-535)) $) 73)) (-4280 (((-112) $) 25)) (-3214 (($ |#1| (-535)) 22) (($ $ (-1048) (-535)) NIL) (($ $ (-618 (-1048)) (-618 (-535))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) 67)) (-2290 (($ (-997 (-815 (-535))) (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) 13)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-4155 (($ $) 150 (|has| |#1| (-38 (-400 (-535)))))) (-2287 (((-3 $ "failed") $ $ (-112)) 99)) (-2285 (($ $ $) 108)) (-3577 (((-1086) $) NIL)) (-2288 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) 15)) (-2289 (((-997 (-815 (-535))) $) 14)) (-4111 (($ $ (-535)) 45)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-535)))))) (-4142 ((|#1| $ (-535)) 57) (($ $ $) NIL (|has| (-535) (-1078)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (-4290 (((-535) $) NIL)) (-3212 (($ $) 46)) (-4300 (((-835) $) NIL) (($ (-535)) 28) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 27 (|has| |#1| (-170)))) (-4023 ((|#1| $ (-535)) 56)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) 37)) (-4115 ((|#1| $) NIL)) (-2265 (($ $) 186 (|has| |#1| (-38 (-400 (-535)))))) (-2277 (($ $) 158 (|has| |#1| (-38 (-400 (-535)))))) (-2267 (($ $) 190 (|has| |#1| (-38 (-400 (-535)))))) (-2279 (($ $) 163 (|has| |#1| (-38 (-400 (-535)))))) (-2263 (($ $) 189 (|has| |#1| (-38 (-400 (-535)))))) (-2275 (($ $) 162 (|has| |#1| (-38 (-400 (-535)))))) (-2282 (($ $ (-400 (-535))) 166 (|has| |#1| (-38 (-400 (-535)))))) (-2283 (($ $ |#1|) 146 (|has| |#1| (-38 (-400 (-535)))))) (-2280 (($ $) 192 (|has| |#1| (-38 (-400 (-535)))))) (-2281 (($ $) 149 (|has| |#1| (-38 (-400 (-535)))))) (-2262 (($ $) 191 (|has| |#1| (-38 (-400 (-535)))))) (-2274 (($ $) 164 (|has| |#1| (-38 (-400 (-535)))))) (-2264 (($ $) 187 (|has| |#1| (-38 (-400 (-535)))))) (-2276 (($ $) 160 (|has| |#1| (-38 (-400 (-535)))))) (-2266 (($ $) 188 (|has| |#1| (-38 (-400 (-535)))))) (-2278 (($ $) 161 (|has| |#1| (-38 (-400 (-535)))))) (-2259 (($ $) 197 (|has| |#1| (-38 (-400 (-535)))))) (-2271 (($ $) 173 (|has| |#1| (-38 (-400 (-535)))))) (-2261 (($ $) 194 (|has| |#1| (-38 (-400 (-535)))))) (-2273 (($ $) 168 (|has| |#1| (-38 (-400 (-535)))))) (-2257 (($ $) 201 (|has| |#1| (-38 (-400 (-535)))))) (-2269 (($ $) 177 (|has| |#1| (-38 (-400 (-535)))))) (-2256 (($ $) 203 (|has| |#1| (-38 (-400 (-535)))))) (-2268 (($ $) 179 (|has| |#1| (-38 (-400 (-535)))))) (-2258 (($ $) 199 (|has| |#1| (-38 (-400 (-535)))))) (-2270 (($ $) 175 (|has| |#1| (-38 (-400 (-535)))))) (-2260 (($ $) 196 (|has| |#1| (-38 (-400 (-535)))))) (-2272 (($ $) 171 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-4112 ((|#1| $ (-535)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-535)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-2979 (($) 29 T CONST)) (-2985 (($) 38 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (-3375 (((-112) $ $) 65)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) 84) (($ $ $) 64)) (-4182 (($ $ $) 81)) (** (($ $ (-890)) NIL) (($ $ (-747)) 103)) (* (($ (-890) $) 89) (($ (-747) $) 87) (($ (-535) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-576 |#1|) (-13 (-1203 |#1| (-535)) (-10 -8 (-15 -2290 ($ (-997 (-815 (-535))) (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))))) (-15 -2289 ((-997 (-815 (-535))) $)) (-15 -2288 ((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $)) (-15 -4161 ($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))))) (-15 -4280 ((-112) $)) (-15 -4158 ($ (-1 |#1| (-535)) $)) (-15 -2287 ((-3 $ "failed") $ $ (-112))) (-15 -2286 ($ $)) (-15 -2285 ($ $ $)) (-15 -2284 ((-835) (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) (-997 (-815 (-535))) (-1142) |#1| (-400 (-535)))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $)) (-15 -2283 ($ $ |#1|)) (-15 -2282 ($ $ (-400 (-535)))) (-15 -2281 ($ $)) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $)) (-15 -2264 ($ $)) (-15 -2263 ($ $)) (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $))) |%noBranch|))) (-1018)) (T -576))
+((-4280 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-2290 (*1 *1 *2 *3) (-12 (-5 *2 (-997 (-815 (-535)))) (-5 *3 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *4)))) (-4 *4 (-1018)) (-5 *1 (-576 *4)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-997 (-815 (-535)))) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *3)))) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-4161 (*1 *1 *2) (-12 (-5 *2 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *3)))) (-4 *3 (-1018)) (-5 *1 (-576 *3)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-535))) (-4 *3 (-1018)) (-5 *1 (-576 *3)))) (-2287 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-2286 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))) (-2284 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *6)))) (-5 *4 (-997 (-815 (-535)))) (-5 *5 (-1142)) (-5 *7 (-400 (-535))) (-4 *6 (-1018)) (-5 *2 (-835)) (-5 *1 (-576 *6)))) (-4155 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2283 (*1 *1 *1 *2) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2282 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-576 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1018)))) (-2281 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2280 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2278 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2277 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2276 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2275 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2273 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2272 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2271 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2270 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2269 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2267 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2264 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2263 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2262 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2261 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2259 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2258 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2257 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))) (-2256 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(-13 (-1203 |#1| (-535)) (-10 -8 (-15 -2290 ($ (-997 (-815 (-535))) (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))))) (-15 -2289 ((-997 (-815 (-535))) $)) (-15 -2288 ((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $)) (-15 -4161 ($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))))) (-15 -4280 ((-112) $)) (-15 -4158 ($ (-1 |#1| (-535)) $)) (-15 -2287 ((-3 $ "failed") $ $ (-112))) (-15 -2286 ($ $)) (-15 -2285 ($ $ $)) (-15 -2284 ((-835) (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) (-997 (-815 (-535))) (-1142) |#1| (-400 (-535)))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $)) (-15 -2283 ($ $ |#1|)) (-15 -2282 ($ $ (-400 (-535)))) (-15 -2281 ($ $)) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $)) (-15 -2264 ($ $)) (-15 -2263 ($ $)) (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $))) |%noBranch|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4161 (($ (-1119 |#1|)) 9)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) 42)) (-3213 (((-112) $) 52)) (-4114 (((-747) $) 55) (((-747) $ (-747)) 54)) (-2493 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ "failed") $ $) 44 (|has| |#1| (-542)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-1119 |#1|) $) 23)) (-3444 (((-747)) 51)) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) 10 T CONST)) (-2985 (($) 14 T CONST)) (-3375 (((-112) $ $) 22)) (-4180 (($ $) 30) (($ $ $) 16)) (-4182 (($ $ $) 25)) (** (($ $ (-890)) NIL) (($ $ (-747)) 49)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-535)) 36)))
+(((-577 |#1|) (-13 (-1018) (-10 -8 (-15 -4160 ((-1119 |#1|) $)) (-15 -4161 ($ (-1119 |#1|))) (-15 -3213 ((-112) $)) (-15 -4114 ((-747) $)) (-15 -4114 ((-747) $ (-747))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-535))) (IF (|has| |#1| (-542)) (-6 (-542)) |%noBranch|))) (-1018)) (T -577))
+((-4160 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (-4161 (*1 *1 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-577 *3)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (-4114 (*1 *2 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))))
+(-13 (-1018) (-10 -8 (-15 -4160 ((-1119 |#1|) $)) (-15 -4161 ($ (-1119 |#1|))) (-15 -3213 ((-112) $)) (-15 -4114 ((-747) $)) (-15 -4114 ((-747) $ (-747))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-535))) (IF (|has| |#1| (-542)) (-6 (-542)) |%noBranch|)))
+((-4301 (((-581 |#2|) (-1 |#2| |#1|) (-581 |#1|)) 15)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -4301 ((-581 |#2|) (-1 |#2| |#1|) (-581 |#1|)))) (-1178) (-1178)) (T -578))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-581 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-581 *6)) (-5 *1 (-578 *5 *6)))))
+(-10 -7 (-15 -4301 ((-581 |#2|) (-1 |#2| |#1|) (-581 |#1|))))
+((-4301 (((-1119 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-1119 |#2|)) 20) (((-1119 |#3|) (-1 |#3| |#1| |#2|) (-1119 |#1|) (-581 |#2|)) 19) (((-581 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-581 |#2|)) 18)))
+(((-579 |#1| |#2| |#3|) (-10 -7 (-15 -4301 ((-581 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-581 |#2|))) (-15 -4301 ((-1119 |#3|) (-1 |#3| |#1| |#2|) (-1119 |#1|) (-581 |#2|))) (-15 -4301 ((-1119 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-1119 |#2|)))) (-1178) (-1178) (-1178)) (T -579))
+((-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-1119 *7)) (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-1119 *8)) (-5 *1 (-579 *6 *7 *8)))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1119 *6)) (-5 *5 (-581 *7)) (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-1119 *8)) (-5 *1 (-579 *6 *7 *8)))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-581 *7)) (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-581 *8)) (-5 *1 (-579 *6 *7 *8)))))
+(-10 -7 (-15 -4301 ((-581 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-581 |#2|))) (-15 -4301 ((-1119 |#3|) (-1 |#3| |#1| |#2|) (-1119 |#1|) (-581 |#2|))) (-15 -4301 ((-1119 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-1119 |#2|))))
+((-2295 ((|#3| |#3| (-618 (-591 |#3|)) (-618 (-1142))) 55)) (-2294 (((-166 |#2|) |#3|) 117)) (-2291 ((|#3| (-166 |#2|)) 44)) (-2292 ((|#2| |#3|) 19)) (-2293 ((|#3| |#2|) 33)))
+(((-580 |#1| |#2| |#3|) (-10 -7 (-15 -2291 (|#3| (-166 |#2|))) (-15 -2292 (|#2| |#3|)) (-15 -2293 (|#3| |#2|)) (-15 -2294 ((-166 |#2|) |#3|)) (-15 -2295 (|#3| |#3| (-618 (-591 |#3|)) (-618 (-1142))))) (-13 (-542) (-823)) (-13 (-414 |#1|) (-973) (-1164)) (-13 (-414 (-166 |#1|)) (-973) (-1164))) (T -580))
+((-2295 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-618 (-591 *2))) (-5 *4 (-618 (-1142))) (-4 *2 (-13 (-414 (-166 *5)) (-973) (-1164))) (-4 *5 (-13 (-542) (-823))) (-5 *1 (-580 *5 *6 *2)) (-4 *6 (-13 (-414 *5) (-973) (-1164))))) (-2294 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823))) (-5 *2 (-166 *5)) (-5 *1 (-580 *4 *5 *3)) (-4 *5 (-13 (-414 *4) (-973) (-1164))) (-4 *3 (-13 (-414 (-166 *4)) (-973) (-1164))))) (-2293 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823))) (-4 *2 (-13 (-414 (-166 *4)) (-973) (-1164))) (-5 *1 (-580 *4 *3 *2)) (-4 *3 (-13 (-414 *4) (-973) (-1164))))) (-2292 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-823))) (-4 *2 (-13 (-414 *4) (-973) (-1164))) (-5 *1 (-580 *4 *2 *3)) (-4 *3 (-13 (-414 (-166 *4)) (-973) (-1164))))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-414 *4) (-973) (-1164))) (-4 *4 (-13 (-542) (-823))) (-4 *2 (-13 (-414 (-166 *4)) (-973) (-1164))) (-5 *1 (-580 *4 *5 *2)))))
+(-10 -7 (-15 -2291 (|#3| (-166 |#2|))) (-15 -2292 (|#2| |#3|)) (-15 -2293 (|#3| |#2|)) (-15 -2294 ((-166 |#2|) |#3|)) (-15 -2295 (|#3| |#3| (-618 (-591 |#3|)) (-618 (-1142)))))
+((-4056 (($ (-1 (-112) |#1|) $) 17)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3794 (($ (-1 |#1| |#1|) |#1|) 9)) (-3793 (($ (-1 (-112) |#1|) $) 13)) (-3792 (($ (-1 (-112) |#1|) $) 15)) (-3867 (((-1119 |#1|) $) 18)) (-4300 (((-835) $) NIL)))
+(((-581 |#1|) (-13 (-593 (-835)) (-10 -8 (-15 -4301 ($ (-1 |#1| |#1|) $)) (-15 -3793 ($ (-1 (-112) |#1|) $)) (-15 -3792 ($ (-1 (-112) |#1|) $)) (-15 -4056 ($ (-1 (-112) |#1|) $)) (-15 -3794 ($ (-1 |#1| |#1|) |#1|)) (-15 -3867 ((-1119 |#1|) $)))) (-1178)) (T -581))
+((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) (-3793 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) (-3792 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) (-4056 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) (-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1178)))))
+(-13 (-593 (-835)) (-10 -8 (-15 -4301 ($ (-1 |#1| |#1|) $)) (-15 -3793 ($ (-1 (-112) |#1|) $)) (-15 -3792 ($ (-1 (-112) |#1|) $)) (-15 -4056 ($ (-1 (-112) |#1|) $)) (-15 -3794 ($ (-1 |#1| |#1|) |#1|)) (-15 -3867 ((-1119 |#1|) $))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4181 (($ (-747)) NIL (|has| |#1| (-23)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4178 (((-665 |#1|) $ $) NIL (|has| |#1| (-1018)))) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4175 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-4062 (((-112) $ (-747)) NIL)) (-4176 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-4179 ((|#1| $ $) NIL (|has| |#1| (-1018)))) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-4177 (($ $ $) NIL (|has| |#1| (-1018)))) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4180 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4182 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-535) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-703))) (($ $ |#1|) NIL (|has| |#1| (-703)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-582 |#1| |#2|) (-1223 |#1|) (-1178) (-535)) (T -582))
NIL
(-1223 |#1|)
-((-2932 (((-1230) $ |#2| |#2|) 36)) (-3485 ((|#2| $) 23)) (-1548 ((|#2| $) 21)) (-1865 (($ (-1 |#3| |#3|) $) 32)) (-2796 (($ (-1 |#3| |#3|) $) 30)) (-3645 ((|#3| $) 26)) (-3158 (($ $ |#3|) 33)) (-3781 (((-112) |#3| $) 17)) (-1738 (((-621 |#3|) $) 15)) (-3340 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-583 |#1| |#2| |#3|) (-10 -8 (-15 -2932 ((-1230) |#1| |#2| |#2|)) (-15 -3158 (|#1| |#1| |#3|)) (-15 -3645 (|#3| |#1|)) (-15 -3485 (|#2| |#1|)) (-15 -1548 (|#2| |#1|)) (-15 -3781 ((-112) |#3| |#1|)) (-15 -1738 ((-621 |#3|) |#1|)) (-15 -3340 (|#3| |#1| |#2|)) (-15 -3340 (|#3| |#1| |#2| |#3|)) (-15 -1865 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2796 (|#1| (-1 |#3| |#3|) |#1|))) (-584 |#2| |#3|) (-1066) (-1179)) (T -583))
-NIL
-(-10 -8 (-15 -2932 ((-1230) |#1| |#2| |#2|)) (-15 -3158 (|#1| |#1| |#3|)) (-15 -3645 (|#3| |#1|)) (-15 -3485 (|#2| |#1|)) (-15 -1548 (|#2| |#1|)) (-15 -3781 ((-112) |#3| |#1|)) (-15 -1738 ((-621 |#3|) |#1|)) (-15 -3340 (|#3| |#1| |#2|)) (-15 -3340 (|#3| |#1| |#2| |#3|)) (-15 -1865 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2796 (|#1| (-1 |#3| |#3|) |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#2| (-1066)))) (-2932 (((-1230) $ |#1| |#1|) 40 (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) 8)) (-2253 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4337)))) (-1705 (($) 7 T CONST)) (-1878 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4337)))) (-1808 ((|#2| $ |#1|) 51)) (-2990 (((-621 |#2|) $) 30 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-3485 ((|#1| $) 43 (|has| |#1| (-823)))) (-1958 (((-621 |#2|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1066)) (|has| $ (-6 -4336))))) (-1548 ((|#1| $) 44 (|has| |#1| (-823)))) (-1865 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#2| |#2|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#2| (-1066)))) (-3927 (((-621 |#1|) $) 46)) (-1286 (((-112) |#1| $) 47)) (-3988 (((-1086) $) 21 (|has| |#2| (-1066)))) (-3645 ((|#2| $) 42 (|has| |#1| (-823)))) (-3158 (($ $ |#2|) 41 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1738 (((-621 |#2|) $) 48)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3997 (((-747) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4336))) (((-747) |#2| $) 28 (-12 (|has| |#2| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3845 (((-834) $) 18 (|has| |#2| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#2| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-584 |#1| |#2|) (-138) (-1066) (-1179)) (T -584))
-((-1738 (*1 *2 *1) (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1179)) (-5 *2 (-621 *4)))) (-1286 (*1 *2 *3 *1) (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1179)) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1179)) (-5 *2 (-621 *3)))) (-3781 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-584 *4 *3)) (-4 *4 (-1066)) (-4 *3 (-1179)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1179)) (-4 *2 (-1066)) (-4 *2 (-823)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1179)) (-4 *2 (-1066)) (-4 *2 (-823)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-584 *3 *2)) (-4 *3 (-1066)) (-4 *3 (-823)) (-4 *2 (-1179)))) (-3158 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1179)))) (-2932 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1179)) (-5 *2 (-1230)))))
-(-13 (-481 |t#2|) (-281 |t#1| |t#2|) (-10 -8 (-15 -1738 ((-621 |t#2|) $)) (-15 -1286 ((-112) |t#1| $)) (-15 -3927 ((-621 |t#1|) $)) (IF (|has| |t#2| (-1066)) (IF (|has| $ (-6 -4336)) (-15 -3781 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-823)) (PROGN (-15 -1548 (|t#1| $)) (-15 -3485 (|t#1| $)) (-15 -3645 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4337)) (PROGN (-15 -3158 ($ $ |t#2|)) (-15 -2932 ((-1230) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#2| (-1066)) ((-593 (-834)) -1536 (|has| |#2| (-1066)) (|has| |#2| (-593 (-834)))) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((-1066) |has| |#2| (-1066)) ((-1179) . T))
-((-3845 (((-834) $) 19) (((-129) $) 14) (($ (-129)) 13)))
-(((-585) (-13 (-593 (-834)) (-593 (-129)) (-10 -8 (-15 -3845 ($ (-129)))))) (T -585))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-585)))))
-(-13 (-593 (-834)) (-593 (-129)) (-10 -8 (-15 -3845 ($ (-129)))))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL) (((-1147) $) NIL) (($ (-1147)) NIL) (((-1178) $) 14) (($ (-621 (-1178))) 13)) (-3328 (((-621 (-1178)) $) 10)) (-2388 (((-112) $ $) NIL)))
-(((-586) (-13 (-1049) (-593 (-1178)) (-10 -8 (-15 -3845 ($ (-621 (-1178)))) (-15 -3328 ((-621 (-1178)) $))))) (T -586))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-1178))) (-5 *1 (-586)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-621 (-1178))) (-5 *1 (-586)))))
-(-13 (-1049) (-593 (-1178)) (-10 -8 (-15 -3845 ($ (-621 (-1178)))) (-15 -3328 ((-621 (-1178)) $))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2699 (((-3 $ "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2818 (((-1225 (-665 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-1225 (-665 |#1|)) (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-1955 (((-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-1705 (($) NIL T CONST)) (-2983 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-3917 (((-3 $ "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-1418 (((-665 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-1399 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2811 (((-665 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) $ (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-3923 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-4165 (((-1138 (-923 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-2353 (($ $ (-892)) NIL)) (-1618 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-4057 (((-1138 |#1|) $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2351 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-3254 (((-1138 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-2186 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2127 (($ (-1225 |#1|)) NIL (|has| |#2| (-410 |#1|))) (($ (-1225 |#1|) (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-3976 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-3122 (((-892)) NIL (|has| |#2| (-360 |#1|)))) (-1373 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2377 (($ $ (-892)) NIL)) (-3995 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4285 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3055 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4263 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-1497 (((-3 $ "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-1779 (((-665 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-1359 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1315 (((-665 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) $ (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-2193 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2014 (((-1138 (-923 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-2881 (($ $ (-892)) NIL)) (-3142 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2568 (((-1138 |#1|) $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2742 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-2934 (((-1138 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-2342 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2677 (((-1124) $) NIL)) (-1768 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4176 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4086 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3988 (((-1086) $) NIL)) (-2036 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3340 ((|#1| $ (-549)) NIL (|has| |#2| (-410 |#1|)))) (-4163 (((-665 |#1|) (-1225 $)) NIL (|has| |#2| (-410 |#1|))) (((-1225 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) (-1225 $) (-1225 $)) NIL (|has| |#2| (-360 |#1|))) (((-1225 |#1|) $ (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-2844 (($ (-1225 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-1225 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-3619 (((-621 (-923 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-621 (-923 |#1|)) (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-1911 (($ $ $) NIL)) (-2138 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3845 (((-834) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3420 (((-1225 $)) NIL (|has| |#2| (-410 |#1|)))) (-1600 (((-621 (-1225 |#1|))) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-4172 (($ $ $ $) NIL)) (-3596 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3592 (($ (-665 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-1892 (($ $ $) NIL)) (-2221 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1654 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1615 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3275 (($) NIL T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) 24)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-587 |#1| |#2|) (-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -3845 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-721 |#1|)) (T -587))
-((-3845 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-587 *3 *2)) (-4 *2 (-721 *3)))))
-(-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -3845 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|)))
-((-3833 (((-112) $ $) NIL)) (-1450 (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) 33)) (-3732 (($ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) NIL) (($) NIL)) (-2932 (((-1230) $ (-1124) (-1124)) NIL (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#1| $ (-1124) |#1|) 43)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-3489 (((-3 |#1| "failed") (-1124) $) 46)) (-1705 (($) NIL T CONST)) (-3955 (($ $ (-1124)) 24)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066))))) (-4204 (((-3 |#1| "failed") (-1124) $) 47) (($ (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336))) (($ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL (|has| $ (-6 -4336)))) (-3812 (($ (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336))) (($ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066))))) (-2558 (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066))))) (-3887 (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) 32)) (-1878 ((|#1| $ (-1124) |#1|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-1124)) NIL)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336))) (((-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-1686 (($ $) 48)) (-1358 (($ (-381)) 22) (($ (-381) (-1124)) 21)) (-2480 (((-381) $) 34)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-1124) $) NIL (|has| (-1124) (-823)))) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336))) (((-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (((-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066))))) (-1548 (((-1124) $) NIL (|has| (-1124) (-823)))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-3449 (((-621 (-1124)) $) 39)) (-3665 (((-112) (-1124) $) NIL)) (-4085 (((-1124) $) 35)) (-2349 (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL)) (-1709 (($ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL)) (-3927 (((-621 (-1124)) $) NIL)) (-1286 (((-112) (-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3645 ((|#1| $) NIL (|has| (-1124) (-823)))) (-1917 (((-3 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) "failed") (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL)) (-3158 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) NIL (-12 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)))) (($ $ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) NIL (-12 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) NIL (-12 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)))) (($ $ (-621 (-287 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))))) NIL (-12 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) 37)) (-3340 ((|#1| $ (-1124) |#1|) NIL) ((|#1| $ (-1124)) 42)) (-4252 (($ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) NIL) (($) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (((-747) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)))) (((-747) (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) NIL)) (-3845 (((-834) $) 20)) (-3559 (($ $) 25)) (-1765 (($ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) NIL)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 19)) (-3774 (((-747) $) 41 (|has| $ (-6 -4336)))))
-(((-588 |#1|) (-13 (-357 (-381) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) (-1155 (-1124) |#1|) (-10 -8 (-6 -4336) (-15 -1686 ($ $)))) (-1066)) (T -588))
-((-1686 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1066)))))
-(-13 (-357 (-381) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) (-1155 (-1124) |#1|) (-10 -8 (-6 -4336) (-15 -1686 ($ $))))
-((-2273 (((-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) $) 15)) (-3449 (((-621 |#2|) $) 19)) (-3665 (((-112) |#2| $) 12)))
-(((-589 |#1| |#2| |#3|) (-10 -8 (-15 -3449 ((-621 |#2|) |#1|)) (-15 -3665 ((-112) |#2| |#1|)) (-15 -2273 ((-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) |#1|))) (-590 |#2| |#3|) (-1066) (-1066)) (T -589))
-NIL
-(-10 -8 (-15 -3449 ((-621 |#2|) |#1|)) (-15 -3665 ((-112) |#2| |#1|)) (-15 -2273 ((-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) |#1|)))
-((-3833 (((-112) $ $) 19 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-1323 (((-112) $ (-747)) 8)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 45 (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 55 (|has| $ (-6 -4336)))) (-3489 (((-3 |#2| "failed") |#1| $) 61)) (-1705 (($) 7 T CONST)) (-3675 (($ $) 58 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336))))) (-4204 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 46 (|has| $ (-6 -4336))) (((-3 |#2| "failed") |#1| $) 62)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 54 (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 56 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 53 (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 52 (|has| $ (-6 -4336)))) (-2990 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 30 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-3449 (((-621 |#1|) $) 63)) (-3665 (((-112) |#1| $) 64)) (-2349 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 39)) (-1709 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 40)) (-3988 (((-1086) $) 21 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-1917 (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 51)) (-2629 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 41)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))))) 26 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 25 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 24 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 23 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-4252 (($) 49) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 48)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 31 (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-2844 (((-525) $) 59 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 50)) (-3845 (((-834) $) 18 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834))))) (-1765 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 42)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-590 |#1| |#2|) (-138) (-1066) (-1066)) (T -590))
-((-3665 (*1 *2 *3 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-5 *2 (-112)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-5 *2 (-621 *3)))) (-4204 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1066)))) (-3489 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1066)))))
-(-13 (-223 (-2 (|:| -3337 |t#1|) (|:| -1792 |t#2|))) (-10 -8 (-15 -3665 ((-112) |t#1| $)) (-15 -3449 ((-621 |t#1|) $)) (-15 -4204 ((-3 |t#2| "failed") |t#1| $)) (-15 -3489 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-106 #0=(-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T) ((-101) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) ((-593 (-834)) -1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834)))) ((-149 #0#) . T) ((-594 (-525)) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))) ((-223 #0#) . T) ((-229 #0#) . T) ((-302 #0#) -12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))) ((-481 #0#) . T) ((-505 #0# #0#) -12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))) ((-1066) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) ((-1179) . T))
-((-2077 (((-592 |#2|) |#1|) 15)) (-2877 (((-3 |#1| "failed") (-592 |#2|)) 19)))
-(((-591 |#1| |#2|) (-10 -7 (-15 -2077 ((-592 |#2|) |#1|)) (-15 -2877 ((-3 |#1| "failed") (-592 |#2|)))) (-823) (-823)) (T -591))
-((-2877 (*1 *2 *3) (|partial| -12 (-5 *3 (-592 *4)) (-4 *4 (-823)) (-4 *2 (-823)) (-5 *1 (-591 *2 *4)))) (-2077 (*1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *1 (-591 *3 *4)) (-4 *3 (-823)) (-4 *4 (-823)))))
-(-10 -7 (-15 -2077 ((-592 |#2|) |#1|)) (-15 -2877 ((-3 |#1| "failed") (-592 |#2|))))
-((-3833 (((-112) $ $) NIL)) (-1285 (((-3 (-1142) "failed") $) 37)) (-1718 (((-1230) $ (-747)) 26)) (-2882 (((-747) $) 25)) (-2015 (((-114) $) 12)) (-2480 (((-1142) $) 20)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-1477 (($ (-114) (-621 |#1|) (-747)) 30) (($ (-1142)) 31)) (-1581 (((-112) $ (-114)) 18) (((-112) $ (-1142)) 16)) (-4035 (((-747) $) 22)) (-3988 (((-1086) $) NIL)) (-2844 (((-863 (-549)) $) 77 (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) 84 (|has| |#1| (-594 (-863 (-372))))) (((-525) $) 69 (|has| |#1| (-594 (-525))))) (-3845 (((-834) $) 55)) (-4155 (((-621 |#1|) $) 24)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 41)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 42)))
-(((-592 |#1|) (-13 (-131) (-855 |#1|) (-10 -8 (-15 -2480 ((-1142) $)) (-15 -2015 ((-114) $)) (-15 -4155 ((-621 |#1|) $)) (-15 -4035 ((-747) $)) (-15 -1477 ($ (-114) (-621 |#1|) (-747))) (-15 -1477 ($ (-1142))) (-15 -1285 ((-3 (-1142) "failed") $)) (-15 -1581 ((-112) $ (-114))) (-15 -1581 ((-112) $ (-1142))) (IF (|has| |#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|))) (-823)) (T -592))
-((-2480 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-592 *3)) (-4 *3 (-823)))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-592 *3)) (-4 *3 (-823)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-592 *3)) (-4 *3 (-823)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-592 *3)) (-4 *3 (-823)))) (-1477 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-621 *5)) (-5 *4 (-747)) (-4 *5 (-823)) (-5 *1 (-592 *5)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-592 *3)) (-4 *3 (-823)))) (-1285 (*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-592 *3)) (-4 *3 (-823)))) (-1581 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-592 *4)) (-4 *4 (-823)))) (-1581 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-592 *4)) (-4 *4 (-823)))))
-(-13 (-131) (-855 |#1|) (-10 -8 (-15 -2480 ((-1142) $)) (-15 -2015 ((-114) $)) (-15 -4155 ((-621 |#1|) $)) (-15 -4035 ((-747) $)) (-15 -1477 ($ (-114) (-621 |#1|) (-747))) (-15 -1477 ($ (-1142))) (-15 -1285 ((-3 (-1142) "failed") $)) (-15 -1581 ((-112) $ (-114))) (-15 -1581 ((-112) $ (-1142))) (IF (|has| |#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|)))
-((-3845 ((|#1| $) 6)))
-(((-593 |#1|) (-138) (-1179)) (T -593))
-((-3845 (*1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1179)))))
-(-13 (-10 -8 (-15 -3845 (|t#1| $))))
-((-2844 ((|#1| $) 6)))
-(((-594 |#1|) (-138) (-1179)) (T -594))
-((-2844 (*1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1179)))))
-(-13 (-10 -8 (-15 -2844 (|t#1| $))))
-((-3018 (((-3 (-1138 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-411 |#2|) |#2|)) 15) (((-3 (-1138 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 16)))
-(((-595 |#1| |#2|) (-10 -7 (-15 -3018 ((-3 (-1138 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -3018 ((-3 (-1138 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-411 |#2|) |#2|)))) (-13 (-145) (-27) (-1009 (-549)) (-1009 (-400 (-549)))) (-1201 |#1|)) (T -595))
-((-3018 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1201 *5)) (-4 *5 (-13 (-145) (-27) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-1138 (-400 *6))) (-5 *1 (-595 *5 *6)) (-5 *3 (-400 *6)))) (-3018 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *5 (-1201 *4)) (-5 *2 (-1138 (-400 *5))) (-5 *1 (-595 *4 *5)) (-5 *3 (-400 *5)))))
-(-10 -7 (-15 -3018 ((-3 (-1138 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -3018 ((-3 (-1138 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-411 |#2|) |#2|))))
-((-3833 (((-112) $ $) NIL)) (-1747 (($) 11 T CONST)) (-1809 (($) 12 T CONST)) (-4205 (($ $ $) 24)) (-4007 (($ $) 22)) (-2677 (((-1124) $) NIL)) (-2441 (($ $ $) 25)) (-3988 (((-1086) $) NIL)) (-3736 (($) 10 T CONST)) (-2788 (($ $ $) 26)) (-3845 (((-834) $) 30)) (-3264 (((-112) $ (|[\|\|]| -3736)) 19) (((-112) $ (|[\|\|]| -1747)) 21) (((-112) $ (|[\|\|]| -1809)) 17)) (-1820 (($ $ $) 23)) (-2388 (((-112) $ $) 15)))
-(((-596) (-13 (-938) (-10 -8 (-15 -3736 ($) -2588) (-15 -1747 ($) -2588) (-15 -1809 ($) -2588) (-15 -3264 ((-112) $ (|[\|\|]| -3736))) (-15 -3264 ((-112) $ (|[\|\|]| -1747))) (-15 -3264 ((-112) $ (|[\|\|]| -1809)))))) (T -596))
-((-3736 (*1 *1) (-5 *1 (-596))) (-1747 (*1 *1) (-5 *1 (-596))) (-1809 (*1 *1) (-5 *1 (-596))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3736)) (-5 *2 (-112)) (-5 *1 (-596)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1747)) (-5 *2 (-112)) (-5 *1 (-596)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1809)) (-5 *2 (-112)) (-5 *1 (-596)))))
-(-13 (-938) (-10 -8 (-15 -3736 ($) -2588) (-15 -1747 ($) -2588) (-15 -1809 ($) -2588) (-15 -3264 ((-112) $ (|[\|\|]| -3736))) (-15 -3264 ((-112) $ (|[\|\|]| -1747))) (-15 -3264 ((-112) $ (|[\|\|]| -1809)))))
-((-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) 10)))
-(((-597 |#1| |#2|) (-10 -8 (-15 -3845 (|#1| |#2|)) (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|))) (-598 |#2|) (-1018)) (T -597))
-NIL
-(-10 -8 (-15 -3845 (|#1| |#2|)) (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 34)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ |#1| $) 35)))
-(((-598 |#1|) (-138) (-1018)) (T -598))
-((-3845 (*1 *1 *2) (-12 (-4 *1 (-598 *2)) (-4 *2 (-1018)))))
-(-13 (-1018) (-624 |t#1|) (-10 -8 (-15 -3845 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3902 (((-549) $) NIL (|has| |#1| (-821)))) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) NIL)) (-3079 (((-112) $) NIL (|has| |#1| (-821)))) (-3987 (((-112) $) NIL)) (-1393 ((|#1| $) 13)) (-2847 (((-112) $) NIL (|has| |#1| (-821)))) (-2862 (($ $ $) NIL (|has| |#1| (-821)))) (-3574 (($ $ $) NIL (|has| |#1| (-821)))) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1404 ((|#3| $) 15)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL)) (-1723 (((-747)) 20)) (-3603 (($ $) NIL (|has| |#1| (-821)))) (-3275 (($) NIL T CONST)) (-3287 (($) 12 T CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2512 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-599 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (-15 -2512 ($ $ |#3|)) (-15 -2512 ($ |#1| |#3|)) (-15 -1393 (|#1| $)) (-15 -1404 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-703) |#2|)) (T -599))
-((-2512 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-703) *4)))) (-2512 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-703) *4)))) (-1393 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-703) *3)))) (-1404 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (-15 -2512 ($ $ |#3|)) (-15 -2512 ($ |#1| |#3|)) (-15 -1393 (|#1| $)) (-15 -1404 (|#3| $))))
-((-1455 ((|#2| |#2| (-1142) (-1142)) 18)))
-(((-600 |#1| |#2|) (-10 -7 (-15 -1455 (|#2| |#2| (-1142) (-1142)))) (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1164) (-930) (-29 |#1|))) (T -600))
-((-1455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-600 *4 *2)) (-4 *2 (-13 (-1164) (-930) (-29 *4))))))
-(-10 -7 (-15 -1455 (|#2| |#2| (-1142) (-1142))))
-((-3833 (((-112) $ $) 56)) (-3166 (((-112) $) 52)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2999 ((|#1| $) 49)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-2806 (((-2 (|:| -3814 $) (|:| -2488 (-400 |#2|))) (-400 |#2|)) 97 (|has| |#1| (-356)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2069 (($ $) 24)) (-3976 (((-3 $ "failed") $) 75)) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-2078 (((-549) $) 19)) (-3987 (((-112) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2427 (((-112) $) 36)) (-2244 (($ |#1| (-549)) 21)) (-2042 ((|#1| $) 51)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-356)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) 87 (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2038 (((-3 $ "failed") $ $) 79)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-4091 (((-747) $) 99 (|has| |#1| (-356)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 98 (|has| |#1| (-356)))) (-3455 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3068 (((-549) $) 34)) (-2844 (((-400 |#2|) $) 42)) (-3845 (((-834) $) 62) (($ (-549)) 32) (($ $) NIL) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) 31) (($ |#2|) 22)) (-2944 ((|#1| $ (-549)) 63)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) 29)) (-4053 (((-112) $ $) NIL)) (-3275 (($) 9 T CONST)) (-3287 (($) 12 T CONST)) (-1700 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2388 (((-112) $ $) 17)) (-2499 (($ $) 46) (($ $ $) NIL)) (-2485 (($ $ $) 76)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 26) (($ $ $) 44)))
-(((-601 |#1| |#2|) (-13 (-225 |#2|) (-541) (-594 (-400 |#2|)) (-404 |#1|) (-1009 |#2|) (-10 -8 (-15 -2427 ((-112) $)) (-15 -3068 ((-549) $)) (-15 -2078 ((-549) $)) (-15 -2069 ($ $)) (-15 -2042 (|#1| $)) (-15 -2999 (|#1| $)) (-15 -2944 (|#1| $ (-549))) (-15 -2244 ($ |#1| (-549))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -2806 ((-2 (|:| -3814 $) (|:| -2488 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) (-541) (-1201 |#1|)) (T -601))
-((-2427 (*1 *2 *1) (-12 (-4 *3 (-541)) (-5 *2 (-112)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1201 *3)))) (-3068 (*1 *2 *1) (-12 (-4 *3 (-541)) (-5 *2 (-549)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1201 *3)))) (-2078 (*1 *2 *1) (-12 (-4 *3 (-541)) (-5 *2 (-549)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1201 *3)))) (-2069 (*1 *1 *1) (-12 (-4 *2 (-541)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1201 *2)))) (-2042 (*1 *2 *1) (-12 (-4 *2 (-541)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1201 *2)))) (-2999 (*1 *2 *1) (-12 (-4 *2 (-541)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1201 *2)))) (-2944 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-541)) (-5 *1 (-601 *2 *4)) (-4 *4 (-1201 *2)))) (-2244 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-4 *2 (-541)) (-5 *1 (-601 *2 *4)) (-4 *4 (-1201 *2)))) (-2806 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-541)) (-4 *5 (-1201 *4)) (-5 *2 (-2 (|:| -3814 (-601 *4 *5)) (|:| -2488 (-400 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-400 *5)))))
-(-13 (-225 |#2|) (-541) (-594 (-400 |#2|)) (-404 |#1|) (-1009 |#2|) (-10 -8 (-15 -2427 ((-112) $)) (-15 -3068 ((-549) $)) (-15 -2078 ((-549) $)) (-15 -2069 ($ $)) (-15 -2042 (|#1| $)) (-15 -2999 (|#1| $)) (-15 -2944 (|#1| $ (-549))) (-15 -2244 ($ |#1| (-549))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -2806 ((-2 (|:| -3814 $) (|:| -2488 (-400 |#2|))) (-400 |#2|)))) |%noBranch|)))
-((-3840 (((-621 |#6|) (-621 |#4|) (-112)) 47)) (-3503 ((|#6| |#6|) 40)))
-(((-602 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3503 (|#6| |#6|)) (-15 -3840 ((-621 |#6|) (-621 |#4|) (-112)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|) (-1075 |#1| |#2| |#3| |#4|)) (T -602))
-((-3840 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 *10)) (-5 *1 (-602 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *10 (-1075 *5 *6 *7 *8)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-602 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *2 (-1075 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3503 (|#6| |#6|)) (-15 -3840 ((-621 |#6|) (-621 |#4|) (-112))))
-((-2179 (((-112) |#3| (-747) (-621 |#3|)) 23)) (-3452 (((-3 (-2 (|:| |polfac| (-621 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-621 (-1138 |#3|)))) "failed") |#3| (-621 (-1138 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2886 (-621 (-2 (|:| |irr| |#4|) (|:| -3533 (-549)))))) (-621 |#3|) (-621 |#1|) (-621 |#3|)) 55)))
-(((-603 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2179 ((-112) |#3| (-747) (-621 |#3|))) (-15 -3452 ((-3 (-2 (|:| |polfac| (-621 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-621 (-1138 |#3|)))) "failed") |#3| (-621 (-1138 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2886 (-621 (-2 (|:| |irr| |#4|) (|:| -3533 (-549)))))) (-621 |#3|) (-621 |#1|) (-621 |#3|)))) (-823) (-769) (-300) (-920 |#3| |#2| |#1|)) (T -603))
-((-3452 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2886 (-621 (-2 (|:| |irr| *10) (|:| -3533 (-549))))))) (-5 *6 (-621 *3)) (-5 *7 (-621 *8)) (-4 *8 (-823)) (-4 *3 (-300)) (-4 *10 (-920 *3 *9 *8)) (-4 *9 (-769)) (-5 *2 (-2 (|:| |polfac| (-621 *10)) (|:| |correct| *3) (|:| |corrfact| (-621 (-1138 *3))))) (-5 *1 (-603 *8 *9 *3 *10)) (-5 *4 (-621 (-1138 *3))))) (-2179 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-747)) (-5 *5 (-621 *3)) (-4 *3 (-300)) (-4 *6 (-823)) (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-603 *6 *7 *3 *8)) (-4 *8 (-920 *3 *7 *6)))))
-(-10 -7 (-15 -2179 ((-112) |#3| (-747) (-621 |#3|))) (-15 -3452 ((-3 (-2 (|:| |polfac| (-621 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-621 (-1138 |#3|)))) "failed") |#3| (-621 (-1138 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2886 (-621 (-2 (|:| |irr| |#4|) (|:| -3533 (-549)))))) (-621 |#3|) (-621 |#1|) (-621 |#3|))))
-((-3833 (((-112) $ $) NIL)) (-2202 (((-1101) $) 11)) (-2189 (((-1101) $) 9)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-604) (-13 (-1049) (-10 -8 (-15 -2189 ((-1101) $)) (-15 -2202 ((-1101) $))))) (T -604))
-((-2189 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-604)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-604)))))
-(-13 (-1049) (-10 -8 (-15 -2189 ((-1101) $)) (-15 -2202 ((-1101) $))))
-((-3833 (((-112) $ $) NIL)) (-3303 (((-621 |#1|) $) NIL)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) NIL)) (-3987 (((-112) $) NIL)) (-3276 (($ $) 67)) (-3631 (((-640 |#1| |#2|) $) 52)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 70)) (-3034 (((-621 (-287 |#2|)) $ $) 33)) (-3988 (((-1086) $) NIL)) (-2718 (($ (-640 |#1| |#2|)) 48)) (-2538 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-3845 (((-834) $) 58) (((-1240 |#1| |#2|) $) NIL) (((-1245 |#1| |#2|) $) 66)) (-3287 (($) 53 T CONST)) (-4100 (((-621 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $) 31)) (-2288 (((-621 (-640 |#1| |#2|)) (-621 |#1|)) 65)) (-2729 (((-621 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $) 37)) (-2388 (((-112) $ $) 54)) (-2512 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ $ $) 44)))
-(((-605 |#1| |#2| |#3|) (-13 (-465) (-10 -8 (-15 -2718 ($ (-640 |#1| |#2|))) (-15 -3631 ((-640 |#1| |#2|) $)) (-15 -2729 ((-621 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $)) (-15 -3845 ((-1240 |#1| |#2|) $)) (-15 -3845 ((-1245 |#1| |#2|) $)) (-15 -3276 ($ $)) (-15 -3303 ((-621 |#1|) $)) (-15 -2288 ((-621 (-640 |#1| |#2|)) (-621 |#1|))) (-15 -4100 ((-621 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $)) (-15 -3034 ((-621 (-287 |#2|)) $ $)))) (-823) (-13 (-170) (-694 (-400 (-549)))) (-892)) (T -605))
-((-2718 (*1 *1 *2) (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-5 *1 (-605 *3 *4 *5)) (-14 *5 (-892)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-640 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |k| (-864 *3)) (|:| |c| *4)))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))) (-3276 (*1 *1 *1) (-12 (-5 *1 (-605 *2 *3 *4)) (-4 *2 (-823)) (-4 *3 (-13 (-170) (-694 (-400 (-549))))) (-14 *4 (-892)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-823)) (-5 *2 (-621 (-640 *4 *5))) (-5 *1 (-605 *4 *5 *6)) (-4 *5 (-13 (-170) (-694 (-400 (-549))))) (-14 *6 (-892)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |k| (-648 *3)) (|:| |c| *4)))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))) (-3034 (*1 *2 *1 *1) (-12 (-5 *2 (-621 (-287 *4))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))))
-(-13 (-465) (-10 -8 (-15 -2718 ($ (-640 |#1| |#2|))) (-15 -3631 ((-640 |#1| |#2|) $)) (-15 -2729 ((-621 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $)) (-15 -3845 ((-1240 |#1| |#2|) $)) (-15 -3845 ((-1245 |#1| |#2|) $)) (-15 -3276 ($ $)) (-15 -3303 ((-621 |#1|) $)) (-15 -2288 ((-621 (-640 |#1| |#2|)) (-621 |#1|))) (-15 -4100 ((-621 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $)) (-15 -3034 ((-621 (-287 |#2|)) $ $))))
-((-3840 (((-621 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-621 (-756 |#1| (-836 |#2|))) (-112)) 72) (((-621 (-1015 |#1| |#2|)) (-621 (-756 |#1| (-836 |#2|))) (-112)) 58)) (-3826 (((-112) (-621 (-756 |#1| (-836 |#2|)))) 23)) (-2559 (((-621 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-621 (-756 |#1| (-836 |#2|))) (-112)) 71)) (-2248 (((-621 (-1015 |#1| |#2|)) (-621 (-756 |#1| (-836 |#2|))) (-112)) 57)) (-3164 (((-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|)))) 27)) (-2345 (((-3 (-621 (-756 |#1| (-836 |#2|))) "failed") (-621 (-756 |#1| (-836 |#2|)))) 26)))
-(((-606 |#1| |#2|) (-10 -7 (-15 -3826 ((-112) (-621 (-756 |#1| (-836 |#2|))))) (-15 -2345 ((-3 (-621 (-756 |#1| (-836 |#2|))) "failed") (-621 (-756 |#1| (-836 |#2|))))) (-15 -3164 ((-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|))))) (-15 -2248 ((-621 (-1015 |#1| |#2|)) (-621 (-756 |#1| (-836 |#2|))) (-112))) (-15 -2559 ((-621 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-621 (-756 |#1| (-836 |#2|))) (-112))) (-15 -3840 ((-621 (-1015 |#1| |#2|)) (-621 (-756 |#1| (-836 |#2|))) (-112))) (-15 -3840 ((-621 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-621 (-756 |#1| (-836 |#2|))) (-112)))) (-444) (-621 (-1142))) (T -606))
-((-3840 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-621 (-1142))) (-5 *2 (-621 (-1112 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6))))) (-5 *1 (-606 *5 *6)))) (-3840 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-621 (-1142))) (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-606 *5 *6)))) (-2559 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-621 (-1142))) (-5 *2 (-621 (-1112 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6))))) (-5 *1 (-606 *5 *6)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-621 (-1142))) (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-606 *5 *6)))) (-3164 (*1 *2 *2) (-12 (-5 *2 (-621 (-756 *3 (-836 *4)))) (-4 *3 (-444)) (-14 *4 (-621 (-1142))) (-5 *1 (-606 *3 *4)))) (-2345 (*1 *2 *2) (|partial| -12 (-5 *2 (-621 (-756 *3 (-836 *4)))) (-4 *3 (-444)) (-14 *4 (-621 (-1142))) (-5 *1 (-606 *3 *4)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-621 (-756 *4 (-836 *5)))) (-4 *4 (-444)) (-14 *5 (-621 (-1142))) (-5 *2 (-112)) (-5 *1 (-606 *4 *5)))))
-(-10 -7 (-15 -3826 ((-112) (-621 (-756 |#1| (-836 |#2|))))) (-15 -2345 ((-3 (-621 (-756 |#1| (-836 |#2|))) "failed") (-621 (-756 |#1| (-836 |#2|))))) (-15 -3164 ((-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|))))) (-15 -2248 ((-621 (-1015 |#1| |#2|)) (-621 (-756 |#1| (-836 |#2|))) (-112))) (-15 -2559 ((-621 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-621 (-756 |#1| (-836 |#2|))) (-112))) (-15 -3840 ((-621 (-1015 |#1| |#2|)) (-621 (-756 |#1| (-836 |#2|))) (-112))) (-15 -3840 ((-621 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-621 (-756 |#1| (-836 |#2|))) (-112))))
-((-1663 (($ $) 38)) (-1511 (($ $) 21)) (-1639 (($ $) 37)) (-1485 (($ $) 22)) (-1685 (($ $) 36)) (-1538 (($ $) 23)) (-1425 (($) 48)) (-3631 (($ $) 45)) (-1712 (($ $) 17)) (-4211 (($ $ (-1058 $)) 7) (($ $ (-1142)) 6)) (-2718 (($ $) 46)) (-1432 (($ $) 15)) (-1470 (($ $) 16)) (-1697 (($ $) 35)) (-1551 (($ $) 24)) (-1674 (($ $) 34)) (-1525 (($ $) 25)) (-1649 (($ $) 33)) (-1500 (($ $) 26)) (-1732 (($ $) 44)) (-1585 (($ $) 32)) (-1708 (($ $) 43)) (-1562 (($ $) 31)) (-1757 (($ $) 42)) (-1612 (($ $) 30)) (-1933 (($ $) 41)) (-1625 (($ $) 29)) (-1744 (($ $) 40)) (-1599 (($ $) 28)) (-1721 (($ $) 39)) (-1575 (($ $) 27)) (-1576 (($ $) 19)) (-1658 (($ $) 20)) (-1519 (($ $) 18)) (** (($ $ $) 47)))
-(((-607) (-138)) (T -607))
-((-1658 (*1 *1 *1) (-4 *1 (-607))) (-1576 (*1 *1 *1) (-4 *1 (-607))) (-1519 (*1 *1 *1) (-4 *1 (-607))) (-1712 (*1 *1 *1) (-4 *1 (-607))) (-1470 (*1 *1 *1) (-4 *1 (-607))) (-1432 (*1 *1 *1) (-4 *1 (-607))))
-(-13 (-930) (-1164) (-10 -8 (-15 -1658 ($ $)) (-15 -1576 ($ $)) (-15 -1519 ($ $)) (-15 -1712 ($ $)) (-15 -1470 ($ $)) (-15 -1432 ($ $))))
-(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-930) . T) ((-1164) . T) ((-1167) . T))
-((-2015 (((-114) (-114)) 83)) (-1712 ((|#2| |#2|) 30)) (-4211 ((|#2| |#2| (-1058 |#2|)) 79) ((|#2| |#2| (-1142)) 52)) (-1432 ((|#2| |#2|) 29)) (-1470 ((|#2| |#2|) 31)) (-3234 (((-112) (-114)) 34)) (-1576 ((|#2| |#2|) 26)) (-1658 ((|#2| |#2|) 28)) (-1519 ((|#2| |#2|) 27)))
-(((-608 |#1| |#2|) (-10 -7 (-15 -3234 ((-112) (-114))) (-15 -2015 ((-114) (-114))) (-15 -1658 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -1712 (|#2| |#2|)) (-15 -1432 (|#2| |#2|)) (-15 -1470 (|#2| |#2|)) (-15 -4211 (|#2| |#2| (-1142))) (-15 -4211 (|#2| |#2| (-1058 |#2|)))) (-13 (-823) (-541)) (-13 (-423 |#1|) (-973) (-1164))) (T -608))
-((-4211 (*1 *2 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-13 (-423 *4) (-973) (-1164))) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-608 *4 *2)))) (-4211 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-608 *4 *2)) (-4 *2 (-13 (-423 *4) (-973) (-1164))))) (-1470 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2)) (-4 *2 (-13 (-423 *3) (-973) (-1164))))) (-1432 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2)) (-4 *2 (-13 (-423 *3) (-973) (-1164))))) (-1712 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2)) (-4 *2 (-13 (-423 *3) (-973) (-1164))))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2)) (-4 *2 (-13 (-423 *3) (-973) (-1164))))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2)) (-4 *2 (-13 (-423 *3) (-973) (-1164))))) (-1658 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2)) (-4 *2 (-13 (-423 *3) (-973) (-1164))))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *4)) (-4 *4 (-13 (-423 *3) (-973) (-1164))))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-608 *4 *5)) (-4 *5 (-13 (-423 *4) (-973) (-1164))))))
-(-10 -7 (-15 -3234 ((-112) (-114))) (-15 -2015 ((-114) (-114))) (-15 -1658 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -1712 (|#2| |#2|)) (-15 -1432 (|#2| |#2|)) (-15 -1470 (|#2| |#2|)) (-15 -4211 (|#2| |#2| (-1142))) (-15 -4211 (|#2| |#2| (-1058 |#2|))))
-((-2777 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 53)) (-2914 (((-621 (-241 |#1| |#2|)) (-621 (-473 |#1| |#2|))) 68)) (-2177 (((-473 |#1| |#2|) (-621 (-473 |#1| |#2|)) (-836 |#1|)) 70) (((-473 |#1| |#2|) (-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)) (-836 |#1|)) 69)) (-2971 (((-2 (|:| |gblist| (-621 (-241 |#1| |#2|))) (|:| |gvlist| (-621 (-549)))) (-621 (-473 |#1| |#2|))) 108)) (-2908 (((-621 (-473 |#1| |#2|)) (-836 |#1|) (-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|))) 83)) (-2117 (((-2 (|:| |glbase| (-621 (-241 |#1| |#2|))) (|:| |glval| (-621 (-549)))) (-621 (-241 |#1| |#2|))) 118)) (-1300 (((-1225 |#2|) (-473 |#1| |#2|) (-621 (-473 |#1| |#2|))) 58)) (-3379 (((-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|))) 41)) (-4189 (((-241 |#1| |#2|) (-241 |#1| |#2|) (-621 (-241 |#1| |#2|))) 50)) (-1881 (((-241 |#1| |#2|) (-621 |#2|) (-241 |#1| |#2|) (-621 (-241 |#1| |#2|))) 91)))
-(((-609 |#1| |#2|) (-10 -7 (-15 -2971 ((-2 (|:| |gblist| (-621 (-241 |#1| |#2|))) (|:| |gvlist| (-621 (-549)))) (-621 (-473 |#1| |#2|)))) (-15 -2117 ((-2 (|:| |glbase| (-621 (-241 |#1| |#2|))) (|:| |glval| (-621 (-549)))) (-621 (-241 |#1| |#2|)))) (-15 -2914 ((-621 (-241 |#1| |#2|)) (-621 (-473 |#1| |#2|)))) (-15 -2177 ((-473 |#1| |#2|) (-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -2177 ((-473 |#1| |#2|) (-621 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -3379 ((-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)))) (-15 -1300 ((-1225 |#2|) (-473 |#1| |#2|) (-621 (-473 |#1| |#2|)))) (-15 -1881 ((-241 |#1| |#2|) (-621 |#2|) (-241 |#1| |#2|) (-621 (-241 |#1| |#2|)))) (-15 -2908 ((-621 (-473 |#1| |#2|)) (-836 |#1|) (-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)))) (-15 -4189 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-621 (-241 |#1| |#2|)))) (-15 -2777 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) (-621 (-1142)) (-444)) (T -609))
-((-2777 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-621 (-1142))) (-4 *5 (-444)) (-5 *2 (-473 *4 *5)) (-5 *1 (-609 *4 *5)))) (-4189 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) (-14 *4 (-621 (-1142))) (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))) (-2908 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-621 (-473 *4 *5))) (-5 *3 (-836 *4)) (-14 *4 (-621 (-1142))) (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))) (-1881 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 (-241 *5 *6))) (-4 *6 (-444)) (-5 *2 (-241 *5 *6)) (-14 *5 (-621 (-1142))) (-5 *1 (-609 *5 *6)))) (-1300 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) (-14 *5 (-621 (-1142))) (-4 *6 (-444)) (-5 *2 (-1225 *6)) (-5 *1 (-609 *5 *6)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-621 (-473 *3 *4))) (-14 *3 (-621 (-1142))) (-4 *4 (-444)) (-5 *1 (-609 *3 *4)))) (-2177 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-473 *5 *6))) (-5 *4 (-836 *5)) (-14 *5 (-621 (-1142))) (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6)) (-4 *6 (-444)))) (-2177 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-621 (-473 *5 *6))) (-5 *4 (-836 *5)) (-14 *5 (-621 (-1142))) (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6)) (-4 *6 (-444)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-621 (-473 *4 *5))) (-14 *4 (-621 (-1142))) (-4 *5 (-444)) (-5 *2 (-621 (-241 *4 *5))) (-5 *1 (-609 *4 *5)))) (-2117 (*1 *2 *3) (-12 (-14 *4 (-621 (-1142))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |glbase| (-621 (-241 *4 *5))) (|:| |glval| (-621 (-549))))) (-5 *1 (-609 *4 *5)) (-5 *3 (-621 (-241 *4 *5))))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-621 (-473 *4 *5))) (-14 *4 (-621 (-1142))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |gblist| (-621 (-241 *4 *5))) (|:| |gvlist| (-621 (-549))))) (-5 *1 (-609 *4 *5)))))
-(-10 -7 (-15 -2971 ((-2 (|:| |gblist| (-621 (-241 |#1| |#2|))) (|:| |gvlist| (-621 (-549)))) (-621 (-473 |#1| |#2|)))) (-15 -2117 ((-2 (|:| |glbase| (-621 (-241 |#1| |#2|))) (|:| |glval| (-621 (-549)))) (-621 (-241 |#1| |#2|)))) (-15 -2914 ((-621 (-241 |#1| |#2|)) (-621 (-473 |#1| |#2|)))) (-15 -2177 ((-473 |#1| |#2|) (-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -2177 ((-473 |#1| |#2|) (-621 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -3379 ((-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)))) (-15 -1300 ((-1225 |#2|) (-473 |#1| |#2|) (-621 (-473 |#1| |#2|)))) (-15 -1881 ((-241 |#1| |#2|) (-621 |#2|) (-241 |#1| |#2|) (-621 (-241 |#1| |#2|)))) (-15 -2908 ((-621 (-473 |#1| |#2|)) (-836 |#1|) (-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)))) (-15 -4189 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-621 (-241 |#1| |#2|)))) (-15 -2777 ((-473 |#1| |#2|) (-241 |#1| |#2|))))
-((-3833 (((-112) $ $) NIL (-1536 (|has| (-52) (-1066)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066))))) (-3732 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))))) NIL)) (-2932 (((-1230) $ (-1124) (-1124)) NIL (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 (((-52) $ (-1124) (-52)) 16) (((-52) $ (-1142) (-52)) 17)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336)))) (-3489 (((-3 (-52) "failed") (-1124) $) NIL)) (-1705 (($) NIL T CONST)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066))))) (-4204 (($ (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-3 (-52) "failed") (-1124) $) NIL)) (-3812 (($ (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066)))) (($ (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $ (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066)))) (((-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $ (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336)))) (-1878 (((-52) $ (-1124) (-52)) NIL (|has| $ (-6 -4337)))) (-1808 (((-52) $ (-1124)) NIL)) (-2990 (((-621 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-621 (-52)) $) NIL (|has| $ (-6 -4336)))) (-1686 (($ $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-1124) $) NIL (|has| (-1124) (-823)))) (-1958 (((-621 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-621 (-52)) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-52) (-1066))))) (-1548 (((-1124) $) NIL (|has| (-1124) (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2752 (($ (-381)) 9)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (-1536 (|has| (-52) (-1066)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066))))) (-3449 (((-621 (-1124)) $) NIL)) (-3665 (((-112) (-1124) $) NIL)) (-2349 (((-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) $) NIL)) (-1709 (($ (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) $) NIL)) (-3927 (((-621 (-1124)) $) NIL)) (-1286 (((-112) (-1124) $) NIL)) (-3988 (((-1086) $) NIL (-1536 (|has| (-52) (-1066)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066))))) (-3645 (((-52) $) NIL (|has| (-1124) (-823)))) (-1917 (((-3 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) "failed") (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL)) (-3158 (($ $ (-52)) NIL (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) $) NIL)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))))) NIL (-12 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066)))) (($ $ (-287 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))))) NIL (-12 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066)))) (($ $ (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) NIL (-12 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066)))) (($ $ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))))) NIL (-12 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066)))) (($ $ (-621 (-52)) (-621 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1066)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1066)))) (($ $ (-287 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1066)))) (($ $ (-621 (-287 (-52)))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-52) (-1066))))) (-1738 (((-621 (-52)) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 (((-52) $ (-1124)) 14) (((-52) $ (-1124) (-52)) NIL) (((-52) $ (-1142)) 15)) (-4252 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))))) NIL)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066)))) (((-747) (-52) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-52) (-1066)))) (((-747) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))))) NIL)) (-3845 (((-834) $) NIL (-1536 (|has| (-52) (-593 (-834))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-593 (-834)))))) (-1765 (($ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))))) NIL)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (-1536 (|has| (-52) (-1066)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 (-52))) (-1066))))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-610) (-13 (-1155 (-1124) (-52)) (-10 -8 (-15 -2752 ($ (-381))) (-15 -1686 ($ $)) (-15 -3340 ((-52) $ (-1142))) (-15 -2253 ((-52) $ (-1142) (-52)))))) (T -610))
-((-2752 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-610)))) (-1686 (*1 *1 *1) (-5 *1 (-610))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-52)) (-5 *1 (-610)))) (-2253 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1142)) (-5 *1 (-610)))))
-(-13 (-1155 (-1124) (-52)) (-10 -8 (-15 -2752 ($ (-381))) (-15 -1686 ($ $)) (-15 -3340 ((-52) $ (-1142))) (-15 -2253 ((-52) $ (-1142) (-52)))))
-((-2512 (($ $ |#2|) 10)))
-(((-611 |#1| |#2|) (-10 -8 (-15 -2512 (|#1| |#1| |#2|))) (-612 |#2|) (-170)) (T -611))
-NIL
-(-10 -8 (-15 -2512 (|#1| |#1| |#2|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3853 (($ $ $) 29)) (-3845 (((-834) $) 11)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#1|) 28 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-612 |#1|) (-138) (-170)) (T -612))
-((-3853 (*1 *1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-170)))) (-2512 (*1 *1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-170)) (-4 *2 (-356)))))
-(-13 (-694 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3853 ($ $ $)) (IF (|has| |t#1| (-356)) (-15 -2512 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-1024 |#1|) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2699 (((-3 $ "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2818 (((-1225 (-665 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-1225 (-665 |#1|)) (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-1955 (((-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-1705 (($) NIL T CONST)) (-2983 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-3917 (((-3 $ "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-1418 (((-665 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-1399 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2811 (((-665 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) $ (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-3923 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-4165 (((-1138 (-923 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-2353 (($ $ (-892)) NIL)) (-1618 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-4057 (((-1138 |#1|) $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2351 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-3254 (((-1138 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-2186 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2127 (($ (-1225 |#1|)) NIL (|has| |#2| (-410 |#1|))) (($ (-1225 |#1|) (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-3976 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-3122 (((-892)) NIL (|has| |#2| (-360 |#1|)))) (-1373 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2377 (($ $ (-892)) NIL)) (-3995 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4285 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3055 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4263 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-1497 (((-3 $ "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-1779 (((-665 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-1359 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1315 (((-665 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) $ (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-2193 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2014 (((-1138 (-923 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-2881 (($ $ (-892)) NIL)) (-3142 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2568 (((-1138 |#1|) $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2742 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-2934 (((-1138 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-2342 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2677 (((-1124) $) NIL)) (-1768 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4176 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4086 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3988 (((-1086) $) NIL)) (-2036 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3340 ((|#1| $ (-549)) NIL (|has| |#2| (-410 |#1|)))) (-4163 (((-665 |#1|) (-1225 $)) NIL (|has| |#2| (-410 |#1|))) (((-1225 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) (-1225 $) (-1225 $)) NIL (|has| |#2| (-360 |#1|))) (((-1225 |#1|) $ (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-2844 (($ (-1225 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-1225 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-3619 (((-621 (-923 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-621 (-923 |#1|)) (-1225 $)) NIL (|has| |#2| (-360 |#1|)))) (-1911 (($ $ $) NIL)) (-2138 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3845 (((-834) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3420 (((-1225 $)) NIL (|has| |#2| (-410 |#1|)))) (-1600 (((-621 (-1225 |#1|))) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-4172 (($ $ $ $) NIL)) (-3596 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3592 (($ (-665 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-1892 (($ $ $) NIL)) (-2221 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1654 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1615 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3275 (($) 15 T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) 17)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-613 |#1| |#2|) (-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -3845 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-721 |#1|)) (T -613))
-((-3845 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-613 *3 *2)) (-4 *2 (-721 *3)))))
-(-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -3845 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|)))
-((-2000 (((-3 (-816 |#2|) "failed") |#2| (-287 |#2|) (-1124)) 82) (((-3 (-816 |#2|) (-2 (|:| |leftHandLimit| (-3 (-816 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-816 |#2|) "failed"))) "failed") |#2| (-287 (-816 |#2|))) 104)) (-2563 (((-3 (-809 |#2|) "failed") |#2| (-287 (-809 |#2|))) 109)))
-(((-614 |#1| |#2|) (-10 -7 (-15 -2000 ((-3 (-816 |#2|) (-2 (|:| |leftHandLimit| (-3 (-816 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-816 |#2|) "failed"))) "failed") |#2| (-287 (-816 |#2|)))) (-15 -2563 ((-3 (-809 |#2|) "failed") |#2| (-287 (-809 |#2|)))) (-15 -2000 ((-3 (-816 |#2|) "failed") |#2| (-287 |#2|) (-1124)))) (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1164) (-423 |#1|))) (T -614))
-((-2000 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-287 *3)) (-5 *5 (-1124)) (-4 *3 (-13 (-27) (-1164) (-423 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-816 *3)) (-5 *1 (-614 *6 *3)))) (-2563 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-287 (-809 *3))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-809 *3)) (-5 *1 (-614 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))))) (-2000 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-816 *3))) (-4 *3 (-13 (-27) (-1164) (-423 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (-816 *3) (-2 (|:| |leftHandLimit| (-3 (-816 *3) "failed")) (|:| |rightHandLimit| (-3 (-816 *3) "failed"))) "failed")) (-5 *1 (-614 *5 *3)))))
-(-10 -7 (-15 -2000 ((-3 (-816 |#2|) (-2 (|:| |leftHandLimit| (-3 (-816 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-816 |#2|) "failed"))) "failed") |#2| (-287 (-816 |#2|)))) (-15 -2563 ((-3 (-809 |#2|) "failed") |#2| (-287 (-809 |#2|)))) (-15 -2000 ((-3 (-816 |#2|) "failed") |#2| (-287 |#2|) (-1124))))
-((-2000 (((-3 (-816 (-400 (-923 |#1|))) "failed") (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))) (-1124)) 80) (((-3 (-816 (-400 (-923 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed"))) "failed") (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|)))) 20) (((-3 (-816 (-400 (-923 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed"))) "failed") (-400 (-923 |#1|)) (-287 (-816 (-923 |#1|)))) 35)) (-2563 (((-809 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|)))) 23) (((-809 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-287 (-809 (-923 |#1|)))) 43)))
-(((-615 |#1|) (-10 -7 (-15 -2000 ((-3 (-816 (-400 (-923 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed"))) "failed") (-400 (-923 |#1|)) (-287 (-816 (-923 |#1|))))) (-15 -2000 ((-3 (-816 (-400 (-923 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed"))) "failed") (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))))) (-15 -2563 ((-809 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-287 (-809 (-923 |#1|))))) (-15 -2563 ((-809 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))))) (-15 -2000 ((-3 (-816 (-400 (-923 |#1|))) "failed") (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))) (-1124)))) (-444)) (T -615))
-((-2000 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-287 (-400 (-923 *6)))) (-5 *5 (-1124)) (-5 *3 (-400 (-923 *6))) (-4 *6 (-444)) (-5 *2 (-816 *3)) (-5 *1 (-615 *6)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-400 (-923 *5)))) (-5 *3 (-400 (-923 *5))) (-4 *5 (-444)) (-5 *2 (-809 *3)) (-5 *1 (-615 *5)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-809 (-923 *5)))) (-4 *5 (-444)) (-5 *2 (-809 (-400 (-923 *5)))) (-5 *1 (-615 *5)) (-5 *3 (-400 (-923 *5))))) (-2000 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-400 (-923 *5)))) (-5 *3 (-400 (-923 *5))) (-4 *5 (-444)) (-5 *2 (-3 (-816 *3) (-2 (|:| |leftHandLimit| (-3 (-816 *3) "failed")) (|:| |rightHandLimit| (-3 (-816 *3) "failed"))) "failed")) (-5 *1 (-615 *5)))) (-2000 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-816 (-923 *5)))) (-4 *5 (-444)) (-5 *2 (-3 (-816 (-400 (-923 *5))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 *5))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 *5))) "failed"))) "failed")) (-5 *1 (-615 *5)) (-5 *3 (-400 (-923 *5))))))
-(-10 -7 (-15 -2000 ((-3 (-816 (-400 (-923 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed"))) "failed") (-400 (-923 |#1|)) (-287 (-816 (-923 |#1|))))) (-15 -2000 ((-3 (-816 (-400 (-923 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed"))) "failed") (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))))) (-15 -2563 ((-809 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-287 (-809 (-923 |#1|))))) (-15 -2563 ((-809 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))))) (-15 -2000 ((-3 (-816 (-400 (-923 |#1|))) "failed") (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))) (-1124))))
-((-3007 (((-3 (-1225 (-400 |#1|)) "failed") (-1225 |#2|) |#2|) 57 (-4007 (|has| |#1| (-356)))) (((-3 (-1225 |#1|) "failed") (-1225 |#2|) |#2|) 42 (|has| |#1| (-356)))) (-1860 (((-112) (-1225 |#2|)) 30)) (-1442 (((-3 (-1225 |#1|) "failed") (-1225 |#2|)) 33)))
-(((-616 |#1| |#2|) (-10 -7 (-15 -1860 ((-112) (-1225 |#2|))) (-15 -1442 ((-3 (-1225 |#1|) "failed") (-1225 |#2|))) (IF (|has| |#1| (-356)) (-15 -3007 ((-3 (-1225 |#1|) "failed") (-1225 |#2|) |#2|)) (-15 -3007 ((-3 (-1225 (-400 |#1|)) "failed") (-1225 |#2|) |#2|)))) (-541) (-617 |#1|)) (T -616))
-((-3007 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1225 *4)) (-4 *4 (-617 *5)) (-4007 (-4 *5 (-356))) (-4 *5 (-541)) (-5 *2 (-1225 (-400 *5))) (-5 *1 (-616 *5 *4)))) (-3007 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1225 *4)) (-4 *4 (-617 *5)) (-4 *5 (-356)) (-4 *5 (-541)) (-5 *2 (-1225 *5)) (-5 *1 (-616 *5 *4)))) (-1442 (*1 *2 *3) (|partial| -12 (-5 *3 (-1225 *5)) (-4 *5 (-617 *4)) (-4 *4 (-541)) (-5 *2 (-1225 *4)) (-5 *1 (-616 *4 *5)))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-1225 *5)) (-4 *5 (-617 *4)) (-4 *4 (-541)) (-5 *2 (-112)) (-5 *1 (-616 *4 *5)))))
-(-10 -7 (-15 -1860 ((-112) (-1225 |#2|))) (-15 -1442 ((-3 (-1225 |#1|) "failed") (-1225 |#2|))) (IF (|has| |#1| (-356)) (-15 -3007 ((-3 (-1225 |#1|) "failed") (-1225 |#2|) |#2|)) (-15 -3007 ((-3 (-1225 (-400 |#1|)) "failed") (-1225 |#2|) |#2|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-1698 (((-665 |#1|) (-665 $)) 34) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 33)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ (-549)) 27)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-2296 (((-1230) $ |#2| |#2|) 36)) (-2298 ((|#2| $) 23)) (-2299 ((|#2| $) 21)) (-2067 (($ (-1 |#3| |#3|) $) 32)) (-4301 (($ (-1 |#3| |#3|) $) 30)) (-4143 ((|#3| $) 26)) (-2297 (($ $ |#3|) 33)) (-2300 (((-112) |#3| $) 17)) (-2303 (((-618 |#3|) $) 15)) (-4142 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-583 |#1| |#2| |#3|) (-10 -8 (-15 -2296 ((-1230) |#1| |#2| |#2|)) (-15 -2297 (|#1| |#1| |#3|)) (-15 -4143 (|#3| |#1|)) (-15 -2298 (|#2| |#1|)) (-15 -2299 (|#2| |#1|)) (-15 -2300 ((-112) |#3| |#1|)) (-15 -2303 ((-618 |#3|) |#1|)) (-15 -4142 (|#3| |#1| |#2|)) (-15 -4142 (|#3| |#1| |#2| |#3|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4301 (|#1| (-1 |#3| |#3|) |#1|))) (-584 |#2| |#3|) (-1067) (-1178)) (T -583))
+NIL
+(-10 -8 (-15 -2296 ((-1230) |#1| |#2| |#2|)) (-15 -2297 (|#1| |#1| |#3|)) (-15 -4143 (|#3| |#1|)) (-15 -2298 (|#2| |#1|)) (-15 -2299 (|#2| |#1|)) (-15 -2300 ((-112) |#3| |#1|)) (-15 -2303 ((-618 |#3|) |#1|)) (-15 -4142 (|#3| |#1| |#2|)) (-15 -4142 (|#3| |#1| |#2| |#3|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4301 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#2| (-1067)))) (-2296 (((-1230) $ |#1| |#1|) 40 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4337)))) (-3879 (($) 7 T CONST)) (-1632 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) 51)) (-2063 (((-618 |#2|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2298 ((|#1| $) 43 (|has| |#1| (-823)))) (-2502 (((-618 |#2|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-2299 ((|#1| $) 44 (|has| |#1| (-823)))) (-2067 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#2| (-1067)))) (-2301 (((-618 |#1|) $) 46)) (-2302 (((-112) |#1| $) 47)) (-3577 (((-1086) $) 21 (|has| |#2| (-1067)))) (-4143 ((|#2| $) 42 (|has| |#1| (-823)))) (-2297 (($ $ |#2|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2064 (((-747) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4336))) (((-747) |#2| $) 28 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#2| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#2| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-584 |#1| |#2|) (-138) (-1067) (-1178)) (T -584))
+((-2303 (*1 *2 *1) (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-618 *4)))) (-2302 (*1 *2 *3 *1) (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-112)))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-618 *3)))) (-2300 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-584 *4 *3)) (-4 *4 (-1067)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1178)) (-4 *2 (-1067)) (-4 *2 (-823)))) (-2298 (*1 *2 *1) (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1178)) (-4 *2 (-1067)) (-4 *2 (-823)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-584 *3 *2)) (-4 *3 (-1067)) (-4 *3 (-823)) (-4 *2 (-1178)))) (-2297 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178)))) (-2296 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-1230)))))
+(-13 (-481 |t#2|) (-281 |t#1| |t#2|) (-10 -8 (-15 -2303 ((-618 |t#2|) $)) (-15 -2302 ((-112) |t#1| $)) (-15 -2301 ((-618 |t#1|) $)) (IF (|has| |t#2| (-1067)) (IF (|has| $ (-6 -4336)) (-15 -2300 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-823)) (PROGN (-15 -2299 (|t#1| $)) (-15 -2298 (|t#1| $)) (-15 -4143 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4337)) (PROGN (-15 -2297 ($ $ |t#2|)) (-15 -2296 ((-1230) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#2| (-1067)) ((-593 (-835)) -3874 (|has| |#2| (-1067)) (|has| |#2| (-593 (-835)))) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-1067) |has| |#2| (-1067)) ((-1178) . T))
+((-4300 (((-835) $) 19) (((-128) $) 14) (($ (-128)) 13)))
+(((-585) (-13 (-593 (-835)) (-593 (-128)) (-10 -8 (-15 -4300 ($ (-128)))))) (T -585))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-585)))))
+(-13 (-593 (-835)) (-593 (-128)) (-10 -8 (-15 -4300 ($ (-128)))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL) (((-1147) $) NIL) (($ (-1147)) NIL) (((-1179) $) 14) (($ (-618 (-1179))) 13)) (-2304 (((-618 (-1179)) $) 10)) (-3375 (((-112) $ $) NIL)))
+(((-586) (-13 (-1049) (-593 (-1179)) (-10 -8 (-15 -4300 ($ (-618 (-1179)))) (-15 -2304 ((-618 (-1179)) $))))) (T -586))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-586)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-586)))))
+(-13 (-1049) (-593 (-1179)) (-10 -8 (-15 -4300 ($ (-618 (-1179)))) (-15 -2304 ((-618 (-1179)) $))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3557 (((-1224 (-665 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1224 (-665 |#1|)) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1840 (((-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-3879 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1814 (((-3 $ #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1902 (((-665 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1838 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1900 (((-665 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) $ (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-2487 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-2017 (((-1136 (-917 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2490 (($ $ (-890)) NIL)) (-1836 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1816 (((-1136 |#1|) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1904 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1834 (((-1136 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1828 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1906 (($ (-1224 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1224 |#1|) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-3804 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-3427 (((-890)) NIL (|has| |#2| (-360 |#1|)))) (-1825 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2515 (($ $ (-890)) NIL)) (-1821 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1819 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1823 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1815 (((-3 $ #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1903 (((-665 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1839 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1901 (((-665 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) $ (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-2488 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-2021 (((-1136 (-917 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2489 (($ $ (-890)) NIL)) (-1837 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1817 (((-1136 |#1|) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1905 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1835 (((-1136 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1829 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3576 (((-1124) $) NIL)) (-1820 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1822 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3577 (((-1086) $) NIL)) (-1827 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4142 ((|#1| $ (-535)) NIL (|has| |#2| (-411 |#1|)))) (-3558 (((-665 |#1|) (-1224 $)) NIL (|has| |#2| (-411 |#1|))) (((-1224 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) (-1224 $) (-1224 $)) NIL (|has| |#2| (-360 |#1|))) (((-1224 |#1|) $ (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-4313 (($ (-1224 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1224 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2009 (((-618 (-917 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-618 (-917 |#1|)) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-2677 (($ $ $) NIL)) (-1833 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4300 (((-835) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2123 (((-1224 $)) NIL (|has| |#2| (-411 |#1|)))) (-1818 (((-618 (-1224 |#1|))) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-2678 (($ $ $ $) NIL)) (-1831 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2871 (($ (-665 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2676 (($ $ $) NIL)) (-1832 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1826 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2979 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) 24)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-587 |#1| |#2|) (-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -4300 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-721 |#1|)) (T -587))
+((-4300 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-587 *3 *2)) (-4 *2 (-721 *3)))))
+(-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -4300 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|)))
+((-2887 (((-112) $ $) NIL)) (-1808 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) 33)) (-3943 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL) (($) NIL)) (-2296 (((-1230) $ (-1124) (-1124)) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-1124) |#1|) 43)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#1| #1="failed") (-1124) $) 46)) (-3879 (($) NIL T CONST)) (-1812 (($ $ (-1124)) 24)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067))))) (-3747 (((-3 |#1| #1#) (-1124) $) 47) (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (($ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (|has| $ (-6 -4336)))) (-3748 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (($ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067))))) (-4185 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067))))) (-1809 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) 32)) (-1632 ((|#1| $ (-1124) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-1124)) NIL)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336))) (((-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-2346 (($ $) 48)) (-1813 (($ (-381)) 22) (($ (-381) (-1124)) 21)) (-3888 (((-381) $) 34)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-1124) $) NIL (|has| (-1124) (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336))) (((-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (((-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067))))) (-2299 (((-1124) $) NIL (|has| (-1124) (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-2735 (((-618 (-1124)) $) 39)) (-2306 (((-112) (-1124) $) NIL)) (-1810 (((-1124) $) 35)) (-1326 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL)) (-2301 (((-618 (-1124)) $) NIL)) (-2302 (((-112) (-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 ((|#1| $) NIL (|has| (-1124) (-823)))) (-1395 (((-3 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) "failed") (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-618 (-286 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 37)) (-4142 ((|#1| $ (-1124) |#1|) NIL) ((|#1| $ (-1124)) 42)) (-1518 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL) (($) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (((-747) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (((-747) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL)) (-4300 (((-835) $) 20)) (-1811 (($ $) 25)) (-1328 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 19)) (-4299 (((-747) $) 41 (|has| $ (-6 -4336)))))
+(((-588 |#1|) (-13 (-358 (-381) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) (-1155 (-1124) |#1|) (-10 -8 (-6 -4336) (-15 -2346 ($ $)))) (-1067)) (T -588))
+((-2346 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1067)))))
+(-13 (-358 (-381) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) (-1155 (-1124) |#1|) (-10 -8 (-6 -4336) (-15 -2346 ($ $))))
+((-3579 (((-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) $) 15)) (-2735 (((-618 |#2|) $) 19)) (-2306 (((-112) |#2| $) 12)))
+(((-589 |#1| |#2| |#3|) (-10 -8 (-15 -2735 ((-618 |#2|) |#1|)) (-15 -2306 ((-112) |#2| |#1|)) (-15 -3579 ((-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|))) (-590 |#2| |#3|) (-1067) (-1067)) (T -589))
+NIL
+(-10 -8 (-15 -2735 ((-618 |#2|) |#1|)) (-15 -2306 ((-112) |#2| |#1|)) (-15 -3579 ((-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)))
+((-2887 (((-112) $ $) 19 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 55 (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| "failed") |#1| $) 61)) (-3879 (($) 7 T CONST)) (-1394 (($ $) 58 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 46 (|has| $ (-6 -4336))) (((-3 |#2| "failed") |#1| $) 62)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 54 (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 56 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 53 (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 52 (|has| $ (-6 -4336)))) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-2735 (((-618 |#1|) $) 63)) (-2306 (((-112) |#1| $) 64)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 39)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 40)) (-3577 (((-1086) $) 21 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 51)) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 41)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) 26 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 25 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 24 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 23 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-1518 (($) 49) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 48)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 31 (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 50)) (-4300 (((-835) $) 18 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 42)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-590 |#1| |#2|) (-138) (-1067) (-1067)) (T -590))
+((-2306 (*1 *2 *3 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-112)))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-618 *3)))) (-3747 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-2305 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))))
+(-13 (-223 (-2 (|:| -4203 |t#1|) (|:| -2184 |t#2|))) (-10 -8 (-15 -2306 ((-112) |t#1| $)) (-15 -2735 ((-618 |t#1|) $)) (-15 -3747 ((-3 |t#2| "failed") |t#1| $)) (-15 -2305 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-106 #1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((-101) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) ((-593 (-835)) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835)))) ((-149 #1#) . T) ((-594 (-524)) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))) ((-223 #1#) . T) ((-229 #1#) . T) ((-302 #1#) -12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) ((-481 #1#) . T) ((-505 #1# #1#) -12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) ((-1067) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) ((-1178) . T))
+((-2887 (((-112) $ $) NIL)) (-2307 (((-3 (-1142) "failed") $) 37)) (-1364 (((-1230) $ (-747)) 26)) (-3761 (((-747) $) 25)) (-3368 (((-113) $) 12)) (-3888 (((-1142) $) 20)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2308 (($ (-113) (-618 |#1|) (-747)) 30) (($ (-1142)) 31)) (-2952 (((-112) $ (-113)) 18) (((-112) $ (-1142)) 16)) (-2922 (((-747) $) 22)) (-3577 (((-1086) $) NIL)) (-4313 (((-861 (-535)) $) 77 (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) 84 (|has| |#1| (-594 (-861 (-371))))) (((-524) $) 69 (|has| |#1| (-594 (-524))))) (-4300 (((-835) $) 55)) (-2309 (((-618 |#1|) $) 24)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 41)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 42)))
+(((-591 |#1|) (-13 (-131) (-855 |#1|) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -3368 ((-113) $)) (-15 -2309 ((-618 |#1|) $)) (-15 -2922 ((-747) $)) (-15 -2308 ($ (-113) (-618 |#1|) (-747))) (-15 -2308 ($ (-1142))) (-15 -2307 ((-3 (-1142) "failed") $)) (-15 -2952 ((-112) $ (-113))) (-15 -2952 ((-112) $ (-1142))) (IF (|has| |#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|))) (-823)) (T -591))
+((-3888 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) (-2309 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) (-2308 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-618 *5)) (-5 *4 (-747)) (-4 *5 (-823)) (-5 *1 (-591 *5)))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) (-2307 (*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-591 *3)) (-4 *3 (-823)))) (-2952 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-823)))) (-2952 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-823)))))
+(-13 (-131) (-855 |#1|) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -3368 ((-113) $)) (-15 -2309 ((-618 |#1|) $)) (-15 -2922 ((-747) $)) (-15 -2308 ($ (-113) (-618 |#1|) (-747))) (-15 -2308 ($ (-1142))) (-15 -2307 ((-3 (-1142) "failed") $)) (-15 -2952 ((-112) $ (-113))) (-15 -2952 ((-112) $ (-1142))) (IF (|has| |#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|)))
+((-2310 (((-591 |#2|) |#1|) 15)) (-2311 (((-3 |#1| "failed") (-591 |#2|)) 19)))
+(((-592 |#1| |#2|) (-10 -7 (-15 -2310 ((-591 |#2|) |#1|)) (-15 -2311 ((-3 |#1| "failed") (-591 |#2|)))) (-823) (-823)) (T -592))
+((-2311 (*1 *2 *3) (|partial| -12 (-5 *3 (-591 *4)) (-4 *4 (-823)) (-4 *2 (-823)) (-5 *1 (-592 *2 *4)))) (-2310 (*1 *2 *3) (-12 (-5 *2 (-591 *4)) (-5 *1 (-592 *3 *4)) (-4 *3 (-823)) (-4 *4 (-823)))))
+(-10 -7 (-15 -2310 ((-591 |#2|) |#1|)) (-15 -2311 ((-3 |#1| "failed") (-591 |#2|))))
+((-4300 ((|#1| $) 6)))
+(((-593 |#1|) (-138) (-1178)) (T -593))
+((-4300 (*1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1178)))))
+(-13 (-10 -8 (-15 -4300 (|t#1| $))))
+((-4313 ((|#1| $) 6)))
+(((-594 |#1|) (-138) (-1178)) (T -594))
+((-4313 (*1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1178)))))
+(-13 (-10 -8 (-15 -4313 (|t#1| $))))
+((-2312 (((-3 (-1136 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-398 |#2|) |#2|)) 15) (((-3 (-1136 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 16)))
+(((-595 |#1| |#2|) (-10 -7 (-15 -2312 ((-3 (-1136 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -2312 ((-3 (-1136 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-398 |#2|) |#2|)))) (-13 (-145) (-27) (-1009 (-535)) (-1009 (-400 (-535)))) (-1200 |#1|)) (T -595))
+((-2312 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-145) (-27) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-1136 (-400 *6))) (-5 *1 (-595 *5 *6)) (-5 *3 (-400 *6)))) (-2312 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *2 (-1136 (-400 *5))) (-5 *1 (-595 *4 *5)) (-5 *3 (-400 *5)))))
+(-10 -7 (-15 -2312 ((-3 (-1136 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -2312 ((-3 (-1136 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-398 |#2|) |#2|))))
+((-2887 (((-112) $ $) NIL)) (-2314 (($) 11 T CONST)) (-2313 (($) 12 T CONST)) (-3178 (($ $ $) 24)) (-3659 (($ $) 22)) (-3576 (((-1124) $) NIL)) (-3177 (($ $ $) 25)) (-3577 (((-1086) $) NIL)) (-2315 (($) 10 T CONST)) (-3176 (($ $ $) 26)) (-4300 (((-835) $) 30)) (-3912 (((-112) $ (|[\|\|]| -2315)) 19) (((-112) $ (|[\|\|]| -2314)) 21) (((-112) $ (|[\|\|]| -2313)) 17)) (-3179 (($ $ $) 23)) (-3375 (((-112) $ $) 15)))
+(((-596) (-13 (-938) (-10 -8 (-15 -2315 ($) -4294) (-15 -2314 ($) -4294) (-15 -2313 ($) -4294) (-15 -3912 ((-112) $ (|[\|\|]| -2315))) (-15 -3912 ((-112) $ (|[\|\|]| -2314))) (-15 -3912 ((-112) $ (|[\|\|]| -2313)))))) (T -596))
+((-2315 (*1 *1) (-5 *1 (-596))) (-2314 (*1 *1) (-5 *1 (-596))) (-2313 (*1 *1) (-5 *1 (-596))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2315)) (-5 *2 (-112)) (-5 *1 (-596)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2314)) (-5 *2 (-112)) (-5 *1 (-596)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2313)) (-5 *2 (-112)) (-5 *1 (-596)))))
+(-13 (-938) (-10 -8 (-15 -2315 ($) -4294) (-15 -2314 ($) -4294) (-15 -2313 ($) -4294) (-15 -3912 ((-112) $ (|[\|\|]| -2315))) (-15 -3912 ((-112) $ (|[\|\|]| -2314))) (-15 -3912 ((-112) $ (|[\|\|]| -2313)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3969 (((-535) $) NIL (|has| |#1| (-821)))) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-3520 (((-112) $) NIL (|has| |#1| (-821)))) (-2493 (((-112) $) NIL)) (-3319 ((|#1| $) 13)) (-3521 (((-112) $) NIL (|has| |#1| (-821)))) (-3660 (($ $ $) NIL (|has| |#1| (-821)))) (-3661 (($ $ $) NIL (|has| |#1| (-821)))) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3318 ((|#3| $) 15)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) NIL)) (-3444 (((-747)) 20)) (-3725 (($ $) NIL (|has| |#1| (-821)))) (-2979 (($) NIL T CONST)) (-2985 (($) 12 T CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-821)))) (-4291 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-597 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (-15 -4291 ($ $ |#3|)) (-15 -4291 ($ |#1| |#3|)) (-15 -3319 (|#1| $)) (-15 -3318 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-703) |#2|)) (T -597))
+((-4291 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-703) *4)))) (-4291 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-597 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-703) *4)))) (-3319 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-597 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-703) *3)))) (-3318 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (-15 -4291 ($ $ |#3|)) (-15 -4291 ($ |#1| |#3|)) (-15 -3319 (|#1| $)) (-15 -3318 (|#3| $))))
+((-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) 10)))
+(((-598 |#1| |#2|) (-10 -8 (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-599 |#2|) (-1018)) (T -598))
+NIL
+(-10 -8 (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 34)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ |#1| $) 35)))
+(((-599 |#1|) (-138) (-1018)) (T -599))
+((-4300 (*1 *1 *2) (-12 (-4 *1 (-599 *2)) (-4 *2 (-1018)))))
+(-13 (-1018) (-624 |t#1|) (-10 -8 (-15 -4300 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2316 ((|#2| |#2| (-1142) (-1142)) 18)))
+(((-600 |#1| |#2|) (-10 -7 (-15 -2316 (|#2| |#2| (-1142) (-1142)))) (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-931) (-29 |#1|))) (T -600))
+((-2316 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-600 *4 *2)) (-4 *2 (-13 (-1164) (-931) (-29 *4))))))
+(-10 -7 (-15 -2316 (|#2| |#2| (-1142) (-1142))))
+((-2887 (((-112) $ $) 56)) (-3522 (((-112) $) 52)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-2317 ((|#1| $) 49)) (-1363 (((-3 $ "failed") $ $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4094 (((-2 (|:| -1879 $) (|:| -1878 (-400 |#2|))) (-400 |#2|)) 97 (|has| |#1| (-356)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 85) (((-3 |#2| #1#) $) 81)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) 24)) (-3804 (((-3 $ "failed") $) 75)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4114 (((-535) $) 19)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) 36)) (-3214 (($ |#1| (-535)) 21)) (-3508 ((|#1| $) 51)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) 87 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 100 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ $) 79)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-1699 (((-747) $) 99 (|has| |#1| (-356)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 98 (|has| |#1| (-356)))) (-4153 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-4290 (((-535) $) 34)) (-4313 (((-400 |#2|) $) 42)) (-4300 (((-835) $) 62) (($ (-535)) 32) (($ $) NIL) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) 31) (($ |#2|) 22)) (-4023 ((|#1| $ (-535)) 63)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) 29)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 9 T CONST)) (-2985 (($) 12 T CONST)) (-2990 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3375 (((-112) $ $) 17)) (-4180 (($ $) 46) (($ $ $) NIL)) (-4182 (($ $ $) 76)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 26) (($ $ $) 44)))
+(((-601 |#1| |#2|) (-13 (-225 |#2|) (-542) (-594 (-400 |#2|)) (-405 |#1|) (-1009 |#2|) (-10 -8 (-15 -4280 ((-112) $)) (-15 -4290 ((-535) $)) (-15 -4114 ((-535) $)) (-15 -4302 ($ $)) (-15 -3508 (|#1| $)) (-15 -2317 (|#1| $)) (-15 -4023 (|#1| $ (-535))) (-15 -3214 ($ |#1| (-535))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -4094 ((-2 (|:| -1879 $) (|:| -1878 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) (-542) (-1200 |#1|)) (T -601))
+((-4280 (*1 *2 *1) (-12 (-4 *3 (-542)) (-5 *2 (-112)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1200 *3)))) (-4290 (*1 *2 *1) (-12 (-4 *3 (-542)) (-5 *2 (-535)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1200 *3)))) (-4114 (*1 *2 *1) (-12 (-4 *3 (-542)) (-5 *2 (-535)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1200 *3)))) (-4302 (*1 *1 *1) (-12 (-4 *2 (-542)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1200 *2)))) (-3508 (*1 *2 *1) (-12 (-4 *2 (-542)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1200 *2)))) (-2317 (*1 *2 *1) (-12 (-4 *2 (-542)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1200 *2)))) (-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *2 (-542)) (-5 *1 (-601 *2 *4)) (-4 *4 (-1200 *2)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-4 *2 (-542)) (-5 *1 (-601 *2 *4)) (-4 *4 (-1200 *2)))) (-4094 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-542)) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| -1879 (-601 *4 *5)) (|:| -1878 (-400 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-400 *5)))))
+(-13 (-225 |#2|) (-542) (-594 (-400 |#2|)) (-405 |#1|) (-1009 |#2|) (-10 -8 (-15 -4280 ((-112) $)) (-15 -4290 ((-535) $)) (-15 -4114 ((-535) $)) (-15 -4302 ($ $)) (-15 -3508 (|#1| $)) (-15 -2317 (|#1| $)) (-15 -4023 (|#1| $ (-535))) (-15 -3214 ($ |#1| (-535))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -4094 ((-2 (|:| -1879 $) (|:| -1878 (-400 |#2|))) (-400 |#2|)))) |%noBranch|)))
+((-4028 (((-618 |#6|) (-618 |#4|) (-112)) 47)) (-2318 ((|#6| |#6|) 40)))
+(((-602 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2318 (|#6| |#6|)) (-15 -4028 ((-618 |#6|) (-618 |#4|) (-112)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|) (-1075 |#1| |#2| |#3| |#4|)) (T -602))
+((-4028 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 *10)) (-5 *1 (-602 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *10 (-1075 *5 *6 *7 *8)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-602 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *2 (-1075 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2318 (|#6| |#6|)) (-15 -4028 ((-618 |#6|) (-618 |#4|) (-112))))
+((-2319 (((-112) |#3| (-747) (-618 |#3|)) 23)) (-2320 (((-3 (-2 (|:| |polfac| (-618 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-618 (-1136 |#3|)))) "failed") |#3| (-618 (-1136 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2758 (-618 (-2 (|:| |irr| |#4|) (|:| -2478 (-535)))))) (-618 |#3|) (-618 |#1|) (-618 |#3|)) 55)))
+(((-603 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2319 ((-112) |#3| (-747) (-618 |#3|))) (-15 -2320 ((-3 (-2 (|:| |polfac| (-618 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-618 (-1136 |#3|)))) "failed") |#3| (-618 (-1136 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2758 (-618 (-2 (|:| |irr| |#4|) (|:| -2478 (-535)))))) (-618 |#3|) (-618 |#1|) (-618 |#3|)))) (-823) (-769) (-300) (-921 |#3| |#2| |#1|)) (T -603))
+((-2320 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2758 (-618 (-2 (|:| |irr| *10) (|:| -2478 (-535))))))) (-5 *6 (-618 *3)) (-5 *7 (-618 *8)) (-4 *8 (-823)) (-4 *3 (-300)) (-4 *10 (-921 *3 *9 *8)) (-4 *9 (-769)) (-5 *2 (-2 (|:| |polfac| (-618 *10)) (|:| |correct| *3) (|:| |corrfact| (-618 (-1136 *3))))) (-5 *1 (-603 *8 *9 *3 *10)) (-5 *4 (-618 (-1136 *3))))) (-2319 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-747)) (-5 *5 (-618 *3)) (-4 *3 (-300)) (-4 *6 (-823)) (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-603 *6 *7 *3 *8)) (-4 *8 (-921 *3 *7 *6)))))
+(-10 -7 (-15 -2319 ((-112) |#3| (-747) (-618 |#3|))) (-15 -2320 ((-3 (-2 (|:| |polfac| (-618 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-618 (-1136 |#3|)))) "failed") |#3| (-618 (-1136 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2758 (-618 (-2 (|:| |irr| |#4|) (|:| -2478 (-535)))))) (-618 |#3|) (-618 |#1|) (-618 |#3|))))
+((-2887 (((-112) $ $) NIL)) (-3865 (((-1101) $) 11)) (-3866 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-604) (-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $))))) (T -604))
+((-3866 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-604)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-604)))))
+(-13 (-1049) (-10 -8 (-15 -3866 ((-1101) $)) (-15 -3865 ((-1101) $))))
+((-2887 (((-112) $ $) NIL)) (-4277 (((-618 |#1|) $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-4279 (($ $) 67)) (-4285 (((-640 |#1| |#2|) $) 52)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 70)) (-2321 (((-618 (-286 |#2|)) $ $) 33)) (-3577 (((-1086) $) NIL)) (-4286 (($ (-640 |#1| |#2|)) 48)) (-3330 (($ $ $) NIL)) (-2677 (($ $ $) NIL)) (-4300 (((-835) $) 58) (((-1240 |#1| |#2|) $) NIL) (((-1245 |#1| |#2|) $) 66)) (-2985 (($) 53 T CONST)) (-2322 (((-618 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $) 31)) (-2323 (((-618 (-640 |#1| |#2|)) (-618 |#1|)) 65)) (-2984 (((-618 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $) 37)) (-3375 (((-112) $ $) 54)) (-4291 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ $ $) 44)))
+(((-605 |#1| |#2| |#3|) (-13 (-465) (-10 -8 (-15 -4286 ($ (-640 |#1| |#2|))) (-15 -4285 ((-640 |#1| |#2|) $)) (-15 -2984 ((-618 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $)) (-15 -4300 ((-1240 |#1| |#2|) $)) (-15 -4300 ((-1245 |#1| |#2|) $)) (-15 -4279 ($ $)) (-15 -4277 ((-618 |#1|) $)) (-15 -2323 ((-618 (-640 |#1| |#2|)) (-618 |#1|))) (-15 -2322 ((-618 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $)) (-15 -2321 ((-618 (-286 |#2|)) $ $)))) (-823) (-13 (-170) (-694 (-400 (-535)))) (-890)) (T -605))
+((-4286 (*1 *1 *2) (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-5 *1 (-605 *3 *4 *5)) (-14 *5 (-890)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-640 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |k| (-864 *3)) (|:| |c| *4)))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) (-4279 (*1 *1 *1) (-12 (-5 *1 (-605 *2 *3 *4)) (-4 *2 (-823)) (-4 *3 (-13 (-170) (-694 (-400 (-535))))) (-14 *4 (-890)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-823)) (-5 *2 (-618 (-640 *4 *5))) (-5 *1 (-605 *4 *5 *6)) (-4 *5 (-13 (-170) (-694 (-400 (-535))))) (-14 *6 (-890)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |k| (-648 *3)) (|:| |c| *4)))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))) (-2321 (*1 *2 *1 *1) (-12 (-5 *2 (-618 (-286 *4))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))))
+(-13 (-465) (-10 -8 (-15 -4286 ($ (-640 |#1| |#2|))) (-15 -4285 ((-640 |#1| |#2|) $)) (-15 -2984 ((-618 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $)) (-15 -4300 ((-1240 |#1| |#2|) $)) (-15 -4300 ((-1245 |#1| |#2|) $)) (-15 -4279 ($ $)) (-15 -4277 ((-618 |#1|) $)) (-15 -2323 ((-618 (-640 |#1| |#2|)) (-618 |#1|))) (-15 -2322 ((-618 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $)) (-15 -2321 ((-618 (-286 |#2|)) $ $))))
+((-4028 (((-618 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-618 (-756 |#1| (-836 |#2|))) (-112)) 72) (((-618 (-1015 |#1| |#2|)) (-618 (-756 |#1| (-836 |#2|))) (-112)) 58)) (-2324 (((-112) (-618 (-756 |#1| (-836 |#2|)))) 23)) (-2328 (((-618 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-618 (-756 |#1| (-836 |#2|))) (-112)) 71)) (-2327 (((-618 (-1015 |#1| |#2|)) (-618 (-756 |#1| (-836 |#2|))) (-112)) 57)) (-2326 (((-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|)))) 27)) (-2325 (((-3 (-618 (-756 |#1| (-836 |#2|))) "failed") (-618 (-756 |#1| (-836 |#2|)))) 26)))
+(((-606 |#1| |#2|) (-10 -7 (-15 -2324 ((-112) (-618 (-756 |#1| (-836 |#2|))))) (-15 -2325 ((-3 (-618 (-756 |#1| (-836 |#2|))) "failed") (-618 (-756 |#1| (-836 |#2|))))) (-15 -2326 ((-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|))))) (-15 -2327 ((-618 (-1015 |#1| |#2|)) (-618 (-756 |#1| (-836 |#2|))) (-112))) (-15 -2328 ((-618 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-618 (-756 |#1| (-836 |#2|))) (-112))) (-15 -4028 ((-618 (-1015 |#1| |#2|)) (-618 (-756 |#1| (-836 |#2|))) (-112))) (-15 -4028 ((-618 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-618 (-756 |#1| (-836 |#2|))) (-112)))) (-444) (-618 (-1142))) (T -606))
+((-4028 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1112 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6))))) (-5 *1 (-606 *5 *6)))) (-4028 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-606 *5 *6)))) (-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1112 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6))))) (-5 *1 (-606 *5 *6)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-606 *5 *6)))) (-2326 (*1 *2 *2) (-12 (-5 *2 (-618 (-756 *3 (-836 *4)))) (-4 *3 (-444)) (-14 *4 (-618 (-1142))) (-5 *1 (-606 *3 *4)))) (-2325 (*1 *2 *2) (|partial| -12 (-5 *2 (-618 (-756 *3 (-836 *4)))) (-4 *3 (-444)) (-14 *4 (-618 (-1142))) (-5 *1 (-606 *3 *4)))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-618 (-756 *4 (-836 *5)))) (-4 *4 (-444)) (-14 *5 (-618 (-1142))) (-5 *2 (-112)) (-5 *1 (-606 *4 *5)))))
+(-10 -7 (-15 -2324 ((-112) (-618 (-756 |#1| (-836 |#2|))))) (-15 -2325 ((-3 (-618 (-756 |#1| (-836 |#2|))) "failed") (-618 (-756 |#1| (-836 |#2|))))) (-15 -2326 ((-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|))))) (-15 -2327 ((-618 (-1015 |#1| |#2|)) (-618 (-756 |#1| (-836 |#2|))) (-112))) (-15 -2328 ((-618 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-618 (-756 |#1| (-836 |#2|))) (-112))) (-15 -4028 ((-618 (-1015 |#1| |#2|)) (-618 (-756 |#1| (-836 |#2|))) (-112))) (-15 -4028 ((-618 (-1112 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-618 (-756 |#1| (-836 |#2|))) (-112))))
+((-3368 (((-113) (-113)) 83)) (-2332 ((|#2| |#2|) 30)) (-3153 ((|#2| |#2| (-1058 |#2|)) 79) ((|#2| |#2| (-1142)) 52)) (-2330 ((|#2| |#2|) 29)) (-2331 ((|#2| |#2|) 31)) (-2329 (((-112) (-113)) 34)) (-2334 ((|#2| |#2|) 26)) (-2335 ((|#2| |#2|) 28)) (-2333 ((|#2| |#2|) 27)))
+(((-607 |#1| |#2|) (-10 -7 (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -2335 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -2332 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2331 (|#2| |#2|)) (-15 -3153 (|#2| |#2| (-1142))) (-15 -3153 (|#2| |#2| (-1058 |#2|)))) (-13 (-823) (-542)) (-13 (-414 |#1|) (-973) (-1164))) (T -607))
+((-3153 (*1 *2 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-13 (-414 *4) (-973) (-1164))) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-607 *4 *2)))) (-3153 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-607 *4 *2)) (-4 *2 (-13 (-414 *4) (-973) (-1164))))) (-2331 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) (-4 *2 (-13 (-414 *3) (-973) (-1164))))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) (-4 *2 (-13 (-414 *3) (-973) (-1164))))) (-2332 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) (-4 *2 (-13 (-414 *3) (-973) (-1164))))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) (-4 *2 (-13 (-414 *3) (-973) (-1164))))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) (-4 *2 (-13 (-414 *3) (-973) (-1164))))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2)) (-4 *2 (-13 (-414 *3) (-973) (-1164))))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *4)) (-4 *4 (-13 (-414 *3) (-973) (-1164))))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-607 *4 *5)) (-4 *5 (-13 (-414 *4) (-973) (-1164))))))
+(-10 -7 (-15 -2329 ((-112) (-113))) (-15 -3368 ((-113) (-113))) (-15 -2335 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -2332 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2331 (|#2| |#2|)) (-15 -3153 (|#2| |#2| (-1142))) (-15 -3153 (|#2| |#2| (-1058 |#2|))))
+((-3829 (($ $) 38)) (-3985 (($ $) 21)) (-3827 (($ $) 37)) (-3984 (($ $) 22)) (-3831 (($ $) 36)) (-3983 (($ $) 23)) (-3973 (($) 48)) (-4285 (($ $) 45)) (-2332 (($ $) 17)) (-3153 (($ $ (-1058 $)) 7) (($ $ (-1142)) 6)) (-4286 (($ $) 46)) (-2330 (($ $) 15)) (-2331 (($ $) 16)) (-3832 (($ $) 35)) (-3982 (($ $) 24)) (-3830 (($ $) 34)) (-3981 (($ $) 25)) (-3828 (($ $) 33)) (-3980 (($ $) 26)) (-3835 (($ $) 44)) (-3823 (($ $) 32)) (-3833 (($ $) 43)) (-3821 (($ $) 31)) (-3837 (($ $) 42)) (-3825 (($ $) 30)) (-3838 (($ $) 41)) (-3826 (($ $) 29)) (-3836 (($ $) 40)) (-3824 (($ $) 28)) (-3834 (($ $) 39)) (-3822 (($ $) 27)) (-2334 (($ $) 19)) (-2335 (($ $) 20)) (-2333 (($ $) 18)) (** (($ $ $) 47)))
+(((-608) (-138)) (T -608))
+((-2335 (*1 *1 *1) (-4 *1 (-608))) (-2334 (*1 *1 *1) (-4 *1 (-608))) (-2333 (*1 *1 *1) (-4 *1 (-608))) (-2332 (*1 *1 *1) (-4 *1 (-608))) (-2331 (*1 *1 *1) (-4 *1 (-608))) (-2330 (*1 *1 *1) (-4 *1 (-608))))
+(-13 (-931) (-1164) (-10 -8 (-15 -2335 ($ $)) (-15 -2334 ($ $)) (-15 -2333 ($ $)) (-15 -2332 ($ $)) (-15 -2331 ($ $)) (-15 -2330 ($ $))))
+(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-931) . T) ((-1164) . T) ((-1167) . T))
+((-2345 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 53)) (-2338 (((-618 (-241 |#1| |#2|)) (-618 (-473 |#1| |#2|))) 68)) (-2339 (((-473 |#1| |#2|) (-618 (-473 |#1| |#2|)) (-836 |#1|)) 70) (((-473 |#1| |#2|) (-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)) (-836 |#1|)) 69)) (-2336 (((-2 (|:| |gblist| (-618 (-241 |#1| |#2|))) (|:| |gvlist| (-618 (-535)))) (-618 (-473 |#1| |#2|))) 108)) (-2343 (((-618 (-473 |#1| |#2|)) (-836 |#1|) (-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|))) 83)) (-2337 (((-2 (|:| |glbase| (-618 (-241 |#1| |#2|))) (|:| |glval| (-618 (-535)))) (-618 (-241 |#1| |#2|))) 118)) (-2341 (((-1224 |#2|) (-473 |#1| |#2|) (-618 (-473 |#1| |#2|))) 58)) (-2340 (((-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|))) 41)) (-2344 (((-241 |#1| |#2|) (-241 |#1| |#2|) (-618 (-241 |#1| |#2|))) 50)) (-2342 (((-241 |#1| |#2|) (-618 |#2|) (-241 |#1| |#2|) (-618 (-241 |#1| |#2|))) 91)))
+(((-609 |#1| |#2|) (-10 -7 (-15 -2336 ((-2 (|:| |gblist| (-618 (-241 |#1| |#2|))) (|:| |gvlist| (-618 (-535)))) (-618 (-473 |#1| |#2|)))) (-15 -2337 ((-2 (|:| |glbase| (-618 (-241 |#1| |#2|))) (|:| |glval| (-618 (-535)))) (-618 (-241 |#1| |#2|)))) (-15 -2338 ((-618 (-241 |#1| |#2|)) (-618 (-473 |#1| |#2|)))) (-15 -2339 ((-473 |#1| |#2|) (-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -2339 ((-473 |#1| |#2|) (-618 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -2340 ((-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)))) (-15 -2341 ((-1224 |#2|) (-473 |#1| |#2|) (-618 (-473 |#1| |#2|)))) (-15 -2342 ((-241 |#1| |#2|) (-618 |#2|) (-241 |#1| |#2|) (-618 (-241 |#1| |#2|)))) (-15 -2343 ((-618 (-473 |#1| |#2|)) (-836 |#1|) (-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)))) (-15 -2344 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-618 (-241 |#1| |#2|)))) (-15 -2345 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) (-618 (-1142)) (-444)) (T -609))
+((-2345 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *2 (-473 *4 *5)) (-5 *1 (-609 *4 *5)))) (-2344 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))) (-2343 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-618 (-473 *4 *5))) (-5 *3 (-836 *4)) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))) (-2342 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 (-241 *5 *6))) (-4 *6 (-444)) (-5 *2 (-241 *5 *6)) (-14 *5 (-618 (-1142))) (-5 *1 (-609 *5 *6)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) (-14 *5 (-618 (-1142))) (-4 *6 (-444)) (-5 *2 (-1224 *6)) (-5 *1 (-609 *5 *6)))) (-2340 (*1 *2 *2) (-12 (-5 *2 (-618 (-473 *3 *4))) (-14 *3 (-618 (-1142))) (-4 *4 (-444)) (-5 *1 (-609 *3 *4)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-473 *5 *6))) (-5 *4 (-836 *5)) (-14 *5 (-618 (-1142))) (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6)) (-4 *6 (-444)))) (-2339 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-618 (-473 *5 *6))) (-5 *4 (-836 *5)) (-14 *5 (-618 (-1142))) (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6)) (-4 *6 (-444)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-618 (-473 *4 *5))) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *2 (-618 (-241 *4 *5))) (-5 *1 (-609 *4 *5)))) (-2337 (*1 *2 *3) (-12 (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |glbase| (-618 (-241 *4 *5))) (|:| |glval| (-618 (-535))))) (-5 *1 (-609 *4 *5)) (-5 *3 (-618 (-241 *4 *5))))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-618 (-473 *4 *5))) (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |gblist| (-618 (-241 *4 *5))) (|:| |gvlist| (-618 (-535))))) (-5 *1 (-609 *4 *5)))))
+(-10 -7 (-15 -2336 ((-2 (|:| |gblist| (-618 (-241 |#1| |#2|))) (|:| |gvlist| (-618 (-535)))) (-618 (-473 |#1| |#2|)))) (-15 -2337 ((-2 (|:| |glbase| (-618 (-241 |#1| |#2|))) (|:| |glval| (-618 (-535)))) (-618 (-241 |#1| |#2|)))) (-15 -2338 ((-618 (-241 |#1| |#2|)) (-618 (-473 |#1| |#2|)))) (-15 -2339 ((-473 |#1| |#2|) (-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -2339 ((-473 |#1| |#2|) (-618 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -2340 ((-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)))) (-15 -2341 ((-1224 |#2|) (-473 |#1| |#2|) (-618 (-473 |#1| |#2|)))) (-15 -2342 ((-241 |#1| |#2|) (-618 |#2|) (-241 |#1| |#2|) (-618 (-241 |#1| |#2|)))) (-15 -2343 ((-618 (-473 |#1| |#2|)) (-836 |#1|) (-618 (-473 |#1| |#2|)) (-618 (-473 |#1| |#2|)))) (-15 -2344 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-618 (-241 |#1| |#2|)))) (-15 -2345 ((-473 |#1| |#2|) (-241 |#1| |#2|))))
+((-2887 (((-112) $ $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) NIL)) (-2296 (((-1230) $ (-1124) (-1124)) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 (((-51) $ (-1124) (-51)) 16) (((-51) $ (-1142) (-51)) 17)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 (-51) #1="failed") (-1124) $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067))))) (-3747 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-3 (-51) #1#) (-1124) $) NIL)) (-3748 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $ (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (((-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $ (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-1632 (((-51) $ (-1124) (-51)) NIL (|has| $ (-6 -4337)))) (-3431 (((-51) $ (-1124)) NIL)) (-2063 (((-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-618 (-51)) $) NIL (|has| $ (-6 -4336)))) (-2346 (($ $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-1124) $) NIL (|has| (-1124) (-823)))) (-2502 (((-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-618 (-51)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067))))) (-2299 (((-1124) $) NIL (|has| (-1124) (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2347 (($ (-381)) 9)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067))))) (-2735 (((-618 (-1124)) $) NIL)) (-2306 (((-112) (-1124) $) NIL)) (-1326 (((-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL)) (-3953 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL)) (-2301 (((-618 (-1124)) $) NIL)) (-2302 (((-112) (-1124) $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067))))) (-4143 (((-51) $) NIL (|has| (-1124) (-823)))) (-1395 (((-3 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) "failed") (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL)) (-2297 (($ $ (-51)) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (($ $ (-286 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (($ $ (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (($ $ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (($ $ (-618 (-51)) (-618 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-286 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-618 (-286 (-51)))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067))))) (-2303 (((-618 (-51)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 (((-51) $ (-1124)) 14) (((-51) $ (-1124) (-51)) NIL) (((-51) $ (-1142)) 15)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067)))) (((-747) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067)))) (((-747) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-593 (-835))) (|has| (-51) (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 (-51))) (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-610) (-13 (-1155 (-1124) (-51)) (-10 -8 (-15 -2347 ($ (-381))) (-15 -2346 ($ $)) (-15 -4142 ((-51) $ (-1142))) (-15 -4130 ((-51) $ (-1142) (-51)))))) (T -610))
+((-2347 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-610)))) (-2346 (*1 *1 *1) (-5 *1 (-610))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-51)) (-5 *1 (-610)))) (-4130 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1142)) (-5 *1 (-610)))))
+(-13 (-1155 (-1124) (-51)) (-10 -8 (-15 -2347 ($ (-381))) (-15 -2346 ($ $)) (-15 -4142 ((-51) $ (-1142))) (-15 -4130 ((-51) $ (-1142) (-51)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3557 (((-1224 (-665 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1224 (-665 |#1|)) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1840 (((-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-3879 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1814 (((-3 $ #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1902 (((-665 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1838 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1900 (((-665 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) $ (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-2487 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-2017 (((-1136 (-917 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2490 (($ $ (-890)) NIL)) (-1836 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1816 (((-1136 |#1|) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1904 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1834 (((-1136 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1828 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1906 (($ (-1224 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1224 |#1|) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-3804 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-3427 (((-890)) NIL (|has| |#2| (-360 |#1|)))) (-1825 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2515 (($ $ (-890)) NIL)) (-1821 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1819 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1823 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1815 (((-3 $ #1#)) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1903 (((-665 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1839 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1901 (((-665 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) $ (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-2488 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-2021 (((-1136 (-917 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2489 (($ $ (-890)) NIL)) (-1837 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1817 (((-1136 |#1|) $) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-1905 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-1835 (((-1136 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1829 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3576 (((-1124) $) NIL)) (-1820 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1822 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3577 (((-1086) $) NIL)) (-1827 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4142 ((|#1| $ (-535)) NIL (|has| |#2| (-411 |#1|)))) (-3558 (((-665 |#1|) (-1224 $)) NIL (|has| |#2| (-411 |#1|))) (((-1224 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-665 |#1|) (-1224 $) (-1224 $)) NIL (|has| |#2| (-360 |#1|))) (((-1224 |#1|) $ (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-4313 (($ (-1224 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1224 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2009 (((-618 (-917 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-618 (-917 |#1|)) (-1224 $)) NIL (|has| |#2| (-360 |#1|)))) (-2677 (($ $ $) NIL)) (-1833 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4300 (((-835) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2123 (((-1224 $)) NIL (|has| |#2| (-411 |#1|)))) (-1818 (((-618 (-1224 |#1|))) NIL (-3874 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-542))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-542)))))) (-2678 (($ $ $ $) NIL)) (-1831 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2871 (($ (-665 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2676 (($ $ $) NIL)) (-1832 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1826 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2979 (($) 15 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) 17)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-611 |#1| |#2|) (-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -4300 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-721 |#1|)) (T -611))
+((-4300 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-611 *3 *2)) (-4 *2 (-721 *3)))))
+(-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -4300 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|)))
+((-4291 (($ $ |#2|) 10)))
+(((-612 |#1| |#2|) (-10 -8 (-15 -4291 (|#1| |#1| |#2|))) (-613 |#2|) (-170)) (T -612))
+NIL
+(-10 -8 (-15 -4291 (|#1| |#1| |#2|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3867 (($ $ $) 29)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 28 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-613 |#1|) (-138) (-170)) (T -613))
+((-3867 (*1 *1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-170)))) (-4291 (*1 *1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-170)) (-4 *2 (-356)))))
+(-13 (-694 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3867 ($ $ $)) (IF (|has| |t#1| (-356)) (-15 -4291 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-2349 (((-3 (-815 |#2|) #1="failed") |#2| (-286 |#2|) (-1124)) 82) (((-3 (-815 |#2|) (-2 (|:| |leftHandLimit| (-3 (-815 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-815 |#2|) #1#))) "failed") |#2| (-286 (-815 |#2|))) 104)) (-2348 (((-3 (-808 |#2|) "failed") |#2| (-286 (-808 |#2|))) 109)))
+(((-614 |#1| |#2|) (-10 -7 (-15 -2349 ((-3 (-815 |#2|) (-2 (|:| |leftHandLimit| (-3 (-815 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-815 |#2|) #1#))) "failed") |#2| (-286 (-815 |#2|)))) (-15 -2348 ((-3 (-808 |#2|) "failed") |#2| (-286 (-808 |#2|)))) (-15 -2349 ((-3 (-815 |#2|) #1#) |#2| (-286 |#2|) (-1124)))) (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -614))
+((-2349 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-286 *3)) (-5 *5 (-1124)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-815 *3)) (-5 *1 (-614 *6 *3)))) (-2348 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-286 (-808 *3))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-808 *3)) (-5 *1 (-614 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))) (-2349 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-815 *3))) (-4 *3 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-3 (-815 *3) (-2 (|:| |leftHandLimit| (-3 (-815 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-815 *3) #1#))) "failed")) (-5 *1 (-614 *5 *3)))))
+(-10 -7 (-15 -2349 ((-3 (-815 |#2|) (-2 (|:| |leftHandLimit| (-3 (-815 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-815 |#2|) #1#))) "failed") |#2| (-286 (-815 |#2|)))) (-15 -2348 ((-3 (-808 |#2|) "failed") |#2| (-286 (-808 |#2|)))) (-15 -2349 ((-3 (-815 |#2|) #1#) |#2| (-286 |#2|) (-1124))))
+((-2349 (((-3 (-815 (-400 (-917 |#1|))) #1="failed") (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))) (-1124)) 80) (((-3 (-815 (-400 (-917 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#))) #2="failed") (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|)))) 20) (((-3 (-815 (-400 (-917 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#))) #2#) (-400 (-917 |#1|)) (-286 (-815 (-917 |#1|)))) 35)) (-2348 (((-808 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|)))) 23) (((-808 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-286 (-808 (-917 |#1|)))) 43)))
+(((-615 |#1|) (-10 -7 (-15 -2349 ((-3 (-815 (-400 (-917 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#))) #2="failed") (-400 (-917 |#1|)) (-286 (-815 (-917 |#1|))))) (-15 -2349 ((-3 (-815 (-400 (-917 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#))) #2#) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))))) (-15 -2348 ((-808 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-286 (-808 (-917 |#1|))))) (-15 -2348 ((-808 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))))) (-15 -2349 ((-3 (-815 (-400 (-917 |#1|))) #1#) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))) (-1124)))) (-444)) (T -615))
+((-2349 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-286 (-400 (-917 *6)))) (-5 *5 (-1124)) (-5 *3 (-400 (-917 *6))) (-4 *6 (-444)) (-5 *2 (-815 *3)) (-5 *1 (-615 *6)))) (-2348 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-400 (-917 *5)))) (-5 *3 (-400 (-917 *5))) (-4 *5 (-444)) (-5 *2 (-808 *3)) (-5 *1 (-615 *5)))) (-2348 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-808 (-917 *5)))) (-4 *5 (-444)) (-5 *2 (-808 (-400 (-917 *5)))) (-5 *1 (-615 *5)) (-5 *3 (-400 (-917 *5))))) (-2349 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-400 (-917 *5)))) (-5 *3 (-400 (-917 *5))) (-4 *5 (-444)) (-5 *2 (-3 (-815 *3) (-2 (|:| |leftHandLimit| (-3 (-815 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-815 *3) #1#))) #2="failed")) (-5 *1 (-615 *5)))) (-2349 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-815 (-917 *5)))) (-4 *5 (-444)) (-5 *2 (-3 (-815 (-400 (-917 *5))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 *5))) #1#)) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 *5))) #1#))) #2#)) (-5 *1 (-615 *5)) (-5 *3 (-400 (-917 *5))))))
+(-10 -7 (-15 -2349 ((-3 (-815 (-400 (-917 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#))) #2="failed") (-400 (-917 |#1|)) (-286 (-815 (-917 |#1|))))) (-15 -2349 ((-3 (-815 (-400 (-917 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-815 (-400 (-917 |#1|))) #1#))) #2#) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))))) (-15 -2348 ((-808 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-286 (-808 (-917 |#1|))))) (-15 -2348 ((-808 (-400 (-917 |#1|))) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))))) (-15 -2349 ((-3 (-815 (-400 (-917 |#1|))) #1#) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))) (-1124))))
+((-2352 (((-3 (-1224 (-400 |#1|)) "failed") (-1224 |#2|) |#2|) 57 (-3659 (|has| |#1| (-356)))) (((-3 (-1224 |#1|) "failed") (-1224 |#2|) |#2|) 42 (|has| |#1| (-356)))) (-2350 (((-112) (-1224 |#2|)) 30)) (-2351 (((-3 (-1224 |#1|) "failed") (-1224 |#2|)) 33)))
+(((-616 |#1| |#2|) (-10 -7 (-15 -2350 ((-112) (-1224 |#2|))) (-15 -2351 ((-3 (-1224 |#1|) "failed") (-1224 |#2|))) (IF (|has| |#1| (-356)) (-15 -2352 ((-3 (-1224 |#1|) "failed") (-1224 |#2|) |#2|)) (-15 -2352 ((-3 (-1224 (-400 |#1|)) "failed") (-1224 |#2|) |#2|)))) (-542) (-617 |#1|)) (T -616))
+((-2352 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 *5)) (-3659 (-4 *5 (-356))) (-4 *5 (-542)) (-5 *2 (-1224 (-400 *5))) (-5 *1 (-616 *5 *4)))) (-2352 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 *5)) (-4 *5 (-356)) (-4 *5 (-542)) (-5 *2 (-1224 *5)) (-5 *1 (-616 *5 *4)))) (-2351 (*1 *2 *3) (|partial| -12 (-5 *3 (-1224 *5)) (-4 *5 (-617 *4)) (-4 *4 (-542)) (-5 *2 (-1224 *4)) (-5 *1 (-616 *4 *5)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-1224 *5)) (-4 *5 (-617 *4)) (-4 *4 (-542)) (-5 *2 (-112)) (-5 *1 (-616 *4 *5)))))
+(-10 -7 (-15 -2350 ((-112) (-1224 |#2|))) (-15 -2351 ((-3 (-1224 |#1|) "failed") (-1224 |#2|))) (IF (|has| |#1| (-356)) (-15 -2352 ((-3 (-1224 |#1|) "failed") (-1224 |#2|) |#2|)) (-15 -2352 ((-3 (-1224 (-400 |#1|)) "failed") (-1224 |#2|) |#2|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2353 (((-665 |#1|) (-665 $)) 34) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 33)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-617 |#1|) (-138) (-1018)) (T -617))
-((-1698 (*1 *2 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-617 *4)) (-4 *4 (-1018)) (-5 *2 (-665 *4)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *1)) (-5 *4 (-1225 *1)) (-4 *1 (-617 *5)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -1859 (-665 *5)) (|:| |vec| (-1225 *5)))))))
-(-13 (-1018) (-10 -8 (-15 -1698 ((-665 |t#1|) (-665 $))) (-15 -1698 ((-2 (|:| -1859 (-665 |t#1|)) (|:| |vec| (-1225 |t#1|))) (-665 $) (-1225 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-2474 ((|#2| (-621 |#1|) (-621 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-621 |#1|) (-621 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|) |#2|) 17) ((|#2| (-621 |#1|) (-621 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|)) 12)))
-(((-618 |#1| |#2|) (-10 -7 (-15 -2474 ((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|))) (-15 -2474 (|#2| (-621 |#1|) (-621 |#2|) |#1|)) (-15 -2474 ((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|) |#2|)) (-15 -2474 (|#2| (-621 |#1|) (-621 |#2|) |#1| |#2|)) (-15 -2474 ((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|) (-1 |#2| |#1|))) (-15 -2474 (|#2| (-621 |#1|) (-621 |#2|) |#1| (-1 |#2| |#1|)))) (-1066) (-1179)) (T -618))
-((-2474 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1066)) (-4 *2 (-1179)) (-5 *1 (-618 *5 *2)))) (-2474 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-621 *5)) (-5 *4 (-621 *6)) (-4 *5 (-1066)) (-4 *6 (-1179)) (-5 *1 (-618 *5 *6)))) (-2474 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *2)) (-4 *5 (-1066)) (-4 *2 (-1179)) (-5 *1 (-618 *5 *2)))) (-2474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 *5)) (-4 *6 (-1066)) (-4 *5 (-1179)) (-5 *2 (-1 *5 *6)) (-5 *1 (-618 *6 *5)))) (-2474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *2)) (-4 *5 (-1066)) (-4 *2 (-1179)) (-5 *1 (-618 *5 *2)))) (-2474 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *6)) (-4 *5 (-1066)) (-4 *6 (-1179)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *6)))))
-(-10 -7 (-15 -2474 ((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|))) (-15 -2474 (|#2| (-621 |#1|) (-621 |#2|) |#1|)) (-15 -2474 ((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|) |#2|)) (-15 -2474 (|#2| (-621 |#1|) (-621 |#2|) |#1| |#2|)) (-15 -2474 ((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|) (-1 |#2| |#1|))) (-15 -2474 (|#2| (-621 |#1|) (-621 |#2|) |#1| (-1 |#2| |#1|))))
-((-3076 (((-621 |#2|) (-1 |#2| |#1| |#2|) (-621 |#1|) |#2|) 16)) (-2558 ((|#2| (-1 |#2| |#1| |#2|) (-621 |#1|) |#2|) 18)) (-2796 (((-621 |#2|) (-1 |#2| |#1|) (-621 |#1|)) 13)))
-(((-619 |#1| |#2|) (-10 -7 (-15 -3076 ((-621 |#2|) (-1 |#2| |#1| |#2|) (-621 |#1|) |#2|)) (-15 -2558 (|#2| (-1 |#2| |#1| |#2|) (-621 |#1|) |#2|)) (-15 -2796 ((-621 |#2|) (-1 |#2| |#1|) (-621 |#1|)))) (-1179) (-1179)) (T -619))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-621 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-621 *6)) (-5 *1 (-619 *5 *6)))) (-2558 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-621 *5)) (-4 *5 (-1179)) (-4 *2 (-1179)) (-5 *1 (-619 *5 *2)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-621 *6)) (-4 *6 (-1179)) (-4 *5 (-1179)) (-5 *2 (-621 *5)) (-5 *1 (-619 *6 *5)))))
-(-10 -7 (-15 -3076 ((-621 |#2|) (-1 |#2| |#1| |#2|) (-621 |#1|) |#2|)) (-15 -2558 (|#2| (-1 |#2| |#1| |#2|) (-621 |#1|) |#2|)) (-15 -2796 ((-621 |#2|) (-1 |#2| |#1|) (-621 |#1|))))
-((-2796 (((-621 |#3|) (-1 |#3| |#1| |#2|) (-621 |#1|) (-621 |#2|)) 13)))
-(((-620 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-621 |#3|) (-1 |#3| |#1| |#2|) (-621 |#1|) (-621 |#2|)))) (-1179) (-1179) (-1179)) (T -620))
-((-2796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-621 *6)) (-5 *5 (-621 *7)) (-4 *6 (-1179)) (-4 *7 (-1179)) (-4 *8 (-1179)) (-5 *2 (-621 *8)) (-5 *1 (-620 *6 *7 *8)))))
-(-10 -7 (-15 -2796 ((-621 |#3|) (-1 |#3| |#1| |#2|) (-621 |#1|) (-621 |#2|))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-4160 ((|#1| $) NIL)) (-2838 ((|#1| $) NIL)) (-1342 (($ $) NIL)) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-3637 (($ $ (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) $) NIL (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4106 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-3193 (($ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-3751 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-1362 (($ $ $) NIL (|has| $ (-6 -4337)))) (-4277 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-2627 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4337))) (($ $ "rest" $) NIL (|has| $ (-6 -4337))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) NIL (|has| $ (-6 -4337)))) (-3582 (($ $ $) 32 (|has| |#1| (-1066)))) (-3568 (($ $ $) 34 (|has| |#1| (-1066)))) (-3557 (($ $ $) 37 (|has| |#1| (-1066)))) (-3069 (($ (-1 (-112) |#1|) $) NIL)) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2828 ((|#1| $) NIL)) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-3655 (($ $) NIL) (($ $ (-747)) NIL)) (-2992 (($ $) NIL (|has| |#1| (-1066)))) (-3675 (($ $) 31 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-4204 (($ |#1| $) NIL (|has| |#1| (-1066))) (($ (-1 (-112) |#1|) $) NIL)) (-3812 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1878 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) NIL)) (-3149 (((-112) $) NIL)) (-2882 (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1066))) (((-549) |#1| $) NIL (|has| |#1| (-1066))) (((-549) (-1 (-112) |#1|) $) NIL)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3255 (((-112) $) 9)) (-3630 (((-621 $) $) NIL)) (-1742 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2623 (($) 7)) (-3743 (($ (-747) |#1|) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3019 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1586 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3524 (($ |#1|) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-3590 (((-621 |#1|) $) NIL)) (-2456 (((-112) $) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3828 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-1709 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2614 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3645 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3158 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-3342 (((-112) $) NIL)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1192 (-549))) NIL) ((|#1| $ (-549)) 36) ((|#1| $ (-549) |#1|) NIL)) (-1953 (((-549) $ $) NIL)) (-1876 (($ $ (-1192 (-549))) NIL) (($ $ (-549)) NIL)) (-2166 (($ $ (-1192 (-549))) NIL) (($ $ (-549)) NIL)) (-4187 (((-112) $) NIL)) (-1811 (($ $) NIL)) (-1679 (($ $) NIL (|has| $ (-6 -4337)))) (-2041 (((-747) $) NIL)) (-2277 (($ $) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) 45 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) NIL)) (-3172 (($ |#1| $) 10)) (-3091 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1951 (($ $ $) 30) (($ |#1| $) NIL) (($ (-621 $)) NIL) (($ $ |#1|) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) NIL)) (-2937 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3717 (($ $ $) 11)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3135 (((-1124) $) 26 (|has| |#1| (-804))) (((-1124) $ (-112)) 27 (|has| |#1| (-804))) (((-1230) (-798) $) 28 (|has| |#1| (-804))) (((-1230) (-798) $ (-112)) 29 (|has| |#1| (-804)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-621 |#1|) (-13 (-642 |#1|) (-10 -8 (-15 -2623 ($)) (-15 -3255 ((-112) $)) (-15 -3172 ($ |#1| $)) (-15 -3717 ($ $ $)) (IF (|has| |#1| (-1066)) (PROGN (-15 -3582 ($ $ $)) (-15 -3568 ($ $ $)) (-15 -3557 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|))) (-1179)) (T -621))
-((-2623 (*1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1179)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-621 *3)) (-4 *3 (-1179)))) (-3172 (*1 *1 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1179)))) (-3717 (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1179)))) (-3582 (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1066)) (-4 *2 (-1179)))) (-3568 (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1066)) (-4 *2 (-1179)))) (-3557 (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1066)) (-4 *2 (-1179)))))
-(-13 (-642 |#1|) (-10 -8 (-15 -2623 ($)) (-15 -3255 ((-112) $)) (-15 -3172 ($ |#1| $)) (-15 -3717 ($ $ $)) (IF (|has| |#1| (-1066)) (PROGN (-15 -3582 ($ $ $)) (-15 -3568 ($ $ $)) (-15 -3557 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|)))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 11) (((-1147) $) NIL) (($ (-1147)) NIL) ((|#1| $) 8)) (-2388 (((-112) $ $) NIL)))
-(((-622 |#1|) (-13 (-1049) (-593 |#1|)) (-1066)) (T -622))
+((-2353 (*1 *2 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-617 *4)) (-4 *4 (-1018)) (-5 *2 (-665 *4)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *1)) (-5 *4 (-1224 *1)) (-4 *1 (-617 *5)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -1695 (-665 *5)) (|:| |vec| (-1224 *5)))))))
+(-13 (-1018) (-10 -8 (-15 -2353 ((-665 |t#1|) (-665 $))) (-15 -2353 ((-2 (|:| -1695 (-665 |t#1|)) (|:| |vec| (-1224 |t#1|))) (-665 $) (-1224 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) NIL)) (-4137 ((|#1| $) NIL)) (-4139 (($ $) NIL)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) $) NIL (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-3230 (($ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4129 (($ $ $) NIL (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-2356 (($ $ $) 32 (|has| |#1| (-1067)))) (-2355 (($ $ $) 34 (|has| |#1| (-1067)))) (-2354 (($ $ $) 37 (|has| |#1| (-1067)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4138 ((|#1| $) NIL)) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-4141 (($ $) NIL) (($ $ (-747)) NIL)) (-2446 (($ $) NIL (|has| |#1| (-1067)))) (-1394 (($ $) 31 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) NIL)) (-3748 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3784 (((-112) $) NIL)) (-3761 (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067))) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) (-1 (-112) |#1|) $) NIL)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2358 (((-112) $) 9)) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2359 (($) 7)) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3180 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3855 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3880 (($ |#1|) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-4140 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-3953 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2373 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-3785 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1191 (-535))) NIL) ((|#1| $ (-535)) 36) ((|#1| $ (-535) |#1|) NIL)) (-3350 (((-535) $ $) NIL)) (-1627 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-2374 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-3979 (((-112) $) NIL)) (-4134 (($ $) NIL)) (-4132 (($ $) NIL (|has| $ (-6 -4337)))) (-4135 (((-747) $) NIL)) (-4136 (($ $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) 45 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-3798 (($ |#1| $) 10)) (-4133 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4144 (($ $ $) 30) (($ |#1| $) NIL) (($ (-618 $)) NIL) (($ $ |#1|) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2357 (($ $ $) 11)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2825 (((-1124) $) 26 (|has| |#1| (-797))) (((-1124) $ (-112)) 27 (|has| |#1| (-797))) (((-1230) (-799) $) 28 (|has| |#1| (-797))) (((-1230) (-799) $ (-112)) 29 (|has| |#1| (-797)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-618 |#1|) (-13 (-642 |#1|) (-10 -8 (-15 -2359 ($)) (-15 -2358 ((-112) $)) (-15 -3798 ($ |#1| $)) (-15 -2357 ($ $ $)) (IF (|has| |#1| (-1067)) (PROGN (-15 -2356 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -2354 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|))) (-1178)) (T -618))
+((-2359 (*1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1178)))) (-2358 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-618 *3)) (-4 *3 (-1178)))) (-3798 (*1 *1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1178)))) (-2357 (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1178)))) (-2356 (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-1178)))) (-2355 (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-1178)))) (-2354 (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-1178)))))
+(-13 (-642 |#1|) (-10 -8 (-15 -2359 ($)) (-15 -2358 ((-112) $)) (-15 -3798 ($ |#1| $)) (-15 -2357 ($ $ $)) (IF (|has| |#1| (-1067)) (PROGN (-15 -2356 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -2354 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|)))
+((-4184 (((-618 |#2|) (-1 |#2| |#1| |#2|) (-618 |#1|) |#2|) 16)) (-4185 ((|#2| (-1 |#2| |#1| |#2|) (-618 |#1|) |#2|) 18)) (-4301 (((-618 |#2|) (-1 |#2| |#1|) (-618 |#1|)) 13)))
+(((-619 |#1| |#2|) (-10 -7 (-15 -4184 ((-618 |#2|) (-1 |#2| |#1| |#2|) (-618 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-618 |#1|) |#2|)) (-15 -4301 ((-618 |#2|) (-1 |#2| |#1|) (-618 |#1|)))) (-1178) (-1178)) (T -619))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-618 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-618 *6)) (-5 *1 (-619 *5 *6)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-618 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) (-5 *1 (-619 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-618 *6)) (-4 *6 (-1178)) (-4 *5 (-1178)) (-5 *2 (-618 *5)) (-5 *1 (-619 *6 *5)))))
+(-10 -7 (-15 -4184 ((-618 |#2|) (-1 |#2| |#1| |#2|) (-618 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-618 |#1|) |#2|)) (-15 -4301 ((-618 |#2|) (-1 |#2| |#1|) (-618 |#1|))))
+((-3764 ((|#2| (-618 |#1|) (-618 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-618 |#1|) (-618 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|) |#2|) 17) ((|#2| (-618 |#1|) (-618 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|)) 12)))
+(((-620 |#1| |#2|) (-10 -7 (-15 -3764 ((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|))) (-15 -3764 (|#2| (-618 |#1|) (-618 |#2|) |#1|)) (-15 -3764 ((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|) |#2|)) (-15 -3764 (|#2| (-618 |#1|) (-618 |#2|) |#1| |#2|)) (-15 -3764 ((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|) (-1 |#2| |#1|))) (-15 -3764 (|#2| (-618 |#1|) (-618 |#2|) |#1| (-1 |#2| |#1|)))) (-1067) (-1178)) (T -620))
+((-3764 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1067)) (-4 *2 (-1178)) (-5 *1 (-620 *5 *2)))) (-3764 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-618 *5)) (-5 *4 (-618 *6)) (-4 *5 (-1067)) (-4 *6 (-1178)) (-5 *1 (-620 *5 *6)))) (-3764 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *2)) (-4 *5 (-1067)) (-4 *2 (-1178)) (-5 *1 (-620 *5 *2)))) (-3764 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 *5)) (-4 *6 (-1067)) (-4 *5 (-1178)) (-5 *2 (-1 *5 *6)) (-5 *1 (-620 *6 *5)))) (-3764 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *2)) (-4 *5 (-1067)) (-4 *2 (-1178)) (-5 *1 (-620 *5 *2)))) (-3764 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *6)) (-4 *5 (-1067)) (-4 *6 (-1178)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *6)))))
+(-10 -7 (-15 -3764 ((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|))) (-15 -3764 (|#2| (-618 |#1|) (-618 |#2|) |#1|)) (-15 -3764 ((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|) |#2|)) (-15 -3764 (|#2| (-618 |#1|) (-618 |#2|) |#1| |#2|)) (-15 -3764 ((-1 |#2| |#1|) (-618 |#1|) (-618 |#2|) (-1 |#2| |#1|))) (-15 -3764 (|#2| (-618 |#1|) (-618 |#2|) |#1| (-1 |#2| |#1|))))
+((-4301 (((-618 |#3|) (-1 |#3| |#1| |#2|) (-618 |#1|) (-618 |#2|)) 13)))
+(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -4301 ((-618 |#3|) (-1 |#3| |#1| |#2|) (-618 |#1|) (-618 |#2|)))) (-1178) (-1178) (-1178)) (T -621))
+((-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-618 *6)) (-5 *5 (-618 *7)) (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-618 *8)) (-5 *1 (-621 *6 *7 *8)))))
+(-10 -7 (-15 -4301 ((-618 |#3|) (-1 |#3| |#1| |#2|) (-618 |#1|) (-618 |#2|))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 11) (((-1147) $) NIL) (($ (-1147)) NIL) ((|#1| $) 8)) (-3375 (((-112) $ $) NIL)))
+(((-622 |#1|) (-13 (-1049) (-593 |#1|)) (-1067)) (T -622))
NIL
(-13 (-1049) (-593 |#1|))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3666 (($ |#1| |#1| $) 43)) (-1323 (((-112) $ (-747)) NIL)) (-3069 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-2992 (($ $) 45)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-4204 (($ |#1| $) 52 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-2990 (((-621 |#1|) $) 9 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1865 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 37)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2349 ((|#1| $) 46)) (-1709 (($ |#1| $) 26) (($ |#1| $ (-747)) 42)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2629 ((|#1| $) 48)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 21)) (-1461 (($) 25)) (-1287 (((-112) $) 50)) (-3903 (((-621 (-2 (|:| -1792 |#1|) (|:| -3997 (-747)))) $) 59)) (-4252 (($) 23) (($ (-621 |#1|)) 18)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) 56 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) 19)) (-2844 (((-525) $) 34 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) NIL)) (-3845 (((-834) $) 14 (|has| |#1| (-593 (-834))))) (-1765 (($ (-621 |#1|)) 22)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 61 (|has| |#1| (-1066)))) (-3774 (((-747) $) 16 (|has| $ (-6 -4336)))))
-(((-623 |#1|) (-13 (-671 |#1|) (-10 -8 (-6 -4336) (-15 -1287 ((-112) $)) (-15 -3666 ($ |#1| |#1| $)))) (-1066)) (T -623))
-((-1287 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3)) (-4 *3 (-1066)))) (-3666 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1066)))))
-(-13 (-671 |#1|) (-10 -8 (-6 -4336) (-15 -1287 ((-112) $)) (-15 -3666 ($ |#1| |#1| $))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#1| $) 23)))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2360 (($ |#1| |#1| $) 43)) (-1264 (((-112) $ (-747)) NIL)) (-1626 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2446 (($ $) 45)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) 52 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 9 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 37)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1326 ((|#1| $) 46)) (-3953 (($ |#1| $) 26) (($ |#1| $ (-747)) 42)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1327 ((|#1| $) 48)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 21)) (-3911 (($) 25)) (-2361 (((-112) $) 50)) (-2445 (((-618 (-2 (|:| -2184 |#1|) (|:| -2064 (-747)))) $) 59)) (-1518 (($) 23) (($ (-618 |#1|)) 18)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) 56 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 19)) (-4313 (((-524) $) 34 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4300 (((-835) $) 14 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 22)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 61 (|has| |#1| (-1067)))) (-4299 (((-747) $) 16 (|has| $ (-6 -4336)))))
+(((-623 |#1|) (-13 (-671 |#1|) (-10 -8 (-6 -4336) (-15 -2361 ((-112) $)) (-15 -2360 ($ |#1| |#1| $)))) (-1067)) (T -623))
+((-2361 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3)) (-4 *3 (-1067)))) (-2360 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1067)))))
+(-13 (-671 |#1|) (-10 -8 (-6 -4336) (-15 -2361 ((-112) $)) (-15 -2360 ($ |#1| |#1| $))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#1| $) 23)))
(((-624 |#1|) (-138) (-1025)) (T -624))
((* (*1 *1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1025)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-3615 (((-747) $) 15)) (-1532 (($ $ |#1|) 56)) (-4273 (($ $) 32)) (-3063 (($ $) 31)) (-2713 (((-3 |#1| "failed") $) 48)) (-2658 ((|#1| $) NIL)) (-3441 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3895 (((-834) $ (-1 (-834) (-834) (-834)) (-1 (-834) (-834) (-834)) (-549)) 46)) (-3570 ((|#1| $ (-549)) 30)) (-4162 ((|#2| $ (-549)) 29)) (-2555 (($ (-1 |#1| |#1|) $) 34)) (-4072 (($ (-1 |#2| |#2|) $) 38)) (-4097 (($) 10)) (-3200 (($ |#1| |#2|) 22)) (-4001 (($ (-621 (-2 (|:| |gen| |#1|) (|:| -2718 |#2|)))) 23)) (-2215 (((-621 (-2 (|:| |gen| |#1|) (|:| -2718 |#2|))) $) 13)) (-2931 (($ |#1| $) 57)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3107 (((-112) $ $) 60)) (-3845 (((-834) $) 19) (($ |#1|) 16)) (-2388 (((-112) $ $) 25)))
-(((-625 |#1| |#2| |#3|) (-13 (-1066) (-1009 |#1|) (-10 -8 (-15 -3895 ((-834) $ (-1 (-834) (-834) (-834)) (-1 (-834) (-834) (-834)) (-549))) (-15 -2215 ((-621 (-2 (|:| |gen| |#1|) (|:| -2718 |#2|))) $)) (-15 -3200 ($ |#1| |#2|)) (-15 -4001 ($ (-621 (-2 (|:| |gen| |#1|) (|:| -2718 |#2|))))) (-15 -4162 (|#2| $ (-549))) (-15 -3570 (|#1| $ (-549))) (-15 -3063 ($ $)) (-15 -4273 ($ $)) (-15 -3615 ((-747) $)) (-15 -4097 ($)) (-15 -1532 ($ $ |#1|)) (-15 -2931 ($ |#1| $)) (-15 -3441 ($ |#1| |#2| $)) (-15 -3441 ($ $ $)) (-15 -3107 ((-112) $ $)) (-15 -4072 ($ (-1 |#2| |#2|) $)) (-15 -2555 ($ (-1 |#1| |#1|) $)))) (-1066) (-23) |#2|) (T -625))
-((-3895 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-834) (-834) (-834))) (-5 *4 (-549)) (-5 *2 (-834)) (-5 *1 (-625 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-23)) (-14 *7 *6))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2718 *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-23)) (-14 *5 *4))) (-3200 (*1 *1 *2 *3) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23)) (-14 *4 *3))) (-4001 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2718 *4)))) (-4 *3 (-1066)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5)))) (-4162 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-23)) (-5 *1 (-625 *4 *2 *5)) (-4 *4 (-1066)) (-14 *5 *2))) (-3570 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-1066)) (-5 *1 (-625 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3063 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23)) (-14 *4 *3))) (-4273 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23)) (-14 *4 *3))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-23)) (-14 *5 *4))) (-4097 (*1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23)) (-14 *4 *3))) (-1532 (*1 *1 *1 *2) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23)) (-14 *4 *3))) (-2931 (*1 *1 *2 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23)) (-14 *4 *3))) (-3441 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23)) (-14 *4 *3))) (-3441 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23)) (-14 *4 *3))) (-3107 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-23)) (-14 *5 *4))) (-4072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1066)))) (-2555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-625 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1066) (-1009 |#1|) (-10 -8 (-15 -3895 ((-834) $ (-1 (-834) (-834) (-834)) (-1 (-834) (-834) (-834)) (-549))) (-15 -2215 ((-621 (-2 (|:| |gen| |#1|) (|:| -2718 |#2|))) $)) (-15 -3200 ($ |#1| |#2|)) (-15 -4001 ($ (-621 (-2 (|:| |gen| |#1|) (|:| -2718 |#2|))))) (-15 -4162 (|#2| $ (-549))) (-15 -3570 (|#1| $ (-549))) (-15 -3063 ($ $)) (-15 -4273 ($ $)) (-15 -3615 ((-747) $)) (-15 -4097 ($)) (-15 -1532 ($ $ |#1|)) (-15 -2931 ($ |#1| $)) (-15 -3441 ($ |#1| |#2| $)) (-15 -3441 ($ $ $)) (-15 -3107 ((-112) $ $)) (-15 -4072 ($ (-1 |#2| |#2|) $)) (-15 -2555 ($ (-1 |#1| |#1|) $))))
-((-1548 (((-549) $) 24)) (-2614 (($ |#2| $ (-549)) 22) (($ $ $ (-549)) NIL)) (-3927 (((-621 (-549)) $) 12)) (-1286 (((-112) (-549) $) 15)) (-1951 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-621 $)) NIL)))
-(((-626 |#1| |#2|) (-10 -8 (-15 -2614 (|#1| |#1| |#1| (-549))) (-15 -2614 (|#1| |#2| |#1| (-549))) (-15 -1951 (|#1| (-621 |#1|))) (-15 -1951 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -1548 ((-549) |#1|)) (-15 -3927 ((-621 (-549)) |#1|)) (-15 -1286 ((-112) (-549) |#1|))) (-627 |#2|) (-1179)) (T -626))
-NIL
-(-10 -8 (-15 -2614 (|#1| |#1| |#1| (-549))) (-15 -2614 (|#1| |#2| |#1| (-549))) (-15 -1951 (|#1| (-621 |#1|))) (-15 -1951 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -1548 ((-549) |#1|)) (-15 -3927 ((-621 (-549)) |#1|)) (-15 -1286 ((-112) (-549) |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-2932 (((-1230) $ (-549) (-549)) 40 (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) 8)) (-2253 ((|#1| $ (-549) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) 58 (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-3675 (($ $) 78 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#1| $) 77 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) 51)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3743 (($ (-747) |#1|) 69)) (-4202 (((-112) $ (-747)) 9)) (-3485 (((-549) $) 43 (|has| (-549) (-823)))) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 44 (|has| (-549) (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2614 (($ |#1| $ (-549)) 60) (($ $ $ (-549)) 59)) (-3927 (((-621 (-549)) $) 46)) (-1286 (((-112) (-549) $) 47)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-3645 ((|#1| $) 42 (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3158 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) 48)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ (-549) |#1|) 50) ((|#1| $ (-549)) 49) (($ $ (-1192 (-549))) 63)) (-2166 (($ $ (-549)) 62) (($ $ (-1192 (-549))) 61)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-2844 (((-525) $) 79 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 70)) (-1951 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-627 |#1|) (-138) (-1179)) (T -627))
-((-3743 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-4 *1 (-627 *3)) (-4 *3 (-1179)))) (-1951 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1179)))) (-1951 (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1179)))) (-1951 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1179)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-627 *3)) (-4 *3 (-1179)))) (-2796 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-627 *3)) (-4 *3 (-1179)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-1192 (-549))) (-4 *1 (-627 *3)) (-4 *3 (-1179)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-627 *3)) (-4 *3 (-1179)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-1192 (-549))) (-4 *1 (-627 *3)) (-4 *3 (-1179)))) (-2614 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-627 *2)) (-4 *2 (-1179)))) (-2614 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-627 *3)) (-4 *3 (-1179)))) (-2253 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1192 (-549))) (|has| *1 (-6 -4337)) (-4 *1 (-627 *2)) (-4 *2 (-1179)))))
-(-13 (-584 (-549) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3743 ($ (-747) |t#1|)) (-15 -1951 ($ $ |t#1|)) (-15 -1951 ($ |t#1| $)) (-15 -1951 ($ $ $)) (-15 -1951 ($ (-621 $))) (-15 -2796 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3340 ($ $ (-1192 (-549)))) (-15 -2166 ($ $ (-549))) (-15 -2166 ($ $ (-1192 (-549)))) (-15 -2614 ($ |t#1| $ (-549))) (-15 -2614 ($ $ $ (-549))) (IF (|has| $ (-6 -4337)) (-15 -2253 (|t#1| $ (-1192 (-549)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-2808 (((-3 |#2| "failed") |#3| |#2| (-1142) |#2| (-621 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3420 (-621 |#2|))) "failed") |#3| |#2| (-1142)) 44)))
-(((-628 |#1| |#2| |#3|) (-10 -7 (-15 -2808 ((-3 (-2 (|:| |particular| |#2|) (|:| -3420 (-621 |#2|))) "failed") |#3| |#2| (-1142))) (-15 -2808 ((-3 |#2| "failed") |#3| |#2| (-1142) |#2| (-621 |#2|)))) (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)) (-13 (-29 |#1|) (-1164) (-930)) (-632 |#2|)) (T -628))
-((-2808 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-621 *2)) (-4 *2 (-13 (-29 *6) (-1164) (-930))) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *1 (-628 *6 *2 *3)) (-4 *3 (-632 *2)))) (-2808 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1142)) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-4 *4 (-13 (-29 *6) (-1164) (-930))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3420 (-621 *4)))) (-5 *1 (-628 *6 *4 *3)) (-4 *3 (-632 *4)))))
-(-10 -7 (-15 -2808 ((-3 (-2 (|:| |particular| |#2|) (|:| -3420 (-621 |#2|))) "failed") |#3| |#2| (-1142))) (-15 -2808 ((-3 |#2| "failed") |#3| |#2| (-1142) |#2| (-621 |#2|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3870 (($ $) NIL (|has| |#1| (-356)))) (-1976 (($ $ $) NIL (|has| |#1| (-356)))) (-3277 (($ $ (-747)) NIL (|has| |#1| (-356)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-3106 (($ $ $) NIL (|has| |#1| (-356)))) (-3059 (($ $ $) NIL (|has| |#1| (-356)))) (-3125 (($ $ $) NIL (|has| |#1| (-356)))) (-3239 (($ $ $) NIL (|has| |#1| (-356)))) (-1864 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-1507 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-4081 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-444)))) (-3987 (((-112) $) NIL)) (-2244 (($ |#1| (-747)) NIL)) (-4190 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-541)))) (-3070 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-541)))) (-2856 (((-747) $) NIL)) (-3822 (($ $ $) NIL (|has| |#1| (-356)))) (-2300 (($ $ $) NIL (|has| |#1| (-356)))) (-4264 (($ $ $) NIL (|has| |#1| (-356)))) (-2080 (($ $ $) NIL (|has| |#1| (-356)))) (-2726 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-1409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3325 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-3340 ((|#1| $ |#1|) NIL)) (-3207 (($ $ $) NIL (|has| |#1| (-356)))) (-3068 (((-747) $) NIL)) (-1931 ((|#1| $) NIL (|has| |#1| (-444)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) NIL)) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-747)) NIL)) (-1723 (((-747)) NIL)) (-3592 ((|#1| $ |#1| |#1|) NIL)) (-2609 (($ $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($) NIL)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-629 |#1|) (-632 |#1|) (-227)) (T -629))
-NIL
-(-632 |#1|)
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3870 (($ $) NIL (|has| |#1| (-356)))) (-1976 (($ $ $) NIL (|has| |#1| (-356)))) (-3277 (($ $ (-747)) NIL (|has| |#1| (-356)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-3106 (($ $ $) NIL (|has| |#1| (-356)))) (-3059 (($ $ $) NIL (|has| |#1| (-356)))) (-3125 (($ $ $) NIL (|has| |#1| (-356)))) (-3239 (($ $ $) NIL (|has| |#1| (-356)))) (-1864 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-1507 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-4081 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-444)))) (-3987 (((-112) $) NIL)) (-2244 (($ |#1| (-747)) NIL)) (-4190 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-541)))) (-3070 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-541)))) (-2856 (((-747) $) NIL)) (-3822 (($ $ $) NIL (|has| |#1| (-356)))) (-2300 (($ $ $) NIL (|has| |#1| (-356)))) (-4264 (($ $ $) NIL (|has| |#1| (-356)))) (-2080 (($ $ $) NIL (|has| |#1| (-356)))) (-2726 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-1409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3325 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-3340 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3207 (($ $ $) NIL (|has| |#1| (-356)))) (-3068 (((-747) $) NIL)) (-1931 ((|#1| $) NIL (|has| |#1| (-444)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) NIL)) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-747)) NIL)) (-1723 (((-747)) NIL)) (-3592 ((|#1| $ |#1| |#1|) NIL)) (-2609 (($ $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($) NIL)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-630 |#1| |#2|) (-13 (-632 |#1|) (-279 |#2| |#2|)) (-227) (-13 (-624 |#1|) (-10 -8 (-15 -3455 ($ $))))) (T -630))
-NIL
-(-13 (-632 |#1|) (-279 |#2| |#2|))
-((-3870 (($ $) 26)) (-2609 (($ $) 24)) (-1700 (($) 12)))
-(((-631 |#1| |#2|) (-10 -8 (-15 -3870 (|#1| |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -1700 (|#1|))) (-632 |#2|) (-1018)) (T -631))
-NIL
-(-10 -8 (-15 -3870 (|#1| |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -1700 (|#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-3870 (($ $) 80 (|has| |#1| (-356)))) (-1976 (($ $ $) 82 (|has| |#1| (-356)))) (-3277 (($ $ (-747)) 81 (|has| |#1| (-356)))) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3106 (($ $ $) 43 (|has| |#1| (-356)))) (-3059 (($ $ $) 44 (|has| |#1| (-356)))) (-3125 (($ $ $) 46 (|has| |#1| (-356)))) (-3239 (($ $ $) 41 (|has| |#1| (-356)))) (-1864 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 40 (|has| |#1| (-356)))) (-1507 (((-3 $ "failed") $ $) 42 (|has| |#1| (-356)))) (-4081 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 45 (|has| |#1| (-356)))) (-2713 (((-3 (-549) "failed") $) 72 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 70 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 67)) (-2658 (((-549) $) 73 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 71 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 66)) (-2069 (($ $) 62)) (-3976 (((-3 $ "failed") $) 32)) (-4212 (($ $) 53 (|has| |#1| (-444)))) (-3987 (((-112) $) 30)) (-2244 (($ |#1| (-747)) 60)) (-4190 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55 (|has| |#1| (-541)))) (-3070 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 56 (|has| |#1| (-541)))) (-2856 (((-747) $) 64)) (-3822 (($ $ $) 50 (|has| |#1| (-356)))) (-2300 (($ $ $) 51 (|has| |#1| (-356)))) (-4264 (($ $ $) 39 (|has| |#1| (-356)))) (-2080 (($ $ $) 48 (|has| |#1| (-356)))) (-2726 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 47 (|has| |#1| (-356)))) (-1409 (((-3 $ "failed") $ $) 49 (|has| |#1| (-356)))) (-3325 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 52 (|has| |#1| (-356)))) (-2042 ((|#1| $) 63)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-2038 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-541)))) (-3340 ((|#1| $ |#1|) 85)) (-3207 (($ $ $) 79 (|has| |#1| (-356)))) (-3068 (((-747) $) 65)) (-1931 ((|#1| $) 54 (|has| |#1| (-444)))) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 69 (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) 68)) (-3330 (((-621 |#1|) $) 59)) (-2944 ((|#1| $ (-747)) 61)) (-1723 (((-747)) 28)) (-3592 ((|#1| $ |#1| |#1|) 58)) (-2609 (($ $) 83)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($) 84)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
-(((-632 |#1|) (-138) (-1018)) (T -632))
-((-1700 (*1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)))) (-2609 (*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)))) (-1976 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-3277 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-632 *3)) (-4 *3 (-1018)) (-4 *3 (-356)))) (-3870 (*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-3207 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(-13 (-825 |t#1|) (-279 |t#1| |t#1|) (-10 -8 (-15 -1700 ($)) (-15 -2609 ($ $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -1976 ($ $ $)) (-15 -3277 ($ $ (-747))) (-15 -3870 ($ $)) (-15 -3207 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-279 |#1| |#1|) . T) ((-404 |#1|) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-825 |#1|) . T))
-((-1394 (((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|))) 74 (|has| |#1| (-27)))) (-2120 (((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|))) 73 (|has| |#1| (-27))) (((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|)) 17)))
-(((-633 |#1| |#2|) (-10 -7 (-15 -2120 ((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2120 ((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|)))) (-15 -1394 ((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|))))) |%noBranch|)) (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))) (-1201 |#1|)) (T -633))
-((-1394 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *5 (-1201 *4)) (-5 *2 (-621 (-629 (-400 *5)))) (-5 *1 (-633 *4 *5)) (-5 *3 (-629 (-400 *5))))) (-2120 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *5 (-1201 *4)) (-5 *2 (-621 (-629 (-400 *5)))) (-5 *1 (-633 *4 *5)) (-5 *3 (-629 (-400 *5))))) (-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-621 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *6 (-1201 *5)) (-5 *2 (-621 (-629 (-400 *6)))) (-5 *1 (-633 *5 *6)) (-5 *3 (-629 (-400 *6))))))
-(-10 -7 (-15 -2120 ((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2120 ((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|)))) (-15 -1394 ((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|))))) |%noBranch|))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3870 (($ $) NIL (|has| |#1| (-356)))) (-1976 (($ $ $) 28 (|has| |#1| (-356)))) (-3277 (($ $ (-747)) 31 (|has| |#1| (-356)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-3106 (($ $ $) NIL (|has| |#1| (-356)))) (-3059 (($ $ $) NIL (|has| |#1| (-356)))) (-3125 (($ $ $) NIL (|has| |#1| (-356)))) (-3239 (($ $ $) NIL (|has| |#1| (-356)))) (-1864 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-1507 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-4081 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-444)))) (-3987 (((-112) $) NIL)) (-2244 (($ |#1| (-747)) NIL)) (-4190 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-541)))) (-3070 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-541)))) (-2856 (((-747) $) NIL)) (-3822 (($ $ $) NIL (|has| |#1| (-356)))) (-2300 (($ $ $) NIL (|has| |#1| (-356)))) (-4264 (($ $ $) NIL (|has| |#1| (-356)))) (-2080 (($ $ $) NIL (|has| |#1| (-356)))) (-2726 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-1409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3325 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-3340 ((|#1| $ |#1|) 24)) (-3207 (($ $ $) 33 (|has| |#1| (-356)))) (-3068 (((-747) $) NIL)) (-1931 ((|#1| $) NIL (|has| |#1| (-444)))) (-3845 (((-834) $) 20) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) NIL)) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-747)) NIL)) (-1723 (((-747)) NIL)) (-3592 ((|#1| $ |#1| |#1|) 23)) (-2609 (($ $) NIL)) (-3275 (($) 21 T CONST)) (-3287 (($) 8 T CONST)) (-1700 (($) NIL)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-634 |#1| |#2|) (-632 |#1|) (-1018) (-1 |#1| |#1|)) (T -634))
-NIL
-(-632 |#1|)
-((-1976 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-3277 ((|#2| |#2| (-747) (-1 |#1| |#1|)) 40)) (-3207 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
-(((-635 |#1| |#2|) (-10 -7 (-15 -1976 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3277 (|#2| |#2| (-747) (-1 |#1| |#1|))) (-15 -3207 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-356) (-632 |#1|)) (T -635))
-((-3207 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-635 *4 *2)) (-4 *2 (-632 *4)))) (-3277 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-635 *5 *2)) (-4 *2 (-632 *5)))) (-1976 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-635 *4 *2)) (-4 *2 (-632 *4)))))
-(-10 -7 (-15 -1976 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3277 (|#2| |#2| (-747) (-1 |#1| |#1|))) (-15 -3207 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-3705 (($ $ $) 9)))
-(((-636 |#1|) (-10 -8 (-15 -3705 (|#1| |#1| |#1|))) (-637)) (T -636))
-NIL
-(-10 -8 (-15 -3705 (|#1| |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-1339 (($ $) 10)) (-3705 (($ $ $) 8)) (-2388 (((-112) $ $) 6)) (-3695 (($ $ $) 9)))
-(((-637) (-138)) (T -637))
-((-1339 (*1 *1 *1) (-4 *1 (-637))) (-3695 (*1 *1 *1 *1) (-4 *1 (-637))) (-3705 (*1 *1 *1 *1) (-4 *1 (-637))))
-(-13 (-101) (-10 -8 (-15 -1339 ($ $)) (-15 -3695 ($ $ $)) (-15 -3705 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3454 (((-747) $) 15)) (-2366 (($ $ |#1|) 56)) (-2368 (($ $) 32)) (-2369 (($ $) 31)) (-3491 (((-3 |#1| "failed") $) 48)) (-3490 ((|#1| $) NIL)) (-2398 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3870 (((-835) $ (-1 (-835) (-835) (-835)) (-1 (-835) (-835) (-835)) (-535)) 46)) (-2759 ((|#1| $ (-535)) 30)) (-2760 ((|#2| $ (-535)) 29)) (-2362 (($ (-1 |#1| |#1|) $) 34)) (-2363 (($ (-1 |#2| |#2|) $) 38)) (-2367 (($) 10)) (-2371 (($ |#1| |#2|) 22)) (-2370 (($ (-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|)))) 23)) (-2372 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))) $) 13)) (-2365 (($ |#1| $) 57)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2364 (((-112) $ $) 60)) (-4300 (((-835) $) 19) (($ |#1|) 16)) (-3375 (((-112) $ $) 25)))
+(((-625 |#1| |#2| |#3|) (-13 (-1067) (-1009 |#1|) (-10 -8 (-15 -3870 ((-835) $ (-1 (-835) (-835) (-835)) (-1 (-835) (-835) (-835)) (-535))) (-15 -2372 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))) $)) (-15 -2371 ($ |#1| |#2|)) (-15 -2370 ($ (-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))))) (-15 -2760 (|#2| $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2369 ($ $)) (-15 -2368 ($ $)) (-15 -3454 ((-747) $)) (-15 -2367 ($)) (-15 -2366 ($ $ |#1|)) (-15 -2365 ($ |#1| $)) (-15 -2398 ($ |#1| |#2| $)) (-15 -2398 ($ $ $)) (-15 -2364 ((-112) $ $)) (-15 -2363 ($ (-1 |#2| |#2|) $)) (-15 -2362 ($ (-1 |#1| |#1|) $)))) (-1067) (-23) |#2|) (T -625))
+((-3870 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-835) (-835) (-835))) (-5 *4 (-535)) (-5 *2 (-835)) (-5 *1 (-625 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-23)) (-14 *7 *6))) (-2372 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4))) (-2371 (*1 *1 *2 *3) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 *4)))) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5)))) (-2760 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *2 (-23)) (-5 *1 (-625 *4 *2 *5)) (-4 *4 (-1067)) (-14 *5 *2))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *2 (-1067)) (-5 *1 (-625 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2369 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4))) (-2367 (*1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2366 (*1 *1 *1 *2) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2365 (*1 *1 *2 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2398 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2398 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2364 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4))) (-2363 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)))) (-2362 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-625 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1067) (-1009 |#1|) (-10 -8 (-15 -3870 ((-835) $ (-1 (-835) (-835) (-835)) (-1 (-835) (-835) (-835)) (-535))) (-15 -2372 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))) $)) (-15 -2371 ($ |#1| |#2|)) (-15 -2370 ($ (-618 (-2 (|:| |gen| |#1|) (|:| -4286 |#2|))))) (-15 -2760 (|#2| $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2369 ($ $)) (-15 -2368 ($ $)) (-15 -3454 ((-747) $)) (-15 -2367 ($)) (-15 -2366 ($ $ |#1|)) (-15 -2365 ($ |#1| $)) (-15 -2398 ($ |#1| |#2| $)) (-15 -2398 ($ $ $)) (-15 -2364 ((-112) $ $)) (-15 -2363 ($ (-1 |#2| |#2|) $)) (-15 -2362 ($ (-1 |#1| |#1|) $))))
+((-2299 (((-535) $) 24)) (-2373 (($ |#2| $ (-535)) 22) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) 12)) (-2302 (((-112) (-535) $) 15)) (-4144 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-618 $)) NIL)))
+(((-626 |#1| |#2|) (-10 -8 (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -2299 ((-535) |#1|)) (-15 -2301 ((-618 (-535)) |#1|)) (-15 -2302 ((-112) (-535) |#1|))) (-627 |#2|) (-1178)) (T -626))
+NIL
+(-10 -8 (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -2299 ((-535) |#1|)) (-15 -2301 ((-618 (-535)) |#1|)) (-15 -2302 ((-112) (-535) |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-1394 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 51)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 42 (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2297 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) |#1|) 50) ((|#1| $ (-535)) 49) (($ $ (-1191 (-535))) 63)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 70)) (-4144 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-627 |#1|) (-138) (-1178)) (T -627))
+((-3960 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-4144 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1178)))) (-4144 (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1178)))) (-4144 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1178)))) (-4144 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-4301 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-1191 (-535))) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-2374 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-2374 (*1 *1 *1 *2) (-12 (-5 *2 (-1191 (-535))) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-2373 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-627 *2)) (-4 *2 (-1178)))) (-2373 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))) (-4130 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1191 (-535))) (|has| *1 (-6 -4337)) (-4 *1 (-627 *2)) (-4 *2 (-1178)))))
+(-13 (-584 (-535) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3960 ($ (-747) |t#1|)) (-15 -4144 ($ $ |t#1|)) (-15 -4144 ($ |t#1| $)) (-15 -4144 ($ $ $)) (-15 -4144 ($ (-618 $))) (-15 -4301 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4142 ($ $ (-1191 (-535)))) (-15 -2374 ($ $ (-535))) (-15 -2374 ($ $ (-1191 (-535)))) (-15 -2373 ($ |t#1| $ (-535))) (-15 -2373 ($ $ $ (-535))) (IF (|has| $ (-6 -4337)) (-15 -4130 (|t#1| $ (-1191 (-535)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 15)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3319 ((|#1| $) 21)) (-3660 (($ $ $) NIL (|has| |#1| (-767)))) (-3661 (($ $ $) NIL (|has| |#1| (-767)))) (-3576 (((-1124) $) 46)) (-3577 (((-1086) $) NIL)) (-3318 ((|#3| $) 22)) (-4300 (((-835) $) 42)) (-2979 (($) 10 T CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-767)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-767)))) (-3375 (((-112) $ $) 20)) (-3005 (((-112) $ $) NIL (|has| |#1| (-767)))) (-3006 (((-112) $ $) 24 (|has| |#1| (-767)))) (-4291 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4180 (($ $) 17) (($ $ $) NIL)) (-4182 (($ $ $) 27)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-628 |#1| |#2| |#3|) (-13 (-694 |#2|) (-10 -8 (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) (-15 -4291 ($ $ |#3|)) (-15 -4291 ($ |#1| |#3|)) (-15 -3319 (|#1| $)) (-15 -3318 (|#3| $)))) (-694 |#2|) (-170) (|SubsetCategory| (-703) |#2|)) (T -628))
+((-4291 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-628 *3 *4 *2)) (-4 *3 (-694 *4)) (-4 *2 (|SubsetCategory| (-703) *4)))) (-4291 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-628 *2 *4 *3)) (-4 *2 (-694 *4)) (-4 *3 (|SubsetCategory| (-703) *4)))) (-3319 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-694 *3)) (-5 *1 (-628 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-703) *3)))) (-3318 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4)) (-5 *1 (-628 *3 *4 *2)) (-4 *3 (-694 *4)))))
+(-13 (-694 |#2|) (-10 -8 (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) (-15 -4291 ($ $ |#3|)) (-15 -4291 ($ |#1| |#3|)) (-15 -3319 (|#1| $)) (-15 -3318 (|#3| $))))
+((-3919 (((-3 |#2| "failed") |#3| |#2| (-1142) |#2| (-618 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) "failed") |#3| |#2| (-1142)) 44)))
+(((-629 |#1| |#2| |#3|) (-10 -7 (-15 -3919 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) "failed") |#3| |#2| (-1142))) (-15 -3919 ((-3 |#2| "failed") |#3| |#2| (-1142) |#2| (-618 |#2|)))) (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)) (-13 (-29 |#1|) (-1164) (-931)) (-634 |#2|)) (T -629))
+((-3919 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-618 *2)) (-4 *2 (-13 (-29 *6) (-1164) (-931))) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *1 (-629 *6 *2 *3)) (-4 *3 (-634 *2)))) (-3919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1142)) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-4 *4 (-13 (-29 *6) (-1164) (-931))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-618 *4)))) (-5 *1 (-629 *6 *4 *3)) (-4 *3 (-634 *4)))))
+(-10 -7 (-15 -3919 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) "failed") |#3| |#2| (-1142))) (-15 -3919 ((-3 |#2| "failed") |#3| |#2| (-1142) |#2| (-618 |#2|))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2375 (($ $) NIL (|has| |#1| (-356)))) (-2377 (($ $ $) 28 (|has| |#1| (-356)))) (-2378 (($ $ (-747)) 31 (|has| |#1| (-356)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2860 (($ $ $) NIL (|has| |#1| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2861 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444)))) (-2493 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) NIL)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-3141 (((-747) $) NIL)) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (($ $ $) NIL (|has| |#1| (-356)))) (-2858 (($ $ $) NIL (|has| |#1| (-356)))) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2867 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-542)))) (-4142 ((|#1| $ |#1|) 24)) (-2379 (($ $ $) 33 (|has| |#1| (-356)))) (-4290 (((-747) $) NIL)) (-3138 ((|#1| $) NIL (|has| |#1| (-444)))) (-4300 (((-835) $) 20) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) NIL)) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) NIL)) (-3444 (((-747)) NIL)) (-2871 ((|#1| $ |#1| |#1|) 23)) (-2845 (($ $) NIL)) (-2979 (($) 21 T CONST)) (-2985 (($) 8 T CONST)) (-2990 (($) NIL)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-630 |#1| |#2|) (-634 |#1|) (-1018) (-1 |#1| |#1|)) (T -630))
+NIL
+(-634 |#1|)
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2375 (($ $) NIL (|has| |#1| (-356)))) (-2377 (($ $ $) NIL (|has| |#1| (-356)))) (-2378 (($ $ (-747)) NIL (|has| |#1| (-356)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2860 (($ $ $) NIL (|has| |#1| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2861 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444)))) (-2493 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) NIL)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-3141 (((-747) $) NIL)) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (($ $ $) NIL (|has| |#1| (-356)))) (-2858 (($ $ $) NIL (|has| |#1| (-356)))) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2867 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-542)))) (-4142 ((|#1| $ |#1|) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-356)))) (-4290 (((-747) $) NIL)) (-3138 ((|#1| $) NIL (|has| |#1| (-444)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) NIL)) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) NIL)) (-3444 (((-747)) NIL)) (-2871 ((|#1| $ |#1| |#1|) NIL)) (-2845 (($ $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($) NIL)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-631 |#1|) (-634 |#1|) (-227)) (T -631))
+NIL
+(-634 |#1|)
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2375 (($ $) NIL (|has| |#1| (-356)))) (-2377 (($ $ $) NIL (|has| |#1| (-356)))) (-2378 (($ $ (-747)) NIL (|has| |#1| (-356)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2860 (($ $ $) NIL (|has| |#1| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2861 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444)))) (-2493 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) NIL)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-3141 (((-747) $) NIL)) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (($ $ $) NIL (|has| |#1| (-356)))) (-2858 (($ $ $) NIL (|has| |#1| (-356)))) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2867 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-542)))) (-4142 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2379 (($ $ $) NIL (|has| |#1| (-356)))) (-4290 (((-747) $) NIL)) (-3138 ((|#1| $) NIL (|has| |#1| (-444)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) NIL)) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) NIL)) (-3444 (((-747)) NIL)) (-2871 ((|#1| $ |#1| |#1|) NIL)) (-2845 (($ $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($) NIL)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-632 |#1| |#2|) (-13 (-634 |#1|) (-279 |#2| |#2|)) (-227) (-13 (-624 |#1|) (-10 -8 (-15 -4153 ($ $))))) (T -632))
+NIL
+(-13 (-634 |#1|) (-279 |#2| |#2|))
+((-2375 (($ $) 26)) (-2845 (($ $) 24)) (-2990 (($) 12)))
+(((-633 |#1| |#2|) (-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2845 (|#1| |#1|)) (-15 -2990 (|#1|))) (-634 |#2|) (-1018)) (T -633))
+NIL
+(-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2845 (|#1| |#1|)) (-15 -2990 (|#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2375 (($ $) 80 (|has| |#1| (-356)))) (-2377 (($ $ $) 82 (|has| |#1| (-356)))) (-2378 (($ $ (-747)) 81 (|has| |#1| (-356)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2862 (($ $ $) 43 (|has| |#1| (-356)))) (-2863 (($ $ $) 44 (|has| |#1| (-356)))) (-2864 (($ $ $) 46 (|has| |#1| (-356)))) (-2860 (($ $ $) 41 (|has| |#1| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 40 (|has| |#1| (-356)))) (-2861 (((-3 $ #1="failed") $ $) 42 (|has| |#1| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 45 (|has| |#1| (-356)))) (-3491 (((-3 (-535) #2="failed") $) 72 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) 70 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #2#) $) 67)) (-3490 (((-535) $) 73 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 71 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 66)) (-4302 (($ $) 62)) (-3804 (((-3 $ "failed") $) 32)) (-3840 (($ $) 53 (|has| |#1| (-444)))) (-2493 (((-112) $) 30)) (-3214 (($ |#1| (-747)) 60)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55 (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 56 (|has| |#1| (-542)))) (-3141 (((-747) $) 64)) (-2868 (($ $ $) 50 (|has| |#1| (-356)))) (-2869 (($ $ $) 51 (|has| |#1| (-356)))) (-2858 (($ $ $) 39 (|has| |#1| (-356)))) (-2866 (($ $ $) 48 (|has| |#1| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 47 (|has| |#1| (-356)))) (-2867 (((-3 $ #1#) $ $) 49 (|has| |#1| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 52 (|has| |#1| (-356)))) (-3508 ((|#1| $) 63)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ #1#) $ |#1|) 57 (|has| |#1| (-542)))) (-4142 ((|#1| $ |#1|) 85)) (-2379 (($ $ $) 79 (|has| |#1| (-356)))) (-4290 (((-747) $) 65)) (-3138 ((|#1| $) 54 (|has| |#1| (-444)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 69 (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) 68)) (-4160 (((-618 |#1|) $) 59)) (-4023 ((|#1| $ (-747)) 61)) (-3444 (((-747)) 28)) (-2871 ((|#1| $ |#1| |#1|) 58)) (-2845 (($ $) 83)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($) 84)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
+(((-634 |#1|) (-138) (-1018)) (T -634))
+((-2990 (*1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)))) (-2845 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)))) (-2377 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2378 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-634 *3)) (-4 *3 (-1018)) (-4 *3 (-356)))) (-2375 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2379 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(-13 (-825 |t#1|) (-279 |t#1| |t#1|) (-10 -8 (-15 -2990 ($)) (-15 -2845 ($ $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -2377 ($ $ $)) (-15 -2378 ($ $ (-747))) (-15 -2375 ($ $)) (-15 -2379 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-279 |#1| |#1|) . T) ((-405 |#1|) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-825 |#1|) . T))
+((-2376 (((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|))) 74 (|has| |#1| (-27)))) (-4075 (((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|))) 73 (|has| |#1| (-27))) (((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|)) 17)))
+(((-635 |#1| |#2|) (-10 -7 (-15 -4075 ((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4075 ((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|)))) (-15 -2376 ((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|))))) |%noBranch|)) (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))) (-1200 |#1|)) (T -635))
+((-2376 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *2 (-618 (-631 (-400 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-631 (-400 *5))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *2 (-618 (-631 (-400 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-631 (-400 *5))))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-618 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-631 (-400 *6)))) (-5 *1 (-635 *5 *6)) (-5 *3 (-631 (-400 *6))))))
+(-10 -7 (-15 -4075 ((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4075 ((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|)))) (-15 -2376 ((-618 (-631 (-400 |#2|))) (-631 (-400 |#2|))))) |%noBranch|))
+((-2377 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2378 ((|#2| |#2| (-747) (-1 |#1| |#1|)) 40)) (-2379 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
+(((-636 |#1| |#2|) (-10 -7 (-15 -2377 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2378 (|#2| |#2| (-747) (-1 |#1| |#1|))) (-15 -2379 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-356) (-634 |#1|)) (T -636))
+((-2379 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-636 *4 *2)) (-4 *2 (-634 *4)))) (-2378 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-636 *5 *2)) (-4 *2 (-634 *5)))) (-2377 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-636 *4 *2)) (-4 *2 (-634 *4)))))
+(-10 -7 (-15 -2377 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2378 (|#2| |#2| (-747) (-1 |#1| |#1|))) (-15 -2379 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-3664 (($ $ $) 9)))
+(((-637 |#1|) (-10 -8 (-15 -3664 (|#1| |#1| |#1|))) (-638)) (T -637))
+NIL
+(-10 -8 (-15 -3664 (|#1| |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3662 (($ $) 10)) (-3664 (($ $ $) 8)) (-3375 (((-112) $ $) 6)) (-3663 (($ $ $) 9)))
+(((-638) (-138)) (T -638))
+((-3662 (*1 *1 *1) (-4 *1 (-638))) (-3663 (*1 *1 *1 *1) (-4 *1 (-638))) (-3664 (*1 *1 *1 *1) (-4 *1 (-638))))
+(-13 (-101) (-10 -8 (-15 -3662 ($ $)) (-15 -3663 ($ $ $)) (-15 -3664 ($ $ $))))
(((-101) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 15)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-1393 ((|#1| $) 21)) (-2862 (($ $ $) NIL (|has| |#1| (-767)))) (-3574 (($ $ $) NIL (|has| |#1| (-767)))) (-2677 (((-1124) $) 46)) (-3988 (((-1086) $) NIL)) (-1404 ((|#3| $) 22)) (-3845 (((-834) $) 42)) (-3275 (($) 10 T CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-767)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-767)))) (-2388 (((-112) $ $) 20)) (-2436 (((-112) $ $) NIL (|has| |#1| (-767)))) (-2411 (((-112) $ $) 24 (|has| |#1| (-767)))) (-2512 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2499 (($ $) 17) (($ $ $) NIL)) (-2485 (($ $ $) 27)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-638 |#1| |#2| |#3|) (-13 (-694 |#2|) (-10 -8 (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) (-15 -2512 ($ $ |#3|)) (-15 -2512 ($ |#1| |#3|)) (-15 -1393 (|#1| $)) (-15 -1404 (|#3| $)))) (-694 |#2|) (-170) (|SubsetCategory| (-703) |#2|)) (T -638))
-((-2512 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-694 *4)) (-4 *2 (|SubsetCategory| (-703) *4)))) (-2512 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-638 *2 *4 *3)) (-4 *2 (-694 *4)) (-4 *3 (|SubsetCategory| (-703) *4)))) (-1393 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-694 *3)) (-5 *1 (-638 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-703) *3)))) (-1404 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-694 *4)))))
-(-13 (-694 |#2|) (-10 -8 (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) (-15 -2512 ($ $ |#3|)) (-15 -2512 ($ |#1| |#3|)) (-15 -1393 (|#1| $)) (-15 -1404 (|#3| $))))
-((-1326 (((-3 (-621 (-1138 |#1|)) "failed") (-621 (-1138 |#1|)) (-1138 |#1|)) 33)))
-(((-639 |#1|) (-10 -7 (-15 -1326 ((-3 (-621 (-1138 |#1|)) "failed") (-621 (-1138 |#1|)) (-1138 |#1|)))) (-880)) (T -639))
-((-1326 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-1138 *4))) (-5 *3 (-1138 *4)) (-4 *4 (-880)) (-5 *1 (-639 *4)))))
-(-10 -7 (-15 -1326 ((-3 (-621 (-1138 |#1|)) "failed") (-621 (-1138 |#1|)) (-1138 |#1|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3303 (((-621 |#1|) $) 82)) (-3447 (($ $ (-747)) 90)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-3537 (((-1249 |#1| |#2|) (-1249 |#1| |#2|) $) 48)) (-2713 (((-3 (-648 |#1|) "failed") $) NIL)) (-2658 (((-648 |#1|) $) NIL)) (-2069 (($ $) 89)) (-3454 (((-747) $) NIL)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-3525 (($ (-648 |#1|) |#2|) 68)) (-3276 (($ $) 86)) (-2796 (($ (-1 |#2| |#2|) $) NIL)) (-3434 (((-1249 |#1| |#2|) (-1249 |#1| |#2|) $) 47)) (-3196 (((-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2027 (((-648 |#1|) $) NIL)) (-2042 ((|#2| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2685 (($ $ |#1| $) 30) (($ $ (-621 |#1|) (-621 $)) 32)) (-3068 (((-747) $) 88)) (-3853 (($ $ $) 20) (($ (-648 |#1|) (-648 |#1|)) 77) (($ (-648 |#1|) $) 75) (($ $ (-648 |#1|)) 76)) (-3845 (((-834) $) NIL) (($ |#1|) 74) (((-1240 |#1| |#2|) $) 58) (((-1249 |#1| |#2|) $) 41) (($ (-648 |#1|)) 25)) (-3330 (((-621 |#2|) $) NIL)) (-2944 ((|#2| $ (-648 |#1|)) NIL)) (-1569 ((|#2| (-1249 |#1| |#2|) $) 43)) (-3275 (($) 23 T CONST)) (-2729 (((-621 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3765 (((-3 $ "failed") (-1240 |#1| |#2|)) 60)) (-3611 (($ (-648 |#1|)) 14)) (-2388 (((-112) $ $) 44)) (-2512 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2499 (($ $) 66) (($ $ $) NIL)) (-2485 (($ $ $) 29)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-648 |#1|)) NIL)))
-(((-640 |#1| |#2|) (-13 (-367 |#1| |#2|) (-375 |#2| (-648 |#1|)) (-10 -8 (-15 -3765 ((-3 $ "failed") (-1240 |#1| |#2|))) (-15 -3853 ($ (-648 |#1|) (-648 |#1|))) (-15 -3853 ($ (-648 |#1|) $)) (-15 -3853 ($ $ (-648 |#1|))))) (-823) (-170)) (T -640))
-((-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1240 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *1 (-640 *3 *4)))) (-3853 (*1 *1 *2 *2) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))) (-3853 (*1 *1 *2 *1) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))) (-3853 (*1 *1 *1 *2) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))))
-(-13 (-367 |#1| |#2|) (-375 |#2| (-648 |#1|)) (-10 -8 (-15 -3765 ((-3 $ "failed") (-1240 |#1| |#2|))) (-15 -3853 ($ (-648 |#1|) (-648 |#1|))) (-15 -3853 ($ (-648 |#1|) $)) (-15 -3853 ($ $ (-648 |#1|)))))
-((-1993 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-4106 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3069 (($ (-1 (-112) |#2|) $) 28)) (-4273 (($ $) 56)) (-2992 (($ $) 64)) (-4204 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-2558 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2882 (((-549) |#2| $ (-549)) 61) (((-549) |#2| $) NIL) (((-549) (-1 (-112) |#2|) $) 47)) (-3743 (($ (-747) |#2|) 54)) (-3019 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-1586 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2796 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3524 (($ |#2|) 15)) (-1709 (($ $ $ (-549)) 36) (($ |#2| $ (-549)) 34)) (-1917 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-1876 (($ $ (-1192 (-549))) 44) (($ $ (-549)) 38)) (-1665 (($ $ $ (-549)) 60)) (-2281 (($ $) 58)) (-2411 (((-112) $ $) 66)))
-(((-641 |#1| |#2|) (-10 -8 (-15 -3524 (|#1| |#2|)) (-15 -1876 (|#1| |#1| (-549))) (-15 -1876 (|#1| |#1| (-1192 (-549)))) (-15 -4204 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1709 (|#1| |#2| |#1| (-549))) (-15 -1709 (|#1| |#1| |#1| (-549))) (-15 -3019 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3069 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4204 (|#1| |#2| |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -3019 (|#1| |#1| |#1|)) (-15 -1586 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1993 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2882 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -2882 ((-549) |#2| |#1|)) (-15 -2882 ((-549) |#2| |#1| (-549))) (-15 -1586 (|#1| |#1| |#1|)) (-15 -1993 ((-112) |#1|)) (-15 -1665 (|#1| |#1| |#1| (-549))) (-15 -4273 (|#1| |#1|)) (-15 -4106 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -2411 ((-112) |#1| |#1|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1917 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3743 (|#1| (-747) |#2|)) (-15 -2796 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2281 (|#1| |#1|))) (-642 |#2|) (-1179)) (T -641))
-NIL
-(-10 -8 (-15 -3524 (|#1| |#2|)) (-15 -1876 (|#1| |#1| (-549))) (-15 -1876 (|#1| |#1| (-1192 (-549)))) (-15 -4204 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1709 (|#1| |#2| |#1| (-549))) (-15 -1709 (|#1| |#1| |#1| (-549))) (-15 -3019 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3069 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4204 (|#1| |#2| |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -3019 (|#1| |#1| |#1|)) (-15 -1586 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1993 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2882 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -2882 ((-549) |#2| |#1|)) (-15 -2882 ((-549) |#2| |#1| (-549))) (-15 -1586 (|#1| |#1| |#1|)) (-15 -1993 ((-112) |#1|)) (-15 -1665 (|#1| |#1| |#1| (-549))) (-15 -4273 (|#1| |#1|)) (-15 -4106 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -2411 ((-112) |#1| |#1|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2558 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1917 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3743 (|#1| (-747) |#2|)) (-15 -2796 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2281 (|#1| |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-4160 ((|#1| $) 48)) (-2838 ((|#1| $) 65)) (-1342 (($ $) 67)) (-2932 (((-1230) $ (-549) (-549)) 97 (|has| $ (-6 -4337)))) (-3637 (($ $ (-549)) 52 (|has| $ (-6 -4337)))) (-1993 (((-112) $) 142 (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-4106 (($ $) 146 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4337)))) (-3193 (($ $) 141 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-1323 (((-112) $ (-747)) 8)) (-3751 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-1362 (($ $ $) 56 (|has| $ (-6 -4337)))) (-4277 ((|#1| $ |#1|) 54 (|has| $ (-6 -4337)))) (-2627 ((|#1| $ |#1|) 58 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4337))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4337))) (($ $ "rest" $) 55 (|has| $ (-6 -4337))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) 117 (|has| $ (-6 -4337))) ((|#1| $ (-549) |#1|) 86 (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) 41 (|has| $ (-6 -4337)))) (-3069 (($ (-1 (-112) |#1|) $) 129)) (-1488 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4336)))) (-2828 ((|#1| $) 66)) (-1705 (($) 7 T CONST)) (-4273 (($ $) 144 (|has| $ (-6 -4337)))) (-3063 (($ $) 134)) (-3655 (($ $) 73) (($ $ (-747)) 71)) (-2992 (($ $) 131 (|has| |#1| (-1066)))) (-3675 (($ $) 99 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-4204 (($ |#1| $) 130 (|has| |#1| (-1066))) (($ (-1 (-112) |#1|) $) 125)) (-3812 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4336))) (($ |#1| $) 100 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1878 ((|#1| $ (-549) |#1|) 85 (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) 87)) (-3149 (((-112) $) 83)) (-2882 (((-549) |#1| $ (-549)) 139 (|has| |#1| (-1066))) (((-549) |#1| $) 138 (|has| |#1| (-1066))) (((-549) (-1 (-112) |#1|) $) 137)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) 50)) (-1742 (((-112) $ $) 42 (|has| |#1| (-1066)))) (-3743 (($ (-747) |#1|) 108)) (-4202 (((-112) $ (-747)) 9)) (-3485 (((-549) $) 95 (|has| (-549) (-823)))) (-2862 (($ $ $) 147 (|has| |#1| (-823)))) (-3019 (($ $ $) 132 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-1586 (($ $ $) 140 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 94 (|has| (-549) (-823)))) (-3574 (($ $ $) 148 (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3524 (($ |#1|) 122)) (-4289 (((-112) $ (-747)) 10)) (-3590 (((-621 |#1|) $) 45)) (-2456 (((-112) $) 49)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-3828 ((|#1| $) 70) (($ $ (-747)) 68)) (-1709 (($ $ $ (-549)) 127) (($ |#1| $ (-549)) 126)) (-2614 (($ $ $ (-549)) 116) (($ |#1| $ (-549)) 115)) (-3927 (((-621 (-549)) $) 92)) (-1286 (((-112) (-549) $) 91)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-3645 ((|#1| $) 76) (($ $ (-747)) 74)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3158 (($ $ |#1|) 96 (|has| $ (-6 -4337)))) (-3342 (((-112) $) 84)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) 90)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1192 (-549))) 112) ((|#1| $ (-549)) 89) ((|#1| $ (-549) |#1|) 88)) (-1953 (((-549) $ $) 44)) (-1876 (($ $ (-1192 (-549))) 124) (($ $ (-549)) 123)) (-2166 (($ $ (-1192 (-549))) 114) (($ $ (-549)) 113)) (-4187 (((-112) $) 46)) (-1811 (($ $) 62)) (-1679 (($ $) 59 (|has| $ (-6 -4337)))) (-2041 (((-747) $) 63)) (-2277 (($ $) 64)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1665 (($ $ $ (-549)) 143 (|has| $ (-6 -4337)))) (-2281 (($ $) 13)) (-2844 (((-525) $) 98 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 107)) (-3091 (($ $ $) 61) (($ $ |#1|) 60)) (-1951 (($ $ $) 78) (($ |#1| $) 77) (($ (-621 $)) 110) (($ $ |#1|) 109)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) 51)) (-2937 (((-112) $ $) 43 (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) 150 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 151 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-2436 (((-112) $ $) 149 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 152 (|has| |#1| (-823)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-642 |#1|) (-138) (-1179)) (T -642))
-((-3524 (*1 *1 *2) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1179)))))
-(-13 (-1115 |t#1|) (-366 |t#1|) (-275 |t#1|) (-10 -8 (-15 -3524 ($ |t#1|))))
-(((-34) . T) ((-101) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823))) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-275 |#1|) . T) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-627 |#1|) . T) ((-823) |has| |#1| (-823)) ((-981 |#1|) . T) ((-1066) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823))) ((-1115 |#1|) . T) ((-1179) . T) ((-1213 |#1|) . T))
-((-2808 (((-621 (-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|))))) (-621 (-621 |#1|)) (-621 (-1225 |#1|))) 22) (((-621 (-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|))))) (-665 |#1|) (-621 (-1225 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|)))) (-621 (-621 |#1|)) (-1225 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|)))) (-665 |#1|) (-1225 |#1|)) 14)) (-3122 (((-747) (-665 |#1|) (-1225 |#1|)) 30)) (-2216 (((-3 (-1225 |#1|) "failed") (-665 |#1|) (-1225 |#1|)) 24)) (-1398 (((-112) (-665 |#1|) (-1225 |#1|)) 27)))
-(((-643 |#1|) (-10 -7 (-15 -2808 ((-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|)))) (-665 |#1|) (-1225 |#1|))) (-15 -2808 ((-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|)))) (-621 (-621 |#1|)) (-1225 |#1|))) (-15 -2808 ((-621 (-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|))))) (-665 |#1|) (-621 (-1225 |#1|)))) (-15 -2808 ((-621 (-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|))))) (-621 (-621 |#1|)) (-621 (-1225 |#1|)))) (-15 -2216 ((-3 (-1225 |#1|) "failed") (-665 |#1|) (-1225 |#1|))) (-15 -1398 ((-112) (-665 |#1|) (-1225 |#1|))) (-15 -3122 ((-747) (-665 |#1|) (-1225 |#1|)))) (-356)) (T -643))
-((-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-1225 *5)) (-4 *5 (-356)) (-5 *2 (-747)) (-5 *1 (-643 *5)))) (-1398 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-1225 *5)) (-4 *5 (-356)) (-5 *2 (-112)) (-5 *1 (-643 *5)))) (-2216 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1225 *4)) (-5 *3 (-665 *4)) (-4 *4 (-356)) (-5 *1 (-643 *4)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-621 *5))) (-4 *5 (-356)) (-5 *2 (-621 (-2 (|:| |particular| (-3 (-1225 *5) "failed")) (|:| -3420 (-621 (-1225 *5)))))) (-5 *1 (-643 *5)) (-5 *4 (-621 (-1225 *5))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-4 *5 (-356)) (-5 *2 (-621 (-2 (|:| |particular| (-3 (-1225 *5) "failed")) (|:| -3420 (-621 (-1225 *5)))))) (-5 *1 (-643 *5)) (-5 *4 (-621 (-1225 *5))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-621 *5))) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1225 *5) "failed")) (|:| -3420 (-621 (-1225 *5))))) (-5 *1 (-643 *5)) (-5 *4 (-1225 *5)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1225 *5) "failed")) (|:| -3420 (-621 (-1225 *5))))) (-5 *1 (-643 *5)) (-5 *4 (-1225 *5)))))
-(-10 -7 (-15 -2808 ((-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|)))) (-665 |#1|) (-1225 |#1|))) (-15 -2808 ((-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|)))) (-621 (-621 |#1|)) (-1225 |#1|))) (-15 -2808 ((-621 (-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|))))) (-665 |#1|) (-621 (-1225 |#1|)))) (-15 -2808 ((-621 (-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|))))) (-621 (-621 |#1|)) (-621 (-1225 |#1|)))) (-15 -2216 ((-3 (-1225 |#1|) "failed") (-665 |#1|) (-1225 |#1|))) (-15 -1398 ((-112) (-665 |#1|) (-1225 |#1|))) (-15 -3122 ((-747) (-665 |#1|) (-1225 |#1|))))
-((-2808 (((-621 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3420 (-621 |#3|)))) |#4| (-621 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3420 (-621 |#3|))) |#4| |#3|) 45)) (-3122 (((-747) |#4| |#3|) 17)) (-2216 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1398 (((-112) |#4| |#3|) 13)))
-(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2808 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3420 (-621 |#3|))) |#4| |#3|)) (-15 -2808 ((-621 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3420 (-621 |#3|)))) |#4| (-621 |#3|))) (-15 -2216 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1398 ((-112) |#4| |#3|)) (-15 -3122 ((-747) |#4| |#3|))) (-356) (-13 (-366 |#1|) (-10 -7 (-6 -4337))) (-13 (-366 |#1|) (-10 -7 (-6 -4337))) (-663 |#1| |#2| |#3|)) (T -644))
-((-3122 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4337)))) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-747)) (-5 *1 (-644 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4)))) (-1398 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4337)))) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-112)) (-5 *1 (-644 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4)))) (-2216 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-356)) (-4 *5 (-13 (-366 *4) (-10 -7 (-6 -4337)))) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4337)))) (-5 *1 (-644 *4 *5 *2 *3)) (-4 *3 (-663 *4 *5 *2)))) (-2808 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4337)))) (-4 *7 (-13 (-366 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-621 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3420 (-621 *7))))) (-5 *1 (-644 *5 *6 *7 *3)) (-5 *4 (-621 *7)) (-4 *3 (-663 *5 *6 *7)))) (-2808 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4337)))) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4)))) (-5 *1 (-644 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4)))))
-(-10 -7 (-15 -2808 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3420 (-621 |#3|))) |#4| |#3|)) (-15 -2808 ((-621 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3420 (-621 |#3|)))) |#4| (-621 |#3|))) (-15 -2216 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1398 ((-112) |#4| |#3|)) (-15 -3122 ((-747) |#4| |#3|)))
-((-2369 (((-2 (|:| |particular| (-3 (-1225 (-400 |#4|)) "failed")) (|:| -3420 (-621 (-1225 (-400 |#4|))))) (-621 |#4|) (-621 |#3|)) 45)))
-(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2369 ((-2 (|:| |particular| (-3 (-1225 (-400 |#4|)) "failed")) (|:| -3420 (-621 (-1225 (-400 |#4|))))) (-621 |#4|) (-621 |#3|)))) (-541) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -645))
-((-2369 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *7)) (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-5 *2 (-2 (|:| |particular| (-3 (-1225 (-400 *8)) "failed")) (|:| -3420 (-621 (-1225 (-400 *8)))))) (-5 *1 (-645 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2369 ((-2 (|:| |particular| (-3 (-1225 (-400 |#4|)) "failed")) (|:| -3420 (-621 (-1225 (-400 |#4|))))) (-621 |#4|) (-621 |#3|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2699 (((-3 $ "failed")) NIL (|has| |#2| (-541)))) (-2905 ((|#2| $) NIL)) (-1818 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2818 (((-1225 (-665 |#2|))) NIL) (((-1225 (-665 |#2|)) (-1225 $)) NIL)) (-3893 (((-112) $) NIL)) (-1955 (((-1225 $)) 37)) (-1323 (((-112) $ (-747)) NIL)) (-2005 (($ |#2|) NIL)) (-1705 (($) NIL T CONST)) (-2226 (($ $) NIL (|has| |#2| (-300)))) (-2413 (((-234 |#1| |#2|) $ (-549)) NIL)) (-2983 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) NIL (|has| |#2| (-541)))) (-3917 (((-3 $ "failed")) NIL (|has| |#2| (-541)))) (-1418 (((-665 |#2|)) NIL) (((-665 |#2|) (-1225 $)) NIL)) (-1399 ((|#2| $) NIL)) (-2811 (((-665 |#2|) $) NIL) (((-665 |#2|) $ (-1225 $)) NIL)) (-3923 (((-3 $ "failed") $) NIL (|has| |#2| (-541)))) (-4165 (((-1138 (-923 |#2|))) NIL (|has| |#2| (-356)))) (-2353 (($ $ (-892)) NIL)) (-1618 ((|#2| $) NIL)) (-4057 (((-1138 |#2|) $) NIL (|has| |#2| (-541)))) (-2351 ((|#2|) NIL) ((|#2| (-1225 $)) NIL)) (-3254 (((-1138 |#2|) $) NIL)) (-2186 (((-112)) NIL)) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 |#2| "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) ((|#2| $) NIL)) (-2127 (($ (-1225 |#2|)) NIL) (($ (-1225 |#2|) (-1225 $)) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3122 (((-747) $) NIL (|has| |#2| (-541))) (((-892)) 38)) (-1808 ((|#2| $ (-549) (-549)) NIL)) (-1373 (((-112)) NIL)) (-2377 (($ $ (-892)) NIL)) (-2990 (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3987 (((-112) $) NIL)) (-1746 (((-747) $) NIL (|has| |#2| (-541)))) (-1701 (((-621 (-234 |#1| |#2|)) $) NIL (|has| |#2| (-541)))) (-2141 (((-747) $) NIL)) (-3995 (((-112)) NIL)) (-2154 (((-747) $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-1542 ((|#2| $) NIL (|has| |#2| (-6 (-4338 "*"))))) (-2437 (((-549) $) NIL)) (-2103 (((-549) $) NIL)) (-1958 (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-2303 (((-549) $) NIL)) (-2362 (((-549) $) NIL)) (-3945 (($ (-621 (-621 |#2|))) NIL)) (-1865 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3595 (((-621 (-621 |#2|)) $) NIL)) (-4285 (((-112)) NIL)) (-3055 (((-112)) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-4263 (((-3 (-2 (|:| |particular| $) (|:| -3420 (-621 $))) "failed")) NIL (|has| |#2| (-541)))) (-1497 (((-3 $ "failed")) NIL (|has| |#2| (-541)))) (-1779 (((-665 |#2|)) NIL) (((-665 |#2|) (-1225 $)) NIL)) (-1359 ((|#2| $) NIL)) (-1315 (((-665 |#2|) $) NIL) (((-665 |#2|) $ (-1225 $)) NIL)) (-2193 (((-3 $ "failed") $) NIL (|has| |#2| (-541)))) (-2014 (((-1138 (-923 |#2|))) NIL (|has| |#2| (-356)))) (-2881 (($ $ (-892)) NIL)) (-3142 ((|#2| $) NIL)) (-2568 (((-1138 |#2|) $) NIL (|has| |#2| (-541)))) (-2742 ((|#2|) NIL) ((|#2| (-1225 $)) NIL)) (-2934 (((-1138 |#2|) $) NIL)) (-2342 (((-112)) NIL)) (-2677 (((-1124) $) NIL)) (-1768 (((-112)) NIL)) (-4176 (((-112)) NIL)) (-4086 (((-112)) NIL)) (-3733 (((-3 $ "failed") $) NIL (|has| |#2| (-356)))) (-3988 (((-1086) $) NIL)) (-2036 (((-112)) NIL)) (-2038 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541)))) (-2470 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#2| $ (-549) (-549) |#2|) NIL) ((|#2| $ (-549) (-549)) 22) ((|#2| $ (-549)) NIL)) (-3455 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-4254 ((|#2| $) NIL)) (-1601 (($ (-621 |#2|)) NIL)) (-2798 (((-112) $) NIL)) (-2674 (((-234 |#1| |#2|) $) NIL)) (-3097 ((|#2| $) NIL (|has| |#2| (-6 (-4338 "*"))))) (-3997 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-2281 (($ $) NIL)) (-4163 (((-665 |#2|) (-1225 $)) NIL) (((-1225 |#2|) $) NIL) (((-665 |#2|) (-1225 $) (-1225 $)) NIL) (((-1225 |#2|) $ (-1225 $)) 25)) (-2844 (($ (-1225 |#2|)) NIL) (((-1225 |#2|) $) NIL)) (-3619 (((-621 (-923 |#2|))) NIL) (((-621 (-923 |#2|)) (-1225 $)) NIL)) (-1911 (($ $ $) NIL)) (-2138 (((-112)) NIL)) (-4102 (((-234 |#1| |#2|) $ (-549)) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#2| (-1009 (-400 (-549))))) (($ |#2|) NIL) (((-665 |#2|) $) NIL)) (-1723 (((-747)) NIL)) (-3420 (((-1225 $)) 36)) (-1600 (((-621 (-1225 |#2|))) NIL (|has| |#2| (-541)))) (-4172 (($ $ $ $) NIL)) (-3596 (((-112)) NIL)) (-3592 (($ (-665 |#2|) $) NIL)) (-2150 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2901 (((-112) $) NIL)) (-1892 (($ $ $) NIL)) (-2221 (((-112)) NIL)) (-1654 (((-112)) NIL)) (-1615 (((-112)) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#2| (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-234 |#1| |#2|) $ (-234 |#1| |#2|)) NIL) (((-234 |#1| |#2|) (-234 |#1| |#2|) $) NIL)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-646 |#1| |#2|) (-13 (-1089 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-593 (-665 |#2|)) (-410 |#2|)) (-892) (-170)) (T -646))
-NIL
-(-13 (-1089 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-593 (-665 |#2|)) (-410 |#2|))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1684 (((-621 (-1101)) $) 10)) (-3845 (((-834) $) 18) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-647) (-13 (-1049) (-10 -8 (-15 -1684 ((-621 (-1101)) $))))) (T -647))
-((-1684 (*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-647)))))
-(-13 (-1049) (-10 -8 (-15 -1684 ((-621 (-1101)) $))))
-((-3833 (((-112) $ $) NIL)) (-3303 (((-621 |#1|) $) NIL)) (-3847 (($ $) 52)) (-2061 (((-112) $) NIL)) (-2713 (((-3 |#1| "failed") $) NIL)) (-2658 ((|#1| $) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-1453 (((-3 $ "failed") (-795 |#1|)) 23)) (-3201 (((-112) (-795 |#1|)) 15)) (-1456 (($ (-795 |#1|)) 24)) (-1656 (((-112) $ $) 30)) (-4209 (((-892) $) 37)) (-3837 (($ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2120 (((-621 $) (-795 |#1|)) 17)) (-3845 (((-834) $) 43) (($ |#1|) 34) (((-795 |#1|) $) 39) (((-653 |#1|) $) 44)) (-2346 (((-58 (-621 $)) (-621 |#1|) (-892)) 57)) (-3862 (((-621 $) (-621 |#1|) (-892)) 60)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 53)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 38)))
-(((-648 |#1|) (-13 (-823) (-1009 |#1|) (-10 -8 (-15 -2061 ((-112) $)) (-15 -3837 ($ $)) (-15 -3847 ($ $)) (-15 -4209 ((-892) $)) (-15 -1656 ((-112) $ $)) (-15 -3845 ((-795 |#1|) $)) (-15 -3845 ((-653 |#1|) $)) (-15 -2120 ((-621 $) (-795 |#1|))) (-15 -3201 ((-112) (-795 |#1|))) (-15 -1456 ($ (-795 |#1|))) (-15 -1453 ((-3 $ "failed") (-795 |#1|))) (-15 -3303 ((-621 |#1|) $)) (-15 -2346 ((-58 (-621 $)) (-621 |#1|) (-892))) (-15 -3862 ((-621 $) (-621 |#1|) (-892))))) (-823)) (T -648))
-((-2061 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-3837 (*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823)))) (-3847 (*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-892)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-1656 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-621 (-648 *4))) (-5 *1 (-648 *4)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-112)) (-5 *1 (-648 *4)))) (-1456 (*1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))) (-1453 (*1 *1 *2) (|partial| -12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-2346 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-892)) (-4 *5 (-823)) (-5 *2 (-58 (-621 (-648 *5)))) (-5 *1 (-648 *5)))) (-3862 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-892)) (-4 *5 (-823)) (-5 *2 (-621 (-648 *5))) (-5 *1 (-648 *5)))))
-(-13 (-823) (-1009 |#1|) (-10 -8 (-15 -2061 ((-112) $)) (-15 -3837 ($ $)) (-15 -3847 ($ $)) (-15 -4209 ((-892) $)) (-15 -1656 ((-112) $ $)) (-15 -3845 ((-795 |#1|) $)) (-15 -3845 ((-653 |#1|) $)) (-15 -2120 ((-621 $) (-795 |#1|))) (-15 -3201 ((-112) (-795 |#1|))) (-15 -1456 ($ (-795 |#1|))) (-15 -1453 ((-3 $ "failed") (-795 |#1|))) (-15 -3303 ((-621 |#1|) $)) (-15 -2346 ((-58 (-621 $)) (-621 |#1|) (-892))) (-15 -3862 ((-621 $) (-621 |#1|) (-892)))))
-((-4160 ((|#2| $) 76)) (-1342 (($ $) 96)) (-1323 (((-112) $ (-747)) 26)) (-3655 (($ $) 85) (($ $ (-747)) 88)) (-3149 (((-112) $) 97)) (-3630 (((-621 $) $) 72)) (-1742 (((-112) $ $) 71)) (-4202 (((-112) $ (-747)) 24)) (-3485 (((-549) $) 46)) (-1548 (((-549) $) 45)) (-4289 (((-112) $ (-747)) 22)) (-2456 (((-112) $) 74)) (-3828 ((|#2| $) 89) (($ $ (-747)) 92)) (-2614 (($ $ $ (-549)) 62) (($ |#2| $ (-549)) 61)) (-3927 (((-621 (-549)) $) 44)) (-1286 (((-112) (-549) $) 42)) (-3645 ((|#2| $) NIL) (($ $ (-747)) 84)) (-2975 (($ $ (-549)) 100)) (-3342 (((-112) $) 99)) (-2470 (((-112) (-1 (-112) |#2|) $) 32)) (-1738 (((-621 |#2|) $) 33)) (-3340 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1192 (-549))) 58) ((|#2| $ (-549)) 40) ((|#2| $ (-549) |#2|) 41)) (-1953 (((-549) $ $) 70)) (-2166 (($ $ (-1192 (-549))) 57) (($ $ (-549)) 51)) (-4187 (((-112) $) 66)) (-1811 (($ $) 81)) (-2041 (((-747) $) 80)) (-2277 (($ $) 79)) (-3853 (($ (-621 |#2|)) 37)) (-1814 (($ $) 101)) (-1935 (((-621 $) $) 69)) (-2937 (((-112) $ $) 68)) (-2150 (((-112) (-1 (-112) |#2|) $) 31)) (-2388 (((-112) $ $) 18)) (-3774 (((-747) $) 29)))
-(((-649 |#1| |#2|) (-10 -8 (-15 -1814 (|#1| |#1|)) (-15 -2975 (|#1| |#1| (-549))) (-15 -3149 ((-112) |#1|)) (-15 -3342 ((-112) |#1|)) (-15 -3340 (|#2| |#1| (-549) |#2|)) (-15 -3340 (|#2| |#1| (-549))) (-15 -1738 ((-621 |#2|) |#1|)) (-15 -1286 ((-112) (-549) |#1|)) (-15 -3927 ((-621 (-549)) |#1|)) (-15 -1548 ((-549) |#1|)) (-15 -3485 ((-549) |#1|)) (-15 -3853 (|#1| (-621 |#2|))) (-15 -3340 (|#1| |#1| (-1192 (-549)))) (-15 -2166 (|#1| |#1| (-549))) (-15 -2166 (|#1| |#1| (-1192 (-549)))) (-15 -2614 (|#1| |#2| |#1| (-549))) (-15 -2614 (|#1| |#1| |#1| (-549))) (-15 -1811 (|#1| |#1|)) (-15 -2041 ((-747) |#1|)) (-15 -2277 (|#1| |#1|)) (-15 -1342 (|#1| |#1|)) (-15 -3828 (|#1| |#1| (-747))) (-15 -3340 (|#2| |#1| "last")) (-15 -3828 (|#2| |#1|)) (-15 -3655 (|#1| |#1| (-747))) (-15 -3340 (|#1| |#1| "rest")) (-15 -3655 (|#1| |#1|)) (-15 -3645 (|#1| |#1| (-747))) (-15 -3340 (|#2| |#1| "first")) (-15 -3645 (|#2| |#1|)) (-15 -1742 ((-112) |#1| |#1|)) (-15 -2937 ((-112) |#1| |#1|)) (-15 -1953 ((-549) |#1| |#1|)) (-15 -4187 ((-112) |#1|)) (-15 -3340 (|#2| |#1| "value")) (-15 -4160 (|#2| |#1|)) (-15 -2456 ((-112) |#1|)) (-15 -3630 ((-621 |#1|) |#1|)) (-15 -1935 ((-621 |#1|) |#1|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -2470 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2150 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3774 ((-747) |#1|)) (-15 -1323 ((-112) |#1| (-747))) (-15 -4202 ((-112) |#1| (-747))) (-15 -4289 ((-112) |#1| (-747)))) (-650 |#2|) (-1179)) (T -649))
-NIL
-(-10 -8 (-15 -1814 (|#1| |#1|)) (-15 -2975 (|#1| |#1| (-549))) (-15 -3149 ((-112) |#1|)) (-15 -3342 ((-112) |#1|)) (-15 -3340 (|#2| |#1| (-549) |#2|)) (-15 -3340 (|#2| |#1| (-549))) (-15 -1738 ((-621 |#2|) |#1|)) (-15 -1286 ((-112) (-549) |#1|)) (-15 -3927 ((-621 (-549)) |#1|)) (-15 -1548 ((-549) |#1|)) (-15 -3485 ((-549) |#1|)) (-15 -3853 (|#1| (-621 |#2|))) (-15 -3340 (|#1| |#1| (-1192 (-549)))) (-15 -2166 (|#1| |#1| (-549))) (-15 -2166 (|#1| |#1| (-1192 (-549)))) (-15 -2614 (|#1| |#2| |#1| (-549))) (-15 -2614 (|#1| |#1| |#1| (-549))) (-15 -1811 (|#1| |#1|)) (-15 -2041 ((-747) |#1|)) (-15 -2277 (|#1| |#1|)) (-15 -1342 (|#1| |#1|)) (-15 -3828 (|#1| |#1| (-747))) (-15 -3340 (|#2| |#1| "last")) (-15 -3828 (|#2| |#1|)) (-15 -3655 (|#1| |#1| (-747))) (-15 -3340 (|#1| |#1| "rest")) (-15 -3655 (|#1| |#1|)) (-15 -3645 (|#1| |#1| (-747))) (-15 -3340 (|#2| |#1| "first")) (-15 -3645 (|#2| |#1|)) (-15 -1742 ((-112) |#1| |#1|)) (-15 -2937 ((-112) |#1| |#1|)) (-15 -1953 ((-549) |#1| |#1|)) (-15 -4187 ((-112) |#1|)) (-15 -3340 (|#2| |#1| "value")) (-15 -4160 (|#2| |#1|)) (-15 -2456 ((-112) |#1|)) (-15 -3630 ((-621 |#1|) |#1|)) (-15 -1935 ((-621 |#1|) |#1|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -2470 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2150 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3774 ((-747) |#1|)) (-15 -1323 ((-112) |#1| (-747))) (-15 -4202 ((-112) |#1| (-747))) (-15 -4289 ((-112) |#1| (-747))))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-4160 ((|#1| $) 48)) (-2838 ((|#1| $) 65)) (-1342 (($ $) 67)) (-2932 (((-1230) $ (-549) (-549)) 97 (|has| $ (-6 -4337)))) (-3637 (($ $ (-549)) 52 (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) 8)) (-3751 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-1362 (($ $ $) 56 (|has| $ (-6 -4337)))) (-4277 ((|#1| $ |#1|) 54 (|has| $ (-6 -4337)))) (-2627 ((|#1| $ |#1|) 58 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4337))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4337))) (($ $ "rest" $) 55 (|has| $ (-6 -4337))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) 117 (|has| $ (-6 -4337))) ((|#1| $ (-549) |#1|) 86 (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) 41 (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) 102)) (-2828 ((|#1| $) 66)) (-1705 (($) 7 T CONST)) (-2323 (($ $) 124)) (-3655 (($ $) 73) (($ $ (-747)) 71)) (-3675 (($ $) 99 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#1| $) 100 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 103)) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1878 ((|#1| $ (-549) |#1|) 85 (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) 87)) (-3149 (((-112) $) 83)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-747) $) 123)) (-3630 (((-621 $) $) 50)) (-1742 (((-112) $ $) 42 (|has| |#1| (-1066)))) (-3743 (($ (-747) |#1|) 108)) (-4202 (((-112) $ (-747)) 9)) (-3485 (((-549) $) 95 (|has| (-549) (-823)))) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 94 (|has| (-549) (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4289 (((-112) $ (-747)) 10)) (-3590 (((-621 |#1|) $) 45)) (-2456 (((-112) $) 49)) (-1872 (($ $) 126)) (-3174 (((-112) $) 127)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-3828 ((|#1| $) 70) (($ $ (-747)) 68)) (-2614 (($ $ $ (-549)) 116) (($ |#1| $ (-549)) 115)) (-3927 (((-621 (-549)) $) 92)) (-1286 (((-112) (-549) $) 91)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-2195 ((|#1| $) 125)) (-3645 ((|#1| $) 76) (($ $ (-747)) 74)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3158 (($ $ |#1|) 96 (|has| $ (-6 -4337)))) (-2975 (($ $ (-549)) 122)) (-3342 (((-112) $) 84)) (-4240 (((-112) $) 128)) (-3633 (((-112) $) 129)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) 90)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1192 (-549))) 112) ((|#1| $ (-549)) 89) ((|#1| $ (-549) |#1|) 88)) (-1953 (((-549) $ $) 44)) (-2166 (($ $ (-1192 (-549))) 114) (($ $ (-549)) 113)) (-4187 (((-112) $) 46)) (-1811 (($ $) 62)) (-1679 (($ $) 59 (|has| $ (-6 -4337)))) (-2041 (((-747) $) 63)) (-2277 (($ $) 64)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-2844 (((-525) $) 98 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 107)) (-3091 (($ $ $) 61 (|has| $ (-6 -4337))) (($ $ |#1|) 60 (|has| $ (-6 -4337)))) (-1951 (($ $ $) 78) (($ |#1| $) 77) (($ (-621 $)) 110) (($ $ |#1|) 109)) (-1814 (($ $) 121)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) 51)) (-2937 (((-112) $ $) 43 (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-650 |#1|) (-138) (-1179)) (T -650))
-((-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1179)))) (-1488 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1179)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1179)) (-5 *2 (-112)))) (-4240 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1179)) (-5 *2 (-112)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1179)) (-5 *2 (-112)))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1179)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1179)))) (-2323 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1179)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1179)) (-5 *2 (-747)))) (-2975 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-650 *3)) (-4 *3 (-1179)))) (-1814 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1179)))))
-(-13 (-1115 |t#1|) (-10 -8 (-15 -3812 ($ (-1 (-112) |t#1|) $)) (-15 -1488 ($ (-1 (-112) |t#1|) $)) (-15 -3633 ((-112) $)) (-15 -4240 ((-112) $)) (-15 -3174 ((-112) $)) (-15 -1872 ($ $)) (-15 -2195 (|t#1| $)) (-15 -2323 ($ $)) (-15 -3352 ((-747) $)) (-15 -2975 ($ $ (-549))) (-15 -1814 ($ $))))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-627 |#1|) . T) ((-981 |#1|) . T) ((-1066) |has| |#1| (-1066)) ((-1115 |#1|) . T) ((-1179) . T) ((-1213 |#1|) . T))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-1604 (($ (-747) (-747) (-747)) 33 (|has| |#1| (-1018)))) (-1323 (((-112) $ (-747)) NIL)) (-1731 ((|#1| $ (-747) (-747) (-747) |#1|) 27)) (-1705 (($) NIL T CONST)) (-3441 (($ $ $) 37 (|has| |#1| (-1018)))) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2212 (((-1225 (-747)) $) 9)) (-1648 (($ (-1142) $ $) 22)) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2596 (($ (-747)) 35 (|has| |#1| (-1018)))) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ (-747) (-747) (-747)) 25)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-3853 (($ (-621 (-621 (-621 |#1|)))) 44)) (-3845 (($ (-929 (-929 (-929 |#1|)))) 15) (((-929 (-929 (-929 |#1|))) $) 12) (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-651 |#1|) (-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1018)) (PROGN (-15 -1604 ($ (-747) (-747) (-747))) (-15 -2596 ($ (-747))) (-15 -3441 ($ $ $))) |%noBranch|) (-15 -3853 ($ (-621 (-621 (-621 |#1|))))) (-15 -3340 (|#1| $ (-747) (-747) (-747))) (-15 -1731 (|#1| $ (-747) (-747) (-747) |#1|)) (-15 -3845 ($ (-929 (-929 (-929 |#1|))))) (-15 -3845 ((-929 (-929 (-929 |#1|))) $)) (-15 -1648 ($ (-1142) $ $)) (-15 -2212 ((-1225 (-747)) $)))) (-1066)) (T -651))
-((-1604 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018)) (-4 *3 (-1066)))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018)) (-4 *3 (-1066)))) (-3441 (*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-1018)) (-4 *2 (-1066)))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-621 *3)))) (-4 *3 (-1066)) (-5 *1 (-651 *3)))) (-3340 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1066)))) (-1731 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1066)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-4 *3 (-1066)) (-5 *1 (-651 *3)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-5 *1 (-651 *3)) (-4 *3 (-1066)))) (-1648 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-651 *3)) (-4 *3 (-1066)))) (-2212 (*1 *2 *1) (-12 (-5 *2 (-1225 (-747))) (-5 *1 (-651 *3)) (-4 *3 (-1066)))))
-(-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1018)) (PROGN (-15 -1604 ($ (-747) (-747) (-747))) (-15 -2596 ($ (-747))) (-15 -3441 ($ $ $))) |%noBranch|) (-15 -3853 ($ (-621 (-621 (-621 |#1|))))) (-15 -3340 (|#1| $ (-747) (-747) (-747))) (-15 -1731 (|#1| $ (-747) (-747) (-747) |#1|)) (-15 -3845 ($ (-929 (-929 (-929 |#1|))))) (-15 -3845 ((-929 (-929 (-929 |#1|))) $)) (-15 -1648 ($ (-1142) $ $)) (-15 -2212 ((-1225 (-747)) $))))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-1390 (((-475) $) 10)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2493 (((-1101) $) 12)) (-2388 (((-112) $ $) NIL)))
-(((-652) (-13 (-1049) (-10 -8 (-15 -1390 ((-475) $)) (-15 -2493 ((-1101) $))))) (T -652))
-((-1390 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-652)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-652)))))
-(-13 (-1049) (-10 -8 (-15 -1390 ((-475) $)) (-15 -2493 ((-1101) $))))
-((-3833 (((-112) $ $) NIL)) (-3303 (((-621 |#1|) $) 14)) (-3847 (($ $) 18)) (-2061 (((-112) $) 19)) (-2713 (((-3 |#1| "failed") $) 22)) (-2658 ((|#1| $) 20)) (-3655 (($ $) 36)) (-3276 (($ $) 24)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-1656 (((-112) $ $) 42)) (-4209 (((-892) $) 38)) (-3837 (($ $) 17)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3645 ((|#1| $) 35)) (-3845 (((-834) $) 31) (($ |#1|) 23) (((-795 |#1|) $) 27)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 12)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 40)) (* (($ $ $) 34)))
-(((-653 |#1|) (-13 (-823) (-1009 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3845 ((-795 |#1|) $)) (-15 -3645 (|#1| $)) (-15 -3837 ($ $)) (-15 -4209 ((-892) $)) (-15 -1656 ((-112) $ $)) (-15 -3276 ($ $)) (-15 -3655 ($ $)) (-15 -2061 ((-112) $)) (-15 -3847 ($ $)) (-15 -3303 ((-621 |#1|) $)))) (-823)) (T -653))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-3645 (*1 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-3837 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-892)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-1656 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-3276 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-3655 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-3847 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823)))))
-(-13 (-823) (-1009 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3845 ((-795 |#1|) $)) (-15 -3645 (|#1| $)) (-15 -3837 ($ $)) (-15 -4209 ((-892) $)) (-15 -1656 ((-112) $ $)) (-15 -3276 ($ $)) (-15 -3655 ($ $)) (-15 -2061 ((-112) $)) (-15 -3847 ($ $)) (-15 -3303 ((-621 |#1|) $))))
-((-1407 ((|#1| (-1 |#1| (-747) |#1|) (-747) |#1|) 11)) (-2664 ((|#1| (-1 |#1| |#1|) (-747) |#1|) 9)))
-(((-654 |#1|) (-10 -7 (-15 -2664 (|#1| (-1 |#1| |#1|) (-747) |#1|)) (-15 -1407 (|#1| (-1 |#1| (-747) |#1|) (-747) |#1|))) (-1066)) (T -654))
-((-1407 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-747) *2)) (-5 *4 (-747)) (-4 *2 (-1066)) (-5 *1 (-654 *2)))) (-2664 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-747)) (-4 *2 (-1066)) (-5 *1 (-654 *2)))))
-(-10 -7 (-15 -2664 (|#1| (-1 |#1| |#1|) (-747) |#1|)) (-15 -1407 (|#1| (-1 |#1| (-747) |#1|) (-747) |#1|)))
-((-3566 ((|#2| |#1| |#2|) 9)) (-3553 ((|#1| |#1| |#2|) 8)))
-(((-655 |#1| |#2|) (-10 -7 (-15 -3553 (|#1| |#1| |#2|)) (-15 -3566 (|#2| |#1| |#2|))) (-1066) (-1066)) (T -655))
-((-3566 (*1 *2 *3 *2) (-12 (-5 *1 (-655 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1066)))) (-3553 (*1 *2 *2 *3) (-12 (-5 *1 (-655 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))))
-(-10 -7 (-15 -3553 (|#1| |#1| |#2|)) (-15 -3566 (|#2| |#1| |#2|)))
-((-3771 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-656 |#1| |#2| |#3|) (-10 -7 (-15 -3771 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1066) (-1066) (-1066)) (T -656))
-((-3771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066)) (-5 *1 (-656 *5 *6 *2)))))
-(-10 -7 (-15 -3771 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-2099 (((-1178) $) 20)) (-3223 (((-621 (-1178)) $) 18)) (-2738 (($ (-621 (-1178)) (-1178)) 13)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 29) (((-1147) $) NIL) (($ (-1147)) NIL) (((-1178) $) 21) (($ (-1084)) 10)) (-2388 (((-112) $ $) NIL)))
-(((-657) (-13 (-1049) (-593 (-1178)) (-10 -8 (-15 -3845 ($ (-1084))) (-15 -2738 ($ (-621 (-1178)) (-1178))) (-15 -3223 ((-621 (-1178)) $)) (-15 -2099 ((-1178) $))))) (T -657))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-657)))) (-2738 (*1 *1 *2 *3) (-12 (-5 *2 (-621 (-1178))) (-5 *3 (-1178)) (-5 *1 (-657)))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-621 (-1178))) (-5 *1 (-657)))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-657)))))
-(-13 (-1049) (-593 (-1178)) (-10 -8 (-15 -3845 ($ (-1084))) (-15 -2738 ($ (-621 (-1178)) (-1178))) (-15 -3223 ((-621 (-1178)) $)) (-15 -2099 ((-1178) $))))
-((-1407 (((-1 |#1| (-747) |#1|) (-1 |#1| (-747) |#1|)) 23)) (-2462 (((-1 |#1|) |#1|) 8)) (-3713 ((|#1| |#1|) 16)) (-2757 (((-621 |#1|) (-1 (-621 |#1|) (-621 |#1|)) (-549)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3845 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-747)) 20)))
-(((-658 |#1|) (-10 -7 (-15 -2462 ((-1 |#1|) |#1|)) (-15 -3845 ((-1 |#1|) |#1|)) (-15 -2757 (|#1| (-1 |#1| |#1|))) (-15 -2757 ((-621 |#1|) (-1 (-621 |#1|) (-621 |#1|)) (-549))) (-15 -3713 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-747))) (-15 -1407 ((-1 |#1| (-747) |#1|) (-1 |#1| (-747) |#1|)))) (-1066)) (T -658))
-((-1407 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-747) *3)) (-4 *3 (-1066)) (-5 *1 (-658 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *4 (-1066)) (-5 *1 (-658 *4)))) (-3713 (*1 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1066)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-621 *5) (-621 *5))) (-5 *4 (-549)) (-5 *2 (-621 *5)) (-5 *1 (-658 *5)) (-4 *5 (-1066)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-658 *2)) (-4 *2 (-1066)))) (-3845 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1066)))) (-2462 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1066)))))
-(-10 -7 (-15 -2462 ((-1 |#1|) |#1|)) (-15 -3845 ((-1 |#1|) |#1|)) (-15 -2757 (|#1| (-1 |#1| |#1|))) (-15 -2757 ((-621 |#1|) (-1 (-621 |#1|) (-621 |#1|)) (-549))) (-15 -3713 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-747))) (-15 -1407 ((-1 |#1| (-747) |#1|) (-1 |#1| (-747) |#1|))))
-((-2188 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3756 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2588 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-4098 (((-1 |#2| |#1|) |#2|) 11)))
-(((-659 |#1| |#2|) (-10 -7 (-15 -4098 ((-1 |#2| |#1|) |#2|)) (-15 -3756 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2588 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2188 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1066) (-1066)) (T -659))
-((-2188 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-5 *2 (-1 *5 *4)) (-5 *1 (-659 *4 *5)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1066)) (-5 *2 (-1 *5 *4)) (-5 *1 (-659 *4 *5)) (-4 *4 (-1066)))) (-3756 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-5 *2 (-1 *5)) (-5 *1 (-659 *4 *5)))) (-4098 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-659 *4 *3)) (-4 *4 (-1066)) (-4 *3 (-1066)))))
-(-10 -7 (-15 -4098 ((-1 |#2| |#1|) |#2|)) (-15 -3756 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2588 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2188 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-3803 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3419 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1408 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3321 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3332 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -3419 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1408 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3321 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3332 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3803 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1066) (-1066) (-1066)) (T -660))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-1 *7 *5)) (-5 *1 (-660 *5 *6 *7)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-660 *4 *5 *6)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-660 *4 *5 *6)) (-4 *4 (-1066)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1066)) (-4 *6 (-1066)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-660 *4 *5 *6)) (-4 *5 (-1066)))) (-1408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *4 *5 *6)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1066)) (-4 *4 (-1066)) (-4 *6 (-1066)) (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *5 *4 *6)))))
-(-10 -7 (-15 -3419 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1408 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3321 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3332 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3803 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-2558 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2796 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2796 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2796 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2558 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1018) (-366 |#1|) (-366 |#1|) (-663 |#1| |#2| |#3|) (-1018) (-366 |#5|) (-366 |#5|) (-663 |#5| |#6| |#7|)) (T -661))
-((-2558 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1018)) (-4 *2 (-1018)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *8 (-366 *2)) (-4 *9 (-366 *2)) (-5 *1 (-661 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-663 *5 *6 *7)) (-4 *10 (-663 *2 *8 *9)))) (-2796 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *2 (-663 *8 *9 *10)) (-5 *1 (-661 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-663 *5 *6 *7)) (-4 *9 (-366 *8)) (-4 *10 (-366 *8)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *2 (-663 *8 *9 *10)) (-5 *1 (-661 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-663 *5 *6 *7)) (-4 *9 (-366 *8)) (-4 *10 (-366 *8)))))
-(-10 -7 (-15 -2796 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2796 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2558 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3768 (($ (-747) (-747)) 33)) (-3876 (($ $ $) 56)) (-2429 (($ |#3|) 52) (($ $) 53)) (-1818 (((-112) $) 28)) (-1846 (($ $ (-549) (-549)) 58)) (-3295 (($ $ (-549) (-549)) 59)) (-1910 (($ $ (-549) (-549) (-549) (-549)) 63)) (-3931 (($ $) 54)) (-3893 (((-112) $) 14)) (-1667 (($ $ (-549) (-549) $) 64)) (-2253 ((|#2| $ (-549) (-549) |#2|) NIL) (($ $ (-621 (-549)) (-621 (-549)) $) 62)) (-2005 (($ (-747) |#2|) 39)) (-3945 (($ (-621 (-621 |#2|))) 37)) (-3595 (((-621 (-621 |#2|)) $) 57)) (-4294 (($ $ $) 55)) (-2038 (((-3 $ "failed") $ |#2|) 91)) (-3340 ((|#2| $ (-549) (-549)) NIL) ((|#2| $ (-549) (-549) |#2|) NIL) (($ $ (-621 (-549)) (-621 (-549))) 61)) (-1601 (($ (-621 |#2|)) 40) (($ (-621 $)) 42)) (-2798 (((-112) $) 24)) (-3845 (($ |#4|) 47) (((-834) $) NIL)) (-2901 (((-112) $) 30)) (-2512 (($ $ |#2|) 93)) (-2499 (($ $ $) 68) (($ $) 71)) (-2485 (($ $ $) 66)) (** (($ $ (-747)) 80) (($ $ (-549)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-549) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
-(((-662 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3845 ((-834) |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -2512 (|#1| |#1| |#2|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2485 (|#1| |#1| |#1|)) (-15 -1667 (|#1| |#1| (-549) (-549) |#1|)) (-15 -1910 (|#1| |#1| (-549) (-549) (-549) (-549))) (-15 -3295 (|#1| |#1| (-549) (-549))) (-15 -1846 (|#1| |#1| (-549) (-549))) (-15 -2253 (|#1| |#1| (-621 (-549)) (-621 (-549)) |#1|)) (-15 -3340 (|#1| |#1| (-621 (-549)) (-621 (-549)))) (-15 -3595 ((-621 (-621 |#2|)) |#1|)) (-15 -3876 (|#1| |#1| |#1|)) (-15 -4294 (|#1| |#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2429 (|#1| |#3|)) (-15 -3845 (|#1| |#4|)) (-15 -1601 (|#1| (-621 |#1|))) (-15 -1601 (|#1| (-621 |#2|))) (-15 -2005 (|#1| (-747) |#2|)) (-15 -3945 (|#1| (-621 (-621 |#2|)))) (-15 -3768 (|#1| (-747) (-747))) (-15 -2901 ((-112) |#1|)) (-15 -1818 ((-112) |#1|)) (-15 -2798 ((-112) |#1|)) (-15 -3893 ((-112) |#1|)) (-15 -2253 (|#2| |#1| (-549) (-549) |#2|)) (-15 -3340 (|#2| |#1| (-549) (-549) |#2|)) (-15 -3340 (|#2| |#1| (-549) (-549)))) (-663 |#2| |#3| |#4|) (-1018) (-366 |#2|) (-366 |#2|)) (T -662))
-NIL
-(-10 -8 (-15 -3845 ((-834) |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -2512 (|#1| |#1| |#2|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2485 (|#1| |#1| |#1|)) (-15 -1667 (|#1| |#1| (-549) (-549) |#1|)) (-15 -1910 (|#1| |#1| (-549) (-549) (-549) (-549))) (-15 -3295 (|#1| |#1| (-549) (-549))) (-15 -1846 (|#1| |#1| (-549) (-549))) (-15 -2253 (|#1| |#1| (-621 (-549)) (-621 (-549)) |#1|)) (-15 -3340 (|#1| |#1| (-621 (-549)) (-621 (-549)))) (-15 -3595 ((-621 (-621 |#2|)) |#1|)) (-15 -3876 (|#1| |#1| |#1|)) (-15 -4294 (|#1| |#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2429 (|#1| |#3|)) (-15 -3845 (|#1| |#4|)) (-15 -1601 (|#1| (-621 |#1|))) (-15 -1601 (|#1| (-621 |#2|))) (-15 -2005 (|#1| (-747) |#2|)) (-15 -3945 (|#1| (-621 (-621 |#2|)))) (-15 -3768 (|#1| (-747) (-747))) (-15 -2901 ((-112) |#1|)) (-15 -1818 ((-112) |#1|)) (-15 -2798 ((-112) |#1|)) (-15 -3893 ((-112) |#1|)) (-15 -2253 (|#2| |#1| (-549) (-549) |#2|)) (-15 -3340 (|#2| |#1| (-549) (-549) |#2|)) (-15 -3340 (|#2| |#1| (-549) (-549))))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-3768 (($ (-747) (-747)) 97)) (-3876 (($ $ $) 87)) (-2429 (($ |#2|) 91) (($ $) 90)) (-1818 (((-112) $) 99)) (-1846 (($ $ (-549) (-549)) 83)) (-3295 (($ $ (-549) (-549)) 82)) (-1910 (($ $ (-549) (-549) (-549) (-549)) 81)) (-3931 (($ $) 89)) (-3893 (((-112) $) 101)) (-1323 (((-112) $ (-747)) 8)) (-1667 (($ $ (-549) (-549) $) 80)) (-2253 ((|#1| $ (-549) (-549) |#1|) 44) (($ $ (-621 (-549)) (-621 (-549)) $) 84)) (-1915 (($ $ (-549) |#2|) 42)) (-2058 (($ $ (-549) |#3|) 41)) (-2005 (($ (-747) |#1|) 95)) (-1705 (($) 7 T CONST)) (-2226 (($ $) 67 (|has| |#1| (-300)))) (-2413 ((|#2| $ (-549)) 46)) (-3122 (((-747) $) 66 (|has| |#1| (-541)))) (-1878 ((|#1| $ (-549) (-549) |#1|) 43)) (-1808 ((|#1| $ (-549) (-549)) 48)) (-2990 (((-621 |#1|) $) 30)) (-1746 (((-747) $) 65 (|has| |#1| (-541)))) (-1701 (((-621 |#3|) $) 64 (|has| |#1| (-541)))) (-2141 (((-747) $) 51)) (-3743 (($ (-747) (-747) |#1|) 57)) (-2154 (((-747) $) 50)) (-4202 (((-112) $ (-747)) 9)) (-1542 ((|#1| $) 62 (|has| |#1| (-6 (-4338 "*"))))) (-2437 (((-549) $) 55)) (-2103 (((-549) $) 53)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2303 (((-549) $) 54)) (-2362 (((-549) $) 52)) (-3945 (($ (-621 (-621 |#1|))) 96)) (-1865 (($ (-1 |#1| |#1|) $) 34)) (-2796 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3595 (((-621 (-621 |#1|)) $) 86)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-3733 (((-3 $ "failed") $) 61 (|has| |#1| (-356)))) (-4294 (($ $ $) 88)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-3158 (($ $ |#1|) 56)) (-2038 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-541)))) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ (-549) (-549)) 49) ((|#1| $ (-549) (-549) |#1|) 47) (($ $ (-621 (-549)) (-621 (-549))) 85)) (-1601 (($ (-621 |#1|)) 94) (($ (-621 $)) 93)) (-2798 (((-112) $) 100)) (-3097 ((|#1| $) 63 (|has| |#1| (-6 (-4338 "*"))))) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-4102 ((|#3| $ (-549)) 45)) (-3845 (($ |#3|) 92) (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2901 (((-112) $) 98)) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-2512 (($ $ |#1|) 68 (|has| |#1| (-356)))) (-2499 (($ $ $) 78) (($ $) 77)) (-2485 (($ $ $) 79)) (** (($ $ (-747)) 70) (($ $ (-549)) 60 (|has| |#1| (-356)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-549) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-663 |#1| |#2| |#3|) (-138) (-1018) (-366 |t#1|) (-366 |t#1|)) (T -663))
-((-3893 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-3768 (*1 *1 *2 *2) (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2005 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1601 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1601 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3845 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *2)) (-4 *4 (-366 *3)) (-4 *2 (-366 *3)))) (-2429 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-663 *3 *2 *4)) (-4 *2 (-366 *3)) (-4 *4 (-366 *3)))) (-2429 (*1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-3931 (*1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-4294 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-3876 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-621 (-621 *3))))) (-3340 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-621 (-549))) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2253 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-621 (-549))) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1846 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3295 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1910 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1667 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2485 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2499 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2499 (*1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-663 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *2 (-366 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-663 *3 *2 *4)) (-4 *3 (-1018)) (-4 *2 (-366 *3)) (-4 *4 (-366 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2038 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-541)))) (-2512 (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-356)))) (-2226 (*1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-300)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-541)) (-5 *2 (-747)))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-541)) (-5 *2 (-747)))) (-1701 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-541)) (-5 *2 (-621 *5)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018)))) (-3733 (*1 *1 *1) (|partial| -12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-356)))))
-(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -3893 ((-112) $)) (-15 -2798 ((-112) $)) (-15 -1818 ((-112) $)) (-15 -2901 ((-112) $)) (-15 -3768 ($ (-747) (-747))) (-15 -3945 ($ (-621 (-621 |t#1|)))) (-15 -2005 ($ (-747) |t#1|)) (-15 -1601 ($ (-621 |t#1|))) (-15 -1601 ($ (-621 $))) (-15 -3845 ($ |t#3|)) (-15 -2429 ($ |t#2|)) (-15 -2429 ($ $)) (-15 -3931 ($ $)) (-15 -4294 ($ $ $)) (-15 -3876 ($ $ $)) (-15 -3595 ((-621 (-621 |t#1|)) $)) (-15 -3340 ($ $ (-621 (-549)) (-621 (-549)))) (-15 -2253 ($ $ (-621 (-549)) (-621 (-549)) $)) (-15 -1846 ($ $ (-549) (-549))) (-15 -3295 ($ $ (-549) (-549))) (-15 -1910 ($ $ (-549) (-549) (-549) (-549))) (-15 -1667 ($ $ (-549) (-549) $)) (-15 -2485 ($ $ $)) (-15 -2499 ($ $ $)) (-15 -2499 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-549) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-747))) (IF (|has| |t#1| (-541)) (-15 -2038 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -2512 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-300)) (-15 -2226 ($ $)) |%noBranch|) (IF (|has| |t#1| (-541)) (PROGN (-15 -3122 ((-747) $)) (-15 -1746 ((-747) $)) (-15 -1701 ((-621 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4338 "*"))) (PROGN (-15 -3097 (|t#1| $)) (-15 -1542 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -3733 ((-3 $ "failed") $)) (-15 ** ($ $ (-549)))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-56 |#1| |#2| |#3|) . T) ((-1179) . T))
-((-2226 ((|#4| |#4|) 72 (|has| |#1| (-300)))) (-3122 (((-747) |#4|) 99 (|has| |#1| (-541)))) (-1746 (((-747) |#4|) 76 (|has| |#1| (-541)))) (-1701 (((-621 |#3|) |#4|) 83 (|has| |#1| (-541)))) (-3471 (((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|) 111 (|has| |#1| (-300)))) (-1542 ((|#1| |#4|) 35)) (-3773 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-541)))) (-3733 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-356)))) (-4080 ((|#4| |#4|) 68 (|has| |#1| (-541)))) (-2542 ((|#4| |#4| |#1| (-549) (-549)) 43)) (-3860 ((|#4| |#4| (-549) (-549)) 38)) (-2228 ((|#4| |#4| |#1| (-549) (-549)) 48)) (-3097 ((|#1| |#4|) 78)) (-2609 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-541)))))
-(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3097 (|#1| |#4|)) (-15 -1542 (|#1| |#4|)) (-15 -3860 (|#4| |#4| (-549) (-549))) (-15 -2542 (|#4| |#4| |#1| (-549) (-549))) (-15 -2228 (|#4| |#4| |#1| (-549) (-549))) (IF (|has| |#1| (-541)) (PROGN (-15 -3122 ((-747) |#4|)) (-15 -1746 ((-747) |#4|)) (-15 -1701 ((-621 |#3|) |#4|)) (-15 -4080 (|#4| |#4|)) (-15 -3773 ((-3 |#4| "failed") |#4|)) (-15 -2609 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -2226 (|#4| |#4|)) (-15 -3471 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3733 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-366 |#1|) (-366 |#1|) (-663 |#1| |#2| |#3|)) (T -664))
-((-3733 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-3471 (*1 *2 *3 *3) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-664 *3 *4 *5 *6)) (-4 *6 (-663 *3 *4 *5)))) (-2226 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-2609 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-3773 (*1 *2 *2) (|partial| -12 (-4 *3 (-541)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-4080 (*1 *2 *2) (-12 (-4 *3 (-541)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-621 *6)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-1746 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-3122 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-2228 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-549)) (-4 *3 (-170)) (-4 *5 (-366 *3)) (-4 *6 (-366 *3)) (-5 *1 (-664 *3 *5 *6 *2)) (-4 *2 (-663 *3 *5 *6)))) (-2542 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-549)) (-4 *3 (-170)) (-4 *5 (-366 *3)) (-4 *6 (-366 *3)) (-5 *1 (-664 *3 *5 *6 *2)) (-4 *2 (-663 *3 *5 *6)))) (-3860 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *1 (-664 *4 *5 *6 *2)) (-4 *2 (-663 *4 *5 *6)))) (-1542 (*1 *2 *3) (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170)) (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-663 *2 *4 *5)))) (-3097 (*1 *2 *3) (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170)) (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-663 *2 *4 *5)))))
-(-10 -7 (-15 -3097 (|#1| |#4|)) (-15 -1542 (|#1| |#4|)) (-15 -3860 (|#4| |#4| (-549) (-549))) (-15 -2542 (|#4| |#4| |#1| (-549) (-549))) (-15 -2228 (|#4| |#4| |#1| (-549) (-549))) (IF (|has| |#1| (-541)) (PROGN (-15 -3122 ((-747) |#4|)) (-15 -1746 ((-747) |#4|)) (-15 -1701 ((-621 |#3|) |#4|)) (-15 -4080 (|#4| |#4|)) (-15 -3773 ((-3 |#4| "failed") |#4|)) (-15 -2609 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -2226 (|#4| |#4|)) (-15 -3471 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3733 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3768 (($ (-747) (-747)) 47)) (-3876 (($ $ $) NIL)) (-2429 (($ (-1225 |#1|)) NIL) (($ $) NIL)) (-1818 (((-112) $) NIL)) (-1846 (($ $ (-549) (-549)) 12)) (-3295 (($ $ (-549) (-549)) NIL)) (-1910 (($ $ (-549) (-549) (-549) (-549)) NIL)) (-3931 (($ $) NIL)) (-3893 (((-112) $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-1667 (($ $ (-549) (-549) $) NIL)) (-2253 ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-621 (-549)) (-621 (-549)) $) NIL)) (-1915 (($ $ (-549) (-1225 |#1|)) NIL)) (-2058 (($ $ (-549) (-1225 |#1|)) NIL)) (-2005 (($ (-747) |#1|) 22)) (-1705 (($) NIL T CONST)) (-2226 (($ $) 31 (|has| |#1| (-300)))) (-2413 (((-1225 |#1|) $ (-549)) NIL)) (-3122 (((-747) $) 33 (|has| |#1| (-541)))) (-1878 ((|#1| $ (-549) (-549) |#1|) 51)) (-1808 ((|#1| $ (-549) (-549)) NIL)) (-2990 (((-621 |#1|) $) NIL)) (-1746 (((-747) $) 35 (|has| |#1| (-541)))) (-1701 (((-621 (-1225 |#1|)) $) 38 (|has| |#1| (-541)))) (-2141 (((-747) $) 20)) (-3743 (($ (-747) (-747) |#1|) 16)) (-2154 (((-747) $) 21)) (-4202 (((-112) $ (-747)) NIL)) (-1542 ((|#1| $) 29 (|has| |#1| (-6 (-4338 "*"))))) (-2437 (((-549) $) 9)) (-2103 (((-549) $) 10)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2303 (((-549) $) 11)) (-2362 (((-549) $) 48)) (-3945 (($ (-621 (-621 |#1|))) NIL)) (-1865 (($ (-1 |#1| |#1|) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3595 (((-621 (-621 |#1|)) $) 60)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3733 (((-3 $ "failed") $) 45 (|has| |#1| (-356)))) (-4294 (($ $ $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3158 (($ $ |#1|) NIL)) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-621 (-549)) (-621 (-549))) NIL)) (-1601 (($ (-621 |#1|)) NIL) (($ (-621 $)) NIL) (($ (-1225 |#1|)) 52)) (-2798 (((-112) $) NIL)) (-3097 ((|#1| $) 27 (|has| |#1| (-6 (-4338 "*"))))) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-2844 (((-525) $) 64 (|has| |#1| (-594 (-525))))) (-4102 (((-1225 |#1|) $ (-549)) NIL)) (-3845 (($ (-1225 |#1|)) NIL) (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2901 (((-112) $) NIL)) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $ $) NIL) (($ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-747)) 23) (($ $ (-549)) 46 (|has| |#1| (-356)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-549) $) NIL) (((-1225 |#1|) $ (-1225 |#1|)) NIL) (((-1225 |#1|) (-1225 |#1|) $) NIL)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-665 |#1|) (-13 (-663 |#1| (-1225 |#1|) (-1225 |#1|)) (-10 -8 (-15 -1601 ($ (-1225 |#1|))) (IF (|has| |#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3733 ((-3 $ "failed") $)) |%noBranch|))) (-1018)) (T -665))
-((-3733 (*1 *1 *1) (|partial| -12 (-5 *1 (-665 *2)) (-4 *2 (-356)) (-4 *2 (-1018)))) (-1601 (*1 *1 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-1018)) (-5 *1 (-665 *3)))))
-(-13 (-663 |#1| (-1225 |#1|) (-1225 |#1|)) (-10 -8 (-15 -1601 ($ (-1225 |#1|))) (IF (|has| |#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3733 ((-3 $ "failed") $)) |%noBranch|)))
-((-2118 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|)) 25)) (-3704 (((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|) 21)) (-3177 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-747)) 26)) (-4166 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|)) 14)) (-2945 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|)) 18) (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 16)) (-3877 (((-665 |#1|) (-665 |#1|) |#1| (-665 |#1|)) 20)) (-2645 (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 12)) (** (((-665 |#1|) (-665 |#1|) (-747)) 30)))
-(((-666 |#1|) (-10 -7 (-15 -2645 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -4166 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2945 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2945 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3877 ((-665 |#1|) (-665 |#1|) |#1| (-665 |#1|))) (-15 -3704 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2118 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3177 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-747))) (-15 ** ((-665 |#1|) (-665 |#1|) (-747)))) (-1018)) (T -666))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-666 *4)))) (-3177 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-666 *4)))) (-2118 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-3704 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-3877 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2945 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2945 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-4166 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2645 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
-(-10 -7 (-15 -2645 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -4166 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2945 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2945 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3877 ((-665 |#1|) (-665 |#1|) |#1| (-665 |#1|))) (-15 -3704 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2118 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3177 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-747))) (-15 ** ((-665 |#1|) (-665 |#1|) (-747))))
-((-4095 (($) 8 T CONST)) (-3845 (((-834) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3264 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -4095)) 16)) (-2320 ((|#1| $) 11)))
-(((-667 |#1|) (-13 (-1220) (-593 (-834)) (-10 -8 (-15 -3264 ((-112) $ (|[\|\|]| |#1|))) (-15 -3264 ((-112) $ (|[\|\|]| -4095))) (-15 -3845 ($ |#1|)) (-15 -3845 (|#1| $)) (-15 -2320 (|#1| $)) (-15 -4095 ($) -2588))) (-593 (-834))) (T -667))
-((-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-593 (-834))) (-5 *2 (-112)) (-5 *1 (-667 *4)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4095)) (-5 *2 (-112)) (-5 *1 (-667 *4)) (-4 *4 (-593 (-834))))) (-3845 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834))))) (-3845 (*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834))))) (-2320 (*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834))))) (-4095 (*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834))))))
-(-13 (-1220) (-593 (-834)) (-10 -8 (-15 -3264 ((-112) $ (|[\|\|]| |#1|))) (-15 -3264 ((-112) $ (|[\|\|]| -4095))) (-15 -3845 ($ |#1|)) (-15 -3845 (|#1| $)) (-15 -2320 (|#1| $)) (-15 -4095 ($) -2588)))
-((-3790 ((|#2| |#2| |#4|) 25)) (-3634 (((-665 |#2|) |#3| |#4|) 31)) (-3792 (((-665 |#2|) |#2| |#4|) 30)) (-3968 (((-1225 |#2|) |#2| |#4|) 16)) (-2263 ((|#2| |#3| |#4|) 24)) (-3861 (((-665 |#2|) |#3| |#4| (-747) (-747)) 38)) (-3498 (((-665 |#2|) |#2| |#4| (-747)) 37)))
-(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3968 ((-1225 |#2|) |#2| |#4|)) (-15 -2263 (|#2| |#3| |#4|)) (-15 -3790 (|#2| |#2| |#4|)) (-15 -3792 ((-665 |#2|) |#2| |#4|)) (-15 -3498 ((-665 |#2|) |#2| |#4| (-747))) (-15 -3634 ((-665 |#2|) |#3| |#4|)) (-15 -3861 ((-665 |#2|) |#3| |#4| (-747) (-747)))) (-1066) (-871 |#1|) (-366 |#2|) (-13 (-366 |#1|) (-10 -7 (-6 -4336)))) (T -668))
-((-3861 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-747)) (-4 *6 (-1066)) (-4 *7 (-871 *6)) (-5 *2 (-665 *7)) (-5 *1 (-668 *6 *7 *3 *4)) (-4 *3 (-366 *7)) (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4336)))))) (-3634 (*1 *2 *3 *4) (-12 (-4 *5 (-1066)) (-4 *6 (-871 *5)) (-5 *2 (-665 *6)) (-5 *1 (-668 *5 *6 *3 *4)) (-4 *3 (-366 *6)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4336)))))) (-3498 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-1066)) (-4 *3 (-871 *6)) (-5 *2 (-665 *3)) (-5 *1 (-668 *6 *3 *7 *4)) (-4 *7 (-366 *3)) (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4336)))))) (-3792 (*1 *2 *3 *4) (-12 (-4 *5 (-1066)) (-4 *3 (-871 *5)) (-5 *2 (-665 *3)) (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-366 *3)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4336)))))) (-3790 (*1 *2 *2 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-871 *4)) (-5 *1 (-668 *4 *2 *5 *3)) (-4 *5 (-366 *2)) (-4 *3 (-13 (-366 *4) (-10 -7 (-6 -4336)))))) (-2263 (*1 *2 *3 *4) (-12 (-4 *5 (-1066)) (-4 *2 (-871 *5)) (-5 *1 (-668 *5 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4336)))))) (-3968 (*1 *2 *3 *4) (-12 (-4 *5 (-1066)) (-4 *3 (-871 *5)) (-5 *2 (-1225 *3)) (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-366 *3)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4336)))))))
-(-10 -7 (-15 -3968 ((-1225 |#2|) |#2| |#4|)) (-15 -2263 (|#2| |#3| |#4|)) (-15 -3790 (|#2| |#2| |#4|)) (-15 -3792 ((-665 |#2|) |#2| |#4|)) (-15 -3498 ((-665 |#2|) |#2| |#4| (-747))) (-15 -3634 ((-665 |#2|) |#3| |#4|)) (-15 -3861 ((-665 |#2|) |#3| |#4| (-747) (-747))))
-((-2840 (((-2 (|:| |num| (-665 |#1|)) (|:| |den| |#1|)) (-665 |#2|)) 20)) (-2632 ((|#1| (-665 |#2|)) 9)) (-2715 (((-665 |#1|) (-665 |#2|)) 18)))
-(((-669 |#1| |#2|) (-10 -7 (-15 -2632 (|#1| (-665 |#2|))) (-15 -2715 ((-665 |#1|) (-665 |#2|))) (-15 -2840 ((-2 (|:| |num| (-665 |#1|)) (|:| |den| |#1|)) (-665 |#2|)))) (-541) (-963 |#1|)) (T -669))
-((-2840 (*1 *2 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-963 *4)) (-4 *4 (-541)) (-5 *2 (-2 (|:| |num| (-665 *4)) (|:| |den| *4))) (-5 *1 (-669 *4 *5)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-963 *4)) (-4 *4 (-541)) (-5 *2 (-665 *4)) (-5 *1 (-669 *4 *5)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-669 *2 *4)))))
-(-10 -7 (-15 -2632 (|#1| (-665 |#2|))) (-15 -2715 ((-665 |#1|) (-665 |#2|))) (-15 -2840 ((-2 (|:| |num| (-665 |#1|)) (|:| |den| |#1|)) (-665 |#2|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-3102 (((-665 (-675))) NIL) (((-665 (-675)) (-1225 $)) NIL)) (-2905 (((-675) $) NIL)) (-1663 (($ $) NIL (|has| (-675) (-1164)))) (-1511 (($ $) NIL (|has| (-675) (-1164)))) (-2572 (((-1152 (-892) (-747)) (-549)) NIL (|has| (-675) (-342)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-880))))) (-1912 (($ $) NIL (-1536 (-12 (|has| (-675) (-300)) (|has| (-675) (-880))) (|has| (-675) (-356))))) (-3513 (((-411 $) $) NIL (-1536 (-12 (|has| (-675) (-300)) (|has| (-675) (-880))) (|has| (-675) (-356))))) (-2134 (($ $) NIL (-12 (|has| (-675) (-973)) (|has| (-675) (-1164))))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-880))))) (-2647 (((-112) $ $) NIL (|has| (-675) (-300)))) (-3615 (((-747)) NIL (|has| (-675) (-361)))) (-1639 (($ $) NIL (|has| (-675) (-1164)))) (-1485 (($ $) NIL (|has| (-675) (-1164)))) (-1685 (($ $) NIL (|has| (-675) (-1164)))) (-1538 (($ $) NIL (|has| (-675) (-1164)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL) (((-3 (-675) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-675) (-1009 (-400 (-549)))))) (-2658 (((-549) $) NIL) (((-675) $) NIL) (((-400 (-549)) $) NIL (|has| (-675) (-1009 (-400 (-549)))))) (-2127 (($ (-1225 (-675))) NIL) (($ (-1225 (-675)) (-1225 $)) NIL)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-675) (-342)))) (-2094 (($ $ $) NIL (|has| (-675) (-300)))) (-2988 (((-665 (-675)) $) NIL) (((-665 (-675)) $ (-1225 $)) NIL)) (-1698 (((-665 (-675)) (-665 $)) NIL) (((-2 (|:| -1859 (-665 (-675))) (|:| |vec| (-1225 (-675)))) (-665 $) (-1225 $)) NIL) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| (-675) (-617 (-549)))) (((-665 (-549)) (-665 $)) NIL (|has| (-675) (-617 (-549))))) (-2558 (((-3 $ "failed") (-400 (-1138 (-675)))) NIL (|has| (-675) (-356))) (($ (-1138 (-675))) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-2146 (((-675) $) 29)) (-3156 (((-3 (-400 (-549)) "failed") $) NIL (|has| (-675) (-534)))) (-3230 (((-112) $) NIL (|has| (-675) (-534)))) (-3867 (((-400 (-549)) $) NIL (|has| (-675) (-534)))) (-3122 (((-892)) NIL)) (-3238 (($) NIL (|has| (-675) (-361)))) (-2066 (($ $ $) NIL (|has| (-675) (-300)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| (-675) (-300)))) (-1327 (($) NIL (|has| (-675) (-342)))) (-1729 (((-112) $) NIL (|has| (-675) (-342)))) (-3225 (($ $) NIL (|has| (-675) (-342))) (($ $ (-747)) NIL (|has| (-675) (-342)))) (-2471 (((-112) $) NIL (-1536 (-12 (|has| (-675) (-300)) (|has| (-675) (-880))) (|has| (-675) (-356))))) (-3638 (((-2 (|:| |r| (-675)) (|:| |phi| (-675))) $) NIL (-12 (|has| (-675) (-1027)) (|has| (-675) (-1164))))) (-1425 (($) NIL (|has| (-675) (-1164)))) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-675) (-857 (-372)))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-675) (-857 (-549))))) (-2078 (((-809 (-892)) $) NIL (|has| (-675) (-342))) (((-892) $) NIL (|has| (-675) (-342)))) (-3987 (((-112) $) NIL)) (-3930 (($ $ (-549)) NIL (-12 (|has| (-675) (-973)) (|has| (-675) (-1164))))) (-4117 (((-675) $) NIL)) (-3982 (((-3 $ "failed") $) NIL (|has| (-675) (-342)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| (-675) (-300)))) (-4030 (((-1138 (-675)) $) NIL (|has| (-675) (-356)))) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2796 (($ (-1 (-675) (-675)) $) NIL)) (-2723 (((-892) $) NIL (|has| (-675) (-361)))) (-3631 (($ $) NIL (|has| (-675) (-1164)))) (-2546 (((-1138 (-675)) $) NIL)) (-3696 (($ (-621 $)) NIL (|has| (-675) (-300))) (($ $ $) NIL (|has| (-675) (-300)))) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL (|has| (-675) (-356)))) (-3060 (($) NIL (|has| (-675) (-342)) CONST)) (-3491 (($ (-892)) NIL (|has| (-675) (-361)))) (-1919 (($) NIL)) (-2160 (((-675) $) 31)) (-3988 (((-1086) $) NIL)) (-4246 (($) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| (-675) (-300)))) (-3726 (($ (-621 $)) NIL (|has| (-675) (-300))) (($ $ $) NIL (|has| (-675) (-300)))) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL (|has| (-675) (-342)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-880))))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-880))))) (-2120 (((-411 $) $) NIL (-1536 (-12 (|has| (-675) (-300)) (|has| (-675) (-880))) (|has| (-675) (-356))))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-675) (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| (-675) (-300)))) (-2038 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-675)) NIL (|has| (-675) (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| (-675) (-300)))) (-2718 (($ $) NIL (|has| (-675) (-1164)))) (-2685 (($ $ (-1142) (-675)) NIL (|has| (-675) (-505 (-1142) (-675)))) (($ $ (-621 (-1142)) (-621 (-675))) NIL (|has| (-675) (-505 (-1142) (-675)))) (($ $ (-621 (-287 (-675)))) NIL (|has| (-675) (-302 (-675)))) (($ $ (-287 (-675))) NIL (|has| (-675) (-302 (-675)))) (($ $ (-675) (-675)) NIL (|has| (-675) (-302 (-675)))) (($ $ (-621 (-675)) (-621 (-675))) NIL (|has| (-675) (-302 (-675))))) (-4091 (((-747) $) NIL (|has| (-675) (-300)))) (-3340 (($ $ (-675)) NIL (|has| (-675) (-279 (-675) (-675))))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| (-675) (-300)))) (-3086 (((-675)) NIL) (((-675) (-1225 $)) NIL)) (-2591 (((-3 (-747) "failed") $ $) NIL (|has| (-675) (-342))) (((-747) $) NIL (|has| (-675) (-342)))) (-3455 (($ $ (-1 (-675) (-675))) NIL) (($ $ (-1 (-675) (-675)) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-1142)) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-747)) NIL (|has| (-675) (-227))) (($ $) NIL (|has| (-675) (-227)))) (-1369 (((-665 (-675)) (-1225 $) (-1 (-675) (-675))) NIL (|has| (-675) (-356)))) (-2539 (((-1138 (-675))) NIL)) (-1697 (($ $) NIL (|has| (-675) (-1164)))) (-1551 (($ $) NIL (|has| (-675) (-1164)))) (-3191 (($) NIL (|has| (-675) (-342)))) (-1674 (($ $) NIL (|has| (-675) (-1164)))) (-1525 (($ $) NIL (|has| (-675) (-1164)))) (-1649 (($ $) NIL (|has| (-675) (-1164)))) (-1500 (($ $) NIL (|has| (-675) (-1164)))) (-4163 (((-665 (-675)) (-1225 $)) NIL) (((-1225 (-675)) $) NIL) (((-665 (-675)) (-1225 $) (-1225 $)) NIL) (((-1225 (-675)) $ (-1225 $)) NIL)) (-2844 (((-525) $) NIL (|has| (-675) (-594 (-525)))) (((-167 (-219)) $) NIL (|has| (-675) (-993))) (((-167 (-372)) $) NIL (|has| (-675) (-993))) (((-863 (-372)) $) NIL (|has| (-675) (-594 (-863 (-372))))) (((-863 (-549)) $) NIL (|has| (-675) (-594 (-863 (-549))))) (($ (-1138 (-675))) NIL) (((-1138 (-675)) $) NIL) (($ (-1225 (-675))) NIL) (((-1225 (-675)) $) NIL)) (-2538 (($ $) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-1536 (-12 (|has| (-675) (-300)) (|has| $ (-143)) (|has| (-675) (-880))) (|has| (-675) (-342))))) (-3409 (($ (-675) (-675)) 12)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-549)) NIL) (($ (-675)) NIL) (($ (-167 (-372))) 13) (($ (-167 (-549))) 19) (($ (-167 (-675))) 28) (($ (-167 (-677))) 25) (((-167 (-372)) $) 33) (($ (-400 (-549))) NIL (-1536 (|has| (-675) (-1009 (-400 (-549)))) (|has| (-675) (-356))))) (-3407 (($ $) NIL (|has| (-675) (-342))) (((-3 $ "failed") $) NIL (-1536 (-12 (|has| (-675) (-300)) (|has| $ (-143)) (|has| (-675) (-880))) (|has| (-675) (-143))))) (-4041 (((-1138 (-675)) $) NIL)) (-1723 (((-747)) NIL)) (-3420 (((-1225 $)) NIL)) (-1732 (($ $) NIL (|has| (-675) (-1164)))) (-1585 (($ $) NIL (|has| (-675) (-1164)))) (-4053 (((-112) $ $) NIL)) (-1708 (($ $) NIL (|has| (-675) (-1164)))) (-1562 (($ $) NIL (|has| (-675) (-1164)))) (-1757 (($ $) NIL (|has| (-675) (-1164)))) (-1612 (($ $) NIL (|has| (-675) (-1164)))) (-4155 (((-675) $) NIL (|has| (-675) (-1164)))) (-1933 (($ $) NIL (|has| (-675) (-1164)))) (-1625 (($ $) NIL (|has| (-675) (-1164)))) (-1744 (($ $) NIL (|has| (-675) (-1164)))) (-1599 (($ $) NIL (|has| (-675) (-1164)))) (-1721 (($ $) NIL (|has| (-675) (-1164)))) (-1575 (($ $) NIL (|has| (-675) (-1164)))) (-3603 (($ $) NIL (|has| (-675) (-1027)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-1 (-675) (-675))) NIL) (($ $ (-1 (-675) (-675)) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-1142)) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-747)) NIL (|has| (-675) (-227))) (($ $) NIL (|has| (-675) (-227)))) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL (|has| (-675) (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ $) NIL (|has| (-675) (-1164))) (($ $ (-400 (-549))) NIL (-12 (|has| (-675) (-973)) (|has| (-675) (-1164)))) (($ $ (-549)) NIL (|has| (-675) (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ (-675) $) NIL) (($ $ (-675)) NIL) (($ (-400 (-549)) $) NIL (|has| (-675) (-356))) (($ $ (-400 (-549))) NIL (|has| (-675) (-356)))))
-(((-670) (-13 (-380) (-164 (-675)) (-10 -8 (-15 -3845 ($ (-167 (-372)))) (-15 -3845 ($ (-167 (-549)))) (-15 -3845 ($ (-167 (-675)))) (-15 -3845 ($ (-167 (-677)))) (-15 -3845 ((-167 (-372)) $))))) (T -670))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-670)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-167 (-549))) (-5 *1 (-670)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-167 (-675))) (-5 *1 (-670)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-167 (-677))) (-5 *1 (-670)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-670)))))
-(-13 (-380) (-164 (-675)) (-10 -8 (-15 -3845 ($ (-167 (-372)))) (-15 -3845 ($ (-167 (-549)))) (-15 -3845 ($ (-167 (-675)))) (-15 -3845 ($ (-167 (-677)))) (-15 -3845 ((-167 (-372)) $))))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) 8)) (-3069 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-2992 (($ $) 62)) (-3675 (($ $) 58 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-4204 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3812 (($ |#1| $) 57 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2349 ((|#1| $) 39)) (-1709 (($ |#1| $) 40) (($ |#1| $ (-747)) 63)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2629 ((|#1| $) 41)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3903 (((-621 (-2 (|:| -1792 |#1|) (|:| -3997 (-747)))) $) 61)) (-4252 (($) 49) (($ (-621 |#1|)) 48)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-2844 (((-525) $) 59 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 50)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1765 (($ (-621 |#1|)) 42)) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-671 |#1|) (-138) (-1066)) (T -671))
-((-1709 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-671 *2)) (-4 *2 (-1066)))) (-2992 (*1 *1 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1066)))) (-3903 (*1 *2 *1) (-12 (-4 *1 (-671 *3)) (-4 *3 (-1066)) (-5 *2 (-621 (-2 (|:| -1792 *3) (|:| -3997 (-747))))))))
-(-13 (-229 |t#1|) (-10 -8 (-15 -1709 ($ |t#1| $ (-747))) (-15 -2992 ($ $)) (-15 -3903 ((-621 (-2 (|:| -1792 |t#1|) (|:| -3997 (-747)))) $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-1995 (((-621 |#1|) (-621 (-2 (|:| -2120 |#1|) (|:| -3068 (-549)))) (-549)) 47)) (-4133 ((|#1| |#1| (-549)) 46)) (-3726 ((|#1| |#1| |#1| (-549)) 36)) (-2120 (((-621 |#1|) |#1| (-549)) 39)) (-2494 ((|#1| |#1| (-549) |#1| (-549)) 32)) (-2615 (((-621 (-2 (|:| -2120 |#1|) (|:| -3068 (-549)))) |#1| (-549)) 45)))
-(((-672 |#1|) (-10 -7 (-15 -3726 (|#1| |#1| |#1| (-549))) (-15 -4133 (|#1| |#1| (-549))) (-15 -2120 ((-621 |#1|) |#1| (-549))) (-15 -2615 ((-621 (-2 (|:| -2120 |#1|) (|:| -3068 (-549)))) |#1| (-549))) (-15 -1995 ((-621 |#1|) (-621 (-2 (|:| -2120 |#1|) (|:| -3068 (-549)))) (-549))) (-15 -2494 (|#1| |#1| (-549) |#1| (-549)))) (-1201 (-549))) (T -672))
-((-2494 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-672 *2)) (-4 *2 (-1201 *3)))) (-1995 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-2 (|:| -2120 *5) (|:| -3068 (-549))))) (-5 *4 (-549)) (-4 *5 (-1201 *4)) (-5 *2 (-621 *5)) (-5 *1 (-672 *5)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-5 *2 (-621 (-2 (|:| -2120 *3) (|:| -3068 *4)))) (-5 *1 (-672 *3)) (-4 *3 (-1201 *4)))) (-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-5 *2 (-621 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1201 *4)))) (-4133 (*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-672 *2)) (-4 *2 (-1201 *3)))) (-3726 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-672 *2)) (-4 *2 (-1201 *3)))))
-(-10 -7 (-15 -3726 (|#1| |#1| |#1| (-549))) (-15 -4133 (|#1| |#1| (-549))) (-15 -2120 ((-621 |#1|) |#1| (-549))) (-15 -2615 ((-621 (-2 (|:| -2120 |#1|) (|:| -3068 (-549)))) |#1| (-549))) (-15 -1995 ((-621 |#1|) (-621 (-2 (|:| -2120 |#1|) (|:| -3068 (-549)))) (-549))) (-15 -2494 (|#1| |#1| (-549) |#1| (-549))))
-((-3911 (((-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 17)) (-4003 (((-1099 (-219)) (-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-621 (-256))) 40) (((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-621 (-256))) 42) (((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1060 (-219)) (-1060 (-219)) (-621 (-256))) 44)) (-2531 (((-1099 (-219)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-621 (-256))) NIL)) (-3490 (((-1099 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1060 (-219)) (-1060 (-219)) (-621 (-256))) 45)))
-(((-673) (-10 -7 (-15 -4003 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1060 (-219)) (-1060 (-219)) (-621 (-256)))) (-15 -4003 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-621 (-256)))) (-15 -4003 ((-1099 (-219)) (-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-621 (-256)))) (-15 -3490 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1060 (-219)) (-1060 (-219)) (-621 (-256)))) (-15 -2531 ((-1099 (-219)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-621 (-256)))) (-15 -3911 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -673))
-((-3911 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1 (-219) (-219) (-219) (-219))) (-5 *2 (-1 (-914 (-219)) (-219) (-219))) (-5 *1 (-673)))) (-2531 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))) (-3490 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) (-5 *5 (-1060 (-219))) (-5 *6 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))) (-4003 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1060 (-219))) (-5 *5 (-621 (-256))) (-5 *1 (-673)))) (-4003 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1060 (-219))) (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))) (-4003 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) (-5 *5 (-1060 (-219))) (-5 *6 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))))
-(-10 -7 (-15 -4003 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1060 (-219)) (-1060 (-219)) (-621 (-256)))) (-15 -4003 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-621 (-256)))) (-15 -4003 ((-1099 (-219)) (-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-621 (-256)))) (-15 -3490 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1060 (-219)) (-1060 (-219)) (-621 (-256)))) (-15 -2531 ((-1099 (-219)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1060 (-219)) (-621 (-256)))) (-15 -3911 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))
-((-2120 (((-411 (-1138 |#4|)) (-1138 |#4|)) 73) (((-411 |#4|) |#4|) 221)))
-(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2120 ((-411 |#4|) |#4|)) (-15 -2120 ((-411 (-1138 |#4|)) (-1138 |#4|)))) (-823) (-769) (-342) (-920 |#3| |#2| |#1|)) (T -674))
-((-2120 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-342)) (-4 *7 (-920 *6 *5 *4)) (-5 *2 (-411 (-1138 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1138 *7)))) (-2120 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-920 *6 *5 *4)))))
-(-10 -7 (-15 -2120 ((-411 |#4|) |#4|)) (-15 -2120 ((-411 (-1138 |#4|)) (-1138 |#4|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 84)) (-2364 (((-549) $) 30)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2305 (($ $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2134 (($ $) NIL)) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL)) (-1705 (($) NIL T CONST)) (-4016 (($ $) NIL)) (-2713 (((-3 (-549) "failed") $) 73) (((-3 (-400 (-549)) "failed") $) 26) (((-3 (-372) "failed") $) 70)) (-2658 (((-549) $) 75) (((-400 (-549)) $) 67) (((-372) $) 68)) (-2094 (($ $ $) 96)) (-3976 (((-3 $ "failed") $) 87)) (-2066 (($ $ $) 95)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3235 (((-892)) 77) (((-892) (-892)) 76)) (-3079 (((-112) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL)) (-2078 (((-549) $) NIL)) (-3987 (((-112) $) NIL)) (-3930 (($ $ (-549)) NIL)) (-4117 (($ $) NIL)) (-2847 (((-112) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-1550 (((-549) (-549)) 81) (((-549)) 82)) (-2862 (($ $ $) NIL) (($) NIL (-12 (-4007 (|has| $ (-6 -4319))) (-4007 (|has| $ (-6 -4327)))))) (-1982 (((-549) (-549)) 79) (((-549)) 80)) (-3574 (($ $ $) NIL) (($) NIL (-12 (-4007 (|has| $ (-6 -4319))) (-4007 (|has| $ (-6 -4327)))))) (-1460 (((-549) $) 16)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 91)) (-3646 (((-892) (-549)) NIL (|has| $ (-6 -4327)))) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1260 (($ $) NIL)) (-4060 (($ $) NIL)) (-1354 (($ (-549) (-549)) NIL) (($ (-549) (-549) (-892)) NIL)) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) 92)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3577 (((-549) $) 22)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 94)) (-1587 (((-892)) NIL) (((-892) (-892)) NIL (|has| $ (-6 -4327)))) (-2717 (((-892) (-549)) NIL (|has| $ (-6 -4327)))) (-2844 (((-372) $) NIL) (((-219) $) NIL) (((-863 (-372)) $) NIL)) (-3845 (((-834) $) 52) (($ (-549)) 63) (($ $) NIL) (($ (-400 (-549))) 66) (($ (-549)) 63) (($ (-400 (-549))) 66) (($ (-372)) 60) (((-372) $) 50) (($ (-677)) 55)) (-1723 (((-747)) 103)) (-3339 (($ (-549) (-549) (-892)) 44)) (-2926 (($ $) NIL)) (-3960 (((-892)) NIL) (((-892) (-892)) NIL (|has| $ (-6 -4327)))) (-1863 (((-892)) 35) (((-892) (-892)) 78)) (-4053 (((-112) $ $) NIL)) (-3603 (($ $) NIL)) (-3275 (($) 32 T CONST)) (-3287 (($) 17 T CONST)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 83)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 101)) (-2512 (($ $ $) 65)) (-2499 (($ $) 99) (($ $ $) 100)) (-2485 (($ $ $) 98)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL) (($ $ (-400 (-549))) 90)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 97) (($ $ $) 88) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
-(((-675) (-13 (-397) (-380) (-356) (-1009 (-372)) (-1009 (-400 (-549))) (-145) (-10 -8 (-15 -3235 ((-892) (-892))) (-15 -3235 ((-892))) (-15 -1863 ((-892) (-892))) (-15 -1982 ((-549) (-549))) (-15 -1982 ((-549))) (-15 -1550 ((-549) (-549))) (-15 -1550 ((-549))) (-15 -3845 ((-372) $)) (-15 -3845 ($ (-677))) (-15 -1460 ((-549) $)) (-15 -3577 ((-549) $)) (-15 -3339 ($ (-549) (-549) (-892)))))) (T -675))
-((-3577 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-675)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-675)))) (-3235 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675)))) (-3235 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675)))) (-1863 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675)))) (-1982 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675)))) (-1550 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-372)) (-5 *1 (-675)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-677)) (-5 *1 (-675)))) (-3339 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-892)) (-5 *1 (-675)))))
-(-13 (-397) (-380) (-356) (-1009 (-372)) (-1009 (-400 (-549))) (-145) (-10 -8 (-15 -3235 ((-892) (-892))) (-15 -3235 ((-892))) (-15 -1863 ((-892) (-892))) (-15 -1982 ((-549) (-549))) (-15 -1982 ((-549))) (-15 -1550 ((-549) (-549))) (-15 -1550 ((-549))) (-15 -3845 ((-372) $)) (-15 -3845 ($ (-677))) (-15 -1460 ((-549) $)) (-15 -3577 ((-549) $)) (-15 -3339 ($ (-549) (-549) (-892)))))
-((-1400 (((-665 |#1|) (-665 |#1|) |#1| |#1|) 65)) (-2226 (((-665 |#1|) (-665 |#1|) |#1|) 48)) (-4146 (((-665 |#1|) (-665 |#1|) |#1|) 66)) (-3714 (((-665 |#1|) (-665 |#1|)) 49)) (-3471 (((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|) 64)))
-(((-676 |#1|) (-10 -7 (-15 -3714 ((-665 |#1|) (-665 |#1|))) (-15 -2226 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -4146 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -1400 ((-665 |#1|) (-665 |#1|) |#1| |#1|)) (-15 -3471 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|))) (-300)) (T -676))
-((-3471 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-676 *3)) (-4 *3 (-300)))) (-1400 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) (-4146 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) (-2226 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) (-3714 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))))
-(-10 -7 (-15 -3714 ((-665 |#1|) (-665 |#1|))) (-15 -2226 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -4146 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -1400 ((-665 |#1|) (-665 |#1|) |#1| |#1|)) (-15 -3471 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-4121 (($ $ $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3673 (($ $ $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL)) (-1309 (($ $ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) 27)) (-2658 (((-549) $) 25)) (-2094 (($ $ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3156 (((-3 (-400 (-549)) "failed") $) NIL)) (-3230 (((-112) $) NIL)) (-3867 (((-400 (-549)) $) NIL)) (-3238 (($ $) NIL) (($) NIL)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3084 (($ $ $ $) NIL)) (-1278 (($ $ $) NIL)) (-3079 (((-112) $) NIL)) (-3969 (($ $ $) NIL)) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL)) (-3987 (((-112) $) NIL)) (-3061 (((-112) $) NIL)) (-3982 (((-3 $ "failed") $) NIL)) (-2847 (((-112) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2088 (($ $ $ $) NIL)) (-2862 (($ $ $) NIL)) (-4234 (((-892) (-892)) 10) (((-892)) 9)) (-3574 (($ $ $) NIL)) (-2428 (($ $) NIL)) (-4209 (($ $) NIL)) (-3696 (($ (-621 $)) NIL) (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-1263 (($ $ $) NIL)) (-3060 (($) NIL T CONST)) (-3780 (($ $) NIL)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ (-621 $)) NIL) (($ $ $) NIL)) (-1692 (($ $) NIL)) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4062 (((-112) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3455 (($ $) NIL) (($ $ (-747)) NIL)) (-1897 (($ $) NIL)) (-2281 (($ $) NIL)) (-2844 (((-219) $) NIL) (((-372) $) NIL) (((-863 (-549)) $) NIL) (((-525) $) NIL) (((-549) $) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) 24) (($ $) NIL) (($ (-549)) 24) (((-309 $) (-309 (-549))) 18)) (-1723 (((-747)) NIL)) (-2807 (((-112) $ $) NIL)) (-2224 (($ $ $) NIL)) (-1863 (($) NIL)) (-4053 (((-112) $ $) NIL)) (-2232 (($ $ $ $) NIL)) (-3603 (($ $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $) NIL) (($ $ (-747)) NIL)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL)))
-(((-677) (-13 (-380) (-534) (-10 -8 (-15 -4234 ((-892) (-892))) (-15 -4234 ((-892))) (-15 -3845 ((-309 $) (-309 (-549))))))) (T -677))
-((-4234 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-677)))) (-4234 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-677)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-309 (-549))) (-5 *2 (-309 (-677))) (-5 *1 (-677)))))
-(-13 (-380) (-534) (-10 -8 (-15 -4234 ((-892) (-892))) (-15 -4234 ((-892))) (-15 -3845 ((-309 $) (-309 (-549))))))
-((-3333 (((-1 |#4| |#2| |#3|) |#1| (-1142) (-1142)) 19)) (-3800 (((-1 |#4| |#2| |#3|) (-1142)) 12)))
-(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-1 |#4| |#2| |#3|) (-1142))) (-15 -3333 ((-1 |#4| |#2| |#3|) |#1| (-1142) (-1142)))) (-594 (-525)) (-1179) (-1179) (-1179)) (T -678))
-((-3333 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *3 *5 *6 *7)) (-4 *3 (-594 (-525))) (-4 *5 (-1179)) (-4 *6 (-1179)) (-4 *7 (-1179)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *4 *5 *6 *7)) (-4 *4 (-594 (-525))) (-4 *5 (-1179)) (-4 *6 (-1179)) (-4 *7 (-1179)))))
-(-10 -7 (-15 -3800 ((-1 |#4| |#2| |#3|) (-1142))) (-15 -3333 ((-1 |#4| |#2| |#3|) |#1| (-1142) (-1142))))
-((-3833 (((-112) $ $) NIL)) (-1718 (((-1230) $ (-747)) 14)) (-2882 (((-747) $) 12)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 25)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 24)))
-(((-679 |#1|) (-13 (-131) (-593 |#1|) (-10 -8 (-15 -3845 ($ |#1|)))) (-1066)) (T -679))
-((-3845 (*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1066)))))
-(-13 (-131) (-593 |#1|) (-10 -8 (-15 -3845 ($ |#1|))))
-((-3924 (((-1 (-219) (-219) (-219)) |#1| (-1142) (-1142)) 34) (((-1 (-219) (-219)) |#1| (-1142)) 39)))
-(((-680 |#1|) (-10 -7 (-15 -3924 ((-1 (-219) (-219)) |#1| (-1142))) (-15 -3924 ((-1 (-219) (-219) (-219)) |#1| (-1142) (-1142)))) (-594 (-525))) (T -680))
-((-3924 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-680 *3)) (-4 *3 (-594 (-525))))) (-3924 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-680 *3)) (-4 *3 (-594 (-525))))))
-(-10 -7 (-15 -3924 ((-1 (-219) (-219)) |#1| (-1142))) (-15 -3924 ((-1 (-219) (-219) (-219)) |#1| (-1142) (-1142))))
-((-3567 (((-1142) |#1| (-1142) (-621 (-1142))) 9) (((-1142) |#1| (-1142) (-1142) (-1142)) 12) (((-1142) |#1| (-1142) (-1142)) 11) (((-1142) |#1| (-1142)) 10)))
-(((-681 |#1|) (-10 -7 (-15 -3567 ((-1142) |#1| (-1142))) (-15 -3567 ((-1142) |#1| (-1142) (-1142))) (-15 -3567 ((-1142) |#1| (-1142) (-1142) (-1142))) (-15 -3567 ((-1142) |#1| (-1142) (-621 (-1142))))) (-594 (-525))) (T -681))
-((-3567 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-621 (-1142))) (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525))))) (-3567 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525))))) (-3567 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525))))) (-3567 (*1 *2 *3 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525))))))
-(-10 -7 (-15 -3567 ((-1142) |#1| (-1142))) (-15 -3567 ((-1142) |#1| (-1142) (-1142))) (-15 -3567 ((-1142) |#1| (-1142) (-1142) (-1142))) (-15 -3567 ((-1142) |#1| (-1142) (-621 (-1142)))))
-((-1560 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-682 |#1| |#2|) (-10 -7 (-15 -1560 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1179) (-1179)) (T -682))
-((-1560 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-682 *3 *4)) (-4 *3 (-1179)) (-4 *4 (-1179)))))
-(-10 -7 (-15 -1560 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2167 (((-1 |#3| |#2|) (-1142)) 11)) (-3333 (((-1 |#3| |#2|) |#1| (-1142)) 21)))
-(((-683 |#1| |#2| |#3|) (-10 -7 (-15 -2167 ((-1 |#3| |#2|) (-1142))) (-15 -3333 ((-1 |#3| |#2|) |#1| (-1142)))) (-594 (-525)) (-1179) (-1179)) (T -683))
-((-3333 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *3 *5 *6)) (-4 *3 (-594 (-525))) (-4 *5 (-1179)) (-4 *6 (-1179)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *4 *5 *6)) (-4 *4 (-594 (-525))) (-4 *5 (-1179)) (-4 *6 (-1179)))))
-(-10 -7 (-15 -2167 ((-1 |#3| |#2|) (-1142))) (-15 -3333 ((-1 |#3| |#2|) |#1| (-1142))))
-((-2151 (((-3 (-621 (-1138 |#4|)) "failed") (-1138 |#4|) (-621 |#2|) (-621 (-1138 |#4|)) (-621 |#3|) (-621 |#4|) (-621 (-621 (-2 (|:| -1815 (-747)) (|:| |pcoef| |#4|)))) (-621 (-747)) (-1225 (-621 (-1138 |#3|))) |#3|) 62)) (-1296 (((-3 (-621 (-1138 |#4|)) "failed") (-1138 |#4|) (-621 |#2|) (-621 (-1138 |#3|)) (-621 |#3|) (-621 |#4|) (-621 (-747)) |#3|) 75)) (-2051 (((-3 (-621 (-1138 |#4|)) "failed") (-1138 |#4|) (-621 |#2|) (-621 |#3|) (-621 (-747)) (-621 (-1138 |#4|)) (-1225 (-621 (-1138 |#3|))) |#3|) 34)))
-(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2051 ((-3 (-621 (-1138 |#4|)) "failed") (-1138 |#4|) (-621 |#2|) (-621 |#3|) (-621 (-747)) (-621 (-1138 |#4|)) (-1225 (-621 (-1138 |#3|))) |#3|)) (-15 -1296 ((-3 (-621 (-1138 |#4|)) "failed") (-1138 |#4|) (-621 |#2|) (-621 (-1138 |#3|)) (-621 |#3|) (-621 |#4|) (-621 (-747)) |#3|)) (-15 -2151 ((-3 (-621 (-1138 |#4|)) "failed") (-1138 |#4|) (-621 |#2|) (-621 (-1138 |#4|)) (-621 |#3|) (-621 |#4|) (-621 (-621 (-2 (|:| -1815 (-747)) (|:| |pcoef| |#4|)))) (-621 (-747)) (-1225 (-621 (-1138 |#3|))) |#3|))) (-769) (-823) (-300) (-920 |#3| |#1| |#2|)) (T -684))
-((-2151 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-621 (-1138 *13))) (-5 *3 (-1138 *13)) (-5 *4 (-621 *12)) (-5 *5 (-621 *10)) (-5 *6 (-621 *13)) (-5 *7 (-621 (-621 (-2 (|:| -1815 (-747)) (|:| |pcoef| *13))))) (-5 *8 (-621 (-747))) (-5 *9 (-1225 (-621 (-1138 *10)))) (-4 *12 (-823)) (-4 *10 (-300)) (-4 *13 (-920 *10 *11 *12)) (-4 *11 (-769)) (-5 *1 (-684 *11 *12 *10 *13)))) (-1296 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-621 *11)) (-5 *5 (-621 (-1138 *9))) (-5 *6 (-621 *9)) (-5 *7 (-621 *12)) (-5 *8 (-621 (-747))) (-4 *11 (-823)) (-4 *9 (-300)) (-4 *12 (-920 *9 *10 *11)) (-4 *10 (-769)) (-5 *2 (-621 (-1138 *12))) (-5 *1 (-684 *10 *11 *9 *12)) (-5 *3 (-1138 *12)))) (-2051 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-621 (-1138 *11))) (-5 *3 (-1138 *11)) (-5 *4 (-621 *10)) (-5 *5 (-621 *8)) (-5 *6 (-621 (-747))) (-5 *7 (-1225 (-621 (-1138 *8)))) (-4 *10 (-823)) (-4 *8 (-300)) (-4 *11 (-920 *8 *9 *10)) (-4 *9 (-769)) (-5 *1 (-684 *9 *10 *8 *11)))))
-(-10 -7 (-15 -2051 ((-3 (-621 (-1138 |#4|)) "failed") (-1138 |#4|) (-621 |#2|) (-621 |#3|) (-621 (-747)) (-621 (-1138 |#4|)) (-1225 (-621 (-1138 |#3|))) |#3|)) (-15 -1296 ((-3 (-621 (-1138 |#4|)) "failed") (-1138 |#4|) (-621 |#2|) (-621 (-1138 |#3|)) (-621 |#3|) (-621 |#4|) (-621 (-747)) |#3|)) (-15 -2151 ((-3 (-621 (-1138 |#4|)) "failed") (-1138 |#4|) (-621 |#2|) (-621 (-1138 |#4|)) (-621 |#3|) (-621 |#4|) (-621 (-621 (-2 (|:| -1815 (-747)) (|:| |pcoef| |#4|)))) (-621 (-747)) (-1225 (-621 (-1138 |#3|))) |#3|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2069 (($ $) 39)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2244 (($ |#1| (-747)) 37)) (-2856 (((-747) $) 41)) (-2042 ((|#1| $) 40)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3068 (((-747) $) 42)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 36 (|has| |#1| (-170)))) (-2944 ((|#1| $ (-747)) 38)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43)))
+((-2380 (((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|)) 33)))
+(((-639 |#1|) (-10 -7 (-15 -2380 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|)))) (-881)) (T -639))
+((-2380 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-1136 *4))) (-5 *3 (-1136 *4)) (-4 *4 (-881)) (-5 *1 (-639 *4)))))
+(-10 -7 (-15 -2380 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4277 (((-618 |#1|) $) 82)) (-4289 (($ $ (-747)) 90)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4282 (((-1249 |#1| |#2|) (-1249 |#1| |#2|) $) 48)) (-3491 (((-3 (-648 |#1|) "failed") $) NIL)) (-3490 (((-648 |#1|) $) NIL)) (-4302 (($ $) 89)) (-2501 (((-747) $) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-4281 (($ (-648 |#1|) |#2|) 68)) (-4279 (($ $) 86)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-4283 (((-1249 |#1| |#2|) (-1249 |#1| |#2|) $) 47)) (-1860 (((-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3215 (((-648 |#1|) $) NIL)) (-3508 ((|#2| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4110 (($ $ |#1| $) 30) (($ $ (-618 |#1|) (-618 $)) 32)) (-4290 (((-747) $) 88)) (-3867 (($ $ $) 20) (($ (-648 |#1|) (-648 |#1|)) 77) (($ (-648 |#1|) $) 75) (($ $ (-648 |#1|)) 76)) (-4300 (((-835) $) NIL) (($ |#1|) 74) (((-1240 |#1| |#2|) $) 58) (((-1249 |#1| |#2|) $) 41) (($ (-648 |#1|)) 25)) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-648 |#1|)) NIL)) (-4296 ((|#2| (-1249 |#1| |#2|) $) 43)) (-2979 (($) 23 T CONST)) (-2984 (((-618 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4288 (((-3 $ "failed") (-1240 |#1| |#2|)) 60)) (-1844 (($ (-648 |#1|)) 14)) (-3375 (((-112) $ $) 44)) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) 66) (($ $ $) NIL)) (-4182 (($ $ $) 29)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-648 |#1|)) NIL)))
+(((-640 |#1| |#2|) (-13 (-367 |#1| |#2|) (-377 |#2| (-648 |#1|)) (-10 -8 (-15 -4288 ((-3 $ "failed") (-1240 |#1| |#2|))) (-15 -3867 ($ (-648 |#1|) (-648 |#1|))) (-15 -3867 ($ (-648 |#1|) $)) (-15 -3867 ($ $ (-648 |#1|))))) (-823) (-170)) (T -640))
+((-4288 (*1 *1 *2) (|partial| -12 (-5 *2 (-1240 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *1 (-640 *3 *4)))) (-3867 (*1 *1 *2 *2) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))) (-3867 (*1 *1 *2 *1) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))) (-3867 (*1 *1 *1 *2) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))))
+(-13 (-367 |#1| |#2|) (-377 |#2| (-648 |#1|)) (-10 -8 (-15 -4288 ((-3 $ "failed") (-1240 |#1| |#2|))) (-15 -3867 ($ (-648 |#1|) (-648 |#1|))) (-15 -3867 ($ (-648 |#1|) $)) (-15 -3867 ($ $ (-648 |#1|)))))
+((-1843 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-1841 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1626 (($ (-1 (-112) |#2|) $) 28)) (-2368 (($ $) 56)) (-2446 (($ $) 64)) (-3747 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-4185 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3761 (((-535) |#2| $ (-535)) 61) (((-535) |#2| $) NIL) (((-535) (-1 (-112) |#2|) $) 47)) (-3960 (($ (-747) |#2|) 54)) (-3180 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3855 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4301 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3880 (($ |#2|) 15)) (-3953 (($ $ $ (-535)) 36) (($ |#2| $ (-535)) 34)) (-1395 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-1627 (($ $ (-1191 (-535))) 44) (($ $ (-535)) 38)) (-1842 (($ $ $ (-535)) 60)) (-3742 (($ $) 58)) (-3006 (((-112) $ $) 66)))
+(((-641 |#1| |#2|) (-10 -8 (-15 -3880 (|#1| |#2|)) (-15 -1627 (|#1| |#1| (-535))) (-15 -1627 (|#1| |#1| (-1191 (-535)))) (-15 -3747 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3953 (|#1| |#2| |#1| (-535))) (-15 -3953 (|#1| |#1| |#1| (-535))) (-15 -3180 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3747 (|#1| |#2| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -3180 (|#1| |#1| |#1|)) (-15 -3855 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3761 ((-535) (-1 (-112) |#2|) |#1|)) (-15 -3761 ((-535) |#2| |#1|)) (-15 -3761 ((-535) |#2| |#1| (-535))) (-15 -3855 (|#1| |#1| |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -1842 (|#1| |#1| |#1| (-535))) (-15 -2368 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1395 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3960 (|#1| (-747) |#2|)) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1|))) (-642 |#2|) (-1178)) (T -641))
+NIL
+(-10 -8 (-15 -3880 (|#1| |#2|)) (-15 -1627 (|#1| |#1| (-535))) (-15 -1627 (|#1| |#1| (-1191 (-535)))) (-15 -3747 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3953 (|#1| |#2| |#1| (-535))) (-15 -3953 (|#1| |#1| |#1| (-535))) (-15 -3180 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3747 (|#1| |#2| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -3180 (|#1| |#1| |#1|)) (-15 -3855 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3761 ((-535) (-1 (-112) |#2|) |#1|)) (-15 -3761 ((-535) |#2| |#1|)) (-15 -3761 ((-535) |#2| |#1| (-535))) (-15 -3855 (|#1| |#1| |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -1842 (|#1| |#1| |#1| (-535))) (-15 -2368 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1395 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3960 (|#1| (-747) |#2|)) (-15 -4301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-4137 ((|#1| $) 65)) (-4139 (($ $) 67)) (-2296 (((-1230) $ (-535) (-535)) 97 (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) 52 (|has| $ (-6 -4337)))) (-1843 (((-112) $) 142 (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-1841 (($ $) 146 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4337)))) (-3230 (($ $) 141 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-4129 (($ $ $) 56 (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) 54 (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) 58 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4337))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 117 (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) 86 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-1626 (($ (-1 (-112) |#1|) $) 129)) (-4056 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4336)))) (-4138 ((|#1| $) 66)) (-3879 (($) 7 T CONST)) (-2368 (($ $) 144 (|has| $ (-6 -4337)))) (-2369 (($ $) 134)) (-4141 (($ $) 73) (($ $ (-747)) 71)) (-2446 (($ $) 131 (|has| |#1| (-1067)))) (-1394 (($ $) 99 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 130 (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) 125)) (-3748 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4336))) (($ |#1| $) 100 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1632 ((|#1| $ (-535) |#1|) 85 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 87)) (-3784 (((-112) $) 83)) (-3761 (((-535) |#1| $ (-535)) 139 (|has| |#1| (-1067))) (((-535) |#1| $) 138 (|has| |#1| (-1067))) (((-535) (-1 (-112) |#1|) $) 137)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3960 (($ (-747) |#1|) 108)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 95 (|has| (-535) (-823)))) (-3660 (($ $ $) 147 (|has| |#1| (-823)))) (-3180 (($ $ $) 132 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3855 (($ $ $) 140 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 94 (|has| (-535) (-823)))) (-3661 (($ $ $) 148 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3880 (($ |#1|) 122)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-4140 ((|#1| $) 70) (($ $ (-747)) 68)) (-3953 (($ $ $ (-535)) 127) (($ |#1| $ (-535)) 126)) (-2373 (($ $ $ (-535)) 116) (($ |#1| $ (-535)) 115)) (-2301 (((-618 (-535)) $) 92)) (-2302 (((-112) (-535) $) 91)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 76) (($ $ (-747)) 74)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2297 (($ $ |#1|) 96 (|has| $ (-6 -4337)))) (-3785 (((-112) $) 84)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 90)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1191 (-535))) 112) ((|#1| $ (-535)) 89) ((|#1| $ (-535) |#1|) 88)) (-3350 (((-535) $ $) 44)) (-1627 (($ $ (-1191 (-535))) 124) (($ $ (-535)) 123)) (-2374 (($ $ (-1191 (-535))) 114) (($ $ (-535)) 113)) (-3979 (((-112) $) 46)) (-4134 (($ $) 62)) (-4132 (($ $) 59 (|has| $ (-6 -4337)))) (-4135 (((-747) $) 63)) (-4136 (($ $) 64)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 143 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 98 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 107)) (-4133 (($ $ $) 61) (($ $ |#1|) 60)) (-4144 (($ $ $) 78) (($ |#1| $) 77) (($ (-618 $)) 110) (($ $ |#1|) 109)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 150 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 151 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3005 (((-112) $ $) 149 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 152 (|has| |#1| (-823)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-642 |#1|) (-138) (-1178)) (T -642))
+((-3880 (*1 *1 *2) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1178)))))
+(-13 (-1115 |t#1|) (-365 |t#1|) (-275 |t#1|) (-10 -8 (-15 -3880 ($ |t#1|))))
+(((-34) . T) ((-101) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-275 |#1|) . T) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-823) |has| |#1| (-823)) ((-981 |#1|) . T) ((-1067) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1115 |#1|) . T) ((-1178) . T) ((-1213 |#1|) . T))
+((-3919 (((-618 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2123 (-618 |#3|)))) |#4| (-618 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2123 (-618 |#3|))) |#4| |#3|) 45)) (-3427 (((-747) |#4| |#3|) 17)) (-3682 (((-3 |#3| #1#) |#4| |#3|) 20)) (-2381 (((-112) |#4| |#3|) 13)))
+(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3919 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2123 (-618 |#3|))) |#4| |#3|)) (-15 -3919 ((-618 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2123 (-618 |#3|)))) |#4| (-618 |#3|))) (-15 -3682 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2381 ((-112) |#4| |#3|)) (-15 -3427 ((-747) |#4| |#3|))) (-356) (-13 (-365 |#1|) (-10 -7 (-6 -4337))) (-13 (-365 |#1|) (-10 -7 (-6 -4337))) (-662 |#1| |#2| |#3|)) (T -643))
+((-3427 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-747)) (-5 *1 (-643 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4)))) (-2381 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-112)) (-5 *1 (-643 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4)))) (-3682 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-356)) (-4 *5 (-13 (-365 *4) (-10 -7 (-6 -4337)))) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337)))) (-5 *1 (-643 *4 *5 *2 *3)) (-4 *3 (-662 *4 *5 *2)))) (-3919 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-4 *7 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-618 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2123 (-618 *7))))) (-5 *1 (-643 *5 *6 *7 *3)) (-5 *4 (-618 *7)) (-4 *3 (-662 *5 *6 *7)))) (-3919 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-618 *4)))) (-5 *1 (-643 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4)))))
+(-10 -7 (-15 -3919 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2123 (-618 |#3|))) |#4| |#3|)) (-15 -3919 ((-618 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2123 (-618 |#3|)))) |#4| (-618 |#3|))) (-15 -3682 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2381 ((-112) |#4| |#3|)) (-15 -3427 ((-747) |#4| |#3|)))
+((-3919 (((-618 (-2 (|:| |particular| (-3 (-1224 |#1|) #1="failed")) (|:| -2123 (-618 (-1224 |#1|))))) (-618 (-618 |#1|)) (-618 (-1224 |#1|))) 22) (((-618 (-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|))))) (-665 |#1|) (-618 (-1224 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|)))) (-618 (-618 |#1|)) (-1224 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|)))) (-665 |#1|) (-1224 |#1|)) 14)) (-3427 (((-747) (-665 |#1|) (-1224 |#1|)) 30)) (-3682 (((-3 (-1224 |#1|) #1#) (-665 |#1|) (-1224 |#1|)) 24)) (-2381 (((-112) (-665 |#1|) (-1224 |#1|)) 27)))
+(((-644 |#1|) (-10 -7 (-15 -3919 ((-2 (|:| |particular| (-3 (-1224 |#1|) #1="failed")) (|:| -2123 (-618 (-1224 |#1|)))) (-665 |#1|) (-1224 |#1|))) (-15 -3919 ((-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|)))) (-618 (-618 |#1|)) (-1224 |#1|))) (-15 -3919 ((-618 (-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|))))) (-665 |#1|) (-618 (-1224 |#1|)))) (-15 -3919 ((-618 (-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|))))) (-618 (-618 |#1|)) (-618 (-1224 |#1|)))) (-15 -3682 ((-3 (-1224 |#1|) #1#) (-665 |#1|) (-1224 |#1|))) (-15 -2381 ((-112) (-665 |#1|) (-1224 |#1|))) (-15 -3427 ((-747) (-665 |#1|) (-1224 |#1|)))) (-356)) (T -644))
+((-3427 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-356)) (-5 *2 (-747)) (-5 *1 (-644 *5)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-356)) (-5 *2 (-112)) (-5 *1 (-644 *5)))) (-3682 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1224 *4)) (-5 *3 (-665 *4)) (-4 *4 (-356)) (-5 *1 (-644 *4)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-618 *5))) (-4 *5 (-356)) (-5 *2 (-618 (-2 (|:| |particular| (-3 (-1224 *5) #1="failed")) (|:| -2123 (-618 (-1224 *5)))))) (-5 *1 (-644 *5)) (-5 *4 (-618 (-1224 *5))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-4 *5 (-356)) (-5 *2 (-618 (-2 (|:| |particular| (-3 (-1224 *5) #1#)) (|:| -2123 (-618 (-1224 *5)))))) (-5 *1 (-644 *5)) (-5 *4 (-618 (-1224 *5))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-618 *5))) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1224 *5) #1#)) (|:| -2123 (-618 (-1224 *5))))) (-5 *1 (-644 *5)) (-5 *4 (-1224 *5)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1224 *5) #1#)) (|:| -2123 (-618 (-1224 *5))))) (-5 *1 (-644 *5)) (-5 *4 (-1224 *5)))))
+(-10 -7 (-15 -3919 ((-2 (|:| |particular| (-3 (-1224 |#1|) #1="failed")) (|:| -2123 (-618 (-1224 |#1|)))) (-665 |#1|) (-1224 |#1|))) (-15 -3919 ((-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|)))) (-618 (-618 |#1|)) (-1224 |#1|))) (-15 -3919 ((-618 (-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|))))) (-665 |#1|) (-618 (-1224 |#1|)))) (-15 -3919 ((-618 (-2 (|:| |particular| (-3 (-1224 |#1|) #1#)) (|:| -2123 (-618 (-1224 |#1|))))) (-618 (-618 |#1|)) (-618 (-1224 |#1|)))) (-15 -3682 ((-3 (-1224 |#1|) #1#) (-665 |#1|) (-1224 |#1|))) (-15 -2381 ((-112) (-665 |#1|) (-1224 |#1|))) (-15 -3427 ((-747) (-665 |#1|) (-1224 |#1|))))
+((-2382 (((-2 (|:| |particular| (-3 (-1224 (-400 |#4|)) "failed")) (|:| -2123 (-618 (-1224 (-400 |#4|))))) (-618 |#4|) (-618 |#3|)) 45)))
+(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2382 ((-2 (|:| |particular| (-3 (-1224 (-400 |#4|)) "failed")) (|:| -2123 (-618 (-1224 (-400 |#4|))))) (-618 |#4|) (-618 |#3|)))) (-542) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -645))
+((-2382 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *7)) (-4 *7 (-823)) (-4 *8 (-921 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-5 *2 (-2 (|:| |particular| (-3 (-1224 (-400 *8)) "failed")) (|:| -2123 (-618 (-1224 (-400 *8)))))) (-5 *1 (-645 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2382 ((-2 (|:| |particular| (-3 (-1224 (-400 |#4|)) "failed")) (|:| -2123 (-618 (-1224 (-400 |#4|))))) (-618 |#4|) (-618 |#3|))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (|has| |#2| (-542)))) (-3672 ((|#2| $) NIL)) (-3439 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3557 (((-1224 (-665 |#2|))) NIL) (((-1224 (-665 |#2|)) (-1224 $)) NIL)) (-3441 (((-112) $) NIL)) (-1840 (((-1224 $)) 37)) (-1264 (((-112) $ (-747)) NIL)) (-3675 (($ |#2|) NIL)) (-3879 (($) NIL T CONST)) (-3428 (($ $) NIL (|has| |#2| (-300)))) (-3430 (((-233 |#1| |#2|) $ (-535)) NIL)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (|has| |#2| (-542)))) (-1814 (((-3 $ #1#)) NIL (|has| |#2| (-542)))) (-1902 (((-665 |#2|)) NIL) (((-665 |#2|) (-1224 $)) NIL)) (-1838 ((|#2| $) NIL)) (-1900 (((-665 |#2|) $) NIL) (((-665 |#2|) $ (-1224 $)) NIL)) (-2487 (((-3 $ #1#) $) NIL (|has| |#2| (-542)))) (-2017 (((-1136 (-917 |#2|))) NIL (|has| |#2| (-356)))) (-2490 (($ $ (-890)) NIL)) (-1836 ((|#2| $) NIL)) (-1816 (((-1136 |#2|) $) NIL (|has| |#2| (-542)))) (-1904 ((|#2|) NIL) ((|#2| (-1224 $)) NIL)) (-1834 (((-1136 |#2|) $) NIL)) (-1828 (((-112)) NIL)) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 |#2| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) ((|#2| $) NIL)) (-1906 (($ (-1224 |#2|)) NIL) (($ (-1224 |#2|) (-1224 $)) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3427 (((-747) $) NIL (|has| |#2| (-542))) (((-890)) 38)) (-3431 ((|#2| $ (-535) (-535)) NIL)) (-1825 (((-112)) NIL)) (-2515 (($ $ (-890)) NIL)) (-2063 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL)) (-3426 (((-747) $) NIL (|has| |#2| (-542)))) (-3425 (((-618 (-233 |#1| |#2|)) $) NIL (|has| |#2| (-542)))) (-3433 (((-747) $) NIL)) (-1821 (((-112)) NIL)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3669 ((|#2| $) NIL (|has| |#2| (-6 (-4338 #3="*"))))) (-3437 (((-535) $) NIL)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3436 (((-535) $) NIL)) (-3434 (((-535) $) NIL)) (-3442 (($ (-618 (-618 |#2|))) NIL)) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3939 (((-618 (-618 |#2|)) $) NIL)) (-1819 (((-112)) NIL)) (-1823 (((-112)) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-618 $))) #1#)) NIL (|has| |#2| (-542)))) (-1815 (((-3 $ #1#)) NIL (|has| |#2| (-542)))) (-1903 (((-665 |#2|)) NIL) (((-665 |#2|) (-1224 $)) NIL)) (-1839 ((|#2| $) NIL)) (-1901 (((-665 |#2|) $) NIL) (((-665 |#2|) $ (-1224 $)) NIL)) (-2488 (((-3 $ #1#) $) NIL (|has| |#2| (-542)))) (-2021 (((-1136 (-917 |#2|))) NIL (|has| |#2| (-356)))) (-2489 (($ $ (-890)) NIL)) (-1837 ((|#2| $) NIL)) (-1817 (((-1136 |#2|) $) NIL (|has| |#2| (-542)))) (-1905 ((|#2|) NIL) ((|#2| (-1224 $)) NIL)) (-1835 (((-1136 |#2|) $) NIL)) (-1829 (((-112)) NIL)) (-3576 (((-1124) $) NIL)) (-1820 (((-112)) NIL)) (-1822 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-3935 (((-3 $ "failed") $) NIL (|has| |#2| (-356)))) (-3577 (((-1086) $) NIL)) (-1827 (((-112)) NIL)) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ (-535) (-535) |#2|) NIL) ((|#2| $ (-535) (-535)) 22) ((|#2| $ (-535)) NIL)) (-4153 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3671 ((|#2| $) NIL)) (-3674 (($ (-618 |#2|)) NIL)) (-3440 (((-112) $) NIL)) (-3673 (((-233 |#1| |#2|) $) NIL)) (-3670 ((|#2| $) NIL (|has| |#2| (-6 (-4338 #3#))))) (-2064 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3742 (($ $) NIL)) (-3558 (((-665 |#2|) (-1224 $)) NIL) (((-1224 |#2|) $) NIL) (((-665 |#2|) (-1224 $) (-1224 $)) NIL) (((-1224 |#2|) $ (-1224 $)) 25)) (-4313 (($ (-1224 |#2|)) NIL) (((-1224 |#2|) $) NIL)) (-2009 (((-618 (-917 |#2|))) NIL) (((-618 (-917 |#2|)) (-1224 $)) NIL)) (-2677 (($ $ $) NIL)) (-1833 (((-112)) NIL)) (-3429 (((-233 |#1| |#2|) $ (-535)) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#2| (-1009 (-400 (-535))))) (($ |#2|) NIL) (((-665 |#2|) $) NIL)) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) 36)) (-1818 (((-618 (-1224 |#2|))) NIL (|has| |#2| (-542)))) (-2678 (($ $ $ $) NIL)) (-1831 (((-112)) NIL)) (-2871 (($ (-665 |#2|) $) NIL)) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3438 (((-112) $) NIL)) (-2676 (($ $ $) NIL)) (-1832 (((-112)) NIL)) (-1830 (((-112)) NIL)) (-1826 (((-112)) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#2| (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-233 |#1| |#2|) $ (-233 |#1| |#2|)) NIL) (((-233 |#1| |#2|) (-233 |#1| |#2|) $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-646 |#1| |#2|) (-13 (-1089 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-593 (-665 |#2|)) (-411 |#2|)) (-890) (-170)) (T -646))
+NIL
+(-13 (-1089 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-593 (-665 |#2|)) (-411 |#2|))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3582 (((-618 (-1101)) $) 10)) (-4300 (((-835) $) 18) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-647) (-13 (-1049) (-10 -8 (-15 -3582 ((-618 (-1101)) $))))) (T -647))
+((-3582 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-647)))))
+(-13 (-1049) (-10 -8 (-15 -3582 ((-618 (-1101)) $))))
+((-2887 (((-112) $ $) NIL)) (-4277 (((-618 |#1|) $) NIL)) (-3455 (($ $) 52)) (-2983 (((-112) $) NIL)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-2385 (((-3 $ "failed") (-795 |#1|)) 23)) (-2387 (((-112) (-795 |#1|)) 15)) (-2386 (($ (-795 |#1|)) 24)) (-2764 (((-112) $ $) 30)) (-4176 (((-890) $) 37)) (-3456 (($ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4075 (((-618 $) (-795 |#1|)) 17)) (-4300 (((-835) $) 43) (($ |#1|) 34) (((-795 |#1|) $) 39) (((-653 |#1|) $) 44)) (-2384 (((-57 (-618 $)) (-618 |#1|) (-890)) 57)) (-2383 (((-618 $) (-618 |#1|) (-890)) 60)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 53)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 38)))
+(((-648 |#1|) (-13 (-823) (-1009 |#1|) (-10 -8 (-15 -2983 ((-112) $)) (-15 -3456 ($ $)) (-15 -3455 ($ $)) (-15 -4176 ((-890) $)) (-15 -2764 ((-112) $ $)) (-15 -4300 ((-795 |#1|) $)) (-15 -4300 ((-653 |#1|) $)) (-15 -4075 ((-618 $) (-795 |#1|))) (-15 -2387 ((-112) (-795 |#1|))) (-15 -2386 ($ (-795 |#1|))) (-15 -2385 ((-3 $ "failed") (-795 |#1|))) (-15 -4277 ((-618 |#1|) $)) (-15 -2384 ((-57 (-618 $)) (-618 |#1|) (-890))) (-15 -2383 ((-618 $) (-618 |#1|) (-890))))) (-823)) (T -648))
+((-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-3456 (*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823)))) (-3455 (*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-2764 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-618 (-648 *4))) (-5 *1 (-648 *4)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-112)) (-5 *1 (-648 *4)))) (-2386 (*1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))) (-2385 (*1 *1 *2) (|partial| -12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-2384 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *5)) (-5 *4 (-890)) (-4 *5 (-823)) (-5 *2 (-57 (-618 (-648 *5)))) (-5 *1 (-648 *5)))) (-2383 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *5)) (-5 *4 (-890)) (-4 *5 (-823)) (-5 *2 (-618 (-648 *5))) (-5 *1 (-648 *5)))))
+(-13 (-823) (-1009 |#1|) (-10 -8 (-15 -2983 ((-112) $)) (-15 -3456 ($ $)) (-15 -3455 ($ $)) (-15 -4176 ((-890) $)) (-15 -2764 ((-112) $ $)) (-15 -4300 ((-795 |#1|) $)) (-15 -4300 ((-653 |#1|) $)) (-15 -4075 ((-618 $) (-795 |#1|))) (-15 -2387 ((-112) (-795 |#1|))) (-15 -2386 ($ (-795 |#1|))) (-15 -2385 ((-3 $ "failed") (-795 |#1|))) (-15 -4277 ((-618 |#1|) $)) (-15 -2384 ((-57 (-618 $)) (-618 |#1|) (-890))) (-15 -2383 ((-618 $) (-618 |#1|) (-890)))))
+((-3744 ((|#2| $) 76)) (-4139 (($ $) 96)) (-1264 (((-112) $ (-747)) 26)) (-4141 (($ $) 85) (($ $ (-747)) 88)) (-3784 (((-112) $) 97)) (-3352 (((-618 $) $) 72)) (-3348 (((-112) $ $) 71)) (-4065 (((-112) $ (-747)) 24)) (-2298 (((-535) $) 46)) (-2299 (((-535) $) 45)) (-4062 (((-112) $ (-747)) 22)) (-3864 (((-112) $) 74)) (-4140 ((|#2| $) 89) (($ $ (-747)) 92)) (-2373 (($ $ $ (-535)) 62) (($ |#2| $ (-535)) 61)) (-2301 (((-618 (-535)) $) 44)) (-2302 (((-112) (-535) $) 42)) (-4143 ((|#2| $) NIL) (($ $ (-747)) 84)) (-4111 (($ $ (-535)) 100)) (-3785 (((-112) $) 99)) (-2065 (((-112) (-1 (-112) |#2|) $) 32)) (-2303 (((-618 |#2|) $) 33)) (-4142 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1191 (-535))) 58) ((|#2| $ (-535)) 40) ((|#2| $ (-535) |#2|) 41)) (-3350 (((-535) $ $) 70)) (-2374 (($ $ (-1191 (-535))) 57) (($ $ (-535)) 51)) (-3979 (((-112) $) 66)) (-4134 (($ $) 81)) (-4135 (((-747) $) 80)) (-4136 (($ $) 79)) (-3867 (($ (-618 |#2|)) 37)) (-3212 (($ $) 101)) (-3859 (((-618 $) $) 69)) (-3349 (((-112) $ $) 68)) (-2066 (((-112) (-1 (-112) |#2|) $) 31)) (-3375 (((-112) $ $) 18)) (-4299 (((-747) $) 29)))
+(((-649 |#1| |#2|) (-10 -8 (-15 -3212 (|#1| |#1|)) (-15 -4111 (|#1| |#1| (-535))) (-15 -3784 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -4142 (|#2| |#1| (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535))) (-15 -2303 ((-618 |#2|) |#1|)) (-15 -2302 ((-112) (-535) |#1|)) (-15 -2301 ((-618 (-535)) |#1|)) (-15 -2299 ((-535) |#1|)) (-15 -2298 ((-535) |#1|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -2374 (|#1| |#1| (-535))) (-15 -2374 (|#1| |#1| (-1191 (-535)))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -4134 (|#1| |#1|)) (-15 -4135 ((-747) |#1|)) (-15 -4136 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4140 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| "last")) (-15 -4140 (|#2| |#1|)) (-15 -4141 (|#1| |#1| (-747))) (-15 -4142 (|#1| |#1| "rest")) (-15 -4141 (|#1| |#1|)) (-15 -4143 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| "first")) (-15 -4143 (|#2| |#1|)) (-15 -3348 ((-112) |#1| |#1|)) (-15 -3349 ((-112) |#1| |#1|)) (-15 -3350 ((-535) |#1| |#1|)) (-15 -3979 ((-112) |#1|)) (-15 -4142 (|#2| |#1| "value")) (-15 -3744 (|#2| |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -3352 ((-618 |#1|) |#1|)) (-15 -3859 ((-618 |#1|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747)))) (-650 |#2|) (-1178)) (T -649))
+NIL
+(-10 -8 (-15 -3212 (|#1| |#1|)) (-15 -4111 (|#1| |#1| (-535))) (-15 -3784 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -4142 (|#2| |#1| (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535))) (-15 -2303 ((-618 |#2|) |#1|)) (-15 -2302 ((-112) (-535) |#1|)) (-15 -2301 ((-618 (-535)) |#1|)) (-15 -2299 ((-535) |#1|)) (-15 -2298 ((-535) |#1|)) (-15 -3867 (|#1| (-618 |#2|))) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -2374 (|#1| |#1| (-535))) (-15 -2374 (|#1| |#1| (-1191 (-535)))) (-15 -2373 (|#1| |#2| |#1| (-535))) (-15 -2373 (|#1| |#1| |#1| (-535))) (-15 -4134 (|#1| |#1|)) (-15 -4135 ((-747) |#1|)) (-15 -4136 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4140 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| "last")) (-15 -4140 (|#2| |#1|)) (-15 -4141 (|#1| |#1| (-747))) (-15 -4142 (|#1| |#1| "rest")) (-15 -4141 (|#1| |#1|)) (-15 -4143 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| "first")) (-15 -4143 (|#2| |#1|)) (-15 -3348 ((-112) |#1| |#1|)) (-15 -3349 ((-112) |#1| |#1|)) (-15 -3350 ((-535) |#1| |#1|)) (-15 -3979 ((-112) |#1|)) (-15 -4142 (|#2| |#1| "value")) (-15 -3744 (|#2| |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -3352 ((-618 |#1|) |#1|)) (-15 -3859 ((-618 |#1|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747))))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-4137 ((|#1| $) 65)) (-4139 (($ $) 67)) (-2296 (((-1230) $ (-535) (-535)) 97 (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) 52 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-4129 (($ $ $) 56 (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) 54 (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) 58 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4337))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 117 (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) 86 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 102)) (-4138 ((|#1| $) 66)) (-3879 (($) 7 T CONST)) (-2389 (($ $) 124)) (-4141 (($ $) 73) (($ $ (-747)) 71)) (-1394 (($ $) 99 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 100 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 103)) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1632 ((|#1| $ (-535) |#1|) 85 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 87)) (-3784 (((-112) $) 83)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-2388 (((-747) $) 123)) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3960 (($ (-747) |#1|) 108)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 95 (|has| (-535) (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 94 (|has| (-535) (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-2391 (($ $) 126)) (-2392 (((-112) $) 127)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-4140 ((|#1| $) 70) (($ $ (-747)) 68)) (-2373 (($ $ $ (-535)) 116) (($ |#1| $ (-535)) 115)) (-2301 (((-618 (-535)) $) 92)) (-2302 (((-112) (-535) $) 91)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2390 ((|#1| $) 125)) (-4143 ((|#1| $) 76) (($ $ (-747)) 74)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2297 (($ $ |#1|) 96 (|has| $ (-6 -4337)))) (-4111 (($ $ (-535)) 122)) (-3785 (((-112) $) 84)) (-2393 (((-112) $) 128)) (-2394 (((-112) $) 129)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 90)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1191 (-535))) 112) ((|#1| $ (-535)) 89) ((|#1| $ (-535) |#1|) 88)) (-3350 (((-535) $ $) 44)) (-2374 (($ $ (-1191 (-535))) 114) (($ $ (-535)) 113)) (-3979 (((-112) $) 46)) (-4134 (($ $) 62)) (-4132 (($ $) 59 (|has| $ (-6 -4337)))) (-4135 (((-747) $) 63)) (-4136 (($ $) 64)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 98 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 107)) (-4133 (($ $ $) 61 (|has| $ (-6 -4337))) (($ $ |#1|) 60 (|has| $ (-6 -4337)))) (-4144 (($ $ $) 78) (($ |#1| $) 77) (($ (-618 $)) 110) (($ $ |#1|) 109)) (-3212 (($ $) 121)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-650 |#1|) (-138) (-1178)) (T -650))
+((-3748 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1178)))) (-4056 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1178)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) (-2391 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178)))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178)))) (-2389 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-650 *3)) (-4 *3 (-1178)))) (-3212 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178)))))
+(-13 (-1115 |t#1|) (-10 -8 (-15 -3748 ($ (-1 (-112) |t#1|) $)) (-15 -4056 ($ (-1 (-112) |t#1|) $)) (-15 -2394 ((-112) $)) (-15 -2393 ((-112) $)) (-15 -2392 ((-112) $)) (-15 -2391 ($ $)) (-15 -2390 (|t#1| $)) (-15 -2389 ($ $)) (-15 -2388 ((-747) $)) (-15 -4111 ($ $ (-535))) (-15 -3212 ($ $))))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1115 |#1|) . T) ((-1178) . T) ((-1213 |#1|) . T))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2400 (($ (-747) (-747) (-747)) 33 (|has| |#1| (-1018)))) (-1264 (((-112) $ (-747)) NIL)) (-2397 ((|#1| $ (-747) (-747) (-747) |#1|) 27)) (-3879 (($) NIL T CONST)) (-2398 (($ $ $) 37 (|has| |#1| (-1018)))) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2395 (((-1224 (-747)) $) 9)) (-2396 (($ (-1142) $ $) 22)) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2399 (($ (-747)) 35 (|has| |#1| (-1018)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-747) (-747) (-747)) 25)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-3867 (($ (-618 (-618 (-618 |#1|)))) 44)) (-4300 (($ (-929 (-929 (-929 |#1|)))) 15) (((-929 (-929 (-929 |#1|))) $) 12) (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-651 |#1|) (-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1018)) (PROGN (-15 -2400 ($ (-747) (-747) (-747))) (-15 -2399 ($ (-747))) (-15 -2398 ($ $ $))) |%noBranch|) (-15 -3867 ($ (-618 (-618 (-618 |#1|))))) (-15 -4142 (|#1| $ (-747) (-747) (-747))) (-15 -2397 (|#1| $ (-747) (-747) (-747) |#1|)) (-15 -4300 ($ (-929 (-929 (-929 |#1|))))) (-15 -4300 ((-929 (-929 (-929 |#1|))) $)) (-15 -2396 ($ (-1142) $ $)) (-15 -2395 ((-1224 (-747)) $)))) (-1067)) (T -651))
+((-2400 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018)) (-4 *3 (-1067)))) (-2399 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018)) (-4 *3 (-1067)))) (-2398 (*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-1018)) (-4 *2 (-1067)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-618 *3)))) (-4 *3 (-1067)) (-5 *1 (-651 *3)))) (-4142 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1067)))) (-2397 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1067)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-4 *3 (-1067)) (-5 *1 (-651 *3)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-5 *1 (-651 *3)) (-4 *3 (-1067)))) (-2396 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-651 *3)) (-4 *3 (-1067)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-1224 (-747))) (-5 *1 (-651 *3)) (-4 *3 (-1067)))))
+(-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1018)) (PROGN (-15 -2400 ($ (-747) (-747) (-747))) (-15 -2399 ($ (-747))) (-15 -2398 ($ $ $))) |%noBranch|) (-15 -3867 ($ (-618 (-618 (-618 |#1|))))) (-15 -4142 (|#1| $ (-747) (-747) (-747))) (-15 -2397 (|#1| $ (-747) (-747) (-747) |#1|)) (-15 -4300 ($ (-929 (-929 (-929 |#1|))))) (-15 -4300 ((-929 (-929 (-929 |#1|))) $)) (-15 -2396 ($ (-1142) $ $)) (-15 -2395 ((-1224 (-747)) $))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3512 (((-475) $) 10)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 21) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-1101) $) 12)) (-3375 (((-112) $ $) NIL)))
+(((-652) (-13 (-1049) (-10 -8 (-15 -3512 ((-475) $)) (-15 -3567 ((-1101) $))))) (T -652))
+((-3512 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-652)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-652)))))
+(-13 (-1049) (-10 -8 (-15 -3512 ((-475) $)) (-15 -3567 ((-1101) $))))
+((-2887 (((-112) $ $) NIL)) (-4277 (((-618 |#1|) $) 14)) (-3455 (($ $) 18)) (-2983 (((-112) $) 19)) (-3491 (((-3 |#1| "failed") $) 22)) (-3490 ((|#1| $) 20)) (-4141 (($ $) 36)) (-4279 (($ $) 24)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-2764 (((-112) $ $) 42)) (-4176 (((-890) $) 38)) (-3456 (($ $) 17)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 ((|#1| $) 35)) (-4300 (((-835) $) 31) (($ |#1|) 23) (((-795 |#1|) $) 27)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 12)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 40)) (* (($ $ $) 34)))
+(((-653 |#1|) (-13 (-823) (-1009 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4300 ((-795 |#1|) $)) (-15 -4143 (|#1| $)) (-15 -3456 ($ $)) (-15 -4176 ((-890) $)) (-15 -2764 ((-112) $ $)) (-15 -4279 ($ $)) (-15 -4141 ($ $)) (-15 -2983 ((-112) $)) (-15 -3455 ($ $)) (-15 -4277 ((-618 |#1|) $)))) (-823)) (T -653))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-4143 (*1 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-3456 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-2764 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-4279 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-4141 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-3455 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823)))))
+(-13 (-823) (-1009 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4300 ((-795 |#1|) $)) (-15 -4143 (|#1| $)) (-15 -3456 ($ $)) (-15 -4176 ((-890) $)) (-15 -2764 ((-112) $ $)) (-15 -4279 ($ $)) (-15 -4141 ($ $)) (-15 -2983 ((-112) $)) (-15 -3455 ($ $)) (-15 -4277 ((-618 |#1|) $))))
+((-2409 ((|#1| (-1 |#1| (-747) |#1|) (-747) |#1|) 11)) (-2401 ((|#1| (-1 |#1| |#1|) (-747) |#1|) 9)))
+(((-654 |#1|) (-10 -7 (-15 -2401 (|#1| (-1 |#1| |#1|) (-747) |#1|)) (-15 -2409 (|#1| (-1 |#1| (-747) |#1|) (-747) |#1|))) (-1067)) (T -654))
+((-2409 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-747) *2)) (-5 *4 (-747)) (-4 *2 (-1067)) (-5 *1 (-654 *2)))) (-2401 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-747)) (-4 *2 (-1067)) (-5 *1 (-654 *2)))))
+(-10 -7 (-15 -2401 (|#1| (-1 |#1| |#1|) (-747) |#1|)) (-15 -2409 (|#1| (-1 |#1| (-747) |#1|) (-747) |#1|)))
+((-2403 ((|#2| |#1| |#2|) 9)) (-2402 ((|#1| |#1| |#2|) 8)))
+(((-655 |#1| |#2|) (-10 -7 (-15 -2402 (|#1| |#1| |#2|)) (-15 -2403 (|#2| |#1| |#2|))) (-1067) (-1067)) (T -655))
+((-2403 (*1 *2 *3 *2) (-12 (-5 *1 (-655 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-2402 (*1 *2 *2 *3) (-12 (-5 *1 (-655 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(-10 -7 (-15 -2402 (|#1| |#1| |#2|)) (-15 -2403 (|#2| |#1| |#2|)))
+((-2404 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-656 |#1| |#2| |#3|) (-10 -7 (-15 -2404 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1067) (-1067) (-1067)) (T -656))
+((-2404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)) (-5 *1 (-656 *5 *6 *2)))))
+(-10 -7 (-15 -2404 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2887 (((-112) $ $) NIL)) (-3652 (((-1179) $) 20)) (-3651 (((-618 (-1179)) $) 18)) (-2405 (($ (-618 (-1179)) (-1179)) 13)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 29) (((-1147) $) NIL) (($ (-1147)) NIL) (((-1179) $) 21) (($ (-1081)) 10)) (-3375 (((-112) $ $) NIL)))
+(((-657) (-13 (-1049) (-593 (-1179)) (-10 -8 (-15 -4300 ($ (-1081))) (-15 -2405 ($ (-618 (-1179)) (-1179))) (-15 -3651 ((-618 (-1179)) $)) (-15 -3652 ((-1179) $))))) (T -657))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-657)))) (-2405 (*1 *1 *2 *3) (-12 (-5 *2 (-618 (-1179))) (-5 *3 (-1179)) (-5 *1 (-657)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-657)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-657)))))
+(-13 (-1049) (-593 (-1179)) (-10 -8 (-15 -4300 ($ (-1081))) (-15 -2405 ($ (-618 (-1179)) (-1179))) (-15 -3651 ((-618 (-1179)) $)) (-15 -3652 ((-1179) $))))
+((-2409 (((-1 |#1| (-747) |#1|) (-1 |#1| (-747) |#1|)) 23)) (-2406 (((-1 |#1|) |#1|) 8)) (-2408 ((|#1| |#1|) 16)) (-2407 (((-618 |#1|) (-1 (-618 |#1|) (-618 |#1|)) (-535)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4300 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-747)) 20)))
+(((-658 |#1|) (-10 -7 (-15 -2406 ((-1 |#1|) |#1|)) (-15 -4300 ((-1 |#1|) |#1|)) (-15 -2407 (|#1| (-1 |#1| |#1|))) (-15 -2407 ((-618 |#1|) (-1 (-618 |#1|) (-618 |#1|)) (-535))) (-15 -2408 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-747))) (-15 -2409 ((-1 |#1| (-747) |#1|) (-1 |#1| (-747) |#1|)))) (-1067)) (T -658))
+((-2409 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-747) *3)) (-4 *3 (-1067)) (-5 *1 (-658 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *4 (-1067)) (-5 *1 (-658 *4)))) (-2408 (*1 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1067)))) (-2407 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-618 *5) (-618 *5))) (-5 *4 (-535)) (-5 *2 (-618 *5)) (-5 *1 (-658 *5)) (-4 *5 (-1067)))) (-2407 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-658 *2)) (-4 *2 (-1067)))) (-4300 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1067)))) (-2406 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1067)))))
+(-10 -7 (-15 -2406 ((-1 |#1|) |#1|)) (-15 -4300 ((-1 |#1|) |#1|)) (-15 -2407 (|#1| (-1 |#1| |#1|))) (-15 -2407 ((-618 |#1|) (-1 (-618 |#1|) (-618 |#1|)) (-535))) (-15 -2408 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-747))) (-15 -2409 ((-1 |#1| (-747) |#1|) (-1 |#1| (-747) |#1|))))
+((-2412 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2411 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4294 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2410 (((-1 |#2| |#1|) |#2|) 11)))
+(((-659 |#1| |#2|) (-10 -7 (-15 -2410 ((-1 |#2| |#1|) |#2|)) (-15 -2411 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4294 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2412 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1067) (-1067)) (T -659))
+((-2412 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-5 *2 (-1 *5 *4)) (-5 *1 (-659 *4 *5)))) (-4294 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1067)) (-5 *2 (-1 *5 *4)) (-5 *1 (-659 *4 *5)) (-4 *4 (-1067)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-5 *2 (-1 *5)) (-5 *1 (-659 *4 *5)))) (-2410 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-659 *4 *3)) (-4 *4 (-1067)) (-4 *3 (-1067)))))
+(-10 -7 (-15 -2410 ((-1 |#2| |#1|) |#2|)) (-15 -2411 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4294 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2412 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2417 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2413 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2414 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2415 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2416 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -2413 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2414 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2415 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2416 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2417 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1067) (-1067) (-1067)) (T -660))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-1 *7 *5)) (-5 *1 (-660 *5 *6 *7)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-660 *4 *5 *6)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-660 *4 *5 *6)) (-4 *4 (-1067)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-660 *4 *5 *6)) (-4 *5 (-1067)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *4 *5 *6)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1067)) (-4 *4 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *5 *4 *6)))))
+(-10 -7 (-15 -2413 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2414 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2415 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2416 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2417 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-4181 (($ (-747) (-747)) 33)) (-2422 (($ $ $) 56)) (-3756 (($ |#3|) 52) (($ $) 53)) (-3439 (((-112) $) 28)) (-2421 (($ $ (-535) (-535)) 58)) (-2420 (($ $ (-535) (-535)) 59)) (-2419 (($ $ (-535) (-535) (-535) (-535)) 63)) (-2424 (($ $) 54)) (-3441 (((-112) $) 14)) (-2418 (($ $ (-535) (-535) $) 64)) (-4130 ((|#2| $ (-535) (-535) |#2|) NIL) (($ $ (-618 (-535)) (-618 (-535)) $) 62)) (-3675 (($ (-747) |#2|) 39)) (-3442 (($ (-618 (-618 |#2|))) 37)) (-3939 (((-618 (-618 |#2|)) $) 57)) (-2423 (($ $ $) 55)) (-3803 (((-3 $ "failed") $ |#2|) 91)) (-4142 ((|#2| $ (-535) (-535)) NIL) ((|#2| $ (-535) (-535) |#2|) NIL) (($ $ (-618 (-535)) (-618 (-535))) 61)) (-3674 (($ (-618 |#2|)) 40) (($ (-618 $)) 42)) (-3440 (((-112) $) 24)) (-4300 (($ |#4|) 47) (((-835) $) NIL)) (-3438 (((-112) $) 30)) (-4291 (($ $ |#2|) 93)) (-4180 (($ $ $) 68) (($ $) 71)) (-4182 (($ $ $) 66)) (** (($ $ (-747)) 80) (($ $ (-535)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-535) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
+(((-661 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 -4291 (|#1| |#1| |#2|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -2418 (|#1| |#1| (-535) (-535) |#1|)) (-15 -2419 (|#1| |#1| (-535) (-535) (-535) (-535))) (-15 -2420 (|#1| |#1| (-535) (-535))) (-15 -2421 (|#1| |#1| (-535) (-535))) (-15 -4130 (|#1| |#1| (-618 (-535)) (-618 (-535)) |#1|)) (-15 -4142 (|#1| |#1| (-618 (-535)) (-618 (-535)))) (-15 -3939 ((-618 (-618 |#2|)) |#1|)) (-15 -2422 (|#1| |#1| |#1|)) (-15 -2423 (|#1| |#1| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3756 (|#1| |#1|)) (-15 -3756 (|#1| |#3|)) (-15 -4300 (|#1| |#4|)) (-15 -3674 (|#1| (-618 |#1|))) (-15 -3674 (|#1| (-618 |#2|))) (-15 -3675 (|#1| (-747) |#2|)) (-15 -3442 (|#1| (-618 (-618 |#2|)))) (-15 -4181 (|#1| (-747) (-747))) (-15 -3438 ((-112) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -3440 ((-112) |#1|)) (-15 -3441 ((-112) |#1|)) (-15 -4130 (|#2| |#1| (-535) (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) (-535)))) (-662 |#2| |#3| |#4|) (-1018) (-365 |#2|) (-365 |#2|)) (T -661))
+NIL
+(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 -4291 (|#1| |#1| |#2|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -2418 (|#1| |#1| (-535) (-535) |#1|)) (-15 -2419 (|#1| |#1| (-535) (-535) (-535) (-535))) (-15 -2420 (|#1| |#1| (-535) (-535))) (-15 -2421 (|#1| |#1| (-535) (-535))) (-15 -4130 (|#1| |#1| (-618 (-535)) (-618 (-535)) |#1|)) (-15 -4142 (|#1| |#1| (-618 (-535)) (-618 (-535)))) (-15 -3939 ((-618 (-618 |#2|)) |#1|)) (-15 -2422 (|#1| |#1| |#1|)) (-15 -2423 (|#1| |#1| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3756 (|#1| |#1|)) (-15 -3756 (|#1| |#3|)) (-15 -4300 (|#1| |#4|)) (-15 -3674 (|#1| (-618 |#1|))) (-15 -3674 (|#1| (-618 |#2|))) (-15 -3675 (|#1| (-747) |#2|)) (-15 -3442 (|#1| (-618 (-618 |#2|)))) (-15 -4181 (|#1| (-747) (-747))) (-15 -3438 ((-112) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -3440 ((-112) |#1|)) (-15 -3441 ((-112) |#1|)) (-15 -4130 (|#2| |#1| (-535) (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) (-535))))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4181 (($ (-747) (-747)) 97)) (-2422 (($ $ $) 87)) (-3756 (($ |#2|) 91) (($ $) 90)) (-3439 (((-112) $) 99)) (-2421 (($ $ (-535) (-535)) 83)) (-2420 (($ $ (-535) (-535)) 82)) (-2419 (($ $ (-535) (-535) (-535) (-535)) 81)) (-2424 (($ $) 89)) (-3441 (((-112) $) 101)) (-1264 (((-112) $ (-747)) 8)) (-2418 (($ $ (-535) (-535) $) 80)) (-4130 ((|#1| $ (-535) (-535) |#1|) 44) (($ $ (-618 (-535)) (-618 (-535)) $) 84)) (-1302 (($ $ (-535) |#2|) 42)) (-1301 (($ $ (-535) |#3|) 41)) (-3675 (($ (-747) |#1|) 95)) (-3879 (($) 7 T CONST)) (-3428 (($ $) 67 (|has| |#1| (-300)))) (-3430 ((|#2| $ (-535)) 46)) (-3427 (((-747) $) 66 (|has| |#1| (-542)))) (-1632 ((|#1| $ (-535) (-535) |#1|) 43)) (-3431 ((|#1| $ (-535) (-535)) 48)) (-2063 (((-618 |#1|) $) 30)) (-3426 (((-747) $) 65 (|has| |#1| (-542)))) (-3425 (((-618 |#3|) $) 64 (|has| |#1| (-542)))) (-3433 (((-747) $) 51)) (-3960 (($ (-747) (-747) |#1|) 57)) (-3432 (((-747) $) 50)) (-4065 (((-112) $ (-747)) 9)) (-3669 ((|#1| $) 62 (|has| |#1| (-6 (-4338 #1="*"))))) (-3437 (((-535) $) 55)) (-3435 (((-535) $) 53)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3436 (((-535) $) 54)) (-3434 (((-535) $) 52)) (-3442 (($ (-618 (-618 |#1|))) 96)) (-2067 (($ (-1 |#1| |#1|) $) 34)) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3939 (((-618 (-618 |#1|)) $) 86)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3935 (((-3 $ "failed") $) 61 (|has| |#1| (-356)))) (-2423 (($ $ $) 88)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) 56)) (-3803 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-542)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) (-535)) 49) ((|#1| $ (-535) (-535) |#1|) 47) (($ $ (-618 (-535)) (-618 (-535))) 85)) (-3674 (($ (-618 |#1|)) 94) (($ (-618 $)) 93)) (-3440 (((-112) $) 100)) (-3670 ((|#1| $) 63 (|has| |#1| (-6 (-4338 #1#))))) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-3429 ((|#3| $ (-535)) 45)) (-4300 (($ |#3|) 92) (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3438 (((-112) $) 98)) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4291 (($ $ |#1|) 68 (|has| |#1| (-356)))) (-4180 (($ $ $) 78) (($ $) 77)) (-4182 (($ $ $) 79)) (** (($ $ (-747)) 70) (($ $ (-535)) 60 (|has| |#1| (-356)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-535) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-662 |#1| |#2| |#3|) (-138) (-1018) (-365 |t#1|) (-365 |t#1|)) (T -662))
+((-3441 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-4181 (*1 *1 *2 *2) (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3442 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3675 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *2)) (-4 *4 (-365 *3)) (-4 *2 (-365 *3)))) (-3756 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-662 *3 *2 *4)) (-4 *2 (-365 *3)) (-4 *4 (-365 *3)))) (-3756 (*1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2424 (*1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2423 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2422 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-618 (-618 *3))))) (-4142 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-618 (-535))) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4130 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-618 (-535))) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2421 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2420 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2419 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2418 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4180 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4180 (*1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-662 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *2 (-365 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-662 *3 *2 *4)) (-4 *3 (-1018)) (-4 *2 (-365 *3)) (-4 *4 (-365 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3803 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-542)))) (-4291 (*1 *1 *1 *2) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-356)))) (-3428 (*1 *1 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-300)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-542)) (-5 *2 (-747)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-542)) (-5 *2 (-747)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-542)) (-5 *2 (-618 *5)))) (-3670 (*1 *2 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (|has| *2 (-6 (-4338 #1="*"))) (-4 *2 (-1018)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (|has| *2 (-6 (-4338 #1#))) (-4 *2 (-1018)))) (-3935 (*1 *1 *1) (|partial| -12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-356)))))
+(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4337) (-6 -4336) (-15 -3441 ((-112) $)) (-15 -3440 ((-112) $)) (-15 -3439 ((-112) $)) (-15 -3438 ((-112) $)) (-15 -4181 ($ (-747) (-747))) (-15 -3442 ($ (-618 (-618 |t#1|)))) (-15 -3675 ($ (-747) |t#1|)) (-15 -3674 ($ (-618 |t#1|))) (-15 -3674 ($ (-618 $))) (-15 -4300 ($ |t#3|)) (-15 -3756 ($ |t#2|)) (-15 -3756 ($ $)) (-15 -2424 ($ $)) (-15 -2423 ($ $ $)) (-15 -2422 ($ $ $)) (-15 -3939 ((-618 (-618 |t#1|)) $)) (-15 -4142 ($ $ (-618 (-535)) (-618 (-535)))) (-15 -4130 ($ $ (-618 (-535)) (-618 (-535)) $)) (-15 -2421 ($ $ (-535) (-535))) (-15 -2420 ($ $ (-535) (-535))) (-15 -2419 ($ $ (-535) (-535) (-535) (-535))) (-15 -2418 ($ $ (-535) (-535) $)) (-15 -4182 ($ $ $)) (-15 -4180 ($ $ $)) (-15 -4180 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-535) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-747))) (IF (|has| |t#1| (-542)) (-15 -3803 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -4291 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-300)) (-15 -3428 ($ $)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -3427 ((-747) $)) (-15 -3426 ((-747) $)) (-15 -3425 ((-618 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4338 "*"))) (PROGN (-15 -3670 (|t#1| $)) (-15 -3669 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -3935 ((-3 $ "failed") $)) (-15 ** ($ $ (-535)))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-56 |#1| |#2| |#3|) . T) ((-1178) . T))
+((-4185 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4301 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-663 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4301 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4301 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4185 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1018) (-365 |#1|) (-365 |#1|) (-662 |#1| |#2| |#3|) (-1018) (-365 |#5|) (-365 |#5|) (-662 |#5| |#6| |#7|)) (T -663))
+((-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1018)) (-4 *2 (-1018)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *8 (-365 *2)) (-4 *9 (-365 *2)) (-5 *1 (-663 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-662 *5 *6 *7)) (-4 *10 (-662 *2 *8 *9)))) (-4301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-662 *8 *9 *10)) (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-662 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-662 *8 *9 *10)) (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-662 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))))
+(-10 -7 (-15 -4301 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4301 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4185 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3428 ((|#4| |#4|) 72 (|has| |#1| (-300)))) (-3427 (((-747) |#4|) 99 (|has| |#1| (-542)))) (-3426 (((-747) |#4|) 76 (|has| |#1| (-542)))) (-3425 (((-618 |#3|) |#4|) 83 (|has| |#1| (-542)))) (-2462 (((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|) 111 (|has| |#1| (-300)))) (-3669 ((|#1| |#4|) 35)) (-2429 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-542)))) (-3935 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-356)))) (-2428 ((|#4| |#4|) 68 (|has| |#1| (-542)))) (-2426 ((|#4| |#4| |#1| (-535) (-535)) 43)) (-2425 ((|#4| |#4| (-535) (-535)) 38)) (-2427 ((|#4| |#4| |#1| (-535) (-535)) 48)) (-3670 ((|#1| |#4|) 78)) (-2845 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-542)))))
+(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3670 (|#1| |#4|)) (-15 -3669 (|#1| |#4|)) (-15 -2425 (|#4| |#4| (-535) (-535))) (-15 -2426 (|#4| |#4| |#1| (-535) (-535))) (-15 -2427 (|#4| |#4| |#1| (-535) (-535))) (IF (|has| |#1| (-542)) (PROGN (-15 -3427 ((-747) |#4|)) (-15 -3426 ((-747) |#4|)) (-15 -3425 ((-618 |#3|) |#4|)) (-15 -2428 (|#4| |#4|)) (-15 -2429 ((-3 |#4| "failed") |#4|)) (-15 -2845 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -3428 (|#4| |#4|)) (-15 -2462 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3935 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-365 |#1|) (-365 |#1|) (-662 |#1| |#2| |#3|)) (T -664))
+((-3935 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-2462 (*1 *2 *3 *3) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-664 *3 *4 *5 *6)) (-4 *6 (-662 *3 *4 *5)))) (-3428 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-2845 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-2429 (*1 *2 *2) (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-3425 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-618 *6)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3427 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-2427 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-535)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) (-5 *1 (-664 *3 *5 *6 *2)) (-4 *2 (-662 *3 *5 *6)))) (-2426 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-535)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) (-5 *1 (-664 *3 *5 *6 *2)) (-4 *2 (-662 *3 *5 *6)))) (-2425 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-535)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *1 (-664 *4 *5 *6 *2)) (-4 *2 (-662 *4 *5 *6)))) (-3669 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-662 *2 *4 *5)))) (-3670 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-662 *2 *4 *5)))))
+(-10 -7 (-15 -3670 (|#1| |#4|)) (-15 -3669 (|#1| |#4|)) (-15 -2425 (|#4| |#4| (-535) (-535))) (-15 -2426 (|#4| |#4| |#1| (-535) (-535))) (-15 -2427 (|#4| |#4| |#1| (-535) (-535))) (IF (|has| |#1| (-542)) (PROGN (-15 -3427 ((-747) |#4|)) (-15 -3426 ((-747) |#4|)) (-15 -3425 ((-618 |#3|) |#4|)) (-15 -2428 (|#4| |#4|)) (-15 -2429 ((-3 |#4| "failed") |#4|)) (-15 -2845 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -3428 (|#4| |#4|)) (-15 -2462 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3935 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4181 (($ (-747) (-747)) 47)) (-2422 (($ $ $) NIL)) (-3756 (($ (-1224 |#1|)) NIL) (($ $) NIL)) (-3439 (((-112) $) NIL)) (-2421 (($ $ (-535) (-535)) 12)) (-2420 (($ $ (-535) (-535)) NIL)) (-2419 (($ $ (-535) (-535) (-535) (-535)) NIL)) (-2424 (($ $) NIL)) (-3441 (((-112) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-2418 (($ $ (-535) (-535) $) NIL)) (-4130 ((|#1| $ (-535) (-535) |#1|) NIL) (($ $ (-618 (-535)) (-618 (-535)) $) NIL)) (-1302 (($ $ (-535) (-1224 |#1|)) NIL)) (-1301 (($ $ (-535) (-1224 |#1|)) NIL)) (-3675 (($ (-747) |#1|) 22)) (-3879 (($) NIL T CONST)) (-3428 (($ $) 31 (|has| |#1| (-300)))) (-3430 (((-1224 |#1|) $ (-535)) NIL)) (-3427 (((-747) $) 33 (|has| |#1| (-542)))) (-1632 ((|#1| $ (-535) (-535) |#1|) 51)) (-3431 ((|#1| $ (-535) (-535)) NIL)) (-2063 (((-618 |#1|) $) NIL)) (-3426 (((-747) $) 35 (|has| |#1| (-542)))) (-3425 (((-618 (-1224 |#1|)) $) 38 (|has| |#1| (-542)))) (-3433 (((-747) $) 20)) (-3960 (($ (-747) (-747) |#1|) 16)) (-3432 (((-747) $) 21)) (-4065 (((-112) $ (-747)) NIL)) (-3669 ((|#1| $) 29 (|has| |#1| (-6 (-4338 #1="*"))))) (-3437 (((-535) $) 9)) (-3435 (((-535) $) 10)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3436 (((-535) $) 11)) (-3434 (((-535) $) 48)) (-3442 (($ (-618 (-618 |#1|))) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3939 (((-618 (-618 |#1|)) $) 60)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3935 (((-3 $ #2="failed") $) 45 (|has| |#1| (-356)))) (-2423 (($ $ $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2297 (($ $ |#1|) NIL)) (-3803 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-542)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) (-535)) NIL) ((|#1| $ (-535) (-535) |#1|) NIL) (($ $ (-618 (-535)) (-618 (-535))) NIL)) (-3674 (($ (-618 |#1|)) NIL) (($ (-618 $)) NIL) (($ (-1224 |#1|)) 52)) (-3440 (((-112) $) NIL)) (-3670 ((|#1| $) 27 (|has| |#1| (-6 (-4338 #1#))))) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4313 (((-524) $) 64 (|has| |#1| (-594 (-524))))) (-3429 (((-1224 |#1|) $ (-535)) NIL)) (-4300 (($ (-1224 |#1|)) NIL) (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3438 (((-112) $) NIL)) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $ $) NIL) (($ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) 23) (($ $ (-535)) 46 (|has| |#1| (-356)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-535) $) NIL) (((-1224 |#1|) $ (-1224 |#1|)) NIL) (((-1224 |#1|) (-1224 |#1|) $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-665 |#1|) (-13 (-662 |#1| (-1224 |#1|) (-1224 |#1|)) (-10 -8 (-15 -3674 ($ (-1224 |#1|))) (IF (|has| |#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3935 ((-3 $ "failed") $)) |%noBranch|))) (-1018)) (T -665))
+((-3935 (*1 *1 *1) (|partial| -12 (-5 *1 (-665 *2)) (-4 *2 (-356)) (-4 *2 (-1018)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1018)) (-5 *1 (-665 *3)))))
+(-13 (-662 |#1| (-1224 |#1|) (-1224 |#1|)) (-10 -8 (-15 -3674 ($ (-1224 |#1|))) (IF (|has| |#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3935 ((-3 $ "failed") $)) |%noBranch|)))
+((-2435 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|)) 25)) (-2434 (((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|) 21)) (-2436 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-747)) 26)) (-2431 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|)) 14)) (-2432 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|)) 18) (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 16)) (-2433 (((-665 |#1|) (-665 |#1|) |#1| (-665 |#1|)) 20)) (-2430 (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 12)) (** (((-665 |#1|) (-665 |#1|) (-747)) 30)))
+(((-666 |#1|) (-10 -7 (-15 -2430 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2431 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2432 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2432 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2433 ((-665 |#1|) (-665 |#1|) |#1| (-665 |#1|))) (-15 -2434 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2435 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2436 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-747))) (-15 ** ((-665 |#1|) (-665 |#1|) (-747)))) (-1018)) (T -666))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-666 *4)))) (-2436 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-666 *4)))) (-2435 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2434 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2433 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2432 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2432 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2431 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2430 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(-10 -7 (-15 -2430 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2431 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2432 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2432 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2433 ((-665 |#1|) (-665 |#1|) |#1| (-665 |#1|))) (-15 -2434 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2435 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2436 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-747))) (-15 ** ((-665 |#1|) (-665 |#1|) (-747))))
+((-2437 (($) 8 T CONST)) (-4300 (((-835) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3912 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2437)) 16)) (-3918 ((|#1| $) 11)))
+(((-667 |#1|) (-13 (-1220) (-593 (-835)) (-10 -8 (-15 -3912 ((-112) $ (|[\|\|]| |#1|))) (-15 -3912 ((-112) $ (|[\|\|]| -2437))) (-15 -4300 ($ |#1|)) (-15 -4300 (|#1| $)) (-15 -3918 (|#1| $)) (-15 -2437 ($) -4294))) (-593 (-835))) (T -667))
+((-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-593 (-835))) (-5 *2 (-112)) (-5 *1 (-667 *4)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2437)) (-5 *2 (-112)) (-5 *1 (-667 *4)) (-4 *4 (-593 (-835))))) (-4300 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835))))) (-4300 (*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835))))) (-3918 (*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835))))) (-2437 (*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835))))))
+(-13 (-1220) (-593 (-835)) (-10 -8 (-15 -3912 ((-112) $ (|[\|\|]| |#1|))) (-15 -3912 ((-112) $ (|[\|\|]| -2437))) (-15 -4300 ($ |#1|)) (-15 -4300 (|#1| $)) (-15 -3918 (|#1| $)) (-15 -2437 ($) -4294)))
+((-2440 ((|#2| |#2| |#4|) 25)) (-2443 (((-665 |#2|) |#3| |#4|) 31)) (-2441 (((-665 |#2|) |#2| |#4|) 30)) (-2438 (((-1224 |#2|) |#2| |#4|) 16)) (-2439 ((|#2| |#3| |#4|) 24)) (-2444 (((-665 |#2|) |#3| |#4| (-747) (-747)) 38)) (-2442 (((-665 |#2|) |#2| |#4| (-747)) 37)))
+(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2438 ((-1224 |#2|) |#2| |#4|)) (-15 -2439 (|#2| |#3| |#4|)) (-15 -2440 (|#2| |#2| |#4|)) (-15 -2441 ((-665 |#2|) |#2| |#4|)) (-15 -2442 ((-665 |#2|) |#2| |#4| (-747))) (-15 -2443 ((-665 |#2|) |#3| |#4|)) (-15 -2444 ((-665 |#2|) |#3| |#4| (-747) (-747)))) (-1067) (-871 |#1|) (-365 |#2|) (-13 (-365 |#1|) (-10 -7 (-6 -4336)))) (T -668))
+((-2444 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-747)) (-4 *6 (-1067)) (-4 *7 (-871 *6)) (-5 *2 (-665 *7)) (-5 *1 (-668 *6 *7 *3 *4)) (-4 *3 (-365 *7)) (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4336)))))) (-2443 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *6 (-871 *5)) (-5 *2 (-665 *6)) (-5 *1 (-668 *5 *6 *3 *4)) (-4 *3 (-365 *6)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336)))))) (-2442 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-1067)) (-4 *3 (-871 *6)) (-5 *2 (-665 *3)) (-5 *1 (-668 *6 *3 *7 *4)) (-4 *7 (-365 *3)) (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4336)))))) (-2441 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *3 (-871 *5)) (-5 *2 (-665 *3)) (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-365 *3)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336)))))) (-2440 (*1 *2 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-871 *4)) (-5 *1 (-668 *4 *2 *5 *3)) (-4 *5 (-365 *2)) (-4 *3 (-13 (-365 *4) (-10 -7 (-6 -4336)))))) (-2439 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *2 (-871 *5)) (-5 *1 (-668 *5 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336)))))) (-2438 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *3 (-871 *5)) (-5 *2 (-1224 *3)) (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-365 *3)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336)))))))
+(-10 -7 (-15 -2438 ((-1224 |#2|) |#2| |#4|)) (-15 -2439 (|#2| |#3| |#4|)) (-15 -2440 (|#2| |#2| |#4|)) (-15 -2441 ((-665 |#2|) |#2| |#4|)) (-15 -2442 ((-665 |#2|) |#2| |#4| (-747))) (-15 -2443 ((-665 |#2|) |#3| |#4|)) (-15 -2444 ((-665 |#2|) |#3| |#4| (-747) (-747))))
+((-4084 (((-2 (|:| |num| (-665 |#1|)) (|:| |den| |#1|)) (-665 |#2|)) 20)) (-4082 ((|#1| (-665 |#2|)) 9)) (-4083 (((-665 |#1|) (-665 |#2|)) 18)))
+(((-669 |#1| |#2|) (-10 -7 (-15 -4082 (|#1| (-665 |#2|))) (-15 -4083 ((-665 |#1|) (-665 |#2|))) (-15 -4084 ((-2 (|:| |num| (-665 |#1|)) (|:| |den| |#1|)) (-665 |#2|)))) (-542) (-962 |#1|)) (T -669))
+((-4084 (*1 *2 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-962 *4)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |num| (-665 *4)) (|:| |den| *4))) (-5 *1 (-669 *4 *5)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-962 *4)) (-4 *4 (-542)) (-5 *2 (-665 *4)) (-5 *1 (-669 *4 *5)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-669 *2 *4)))))
+(-10 -7 (-15 -4082 (|#1| (-665 |#2|))) (-15 -4083 ((-665 |#1|) (-665 |#2|))) (-15 -4084 ((-2 (|:| |num| (-665 |#1|)) (|:| |den| |#1|)) (-665 |#2|))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1896 (((-665 (-675))) NIL) (((-665 (-675)) (-1224 $)) NIL)) (-3672 (((-675) $) NIL)) (-3829 (($ $) NIL (|has| (-675) (-1164)))) (-3985 (($ $) NIL (|has| (-675) (-1164)))) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-675) (-343)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-881))))) (-4117 (($ $) NIL (-3874 (-12 (|has| (-675) (-300)) (|has| (-675) (-881))) (|has| (-675) (-356))))) (-4312 (((-398 $) $) NIL (-3874 (-12 (|has| (-675) (-300)) (|has| (-675) (-881))) (|has| (-675) (-356))))) (-3358 (($ $) NIL (-12 (|has| (-675) (-973)) (|has| (-675) (-1164))))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-881))))) (-1700 (((-112) $ $) NIL (|has| (-675) (-300)))) (-3454 (((-747)) NIL (|has| (-675) (-361)))) (-3827 (($ $) NIL (|has| (-675) (-1164)))) (-3984 (($ $) NIL (|has| (-675) (-1164)))) (-3831 (($ $) NIL (|has| (-675) (-1164)))) (-3983 (($ $) NIL (|has| (-675) (-1164)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #2="failed") $) NIL) (((-3 (-675) #2#) $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-675) (-1009 (-400 (-535)))))) (-3490 (((-535) $) NIL) (((-675) $) NIL) (((-400 (-535)) $) NIL (|has| (-675) (-1009 (-400 (-535)))))) (-1906 (($ (-1224 (-675))) NIL) (($ (-1224 (-675)) (-1224 $)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-675) (-343)))) (-2883 (($ $ $) NIL (|has| (-675) (-300)))) (-1895 (((-665 (-675)) $) NIL) (((-665 (-675)) $ (-1224 $)) NIL)) (-2353 (((-665 (-675)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-675))) (|:| |vec| (-1224 (-675)))) (-665 $) (-1224 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-675) (-617 (-535)))) (((-665 (-535)) (-665 $)) NIL (|has| (-675) (-617 (-535))))) (-4185 (((-3 $ "failed") (-400 (-1136 (-675)))) NIL (|has| (-675) (-356))) (($ (-1136 (-675))) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3989 (((-675) $) 29)) (-3345 (((-3 (-400 (-535)) #3="failed") $) NIL (|has| (-675) (-534)))) (-3344 (((-112) $) NIL (|has| (-675) (-534)))) (-3343 (((-400 (-535)) $) NIL (|has| (-675) (-534)))) (-3427 (((-890)) NIL)) (-3315 (($) NIL (|has| (-675) (-361)))) (-2882 (($ $ $) NIL (|has| (-675) (-300)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| (-675) (-300)))) (-3154 (($) NIL (|has| (-675) (-343)))) (-1791 (((-112) $) NIL (|has| (-675) (-343)))) (-1881 (($ $) NIL (|has| (-675) (-343))) (($ $ (-747)) NIL (|has| (-675) (-343)))) (-4069 (((-112) $) NIL (-3874 (-12 (|has| (-675) (-300)) (|has| (-675) (-881))) (|has| (-675) (-356))))) (-1419 (((-2 (|:| |r| (-675)) (|:| |phi| (-675))) $) NIL (-12 (|has| (-675) (-1027)) (|has| (-675) (-1164))))) (-3973 (($) NIL (|has| (-675) (-1164)))) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-675) (-857 (-371)))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-675) (-857 (-535))))) (-4114 (((-808 (-890)) $) NIL (|has| (-675) (-343))) (((-890) $) NIL (|has| (-675) (-343)))) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (-12 (|has| (-675) (-973)) (|has| (-675) (-1164))))) (-3450 (((-675) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| (-675) (-343)))) (-1697 (((-3 (-618 $) #4="failed") (-618 $) $) NIL (|has| (-675) (-300)))) (-2125 (((-1136 (-675)) $) NIL (|has| (-675) (-356)))) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4301 (($ (-1 (-675) (-675)) $) NIL)) (-2121 (((-890) $) NIL (|has| (-675) (-361)))) (-4285 (($ $) NIL (|has| (-675) (-1164)))) (-3401 (((-1136 (-675)) $) NIL)) (-2008 (($ (-618 $)) NIL (|has| (-675) (-300))) (($ $ $) NIL (|has| (-675) (-300)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| (-675) (-356)))) (-3787 (($) NIL (|has| (-675) (-343)) CONST)) (-2483 (($ (-890)) NIL (|has| (-675) (-361)))) (-1421 (($) NIL)) (-3990 (((-675) $) 31)) (-3577 (((-1086) $) NIL)) (-2492 (($) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| (-675) (-300)))) (-3478 (($ (-618 $)) NIL (|has| (-675) (-300))) (($ $ $) NIL (|has| (-675) (-300)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-675) (-343)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-881))))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-881))))) (-4075 (((-398 $) $) NIL (-3874 (-12 (|has| (-675) (-300)) (|has| (-675) (-881))) (|has| (-675) (-356))))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-675) (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| (-675) (-300)))) (-3803 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-675)) NIL (|has| (-675) (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| (-675) (-300)))) (-4286 (($ $) NIL (|has| (-675) (-1164)))) (-4110 (($ $ (-1142) (-675)) NIL (|has| (-675) (-505 (-1142) (-675)))) (($ $ (-618 (-1142)) (-618 (-675))) NIL (|has| (-675) (-505 (-1142) (-675)))) (($ $ (-618 (-286 (-675)))) NIL (|has| (-675) (-302 (-675)))) (($ $ (-286 (-675))) NIL (|has| (-675) (-302 (-675)))) (($ $ (-675) (-675)) NIL (|has| (-675) (-302 (-675)))) (($ $ (-618 (-675)) (-618 (-675))) NIL (|has| (-675) (-302 (-675))))) (-1699 (((-747) $) NIL (|has| (-675) (-300)))) (-4142 (($ $ (-675)) NIL (|has| (-675) (-279 (-675) (-675))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| (-675) (-300)))) (-4100 (((-675)) NIL) (((-675) (-1224 $)) NIL)) (-1882 (((-3 (-747) "failed") $ $) NIL (|has| (-675) (-343))) (((-747) $) NIL (|has| (-675) (-343)))) (-4153 (($ $ (-1 (-675) (-675))) NIL) (($ $ (-1 (-675) (-675)) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-1142)) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-747)) NIL (|has| (-675) (-227))) (($ $) NIL (|has| (-675) (-227)))) (-2491 (((-665 (-675)) (-1224 $) (-1 (-675) (-675))) NIL (|has| (-675) (-356)))) (-3519 (((-1136 (-675))) NIL)) (-3832 (($ $) NIL (|has| (-675) (-1164)))) (-3982 (($ $) NIL (|has| (-675) (-1164)))) (-1785 (($) NIL (|has| (-675) (-343)))) (-3830 (($ $) NIL (|has| (-675) (-1164)))) (-3981 (($ $) NIL (|has| (-675) (-1164)))) (-3828 (($ $) NIL (|has| (-675) (-1164)))) (-3980 (($ $) NIL (|has| (-675) (-1164)))) (-3558 (((-665 (-675)) (-1224 $)) NIL) (((-1224 (-675)) $) NIL) (((-665 (-675)) (-1224 $) (-1224 $)) NIL) (((-1224 (-675)) $ (-1224 $)) NIL)) (-4313 (((-524) $) NIL (|has| (-675) (-594 (-524)))) (((-166 (-219)) $) NIL (|has| (-675) (-991))) (((-166 (-371)) $) NIL (|has| (-675) (-991))) (((-861 (-371)) $) NIL (|has| (-675) (-594 (-861 (-371))))) (((-861 (-535)) $) NIL (|has| (-675) (-594 (-861 (-535))))) (($ (-1136 (-675))) NIL) (((-1136 (-675)) $) NIL) (($ (-1224 (-675))) NIL) (((-1224 (-675)) $) NIL)) (-3330 (($ $) NIL)) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-3874 (-12 (|has| (-675) (-300)) (|has| $ (-143)) (|has| (-675) (-881))) (|has| (-675) (-343))))) (-1420 (($ (-675) (-675)) 12)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-535)) NIL) (($ (-675)) NIL) (($ (-166 (-371))) 13) (($ (-166 (-535))) 19) (($ (-166 (-675))) 28) (($ (-166 (-677))) 25) (((-166 (-371)) $) 33) (($ (-400 (-535))) NIL (-3874 (|has| (-675) (-356)) (|has| (-675) (-1009 (-400 (-535))))))) (-3023 (($ $) NIL (|has| (-675) (-343))) (((-3 $ #1#) $) NIL (-3874 (-12 (|has| (-675) (-300)) (|has| $ (-143)) (|has| (-675) (-881))) (|has| (-675) (-143))))) (-2689 (((-1136 (-675)) $) NIL)) (-3444 (((-747)) NIL)) (-2123 (((-1224 $)) NIL)) (-3835 (($ $) NIL (|has| (-675) (-1164)))) (-3823 (($ $) NIL (|has| (-675) (-1164)))) (-2170 (((-112) $ $) NIL)) (-3833 (($ $) NIL (|has| (-675) (-1164)))) (-3821 (($ $) NIL (|has| (-675) (-1164)))) (-3837 (($ $) NIL (|has| (-675) (-1164)))) (-3825 (($ $) NIL (|has| (-675) (-1164)))) (-2309 (((-675) $) NIL (|has| (-675) (-1164)))) (-3838 (($ $) NIL (|has| (-675) (-1164)))) (-3826 (($ $) NIL (|has| (-675) (-1164)))) (-3836 (($ $) NIL (|has| (-675) (-1164)))) (-3824 (($ $) NIL (|has| (-675) (-1164)))) (-3834 (($ $) NIL (|has| (-675) (-1164)))) (-3822 (($ $) NIL (|has| (-675) (-1164)))) (-3725 (($ $) NIL (|has| (-675) (-1027)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-1 (-675) (-675))) NIL) (($ $ (-1 (-675) (-675)) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-1142)) NIL (|has| (-675) (-871 (-1142)))) (($ $ (-747)) NIL (|has| (-675) (-227))) (($ $) NIL (|has| (-675) (-227)))) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL (|has| (-675) (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ $) NIL (|has| (-675) (-1164))) (($ $ (-400 (-535))) NIL (-12 (|has| (-675) (-973)) (|has| (-675) (-1164)))) (($ $ (-535)) NIL (|has| (-675) (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ (-675) $) NIL) (($ $ (-675)) NIL) (($ (-400 (-535)) $) NIL (|has| (-675) (-356))) (($ $ (-400 (-535))) NIL (|has| (-675) (-356)))))
+(((-670) (-13 (-380) (-164 (-675)) (-10 -8 (-15 -4300 ($ (-166 (-371)))) (-15 -4300 ($ (-166 (-535)))) (-15 -4300 ($ (-166 (-675)))) (-15 -4300 ($ (-166 (-677)))) (-15 -4300 ((-166 (-371)) $))))) (T -670))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-670)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-166 (-535))) (-5 *1 (-670)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-166 (-675))) (-5 *1 (-670)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-166 (-677))) (-5 *1 (-670)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-670)))))
+(-13 (-380) (-164 (-675)) (-10 -8 (-15 -4300 ($ (-166 (-371)))) (-15 -4300 ($ (-166 (-535)))) (-15 -4300 ($ (-166 (-675)))) (-15 -4300 ($ (-166 (-677)))) (-15 -4300 ((-166 (-371)) $))))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2446 (($ $) 62)) (-1394 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40) (($ |#1| $ (-747)) 63)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2445 (((-618 (-2 (|:| -2184 |#1|) (|:| -2064 (-747)))) $) 61)) (-1518 (($) 49) (($ (-618 |#1|)) 48)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 50)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-671 |#1|) (-138) (-1067)) (T -671))
+((-3953 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-671 *2)) (-4 *2 (-1067)))) (-2446 (*1 *1 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1067)))) (-2445 (*1 *2 *1) (-12 (-4 *1 (-671 *3)) (-4 *3 (-1067)) (-5 *2 (-618 (-2 (|:| -2184 *3) (|:| -2064 (-747))))))))
+(-13 (-229 |t#1|) (-10 -8 (-15 -3953 ($ |t#1| $ (-747))) (-15 -2446 ($ $)) (-15 -2445 ((-618 (-2 (|:| -2184 |t#1|) (|:| -2064 (-747)))) $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-2449 (((-618 |#1|) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))) (-535)) 47)) (-2447 ((|#1| |#1| (-535)) 46)) (-3478 ((|#1| |#1| |#1| (-535)) 36)) (-4075 (((-618 |#1|) |#1| (-535)) 39)) (-2450 ((|#1| |#1| (-535) |#1| (-535)) 32)) (-2448 (((-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))) |#1| (-535)) 45)))
+(((-672 |#1|) (-10 -7 (-15 -3478 (|#1| |#1| |#1| (-535))) (-15 -2447 (|#1| |#1| (-535))) (-15 -4075 ((-618 |#1|) |#1| (-535))) (-15 -2448 ((-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))) |#1| (-535))) (-15 -2449 ((-618 |#1|) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))) (-535))) (-15 -2450 (|#1| |#1| (-535) |#1| (-535)))) (-1200 (-535))) (T -672))
+((-2450 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-672 *2)) (-4 *2 (-1200 *3)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-2 (|:| -4075 *5) (|:| -4290 (-535))))) (-5 *4 (-535)) (-4 *5 (-1200 *4)) (-5 *2 (-618 *5)) (-5 *1 (-672 *5)))) (-2448 (*1 *2 *3 *4) (-12 (-5 *4 (-535)) (-5 *2 (-618 (-2 (|:| -4075 *3) (|:| -4290 *4)))) (-5 *1 (-672 *3)) (-4 *3 (-1200 *4)))) (-4075 (*1 *2 *3 *4) (-12 (-5 *4 (-535)) (-5 *2 (-618 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1200 *4)))) (-2447 (*1 *2 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-672 *2)) (-4 *2 (-1200 *3)))) (-3478 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-672 *2)) (-4 *2 (-1200 *3)))))
+(-10 -7 (-15 -3478 (|#1| |#1| |#1| (-535))) (-15 -2447 (|#1| |#1| (-535))) (-15 -4075 ((-618 |#1|) |#1| (-535))) (-15 -2448 ((-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))) |#1| (-535))) (-15 -2449 ((-618 |#1|) (-618 (-2 (|:| -4075 |#1|) (|:| -4290 (-535)))) (-535))) (-15 -2450 (|#1| |#1| (-535) |#1| (-535))))
+((-2454 (((-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 17)) (-2451 (((-1099 (-219)) (-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-618 (-254))) 40) (((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-618 (-254))) 42) (((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined") (-1055 (-219)) (-1055 (-219)) (-618 (-254))) 44)) (-2453 (((-1099 (-219)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-618 (-254))) NIL)) (-2452 (((-1099 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1#) (-1055 (-219)) (-1055 (-219)) (-618 (-254))) 45)))
+(((-673) (-10 -7 (-15 -2451 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined") (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2451 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2451 ((-1099 (-219)) (-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2452 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1#) (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2453 ((-1099 (-219)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2454 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -673))
+((-2454 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1 (-219) (-219) (-219) (-219))) (-5 *2 (-1 (-914 (-219)) (-219) (-219))) (-5 *1 (-673)))) (-2453 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219))) (-5 *6 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))) (-2452 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined")) (-5 *5 (-1055 (-219))) (-5 *6 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))) (-2451 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-219))) (-5 *5 (-618 (-254))) (-5 *1 (-673)))) (-2451 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-219))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))) (-2451 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) #1#)) (-5 *5 (-1055 (-219))) (-5 *6 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))))
+(-10 -7 (-15 -2451 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined") (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2451 ((-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2451 ((-1099 (-219)) (-1099 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2452 ((-1099 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1#) (-1055 (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2453 ((-1099 (-219)) (-307 (-535)) (-307 (-535)) (-307 (-535)) (-1 (-219) (-219)) (-1055 (-219)) (-618 (-254)))) (-15 -2454 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))
+((-4075 (((-398 (-1136 |#4|)) (-1136 |#4|)) 73) (((-398 |#4|) |#4|) 221)))
+(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 |#4|) |#4|)) (-15 -4075 ((-398 (-1136 |#4|)) (-1136 |#4|)))) (-823) (-769) (-343) (-921 |#3| |#2| |#1|)) (T -674))
+((-4075 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-343)) (-4 *7 (-921 *6 *5 *4)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-921 *6 *5 *4)))))
+(-10 -7 (-15 -4075 ((-398 |#4|) |#4|)) (-15 -4075 ((-398 (-1136 |#4|)) (-1136 |#4|))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 84)) (-3447 (((-535) $) 30)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4113 (($ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3358 (($ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL)) (-3879 (($) NIL T CONST)) (-3445 (($ $) NIL)) (-3491 (((-3 (-535) #1="failed") $) 73) (((-3 (-400 (-535)) #1#) $) 26) (((-3 (-371) #1#) $) 70)) (-3490 (((-535) $) 75) (((-400 (-535)) $) 67) (((-371) $) 68)) (-2883 (($ $ $) 96)) (-3804 (((-3 $ "failed") $) 87)) (-2882 (($ $ $) 95)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2457 (((-890)) 77) (((-890) (-890)) 76)) (-3520 (((-112) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL)) (-4114 (((-535) $) NIL)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL)) (-3450 (($ $) NIL)) (-3521 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL)) (-2455 (((-535) (-535)) 81) (((-535)) 82)) (-3660 (($ $ $) NIL) (($) NIL (-12 (-3659 (|has| $ (-6 -4319))) (-3659 (|has| $ (-6 -4327)))))) (-2456 (((-535) (-535)) 79) (((-535)) 80)) (-3661 (($ $ $) NIL) (($) NIL (-12 (-3659 (|has| $ (-6 -4319))) (-3659 (|has| $ (-6 -4327)))))) (-2458 (((-535) $) 16)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 91)) (-1884 (((-890) (-535)) NIL (|has| $ (-6 -4327)))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL)) (-3448 (($ $) NIL)) (-3588 (($ (-535) (-535)) NIL) (($ (-535) (-535) (-890)) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) 92)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2484 (((-535) $) 22)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 94)) (-2932 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4327)))) (-1883 (((-890) (-535)) NIL (|has| $ (-6 -4327)))) (-4313 (((-371) $) NIL) (((-219) $) NIL) (((-861 (-371)) $) NIL)) (-4300 (((-835) $) 52) (($ (-535)) 63) (($ $) NIL) (($ (-400 (-535))) 66) (($ (-535)) 63) (($ (-400 (-535))) 66) (($ (-371)) 60) (((-371) $) 50) (($ (-677)) 55)) (-3444 (((-747)) 103)) (-3268 (($ (-535) (-535) (-890)) 44)) (-3449 (($ $) NIL)) (-1885 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4327)))) (-3015 (((-890)) 35) (((-890) (-890)) 78)) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL)) (-2979 (($) 32 T CONST)) (-2985 (($) 17 T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 83)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 101)) (-4291 (($ $ $) 65)) (-4180 (($ $) 99) (($ $ $) 100)) (-4182 (($ $ $) 98)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL) (($ $ (-400 (-535))) 90)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 97) (($ $ $) 88) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL)))
+(((-675) (-13 (-397) (-380) (-356) (-1009 (-371)) (-1009 (-400 (-535))) (-145) (-10 -8 (-15 -2457 ((-890) (-890))) (-15 -2457 ((-890))) (-15 -3015 ((-890) (-890))) (-15 -2456 ((-535) (-535))) (-15 -2456 ((-535))) (-15 -2455 ((-535) (-535))) (-15 -2455 ((-535))) (-15 -4300 ((-371) $)) (-15 -4300 ($ (-677))) (-15 -2458 ((-535) $)) (-15 -2484 ((-535) $)) (-15 -3268 ($ (-535) (-535) (-890)))))) (T -675))
+((-2484 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) (-2457 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-2457 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) (-2456 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) (-2455 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) (-2455 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-371)) (-5 *1 (-675)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-677)) (-5 *1 (-675)))) (-3268 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-535)) (-5 *3 (-890)) (-5 *1 (-675)))))
+(-13 (-397) (-380) (-356) (-1009 (-371)) (-1009 (-400 (-535))) (-145) (-10 -8 (-15 -2457 ((-890) (-890))) (-15 -2457 ((-890))) (-15 -3015 ((-890) (-890))) (-15 -2456 ((-535) (-535))) (-15 -2456 ((-535))) (-15 -2455 ((-535) (-535))) (-15 -2455 ((-535))) (-15 -4300 ((-371) $)) (-15 -4300 ($ (-677))) (-15 -2458 ((-535) $)) (-15 -2484 ((-535) $)) (-15 -3268 ($ (-535) (-535) (-890)))))
+((-2461 (((-665 |#1|) (-665 |#1|) |#1| |#1|) 65)) (-3428 (((-665 |#1|) (-665 |#1|) |#1|) 48)) (-2460 (((-665 |#1|) (-665 |#1|) |#1|) 66)) (-2459 (((-665 |#1|) (-665 |#1|)) 49)) (-2462 (((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|) 64)))
+(((-676 |#1|) (-10 -7 (-15 -2459 ((-665 |#1|) (-665 |#1|))) (-15 -3428 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -2460 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -2461 ((-665 |#1|) (-665 |#1|) |#1| |#1|)) (-15 -2462 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|))) (-300)) (T -676))
+((-2462 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-676 *3)) (-4 *3 (-300)))) (-2461 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) (-2460 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) (-3428 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))))
+(-10 -7 (-15 -2459 ((-665 |#1|) (-665 |#1|))) (-15 -3428 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -2460 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -2461 ((-665 |#1|) (-665 |#1|) |#1| |#1|)) (-15 -2462 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-2155 (($ $ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-2150 (($ $ $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL)) (-2681 (($ $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) "failed") $) 27)) (-3490 (((-535) $) 25)) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3345 (((-3 (-400 (-535)) "failed") $) NIL)) (-3344 (((-112) $) NIL)) (-3343 (((-400 (-535)) $) NIL)) (-3315 (($ $) NIL) (($) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2148 (($ $ $ $) NIL)) (-2156 (($ $ $) NIL)) (-3520 (((-112) $) NIL)) (-1413 (($ $ $) NIL)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL)) (-2493 (((-112) $) NIL)) (-2994 (((-112) $) NIL)) (-3786 (((-3 $ "failed") $) NIL)) (-3521 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2149 (($ $ $ $) NIL)) (-3660 (($ $ $) NIL)) (-2463 (((-890) (-890)) 10) (((-890)) 9)) (-3661 (($ $ $) NIL)) (-2152 (($ $) NIL)) (-4176 (($ $) NIL)) (-2008 (($ (-618 $)) NIL) (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2147 (($ $ $) NIL)) (-3787 (($) NIL T CONST)) (-2154 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ (-618 $)) NIL) (($ $ $) NIL)) (-1411 (($ $) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2995 (((-112) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL) (($ $ (-747)) NIL)) (-2153 (($ $) NIL)) (-3742 (($ $) NIL)) (-4313 (((-219) $) NIL) (((-371) $) NIL) (((-861 (-535)) $) NIL) (((-524) $) NIL) (((-535) $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) 24) (($ $) NIL) (($ (-535)) 24) (((-307 $) (-307 (-535))) 18)) (-3444 (((-747)) NIL)) (-2157 (((-112) $ $) NIL)) (-3420 (($ $ $) NIL)) (-3015 (($) NIL)) (-2170 (((-112) $ $) NIL)) (-2151 (($ $ $ $) NIL)) (-3725 (($ $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL) (($ $ (-747)) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL)))
+(((-677) (-13 (-380) (-534) (-10 -8 (-15 -2463 ((-890) (-890))) (-15 -2463 ((-890))) (-15 -4300 ((-307 $) (-307 (-535))))))) (T -677))
+((-2463 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-677)))) (-2463 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-677)))) (-4300 (*1 *2 *3) (-12 (-5 *3 (-307 (-535))) (-5 *2 (-307 (-677))) (-5 *1 (-677)))))
+(-13 (-380) (-534) (-10 -8 (-15 -2463 ((-890) (-890))) (-15 -2463 ((-890))) (-15 -4300 ((-307 $) (-307 (-535))))))
+((-2469 (((-1 |#4| |#2| |#3|) |#1| (-1142) (-1142)) 19)) (-2464 (((-1 |#4| |#2| |#3|) (-1142)) 12)))
+(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2464 ((-1 |#4| |#2| |#3|) (-1142))) (-15 -2469 ((-1 |#4| |#2| |#3|) |#1| (-1142) (-1142)))) (-594 (-524)) (-1178) (-1178) (-1178)) (T -678))
+((-2469 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *3 *5 *6 *7)) (-4 *3 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)) (-4 *7 (-1178)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *4 *5 *6 *7)) (-4 *4 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)) (-4 *7 (-1178)))))
+(-10 -7 (-15 -2464 ((-1 |#4| |#2| |#3|) (-1142))) (-15 -2469 ((-1 |#4| |#2| |#3|) |#1| (-1142) (-1142))))
+((-2887 (((-112) $ $) NIL)) (-1364 (((-1230) $ (-747)) 14)) (-3761 (((-747) $) 12)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 25)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 24)))
+(((-679 |#1|) (-13 (-131) (-593 |#1|) (-10 -8 (-15 -4300 ($ |#1|)))) (-1067)) (T -679))
+((-4300 (*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1067)))))
+(-13 (-131) (-593 |#1|) (-10 -8 (-15 -4300 ($ |#1|))))
+((-2465 (((-1 (-219) (-219) (-219)) |#1| (-1142) (-1142)) 34) (((-1 (-219) (-219)) |#1| (-1142)) 39)))
+(((-680 |#1|) (-10 -7 (-15 -2465 ((-1 (-219) (-219)) |#1| (-1142))) (-15 -2465 ((-1 (-219) (-219) (-219)) |#1| (-1142) (-1142)))) (-594 (-524))) (T -680))
+((-2465 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-680 *3)) (-4 *3 (-594 (-524))))) (-2465 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-680 *3)) (-4 *3 (-594 (-524))))))
+(-10 -7 (-15 -2465 ((-1 (-219) (-219)) |#1| (-1142))) (-15 -2465 ((-1 (-219) (-219) (-219)) |#1| (-1142) (-1142))))
+((-2466 (((-1142) |#1| (-1142) (-618 (-1142))) 9) (((-1142) |#1| (-1142) (-1142) (-1142)) 12) (((-1142) |#1| (-1142) (-1142)) 11) (((-1142) |#1| (-1142)) 10)))
+(((-681 |#1|) (-10 -7 (-15 -2466 ((-1142) |#1| (-1142))) (-15 -2466 ((-1142) |#1| (-1142) (-1142))) (-15 -2466 ((-1142) |#1| (-1142) (-1142) (-1142))) (-15 -2466 ((-1142) |#1| (-1142) (-618 (-1142))))) (-594 (-524))) (T -681))
+((-2466 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-618 (-1142))) (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524))))) (-2466 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524))))) (-2466 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524))))) (-2466 (*1 *2 *3 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524))))))
+(-10 -7 (-15 -2466 ((-1142) |#1| (-1142))) (-15 -2466 ((-1142) |#1| (-1142) (-1142))) (-15 -2466 ((-1142) |#1| (-1142) (-1142) (-1142))) (-15 -2466 ((-1142) |#1| (-1142) (-618 (-1142)))))
+((-2467 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-682 |#1| |#2|) (-10 -7 (-15 -2467 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1178) (-1178)) (T -682))
+((-2467 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-682 *3 *4)) (-4 *3 (-1178)) (-4 *4 (-1178)))))
+(-10 -7 (-15 -2467 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2468 (((-1 |#3| |#2|) (-1142)) 11)) (-2469 (((-1 |#3| |#2|) |#1| (-1142)) 21)))
+(((-683 |#1| |#2| |#3|) (-10 -7 (-15 -2468 ((-1 |#3| |#2|) (-1142))) (-15 -2469 ((-1 |#3| |#2|) |#1| (-1142)))) (-594 (-524)) (-1178) (-1178)) (T -683))
+((-2469 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *3 *5 *6)) (-4 *3 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *4 *5 *6)) (-4 *4 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)))))
+(-10 -7 (-15 -2468 ((-1 |#3| |#2|) (-1142))) (-15 -2469 ((-1 |#3| |#2|) |#1| (-1142))))
+((-2472 (((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 (-1136 |#4|)) (-618 |#3|) (-618 |#4|) (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| |#4|)))) (-618 (-747)) (-1224 (-618 (-1136 |#3|))) |#3|) 62)) (-2471 (((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 (-1136 |#3|)) (-618 |#3|) (-618 |#4|) (-618 (-747)) |#3|) 75)) (-2470 (((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 |#3|) (-618 (-747)) (-618 (-1136 |#4|)) (-1224 (-618 (-1136 |#3|))) |#3|) 34)))
+(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2470 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 |#3|) (-618 (-747)) (-618 (-1136 |#4|)) (-1224 (-618 (-1136 |#3|))) |#3|)) (-15 -2471 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 (-1136 |#3|)) (-618 |#3|) (-618 |#4|) (-618 (-747)) |#3|)) (-15 -2472 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 (-1136 |#4|)) (-618 |#3|) (-618 |#4|) (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| |#4|)))) (-618 (-747)) (-1224 (-618 (-1136 |#3|))) |#3|))) (-769) (-823) (-300) (-921 |#3| |#1| |#2|)) (T -684))
+((-2472 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-618 (-1136 *13))) (-5 *3 (-1136 *13)) (-5 *4 (-618 *12)) (-5 *5 (-618 *10)) (-5 *6 (-618 *13)) (-5 *7 (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| *13))))) (-5 *8 (-618 (-747))) (-5 *9 (-1224 (-618 (-1136 *10)))) (-4 *12 (-823)) (-4 *10 (-300)) (-4 *13 (-921 *10 *11 *12)) (-4 *11 (-769)) (-5 *1 (-684 *11 *12 *10 *13)))) (-2471 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-618 *11)) (-5 *5 (-618 (-1136 *9))) (-5 *6 (-618 *9)) (-5 *7 (-618 *12)) (-5 *8 (-618 (-747))) (-4 *11 (-823)) (-4 *9 (-300)) (-4 *12 (-921 *9 *10 *11)) (-4 *10 (-769)) (-5 *2 (-618 (-1136 *12))) (-5 *1 (-684 *10 *11 *9 *12)) (-5 *3 (-1136 *12)))) (-2470 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-618 (-1136 *11))) (-5 *3 (-1136 *11)) (-5 *4 (-618 *10)) (-5 *5 (-618 *8)) (-5 *6 (-618 (-747))) (-5 *7 (-1224 (-618 (-1136 *8)))) (-4 *10 (-823)) (-4 *8 (-300)) (-4 *11 (-921 *8 *9 *10)) (-4 *9 (-769)) (-5 *1 (-684 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2470 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 |#3|) (-618 (-747)) (-618 (-1136 |#4|)) (-1224 (-618 (-1136 |#3|))) |#3|)) (-15 -2471 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 (-1136 |#3|)) (-618 |#3|) (-618 |#4|) (-618 (-747)) |#3|)) (-15 -2472 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-618 |#2|) (-618 (-1136 |#4|)) (-618 |#3|) (-618 |#4|) (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| |#4|)))) (-618 (-747)) (-1224 (-618 (-1136 |#3|))) |#3|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-4302 (($ $) 39)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3214 (($ |#1| (-747)) 37)) (-3141 (((-747) $) 41)) (-3508 ((|#1| $) 40)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4290 (((-747) $) 42)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 36 (|has| |#1| (-170)))) (-4023 ((|#1| $ (-747)) 38)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43)))
(((-685 |#1|) (-138) (-1018)) (T -685))
-((-3068 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018)))) (-2069 (*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018)))) (-2944 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018)))) (-2244 (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018)))))
-(-13 (-1018) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3068 ((-747) $)) (-15 -2856 ((-747) $)) (-15 -2042 (|t#1| $)) (-15 -2069 ($ $)) (-15 -2944 (|t#1| $ (-747))) (-15 -2244 ($ |t#1| (-747)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-2796 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-686 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2796 (|#6| (-1 |#4| |#1|) |#3|))) (-541) (-1201 |#1|) (-1201 (-400 |#2|)) (-541) (-1201 |#4|) (-1201 (-400 |#5|))) (T -686))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-541)) (-4 *7 (-541)) (-4 *6 (-1201 *5)) (-4 *2 (-1201 (-400 *8))) (-5 *1 (-686 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1201 (-400 *6))) (-4 *8 (-1201 *7)))))
-(-10 -7 (-15 -2796 (|#6| (-1 |#4| |#1|) |#3|)))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3692 (((-1124) (-834)) 31)) (-2697 (((-1230) (-1124)) 28)) (-2170 (((-1124) (-834)) 24)) (-3541 (((-1124) (-834)) 25)) (-3845 (((-834) $) NIL) (((-1124) (-834)) 23)) (-2388 (((-112) $ $) NIL)))
-(((-687) (-13 (-1066) (-10 -7 (-15 -3845 ((-1124) (-834))) (-15 -2170 ((-1124) (-834))) (-15 -3541 ((-1124) (-834))) (-15 -3692 ((-1124) (-834))) (-15 -2697 ((-1230) (-1124)))))) (T -687))
-((-3845 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1124)) (-5 *1 (-687)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1124)) (-5 *1 (-687)))) (-3541 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1124)) (-5 *1 (-687)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1124)) (-5 *1 (-687)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-687)))))
-(-13 (-1066) (-10 -7 (-15 -3845 ((-1124) (-834))) (-15 -2170 ((-1124) (-834))) (-15 -3541 ((-1124) (-834))) (-15 -3692 ((-1124) (-834))) (-15 -2697 ((-1230) (-1124)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-2094 (($ $ $) NIL)) (-2558 (($ |#1| |#2|) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3987 (((-112) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2968 ((|#2| $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3359 (((-3 $ "failed") $ $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) ((|#1| $) NIL)) (-1723 (((-747)) NIL)) (-4053 (((-112) $ $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
-(((-688 |#1| |#2| |#3| |#4| |#5|) (-13 (-356) (-10 -8 (-15 -2968 (|#2| $)) (-15 -3845 (|#1| $)) (-15 -2558 ($ |#1| |#2|)) (-15 -3359 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -688))
-((-2968 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-688 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3845 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2558 (*1 *1 *2 *3) (-12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3359 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-356) (-10 -8 (-15 -2968 (|#2| $)) (-15 -3845 (|#1| $)) (-15 -2558 ($ |#1| |#2|)) (-15 -3359 ((-3 $ "failed") $ $))))
-((-3833 (((-112) $ $) 78)) (-3166 (((-112) $) 30)) (-4186 (((-1225 |#1|) $ (-747)) NIL)) (-2271 (((-621 (-1048)) $) NIL)) (-1916 (($ (-1138 |#1|)) NIL)) (-2082 (((-1138 $) $ (-1048)) NIL) (((-1138 |#1|) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 (-1048))) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3767 (($ $ $) NIL (|has| |#1| (-541)))) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-1912 (($ $) NIL (|has| |#1| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3615 (((-747)) 47 (|has| |#1| (-361)))) (-3831 (($ $ (-747)) NIL)) (-2912 (($ $ (-747)) NIL)) (-3366 ((|#2| |#2|) 44)) (-2806 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-1048) "failed") $) NIL)) (-2658 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-1048) $) NIL)) (-2252 (($ $ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2069 (($ $) 34)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2558 (($ |#2|) 42)) (-3976 (((-3 $ "failed") $) 86)) (-3238 (($) 51 (|has| |#1| (-361)))) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-3856 (($ $ $) NIL)) (-3593 (($ $ $) NIL (|has| |#1| (-541)))) (-3285 (((-2 (|:| -1569 |#1|) (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-541)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-4212 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#1| (-880)))) (-3533 (((-929 $)) 80)) (-3744 (($ $ |#1| (-747) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1048) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1048) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2078 (((-747) $ $) NIL (|has| |#1| (-541)))) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-3982 (((-3 $ "failed") $) NIL (|has| |#1| (-1117)))) (-2258 (($ (-1138 |#1|) (-1048)) NIL) (($ (-1138 $) (-1048)) NIL)) (-2769 (($ $ (-747)) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-747)) 77) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ (-1048)) NIL) (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2968 ((|#2|) 45)) (-2856 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-4058 (($ (-1 (-747) (-747)) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-2605 (((-1138 |#1|) $) NIL)) (-1790 (((-3 (-1048) "failed") $) NIL)) (-2723 (((-892) $) NIL (|has| |#1| (-361)))) (-2546 ((|#2| $) 41)) (-2027 (($ $) NIL)) (-2042 ((|#1| $) 28)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2677 (((-1124) $) NIL)) (-4175 (((-2 (|:| -2112 $) (|:| -3249 $)) $ (-747)) NIL)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| (-1048)) (|:| -3577 (-747))) "failed") $) NIL)) (-1531 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3060 (($) NIL (|has| |#1| (-1117)) CONST)) (-3491 (($ (-892)) NIL (|has| |#1| (-361)))) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) NIL)) (-2012 ((|#1| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2888 (($ $) 79 (|has| |#1| (-342)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-880)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1048) |#1|) NIL) (($ $ (-621 (-1048)) (-621 |#1|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-621 (-1048)) (-621 $)) NIL)) (-4091 (((-747) $) NIL (|has| |#1| (-356)))) (-3340 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-541))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-541)))) (-2646 (((-3 $ "failed") $ (-747)) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 87 (|has| |#1| (-356)))) (-3086 (($ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-3455 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3068 (((-747) $) 32) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-1048) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-1931 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-4047 (((-929 $)) 36)) (-3791 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#1| (-541)))) (-3845 (((-834) $) 61) (($ (-549)) NIL) (($ |#1|) 58) (($ (-1048)) NIL) (($ |#2|) 68) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-747)) 63) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3275 (($) 20 T CONST)) (-2761 (((-1225 |#1|) $) 75)) (-3839 (($ (-1225 |#1|)) 50)) (-3287 (($) 8 T CONST)) (-1700 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2665 (((-1225 |#1|) $) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) 69)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $) 72) (($ $ $) NIL)) (-2485 (($ $ $) 33)) (** (($ $ (-892)) NIL) (($ $ (-747)) 81)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 57) (($ $ $) 74) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
-(((-689 |#1| |#2|) (-13 (-1201 |#1|) (-10 -8 (-15 -3366 (|#2| |#2|)) (-15 -2968 (|#2|)) (-15 -2558 ($ |#2|)) (-15 -2546 (|#2| $)) (-15 -3845 ($ |#2|)) (-15 -2761 ((-1225 |#1|) $)) (-15 -3839 ($ (-1225 |#1|))) (-15 -2665 ((-1225 |#1|) $)) (-15 -3533 ((-929 $))) (-15 -4047 ((-929 $))) (IF (|has| |#1| (-342)) (-15 -2888 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) (-1018) (-1201 |#1|)) (T -689))
-((-3366 (*1 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1201 *3)))) (-2968 (*1 *2) (-12 (-4 *2 (-1201 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018)))) (-2558 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1201 *3)))) (-2546 (*1 *2 *1) (-12 (-4 *2 (-1201 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018)))) (-3845 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1201 *3)))) (-2761 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-1225 *3)) (-5 *1 (-689 *3 *4)) (-4 *4 (-1201 *3)))) (-3839 (*1 *1 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-1018)) (-5 *1 (-689 *3 *4)) (-4 *4 (-1201 *3)))) (-2665 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-1225 *3)) (-5 *1 (-689 *3 *4)) (-4 *4 (-1201 *3)))) (-3533 (*1 *2) (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4)) (-4 *4 (-1201 *3)))) (-4047 (*1 *2) (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4)) (-4 *4 (-1201 *3)))) (-2888 (*1 *1 *1) (-12 (-4 *2 (-342)) (-4 *2 (-1018)) (-5 *1 (-689 *2 *3)) (-4 *3 (-1201 *2)))))
-(-13 (-1201 |#1|) (-10 -8 (-15 -3366 (|#2| |#2|)) (-15 -2968 (|#2|)) (-15 -2558 ($ |#2|)) (-15 -2546 (|#2| $)) (-15 -3845 ($ |#2|)) (-15 -2761 ((-1225 |#1|) $)) (-15 -3839 ($ (-1225 |#1|))) (-15 -2665 ((-1225 |#1|) $)) (-15 -3533 ((-929 $))) (-15 -4047 ((-929 $))) (IF (|has| |#1| (-342)) (-15 -2888 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|)))
-((-3833 (((-112) $ $) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3491 ((|#1| $) 13)) (-3988 (((-1086) $) NIL)) (-3577 ((|#2| $) 12)) (-3853 (($ |#1| |#2|) 16)) (-3845 (((-834) $) NIL) (($ (-2 (|:| -3491 |#1|) (|:| -3577 |#2|))) 15) (((-2 (|:| -3491 |#1|) (|:| -3577 |#2|)) $) 14)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 11)))
-(((-690 |#1| |#2| |#3|) (-13 (-823) (-10 -8 (-15 -3577 (|#2| $)) (-15 -3491 (|#1| $)) (-15 -3845 ($ (-2 (|:| -3491 |#1|) (|:| -3577 |#2|)))) (-15 -3845 ((-2 (|:| -3491 |#1|) (|:| -3577 |#2|)) $)) (-15 -3853 ($ |#1| |#2|)))) (-823) (-1066) (-1 (-112) (-2 (|:| -3491 |#1|) (|:| -3577 |#2|)) (-2 (|:| -3491 |#1|) (|:| -3577 |#2|)))) (T -690))
-((-3577 (*1 *2 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-690 *3 *2 *4)) (-4 *3 (-823)) (-14 *4 (-1 (-112) (-2 (|:| -3491 *3) (|:| -3577 *2)) (-2 (|:| -3491 *3) (|:| -3577 *2)))))) (-3491 (*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-690 *2 *3 *4)) (-4 *3 (-1066)) (-14 *4 (-1 (-112) (-2 (|:| -3491 *2) (|:| -3577 *3)) (-2 (|:| -3491 *2) (|:| -3577 *3)))))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3491 *3) (|:| -3577 *4))) (-4 *3 (-823)) (-4 *4 (-1066)) (-5 *1 (-690 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3491 *3) (|:| -3577 *4))) (-5 *1 (-690 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-1066)) (-14 *5 (-1 (-112) *2 *2)))) (-3853 (*1 *1 *2 *3) (-12 (-5 *1 (-690 *2 *3 *4)) (-4 *2 (-823)) (-4 *3 (-1066)) (-14 *4 (-1 (-112) (-2 (|:| -3491 *2) (|:| -3577 *3)) (-2 (|:| -3491 *2) (|:| -3577 *3)))))))
-(-13 (-823) (-10 -8 (-15 -3577 (|#2| $)) (-15 -3491 (|#1| $)) (-15 -3845 ($ (-2 (|:| -3491 |#1|) (|:| -3577 |#2|)))) (-15 -3845 ((-2 (|:| -3491 |#1|) (|:| -3577 |#2|)) $)) (-15 -3853 ($ |#1| |#2|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 59)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-2658 ((|#1| $) NIL) (((-114) $) 39)) (-3976 (((-3 $ "failed") $) 90)) (-3297 ((|#2| (-114) |#2|) 82)) (-3987 (((-112) $) NIL)) (-3526 (($ |#1| (-354 (-114))) 14)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1499 (($ $ (-1 |#2| |#2|)) 58)) (-3981 (($ $ (-1 |#2| |#2|)) 44)) (-3340 ((|#2| $ |#2|) 33)) (-3522 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-3845 (((-834) $) 66) (($ (-549)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) 37)) (-2609 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-3275 (($) 21 T CONST)) (-3287 (($) 9 T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) 48) (($ $ $) NIL)) (-2485 (($ $ $) 73)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ (-114) (-549)) NIL) (($ $ (-549)) 57)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170)))))
-(((-691 |#1| |#2|) (-13 (-1018) (-1009 |#1|) (-1009 (-114)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2609 ($ $)) (-15 -2609 ($ $ $)) (-15 -3522 (|#1| |#1|))) |%noBranch|) (-15 -3981 ($ $ (-1 |#2| |#2|))) (-15 -1499 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-549))) (-15 ** ($ $ (-549))) (-15 -3297 (|#2| (-114) |#2|)) (-15 -3526 ($ |#1| (-354 (-114)))))) (-1018) (-624 |#1|)) (T -691))
-((-2609 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) (-2609 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) (-3522 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) (-3981 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)))) (-1499 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-549)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *5)) (-4 *5 (-624 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)) (-4 *4 (-624 *3)))) (-3297 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *2)) (-4 *2 (-624 *4)))) (-3526 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-114))) (-4 *2 (-1018)) (-5 *1 (-691 *2 *4)) (-4 *4 (-624 *2)))))
-(-13 (-1018) (-1009 |#1|) (-1009 (-114)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2609 ($ $)) (-15 -2609 ($ $ $)) (-15 -3522 (|#1| |#1|))) |%noBranch|) (-15 -3981 ($ $ (-1 |#2| |#2|))) (-15 -1499 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-549))) (-15 ** ($ $ (-549))) (-15 -3297 (|#2| (-114) |#2|)) (-15 -3526 ($ |#1| (-354 (-114))))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 33)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2558 (($ |#1| |#2|) 25)) (-3976 (((-3 $ "failed") $) 48)) (-3987 (((-112) $) 35)) (-2968 ((|#2| $) 12)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 49)) (-3988 (((-1086) $) NIL)) (-3359 (((-3 $ "failed") $ $) 47)) (-3845 (((-834) $) 24) (($ (-549)) 19) ((|#1| $) 13)) (-1723 (((-747)) 28)) (-3275 (($) 16 T CONST)) (-3287 (($) 30 T CONST)) (-2388 (((-112) $ $) 38)) (-2499 (($ $) 43) (($ $ $) 37)) (-2485 (($ $ $) 40)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 21) (($ $ $) 20)))
-(((-692 |#1| |#2| |#3| |#4| |#5|) (-13 (-1018) (-10 -8 (-15 -2968 (|#2| $)) (-15 -3845 (|#1| $)) (-15 -2558 ($ |#1| |#2|)) (-15 -3359 ((-3 $ "failed") $ $)) (-15 -3976 ((-3 $ "failed") $)) (-15 -1991 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -692))
-((-3976 (*1 *1 *1) (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2968 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3845 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2558 (*1 *1 *2 *3) (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3359 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1991 (*1 *1 *1) (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1018) (-10 -8 (-15 -2968 (|#2| $)) (-15 -3845 (|#1| $)) (-15 -2558 ($ |#1| |#2|)) (-15 -3359 ((-3 $ "failed") $ $)) (-15 -3976 ((-3 $ "failed") $)) (-15 -1991 ($ $))))
-((* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-693 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|))) (-694 |#2|) (-170)) (T -693))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-4290 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018)))) (-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018)))))
+(-13 (-1018) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4290 ((-747) $)) (-15 -3141 ((-747) $)) (-15 -3508 (|t#1| $)) (-15 -4302 ($ $)) (-15 -4023 (|t#1| $ (-747))) (-15 -3214 ($ |t#1| (-747)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-4301 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-686 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4301 (|#6| (-1 |#4| |#1|) |#3|))) (-542) (-1200 |#1|) (-1200 (-400 |#2|)) (-542) (-1200 |#4|) (-1200 (-400 |#5|))) (T -686))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-542)) (-4 *7 (-542)) (-4 *6 (-1200 *5)) (-4 *2 (-1200 (-400 *8))) (-5 *1 (-686 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1200 (-400 *6))) (-4 *8 (-1200 *7)))))
+(-10 -7 (-15 -4301 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2473 (((-1124) (-835)) 31)) (-3963 (((-1230) (-1124)) 28)) (-2475 (((-1124) (-835)) 24)) (-2474 (((-1124) (-835)) 25)) (-4300 (((-835) $) NIL) (((-1124) (-835)) 23)) (-3375 (((-112) $ $) NIL)))
+(((-687) (-13 (-1067) (-10 -7 (-15 -4300 ((-1124) (-835))) (-15 -2475 ((-1124) (-835))) (-15 -2474 ((-1124) (-835))) (-15 -2473 ((-1124) (-835))) (-15 -3963 ((-1230) (-1124)))))) (T -687))
+((-4300 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687)))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-687)))))
+(-13 (-1067) (-10 -7 (-15 -4300 ((-1124) (-835))) (-15 -2475 ((-1124) (-835))) (-15 -2474 ((-1124) (-835))) (-15 -2473 ((-1124) (-835))) (-15 -3963 ((-1230) (-1124)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL)) (-4185 (($ |#1| |#2|) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2931 ((|#2| $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2485 (((-3 $ "failed") $ $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) ((|#1| $) NIL)) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL)))
+(((-688 |#1| |#2| |#3| |#4| |#5|) (-13 (-356) (-10 -8 (-15 -2931 (|#2| $)) (-15 -4300 (|#1| $)) (-15 -4185 ($ |#1| |#2|)) (-15 -2485 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -688))
+((-2931 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-688 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4300 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4185 (*1 *1 *2 *3) (-12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2485 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+(-13 (-356) (-10 -8 (-15 -2931 (|#2| $)) (-15 -4300 (|#1| $)) (-15 -4185 ($ |#1| |#2|)) (-15 -2485 ((-3 $ "failed") $ $))))
+((-2887 (((-112) $ $) 78)) (-3522 (((-112) $) 30)) (-4109 (((-1224 |#1|) $ (-747)) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4107 (($ (-1136 |#1|)) NIL)) (-3407 (((-1136 $) $ (-1048)) NIL) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1048))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4098 (($ $ $) NIL (|has| |#1| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3454 (((-747)) 47 (|has| |#1| (-361)))) (-4103 (($ $ (-747)) NIL)) (-4102 (($ $ (-747)) NIL)) (-2482 ((|#2| |#2|) 44)) (-4094 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-1048) #2#) $) NIL)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-1048) $) NIL)) (-4099 (($ $ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) 34)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-4185 (($ |#2|) 42)) (-3804 (((-3 $ "failed") $) 86)) (-3315 (($) 51 (|has| |#1| (-361)))) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-4101 (($ $ $) NIL)) (-4096 (($ $ $) NIL (|has| |#1| (-542)))) (-4095 (((-2 (|:| -4296 |#1|) (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-2478 (((-929 $)) 80)) (-1716 (($ $ |#1| (-747) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1048) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1048) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-4114 (((-747) $ $) NIL (|has| |#1| (-542)))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-1117)))) (-3408 (($ (-1136 |#1|) (-1048)) NIL) (($ (-1136 $) (-1048)) NIL)) (-4119 (($ $ (-747)) NIL)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) 77) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1048)) NIL) (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-2931 ((|#2|) 45)) (-3141 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-747) (-747)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4108 (((-1136 |#1|) $) NIL)) (-3406 (((-3 (-1048) #4="failed") $) NIL)) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-3401 ((|#2| $) 41)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) 28)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-4104 (((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747)) NIL)) (-3144 (((-3 (-618 $) #4#) $) NIL)) (-3143 (((-3 (-618 $) #4#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-1048)) (|:| -2484 (-747))) #4#) $) NIL)) (-4155 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3787 (($) NIL (|has| |#1| (-1117)) CONST)) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2476 (($ $) 79 (|has| |#1| (-343)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1048) |#1|) NIL) (($ $ (-618 (-1048)) (-618 |#1|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-618 (-1048)) (-618 $)) NIL)) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-542)))) (-4106 (((-3 $ #5="failed") $ (-747)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 87 (|has| |#1| (-356)))) (-4100 (($ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-4153 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4290 (((-747) $) 32) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-1048) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-2477 (((-929 $)) 36)) (-4097 (((-3 $ #5#) $ $) NIL (|has| |#1| (-542))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#1| (-542)))) (-4300 (((-835) $) 61) (($ (-535)) NIL) (($ |#1|) 58) (($ (-1048)) NIL) (($ |#2|) 68) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) 63) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) 20 T CONST)) (-2481 (((-1224 |#1|) $) 75)) (-2480 (($ (-1224 |#1|)) 50)) (-2985 (($) 8 T CONST)) (-2990 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2479 (((-1224 |#1|) $) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 69)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) 72) (($ $ $) NIL)) (-4182 (($ $ $) 33)) (** (($ $ (-890)) NIL) (($ $ (-747)) 81)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 57) (($ $ $) 74) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
+(((-689 |#1| |#2|) (-13 (-1200 |#1|) (-10 -8 (-15 -2482 (|#2| |#2|)) (-15 -2931 (|#2|)) (-15 -4185 ($ |#2|)) (-15 -3401 (|#2| $)) (-15 -4300 ($ |#2|)) (-15 -2481 ((-1224 |#1|) $)) (-15 -2480 ($ (-1224 |#1|))) (-15 -2479 ((-1224 |#1|) $)) (-15 -2478 ((-929 $))) (-15 -2477 ((-929 $))) (IF (|has| |#1| (-343)) (-15 -2476 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) (-1018) (-1200 |#1|)) (T -689))
+((-2482 (*1 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1200 *3)))) (-2931 (*1 *2) (-12 (-4 *2 (-1200 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018)))) (-4185 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1200 *3)))) (-3401 (*1 *2 *1) (-12 (-4 *2 (-1200 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1200 *3)))) (-2481 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-1224 *3)) (-5 *1 (-689 *3 *4)) (-4 *4 (-1200 *3)))) (-2480 (*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1018)) (-5 *1 (-689 *3 *4)) (-4 *4 (-1200 *3)))) (-2479 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-1224 *3)) (-5 *1 (-689 *3 *4)) (-4 *4 (-1200 *3)))) (-2478 (*1 *2) (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4)) (-4 *4 (-1200 *3)))) (-2477 (*1 *2) (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4)) (-4 *4 (-1200 *3)))) (-2476 (*1 *1 *1) (-12 (-4 *2 (-343)) (-4 *2 (-1018)) (-5 *1 (-689 *2 *3)) (-4 *3 (-1200 *2)))))
+(-13 (-1200 |#1|) (-10 -8 (-15 -2482 (|#2| |#2|)) (-15 -2931 (|#2|)) (-15 -4185 ($ |#2|)) (-15 -3401 (|#2| $)) (-15 -4300 ($ |#2|)) (-15 -2481 ((-1224 |#1|) $)) (-15 -2480 ($ (-1224 |#1|))) (-15 -2479 ((-1224 |#1|) $)) (-15 -2478 ((-929 $))) (-15 -2477 ((-929 $))) (IF (|has| |#1| (-343)) (-15 -2476 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|)))
+((-2887 (((-112) $ $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2483 ((|#1| $) 13)) (-3577 (((-1086) $) NIL)) (-2484 ((|#2| $) 12)) (-3867 (($ |#1| |#2|) 16)) (-4300 (((-835) $) NIL) (($ (-2 (|:| -2483 |#1|) (|:| -2484 |#2|))) 15) (((-2 (|:| -2483 |#1|) (|:| -2484 |#2|)) $) 14)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 11)))
+(((-690 |#1| |#2| |#3|) (-13 (-823) (-10 -8 (-15 -2484 (|#2| $)) (-15 -2483 (|#1| $)) (-15 -4300 ($ (-2 (|:| -2483 |#1|) (|:| -2484 |#2|)))) (-15 -4300 ((-2 (|:| -2483 |#1|) (|:| -2484 |#2|)) $)) (-15 -3867 ($ |#1| |#2|)))) (-823) (-1067) (-1 (-112) (-2 (|:| -2483 |#1|) (|:| -2484 |#2|)) (-2 (|:| -2483 |#1|) (|:| -2484 |#2|)))) (T -690))
+((-2484 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-690 *3 *2 *4)) (-4 *3 (-823)) (-14 *4 (-1 (-112) (-2 (|:| -2483 *3) (|:| -2484 *2)) (-2 (|:| -2483 *3) (|:| -2484 *2)))))) (-2483 (*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-690 *2 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *3)) (-2 (|:| -2483 *2) (|:| -2484 *3)))))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2483 *3) (|:| -2484 *4))) (-4 *3 (-823)) (-4 *4 (-1067)) (-5 *1 (-690 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2483 *3) (|:| -2484 *4))) (-5 *1 (-690 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-1067)) (-14 *5 (-1 (-112) *2 *2)))) (-3867 (*1 *1 *2 *3) (-12 (-5 *1 (-690 *2 *3 *4)) (-4 *2 (-823)) (-4 *3 (-1067)) (-14 *4 (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *3)) (-2 (|:| -2483 *2) (|:| -2484 *3)))))))
+(-13 (-823) (-10 -8 (-15 -2484 (|#2| $)) (-15 -2483 (|#1| $)) (-15 -4300 ($ (-2 (|:| -2483 |#1|) (|:| -2484 |#2|)))) (-15 -4300 ((-2 (|:| -2483 |#1|) (|:| -2484 |#2|)) $)) (-15 -3867 ($ |#1| |#2|))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 59)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #1="failed") $) 89) (((-3 (-113) #1#) $) 95)) (-3490 ((|#1| $) NIL) (((-113) $) 39)) (-3804 (((-3 $ "failed") $) 90)) (-2841 ((|#2| (-113) |#2|) 82)) (-2493 (((-112) $) NIL)) (-2840 (($ |#1| (-354 (-113))) 14)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2842 (($ $ (-1 |#2| |#2|)) 58)) (-2843 (($ $ (-1 |#2| |#2|)) 44)) (-4142 ((|#2| $ |#2|) 33)) (-2844 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-4300 (((-835) $) 66) (($ (-535)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) 37)) (-2845 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2979 (($) 21 T CONST)) (-2985 (($) 9 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) 48) (($ $ $) NIL)) (-4182 (($ $ $) 73)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ (-113) (-535)) NIL) (($ $ (-535)) 57)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170)))))
+(((-691 |#1| |#2|) (-13 (-1018) (-1009 |#1|) (-1009 (-113)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2845 ($ $)) (-15 -2845 ($ $ $)) (-15 -2844 (|#1| |#1|))) |%noBranch|) (-15 -2843 ($ $ (-1 |#2| |#2|))) (-15 -2842 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-535))) (-15 ** ($ $ (-535))) (-15 -2841 (|#2| (-113) |#2|)) (-15 -2840 ($ |#1| (-354 (-113)))))) (-1018) (-624 |#1|)) (T -691))
+((-2845 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) (-2845 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) (-2844 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)))) (-2842 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *5)) (-4 *5 (-624 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)) (-4 *4 (-624 *3)))) (-2841 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *2)) (-4 *2 (-624 *4)))) (-2840 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-113))) (-4 *2 (-1018)) (-5 *1 (-691 *2 *4)) (-4 *4 (-624 *2)))))
+(-13 (-1018) (-1009 |#1|) (-1009 (-113)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2845 ($ $)) (-15 -2845 ($ $ $)) (-15 -2844 (|#1| |#1|))) |%noBranch|) (-15 -2843 ($ $ (-1 |#2| |#2|))) (-15 -2842 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-535))) (-15 ** ($ $ (-535))) (-15 -2841 (|#2| (-113) |#2|)) (-15 -2840 ($ |#1| (-354 (-113))))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 33)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4185 (($ |#1| |#2|) 25)) (-3804 (((-3 $ "failed") $) 48)) (-2493 (((-112) $) 35)) (-2931 ((|#2| $) 12)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 49)) (-3577 (((-1086) $) NIL)) (-2485 (((-3 $ "failed") $ $) 47)) (-4300 (((-835) $) 24) (($ (-535)) 19) ((|#1| $) 13)) (-3444 (((-747)) 28)) (-2979 (($) 16 T CONST)) (-2985 (($) 30 T CONST)) (-3375 (((-112) $ $) 38)) (-4180 (($ $) 43) (($ $ $) 37)) (-4182 (($ $ $) 40)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 21) (($ $ $) 20)))
+(((-692 |#1| |#2| |#3| |#4| |#5|) (-13 (-1018) (-10 -8 (-15 -2931 (|#2| $)) (-15 -4300 (|#1| $)) (-15 -4185 ($ |#1| |#2|)) (-15 -2485 ((-3 $ "failed") $ $)) (-15 -3804 ((-3 $ "failed") $)) (-15 -2725 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -692))
+((-3804 (*1 *1 *1) (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2931 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4300 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4185 (*1 *1 *2 *3) (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2485 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2725 (*1 *1 *1) (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+(-13 (-1018) (-10 -8 (-15 -2931 (|#2| $)) (-15 -4300 (|#1| $)) (-15 -4185 ($ |#1| |#2|)) (-15 -2485 ((-3 $ "failed") $ $)) (-15 -3804 ((-3 $ "failed") $)) (-15 -2725 ($ $))))
+((* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-693 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) (-694 |#2|) (-170)) (T -693))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-694 |#1|) (-138) (-170)) (T -694))
NIL
(-13 (-111 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-1024 |#1|) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-1309 (($ |#1|) 17) (($ $ |#1|) 20)) (-4018 (($ |#1|) 18) (($ $ |#1|) 21)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3987 (((-112) $) NIL)) (-1564 (($ |#1| |#1| |#1| |#1|) 8)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 16)) (-3988 (((-1086) $) NIL)) (-2685 ((|#1| $ |#1|) 24) (((-809 |#1|) $ (-809 |#1|)) 32)) (-2538 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-3845 (((-834) $) 39)) (-3287 (($) 9 T CONST)) (-2388 (((-112) $ $) 44)) (-2512 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ $ $) 14)))
-(((-695 |#1|) (-13 (-465) (-10 -8 (-15 -1564 ($ |#1| |#1| |#1| |#1|)) (-15 -1309 ($ |#1|)) (-15 -4018 ($ |#1|)) (-15 -3976 ($)) (-15 -1309 ($ $ |#1|)) (-15 -4018 ($ $ |#1|)) (-15 -3976 ($ $)) (-15 -2685 (|#1| $ |#1|)) (-15 -2685 ((-809 |#1|) $ (-809 |#1|))))) (-356)) (T -695))
-((-1564 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-1309 (*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-4018 (*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-3976 (*1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-4018 (*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-3976 (*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-2685 (*1 *2 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-2685 (*1 *2 *1 *2) (-12 (-5 *2 (-809 *3)) (-4 *3 (-356)) (-5 *1 (-695 *3)))))
-(-13 (-465) (-10 -8 (-15 -1564 ($ |#1| |#1| |#1| |#1|)) (-15 -1309 ($ |#1|)) (-15 -4018 ($ |#1|)) (-15 -3976 ($)) (-15 -1309 ($ $ |#1|)) (-15 -4018 ($ $ |#1|)) (-15 -3976 ($ $)) (-15 -2685 (|#1| $ |#1|)) (-15 -2685 ((-809 |#1|) $ (-809 |#1|)))))
-((-2353 (($ $ (-892)) 12)) (-2881 (($ $ (-892)) 13)) (** (($ $ (-892)) 10)))
-(((-696 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-892))) (-15 -2881 (|#1| |#1| (-892))) (-15 -2353 (|#1| |#1| (-892)))) (-697)) (T -696))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-892))) (-15 -2881 (|#1| |#1| (-892))) (-15 -2353 (|#1| |#1| (-892))))
-((-3833 (((-112) $ $) 7)) (-2353 (($ $ (-892)) 15)) (-2881 (($ $ (-892)) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2388 (((-112) $ $) 6)) (** (($ $ (-892)) 13)) (* (($ $ $) 16)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-2681 (($ |#1|) 17) (($ $ |#1|) 20)) (-4190 (($ |#1|) 18) (($ $ |#1|) 21)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2493 (((-112) $) NIL)) (-2486 (($ |#1| |#1| |#1| |#1|) 8)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 16)) (-3577 (((-1086) $) NIL)) (-4110 ((|#1| $ |#1|) 24) (((-808 |#1|) $ (-808 |#1|)) 32)) (-3330 (($ $ $) NIL)) (-2677 (($ $ $) NIL)) (-4300 (((-835) $) 39)) (-2985 (($) 9 T CONST)) (-3375 (((-112) $ $) 44)) (-4291 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ $ $) 14)))
+(((-695 |#1|) (-13 (-465) (-10 -8 (-15 -2486 ($ |#1| |#1| |#1| |#1|)) (-15 -2681 ($ |#1|)) (-15 -4190 ($ |#1|)) (-15 -3804 ($)) (-15 -2681 ($ $ |#1|)) (-15 -4190 ($ $ |#1|)) (-15 -3804 ($ $)) (-15 -4110 (|#1| $ |#1|)) (-15 -4110 ((-808 |#1|) $ (-808 |#1|))))) (-356)) (T -695))
+((-2486 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-2681 (*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-4190 (*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-3804 (*1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-2681 (*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-4190 (*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-4110 (*1 *2 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-4110 (*1 *2 *1 *2) (-12 (-5 *2 (-808 *3)) (-4 *3 (-356)) (-5 *1 (-695 *3)))))
+(-13 (-465) (-10 -8 (-15 -2486 ($ |#1| |#1| |#1| |#1|)) (-15 -2681 ($ |#1|)) (-15 -4190 ($ |#1|)) (-15 -3804 ($)) (-15 -2681 ($ $ |#1|)) (-15 -4190 ($ $ |#1|)) (-15 -3804 ($ $)) (-15 -4110 (|#1| $ |#1|)) (-15 -4110 ((-808 |#1|) $ (-808 |#1|)))))
+((-2490 (($ $ (-890)) 12)) (-2489 (($ $ (-890)) 13)) (** (($ $ (-890)) 10)))
+(((-696 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-890))) (-15 -2489 (|#1| |#1| (-890))) (-15 -2490 (|#1| |#1| (-890)))) (-697)) (T -696))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-890))) (-15 -2489 (|#1| |#1| (-890))) (-15 -2490 (|#1| |#1| (-890))))
+((-2887 (((-112) $ $) 7)) (-2490 (($ $ (-890)) 15)) (-2489 (($ $ (-890)) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)) (** (($ $ (-890)) 13)) (* (($ $ $) 16)))
(((-697) (-138)) (T -697))
-((* (*1 *1 *1 *1) (-4 *1 (-697))) (-2353 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-892)))) (-2881 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-892)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-892)))))
-(-13 (-1066) (-10 -8 (-15 * ($ $ $)) (-15 -2353 ($ $ (-892))) (-15 -2881 ($ $ (-892))) (-15 ** ($ $ (-892)))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-2353 (($ $ (-892)) NIL) (($ $ (-747)) 17)) (-3987 (((-112) $) 10)) (-2881 (($ $ (-892)) NIL) (($ $ (-747)) 18)) (** (($ $ (-892)) NIL) (($ $ (-747)) 15)))
-(((-698 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-747))) (-15 -2881 (|#1| |#1| (-747))) (-15 -2353 (|#1| |#1| (-747))) (-15 -3987 ((-112) |#1|)) (-15 ** (|#1| |#1| (-892))) (-15 -2881 (|#1| |#1| (-892))) (-15 -2353 (|#1| |#1| (-892)))) (-699)) (T -698))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-747))) (-15 -2881 (|#1| |#1| (-747))) (-15 -2353 (|#1| |#1| (-747))) (-15 -3987 ((-112) |#1|)) (-15 ** (|#1| |#1| (-892))) (-15 -2881 (|#1| |#1| (-892))) (-15 -2353 (|#1| |#1| (-892))))
-((-3833 (((-112) $ $) 7)) (-3923 (((-3 $ "failed") $) 17)) (-2353 (($ $ (-892)) 15) (($ $ (-747)) 22)) (-3976 (((-3 $ "failed") $) 19)) (-3987 (((-112) $) 23)) (-2193 (((-3 $ "failed") $) 18)) (-2881 (($ $ (-892)) 14) (($ $ (-747)) 21)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3287 (($) 24 T CONST)) (-2388 (((-112) $ $) 6)) (** (($ $ (-892)) 13) (($ $ (-747)) 20)) (* (($ $ $) 16)))
+((* (*1 *1 *1 *1) (-4 *1 (-697))) (-2490 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-890)))) (-2489 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-890)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-890)))))
+(-13 (-1067) (-10 -8 (-15 * ($ $ $)) (-15 -2490 ($ $ (-890))) (-15 -2489 ($ $ (-890))) (-15 ** ($ $ (-890)))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2490 (($ $ (-890)) NIL) (($ $ (-747)) 17)) (-2493 (((-112) $) 10)) (-2489 (($ $ (-890)) NIL) (($ $ (-747)) 18)) (** (($ $ (-890)) NIL) (($ $ (-747)) 15)))
+(((-698 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-747))) (-15 -2489 (|#1| |#1| (-747))) (-15 -2490 (|#1| |#1| (-747))) (-15 -2493 ((-112) |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 -2489 (|#1| |#1| (-890))) (-15 -2490 (|#1| |#1| (-890)))) (-699)) (T -698))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-747))) (-15 -2489 (|#1| |#1| (-747))) (-15 -2490 (|#1| |#1| (-747))) (-15 -2493 ((-112) |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 -2489 (|#1| |#1| (-890))) (-15 -2490 (|#1| |#1| (-890))))
+((-2887 (((-112) $ $) 7)) (-2487 (((-3 $ "failed") $) 17)) (-2490 (($ $ (-890)) 15) (($ $ (-747)) 22)) (-3804 (((-3 $ "failed") $) 19)) (-2493 (((-112) $) 23)) (-2488 (((-3 $ "failed") $) 18)) (-2489 (($ $ (-890)) 14) (($ $ (-747)) 21)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2985 (($) 24 T CONST)) (-3375 (((-112) $ $) 6)) (** (($ $ (-890)) 13) (($ $ (-747)) 20)) (* (($ $ $) 16)))
(((-699) (-138)) (T -699))
-((-3287 (*1 *1) (-4 *1 (-699))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-699)) (-5 *2 (-112)))) (-2353 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) (-2881 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) (-3976 (*1 *1 *1) (|partial| -4 *1 (-699))) (-2193 (*1 *1 *1) (|partial| -4 *1 (-699))) (-3923 (*1 *1 *1) (|partial| -4 *1 (-699))))
-(-13 (-697) (-10 -8 (-15 (-3287) ($) -2588) (-15 -3987 ((-112) $)) (-15 -2353 ($ $ (-747))) (-15 -2881 ($ $ (-747))) (-15 ** ($ $ (-747))) (-15 -3976 ((-3 $ "failed") $)) (-15 -2193 ((-3 $ "failed") $)) (-15 -3923 ((-3 $ "failed") $))))
-(((-101) . T) ((-593 (-834)) . T) ((-697) . T) ((-1066) . T))
-((-3615 (((-747)) 34)) (-2713 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2658 (((-549) $) NIL) (((-400 (-549)) $) NIL) ((|#2| $) 22)) (-2558 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) 44)) (-3976 (((-3 $ "failed") $) 64)) (-3238 (($) 38)) (-4117 ((|#2| $) 20)) (-4246 (($) 17)) (-3455 (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-1369 (((-665 |#2|) (-1225 $) (-1 |#2| |#2|)) 59)) (-2844 (((-1225 |#2|) $) NIL) (($ (-1225 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-4041 ((|#3| $) 32)) (-3420 (((-1225 $)) 29)))
-(((-700 |#1| |#2| |#3|) (-10 -8 (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -3238 (|#1|)) (-15 -3615 ((-747))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -1369 ((-665 |#2|) (-1225 |#1|) (-1 |#2| |#2|))) (-15 -2558 ((-3 |#1| "failed") (-400 |#3|))) (-15 -2844 (|#1| |#3|)) (-15 -2558 (|#1| |#3|)) (-15 -4246 (|#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -2844 (|#3| |#1|)) (-15 -2844 (|#1| (-1225 |#2|))) (-15 -2844 ((-1225 |#2|) |#1|)) (-15 -3420 ((-1225 |#1|))) (-15 -4041 (|#3| |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -3976 ((-3 |#1| "failed") |#1|))) (-701 |#2| |#3|) (-170) (-1201 |#2|)) (T -700))
-((-3615 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1201 *4)) (-5 *2 (-747)) (-5 *1 (-700 *3 *4 *5)) (-4 *3 (-701 *4 *5)))))
-(-10 -8 (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -3238 (|#1|)) (-15 -3615 ((-747))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -1369 ((-665 |#2|) (-1225 |#1|) (-1 |#2| |#2|))) (-15 -2558 ((-3 |#1| "failed") (-400 |#3|))) (-15 -2844 (|#1| |#3|)) (-15 -2558 (|#1| |#3|)) (-15 -4246 (|#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -2844 (|#3| |#1|)) (-15 -2844 (|#1| (-1225 |#2|))) (-15 -2844 ((-1225 |#2|) |#1|)) (-15 -3420 ((-1225 |#1|))) (-15 -4041 (|#3| |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -3976 ((-3 |#1| "failed") |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 91 (|has| |#1| (-356)))) (-2408 (($ $) 92 (|has| |#1| (-356)))) (-2477 (((-112) $) 94 (|has| |#1| (-356)))) (-3102 (((-665 |#1|) (-1225 $)) 44) (((-665 |#1|)) 59)) (-2905 ((|#1| $) 50)) (-2572 (((-1152 (-892) (-747)) (-549)) 144 (|has| |#1| (-342)))) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 111 (|has| |#1| (-356)))) (-3513 (((-411 $) $) 112 (|has| |#1| (-356)))) (-2647 (((-112) $ $) 102 (|has| |#1| (-356)))) (-3615 (((-747)) 85 (|has| |#1| (-361)))) (-1705 (($) 17 T CONST)) (-2713 (((-3 (-549) "failed") $) 166 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 164 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 163)) (-2658 (((-549) $) 167 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 165 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 162)) (-2127 (($ (-1225 |#1|) (-1225 $)) 46) (($ (-1225 |#1|)) 62)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-342)))) (-2094 (($ $ $) 106 (|has| |#1| (-356)))) (-2988 (((-665 |#1|) $ (-1225 $)) 51) (((-665 |#1|) $) 57)) (-1698 (((-665 (-549)) (-665 $)) 161 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 160 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 159) (((-665 |#1|) (-665 $)) 158)) (-2558 (($ |#2|) 155) (((-3 $ "failed") (-400 |#2|)) 152 (|has| |#1| (-356)))) (-3976 (((-3 $ "failed") $) 32)) (-3122 (((-892)) 52)) (-3238 (($) 88 (|has| |#1| (-361)))) (-2066 (($ $ $) 105 (|has| |#1| (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 100 (|has| |#1| (-356)))) (-1327 (($) 146 (|has| |#1| (-342)))) (-1729 (((-112) $) 147 (|has| |#1| (-342)))) (-3225 (($ $ (-747)) 138 (|has| |#1| (-342))) (($ $) 137 (|has| |#1| (-342)))) (-2471 (((-112) $) 113 (|has| |#1| (-356)))) (-2078 (((-892) $) 149 (|has| |#1| (-342))) (((-809 (-892)) $) 135 (|has| |#1| (-342)))) (-3987 (((-112) $) 30)) (-4117 ((|#1| $) 49)) (-3982 (((-3 $ "failed") $) 139 (|has| |#1| (-342)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 109 (|has| |#1| (-356)))) (-4030 ((|#2| $) 42 (|has| |#1| (-356)))) (-2723 (((-892) $) 87 (|has| |#1| (-361)))) (-2546 ((|#2| $) 153)) (-3696 (($ (-621 $)) 98 (|has| |#1| (-356))) (($ $ $) 97 (|has| |#1| (-356)))) (-2677 (((-1124) $) 9)) (-1991 (($ $) 114 (|has| |#1| (-356)))) (-3060 (($) 140 (|has| |#1| (-342)) CONST)) (-3491 (($ (-892)) 86 (|has| |#1| (-361)))) (-3988 (((-1086) $) 10)) (-4246 (($) 157)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 99 (|has| |#1| (-356)))) (-3726 (($ (-621 $)) 96 (|has| |#1| (-356))) (($ $ $) 95 (|has| |#1| (-356)))) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) 143 (|has| |#1| (-342)))) (-2120 (((-411 $) $) 110 (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 107 (|has| |#1| (-356)))) (-2038 (((-3 $ "failed") $ $) 90 (|has| |#1| (-356)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 101 (|has| |#1| (-356)))) (-4091 (((-747) $) 103 (|has| |#1| (-356)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 104 (|has| |#1| (-356)))) (-3086 ((|#1| (-1225 $)) 45) ((|#1|) 58)) (-2591 (((-747) $) 148 (|has| |#1| (-342))) (((-3 (-747) "failed") $ $) 136 (|has| |#1| (-342)))) (-3455 (($ $) 134 (-1536 (-1820 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-747)) 132 (-1536 (-1820 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1142)) 130 (-1820 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-621 (-1142))) 129 (-1820 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-1142) (-747)) 128 (-1820 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-621 (-1142)) (-621 (-747))) 127 (-1820 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-747)) 120 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-356)))) (-1369 (((-665 |#1|) (-1225 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-2539 ((|#2|) 156)) (-3191 (($) 145 (|has| |#1| (-342)))) (-4163 (((-1225 |#1|) $ (-1225 $)) 48) (((-665 |#1|) (-1225 $) (-1225 $)) 47) (((-1225 |#1|) $) 64) (((-665 |#1|) (-1225 $)) 63)) (-2844 (((-1225 |#1|) $) 61) (($ (-1225 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 142 (|has| |#1| (-342)))) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-356))) (($ (-400 (-549))) 84 (-1536 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-549))))))) (-3407 (($ $) 141 (|has| |#1| (-342))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-4041 ((|#2| $) 43)) (-1723 (((-747)) 28)) (-3420 (((-1225 $)) 65)) (-4053 (((-112) $ $) 93 (|has| |#1| (-356)))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $) 133 (-1536 (-1820 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-747)) 131 (-1536 (-1820 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1142)) 126 (-1820 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-621 (-1142))) 125 (-1820 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-1142) (-747)) 124 (-1820 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-621 (-1142)) (-621 (-747))) 123 (-1820 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-747)) 122 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-356)))) (-2388 (((-112) $ $) 6)) (-2512 (($ $ $) 118 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 115 (|has| |#1| (-356)))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-549)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-549))) 116 (|has| |#1| (-356)))))
-(((-701 |#1| |#2|) (-138) (-170) (-1201 |t#1|)) (T -701))
-((-4246 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-701 *2 *3)) (-4 *3 (-1201 *2)))) (-2539 (*1 *2) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1201 *3)))) (-2558 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1201 *3)))) (-2844 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1201 *3)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1201 *3)))) (-2558 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1201 *3)) (-4 *3 (-356)) (-4 *3 (-170)) (-4 *1 (-701 *3 *4)))) (-1369 (*1 *2 *3 *4) (-12 (-5 *3 (-1225 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-4 *1 (-701 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1201 *5)) (-5 *2 (-665 *5)))))
-(-13 (-402 |t#1| |t#2|) (-170) (-594 |t#2|) (-404 |t#1|) (-370 |t#1|) (-10 -8 (-15 -4246 ($)) (-15 -2539 (|t#2|)) (-15 -2558 ($ |t#2|)) (-15 -2844 ($ |t#2|)) (-15 -2546 (|t#2| $)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-356)) (-6 (-225 |t#1|)) (-15 -2558 ((-3 $ "failed") (-400 |t#2|))) (-15 -1369 ((-665 |t#1|) (-1225 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-342)) (-6 (-342)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-101) . T) ((-111 #0# #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1536 (|has| |#1| (-342)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) . T) ((-594 |#2|) . T) ((-225 |#1|) |has| |#1| (-356)) ((-227) -1536 (|has| |#1| (-342)) (-12 (|has| |#1| (-227)) (|has| |#1| (-356)))) ((-237) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-283) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-300) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-356) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-395) |has| |#1| (-342)) ((-361) -1536 (|has| |#1| (-361)) (|has| |#1| (-342))) ((-342) |has| |#1| (-342)) ((-363 |#1| |#2|) . T) ((-402 |#1| |#2|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-541) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-624 #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-694 |#1|) . T) ((-694 $) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142)))) ((-891) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1117) |has| |#1| (-342)) ((-1183) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))))
-((-1705 (($) 11)) (-3976 (((-3 $ "failed") $) 13)) (-3987 (((-112) $) 10)) (** (($ $ (-892)) NIL) (($ $ (-747)) 18)))
-(((-702 |#1|) (-10 -8 (-15 -3976 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 -3987 ((-112) |#1|)) (-15 -1705 (|#1|)) (-15 ** (|#1| |#1| (-892)))) (-703)) (T -702))
-NIL
-(-10 -8 (-15 -3976 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 -3987 ((-112) |#1|)) (-15 -1705 (|#1|)) (-15 ** (|#1| |#1| (-892))))
-((-3833 (((-112) $ $) 7)) (-1705 (($) 18 T CONST)) (-3976 (((-3 $ "failed") $) 15)) (-3987 (((-112) $) 17)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3287 (($) 19 T CONST)) (-2388 (((-112) $ $) 6)) (** (($ $ (-892)) 13) (($ $ (-747)) 16)) (* (($ $ $) 14)))
+((-2985 (*1 *1) (-4 *1 (-699))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-699)) (-5 *2 (-112)))) (-2490 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) (-2489 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) (-3804 (*1 *1 *1) (|partial| -4 *1 (-699))) (-2488 (*1 *1 *1) (|partial| -4 *1 (-699))) (-2487 (*1 *1 *1) (|partial| -4 *1 (-699))))
+(-13 (-697) (-10 -8 (-15 (-2985) ($) -4294) (-15 -2493 ((-112) $)) (-15 -2490 ($ $ (-747))) (-15 -2489 ($ $ (-747))) (-15 ** ($ $ (-747))) (-15 -3804 ((-3 $ "failed") $)) (-15 -2488 ((-3 $ "failed") $)) (-15 -2487 ((-3 $ "failed") $))))
+(((-101) . T) ((-593 (-835)) . T) ((-697) . T) ((-1067) . T))
+((-3454 (((-747)) 34)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3490 (((-535) $) NIL) (((-400 (-535)) $) NIL) ((|#2| $) 22)) (-4185 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) 44)) (-3804 (((-3 $ "failed") $) 64)) (-3315 (($) 38)) (-3450 ((|#2| $) 20)) (-2492 (($) 17)) (-4153 (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-2491 (((-665 |#2|) (-1224 $) (-1 |#2| |#2|)) 59)) (-4313 (((-1224 |#2|) $) NIL) (($ (-1224 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2689 ((|#3| $) 32)) (-2123 (((-1224 $)) 29)))
+(((-700 |#1| |#2| |#3|) (-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -3315 (|#1|)) (-15 -3454 ((-747))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2491 ((-665 |#2|) (-1224 |#1|) (-1 |#2| |#2|))) (-15 -4185 ((-3 |#1| "failed") (-400 |#3|))) (-15 -4313 (|#1| |#3|)) (-15 -4185 (|#1| |#3|)) (-15 -2492 (|#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4313 (|#3| |#1|)) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -2123 ((-1224 |#1|))) (-15 -2689 (|#3| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|))) (-701 |#2| |#3|) (-170) (-1200 |#2|)) (T -700))
+((-3454 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-747)) (-5 *1 (-700 *3 *4 *5)) (-4 *3 (-701 *4 *5)))))
+(-10 -8 (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -3315 (|#1|)) (-15 -3454 ((-747))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2491 ((-665 |#2|) (-1224 |#1|) (-1 |#2| |#2|))) (-15 -4185 ((-3 |#1| "failed") (-400 |#3|))) (-15 -4313 (|#1| |#3|)) (-15 -4185 (|#1| |#3|)) (-15 -2492 (|#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4313 (|#3| |#1|)) (-15 -4313 (|#1| (-1224 |#2|))) (-15 -4313 ((-1224 |#2|) |#1|)) (-15 -2123 ((-1224 |#1|))) (-15 -2689 (|#3| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 91 (|has| |#1| (-356)))) (-2171 (($ $) 92 (|has| |#1| (-356)))) (-2169 (((-112) $) 94 (|has| |#1| (-356)))) (-1896 (((-665 |#1|) (-1224 $)) 44) (((-665 |#1|)) 59)) (-3672 ((|#1| $) 50)) (-1786 (((-1151 (-890) (-747)) (-535)) 144 (|has| |#1| (-343)))) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 111 (|has| |#1| (-356)))) (-4312 (((-398 $) $) 112 (|has| |#1| (-356)))) (-1700 (((-112) $ $) 102 (|has| |#1| (-356)))) (-3454 (((-747)) 85 (|has| |#1| (-361)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 166 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 164 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 163)) (-3490 (((-535) $) 167 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 165 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 162)) (-1906 (($ (-1224 |#1|) (-1224 $)) 46) (($ (-1224 |#1|)) 62)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-2883 (($ $ $) 106 (|has| |#1| (-356)))) (-1895 (((-665 |#1|) $ (-1224 $)) 51) (((-665 |#1|) $) 57)) (-2353 (((-665 (-535)) (-665 $)) 161 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 160 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 159) (((-665 |#1|) (-665 $)) 158)) (-4185 (($ |#2|) 155) (((-3 $ "failed") (-400 |#2|)) 152 (|has| |#1| (-356)))) (-3804 (((-3 $ "failed") $) 32)) (-3427 (((-890)) 52)) (-3315 (($) 88 (|has| |#1| (-361)))) (-2882 (($ $ $) 105 (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 100 (|has| |#1| (-356)))) (-3154 (($) 146 (|has| |#1| (-343)))) (-1791 (((-112) $) 147 (|has| |#1| (-343)))) (-1881 (($ $ (-747)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-4069 (((-112) $) 113 (|has| |#1| (-356)))) (-4114 (((-890) $) 149 (|has| |#1| (-343))) (((-808 (-890)) $) 135 (|has| |#1| (-343)))) (-2493 (((-112) $) 30)) (-3450 ((|#1| $) 49)) (-3786 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 109 (|has| |#1| (-356)))) (-2125 ((|#2| $) 42 (|has| |#1| (-356)))) (-2121 (((-890) $) 87 (|has| |#1| (-361)))) (-3401 ((|#2| $) 153)) (-2008 (($ (-618 $)) 98 (|has| |#1| (-356))) (($ $ $) 97 (|has| |#1| (-356)))) (-3576 (((-1124) $) 9)) (-2725 (($ $) 114 (|has| |#1| (-356)))) (-3787 (($) 140 (|has| |#1| (-343)) CONST)) (-2483 (($ (-890)) 86 (|has| |#1| (-361)))) (-3577 (((-1086) $) 10)) (-2492 (($) 157)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 99 (|has| |#1| (-356)))) (-3478 (($ (-618 $)) 96 (|has| |#1| (-356))) (($ $ $) 95 (|has| |#1| (-356)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) 143 (|has| |#1| (-343)))) (-4075 (((-398 $) $) 110 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 107 (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ $) 90 (|has| |#1| (-356)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 101 (|has| |#1| (-356)))) (-1699 (((-747) $) 103 (|has| |#1| (-356)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 104 (|has| |#1| (-356)))) (-4100 ((|#1| (-1224 $)) 45) ((|#1|) 58)) (-1882 (((-747) $) 148 (|has| |#1| (-343))) (((-3 (-747) "failed") $ $) 136 (|has| |#1| (-343)))) (-4153 (($ $) 134 (-3874 (-3179 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-747)) 132 (-3874 (-3179 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1142)) 130 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-618 (-1142))) 129 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-1142) (-747)) 128 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-618 (-1142)) (-618 (-747))) 127 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-747)) 120 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-356)))) (-2491 (((-665 |#1|) (-1224 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-3519 ((|#2|) 156)) (-1785 (($) 145 (|has| |#1| (-343)))) (-3558 (((-1224 |#1|) $ (-1224 $)) 48) (((-665 |#1|) (-1224 $) (-1224 $)) 47) (((-1224 |#1|) $) 64) (((-665 |#1|) (-1224 $)) 63)) (-4313 (((-1224 |#1|) $) 61) (($ (-1224 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 142 (|has| |#1| (-343)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-356))) (($ (-400 (-535))) 84 (-3874 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-535))))))) (-3023 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2689 ((|#2| $) 43)) (-3444 (((-747)) 28)) (-2123 (((-1224 $)) 65)) (-2170 (((-112) $ $) 93 (|has| |#1| (-356)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $) 133 (-3874 (-3179 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-747)) 131 (-3874 (-3179 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1142)) 126 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-618 (-1142))) 125 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-1142) (-747)) 124 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-618 (-1142)) (-618 (-747))) 123 (-3179 (|has| |#1| (-871 (-1142))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-747)) 122 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-356)))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 118 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 115 (|has| |#1| (-356)))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-535)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-535))) 116 (|has| |#1| (-356)))))
+(((-701 |#1| |#2|) (-138) (-170) (-1200 |t#1|)) (T -701))
+((-2492 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-701 *2 *3)) (-4 *3 (-1200 *2)))) (-3519 (*1 *2) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1200 *3)))) (-4185 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1200 *3)))) (-4313 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1200 *3)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1200 *3)))) (-4185 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-356)) (-4 *3 (-170)) (-4 *1 (-701 *3 *4)))) (-2491 (*1 *2 *3 *4) (-12 (-5 *3 (-1224 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-4 *1 (-701 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1200 *5)) (-5 *2 (-665 *5)))))
+(-13 (-403 |t#1| |t#2|) (-170) (-594 |t#2|) (-405 |t#1|) (-370 |t#1|) (-10 -8 (-15 -2492 ($)) (-15 -3519 (|t#2|)) (-15 -4185 ($ |t#2|)) (-15 -4313 ($ |t#2|)) (-15 -3401 (|t#2| $)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-356)) (-6 (-225 |t#1|)) (-15 -4185 ((-3 $ "failed") (-400 |t#2|))) (-15 -2491 ((-665 |t#1|) (-1224 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-101) . T) ((-111 #1# #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3874 (|has| |#1| (-343)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) . T) ((-594 |#2|) . T) ((-225 |#1|) |has| |#1| (-356)) ((-227) -3874 (|has| |#1| (-343)) (-12 (|has| |#1| (-227)) (|has| |#1| (-356)))) ((-237) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-283) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-300) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-356) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-395) |has| |#1| (-343)) ((-361) -3874 (|has| |#1| (-343)) (|has| |#1| (-361))) ((-343) |has| |#1| (-343)) ((-363 |#1| |#2|) . T) ((-403 |#1| |#2|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-542) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-624 #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-694 |#1|) . T) ((-694 $) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142)))) ((-892) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 #1#) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) |has| |#1| (-343)) ((-1183) -3874 (|has| |#1| (-343)) (|has| |#1| (-356))))
+((-3879 (($) 11)) (-3804 (((-3 $ "failed") $) 13)) (-2493 (((-112) $) 10)) (** (($ $ (-890)) NIL) (($ $ (-747)) 18)))
+(((-702 |#1|) (-10 -8 (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 -2493 ((-112) |#1|)) (-15 -3879 (|#1|)) (-15 ** (|#1| |#1| (-890)))) (-703)) (T -702))
+NIL
+(-10 -8 (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 -2493 ((-112) |#1|)) (-15 -3879 (|#1|)) (-15 ** (|#1| |#1| (-890))))
+((-2887 (((-112) $ $) 7)) (-3879 (($) 18 T CONST)) (-3804 (((-3 $ "failed") $) 15)) (-2493 (((-112) $) 17)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2985 (($) 19 T CONST)) (-3375 (((-112) $ $) 6)) (** (($ $ (-890)) 13) (($ $ (-747)) 16)) (* (($ $ $) 14)))
(((-703) (-138)) (T -703))
-((-3287 (*1 *1) (-4 *1 (-703))) (-1705 (*1 *1) (-4 *1 (-703))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-747)))) (-3976 (*1 *1 *1) (|partial| -4 *1 (-703))))
-(-13 (-1078) (-10 -8 (-15 (-3287) ($) -2588) (-15 -1705 ($) -2588) (-15 -3987 ((-112) $)) (-15 ** ($ $ (-747))) (-15 -3976 ((-3 $ "failed") $))))
-(((-101) . T) ((-593 (-834)) . T) ((-1078) . T) ((-1066) . T))
-((-1653 (((-2 (|:| -4040 (-411 |#2|)) (|:| |special| (-411 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1445 (((-2 (|:| -4040 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2993 ((|#2| (-400 |#2|) (-1 |#2| |#2|)) 13)) (-3702 (((-2 (|:| |poly| |#2|) (|:| -4040 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)) 47)))
-(((-704 |#1| |#2|) (-10 -7 (-15 -1445 ((-2 (|:| -4040 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1653 ((-2 (|:| -4040 (-411 |#2|)) (|:| |special| (-411 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2993 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -3702 ((-2 (|:| |poly| |#2|) (|:| -4040 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1201 |#1|)) (T -704))
-((-3702 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4040 (-400 *6)) (|:| |special| (-400 *6)))) (-5 *1 (-704 *5 *6)) (-5 *3 (-400 *6)))) (-2993 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1201 *5)) (-5 *1 (-704 *5 *2)) (-4 *5 (-356)))) (-1653 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1201 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -4040 (-411 *3)) (|:| |special| (-411 *3)))) (-5 *1 (-704 *5 *3)))) (-1445 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1201 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -4040 *3) (|:| |special| *3))) (-5 *1 (-704 *5 *3)))))
-(-10 -7 (-15 -1445 ((-2 (|:| -4040 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1653 ((-2 (|:| -4040 (-411 |#2|)) (|:| |special| (-411 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2993 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -3702 ((-2 (|:| |poly| |#2|) (|:| -4040 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|))))
-((-3880 ((|#7| (-621 |#5|) |#6|) NIL)) (-2796 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-705 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2796 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3880 (|#7| (-621 |#5|) |#6|))) (-823) (-769) (-769) (-1018) (-1018) (-920 |#4| |#2| |#1|) (-920 |#5| |#3| |#1|)) (T -705))
-((-3880 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *9)) (-4 *9 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *8 (-1018)) (-4 *2 (-920 *9 *7 *5)) (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-769)) (-4 *4 (-920 *8 *6 *5)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1018)) (-4 *9 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *2 (-920 *9 *7 *5)) (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-769)) (-4 *4 (-920 *8 *6 *5)))))
-(-10 -7 (-15 -2796 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3880 (|#7| (-621 |#5|) |#6|)))
-((-2796 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-706 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2796 (|#7| (-1 |#2| |#1|) |#6|))) (-823) (-823) (-769) (-769) (-1018) (-920 |#5| |#3| |#1|) (-920 |#5| |#4| |#2|)) (T -706))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-823)) (-4 *6 (-823)) (-4 *7 (-769)) (-4 *9 (-1018)) (-4 *2 (-920 *9 *8 *6)) (-5 *1 (-706 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-769)) (-4 *4 (-920 *9 *7 *5)))))
-(-10 -7 (-15 -2796 (|#7| (-1 |#2| |#1|) |#6|)))
-((-2120 (((-411 |#4|) |#4|) 41)))
-(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2120 ((-411 |#4|) |#4|))) (-769) (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $)) (-15 -3010 ((-3 $ "failed") (-1142))))) (-300) (-920 (-923 |#3|) |#1| |#2|)) (T -707))
-((-2120 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $)) (-15 -3010 ((-3 $ "failed") (-1142)))))) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-920 (-923 *6) *4 *5)))))
-(-10 -7 (-15 -2120 ((-411 |#4|) |#4|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2271 (((-621 (-836 |#1|)) $) NIL)) (-2082 (((-1138 $) $ (-836 |#1|)) NIL) (((-1138 |#2|) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-541)))) (-2408 (($ $) NIL (|has| |#2| (-541)))) (-2477 (((-112) $) NIL (|has| |#2| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 (-836 |#1|))) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-1912 (($ $) NIL (|has| |#2| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-836 |#1|) "failed") $) NIL)) (-2658 ((|#2| $) NIL) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-836 |#1|) $) NIL)) (-2252 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-2069 (($ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#2| (-880)))) (-3744 (($ $ |#2| (-521 (-836 |#1|)) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-2258 (($ (-1138 |#2|) (-836 |#1|)) NIL) (($ (-1138 $) (-836 |#1|)) NIL)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#2| (-521 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ (-836 |#1|)) NIL)) (-2856 (((-521 (-836 |#1|)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-621 (-747)) $ (-621 (-836 |#1|))) NIL)) (-2862 (($ $ $) NIL (|has| |#2| (-823)))) (-3574 (($ $ $) NIL (|has| |#2| (-823)))) (-4058 (($ (-1 (-521 (-836 |#1|)) (-521 (-836 |#1|))) $) NIL)) (-2796 (($ (-1 |#2| |#2|) $) NIL)) (-1790 (((-3 (-836 |#1|) "failed") $) NIL)) (-2027 (($ $) NIL)) (-2042 ((|#2| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2677 (((-1124) $) NIL)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -3577 (-747))) "failed") $) NIL)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) NIL)) (-2012 ((|#2| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#2| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#2| (-880)))) (-2038 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-541)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-836 |#1|) |#2|) NIL) (($ $ (-621 (-836 |#1|)) (-621 |#2|)) NIL) (($ $ (-836 |#1|) $) NIL) (($ $ (-621 (-836 |#1|)) (-621 $)) NIL)) (-3086 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-3455 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3068 (((-521 (-836 |#1|)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-621 (-747)) $ (-621 (-836 |#1|))) NIL)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-836 |#1|) (-594 (-525))) (|has| |#2| (-594 (-525)))))) (-1931 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-836 |#1|)) NIL) (($ $) NIL (|has| |#2| (-541))) (($ (-400 (-549))) NIL (-1536 (|has| |#2| (-38 (-400 (-549)))) (|has| |#2| (-1009 (-400 (-549))))))) (-3330 (((-621 |#2|) $) NIL)) (-2944 ((|#2| $ (-521 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#2| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#2| (-541)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2512 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#2| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#2| (-38 (-400 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-708 |#1| |#2|) (-920 |#2| (-521 (-836 |#1|)) (-836 |#1|)) (-621 (-1142)) (-1018)) (T -708))
-NIL
-(-920 |#2| (-521 (-836 |#1|)) (-836 |#1|))
-((-2208 (((-2 (|:| -3100 (-923 |#3|)) (|:| -3304 (-923 |#3|))) |#4|) 14)) (-1605 ((|#4| |#4| |#2|) 33)) (-2144 ((|#4| (-400 (-923 |#3|)) |#2|) 64)) (-3659 ((|#4| (-1138 (-923 |#3|)) |#2|) 77)) (-1754 ((|#4| (-1138 |#4|) |#2|) 51)) (-3543 ((|#4| |#4| |#2|) 54)) (-2120 (((-411 |#4|) |#4|) 40)))
-(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2208 ((-2 (|:| -3100 (-923 |#3|)) (|:| -3304 (-923 |#3|))) |#4|)) (-15 -3543 (|#4| |#4| |#2|)) (-15 -1754 (|#4| (-1138 |#4|) |#2|)) (-15 -1605 (|#4| |#4| |#2|)) (-15 -3659 (|#4| (-1138 (-923 |#3|)) |#2|)) (-15 -2144 (|#4| (-400 (-923 |#3|)) |#2|)) (-15 -2120 ((-411 |#4|) |#4|))) (-769) (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $)))) (-541) (-920 (-400 (-923 |#3|)) |#1| |#2|)) (T -709))
-((-2120 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))) (-4 *6 (-541)) (-5 *2 (-411 *3)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-920 (-400 (-923 *6)) *4 *5)))) (-2144 (*1 *2 *3 *4) (-12 (-4 *6 (-541)) (-4 *2 (-920 *3 *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) (-5 *3 (-400 (-923 *6))) (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))))) (-3659 (*1 *2 *3 *4) (-12 (-5 *3 (-1138 (-923 *6))) (-4 *6 (-541)) (-4 *2 (-920 (-400 (-923 *6)) *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))))) (-1605 (*1 *2 *2 *3) (-12 (-4 *4 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))) (-4 *5 (-541)) (-5 *1 (-709 *4 *3 *5 *2)) (-4 *2 (-920 (-400 (-923 *5)) *4 *3)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-1138 *2)) (-4 *2 (-920 (-400 (-923 *6)) *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))) (-4 *6 (-541)))) (-3543 (*1 *2 *2 *3) (-12 (-4 *4 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))) (-4 *5 (-541)) (-5 *1 (-709 *4 *3 *5 *2)) (-4 *2 (-920 (-400 (-923 *5)) *4 *3)))) (-2208 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))) (-4 *6 (-541)) (-5 *2 (-2 (|:| -3100 (-923 *6)) (|:| -3304 (-923 *6)))) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-920 (-400 (-923 *6)) *4 *5)))))
-(-10 -7 (-15 -2208 ((-2 (|:| -3100 (-923 |#3|)) (|:| -3304 (-923 |#3|))) |#4|)) (-15 -3543 (|#4| |#4| |#2|)) (-15 -1754 (|#4| (-1138 |#4|) |#2|)) (-15 -1605 (|#4| |#4| |#2|)) (-15 -3659 (|#4| (-1138 (-923 |#3|)) |#2|)) (-15 -2144 (|#4| (-400 (-923 |#3|)) |#2|)) (-15 -2120 ((-411 |#4|) |#4|)))
-((-2120 (((-411 |#4|) |#4|) 52)))
-(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2120 ((-411 |#4|) |#4|))) (-769) (-823) (-13 (-300) (-145)) (-920 (-400 |#3|) |#1| |#2|)) (T -710))
-((-2120 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-920 (-400 *6) *4 *5)))))
-(-10 -7 (-15 -2120 ((-411 |#4|) |#4|)))
-((-2796 (((-712 |#2| |#3|) (-1 |#2| |#1|) (-712 |#1| |#3|)) 18)))
-(((-711 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-712 |#2| |#3|) (-1 |#2| |#1|) (-712 |#1| |#3|)))) (-1018) (-1018) (-703)) (T -711))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-712 *5 *7)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-703)) (-5 *2 (-712 *6 *7)) (-5 *1 (-711 *5 *6 *7)))))
-(-10 -7 (-15 -2796 ((-712 |#2| |#3|) (-1 |#2| |#1|) (-712 |#1| |#3|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 28)) (-1480 (((-621 (-2 (|:| -1569 |#1|) (|:| -3525 |#2|))) $) 29)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3615 (((-747)) 20 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2658 ((|#2| $) NIL) ((|#1| $) NIL)) (-2069 (($ $) 79 (|has| |#2| (-823)))) (-3976 (((-3 $ "failed") $) 65)) (-3238 (($) 35 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) 55)) (-1298 (((-621 $) $) 39)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| |#2|) 16)) (-2796 (($ (-1 |#1| |#1|) $) 54)) (-2723 (((-892) $) 32 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-2027 ((|#2| $) 78 (|has| |#2| (-823)))) (-2042 ((|#1| $) 77 (|has| |#2| (-823)))) (-2677 (((-1124) $) NIL)) (-3491 (($ (-892)) 27 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 76) (($ (-549)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-621 (-2 (|:| -1569 |#1|) (|:| -3525 |#2|)))) 11)) (-3330 (((-621 |#1|) $) 41)) (-2944 ((|#1| $ |#2|) 88)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-3275 (($) 12 T CONST)) (-3287 (($) 33 T CONST)) (-2388 (((-112) $ $) 80)) (-2499 (($ $) 47) (($ $ $) NIL)) (-2485 (($ $ $) 26)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
-(((-712 |#1| |#2|) (-13 (-1018) (-1009 |#2|) (-1009 |#1|) (-10 -8 (-15 -2244 ($ |#1| |#2|)) (-15 -2944 (|#1| $ |#2|)) (-15 -3845 ($ (-621 (-2 (|:| -1569 |#1|) (|:| -3525 |#2|))))) (-15 -1480 ((-621 (-2 (|:| -1569 |#1|) (|:| -3525 |#2|))) $)) (-15 -2796 ($ (-1 |#1| |#1|) $)) (-15 -2427 ((-112) $)) (-15 -3330 ((-621 |#1|) $)) (-15 -1298 ((-621 $) $)) (-15 -3454 ((-747) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-823)) (PROGN (-15 -2027 (|#2| $)) (-15 -2042 (|#1| $)) (-15 -2069 ($ $))) |%noBranch|))) (-1018) (-703)) (T -712))
-((-2244 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-703)))) (-2944 (*1 *2 *1 *3) (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-703)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -1569 *3) (|:| -3525 *4)))) (-4 *3 (-1018)) (-4 *4 (-703)) (-5 *1 (-712 *3 *4)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| -1569 *3) (|:| -3525 *4)))) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-712 *3 *4)) (-4 *4 (-703)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-1298 (*1 *2 *1) (-12 (-5 *2 (-621 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-2027 (*1 *2 *1) (-12 (-4 *2 (-703)) (-4 *2 (-823)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1018)))) (-2042 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *3 (-703)))) (-2069 (*1 *1 *1) (-12 (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1018)) (-4 *3 (-703)))))
-(-13 (-1018) (-1009 |#2|) (-1009 |#1|) (-10 -8 (-15 -2244 ($ |#1| |#2|)) (-15 -2944 (|#1| $ |#2|)) (-15 -3845 ($ (-621 (-2 (|:| -1569 |#1|) (|:| -3525 |#2|))))) (-15 -1480 ((-621 (-2 (|:| -1569 |#1|) (|:| -3525 |#2|))) $)) (-15 -2796 ($ (-1 |#1| |#1|) $)) (-15 -2427 ((-112) $)) (-15 -3330 ((-621 |#1|) $)) (-15 -1298 ((-621 $) $)) (-15 -3454 ((-747) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-823)) (PROGN (-15 -2027 (|#2| $)) (-15 -2042 (|#1| $)) (-15 -2069 ($ $))) |%noBranch|)))
-((-3833 (((-112) $ $) 19)) (-1440 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3755 (($ $ $) 72)) (-4063 (((-112) $ $) 73)) (-1323 (((-112) $ (-747)) 8)) (-2787 (($ (-621 |#1|)) 68) (($) 67)) (-3069 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-2992 (($ $) 62)) (-3675 (($ $) 58 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-4204 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3812 (($ |#1| $) 57 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-1353 (((-112) $ $) 64)) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22)) (-1795 (($ $ $) 69)) (-2349 ((|#1| $) 39)) (-1709 (($ |#1| $) 40) (($ |#1| $ (-747)) 63)) (-3988 (((-1086) $) 21)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2629 ((|#1| $) 41)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3903 (((-621 (-2 (|:| -1792 |#1|) (|:| -3997 (-747)))) $) 61)) (-4142 (($ $ |#1|) 71) (($ $ $) 70)) (-4252 (($) 49) (($ (-621 |#1|)) 48)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-2844 (((-525) $) 59 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 50)) (-3845 (((-834) $) 18)) (-4118 (($ (-621 |#1|)) 66) (($) 65)) (-1765 (($ (-621 |#1|)) 42)) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20)) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-713 |#1|) (-138) (-1066)) (T -713))
-NIL
-(-13 (-671 |t#1|) (-1064 |t#1|))
-(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-593 (-834)) . T) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-671 |#1|) . T) ((-1064 |#1|) . T) ((-1066) . T) ((-1179) . T))
-((-3833 (((-112) $ $) NIL)) (-1440 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3755 (($ $ $) 79)) (-4063 (((-112) $ $) 83)) (-1323 (((-112) $ (-747)) NIL)) (-2787 (($ (-621 |#1|)) 24) (($) 16)) (-3069 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-2992 (($ $) 71)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-4204 (($ |#1| $) 61 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4336))) (($ |#1| $ (-549)) 62) (($ (-1 (-112) |#1|) $ (-549)) 65)) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (($ |#1| $ (-549)) 67) (($ (-1 (-112) |#1|) $ (-549)) 68)) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-2990 (((-621 |#1|) $) 32 (|has| $ (-6 -4336)))) (-1353 (((-112) $ $) 82)) (-1867 (($) 14) (($ |#1|) 26) (($ (-621 |#1|)) 21)) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#1|) $) 38)) (-2273 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1865 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 75)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-1795 (($ $ $) 77)) (-2349 ((|#1| $) 55)) (-1709 (($ |#1| $) 56) (($ |#1| $ (-747)) 72)) (-3988 (((-1086) $) NIL)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2629 ((|#1| $) 54)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 50)) (-1461 (($) 13)) (-3903 (((-621 (-2 (|:| -1792 |#1|) (|:| -3997 (-747)))) $) 48)) (-4142 (($ $ |#1|) NIL) (($ $ $) 78)) (-4252 (($) 15) (($ (-621 |#1|)) 23)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) 60 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) 66)) (-2844 (((-525) $) 36 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 20)) (-3845 (((-834) $) 44)) (-4118 (($ (-621 |#1|)) 25) (($) 17)) (-1765 (($ (-621 |#1|)) 22)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 81)) (-3774 (((-747) $) 59 (|has| $ (-6 -4336)))))
-(((-714 |#1|) (-13 (-713 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -1867 ($)) (-15 -1867 ($ |#1|)) (-15 -1867 ($ (-621 |#1|))) (-15 -1958 ((-621 |#1|) $)) (-15 -3812 ($ |#1| $ (-549))) (-15 -3812 ($ (-1 (-112) |#1|) $ (-549))) (-15 -4204 ($ |#1| $ (-549))) (-15 -4204 ($ (-1 (-112) |#1|) $ (-549))))) (-1066)) (T -714))
-((-1867 (*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-1066)))) (-1867 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-1066)))) (-1867 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-714 *3)))) (-1958 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-714 *3)) (-4 *3 (-1066)))) (-3812 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-714 *2)) (-4 *2 (-1066)))) (-3812 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1066)) (-5 *1 (-714 *4)))) (-4204 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-714 *2)) (-4 *2 (-1066)))) (-4204 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1066)) (-5 *1 (-714 *4)))))
-(-13 (-713 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -1867 ($)) (-15 -1867 ($ |#1|)) (-15 -1867 ($ (-621 |#1|))) (-15 -1958 ((-621 |#1|) $)) (-15 -3812 ($ |#1| $ (-549))) (-15 -3812 ($ (-1 (-112) |#1|) $ (-549))) (-15 -4204 ($ |#1| $ (-549))) (-15 -4204 ($ (-1 (-112) |#1|) $ (-549)))))
-((-4008 (((-1230) (-1124)) 8)))
-(((-715) (-10 -7 (-15 -4008 ((-1230) (-1124))))) (T -715))
-((-4008 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-715)))))
-(-10 -7 (-15 -4008 ((-1230) (-1124))))
-((-2334 (((-621 |#1|) (-621 |#1|) (-621 |#1|)) 10)))
-(((-716 |#1|) (-10 -7 (-15 -2334 ((-621 |#1|) (-621 |#1|) (-621 |#1|)))) (-823)) (T -716))
-((-2334 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-716 *3)))))
-(-10 -7 (-15 -2334 ((-621 |#1|) (-621 |#1|) (-621 |#1|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2271 (((-621 |#2|) $) 134)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 127 (|has| |#1| (-541)))) (-2408 (($ $) 126 (|has| |#1| (-541)))) (-2477 (((-112) $) 124 (|has| |#1| (-541)))) (-1663 (($ $) 83 (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) 66 (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) 19)) (-2134 (($ $) 65 (|has| |#1| (-38 (-400 (-549)))))) (-1639 (($ $) 82 (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) 67 (|has| |#1| (-38 (-400 (-549)))))) (-1685 (($ $) 81 (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) 68 (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) 17 T CONST)) (-2069 (($ $) 118)) (-3976 (((-3 $ "failed") $) 32)) (-1413 (((-923 |#1|) $ (-747)) 96) (((-923 |#1|) $ (-747) (-747)) 95)) (-3155 (((-112) $) 135)) (-1425 (($) 93 (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-747) $ |#2|) 98) (((-747) $ |#2| (-747)) 97)) (-3987 (((-112) $) 30)) (-3930 (($ $ (-549)) 64 (|has| |#1| (-38 (-400 (-549)))))) (-2427 (((-112) $) 116)) (-2244 (($ $ (-621 |#2|) (-621 (-521 |#2|))) 133) (($ $ |#2| (-521 |#2|)) 132) (($ |#1| (-521 |#2|)) 117) (($ $ |#2| (-747)) 100) (($ $ (-621 |#2|) (-621 (-747))) 99)) (-2796 (($ (-1 |#1| |#1|) $) 115)) (-3631 (($ $) 90 (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) 113)) (-2042 ((|#1| $) 112)) (-2677 (((-1124) $) 9)) (-1531 (($ $ |#2|) 94 (|has| |#1| (-38 (-400 (-549)))))) (-3988 (((-1086) $) 10)) (-2975 (($ $ (-747)) 101)) (-2038 (((-3 $ "failed") $ $) 128 (|has| |#1| (-541)))) (-2718 (($ $) 91 (|has| |#1| (-38 (-400 (-549)))))) (-2685 (($ $ |#2| $) 109) (($ $ (-621 |#2|) (-621 $)) 108) (($ $ (-621 (-287 $))) 107) (($ $ (-287 $)) 106) (($ $ $ $) 105) (($ $ (-621 $) (-621 $)) 104)) (-3455 (($ $ |#2|) 40) (($ $ (-621 |#2|)) 39) (($ $ |#2| (-747)) 38) (($ $ (-621 |#2|) (-621 (-747))) 37)) (-3068 (((-521 |#2|) $) 114)) (-1697 (($ $) 80 (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) 69 (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) 79 (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) 70 (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) 78 (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) 71 (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) 136)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-541))) (($ (-400 (-549))) 121 (|has| |#1| (-38 (-400 (-549)))))) (-2944 ((|#1| $ (-521 |#2|)) 119) (($ $ |#2| (-747)) 103) (($ $ (-621 |#2|) (-621 (-747))) 102)) (-3407 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-1723 (((-747)) 28)) (-1732 (($ $) 89 (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) 77 (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) 125 (|has| |#1| (-541)))) (-1708 (($ $) 88 (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) 76 (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) 87 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 75 (|has| |#1| (-38 (-400 (-549)))))) (-1933 (($ $) 86 (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) 74 (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) 85 (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) 73 (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) 84 (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) 72 (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ |#2|) 36) (($ $ (-621 |#2|)) 35) (($ $ |#2| (-747)) 34) (($ $ (-621 |#2|) (-621 (-747))) 33)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#1|) 120 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ $) 92 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 63 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 123 (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) 122 (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 111) (($ $ |#1|) 110)))
+((-2985 (*1 *1) (-4 *1 (-703))) (-3879 (*1 *1) (-4 *1 (-703))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-747)))) (-3804 (*1 *1 *1) (|partial| -4 *1 (-703))))
+(-13 (-1078) (-10 -8 (-15 (-2985) ($) -4294) (-15 -3879 ($) -4294) (-15 -2493 ((-112) $)) (-15 ** ($ $ (-747))) (-15 -3804 ((-3 $ "failed") $))))
+(((-101) . T) ((-593 (-835)) . T) ((-1078) . T) ((-1067) . T))
+((-2494 (((-2 (|:| -3413 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3760 (((-2 (|:| -3413 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2495 ((|#2| (-400 |#2|) (-1 |#2| |#2|)) 13)) (-3777 (((-2 (|:| |poly| |#2|) (|:| -3413 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)) 47)))
+(((-704 |#1| |#2|) (-10 -7 (-15 -3760 ((-2 (|:| -3413 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2494 ((-2 (|:| -3413 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2495 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -3777 ((-2 (|:| |poly| |#2|) (|:| -3413 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1200 |#1|)) (T -704))
+((-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3413 (-400 *6)) (|:| |special| (-400 *6)))) (-5 *1 (-704 *5 *6)) (-5 *3 (-400 *6)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1200 *5)) (-5 *1 (-704 *5 *2)) (-4 *5 (-356)))) (-2494 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3413 (-398 *3)) (|:| |special| (-398 *3)))) (-5 *1 (-704 *5 *3)))) (-3760 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3413 *3) (|:| |special| *3))) (-5 *1 (-704 *5 *3)))))
+(-10 -7 (-15 -3760 ((-2 (|:| -3413 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2494 ((-2 (|:| -3413 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2495 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -3777 ((-2 (|:| |poly| |#2|) (|:| -3413 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|))))
+((-2496 ((|#7| (-618 |#5|) |#6|) NIL)) (-4301 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-705 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4301 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2496 (|#7| (-618 |#5|) |#6|))) (-823) (-769) (-769) (-1018) (-1018) (-921 |#4| |#2| |#1|) (-921 |#5| |#3| |#1|)) (T -705))
+((-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *9)) (-4 *9 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *8 (-1018)) (-4 *2 (-921 *9 *7 *5)) (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-769)) (-4 *4 (-921 *8 *6 *5)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1018)) (-4 *9 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *2 (-921 *9 *7 *5)) (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-769)) (-4 *4 (-921 *8 *6 *5)))))
+(-10 -7 (-15 -4301 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2496 (|#7| (-618 |#5|) |#6|)))
+((-4301 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-706 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4301 (|#7| (-1 |#2| |#1|) |#6|))) (-823) (-823) (-769) (-769) (-1018) (-921 |#5| |#3| |#1|) (-921 |#5| |#4| |#2|)) (T -706))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-823)) (-4 *6 (-823)) (-4 *7 (-769)) (-4 *9 (-1018)) (-4 *2 (-921 *9 *8 *6)) (-5 *1 (-706 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-769)) (-4 *4 (-921 *9 *7 *5)))))
+(-10 -7 (-15 -4301 (|#7| (-1 |#2| |#1|) |#6|)))
+((-4075 (((-398 |#4|) |#4|) 41)))
+(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 |#4|) |#4|))) (-769) (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142))))) (-300) (-921 (-917 |#3|) |#1| |#2|)) (T -707))
+((-4075 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142)))))) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-921 (-917 *6) *4 *5)))))
+(-10 -7 (-15 -4075 ((-398 |#4|) |#4|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-836 |#1|)) $) NIL)) (-3407 (((-1136 $) $ (-836 |#1|)) NIL) (((-1136 |#2|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-2171 (($ $) NIL (|has| |#2| (-542)))) (-2169 (((-112) $) NIL (|has| |#2| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-836 |#1|))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4117 (($ $) NIL (|has| |#2| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-836 |#1|) #2#) $) NIL)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-836 |#1|) $) NIL)) (-4099 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#2| (-881)))) (-1716 (($ $ |#2| (-521 (-836 |#1|)) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#2|) (-836 |#1|)) NIL) (($ (-1136 $) (-836 |#1|)) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#2| (-521 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-836 |#1|)) NIL)) (-3141 (((-521 (-836 |#1|)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-618 (-747)) $ (-618 (-836 |#1|))) NIL)) (-3660 (($ $ $) NIL (|has| |#2| (-823)))) (-3661 (($ $ $) NIL (|has| |#2| (-823)))) (-1717 (($ (-1 (-521 (-836 |#1|)) (-521 (-836 |#1|))) $) NIL)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-3406 (((-3 (-836 |#1|) #3="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#2| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -2484 (-747))) #3#) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#2| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#2| (-881)))) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-836 |#1|) |#2|) NIL) (($ $ (-618 (-836 |#1|)) (-618 |#2|)) NIL) (($ $ (-836 |#1|) $) NIL) (($ $ (-618 (-836 |#1|)) (-618 $)) NIL)) (-4100 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-4153 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-4290 (((-521 (-836 |#1|)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-618 (-747)) $ (-618 (-836 |#1|))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-836 |#1|) (-594 (-524))) (|has| |#2| (-594 (-524)))))) (-3138 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) NIL) (($ (-836 |#1|)) NIL) (($ $) NIL (|has| |#2| (-542))) (($ (-400 (-535))) NIL (-3874 (|has| |#2| (-38 (-400 (-535)))) (|has| |#2| (-1009 (-400 (-535))))))) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-521 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-3023 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#2| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-836 |#1|)) NIL) (($ $ (-618 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-618 (-836 |#1|)) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#2| (-823)))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#2| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#2| (-38 (-400 (-535))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-708 |#1| |#2|) (-921 |#2| (-521 (-836 |#1|)) (-836 |#1|)) (-618 (-1142)) (-1018)) (T -708))
+NIL
+(-921 |#2| (-521 (-836 |#1|)) (-836 |#1|))
+((-2497 (((-2 (|:| -2724 (-917 |#3|)) (|:| -2166 (-917 |#3|))) |#4|) 14)) (-3307 ((|#4| |#4| |#2|) 33)) (-2500 ((|#4| (-400 (-917 |#3|)) |#2|) 64)) (-2499 ((|#4| (-1136 (-917 |#3|)) |#2|) 77)) (-2498 ((|#4| (-1136 |#4|) |#2|) 51)) (-3306 ((|#4| |#4| |#2|) 54)) (-4075 (((-398 |#4|) |#4|) 40)))
+(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2497 ((-2 (|:| -2724 (-917 |#3|)) (|:| -2166 (-917 |#3|))) |#4|)) (-15 -3306 (|#4| |#4| |#2|)) (-15 -2498 (|#4| (-1136 |#4|) |#2|)) (-15 -3307 (|#4| |#4| |#2|)) (-15 -2499 (|#4| (-1136 (-917 |#3|)) |#2|)) (-15 -2500 (|#4| (-400 (-917 |#3|)) |#2|)) (-15 -4075 ((-398 |#4|) |#4|))) (-769) (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)))) (-542) (-921 (-400 (-917 |#3|)) |#1| |#2|)) (T -709))
+((-4075 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) (-4 *6 (-542)) (-5 *2 (-398 *3)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-921 (-400 (-917 *6)) *4 *5)))) (-2500 (*1 *2 *3 *4) (-12 (-4 *6 (-542)) (-4 *2 (-921 *3 *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) (-5 *3 (-400 (-917 *6))) (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 (-917 *6))) (-4 *6 (-542)) (-4 *2 (-921 (-400 (-917 *6)) *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))))) (-3307 (*1 *2 *2 *3) (-12 (-4 *4 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) (-4 *5 (-542)) (-5 *1 (-709 *4 *3 *5 *2)) (-4 *2 (-921 (-400 (-917 *5)) *4 *3)))) (-2498 (*1 *2 *3 *4) (-12 (-5 *3 (-1136 *2)) (-4 *2 (-921 (-400 (-917 *6)) *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) (-4 *6 (-542)))) (-3306 (*1 *2 *2 *3) (-12 (-4 *4 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) (-4 *5 (-542)) (-5 *1 (-709 *4 *3 *5 *2)) (-4 *2 (-921 (-400 (-917 *5)) *4 *3)))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) (-4 *6 (-542)) (-5 *2 (-2 (|:| -2724 (-917 *6)) (|:| -2166 (-917 *6)))) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-921 (-400 (-917 *6)) *4 *5)))))
+(-10 -7 (-15 -2497 ((-2 (|:| -2724 (-917 |#3|)) (|:| -2166 (-917 |#3|))) |#4|)) (-15 -3306 (|#4| |#4| |#2|)) (-15 -2498 (|#4| (-1136 |#4|) |#2|)) (-15 -3307 (|#4| |#4| |#2|)) (-15 -2499 (|#4| (-1136 (-917 |#3|)) |#2|)) (-15 -2500 (|#4| (-400 (-917 |#3|)) |#2|)) (-15 -4075 ((-398 |#4|) |#4|)))
+((-4075 (((-398 |#4|) |#4|) 52)))
+(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 |#4|) |#4|))) (-769) (-823) (-13 (-300) (-145)) (-921 (-400 |#3|) |#1| |#2|)) (T -710))
+((-4075 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-921 (-400 *6) *4 *5)))))
+(-10 -7 (-15 -4075 ((-398 |#4|) |#4|)))
+((-4301 (((-712 |#2| |#3|) (-1 |#2| |#1|) (-712 |#1| |#3|)) 18)))
+(((-711 |#1| |#2| |#3|) (-10 -7 (-15 -4301 ((-712 |#2| |#3|) (-1 |#2| |#1|) (-712 |#1| |#3|)))) (-1018) (-1018) (-703)) (T -711))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-712 *5 *7)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-703)) (-5 *2 (-712 *6 *7)) (-5 *1 (-711 *5 *6 *7)))))
+(-10 -7 (-15 -4301 ((-712 |#2| |#3|) (-1 |#2| |#1|) (-712 |#1| |#3|))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 28)) (-4116 (((-618 (-2 (|:| -4296 |#1|) (|:| -4281 |#2|))) $) 29)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3454 (((-747)) 20 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #1="failed") $) 57) (((-3 |#1| #1#) $) 60)) (-3490 ((|#2| $) NIL) ((|#1| $) NIL)) (-4302 (($ $) 79 (|has| |#2| (-823)))) (-3804 (((-3 $ "failed") $) 65)) (-3315 (($) 35 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) 55)) (-3142 (((-618 $) $) 39)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| |#2|) 16)) (-4301 (($ (-1 |#1| |#1|) $) 54)) (-2121 (((-890) $) 32 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3215 ((|#2| $) 78 (|has| |#2| (-823)))) (-3508 ((|#1| $) 77 (|has| |#2| (-823)))) (-3576 (((-1124) $) NIL)) (-2483 (($ (-890)) 27 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 76) (($ (-535)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-618 (-2 (|:| -4296 |#1|) (|:| -4281 |#2|)))) 11)) (-4160 (((-618 |#1|) $) 41)) (-4023 ((|#1| $ |#2|) 88)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-2979 (($) 12 T CONST)) (-2985 (($) 33 T CONST)) (-3375 (((-112) $ $) 80)) (-4180 (($ $) 47) (($ $ $) NIL)) (-4182 (($ $ $) 26)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
+(((-712 |#1| |#2|) (-13 (-1018) (-1009 |#2|) (-1009 |#1|) (-10 -8 (-15 -3214 ($ |#1| |#2|)) (-15 -4023 (|#1| $ |#2|)) (-15 -4300 ($ (-618 (-2 (|:| -4296 |#1|) (|:| -4281 |#2|))))) (-15 -4116 ((-618 (-2 (|:| -4296 |#1|) (|:| -4281 |#2|))) $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (-15 -4280 ((-112) $)) (-15 -4160 ((-618 |#1|) $)) (-15 -3142 ((-618 $) $)) (-15 -2501 ((-747) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-823)) (PROGN (-15 -3215 (|#2| $)) (-15 -3508 (|#1| $)) (-15 -4302 ($ $))) |%noBranch|))) (-1018) (-703)) (T -712))
+((-3214 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-703)))) (-4023 (*1 *2 *1 *3) (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-703)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -4296 *3) (|:| -4281 *4)))) (-4 *3 (-1018)) (-4 *4 (-703)) (-5 *1 (-712 *3 *4)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| -4296 *3) (|:| -4281 *4)))) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-712 *3 *4)) (-4 *4 (-703)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-618 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-3215 (*1 *2 *1) (-12 (-4 *2 (-703)) (-4 *2 (-823)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1018)))) (-3508 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *3 (-703)))) (-4302 (*1 *1 *1) (-12 (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1018)) (-4 *3 (-703)))))
+(-13 (-1018) (-1009 |#2|) (-1009 |#1|) (-10 -8 (-15 -3214 ($ |#1| |#2|)) (-15 -4023 (|#1| $ |#2|)) (-15 -4300 ($ (-618 (-2 (|:| -4296 |#1|) (|:| -4281 |#2|))))) (-15 -4116 ((-618 (-2 (|:| -4296 |#1|) (|:| -4281 |#2|))) $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (-15 -4280 ((-112) $)) (-15 -4160 ((-618 |#1|) $)) (-15 -3142 ((-618 $) $)) (-15 -2501 ((-747) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-823)) (PROGN (-15 -3215 (|#2| $)) (-15 -3508 (|#1| $)) (-15 -4302 ($ $))) |%noBranch|)))
+((-2887 (((-112) $ $) NIL)) (-3568 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3570 (($ $ $) 79)) (-3569 (((-112) $ $) 83)) (-1264 (((-112) $ (-747)) NIL)) (-3573 (($ (-618 |#1|)) 24) (($) 16)) (-1626 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2446 (($ $) 71)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) 61 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4336))) (($ |#1| $ (-535)) 62) (($ (-1 (-112) |#1|) $ (-535)) 65)) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (($ |#1| $ (-535)) 67) (($ (-1 (-112) |#1|) $ (-535)) 68)) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 32 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) 82)) (-2503 (($) 14) (($ |#1|) 26) (($ (-618 |#1|)) 21)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) 38)) (-3579 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 75)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3572 (($ $ $) 77)) (-1326 ((|#1| $) 55)) (-3953 (($ |#1| $) 56) (($ |#1| $ (-747)) 72)) (-3577 (((-1086) $) NIL)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1327 ((|#1| $) 54)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 50)) (-3911 (($) 13)) (-2445 (((-618 (-2 (|:| -2184 |#1|) (|:| -2064 (-747)))) $) 48)) (-3571 (($ $ |#1|) NIL) (($ $ $) 78)) (-1518 (($) 15) (($ (-618 |#1|)) 23)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) 60 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 66)) (-4313 (((-524) $) 36 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 20)) (-4300 (((-835) $) 44)) (-3574 (($ (-618 |#1|)) 25) (($) 17)) (-1328 (($ (-618 |#1|)) 22)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 81)) (-4299 (((-747) $) 59 (|has| $ (-6 -4336)))))
+(((-713 |#1|) (-13 (-714 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -2503 ($)) (-15 -2503 ($ |#1|)) (-15 -2503 ($ (-618 |#1|))) (-15 -2502 ((-618 |#1|) $)) (-15 -3748 ($ |#1| $ (-535))) (-15 -3748 ($ (-1 (-112) |#1|) $ (-535))) (-15 -3747 ($ |#1| $ (-535))) (-15 -3747 ($ (-1 (-112) |#1|) $ (-535))))) (-1067)) (T -713))
+((-2503 (*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-1067)))) (-2503 (*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-1067)))) (-2503 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-713 *3)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-713 *3)) (-4 *3 (-1067)))) (-3748 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-713 *2)) (-4 *2 (-1067)))) (-3748 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-535)) (-4 *4 (-1067)) (-5 *1 (-713 *4)))) (-3747 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-713 *2)) (-4 *2 (-1067)))) (-3747 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-535)) (-4 *4 (-1067)) (-5 *1 (-713 *4)))))
+(-13 (-714 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -2503 ($)) (-15 -2503 ($ |#1|)) (-15 -2503 ($ (-618 |#1|))) (-15 -2502 ((-618 |#1|) $)) (-15 -3748 ($ |#1| $ (-535))) (-15 -3748 ($ (-1 (-112) |#1|) $ (-535))) (-15 -3747 ($ |#1| $ (-535))) (-15 -3747 ($ (-1 (-112) |#1|) $ (-535)))))
+((-2887 (((-112) $ $) 19)) (-3568 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3570 (($ $ $) 72)) (-3569 (((-112) $ $) 73)) (-1264 (((-112) $ (-747)) 8)) (-3573 (($ (-618 |#1|)) 68) (($) 67)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2446 (($ $) 62)) (-1394 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) 64)) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22)) (-3572 (($ $ $) 69)) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40) (($ |#1| $ (-747)) 63)) (-3577 (((-1086) $) 21)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2445 (((-618 (-2 (|:| -2184 |#1|) (|:| -2064 (-747)))) $) 61)) (-3571 (($ $ |#1|) 71) (($ $ $) 70)) (-1518 (($) 49) (($ (-618 |#1|)) 48)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 50)) (-4300 (((-835) $) 18)) (-3574 (($ (-618 |#1|)) 66) (($) 65)) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20)) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-714 |#1|) (-138) (-1067)) (T -714))
+NIL
+(-13 (-671 |t#1|) (-1065 |t#1|))
+(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-593 (-835)) . T) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-671 |#1|) . T) ((-1065 |#1|) . T) ((-1067) . T) ((-1178) . T))
+((-2504 (((-1230) (-1124)) 8)))
+(((-715) (-10 -7 (-15 -2504 ((-1230) (-1124))))) (T -715))
+((-2504 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-715)))))
+(-10 -7 (-15 -2504 ((-1230) (-1124))))
+((-2505 (((-618 |#1|) (-618 |#1|) (-618 |#1|)) 10)))
+(((-716 |#1|) (-10 -7 (-15 -2505 ((-618 |#1|) (-618 |#1|) (-618 |#1|)))) (-823)) (T -716))
+((-2505 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-716 *3)))))
+(-10 -7 (-15 -2505 ((-618 |#1|) (-618 |#1|) (-618 |#1|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 |#2|) $) 134)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 127 (|has| |#1| (-542)))) (-2171 (($ $) 126 (|has| |#1| (-542)))) (-2169 (((-112) $) 124 (|has| |#1| (-542)))) (-3829 (($ $) 83 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 66 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) 19)) (-3358 (($ $) 65 (|has| |#1| (-38 (-400 (-535)))))) (-3827 (($ $) 82 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 67 (|has| |#1| (-38 (-400 (-535)))))) (-3831 (($ $) 81 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 68 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) 17 T CONST)) (-4302 (($ $) 118)) (-3804 (((-3 $ "failed") $) 32)) (-4157 (((-917 |#1|) $ (-747)) 96) (((-917 |#1|) $ (-747) (-747)) 95)) (-3213 (((-112) $) 135)) (-3973 (($) 93 (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-747) $ |#2|) 98) (((-747) $ |#2| (-747)) 97)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 64 (|has| |#1| (-38 (-400 (-535)))))) (-4280 (((-112) $) 116)) (-3214 (($ $ (-618 |#2|) (-618 (-521 |#2|))) 133) (($ $ |#2| (-521 |#2|)) 132) (($ |#1| (-521 |#2|)) 117) (($ $ |#2| (-747)) 100) (($ $ (-618 |#2|) (-618 (-747))) 99)) (-4301 (($ (-1 |#1| |#1|) $) 115)) (-4285 (($ $) 90 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) 113)) (-3508 ((|#1| $) 112)) (-3576 (((-1124) $) 9)) (-4155 (($ $ |#2|) 94 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) 10)) (-4111 (($ $ (-747)) 101)) (-3803 (((-3 $ "failed") $ $) 128 (|has| |#1| (-542)))) (-4286 (($ $) 91 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (($ $ |#2| $) 109) (($ $ (-618 |#2|) (-618 $)) 108) (($ $ (-618 (-286 $))) 107) (($ $ (-286 $)) 106) (($ $ $ $) 105) (($ $ (-618 $) (-618 $)) 104)) (-4153 (($ $ |#2|) 40) (($ $ (-618 |#2|)) 39) (($ $ |#2| (-747)) 38) (($ $ (-618 |#2|) (-618 (-747))) 37)) (-4290 (((-521 |#2|) $) 114)) (-3832 (($ $) 80 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 69 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 79 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 70 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 78 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 71 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 136)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-542))) (($ (-400 (-535))) 121 (|has| |#1| (-38 (-400 (-535)))))) (-4023 ((|#1| $ (-521 |#2|)) 119) (($ $ |#2| (-747)) 103) (($ $ (-618 |#2|) (-618 (-747))) 102)) (-3023 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-3835 (($ $) 89 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 77 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) 125 (|has| |#1| (-542)))) (-3833 (($ $) 88 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 76 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 87 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 75 (|has| |#1| (-38 (-400 (-535)))))) (-3838 (($ $) 86 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 74 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 85 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 73 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 84 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 72 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ |#2|) 36) (($ $ (-618 |#2|)) 35) (($ $ |#2| (-747)) 34) (($ $ (-618 |#2|) (-618 (-747))) 33)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 120 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ $) 92 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 63 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 123 (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) 122 (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 111) (($ $ |#1|) 110)))
(((-717 |#1| |#2|) (-138) (-1018) (-823)) (T -717))
-((-2944 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-823)))) (-2944 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *5)) (-5 *3 (-621 (-747))) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)))) (-2975 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-717 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-823)))) (-2244 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-823)))) (-2244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *5)) (-5 *3 (-621 (-747))) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)))) (-2078 (*1 *2 *1 *3) (-12 (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *2 (-747)))) (-2078 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-747)) (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823)))) (-1413 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)) (-5 *2 (-923 *4)))) (-1413 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)) (-5 *2 (-923 *4)))) (-1531 (*1 *1 *1 *2) (-12 (-4 *1 (-717 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823)) (-4 *3 (-38 (-400 (-549)))))))
-(-13 (-871 |t#2|) (-944 |t#1| (-521 |t#2|) |t#2|) (-505 |t#2| $) (-302 $) (-10 -8 (-15 -2944 ($ $ |t#2| (-747))) (-15 -2944 ($ $ (-621 |t#2|) (-621 (-747)))) (-15 -2975 ($ $ (-747))) (-15 -2244 ($ $ |t#2| (-747))) (-15 -2244 ($ $ (-621 |t#2|) (-621 (-747)))) (-15 -2078 ((-747) $ |t#2|)) (-15 -2078 ((-747) $ |t#2| (-747))) (-15 -1413 ((-923 |t#1|) $ (-747))) (-15 -1413 ((-923 |t#1|) $ (-747) (-747))) (IF (|has| |t#1| (-38 (-400 (-549)))) (PROGN (-15 -1531 ($ $ |t#2|)) (-6 (-973)) (-6 (-1164))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-521 |#2|)) . T) ((-25) . T) ((-38 #1=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-35) |has| |#1| (-38 (-400 (-549)))) ((-94) |has| |#1| (-38 (-400 (-549)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-277) |has| |#1| (-38 (-400 (-549)))) ((-283) |has| |#1| (-541)) ((-302 $) . T) ((-484) |has| |#1| (-38 (-400 (-549)))) ((-505 |#2| $) . T) ((-505 $ $) . T) ((-541) |has| |#1| (-541)) ((-624 #1#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) . T) ((-871 |#2|) . T) ((-944 |#1| #0# |#2|) . T) ((-973) |has| |#1| (-38 (-400 (-549)))) ((-1024 #1#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1164) |has| |#1| (-38 (-400 (-549)))) ((-1167) |has| |#1| (-38 (-400 (-549)))))
-((-2120 (((-411 (-1138 |#4|)) (-1138 |#4|)) 30) (((-411 |#4|) |#4|) 26)))
-(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2120 ((-411 |#4|) |#4|)) (-15 -2120 ((-411 (-1138 |#4|)) (-1138 |#4|)))) (-823) (-769) (-13 (-300) (-145)) (-920 |#3| |#2| |#1|)) (T -718))
-((-2120 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-920 *6 *5 *4)) (-5 *2 (-411 (-1138 *7))) (-5 *1 (-718 *4 *5 *6 *7)) (-5 *3 (-1138 *7)))) (-2120 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-920 *6 *5 *4)))))
-(-10 -7 (-15 -2120 ((-411 |#4|) |#4|)) (-15 -2120 ((-411 (-1138 |#4|)) (-1138 |#4|))))
-((-2173 (((-411 |#4|) |#4| |#2|) 120)) (-2602 (((-411 |#4|) |#4|) NIL)) (-3513 (((-411 (-1138 |#4|)) (-1138 |#4|)) 111) (((-411 |#4|) |#4|) 41)) (-2800 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-621 (-2 (|:| -2120 (-1138 |#4|)) (|:| -3577 (-549)))))) (-1138 |#4|) (-621 |#2|) (-621 (-621 |#3|))) 69)) (-1776 (((-1138 |#3|) (-1138 |#3|) (-549)) 139)) (-3115 (((-621 (-747)) (-1138 |#4|) (-621 |#2|) (-747)) 61)) (-2546 (((-3 (-621 (-1138 |#4|)) "failed") (-1138 |#4|) (-1138 |#3|) (-1138 |#3|) |#4| (-621 |#2|) (-621 (-747)) (-621 |#3|)) 65)) (-4182 (((-2 (|:| |upol| (-1138 |#3|)) (|:| |Lval| (-621 |#3|)) (|:| |Lfact| (-621 (-2 (|:| -2120 (-1138 |#3|)) (|:| -3577 (-549))))) (|:| |ctpol| |#3|)) (-1138 |#4|) (-621 |#2|) (-621 (-621 |#3|))) 26)) (-2957 (((-2 (|:| -4267 (-1138 |#4|)) (|:| |polval| (-1138 |#3|))) (-1138 |#4|) (-1138 |#3|) (-549)) 57)) (-3004 (((-549) (-621 (-2 (|:| -2120 (-1138 |#3|)) (|:| -3577 (-549))))) 136)) (-3386 ((|#4| (-549) (-411 |#4|)) 58)) (-4009 (((-112) (-621 (-2 (|:| -2120 (-1138 |#3|)) (|:| -3577 (-549)))) (-621 (-2 (|:| -2120 (-1138 |#3|)) (|:| -3577 (-549))))) NIL)))
-(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3513 ((-411 |#4|) |#4|)) (-15 -3513 ((-411 (-1138 |#4|)) (-1138 |#4|))) (-15 -2602 ((-411 |#4|) |#4|)) (-15 -3004 ((-549) (-621 (-2 (|:| -2120 (-1138 |#3|)) (|:| -3577 (-549)))))) (-15 -2173 ((-411 |#4|) |#4| |#2|)) (-15 -2957 ((-2 (|:| -4267 (-1138 |#4|)) (|:| |polval| (-1138 |#3|))) (-1138 |#4|) (-1138 |#3|) (-549))) (-15 -2800 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-621 (-2 (|:| -2120 (-1138 |#4|)) (|:| -3577 (-549)))))) (-1138 |#4|) (-621 |#2|) (-621 (-621 |#3|)))) (-15 -4182 ((-2 (|:| |upol| (-1138 |#3|)) (|:| |Lval| (-621 |#3|)) (|:| |Lfact| (-621 (-2 (|:| -2120 (-1138 |#3|)) (|:| -3577 (-549))))) (|:| |ctpol| |#3|)) (-1138 |#4|) (-621 |#2|) (-621 (-621 |#3|)))) (-15 -3386 (|#4| (-549) (-411 |#4|))) (-15 -4009 ((-112) (-621 (-2 (|:| -2120 (-1138 |#3|)) (|:| -3577 (-549)))) (-621 (-2 (|:| -2120 (-1138 |#3|)) (|:| -3577 (-549)))))) (-15 -2546 ((-3 (-621 (-1138 |#4|)) "failed") (-1138 |#4|) (-1138 |#3|) (-1138 |#3|) |#4| (-621 |#2|) (-621 (-747)) (-621 |#3|))) (-15 -3115 ((-621 (-747)) (-1138 |#4|) (-621 |#2|) (-747))) (-15 -1776 ((-1138 |#3|) (-1138 |#3|) (-549)))) (-769) (-823) (-300) (-920 |#3| |#1| |#2|)) (T -719))
-((-1776 (*1 *2 *2 *3) (-12 (-5 *2 (-1138 *6)) (-5 *3 (-549)) (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))) (-3115 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1138 *9)) (-5 *4 (-621 *7)) (-4 *7 (-823)) (-4 *9 (-920 *8 *6 *7)) (-4 *6 (-769)) (-4 *8 (-300)) (-5 *2 (-621 (-747))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *5 (-747)))) (-2546 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1138 *11)) (-5 *6 (-621 *10)) (-5 *7 (-621 (-747))) (-5 *8 (-621 *11)) (-4 *10 (-823)) (-4 *11 (-300)) (-4 *9 (-769)) (-4 *5 (-920 *11 *9 *10)) (-5 *2 (-621 (-1138 *5))) (-5 *1 (-719 *9 *10 *11 *5)) (-5 *3 (-1138 *5)))) (-4009 (*1 *2 *3 *3) (-12 (-5 *3 (-621 (-2 (|:| -2120 (-1138 *6)) (|:| -3577 (-549))))) (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *3 (-549)) (-5 *4 (-411 *2)) (-4 *2 (-920 *7 *5 *6)) (-5 *1 (-719 *5 *6 *7 *2)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-300)))) (-4182 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1138 *9)) (-5 *4 (-621 *7)) (-5 *5 (-621 (-621 *8))) (-4 *7 (-823)) (-4 *8 (-300)) (-4 *9 (-920 *8 *6 *7)) (-4 *6 (-769)) (-5 *2 (-2 (|:| |upol| (-1138 *8)) (|:| |Lval| (-621 *8)) (|:| |Lfact| (-621 (-2 (|:| -2120 (-1138 *8)) (|:| -3577 (-549))))) (|:| |ctpol| *8))) (-5 *1 (-719 *6 *7 *8 *9)))) (-2800 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-621 *7)) (-5 *5 (-621 (-621 *8))) (-4 *7 (-823)) (-4 *8 (-300)) (-4 *6 (-769)) (-4 *9 (-920 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-621 (-2 (|:| -2120 (-1138 *9)) (|:| -3577 (-549))))))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1138 *9)))) (-2957 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-549)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-300)) (-4 *9 (-920 *8 *6 *7)) (-5 *2 (-2 (|:| -4267 (-1138 *9)) (|:| |polval| (-1138 *8)))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1138 *9)) (-5 *4 (-1138 *8)))) (-2173 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-719 *5 *4 *6 *3)) (-4 *3 (-920 *6 *5 *4)))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -2120 (-1138 *6)) (|:| -3577 (-549))))) (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-549)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))) (-2602 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-920 *6 *4 *5)))) (-3513 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-411 (-1138 *7))) (-5 *1 (-719 *4 *5 *6 *7)) (-5 *3 (-1138 *7)))) (-3513 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-920 *6 *4 *5)))))
-(-10 -7 (-15 -3513 ((-411 |#4|) |#4|)) (-15 -3513 ((-411 (-1138 |#4|)) (-1138 |#4|))) (-15 -2602 ((-411 |#4|) |#4|)) (-15 -3004 ((-549) (-621 (-2 (|:| -2120 (-1138 |#3|)) (|:| -3577 (-549)))))) (-15 -2173 ((-411 |#4|) |#4| |#2|)) (-15 -2957 ((-2 (|:| -4267 (-1138 |#4|)) (|:| |polval| (-1138 |#3|))) (-1138 |#4|) (-1138 |#3|) (-549))) (-15 -2800 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-621 (-2 (|:| -2120 (-1138 |#4|)) (|:| -3577 (-549)))))) (-1138 |#4|) (-621 |#2|) (-621 (-621 |#3|)))) (-15 -4182 ((-2 (|:| |upol| (-1138 |#3|)) (|:| |Lval| (-621 |#3|)) (|:| |Lfact| (-621 (-2 (|:| -2120 (-1138 |#3|)) (|:| -3577 (-549))))) (|:| |ctpol| |#3|)) (-1138 |#4|) (-621 |#2|) (-621 (-621 |#3|)))) (-15 -3386 (|#4| (-549) (-411 |#4|))) (-15 -4009 ((-112) (-621 (-2 (|:| -2120 (-1138 |#3|)) (|:| -3577 (-549)))) (-621 (-2 (|:| -2120 (-1138 |#3|)) (|:| -3577 (-549)))))) (-15 -2546 ((-3 (-621 (-1138 |#4|)) "failed") (-1138 |#4|) (-1138 |#3|) (-1138 |#3|) |#4| (-621 |#2|) (-621 (-747)) (-621 |#3|))) (-15 -3115 ((-621 (-747)) (-1138 |#4|) (-621 |#2|) (-747))) (-15 -1776 ((-1138 |#3|) (-1138 |#3|) (-549))))
-((-2377 (($ $ (-892)) 12)))
-(((-720 |#1| |#2|) (-10 -8 (-15 -2377 (|#1| |#1| (-892)))) (-721 |#2|) (-170)) (T -720))
-NIL
-(-10 -8 (-15 -2377 (|#1| |#1| (-892))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2353 (($ $ (-892)) 28)) (-2377 (($ $ (-892)) 33)) (-2881 (($ $ (-892)) 29)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-1911 (($ $ $) 25)) (-3845 (((-834) $) 11)) (-4172 (($ $ $ $) 26)) (-1892 (($ $ $) 24)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 30)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-4023 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-823)))) (-4023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *5)) (-5 *3 (-618 (-747))) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-717 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-823)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-823)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *5)) (-5 *3 (-618 (-747))) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)))) (-4114 (*1 *2 *1 *3) (-12 (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *2 (-747)))) (-4114 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-747)) (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823)))) (-4157 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)) (-5 *2 (-917 *4)))) (-4157 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)) (-5 *2 (-917 *4)))) (-4155 (*1 *1 *1 *2) (-12 (-4 *1 (-717 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823)) (-4 *3 (-38 (-400 (-535)))))))
+(-13 (-871 |t#2|) (-944 |t#1| (-521 |t#2|) |t#2|) (-505 |t#2| $) (-302 $) (-10 -8 (-15 -4023 ($ $ |t#2| (-747))) (-15 -4023 ($ $ (-618 |t#2|) (-618 (-747)))) (-15 -4111 ($ $ (-747))) (-15 -3214 ($ $ |t#2| (-747))) (-15 -3214 ($ $ (-618 |t#2|) (-618 (-747)))) (-15 -4114 ((-747) $ |t#2|)) (-15 -4114 ((-747) $ |t#2| (-747))) (-15 -4157 ((-917 |t#1|) $ (-747))) (-15 -4157 ((-917 |t#1|) $ (-747) (-747))) (IF (|has| |t#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $ |t#2|)) (-6 (-973)) (-6 (-1164))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-521 |#2|)) . T) ((-25) . T) ((-38 #2=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-35) |has| |#1| (-38 (-400 (-535)))) ((-94) |has| |#1| (-38 (-400 (-535)))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-277) |has| |#1| (-38 (-400 (-535)))) ((-283) |has| |#1| (-542)) ((-302 $) . T) ((-484) |has| |#1| (-38 (-400 (-535)))) ((-505 |#2| $) . T) ((-505 $ $) . T) ((-542) |has| |#1| (-542)) ((-624 #2#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #2#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) . T) ((-871 |#2|) . T) ((-944 |#1| #1# |#2|) . T) ((-973) |has| |#1| (-38 (-400 (-535)))) ((-1024 #2#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1164) |has| |#1| (-38 (-400 (-535)))) ((-1167) |has| |#1| (-38 (-400 (-535)))))
+((-4075 (((-398 (-1136 |#4|)) (-1136 |#4|)) 30) (((-398 |#4|) |#4|) 26)))
+(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 |#4|) |#4|)) (-15 -4075 ((-398 (-1136 |#4|)) (-1136 |#4|)))) (-823) (-769) (-13 (-300) (-145)) (-921 |#3| |#2| |#1|)) (T -718))
+((-4075 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-921 *6 *5 *4)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-718 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-921 *6 *5 *4)))))
+(-10 -7 (-15 -4075 ((-398 |#4|) |#4|)) (-15 -4075 ((-398 (-1136 |#4|)) (-1136 |#4|))))
+((-2508 (((-398 |#4|) |#4| |#2|) 120)) (-2506 (((-398 |#4|) |#4|) NIL)) (-4312 (((-398 (-1136 |#4|)) (-1136 |#4|)) 111) (((-398 |#4|) |#4|) 41)) (-2510 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-618 (-2 (|:| -4075 (-1136 |#4|)) (|:| -2484 (-535)))))) (-1136 |#4|) (-618 |#2|) (-618 (-618 |#3|))) 69)) (-2514 (((-1136 |#3|) (-1136 |#3|) (-535)) 139)) (-2513 (((-618 (-747)) (-1136 |#4|) (-618 |#2|) (-747)) 61)) (-3401 (((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-1136 |#3|) (-1136 |#3|) |#4| (-618 |#2|) (-618 (-747)) (-618 |#3|)) 65)) (-2511 (((-2 (|:| |upol| (-1136 |#3|)) (|:| |Lval| (-618 |#3|)) (|:| |Lfact| (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535))))) (|:| |ctpol| |#3|)) (-1136 |#4|) (-618 |#2|) (-618 (-618 |#3|))) 26)) (-2509 (((-2 (|:| -2115 (-1136 |#4|)) (|:| |polval| (-1136 |#3|))) (-1136 |#4|) (-1136 |#3|) (-535)) 57)) (-2507 (((-535) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535))))) 136)) (-2512 ((|#4| (-535) (-398 |#4|)) 58)) (-3699 (((-112) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535))))) NIL)))
+(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4312 ((-398 |#4|) |#4|)) (-15 -4312 ((-398 (-1136 |#4|)) (-1136 |#4|))) (-15 -2506 ((-398 |#4|) |#4|)) (-15 -2507 ((-535) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))))) (-15 -2508 ((-398 |#4|) |#4| |#2|)) (-15 -2509 ((-2 (|:| -2115 (-1136 |#4|)) (|:| |polval| (-1136 |#3|))) (-1136 |#4|) (-1136 |#3|) (-535))) (-15 -2510 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-618 (-2 (|:| -4075 (-1136 |#4|)) (|:| -2484 (-535)))))) (-1136 |#4|) (-618 |#2|) (-618 (-618 |#3|)))) (-15 -2511 ((-2 (|:| |upol| (-1136 |#3|)) (|:| |Lval| (-618 |#3|)) (|:| |Lfact| (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535))))) (|:| |ctpol| |#3|)) (-1136 |#4|) (-618 |#2|) (-618 (-618 |#3|)))) (-15 -2512 (|#4| (-535) (-398 |#4|))) (-15 -3699 ((-112) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))))) (-15 -3401 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-1136 |#3|) (-1136 |#3|) |#4| (-618 |#2|) (-618 (-747)) (-618 |#3|))) (-15 -2513 ((-618 (-747)) (-1136 |#4|) (-618 |#2|) (-747))) (-15 -2514 ((-1136 |#3|) (-1136 |#3|) (-535)))) (-769) (-823) (-300) (-921 |#3| |#1| |#2|)) (T -719))
+((-2514 (*1 *2 *2 *3) (-12 (-5 *2 (-1136 *6)) (-5 *3 (-535)) (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))) (-2513 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1136 *9)) (-5 *4 (-618 *7)) (-4 *7 (-823)) (-4 *9 (-921 *8 *6 *7)) (-4 *6 (-769)) (-4 *8 (-300)) (-5 *2 (-618 (-747))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *5 (-747)))) (-3401 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1136 *11)) (-5 *6 (-618 *10)) (-5 *7 (-618 (-747))) (-5 *8 (-618 *11)) (-4 *10 (-823)) (-4 *11 (-300)) (-4 *9 (-769)) (-4 *5 (-921 *11 *9 *10)) (-5 *2 (-618 (-1136 *5))) (-5 *1 (-719 *9 *10 *11 *5)) (-5 *3 (-1136 *5)))) (-3699 (*1 *2 *3 *3) (-12 (-5 *3 (-618 (-2 (|:| -4075 (-1136 *6)) (|:| -2484 (-535))))) (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-535)) (-5 *4 (-398 *2)) (-4 *2 (-921 *7 *5 *6)) (-5 *1 (-719 *5 *6 *7 *2)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-300)))) (-2511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1136 *9)) (-5 *4 (-618 *7)) (-5 *5 (-618 (-618 *8))) (-4 *7 (-823)) (-4 *8 (-300)) (-4 *9 (-921 *8 *6 *7)) (-4 *6 (-769)) (-5 *2 (-2 (|:| |upol| (-1136 *8)) (|:| |Lval| (-618 *8)) (|:| |Lfact| (-618 (-2 (|:| -4075 (-1136 *8)) (|:| -2484 (-535))))) (|:| |ctpol| *8))) (-5 *1 (-719 *6 *7 *8 *9)))) (-2510 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-618 *7)) (-5 *5 (-618 (-618 *8))) (-4 *7 (-823)) (-4 *8 (-300)) (-4 *6 (-769)) (-4 *9 (-921 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-618 (-2 (|:| -4075 (-1136 *9)) (|:| -2484 (-535))))))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1136 *9)))) (-2509 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-535)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-300)) (-4 *9 (-921 *8 *6 *7)) (-5 *2 (-2 (|:| -2115 (-1136 *9)) (|:| |polval| (-1136 *8)))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1136 *9)) (-5 *4 (-1136 *8)))) (-2508 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-719 *5 *4 *6 *3)) (-4 *3 (-921 *6 *5 *4)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -4075 (-1136 *6)) (|:| -2484 (-535))))) (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-535)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))) (-2506 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-921 *6 *4 *5)))) (-4312 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-719 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) (-4312 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-921 *6 *4 *5)))))
+(-10 -7 (-15 -4312 ((-398 |#4|) |#4|)) (-15 -4312 ((-398 (-1136 |#4|)) (-1136 |#4|))) (-15 -2506 ((-398 |#4|) |#4|)) (-15 -2507 ((-535) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))))) (-15 -2508 ((-398 |#4|) |#4| |#2|)) (-15 -2509 ((-2 (|:| -2115 (-1136 |#4|)) (|:| |polval| (-1136 |#3|))) (-1136 |#4|) (-1136 |#3|) (-535))) (-15 -2510 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-618 (-2 (|:| -4075 (-1136 |#4|)) (|:| -2484 (-535)))))) (-1136 |#4|) (-618 |#2|) (-618 (-618 |#3|)))) (-15 -2511 ((-2 (|:| |upol| (-1136 |#3|)) (|:| |Lval| (-618 |#3|)) (|:| |Lfact| (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535))))) (|:| |ctpol| |#3|)) (-1136 |#4|) (-618 |#2|) (-618 (-618 |#3|)))) (-15 -2512 (|#4| (-535) (-398 |#4|))) (-15 -3699 ((-112) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))) (-618 (-2 (|:| -4075 (-1136 |#3|)) (|:| -2484 (-535)))))) (-15 -3401 ((-3 (-618 (-1136 |#4|)) "failed") (-1136 |#4|) (-1136 |#3|) (-1136 |#3|) |#4| (-618 |#2|) (-618 (-747)) (-618 |#3|))) (-15 -2513 ((-618 (-747)) (-1136 |#4|) (-618 |#2|) (-747))) (-15 -2514 ((-1136 |#3|) (-1136 |#3|) (-535))))
+((-2515 (($ $ (-890)) 12)))
+(((-720 |#1| |#2|) (-10 -8 (-15 -2515 (|#1| |#1| (-890)))) (-721 |#2|) (-170)) (T -720))
+NIL
+(-10 -8 (-15 -2515 (|#1| |#1| (-890))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2490 (($ $ (-890)) 28)) (-2515 (($ $ (-890)) 33)) (-2489 (($ $ (-890)) 29)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-2677 (($ $ $) 25)) (-4300 (((-835) $) 11)) (-2678 (($ $ $ $) 26)) (-2676 (($ $ $) 24)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-721 |#1|) (-138) (-170)) (T -721))
-((-2377 (*1 *1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-721 *3)) (-4 *3 (-170)))))
-(-13 (-738) (-694 |t#1|) (-10 -8 (-15 -2377 ($ $ (-892)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-697) . T) ((-738) . T) ((-1024 |#1|) . T) ((-1066) . T))
-((-1773 (((-1006) (-665 (-219)) (-549) (-112) (-549)) 25)) (-1971 (((-1006) (-665 (-219)) (-549) (-112) (-549)) 24)))
-(((-722) (-10 -7 (-15 -1971 ((-1006) (-665 (-219)) (-549) (-112) (-549))) (-15 -1773 ((-1006) (-665 (-219)) (-549) (-112) (-549))))) (T -722))
-((-1773 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-722)))) (-1971 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-722)))))
-(-10 -7 (-15 -1971 ((-1006) (-665 (-219)) (-549) (-112) (-549))) (-15 -1773 ((-1006) (-665 (-219)) (-549) (-112) (-549))))
-((-4141 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) 43)) (-1840 (((-1006) (-549) (-549) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) 39)) (-1606 (((-1006) (-219) (-219) (-219) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421)))) 32)))
-(((-723) (-10 -7 (-15 -1606 ((-1006) (-219) (-219) (-219) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))) (-15 -1840 ((-1006) (-549) (-549) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -4141 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN))))))) (T -723))
-((-4141 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1006)) (-5 *1 (-723)))) (-1840 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1006)) (-5 *1 (-723)))) (-1606 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421)))) (-5 *2 (-1006)) (-5 *1 (-723)))))
-(-10 -7 (-15 -1606 ((-1006) (-219) (-219) (-219) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))) (-15 -1840 ((-1006) (-549) (-549) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -4141 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN))))))
-((-4122 (((-1006) (-549) (-549) (-665 (-219)) (-549)) 34)) (-2264 (((-1006) (-549) (-549) (-665 (-219)) (-549)) 33)) (-1866 (((-1006) (-549) (-665 (-219)) (-549)) 32)) (-1375 (((-1006) (-549) (-665 (-219)) (-549)) 31)) (-3065 (((-1006) (-549) (-549) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 30)) (-1340 (((-1006) (-549) (-549) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 29)) (-2663 (((-1006) (-549) (-549) (-1124) (-665 (-219)) (-665 (-219)) (-549)) 28)) (-4216 (((-1006) (-549) (-549) (-1124) (-665 (-219)) (-665 (-219)) (-549)) 27)) (-1632 (((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 24)) (-3935 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549)) 23)) (-1895 (((-1006) (-549) (-665 (-219)) (-549)) 22)) (-3487 (((-1006) (-549) (-665 (-219)) (-549)) 21)))
-(((-724) (-10 -7 (-15 -3487 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -1895 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -3935 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1632 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -4216 ((-1006) (-549) (-549) (-1124) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2663 ((-1006) (-549) (-549) (-1124) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1340 ((-1006) (-549) (-549) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3065 ((-1006) (-549) (-549) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1375 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -1866 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -2264 ((-1006) (-549) (-549) (-665 (-219)) (-549))) (-15 -4122 ((-1006) (-549) (-549) (-665 (-219)) (-549))))) (T -724))
-((-4122 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2264 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-1866 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-1375 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-3065 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-1340 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2663 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-4216 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-1632 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-3935 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-1895 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-3487 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))))
-(-10 -7 (-15 -3487 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -1895 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -3935 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1632 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -4216 ((-1006) (-549) (-549) (-1124) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2663 ((-1006) (-549) (-549) (-1124) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1340 ((-1006) (-549) (-549) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3065 ((-1006) (-549) (-549) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1375 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -1866 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -2264 ((-1006) (-549) (-549) (-665 (-219)) (-549))) (-15 -4122 ((-1006) (-549) (-549) (-665 (-219)) (-549))))
-((-3919 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-219) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) 52)) (-3921 (((-1006) (-665 (-219)) (-665 (-219)) (-549) (-549)) 51)) (-2869 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) 50)) (-3878 (((-1006) (-219) (-219) (-549) (-549) (-549) (-549)) 46)) (-2736 (((-1006) (-219) (-219) (-549) (-219) (-549) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 45)) (-4052 (((-1006) (-219) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 44)) (-2450 (((-1006) (-219) (-219) (-219) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 43)) (-1942 (((-1006) (-219) (-219) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 42)) (-1332 (((-1006) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421)))) 38)) (-1307 (((-1006) (-219) (-219) (-549) (-665 (-219)) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421)))) 37)) (-1387 (((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421)))) 33)) (-2892 (((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421)))) 32)))
-(((-725) (-10 -7 (-15 -2892 ((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))) (-15 -1387 ((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))) (-15 -1307 ((-1006) (-219) (-219) (-549) (-665 (-219)) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))) (-15 -1332 ((-1006) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))) (-15 -1942 ((-1006) (-219) (-219) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2450 ((-1006) (-219) (-219) (-219) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -4052 ((-1006) (-219) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2736 ((-1006) (-219) (-219) (-549) (-219) (-549) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -3878 ((-1006) (-219) (-219) (-549) (-549) (-549) (-549))) (-15 -2869 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))) (-15 -3921 ((-1006) (-665 (-219)) (-665 (-219)) (-549) (-549))) (-15 -3919 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-219) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))))) (T -725))
-((-3919 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-3921 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2869 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-3878 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2736 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-4052 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2450 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-1942 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-1332 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-1307 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-725)))) (-1387 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2892 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421)))) (-5 *2 (-1006)) (-5 *1 (-725)))))
-(-10 -7 (-15 -2892 ((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))) (-15 -1387 ((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))) (-15 -1307 ((-1006) (-219) (-219) (-549) (-665 (-219)) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))) (-15 -1332 ((-1006) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))) (-15 -1942 ((-1006) (-219) (-219) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2450 ((-1006) (-219) (-219) (-219) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -4052 ((-1006) (-219) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2736 ((-1006) (-219) (-219) (-549) (-219) (-549) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -3878 ((-1006) (-219) (-219) (-549) (-549) (-549) (-549))) (-15 -2869 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))) (-15 -3921 ((-1006) (-665 (-219)) (-665 (-219)) (-549) (-549))) (-15 -3919 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-219) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))))
-((-2874 (((-1006) (-549) (-549) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-3703 (((-1006) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))) (-381) (-381)) 69) (((-1006) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) 68)) (-4276 (((-1006) (-219) (-219) (-549) (-219) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG)))) 57)) (-2965 (((-1006) (-665 (-219)) (-665 (-219)) (-549) (-219) (-219) (-219) (-549) (-549) (-549) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) 50)) (-1794 (((-1006) (-219) (-549) (-549) (-1124) (-549) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) 49)) (-1561 (((-1006) (-219) (-549) (-549) (-219) (-1124) (-219) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) 45)) (-4300 (((-1006) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) 42)) (-1596 (((-1006) (-219) (-549) (-549) (-549) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) 38)))
-(((-726) (-10 -7 (-15 -1596 ((-1006) (-219) (-549) (-549) (-549) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -4300 ((-1006) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -1561 ((-1006) (-219) (-549) (-549) (-219) (-1124) (-219) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -1794 ((-1006) (-219) (-549) (-549) (-1124) (-549) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -2965 ((-1006) (-665 (-219)) (-665 (-219)) (-549) (-219) (-219) (-219) (-549) (-549) (-549) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -4276 ((-1006) (-219) (-219) (-549) (-219) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG))))) (-15 -3703 ((-1006) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))))) (-15 -3703 ((-1006) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))) (-381) (-381))) (-15 -2874 ((-1006) (-549) (-549) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -726))
-((-2874 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-3703 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-381)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-3703 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1006)) (-5 *1 (-726)))) (-4276 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2965 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1006)) (-5 *1 (-726)))) (-1794 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-549)) (-5 *5 (-1124)) (-5 *6 (-665 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-1561 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-549)) (-5 *5 (-1124)) (-5 *6 (-665 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-4300 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-1596 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))))
-(-10 -7 (-15 -1596 ((-1006) (-219) (-549) (-549) (-549) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -4300 ((-1006) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -1561 ((-1006) (-219) (-549) (-549) (-219) (-1124) (-219) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -1794 ((-1006) (-219) (-549) (-549) (-1124) (-549) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -2965 ((-1006) (-665 (-219)) (-665 (-219)) (-549) (-219) (-219) (-219) (-549) (-549) (-549) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -4276 ((-1006) (-219) (-219) (-549) (-219) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG))))) (-15 -3703 ((-1006) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))))) (-15 -3703 ((-1006) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))) (-381) (-381))) (-15 -2874 ((-1006) (-549) (-549) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP))))))
-((-1314 (((-1006) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-651 (-219)) (-549)) 45)) (-1623 (((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-1124) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY)))) 41)) (-3324 (((-1006) (-549) (-549) (-549) (-549) (-219) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 23)))
-(((-727) (-10 -7 (-15 -3324 ((-1006) (-549) (-549) (-549) (-549) (-219) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1623 ((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-1124) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY))))) (-15 -1314 ((-1006) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-651 (-219)) (-549))))) (T -727))
-((-1314 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-651 (-219))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-727)))) (-1623 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-1124)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1006)) (-5 *1 (-727)))) (-3324 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-727)))))
-(-10 -7 (-15 -3324 ((-1006) (-549) (-549) (-549) (-549) (-219) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1623 ((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-1124) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY))))) (-15 -1314 ((-1006) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-651 (-219)) (-549))))
-((-1965 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-665 (-219)) (-219) (-219) (-549)) 35)) (-3311 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-219) (-219) (-549)) 34)) (-2405 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-665 (-219)) (-219) (-219) (-549)) 33)) (-2347 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 29)) (-2851 (((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 28)) (-3940 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549)) 27)) (-1535 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-549)) 24)) (-2407 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-549)) 23)) (-2670 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549)) 22)) (-3475 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549)) 21)))
-(((-728) (-10 -7 (-15 -3475 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549))) (-15 -2670 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2407 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -1535 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -3940 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549))) (-15 -2851 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2347 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2405 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-665 (-219)) (-219) (-219) (-549))) (-15 -3311 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-219) (-219) (-549))) (-15 -1965 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-665 (-219)) (-219) (-219) (-549))))) (T -728))
-((-1965 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-3311 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2405 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *6 (-219)) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2347 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2851 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-3940 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-1535 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2407 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2670 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-3475 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))))
-(-10 -7 (-15 -3475 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549))) (-15 -2670 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2407 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -1535 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -3940 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549))) (-15 -2851 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2347 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2405 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-665 (-219)) (-219) (-219) (-549))) (-15 -3311 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-219) (-219) (-549))) (-15 -1965 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-665 (-219)) (-219) (-219) (-549))))
-((-2766 (((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549)) 45)) (-2544 (((-1006) (-549) (-549) (-549) (-219) (-665 (-219)) (-665 (-219)) (-549)) 44)) (-3915 (((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549)) 43)) (-1469 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 42)) (-3558 (((-1006) (-1124) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549)) 41)) (-3620 (((-1006) (-1124) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549)) 40)) (-2290 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549) (-549) (-549) (-219) (-665 (-219)) (-549)) 39)) (-3083 (((-1006) (-1124) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-549))) 38)) (-4311 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549)) 35)) (-3804 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549)) 34)) (-2540 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549)) 33)) (-3413 (((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 32)) (-3253 (((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-219) (-549)) 31)) (-3246 (((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-549)) 30)) (-4059 (((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-549) (-549) (-549)) 29)) (-2813 (((-1006) (-549) (-549) (-549) (-219) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549) (-665 (-549)) (-549) (-549) (-549)) 28)) (-2701 (((-1006) (-549) (-665 (-219)) (-219) (-549)) 24)) (-3108 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 21)))
-(((-729) (-10 -7 (-15 -3108 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2701 ((-1006) (-549) (-665 (-219)) (-219) (-549))) (-15 -2813 ((-1006) (-549) (-549) (-549) (-219) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549) (-665 (-549)) (-549) (-549) (-549))) (-15 -4059 ((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-549) (-549) (-549))) (-15 -3246 ((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-549))) (-15 -3253 ((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-219) (-549))) (-15 -3413 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2540 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549))) (-15 -3804 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549))) (-15 -4311 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3083 ((-1006) (-1124) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-549)))) (-15 -2290 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549) (-549) (-549) (-219) (-665 (-219)) (-549))) (-15 -3620 ((-1006) (-1124) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549))) (-15 -3558 ((-1006) (-1124) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1469 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3915 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549))) (-15 -2544 ((-1006) (-549) (-549) (-549) (-219) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2766 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549))))) (T -729))
-((-2766 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2544 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3915 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-1469 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3558 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3620 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) (-5 *7 (-665 (-549))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2290 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *6 (-219)) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3083 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) (-5 *7 (-665 (-549))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-4311 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3804 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2540 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3413 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3253 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3246 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-4059 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2813 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-665 (-219))) (-5 *6 (-665 (-549))) (-5 *3 (-549)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2701 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3108 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))))
-(-10 -7 (-15 -3108 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2701 ((-1006) (-549) (-665 (-219)) (-219) (-549))) (-15 -2813 ((-1006) (-549) (-549) (-549) (-219) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549) (-665 (-549)) (-549) (-549) (-549))) (-15 -4059 ((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-549) (-549) (-549))) (-15 -3246 ((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-549))) (-15 -3253 ((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-219) (-549))) (-15 -3413 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2540 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549))) (-15 -3804 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549))) (-15 -4311 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3083 ((-1006) (-1124) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-549)))) (-15 -2290 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549) (-549) (-549) (-219) (-665 (-219)) (-549))) (-15 -3620 ((-1006) (-1124) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549))) (-15 -3558 ((-1006) (-1124) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1469 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3915 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549))) (-15 -2544 ((-1006) (-549) (-549) (-549) (-219) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2766 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549))))
-((-4237 (((-1006) (-549) (-549) (-549) (-219) (-665 (-219)) (-549) (-665 (-219)) (-549)) 63)) (-3612 (((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-112) (-219) (-549) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-549) (-549) (-549) (-549) (-549) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-549)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) 62)) (-3685 (((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-112) (-112) (-549) (-549) (-665 (-219)) (-665 (-549)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) 58)) (-3990 (((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-549) (-549) (-665 (-219)) (-549)) 51)) (-2846 (((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) 50)) (-1989 (((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2)))) 46)) (-3043 (((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) 42)) (-3841 (((-1006) (-549) (-219) (-219) (-549) (-219) (-112) (-219) (-219) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) 38)))
-(((-730) (-10 -7 (-15 -3841 ((-1006) (-549) (-219) (-219) (-549) (-219) (-112) (-219) (-219) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -3043 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -1989 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2))))) (-15 -2846 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -3990 ((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-549) (-549) (-665 (-219)) (-549))) (-15 -3685 ((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-112) (-112) (-549) (-549) (-665 (-219)) (-665 (-549)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -3612 ((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-112) (-219) (-549) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-549) (-549) (-549) (-549) (-549) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-549)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -4237 ((-1006) (-549) (-549) (-549) (-219) (-665 (-219)) (-549) (-665 (-219)) (-549))))) (T -730))
-((-4237 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-3612 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-665 (-549))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-3685 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-665 (-219))) (-5 *6 (-112)) (-5 *7 (-665 (-549))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-549)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-3990 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2846 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1006)) (-5 *1 (-730)))) (-1989 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1006)) (-5 *1 (-730)))) (-3043 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1006)) (-5 *1 (-730)))) (-3841 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-665 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))))
-(-10 -7 (-15 -3841 ((-1006) (-549) (-219) (-219) (-549) (-219) (-112) (-219) (-219) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -3043 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -1989 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2))))) (-15 -2846 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -3990 ((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-549) (-549) (-665 (-219)) (-549))) (-15 -3685 ((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-112) (-112) (-549) (-549) (-665 (-219)) (-665 (-549)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -3612 ((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-112) (-219) (-549) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-549) (-549) (-549) (-549) (-549) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-549)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -4237 ((-1006) (-549) (-549) (-549) (-219) (-665 (-219)) (-549) (-665 (-219)) (-549))))
-((-3734 (((-1006) (-1124) (-549) (-549) (-549) (-549) (-665 (-167 (-219))) (-665 (-167 (-219))) (-549)) 47)) (-1282 (((-1006) (-1124) (-1124) (-549) (-549) (-665 (-167 (-219))) (-549) (-665 (-167 (-219))) (-549) (-549) (-665 (-167 (-219))) (-549)) 46)) (-3750 (((-1006) (-549) (-549) (-549) (-665 (-167 (-219))) (-549)) 45)) (-1728 (((-1006) (-1124) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 40)) (-3261 (((-1006) (-1124) (-1124) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-665 (-219)) (-549)) 39)) (-1835 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-549)) 36)) (-3844 (((-1006) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549)) 35)) (-2760 (((-1006) (-549) (-549) (-549) (-549) (-621 (-112)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-219) (-219) (-549)) 34)) (-2636 (((-1006) (-549) (-549) (-549) (-665 (-549)) (-665 (-549)) (-665 (-549)) (-665 (-549)) (-112) (-219) (-112) (-665 (-549)) (-665 (-219)) (-549)) 33)) (-3492 (((-1006) (-549) (-549) (-549) (-549) (-219) (-112) (-112) (-621 (-112)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-549)) 32)))
-(((-731) (-10 -7 (-15 -3492 ((-1006) (-549) (-549) (-549) (-549) (-219) (-112) (-112) (-621 (-112)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-549))) (-15 -2636 ((-1006) (-549) (-549) (-549) (-665 (-549)) (-665 (-549)) (-665 (-549)) (-665 (-549)) (-112) (-219) (-112) (-665 (-549)) (-665 (-219)) (-549))) (-15 -2760 ((-1006) (-549) (-549) (-549) (-549) (-621 (-112)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-219) (-219) (-549))) (-15 -3844 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549))) (-15 -1835 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-549))) (-15 -3261 ((-1006) (-1124) (-1124) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-665 (-219)) (-549))) (-15 -1728 ((-1006) (-1124) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3750 ((-1006) (-549) (-549) (-549) (-665 (-167 (-219))) (-549))) (-15 -1282 ((-1006) (-1124) (-1124) (-549) (-549) (-665 (-167 (-219))) (-549) (-665 (-167 (-219))) (-549) (-549) (-665 (-167 (-219))) (-549))) (-15 -3734 ((-1006) (-1124) (-549) (-549) (-549) (-549) (-665 (-167 (-219))) (-665 (-167 (-219))) (-549))))) (T -731))
-((-3734 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-167 (-219)))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-1282 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-167 (-219)))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-3750 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-167 (-219)))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-1728 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-3261 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-1835 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-3844 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2760 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-621 (-112))) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-549))) (-5 *7 (-219)) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2636 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-665 (-549))) (-5 *5 (-112)) (-5 *7 (-665 (-219))) (-5 *3 (-549)) (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-731)))) (-3492 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-621 (-112))) (-5 *7 (-665 (-219))) (-5 *8 (-665 (-549))) (-5 *3 (-549)) (-5 *4 (-219)) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-731)))))
-(-10 -7 (-15 -3492 ((-1006) (-549) (-549) (-549) (-549) (-219) (-112) (-112) (-621 (-112)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-549))) (-15 -2636 ((-1006) (-549) (-549) (-549) (-665 (-549)) (-665 (-549)) (-665 (-549)) (-665 (-549)) (-112) (-219) (-112) (-665 (-549)) (-665 (-219)) (-549))) (-15 -2760 ((-1006) (-549) (-549) (-549) (-549) (-621 (-112)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-219) (-219) (-549))) (-15 -3844 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549))) (-15 -1835 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-549))) (-15 -3261 ((-1006) (-1124) (-1124) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-665 (-219)) (-549))) (-15 -1728 ((-1006) (-1124) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3750 ((-1006) (-549) (-549) (-549) (-665 (-167 (-219))) (-549))) (-15 -1282 ((-1006) (-1124) (-1124) (-549) (-549) (-665 (-167 (-219))) (-549) (-665 (-167 (-219))) (-549) (-549) (-665 (-167 (-219))) (-549))) (-15 -3734 ((-1006) (-1124) (-549) (-549) (-549) (-549) (-665 (-167 (-219))) (-665 (-167 (-219))) (-549))))
-((-2946 (((-1006) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-665 (-167 (-219))) (-665 (-167 (-219))) (-549)) 65)) (-2762 (((-1006) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-665 (-219)) (-665 (-219)) (-549)) 60)) (-3423 (((-1006) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381)) 56) (((-1006) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) 55)) (-3143 (((-1006) (-549) (-549) (-549) (-219) (-112) (-549) (-665 (-219)) (-665 (-219)) (-549)) 37)) (-2580 (((-1006) (-549) (-549) (-219) (-219) (-549) (-549) (-665 (-219)) (-549)) 33)) (-1633 (((-1006) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-549) (-549) (-549)) 30)) (-2520 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 29)) (-1284 (((-1006) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 28)) (-3263 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 27)) (-2102 (((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549)) 26)) (-3123 (((-1006) (-549) (-549) (-665 (-219)) (-549)) 25)) (-3667 (((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 24)) (-2852 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 23)) (-4135 (((-1006) (-665 (-219)) (-549) (-549) (-549) (-549)) 22)) (-4191 (((-1006) (-549) (-549) (-665 (-219)) (-549)) 21)))
-(((-732) (-10 -7 (-15 -4191 ((-1006) (-549) (-549) (-665 (-219)) (-549))) (-15 -4135 ((-1006) (-665 (-219)) (-549) (-549) (-549) (-549))) (-15 -2852 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3667 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3123 ((-1006) (-549) (-549) (-665 (-219)) (-549))) (-15 -2102 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549))) (-15 -3263 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1284 ((-1006) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2520 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1633 ((-1006) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-549) (-549) (-549))) (-15 -2580 ((-1006) (-549) (-549) (-219) (-219) (-549) (-549) (-665 (-219)) (-549))) (-15 -3143 ((-1006) (-549) (-549) (-549) (-219) (-112) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3423 ((-1006) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -3423 ((-1006) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2762 ((-1006) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2946 ((-1006) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-665 (-167 (-219))) (-665 (-167 (-219))) (-549))))) (T -732))
-((-2946 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-665 (-167 (-219)))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2762 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-3423 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-3423 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-3143 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2580 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-1633 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2520 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-1284 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-3263 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2102 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-3123 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-3667 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2852 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-4135 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-4191 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))))
-(-10 -7 (-15 -4191 ((-1006) (-549) (-549) (-665 (-219)) (-549))) (-15 -4135 ((-1006) (-665 (-219)) (-549) (-549) (-549) (-549))) (-15 -2852 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3667 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3123 ((-1006) (-549) (-549) (-665 (-219)) (-549))) (-15 -2102 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549))) (-15 -3263 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1284 ((-1006) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2520 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1633 ((-1006) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-549) (-549) (-549))) (-15 -2580 ((-1006) (-549) (-549) (-219) (-219) (-549) (-549) (-665 (-219)) (-549))) (-15 -3143 ((-1006) (-549) (-549) (-549) (-219) (-112) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3423 ((-1006) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -3423 ((-1006) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2762 ((-1006) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2946 ((-1006) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-665 (-167 (-219))) (-665 (-167 (-219))) (-549))))
-((-3109 (((-1006) (-549) (-549) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) 61)) (-3694 (((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-549)) (-549) (-665 (-219)) (-549) (-549) (-549) (-549)) 57)) (-4152 (((-1006) (-549) (-665 (-219)) (-112) (-219) (-549) (-549) (-549) (-549) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) 56)) (-3257 (((-1006) (-549) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549) (-665 (-549)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549)) 37)) (-3933 (((-1006) (-549) (-549) (-549) (-219) (-549) (-665 (-219)) (-665 (-219)) (-549)) 36)) (-2915 (((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 33)) (-4014 (((-1006) (-549) (-665 (-219)) (-549) (-665 (-549)) (-665 (-549)) (-549) (-665 (-549)) (-665 (-219))) 32)) (-1659 (((-1006) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-549)) 28)) (-2690 (((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549)) 27)) (-2004 (((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549)) 26)) (-4131 (((-1006) (-549) (-665 (-167 (-219))) (-549) (-549) (-549) (-549) (-665 (-167 (-219))) (-549)) 22)))
-(((-733) (-10 -7 (-15 -4131 ((-1006) (-549) (-665 (-167 (-219))) (-549) (-549) (-549) (-549) (-665 (-167 (-219))) (-549))) (-15 -2004 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -2690 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -1659 ((-1006) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-549))) (-15 -4014 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-549)) (-665 (-549)) (-549) (-665 (-549)) (-665 (-219)))) (-15 -2915 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3933 ((-1006) (-549) (-549) (-549) (-219) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3257 ((-1006) (-549) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549) (-665 (-549)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549))) (-15 -4152 ((-1006) (-549) (-665 (-219)) (-112) (-219) (-549) (-549) (-549) (-549) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -3694 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-549)) (-549) (-665 (-219)) (-549) (-549) (-549) (-549))) (-15 -3109 ((-1006) (-549) (-549) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD))))))) (T -733))
-((-3109 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-3694 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-4152 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-3257 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-3933 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2915 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-4014 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-1659 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2690 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2004 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-4131 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-167 (-219)))) (-5 *2 (-1006)) (-5 *1 (-733)))))
-(-10 -7 (-15 -4131 ((-1006) (-549) (-665 (-167 (-219))) (-549) (-549) (-549) (-549) (-665 (-167 (-219))) (-549))) (-15 -2004 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -2690 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -1659 ((-1006) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-549))) (-15 -4014 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-549)) (-665 (-549)) (-549) (-665 (-549)) (-665 (-219)))) (-15 -2915 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3933 ((-1006) (-549) (-549) (-549) (-219) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3257 ((-1006) (-549) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549) (-665 (-549)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549))) (-15 -4152 ((-1006) (-549) (-665 (-219)) (-112) (-219) (-549) (-549) (-549) (-549) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -3694 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-549)) (-549) (-665 (-219)) (-549) (-549) (-549) (-549))) (-15 -3109 ((-1006) (-549) (-549) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD))))))
-((-2938 (((-1006) (-1124) (-549) (-549) (-665 (-219)) (-549) (-549) (-665 (-219))) 29)) (-4251 (((-1006) (-1124) (-549) (-549) (-665 (-219))) 28)) (-3440 (((-1006) (-1124) (-549) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549) (-665 (-219))) 27)) (-2387 (((-1006) (-549) (-549) (-549) (-665 (-219))) 21)))
-(((-734) (-10 -7 (-15 -2387 ((-1006) (-549) (-549) (-549) (-665 (-219)))) (-15 -3440 ((-1006) (-1124) (-549) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549) (-665 (-219)))) (-15 -4251 ((-1006) (-1124) (-549) (-549) (-665 (-219)))) (-15 -2938 ((-1006) (-1124) (-549) (-549) (-665 (-219)) (-549) (-549) (-665 (-219)))))) (T -734))
-((-2938 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734)))) (-4251 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734)))) (-3440 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-549))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-734)))) (-2387 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734)))))
-(-10 -7 (-15 -2387 ((-1006) (-549) (-549) (-549) (-665 (-219)))) (-15 -3440 ((-1006) (-1124) (-549) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549) (-665 (-219)))) (-15 -4251 ((-1006) (-1124) (-549) (-549) (-665 (-219)))) (-15 -2938 ((-1006) (-1124) (-549) (-549) (-665 (-219)) (-549) (-549) (-665 (-219)))))
-((-1770 (((-1006) (-219) (-219) (-219) (-219) (-549)) 62)) (-3405 (((-1006) (-219) (-219) (-219) (-549)) 61)) (-2607 (((-1006) (-219) (-219) (-219) (-549)) 60)) (-3731 (((-1006) (-219) (-219) (-549)) 59)) (-3946 (((-1006) (-219) (-549)) 58)) (-3479 (((-1006) (-219) (-549)) 57)) (-2954 (((-1006) (-219) (-549)) 56)) (-2382 (((-1006) (-219) (-549)) 55)) (-3624 (((-1006) (-219) (-549)) 54)) (-2133 (((-1006) (-219) (-549)) 53)) (-2552 (((-1006) (-219) (-167 (-219)) (-549) (-1124) (-549)) 52)) (-3262 (((-1006) (-219) (-167 (-219)) (-549) (-1124) (-549)) 51)) (-2860 (((-1006) (-219) (-549)) 50)) (-2574 (((-1006) (-219) (-549)) 49)) (-2837 (((-1006) (-219) (-549)) 48)) (-3869 (((-1006) (-219) (-549)) 47)) (-2370 (((-1006) (-549) (-219) (-167 (-219)) (-549) (-1124) (-549)) 46)) (-2985 (((-1006) (-1124) (-167 (-219)) (-1124) (-549)) 45)) (-3759 (((-1006) (-1124) (-167 (-219)) (-1124) (-549)) 44)) (-2267 (((-1006) (-219) (-167 (-219)) (-549) (-1124) (-549)) 43)) (-3064 (((-1006) (-219) (-167 (-219)) (-549) (-1124) (-549)) 42)) (-1891 (((-1006) (-219) (-549)) 39)) (-2933 (((-1006) (-219) (-549)) 38)) (-3162 (((-1006) (-219) (-549)) 37)) (-2037 (((-1006) (-219) (-549)) 36)) (-1271 (((-1006) (-219) (-549)) 35)) (-2145 (((-1006) (-219) (-549)) 34)) (-1707 (((-1006) (-219) (-549)) 33)) (-3970 (((-1006) (-219) (-549)) 32)) (-4226 (((-1006) (-219) (-549)) 31)) (-3305 (((-1006) (-219) (-549)) 30)) (-3658 (((-1006) (-219) (-219) (-219) (-549)) 29)) (-3506 (((-1006) (-219) (-549)) 28)) (-3185 (((-1006) (-219) (-549)) 27)) (-3260 (((-1006) (-219) (-549)) 26)) (-2187 (((-1006) (-219) (-549)) 25)) (-2446 (((-1006) (-219) (-549)) 24)) (-2124 (((-1006) (-167 (-219)) (-549)) 21)))
-(((-735) (-10 -7 (-15 -2124 ((-1006) (-167 (-219)) (-549))) (-15 -2446 ((-1006) (-219) (-549))) (-15 -2187 ((-1006) (-219) (-549))) (-15 -3260 ((-1006) (-219) (-549))) (-15 -3185 ((-1006) (-219) (-549))) (-15 -3506 ((-1006) (-219) (-549))) (-15 -3658 ((-1006) (-219) (-219) (-219) (-549))) (-15 -3305 ((-1006) (-219) (-549))) (-15 -4226 ((-1006) (-219) (-549))) (-15 -3970 ((-1006) (-219) (-549))) (-15 -1707 ((-1006) (-219) (-549))) (-15 -2145 ((-1006) (-219) (-549))) (-15 -1271 ((-1006) (-219) (-549))) (-15 -2037 ((-1006) (-219) (-549))) (-15 -3162 ((-1006) (-219) (-549))) (-15 -2933 ((-1006) (-219) (-549))) (-15 -1891 ((-1006) (-219) (-549))) (-15 -3064 ((-1006) (-219) (-167 (-219)) (-549) (-1124) (-549))) (-15 -2267 ((-1006) (-219) (-167 (-219)) (-549) (-1124) (-549))) (-15 -3759 ((-1006) (-1124) (-167 (-219)) (-1124) (-549))) (-15 -2985 ((-1006) (-1124) (-167 (-219)) (-1124) (-549))) (-15 -2370 ((-1006) (-549) (-219) (-167 (-219)) (-549) (-1124) (-549))) (-15 -3869 ((-1006) (-219) (-549))) (-15 -2837 ((-1006) (-219) (-549))) (-15 -2574 ((-1006) (-219) (-549))) (-15 -2860 ((-1006) (-219) (-549))) (-15 -3262 ((-1006) (-219) (-167 (-219)) (-549) (-1124) (-549))) (-15 -2552 ((-1006) (-219) (-167 (-219)) (-549) (-1124) (-549))) (-15 -2133 ((-1006) (-219) (-549))) (-15 -3624 ((-1006) (-219) (-549))) (-15 -2382 ((-1006) (-219) (-549))) (-15 -2954 ((-1006) (-219) (-549))) (-15 -3479 ((-1006) (-219) (-549))) (-15 -3946 ((-1006) (-219) (-549))) (-15 -3731 ((-1006) (-219) (-219) (-549))) (-15 -2607 ((-1006) (-219) (-219) (-219) (-549))) (-15 -3405 ((-1006) (-219) (-219) (-219) (-549))) (-15 -1770 ((-1006) (-219) (-219) (-219) (-219) (-549))))) (T -735))
-((-1770 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3405 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2607 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3731 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3946 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2954 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2382 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2552 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1124)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3262 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1124)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3869 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2370 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-549)) (-5 *5 (-167 (-219))) (-5 *6 (-1124)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2985 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1124)) (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3759 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1124)) (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2267 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1124)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3064 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1124)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2933 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3162 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2037 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1271 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1707 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-4226 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3305 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3658 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3506 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3185 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3260 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-167 (-219))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(-10 -7 (-15 -2124 ((-1006) (-167 (-219)) (-549))) (-15 -2446 ((-1006) (-219) (-549))) (-15 -2187 ((-1006) (-219) (-549))) (-15 -3260 ((-1006) (-219) (-549))) (-15 -3185 ((-1006) (-219) (-549))) (-15 -3506 ((-1006) (-219) (-549))) (-15 -3658 ((-1006) (-219) (-219) (-219) (-549))) (-15 -3305 ((-1006) (-219) (-549))) (-15 -4226 ((-1006) (-219) (-549))) (-15 -3970 ((-1006) (-219) (-549))) (-15 -1707 ((-1006) (-219) (-549))) (-15 -2145 ((-1006) (-219) (-549))) (-15 -1271 ((-1006) (-219) (-549))) (-15 -2037 ((-1006) (-219) (-549))) (-15 -3162 ((-1006) (-219) (-549))) (-15 -2933 ((-1006) (-219) (-549))) (-15 -1891 ((-1006) (-219) (-549))) (-15 -3064 ((-1006) (-219) (-167 (-219)) (-549) (-1124) (-549))) (-15 -2267 ((-1006) (-219) (-167 (-219)) (-549) (-1124) (-549))) (-15 -3759 ((-1006) (-1124) (-167 (-219)) (-1124) (-549))) (-15 -2985 ((-1006) (-1124) (-167 (-219)) (-1124) (-549))) (-15 -2370 ((-1006) (-549) (-219) (-167 (-219)) (-549) (-1124) (-549))) (-15 -3869 ((-1006) (-219) (-549))) (-15 -2837 ((-1006) (-219) (-549))) (-15 -2574 ((-1006) (-219) (-549))) (-15 -2860 ((-1006) (-219) (-549))) (-15 -3262 ((-1006) (-219) (-167 (-219)) (-549) (-1124) (-549))) (-15 -2552 ((-1006) (-219) (-167 (-219)) (-549) (-1124) (-549))) (-15 -2133 ((-1006) (-219) (-549))) (-15 -3624 ((-1006) (-219) (-549))) (-15 -2382 ((-1006) (-219) (-549))) (-15 -2954 ((-1006) (-219) (-549))) (-15 -3479 ((-1006) (-219) (-549))) (-15 -3946 ((-1006) (-219) (-549))) (-15 -3731 ((-1006) (-219) (-219) (-549))) (-15 -2607 ((-1006) (-219) (-219) (-219) (-549))) (-15 -3405 ((-1006) (-219) (-219) (-219) (-549))) (-15 -1770 ((-1006) (-219) (-219) (-219) (-219) (-549))))
-((-4066 (((-1230)) 18)) (-4105 (((-1124)) 22)) (-2398 (((-1124)) 21)) (-3167 (((-1070) (-1142) (-665 (-549))) 37) (((-1070) (-1142) (-665 (-219))) 32)) (-3561 (((-112)) 16)) (-2836 (((-1124) (-1124)) 25)))
-(((-736) (-10 -7 (-15 -2398 ((-1124))) (-15 -4105 ((-1124))) (-15 -2836 ((-1124) (-1124))) (-15 -3167 ((-1070) (-1142) (-665 (-219)))) (-15 -3167 ((-1070) (-1142) (-665 (-549)))) (-15 -3561 ((-112))) (-15 -4066 ((-1230))))) (T -736))
-((-4066 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-736)))) (-3561 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-736)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-665 (-549))) (-5 *2 (-1070)) (-5 *1 (-736)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-665 (-219))) (-5 *2 (-1070)) (-5 *1 (-736)))) (-2836 (*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))) (-4105 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))) (-2398 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))))
-(-10 -7 (-15 -2398 ((-1124))) (-15 -4105 ((-1124))) (-15 -2836 ((-1124) (-1124))) (-15 -3167 ((-1070) (-1142) (-665 (-219)))) (-15 -3167 ((-1070) (-1142) (-665 (-549)))) (-15 -3561 ((-112))) (-15 -4066 ((-1230))))
-((-1911 (($ $ $) 10)) (-4172 (($ $ $ $) 9)) (-1892 (($ $ $) 12)))
-(((-737 |#1|) (-10 -8 (-15 -1892 (|#1| |#1| |#1|)) (-15 -1911 (|#1| |#1| |#1|)) (-15 -4172 (|#1| |#1| |#1| |#1|))) (-738)) (T -737))
-NIL
-(-10 -8 (-15 -1892 (|#1| |#1| |#1|)) (-15 -1911 (|#1| |#1| |#1|)) (-15 -4172 (|#1| |#1| |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2353 (($ $ (-892)) 28)) (-2881 (($ $ (-892)) 29)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-1911 (($ $ $) 25)) (-3845 (((-834) $) 11)) (-4172 (($ $ $ $) 26)) (-1892 (($ $ $) 24)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 30)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 27)))
+((-2515 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-721 *3)) (-4 *3 (-170)))))
+(-13 (-738) (-694 |t#1|) (-10 -8 (-15 -2515 ($ $ (-890)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-697) . T) ((-738) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-2517 (((-1006) (-665 (-219)) (-535) (-112) (-535)) 25)) (-2516 (((-1006) (-665 (-219)) (-535) (-112) (-535)) 24)))
+(((-722) (-10 -7 (-15 -2516 ((-1006) (-665 (-219)) (-535) (-112) (-535))) (-15 -2517 ((-1006) (-665 (-219)) (-535) (-112) (-535))))) (T -722))
+((-2517 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-722)))) (-2516 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-722)))))
+(-10 -7 (-15 -2516 ((-1006) (-665 (-219)) (-535) (-112) (-535))) (-15 -2517 ((-1006) (-665 (-219)) (-535) (-112) (-535))))
+((-2520 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) 43)) (-2519 (((-1006) (-535) (-535) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) 39)) (-2518 (((-1006) (-219) (-219) (-219) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) 32)))
+(((-723) (-10 -7 (-15 -2518 ((-1006) (-219) (-219) (-219) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2519 ((-1006) (-535) (-535) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -2520 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN))))))) (T -723))
+((-2520 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1006)) (-5 *1 (-723)))) (-2519 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1006)) (-5 *1 (-723)))) (-2518 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006)) (-5 *1 (-723)))))
+(-10 -7 (-15 -2518 ((-1006) (-219) (-219) (-219) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2519 ((-1006) (-535) (-535) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -2520 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN))))))
+((-2532 (((-1006) (-535) (-535) (-665 (-219)) (-535)) 34)) (-2531 (((-1006) (-535) (-535) (-665 (-219)) (-535)) 33)) (-2530 (((-1006) (-535) (-665 (-219)) (-535)) 32)) (-2529 (((-1006) (-535) (-665 (-219)) (-535)) 31)) (-2528 (((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 30)) (-2527 (((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 29)) (-2526 (((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-535)) 28)) (-2525 (((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-535)) 27)) (-2524 (((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 24)) (-2523 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535)) 23)) (-2522 (((-1006) (-535) (-665 (-219)) (-535)) 22)) (-2521 (((-1006) (-535) (-665 (-219)) (-535)) 21)))
+(((-724) (-10 -7 (-15 -2521 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2522 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2523 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2524 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2525 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2526 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2527 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2528 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2529 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2530 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2531 ((-1006) (-535) (-535) (-665 (-219)) (-535))) (-15 -2532 ((-1006) (-535) (-535) (-665 (-219)) (-535))))) (T -724))
+((-2532 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2531 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2530 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2529 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2528 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2527 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2526 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2525 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2524 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2523 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2522 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2521 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))))
+(-10 -7 (-15 -2521 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2522 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2523 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2524 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2525 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2526 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2527 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2528 ((-1006) (-535) (-535) (-1124) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2529 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2530 ((-1006) (-535) (-665 (-219)) (-535))) (-15 -2531 ((-1006) (-535) (-535) (-665 (-219)) (-535))) (-15 -2532 ((-1006) (-535) (-535) (-665 (-219)) (-535))))
+((-2544 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-219) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) 52)) (-2543 (((-1006) (-665 (-219)) (-665 (-219)) (-535) (-535)) 51)) (-2542 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) 50)) (-2541 (((-1006) (-219) (-219) (-535) (-535) (-535) (-535)) 46)) (-2540 (((-1006) (-219) (-219) (-535) (-219) (-535) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 45)) (-2539 (((-1006) (-219) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 44)) (-2538 (((-1006) (-219) (-219) (-219) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 43)) (-2537 (((-1006) (-219) (-219) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 42)) (-2536 (((-1006) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) 38)) (-2535 (((-1006) (-219) (-219) (-535) (-665 (-219)) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) 37)) (-2534 (((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) 33)) (-2533 (((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) 32)))
+(((-725) (-10 -7 (-15 -2533 ((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2534 ((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2535 ((-1006) (-219) (-219) (-535) (-665 (-219)) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2536 ((-1006) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2537 ((-1006) (-219) (-219) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2538 ((-1006) (-219) (-219) (-219) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2539 ((-1006) (-219) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2540 ((-1006) (-219) (-219) (-535) (-219) (-535) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2541 ((-1006) (-219) (-219) (-535) (-535) (-535) (-535))) (-15 -2542 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))) (-15 -2543 ((-1006) (-665 (-219)) (-665 (-219)) (-535) (-535))) (-15 -2544 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-219) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))))) (T -725))
+((-2544 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2543 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2542 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2541 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2540 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2539 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2538 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2537 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2536 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2535 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2534 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2533 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006)) (-5 *1 (-725)))))
+(-10 -7 (-15 -2533 ((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2534 ((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2535 ((-1006) (-219) (-219) (-535) (-665 (-219)) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2536 ((-1006) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416))))) (-15 -2537 ((-1006) (-219) (-219) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2538 ((-1006) (-219) (-219) (-219) (-219) (-535) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2539 ((-1006) (-219) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2540 ((-1006) (-219) (-219) (-535) (-219) (-535) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2541 ((-1006) (-219) (-219) (-535) (-535) (-535) (-535))) (-15 -2542 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-219) (-535) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))) (-15 -2543 ((-1006) (-665 (-219)) (-665 (-219)) (-535) (-535))) (-15 -2544 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-219) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))))
+((-2552 (((-1006) (-535) (-535) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2551 (((-1006) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))) (-381) (-381)) 69) (((-1006) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2550 (((-1006) (-219) (-219) (-535) (-219) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG)))) 57)) (-2549 (((-1006) (-665 (-219)) (-665 (-219)) (-535) (-219) (-219) (-219) (-535) (-535) (-535) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) 50)) (-2548 (((-1006) (-219) (-535) (-535) (-1124) (-535) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) 49)) (-2547 (((-1006) (-219) (-535) (-535) (-219) (-1124) (-219) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2546 (((-1006) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) 42)) (-2545 (((-1006) (-219) (-535) (-535) (-535) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) 38)))
+(((-726) (-10 -7 (-15 -2545 ((-1006) (-219) (-535) (-535) (-535) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2546 ((-1006) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2547 ((-1006) (-219) (-535) (-535) (-219) (-1124) (-219) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2548 ((-1006) (-219) (-535) (-535) (-1124) (-535) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2549 ((-1006) (-665 (-219)) (-665 (-219)) (-535) (-219) (-219) (-219) (-535) (-535) (-535) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2550 ((-1006) (-219) (-219) (-535) (-219) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG))))) (-15 -2551 ((-1006) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))))) (-15 -2551 ((-1006) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))) (-381) (-381))) (-15 -2552 ((-1006) (-535) (-535) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -726))
+((-2552 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2551 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-381)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2551 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2550 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2549 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2548 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-535)) (-5 *5 (-1124)) (-5 *6 (-665 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2547 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-535)) (-5 *5 (-1124)) (-5 *6 (-665 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2546 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-2545 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))))
+(-10 -7 (-15 -2545 ((-1006) (-219) (-535) (-535) (-535) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2546 ((-1006) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2547 ((-1006) (-219) (-535) (-535) (-219) (-1124) (-219) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2548 ((-1006) (-219) (-535) (-535) (-1124) (-535) (-219) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2549 ((-1006) (-665 (-219)) (-665 (-219)) (-535) (-219) (-219) (-219) (-535) (-535) (-535) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2550 ((-1006) (-219) (-219) (-535) (-219) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG))))) (-15 -2551 ((-1006) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))))) (-15 -2551 ((-1006) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))) (-381) (-381))) (-15 -2552 ((-1006) (-535) (-535) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-2555 (((-1006) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-651 (-219)) (-535)) 45)) (-2554 (((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-1124) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY)))) 41)) (-2553 (((-1006) (-535) (-535) (-535) (-535) (-219) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 23)))
+(((-727) (-10 -7 (-15 -2553 ((-1006) (-535) (-535) (-535) (-535) (-219) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2554 ((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-1124) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY))))) (-15 -2555 ((-1006) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-651 (-219)) (-535))))) (T -727))
+((-2555 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-651 (-219))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-727)))) (-2554 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-1124)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1006)) (-5 *1 (-727)))) (-2553 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-727)))))
+(-10 -7 (-15 -2553 ((-1006) (-535) (-535) (-535) (-535) (-219) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2554 ((-1006) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-1124) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY))))) (-15 -2555 ((-1006) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-651 (-219)) (-535))))
+((-2565 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-665 (-219)) (-219) (-219) (-535)) 35)) (-2564 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-219) (-219) (-535)) 34)) (-2563 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-665 (-219)) (-219) (-219) (-535)) 33)) (-2562 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 29)) (-2561 (((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 28)) (-2560 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535)) 27)) (-2559 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-535)) 24)) (-2558 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-535)) 23)) (-2557 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535)) 22)) (-2556 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535)) 21)))
+(((-728) (-10 -7 (-15 -2556 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535))) (-15 -2557 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2558 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2559 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2560 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535))) (-15 -2561 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2562 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2563 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-665 (-219)) (-219) (-219) (-535))) (-15 -2564 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-219) (-219) (-535))) (-15 -2565 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-665 (-219)) (-219) (-219) (-535))))) (T -728))
+((-2565 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2564 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2563 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *6 (-219)) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2562 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2561 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2560 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2559 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2558 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2557 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2556 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))))
+(-10 -7 (-15 -2556 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535))) (-15 -2557 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2558 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2559 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2560 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-219) (-535))) (-15 -2561 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2562 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2563 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-665 (-219)) (-219) (-219) (-535))) (-15 -2564 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-219) (-219) (-535))) (-15 -2565 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-665 (-219)) (-219) (-219) (-535))))
+((-2583 (((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535)) 45)) (-2582 (((-1006) (-535) (-535) (-535) (-219) (-665 (-219)) (-665 (-219)) (-535)) 44)) (-2581 (((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535)) 43)) (-2580 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 42)) (-2579 (((-1006) (-1124) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535)) 41)) (-2578 (((-1006) (-1124) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535)) 40)) (-2577 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535) (-535) (-535) (-219) (-665 (-219)) (-535)) 39)) (-2576 (((-1006) (-1124) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-535))) 38)) (-2575 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535)) 35)) (-2574 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535)) 34)) (-2573 (((-1006) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535)) 33)) (-2572 (((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 32)) (-2571 (((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-219) (-535)) 31)) (-2570 (((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-535)) 30)) (-2569 (((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-535) (-535) (-535)) 29)) (-2568 (((-1006) (-535) (-535) (-535) (-219) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535) (-665 (-535)) (-535) (-535) (-535)) 28)) (-2567 (((-1006) (-535) (-665 (-219)) (-219) (-535)) 24)) (-2566 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 21)))
+(((-729) (-10 -7 (-15 -2566 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2567 ((-1006) (-535) (-665 (-219)) (-219) (-535))) (-15 -2568 ((-1006) (-535) (-535) (-535) (-219) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535) (-665 (-535)) (-535) (-535) (-535))) (-15 -2569 ((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-535) (-535) (-535))) (-15 -2570 ((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-535))) (-15 -2571 ((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-219) (-535))) (-15 -2572 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2573 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535))) (-15 -2574 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535))) (-15 -2575 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2576 ((-1006) (-1124) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-535)))) (-15 -2577 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535) (-535) (-535) (-219) (-665 (-219)) (-535))) (-15 -2578 ((-1006) (-1124) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535))) (-15 -2579 ((-1006) (-1124) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2580 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2581 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535))) (-15 -2582 ((-1006) (-535) (-535) (-535) (-219) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2583 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535))))) (T -729))
+((-2583 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2582 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2581 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2580 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2579 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2578 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) (-5 *7 (-665 (-535))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2577 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *6 (-219)) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2576 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) (-5 *7 (-665 (-535))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2575 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2574 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2573 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2572 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2571 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2570 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2569 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2568 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-665 (-219))) (-5 *6 (-665 (-535))) (-5 *3 (-535)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2567 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2566 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(-10 -7 (-15 -2566 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2567 ((-1006) (-535) (-665 (-219)) (-219) (-535))) (-15 -2568 ((-1006) (-535) (-535) (-535) (-219) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535) (-665 (-535)) (-535) (-535) (-535))) (-15 -2569 ((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-535) (-535) (-535))) (-15 -2570 ((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-219) (-535) (-535) (-535))) (-15 -2571 ((-1006) (-535) (-219) (-219) (-665 (-219)) (-535) (-535) (-219) (-535))) (-15 -2572 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2573 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535))) (-15 -2574 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535))) (-15 -2575 ((-1006) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2576 ((-1006) (-1124) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-535)))) (-15 -2577 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535) (-535) (-535) (-219) (-665 (-219)) (-535))) (-15 -2578 ((-1006) (-1124) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535))) (-15 -2579 ((-1006) (-1124) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2580 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2581 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535))) (-15 -2582 ((-1006) (-535) (-535) (-535) (-219) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2583 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535) (-665 (-219)) (-665 (-219)) (-535) (-535) (-535))))
+((-2591 (((-1006) (-535) (-535) (-535) (-219) (-665 (-219)) (-535) (-665 (-219)) (-535)) 63)) (-2590 (((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-112) (-219) (-535) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-535) (-535) (-535) (-535) (-535) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-535)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2589 (((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-112) (-112) (-535) (-535) (-665 (-219)) (-665 (-535)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) 58)) (-2588 (((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-535) (-535) (-665 (-219)) (-535)) 51)) (-2587 (((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2586 (((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2585 (((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2584 (((-1006) (-535) (-219) (-219) (-535) (-219) (-112) (-219) (-219) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-730) (-10 -7 (-15 -2584 ((-1006) (-535) (-219) (-219) (-535) (-219) (-112) (-219) (-219) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2585 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -2586 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2))))) (-15 -2587 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -2588 ((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-535) (-535) (-665 (-219)) (-535))) (-15 -2589 ((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-112) (-112) (-535) (-535) (-665 (-219)) (-665 (-535)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -2590 ((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-112) (-219) (-535) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-535) (-535) (-535) (-535) (-535) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-535)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2591 ((-1006) (-535) (-535) (-535) (-219) (-665 (-219)) (-535) (-665 (-219)) (-535))))) (T -730))
+((-2591 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2590 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-665 (-535))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2589 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-665 (-219))) (-5 *6 (-112)) (-5 *7 (-665 (-535))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-535)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2588 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2587 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2586 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2585 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2584 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-535)) (-5 *5 (-112)) (-5 *6 (-665 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))))
+(-10 -7 (-15 -2584 ((-1006) (-535) (-219) (-219) (-535) (-219) (-112) (-219) (-219) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2585 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -2586 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2))))) (-15 -2587 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -2588 ((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-535) (-535) (-665 (-219)) (-535))) (-15 -2589 ((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-112) (-112) (-535) (-535) (-665 (-219)) (-665 (-535)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -2590 ((-1006) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-535) (-112) (-219) (-535) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-535) (-535) (-535) (-535) (-535) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-535) (-665 (-535)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2591 ((-1006) (-535) (-535) (-535) (-219) (-665 (-219)) (-535) (-665 (-219)) (-535))))
+((-2601 (((-1006) (-1124) (-535) (-535) (-535) (-535) (-665 (-166 (-219))) (-665 (-166 (-219))) (-535)) 47)) (-2600 (((-1006) (-1124) (-1124) (-535) (-535) (-665 (-166 (-219))) (-535) (-665 (-166 (-219))) (-535) (-535) (-665 (-166 (-219))) (-535)) 46)) (-2599 (((-1006) (-535) (-535) (-535) (-665 (-166 (-219))) (-535)) 45)) (-2598 (((-1006) (-1124) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 40)) (-2597 (((-1006) (-1124) (-1124) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-665 (-219)) (-535)) 39)) (-2596 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-535)) 36)) (-2595 (((-1006) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535)) 35)) (-2594 (((-1006) (-535) (-535) (-535) (-535) (-618 (-112)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-219) (-219) (-535)) 34)) (-2593 (((-1006) (-535) (-535) (-535) (-665 (-535)) (-665 (-535)) (-665 (-535)) (-665 (-535)) (-112) (-219) (-112) (-665 (-535)) (-665 (-219)) (-535)) 33)) (-2592 (((-1006) (-535) (-535) (-535) (-535) (-219) (-112) (-112) (-618 (-112)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-535)) 32)))
+(((-731) (-10 -7 (-15 -2592 ((-1006) (-535) (-535) (-535) (-535) (-219) (-112) (-112) (-618 (-112)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-535))) (-15 -2593 ((-1006) (-535) (-535) (-535) (-665 (-535)) (-665 (-535)) (-665 (-535)) (-665 (-535)) (-112) (-219) (-112) (-665 (-535)) (-665 (-219)) (-535))) (-15 -2594 ((-1006) (-535) (-535) (-535) (-535) (-618 (-112)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-219) (-219) (-535))) (-15 -2595 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535))) (-15 -2596 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-535))) (-15 -2597 ((-1006) (-1124) (-1124) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-665 (-219)) (-535))) (-15 -2598 ((-1006) (-1124) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2599 ((-1006) (-535) (-535) (-535) (-665 (-166 (-219))) (-535))) (-15 -2600 ((-1006) (-1124) (-1124) (-535) (-535) (-665 (-166 (-219))) (-535) (-665 (-166 (-219))) (-535) (-535) (-665 (-166 (-219))) (-535))) (-15 -2601 ((-1006) (-1124) (-535) (-535) (-535) (-535) (-665 (-166 (-219))) (-665 (-166 (-219))) (-535))))) (T -731))
+((-2601 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-166 (-219)))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2600 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-166 (-219)))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2599 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-166 (-219)))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2598 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2597 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2596 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2595 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2594 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-618 (-112))) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-535))) (-5 *7 (-219)) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2593 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-665 (-535))) (-5 *5 (-112)) (-5 *7 (-665 (-219))) (-5 *3 (-535)) (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2592 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-618 (-112))) (-5 *7 (-665 (-219))) (-5 *8 (-665 (-535))) (-5 *3 (-535)) (-5 *4 (-219)) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-731)))))
+(-10 -7 (-15 -2592 ((-1006) (-535) (-535) (-535) (-535) (-219) (-112) (-112) (-618 (-112)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-535))) (-15 -2593 ((-1006) (-535) (-535) (-535) (-665 (-535)) (-665 (-535)) (-665 (-535)) (-665 (-535)) (-112) (-219) (-112) (-665 (-535)) (-665 (-219)) (-535))) (-15 -2594 ((-1006) (-535) (-535) (-535) (-535) (-618 (-112)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-219) (-219) (-535))) (-15 -2595 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535))) (-15 -2596 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-535))) (-15 -2597 ((-1006) (-1124) (-1124) (-535) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-665 (-219)) (-535))) (-15 -2598 ((-1006) (-1124) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2599 ((-1006) (-535) (-535) (-535) (-665 (-166 (-219))) (-535))) (-15 -2600 ((-1006) (-1124) (-1124) (-535) (-535) (-665 (-166 (-219))) (-535) (-665 (-166 (-219))) (-535) (-535) (-665 (-166 (-219))) (-535))) (-15 -2601 ((-1006) (-1124) (-535) (-535) (-535) (-535) (-665 (-166 (-219))) (-665 (-166 (-219))) (-535))))
+((-2616 (((-1006) (-535) (-535) (-535) (-535) (-535) (-112) (-535) (-112) (-535) (-665 (-166 (-219))) (-665 (-166 (-219))) (-535)) 65)) (-2615 (((-1006) (-535) (-535) (-535) (-535) (-535) (-112) (-535) (-112) (-535) (-665 (-219)) (-665 (-219)) (-535)) 60)) (-2614 (((-1006) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381)) 56) (((-1006) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) 55)) (-2613 (((-1006) (-535) (-535) (-535) (-219) (-112) (-535) (-665 (-219)) (-665 (-219)) (-535)) 37)) (-2612 (((-1006) (-535) (-535) (-219) (-219) (-535) (-535) (-665 (-219)) (-535)) 33)) (-2611 (((-1006) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-535) (-535) (-535)) 30)) (-2610 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 29)) (-2609 (((-1006) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 28)) (-2608 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 27)) (-2607 (((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535)) 26)) (-2606 (((-1006) (-535) (-535) (-665 (-219)) (-535)) 25)) (-2605 (((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 24)) (-2604 (((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535)) 23)) (-2603 (((-1006) (-665 (-219)) (-535) (-535) (-535) (-535)) 22)) (-2602 (((-1006) (-535) (-535) (-665 (-219)) (-535)) 21)))
+(((-732) (-10 -7 (-15 -2602 ((-1006) (-535) (-535) (-665 (-219)) (-535))) (-15 -2603 ((-1006) (-665 (-219)) (-535) (-535) (-535) (-535))) (-15 -2604 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2605 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2606 ((-1006) (-535) (-535) (-665 (-219)) (-535))) (-15 -2607 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535))) (-15 -2608 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2609 ((-1006) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2610 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2611 ((-1006) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-535) (-535) (-535))) (-15 -2612 ((-1006) (-535) (-535) (-219) (-219) (-535) (-535) (-665 (-219)) (-535))) (-15 -2613 ((-1006) (-535) (-535) (-535) (-219) (-112) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2614 ((-1006) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -2614 ((-1006) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2615 ((-1006) (-535) (-535) (-535) (-535) (-535) (-112) (-535) (-112) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2616 ((-1006) (-535) (-535) (-535) (-535) (-535) (-112) (-535) (-112) (-535) (-665 (-166 (-219))) (-665 (-166 (-219))) (-535))))) (T -732))
+((-2616 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-112)) (-5 *5 (-665 (-166 (-219)))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2615 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *4 (-112)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2614 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2614 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2613 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-535)) (-5 *5 (-112)) (-5 *6 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2612 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2611 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2610 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2609 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2608 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2607 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2606 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2605 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2604 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2603 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2602 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(-10 -7 (-15 -2602 ((-1006) (-535) (-535) (-665 (-219)) (-535))) (-15 -2603 ((-1006) (-665 (-219)) (-535) (-535) (-535) (-535))) (-15 -2604 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2605 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2606 ((-1006) (-535) (-535) (-665 (-219)) (-535))) (-15 -2607 ((-1006) (-535) (-535) (-535) (-535) (-665 (-219)) (-535))) (-15 -2608 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2609 ((-1006) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2610 ((-1006) (-535) (-535) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2611 ((-1006) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-535) (-535) (-535))) (-15 -2612 ((-1006) (-535) (-535) (-219) (-219) (-535) (-535) (-665 (-219)) (-535))) (-15 -2613 ((-1006) (-535) (-535) (-535) (-219) (-112) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2614 ((-1006) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -2614 ((-1006) (-535) (-535) (-219) (-535) (-535) (-535) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2615 ((-1006) (-535) (-535) (-535) (-535) (-535) (-112) (-535) (-112) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2616 ((-1006) (-535) (-535) (-535) (-535) (-535) (-112) (-535) (-112) (-535) (-665 (-166 (-219))) (-665 (-166 (-219))) (-535))))
+((-2627 (((-1006) (-535) (-535) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) 61)) (-2626 (((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-535)) (-535) (-665 (-219)) (-535) (-535) (-535) (-535)) 57)) (-2625 (((-1006) (-535) (-665 (-219)) (-112) (-219) (-535) (-535) (-535) (-535) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) 56)) (-2624 (((-1006) (-535) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535) (-665 (-535)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535)) 37)) (-2623 (((-1006) (-535) (-535) (-535) (-219) (-535) (-665 (-219)) (-665 (-219)) (-535)) 36)) (-2622 (((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535)) 33)) (-2621 (((-1006) (-535) (-665 (-219)) (-535) (-665 (-535)) (-665 (-535)) (-535) (-665 (-535)) (-665 (-219))) 32)) (-2620 (((-1006) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-535)) 28)) (-2619 (((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535)) 27)) (-2618 (((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535)) 26)) (-2617 (((-1006) (-535) (-665 (-166 (-219))) (-535) (-535) (-535) (-535) (-665 (-166 (-219))) (-535)) 22)))
+(((-733) (-10 -7 (-15 -2617 ((-1006) (-535) (-665 (-166 (-219))) (-535) (-535) (-535) (-535) (-665 (-166 (-219))) (-535))) (-15 -2618 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2619 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2620 ((-1006) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-535))) (-15 -2621 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-535)) (-665 (-535)) (-535) (-665 (-535)) (-665 (-219)))) (-15 -2622 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2623 ((-1006) (-535) (-535) (-535) (-219) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2624 ((-1006) (-535) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535) (-665 (-535)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535))) (-15 -2625 ((-1006) (-535) (-665 (-219)) (-112) (-219) (-535) (-535) (-535) (-535) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -2626 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-535)) (-535) (-665 (-219)) (-535) (-535) (-535) (-535))) (-15 -2627 ((-1006) (-535) (-535) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD))))))) (T -733))
+((-2627 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2626 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2625 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2624 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2623 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2622 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2621 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2620 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2619 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2618 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2617 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-166 (-219)))) (-5 *2 (-1006)) (-5 *1 (-733)))))
+(-10 -7 (-15 -2617 ((-1006) (-535) (-665 (-166 (-219))) (-535) (-535) (-535) (-535) (-665 (-166 (-219))) (-535))) (-15 -2618 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2619 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-535))) (-15 -2620 ((-1006) (-665 (-219)) (-535) (-665 (-219)) (-535) (-535) (-535))) (-15 -2621 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-535)) (-665 (-535)) (-535) (-665 (-535)) (-665 (-219)))) (-15 -2622 ((-1006) (-535) (-535) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2623 ((-1006) (-535) (-535) (-535) (-219) (-535) (-665 (-219)) (-665 (-219)) (-535))) (-15 -2624 ((-1006) (-535) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535) (-665 (-535)) (-665 (-219)) (-665 (-535)) (-665 (-535)) (-665 (-219)) (-665 (-219)) (-665 (-535)) (-535))) (-15 -2625 ((-1006) (-535) (-665 (-219)) (-112) (-219) (-535) (-535) (-535) (-535) (-219) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -2626 ((-1006) (-535) (-665 (-219)) (-535) (-665 (-219)) (-665 (-535)) (-535) (-665 (-219)) (-535) (-535) (-535) (-535))) (-15 -2627 ((-1006) (-535) (-535) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-665 (-219)) (-535) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD))))))
+((-2631 (((-1006) (-1124) (-535) (-535) (-665 (-219)) (-535) (-535) (-665 (-219))) 29)) (-2630 (((-1006) (-1124) (-535) (-535) (-665 (-219))) 28)) (-2629 (((-1006) (-1124) (-535) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535) (-665 (-219))) 27)) (-2628 (((-1006) (-535) (-535) (-535) (-665 (-219))) 21)))
+(((-734) (-10 -7 (-15 -2628 ((-1006) (-535) (-535) (-535) (-665 (-219)))) (-15 -2629 ((-1006) (-1124) (-535) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535) (-665 (-219)))) (-15 -2630 ((-1006) (-1124) (-535) (-535) (-665 (-219)))) (-15 -2631 ((-1006) (-1124) (-535) (-535) (-665 (-219)) (-535) (-535) (-665 (-219)))))) (T -734))
+((-2631 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734)))) (-2630 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734)))) (-2629 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-535))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-734)))) (-2628 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734)))))
+(-10 -7 (-15 -2628 ((-1006) (-535) (-535) (-535) (-665 (-219)))) (-15 -2629 ((-1006) (-1124) (-535) (-535) (-665 (-219)) (-535) (-665 (-535)) (-535) (-665 (-219)))) (-15 -2630 ((-1006) (-1124) (-535) (-535) (-665 (-219)))) (-15 -2631 ((-1006) (-1124) (-535) (-535) (-665 (-219)) (-535) (-535) (-665 (-219)))))
+((-2669 (((-1006) (-219) (-219) (-219) (-219) (-535)) 62)) (-2668 (((-1006) (-219) (-219) (-219) (-535)) 61)) (-2667 (((-1006) (-219) (-219) (-219) (-535)) 60)) (-2666 (((-1006) (-219) (-219) (-535)) 59)) (-2665 (((-1006) (-219) (-535)) 58)) (-2664 (((-1006) (-219) (-535)) 57)) (-2663 (((-1006) (-219) (-535)) 56)) (-2662 (((-1006) (-219) (-535)) 55)) (-2661 (((-1006) (-219) (-535)) 54)) (-2660 (((-1006) (-219) (-535)) 53)) (-2659 (((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535)) 52)) (-2658 (((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535)) 51)) (-2657 (((-1006) (-219) (-535)) 50)) (-2656 (((-1006) (-219) (-535)) 49)) (-2655 (((-1006) (-219) (-535)) 48)) (-2654 (((-1006) (-219) (-535)) 47)) (-2653 (((-1006) (-535) (-219) (-166 (-219)) (-535) (-1124) (-535)) 46)) (-2652 (((-1006) (-1124) (-166 (-219)) (-1124) (-535)) 45)) (-2651 (((-1006) (-1124) (-166 (-219)) (-1124) (-535)) 44)) (-2650 (((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535)) 43)) (-2649 (((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535)) 42)) (-2648 (((-1006) (-219) (-535)) 39)) (-2647 (((-1006) (-219) (-535)) 38)) (-2646 (((-1006) (-219) (-535)) 37)) (-2645 (((-1006) (-219) (-535)) 36)) (-2644 (((-1006) (-219) (-535)) 35)) (-2643 (((-1006) (-219) (-535)) 34)) (-2642 (((-1006) (-219) (-535)) 33)) (-2641 (((-1006) (-219) (-535)) 32)) (-2640 (((-1006) (-219) (-535)) 31)) (-2639 (((-1006) (-219) (-535)) 30)) (-2638 (((-1006) (-219) (-219) (-219) (-535)) 29)) (-2637 (((-1006) (-219) (-535)) 28)) (-2636 (((-1006) (-219) (-535)) 27)) (-2635 (((-1006) (-219) (-535)) 26)) (-2634 (((-1006) (-219) (-535)) 25)) (-2633 (((-1006) (-219) (-535)) 24)) (-2632 (((-1006) (-166 (-219)) (-535)) 21)))
+(((-735) (-10 -7 (-15 -2632 ((-1006) (-166 (-219)) (-535))) (-15 -2633 ((-1006) (-219) (-535))) (-15 -2634 ((-1006) (-219) (-535))) (-15 -2635 ((-1006) (-219) (-535))) (-15 -2636 ((-1006) (-219) (-535))) (-15 -2637 ((-1006) (-219) (-535))) (-15 -2638 ((-1006) (-219) (-219) (-219) (-535))) (-15 -2639 ((-1006) (-219) (-535))) (-15 -2640 ((-1006) (-219) (-535))) (-15 -2641 ((-1006) (-219) (-535))) (-15 -2642 ((-1006) (-219) (-535))) (-15 -2643 ((-1006) (-219) (-535))) (-15 -2644 ((-1006) (-219) (-535))) (-15 -2645 ((-1006) (-219) (-535))) (-15 -2646 ((-1006) (-219) (-535))) (-15 -2647 ((-1006) (-219) (-535))) (-15 -2648 ((-1006) (-219) (-535))) (-15 -2649 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2650 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2651 ((-1006) (-1124) (-166 (-219)) (-1124) (-535))) (-15 -2652 ((-1006) (-1124) (-166 (-219)) (-1124) (-535))) (-15 -2653 ((-1006) (-535) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2654 ((-1006) (-219) (-535))) (-15 -2655 ((-1006) (-219) (-535))) (-15 -2656 ((-1006) (-219) (-535))) (-15 -2657 ((-1006) (-219) (-535))) (-15 -2658 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2659 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2660 ((-1006) (-219) (-535))) (-15 -2661 ((-1006) (-219) (-535))) (-15 -2662 ((-1006) (-219) (-535))) (-15 -2663 ((-1006) (-219) (-535))) (-15 -2664 ((-1006) (-219) (-535))) (-15 -2665 ((-1006) (-219) (-535))) (-15 -2666 ((-1006) (-219) (-219) (-535))) (-15 -2667 ((-1006) (-219) (-219) (-219) (-535))) (-15 -2668 ((-1006) (-219) (-219) (-219) (-535))) (-15 -2669 ((-1006) (-219) (-219) (-219) (-219) (-535))))) (T -735))
+((-2669 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2668 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2667 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2666 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2659 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2658 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2654 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2653 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-535)) (-5 *5 (-166 (-219))) (-5 *6 (-1124)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2652 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1124)) (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2651 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1124)) (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2650 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2649 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2638 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2637 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2636 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2635 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(-10 -7 (-15 -2632 ((-1006) (-166 (-219)) (-535))) (-15 -2633 ((-1006) (-219) (-535))) (-15 -2634 ((-1006) (-219) (-535))) (-15 -2635 ((-1006) (-219) (-535))) (-15 -2636 ((-1006) (-219) (-535))) (-15 -2637 ((-1006) (-219) (-535))) (-15 -2638 ((-1006) (-219) (-219) (-219) (-535))) (-15 -2639 ((-1006) (-219) (-535))) (-15 -2640 ((-1006) (-219) (-535))) (-15 -2641 ((-1006) (-219) (-535))) (-15 -2642 ((-1006) (-219) (-535))) (-15 -2643 ((-1006) (-219) (-535))) (-15 -2644 ((-1006) (-219) (-535))) (-15 -2645 ((-1006) (-219) (-535))) (-15 -2646 ((-1006) (-219) (-535))) (-15 -2647 ((-1006) (-219) (-535))) (-15 -2648 ((-1006) (-219) (-535))) (-15 -2649 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2650 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2651 ((-1006) (-1124) (-166 (-219)) (-1124) (-535))) (-15 -2652 ((-1006) (-1124) (-166 (-219)) (-1124) (-535))) (-15 -2653 ((-1006) (-535) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2654 ((-1006) (-219) (-535))) (-15 -2655 ((-1006) (-219) (-535))) (-15 -2656 ((-1006) (-219) (-535))) (-15 -2657 ((-1006) (-219) (-535))) (-15 -2658 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2659 ((-1006) (-219) (-166 (-219)) (-535) (-1124) (-535))) (-15 -2660 ((-1006) (-219) (-535))) (-15 -2661 ((-1006) (-219) (-535))) (-15 -2662 ((-1006) (-219) (-535))) (-15 -2663 ((-1006) (-219) (-535))) (-15 -2664 ((-1006) (-219) (-535))) (-15 -2665 ((-1006) (-219) (-535))) (-15 -2666 ((-1006) (-219) (-219) (-535))) (-15 -2667 ((-1006) (-219) (-219) (-219) (-535))) (-15 -2668 ((-1006) (-219) (-219) (-219) (-535))) (-15 -2669 ((-1006) (-219) (-219) (-219) (-219) (-535))))
+((-2675 (((-1230)) 18)) (-2671 (((-1124)) 22)) (-2670 (((-1124)) 21)) (-2673 (((-1069) (-1142) (-665 (-535))) 37) (((-1069) (-1142) (-665 (-219))) 32)) (-2674 (((-112)) 16)) (-2672 (((-1124) (-1124)) 25)))
+(((-736) (-10 -7 (-15 -2670 ((-1124))) (-15 -2671 ((-1124))) (-15 -2672 ((-1124) (-1124))) (-15 -2673 ((-1069) (-1142) (-665 (-219)))) (-15 -2673 ((-1069) (-1142) (-665 (-535)))) (-15 -2674 ((-112))) (-15 -2675 ((-1230))))) (T -736))
+((-2675 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-736)))) (-2674 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-736)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-665 (-535))) (-5 *2 (-1069)) (-5 *1 (-736)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-665 (-219))) (-5 *2 (-1069)) (-5 *1 (-736)))) (-2672 (*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))) (-2671 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))) (-2670 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))))
+(-10 -7 (-15 -2670 ((-1124))) (-15 -2671 ((-1124))) (-15 -2672 ((-1124) (-1124))) (-15 -2673 ((-1069) (-1142) (-665 (-219)))) (-15 -2673 ((-1069) (-1142) (-665 (-535)))) (-15 -2674 ((-112))) (-15 -2675 ((-1230))))
+((-2677 (($ $ $) 10)) (-2678 (($ $ $ $) 9)) (-2676 (($ $ $) 12)))
+(((-737 |#1|) (-10 -8 (-15 -2676 (|#1| |#1| |#1|)) (-15 -2677 (|#1| |#1| |#1|)) (-15 -2678 (|#1| |#1| |#1| |#1|))) (-738)) (T -737))
+NIL
+(-10 -8 (-15 -2676 (|#1| |#1| |#1|)) (-15 -2677 (|#1| |#1| |#1|)) (-15 -2678 (|#1| |#1| |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2490 (($ $ (-890)) 28)) (-2489 (($ $ (-890)) 29)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-2677 (($ $ $) 25)) (-4300 (((-835) $) 11)) (-2678 (($ $ $ $) 26)) (-2676 (($ $ $) 24)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 27)))
(((-738) (-138)) (T -738))
-((-4172 (*1 *1 *1 *1 *1) (-4 *1 (-738))) (-1911 (*1 *1 *1 *1) (-4 *1 (-738))) (-1892 (*1 *1 *1 *1) (-4 *1 (-738))))
-(-13 (-21) (-697) (-10 -8 (-15 -4172 ($ $ $ $)) (-15 -1911 ($ $ $)) (-15 -1892 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-697) . T) ((-1066) . T))
-((-3845 (((-834) $) NIL) (($ (-549)) 10)))
-(((-739 |#1|) (-10 -8 (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|))) (-740)) (T -739))
-NIL
-(-10 -8 (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3923 (((-3 $ "failed") $) 40)) (-2353 (($ $ (-892)) 28) (($ $ (-747)) 35)) (-3976 (((-3 $ "failed") $) 38)) (-3987 (((-112) $) 34)) (-2193 (((-3 $ "failed") $) 39)) (-2881 (($ $ (-892)) 29) (($ $ (-747)) 36)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-1911 (($ $ $) 25)) (-3845 (((-834) $) 11) (($ (-549)) 31)) (-1723 (((-747)) 32)) (-4172 (($ $ $ $) 26)) (-1892 (($ $ $) 24)) (-3275 (($) 18 T CONST)) (-3287 (($) 33 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 30) (($ $ (-747)) 37)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 27)))
+((-2678 (*1 *1 *1 *1 *1) (-4 *1 (-738))) (-2677 (*1 *1 *1 *1) (-4 *1 (-738))) (-2676 (*1 *1 *1 *1) (-4 *1 (-738))))
+(-13 (-21) (-697) (-10 -8 (-15 -2678 ($ $ $ $)) (-15 -2677 ($ $ $)) (-15 -2676 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-697) . T) ((-1067) . T))
+((-4300 (((-835) $) NIL) (($ (-535)) 10)))
+(((-739 |#1|) (-10 -8 (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-740)) (T -739))
+NIL
+(-10 -8 (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2487 (((-3 $ #1="failed") $) 40)) (-2490 (($ $ (-890)) 28) (($ $ (-747)) 35)) (-3804 (((-3 $ #1#) $) 38)) (-2493 (((-112) $) 34)) (-2488 (((-3 $ #1#) $) 39)) (-2489 (($ $ (-890)) 29) (($ $ (-747)) 36)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-2677 (($ $ $) 25)) (-4300 (((-835) $) 11) (($ (-535)) 31)) (-3444 (((-747)) 32)) (-2678 (($ $ $ $) 26)) (-2676 (($ $ $) 24)) (-2979 (($) 18 T CONST)) (-2985 (($) 33 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 30) (($ $ (-747)) 37)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 27)))
(((-740) (-138)) (T -740))
-((-1723 (*1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-747)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-740)))))
-(-13 (-738) (-699) (-10 -8 (-15 -1723 ((-747))) (-15 -3845 ($ (-549)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-697) . T) ((-699) . T) ((-738) . T) ((-1066) . T))
-((-3015 (((-621 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 (-167 |#1|)))))) (-665 (-167 (-400 (-549)))) |#1|) 33)) (-2557 (((-621 (-167 |#1|)) (-665 (-167 (-400 (-549)))) |#1|) 23)) (-4041 (((-923 (-167 (-400 (-549)))) (-665 (-167 (-400 (-549)))) (-1142)) 20) (((-923 (-167 (-400 (-549)))) (-665 (-167 (-400 (-549))))) 19)))
-(((-741 |#1|) (-10 -7 (-15 -4041 ((-923 (-167 (-400 (-549)))) (-665 (-167 (-400 (-549)))))) (-15 -4041 ((-923 (-167 (-400 (-549)))) (-665 (-167 (-400 (-549)))) (-1142))) (-15 -2557 ((-621 (-167 |#1|)) (-665 (-167 (-400 (-549)))) |#1|)) (-15 -3015 ((-621 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 (-167 |#1|)))))) (-665 (-167 (-400 (-549)))) |#1|))) (-13 (-356) (-821))) (T -741))
-((-3015 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-167 (-400 (-549))))) (-5 *2 (-621 (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 (-167 *4))))))) (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-167 (-400 (-549))))) (-5 *2 (-621 (-167 *4))) (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))) (-4041 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-167 (-400 (-549))))) (-5 *4 (-1142)) (-5 *2 (-923 (-167 (-400 (-549))))) (-5 *1 (-741 *5)) (-4 *5 (-13 (-356) (-821))))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-665 (-167 (-400 (-549))))) (-5 *2 (-923 (-167 (-400 (-549))))) (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))))
-(-10 -7 (-15 -4041 ((-923 (-167 (-400 (-549)))) (-665 (-167 (-400 (-549)))))) (-15 -4041 ((-923 (-167 (-400 (-549)))) (-665 (-167 (-400 (-549)))) (-1142))) (-15 -2557 ((-621 (-167 |#1|)) (-665 (-167 (-400 (-549)))) |#1|)) (-15 -3015 ((-621 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 (-167 |#1|)))))) (-665 (-167 (-400 (-549)))) |#1|)))
-((-2020 (((-172 (-549)) |#1|) 25)))
-(((-742 |#1|) (-10 -7 (-15 -2020 ((-172 (-549)) |#1|))) (-397)) (T -742))
-((-2020 (*1 *2 *3) (-12 (-5 *2 (-172 (-549))) (-5 *1 (-742 *3)) (-4 *3 (-397)))))
-(-10 -7 (-15 -2020 ((-172 (-549)) |#1|)))
-((-3822 ((|#1| |#1| |#1|) 24)) (-2300 ((|#1| |#1| |#1|) 23)) (-4264 ((|#1| |#1| |#1|) 32)) (-2080 ((|#1| |#1| |#1|) 28)) (-1409 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3325 (((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|) 22)))
-(((-743 |#1| |#2|) (-10 -7 (-15 -3325 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -2300 (|#1| |#1| |#1|)) (-15 -3822 (|#1| |#1| |#1|)) (-15 -1409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2080 (|#1| |#1| |#1|)) (-15 -4264 (|#1| |#1| |#1|))) (-685 |#2|) (-356)) (T -743))
-((-4264 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2080 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-1409 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-3822 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2300 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-3325 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-743 *3 *4)) (-4 *3 (-685 *4)))))
-(-10 -7 (-15 -3325 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -2300 (|#1| |#1| |#1|)) (-15 -3822 (|#1| |#1| |#1|)) (-15 -1409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2080 (|#1| |#1| |#1|)) (-15 -4264 (|#1| |#1| |#1|)))
-((-2675 (((-2 (|:| -3420 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549)))) (-549)) 59)) (-2581 (((-2 (|:| -3420 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549))))) 57)) (-3086 (((-549)) 71)))
-(((-744 |#1| |#2|) (-10 -7 (-15 -3086 ((-549))) (-15 -2581 ((-2 (|:| -3420 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549)))))) (-15 -2675 ((-2 (|:| -3420 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549)))) (-549)))) (-1201 (-549)) (-402 (-549) |#1|)) (T -744))
-((-2675 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-1201 *3)) (-5 *2 (-2 (|:| -3420 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-744 *4 *5)) (-4 *5 (-402 *3 *4)))) (-2581 (*1 *2) (-12 (-4 *3 (-1201 (-549))) (-5 *2 (-2 (|:| -3420 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549))))) (-5 *1 (-744 *3 *4)) (-4 *4 (-402 (-549) *3)))) (-3086 (*1 *2) (-12 (-4 *3 (-1201 *2)) (-5 *2 (-549)) (-5 *1 (-744 *3 *4)) (-4 *4 (-402 *2 *3)))))
-(-10 -7 (-15 -3086 ((-549))) (-15 -2581 ((-2 (|:| -3420 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549)))))) (-15 -2675 ((-2 (|:| -3420 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549)))) (-549))))
-((-3833 (((-112) $ $) NIL)) (-2658 (((-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $) 21)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 20) (($ (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13) (($ (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) 18)) (-2388 (((-112) $ $) NIL)))
-(((-745) (-13 (-1066) (-10 -8 (-15 -3845 ($ (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3845 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3845 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -3845 ((-834) $)) (-15 -2658 ((-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $))))) (T -745))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-745)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-745)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-745)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-745)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-745)))))
-(-13 (-1066) (-10 -8 (-15 -3845 ($ (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3845 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3845 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -3845 ((-834) $)) (-15 -2658 ((-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $))))
-((-4312 (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|))) 18) (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)) (-621 (-1142))) 17)) (-2808 (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|))) 20) (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)) (-621 (-1142))) 19)))
-(((-746 |#1|) (-10 -7 (-15 -4312 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)) (-621 (-1142)))) (-15 -4312 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)))) (-15 -2808 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)) (-621 (-1142)))) (-15 -2808 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|))))) (-541)) (T -746))
-((-2808 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-746 *4)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-621 (-1142))) (-4 *5 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-746 *5)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-746 *4)))) (-4312 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-621 (-1142))) (-4 *5 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-746 *5)))))
-(-10 -7 (-15 -4312 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)) (-621 (-1142)))) (-15 -4312 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)))) (-15 -2808 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)) (-621 (-1142)))) (-15 -2808 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3100 (($ $ $) 6)) (-2384 (((-3 $ "failed") $ $) 9)) (-1309 (($ $ (-549)) 7)) (-1705 (($) NIL T CONST)) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($ $) NIL)) (-2066 (($ $ $) NIL)) (-3987 (((-112) $) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3726 (($ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3845 (((-834) $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-892)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ $ $) NIL)))
-(((-747) (-13 (-769) (-703) (-10 -8 (-15 -2066 ($ $ $)) (-15 -2094 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -1346 ((-2 (|:| -2112 $) (|:| -3249 $)) $ $)) (-15 -2038 ((-3 $ "failed") $ $)) (-15 -1309 ($ $ (-549))) (-15 -3238 ($ $)) (-6 (-4338 "*"))))) (T -747))
-((-2066 (*1 *1 *1 *1) (-5 *1 (-747))) (-2094 (*1 *1 *1 *1) (-5 *1 (-747))) (-3726 (*1 *1 *1 *1) (-5 *1 (-747))) (-1346 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2112 (-747)) (|:| -3249 (-747)))) (-5 *1 (-747)))) (-2038 (*1 *1 *1 *1) (|partial| -5 *1 (-747))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-747)))) (-3238 (*1 *1 *1) (-5 *1 (-747))))
-(-13 (-769) (-703) (-10 -8 (-15 -2066 ($ $ $)) (-15 -2094 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -1346 ((-2 (|:| -2112 $) (|:| -3249 $)) $ $)) (-15 -2038 ((-3 $ "failed") $ $)) (-15 -1309 ($ $ (-549))) (-15 -3238 ($ $)) (-6 (-4338 "*"))))
-((-2808 (((-3 |#2| "failed") |#2| |#2| (-114) (-1142)) 35)))
-(((-748 |#1| |#2|) (-10 -7 (-15 -2808 ((-3 |#2| "failed") |#2| |#2| (-114) (-1142)))) (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)) (-13 (-29 |#1|) (-1164) (-930))) (T -748))
-((-2808 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *1 (-748 *5 *2)) (-4 *2 (-13 (-29 *5) (-1164) (-930))))))
-(-10 -7 (-15 -2808 ((-3 |#2| "failed") |#2| |#2| (-114) (-1142))))
-((-3845 (((-750) |#1|) 8)))
-(((-749 |#1|) (-10 -7 (-15 -3845 ((-750) |#1|))) (-1179)) (T -749))
-((-3845 (*1 *2 *3) (-12 (-5 *2 (-750)) (-5 *1 (-749 *3)) (-4 *3 (-1179)))))
-(-10 -7 (-15 -3845 ((-750) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 7)) (-2388 (((-112) $ $) 9)))
-(((-750) (-1066)) (T -750))
-NIL
-(-1066)
-((-4117 ((|#2| |#4|) 35)))
-(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4117 (|#2| |#4|))) (-444) (-1201 |#1|) (-701 |#1| |#2|) (-1201 |#3|)) (T -751))
-((-4117 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-701 *4 *2)) (-4 *2 (-1201 *4)) (-5 *1 (-751 *4 *2 *5 *3)) (-4 *3 (-1201 *5)))))
-(-10 -7 (-15 -4117 (|#2| |#4|)))
-((-3976 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2525 (((-1230) (-1124) (-1124) |#4| |#5|) 33)) (-3660 ((|#4| |#4| |#5|) 73)) (-2758 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#5|) 77)) (-1948 (((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|) 16)))
-(((-752 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3976 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3660 (|#4| |#4| |#5|)) (-15 -2758 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#5|)) (-15 -2525 ((-1230) (-1124) (-1124) |#4| |#5|)) (-15 -1948 ((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -752))
-((-1948 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1980 *4)))) (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2525 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1124)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *4 (-1032 *6 *7 *8)) (-5 *2 (-1230)) (-5 *1 (-752 *6 *7 *8 *4 *5)) (-4 *5 (-1038 *6 *7 *8 *4)))) (-2758 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4)))) (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3660 (*1 *2 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *2 (-1032 *4 *5 *6)) (-5 *1 (-752 *4 *5 *6 *2 *3)) (-4 *3 (-1038 *4 *5 *6 *2)))) (-3976 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3976 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3660 (|#4| |#4| |#5|)) (-15 -2758 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#5|)) (-15 -2525 ((-1230) (-1124) (-1124) |#4| |#5|)) (-15 -1948 ((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|)))
-((-2713 (((-3 (-1138 (-1138 |#1|)) "failed") |#4|) 43)) (-3117 (((-621 |#4|) |#4|) 15)) (-2731 ((|#4| |#4|) 11)))
-(((-753 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3117 ((-621 |#4|) |#4|)) (-15 -2713 ((-3 (-1138 (-1138 |#1|)) "failed") |#4|)) (-15 -2731 (|#4| |#4|))) (-342) (-322 |#1|) (-1201 |#2|) (-1201 |#3|) (-892)) (T -753))
-((-2731 (*1 *2 *2) (-12 (-4 *3 (-342)) (-4 *4 (-322 *3)) (-4 *5 (-1201 *4)) (-5 *1 (-753 *3 *4 *5 *2 *6)) (-4 *2 (-1201 *5)) (-14 *6 (-892)))) (-2713 (*1 *2 *3) (|partial| -12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1201 *5)) (-5 *2 (-1138 (-1138 *4))) (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1201 *6)) (-14 *7 (-892)))) (-3117 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1201 *5)) (-5 *2 (-621 *3)) (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1201 *6)) (-14 *7 (-892)))))
-(-10 -7 (-15 -3117 ((-621 |#4|) |#4|)) (-15 -2713 ((-3 (-1138 (-1138 |#1|)) "failed") |#4|)) (-15 -2731 (|#4| |#4|)))
-((-2994 (((-2 (|:| |deter| (-621 (-1138 |#5|))) (|:| |dterm| (-621 (-621 (-2 (|:| -1815 (-747)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-621 |#1|)) (|:| |nlead| (-621 |#5|))) (-1138 |#5|) (-621 |#1|) (-621 |#5|)) 54)) (-3648 (((-621 (-747)) |#1|) 13)))
-(((-754 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2994 ((-2 (|:| |deter| (-621 (-1138 |#5|))) (|:| |dterm| (-621 (-621 (-2 (|:| -1815 (-747)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-621 |#1|)) (|:| |nlead| (-621 |#5|))) (-1138 |#5|) (-621 |#1|) (-621 |#5|))) (-15 -3648 ((-621 (-747)) |#1|))) (-1201 |#4|) (-769) (-823) (-300) (-920 |#4| |#2| |#3|)) (T -754))
-((-3648 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-621 (-747))) (-5 *1 (-754 *3 *4 *5 *6 *7)) (-4 *3 (-1201 *6)) (-4 *7 (-920 *6 *4 *5)))) (-2994 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1201 *9)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-300)) (-4 *10 (-920 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-621 (-1138 *10))) (|:| |dterm| (-621 (-621 (-2 (|:| -1815 (-747)) (|:| |pcoef| *10))))) (|:| |nfacts| (-621 *6)) (|:| |nlead| (-621 *10)))) (-5 *1 (-754 *6 *7 *8 *9 *10)) (-5 *3 (-1138 *10)) (-5 *4 (-621 *6)) (-5 *5 (-621 *10)))))
-(-10 -7 (-15 -2994 ((-2 (|:| |deter| (-621 (-1138 |#5|))) (|:| |dterm| (-621 (-621 (-2 (|:| -1815 (-747)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-621 |#1|)) (|:| |nlead| (-621 |#5|))) (-1138 |#5|) (-621 |#1|) (-621 |#5|))) (-15 -3648 ((-621 (-747)) |#1|)))
-((-1363 (((-621 (-2 (|:| |outval| |#1|) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 |#1|))))) (-665 (-400 (-549))) |#1|) 31)) (-3481 (((-621 |#1|) (-665 (-400 (-549))) |#1|) 21)) (-4041 (((-923 (-400 (-549))) (-665 (-400 (-549))) (-1142)) 18) (((-923 (-400 (-549))) (-665 (-400 (-549)))) 17)))
-(((-755 |#1|) (-10 -7 (-15 -4041 ((-923 (-400 (-549))) (-665 (-400 (-549))))) (-15 -4041 ((-923 (-400 (-549))) (-665 (-400 (-549))) (-1142))) (-15 -3481 ((-621 |#1|) (-665 (-400 (-549))) |#1|)) (-15 -1363 ((-621 (-2 (|:| |outval| |#1|) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 |#1|))))) (-665 (-400 (-549))) |#1|))) (-13 (-356) (-821))) (T -755))
-((-1363 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *2 (-621 (-2 (|:| |outval| *4) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 *4)))))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))) (-3481 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *2 (-621 *4)) (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))) (-4041 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *4 (-1142)) (-5 *2 (-923 (-400 (-549)))) (-5 *1 (-755 *5)) (-4 *5 (-13 (-356) (-821))))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *2 (-923 (-400 (-549)))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))))
-(-10 -7 (-15 -4041 ((-923 (-400 (-549))) (-665 (-400 (-549))))) (-15 -4041 ((-923 (-400 (-549))) (-665 (-400 (-549))) (-1142))) (-15 -3481 ((-621 |#1|) (-665 (-400 (-549))) |#1|)) (-15 -1363 ((-621 (-2 (|:| |outval| |#1|) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 |#1|))))) (-665 (-400 (-549))) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 34)) (-2271 (((-621 |#2|) $) NIL)) (-2082 (((-1138 $) $ |#2|) NIL) (((-1138 |#1|) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 |#2|)) NIL)) (-1342 (($ $) 28)) (-1750 (((-112) $ $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3767 (($ $ $) 93 (|has| |#1| (-541)))) (-1280 (((-621 $) $ $) 106 (|has| |#1| (-541)))) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-1912 (($ $) NIL (|has| |#1| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-923 (-400 (-549)))) NIL (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1142))))) (((-3 $ "failed") (-923 (-549))) NIL (-1536 (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-594 (-1142))) (-4007 (|has| |#1| (-38 (-400 (-549)))))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1142)))))) (((-3 $ "failed") (-923 |#1|)) NIL (-1536 (-12 (|has| |#2| (-594 (-1142))) (-4007 (|has| |#1| (-38 (-400 (-549))))) (-4007 (|has| |#1| (-38 (-549))))) (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-594 (-1142))) (-4007 (|has| |#1| (-38 (-400 (-549))))) (-4007 (|has| |#1| (-534)))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1142))) (-4007 (|has| |#1| (-963 (-549))))))) (((-3 (-1091 |#1| |#2|) "failed") $) 18)) (-2658 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) ((|#2| $) NIL) (($ (-923 (-400 (-549)))) NIL (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1142))))) (($ (-923 (-549))) NIL (-1536 (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-594 (-1142))) (-4007 (|has| |#1| (-38 (-400 (-549)))))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1142)))))) (($ (-923 |#1|)) NIL (-1536 (-12 (|has| |#2| (-594 (-1142))) (-4007 (|has| |#1| (-38 (-400 (-549))))) (-4007 (|has| |#1| (-38 (-549))))) (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-594 (-1142))) (-4007 (|has| |#1| (-38 (-400 (-549))))) (-4007 (|has| |#1| (-534)))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1142))) (-4007 (|has| |#1| (-963 (-549))))))) (((-1091 |#1| |#2|) $) NIL)) (-2252 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-541)))) (-2069 (($ $) NIL) (($ $ |#2|) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-4042 (((-112) $ $) NIL) (((-112) $ (-621 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3436 (((-112) $) NIL)) (-3285 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 70)) (-2022 (($ $) 119 (|has| |#1| (-444)))) (-4212 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#1| (-880)))) (-2067 (($ $) NIL (|has| |#1| (-541)))) (-3394 (($ $) NIL (|has| |#1| (-541)))) (-3354 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-1530 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-3744 (($ $ |#1| (-521 |#2|) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| |#1| (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| |#1| (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-3929 (((-112) $ $) NIL) (((-112) $ (-621 $)) NIL)) (-2487 (($ $ $ $ $) 90 (|has| |#1| (-541)))) (-4170 ((|#2| $) 19)) (-2258 (($ (-1138 |#1|) |#2|) NIL) (($ (-1138 $) |#2|) NIL)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-521 |#2|)) NIL) (($ $ |#2| (-747)) 36) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-1973 (($ $ $) 60)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ |#2|) NIL)) (-3147 (((-112) $) NIL)) (-2856 (((-521 |#2|) $) NIL) (((-747) $ |#2|) NIL) (((-621 (-747)) $ (-621 |#2|)) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-1781 (((-747) $) 20)) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-4058 (($ (-1 (-521 |#2|) (-521 |#2|)) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-1790 (((-3 |#2| "failed") $) NIL)) (-2913 (($ $) NIL (|has| |#1| (-444)))) (-2624 (($ $) NIL (|has| |#1| (-444)))) (-2350 (((-621 $) $) NIL)) (-2547 (($ $) 37)) (-2638 (($ $) NIL (|has| |#1| (-444)))) (-2266 (((-621 $) $) 41)) (-4132 (($ $) 39)) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-4244 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4002 (-747))) $ $) 82)) (-2097 (((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -2112 $) (|:| -3249 $)) $ $) 67) (((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -2112 $) (|:| -3249 $)) $ $ |#2|) NIL)) (-3480 (((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -3249 $)) $ $) NIL) (((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -3249 $)) $ $ |#2|) NIL)) (-2728 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2397 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2677 (((-1124) $) NIL)) (-2587 (($ $ $) 108 (|has| |#1| (-541)))) (-3093 (((-621 $) $) 30)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| |#2|) (|:| -3577 (-747))) "failed") $) NIL)) (-3130 (((-112) $ $) NIL) (((-112) $ (-621 $)) NIL)) (-2741 (($ $ $) NIL)) (-3060 (($ $) 21)) (-3739 (((-112) $ $) NIL)) (-1582 (((-112) $ $) NIL) (((-112) $ (-621 $)) NIL)) (-3952 (($ $ $) NIL)) (-1390 (($ $) 23)) (-3988 (((-1086) $) NIL)) (-4227 (((-2 (|:| -3726 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-541)))) (-2337 (((-2 (|:| -3726 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-541)))) (-2002 (((-112) $) 52)) (-2012 ((|#1| $) 55)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-444)))) (-3726 ((|#1| |#1| $) 116 (|has| |#1| (-444))) (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-880)))) (-3416 (((-2 (|:| -3726 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-541)))) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-541)))) (-4006 (($ $ |#1|) 112 (|has| |#1| (-541))) (($ $ $) NIL (|has| |#1| (-541)))) (-4215 (($ $ |#1|) 111 (|has| |#1| (-541))) (($ $ $) NIL (|has| |#1| (-541)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-621 |#2|) (-621 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-621 |#2|) (-621 $)) NIL)) (-3086 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-3455 (($ $ |#2|) NIL) (($ $ (-621 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-3068 (((-521 |#2|) $) NIL) (((-747) $ |#2|) 43) (((-621 (-747)) $ (-621 |#2|)) NIL)) (-3770 (($ $) NIL)) (-3163 (($ $) 33)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| |#1| (-594 (-525))) (|has| |#2| (-594 (-525))))) (($ (-923 (-400 (-549)))) NIL (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1142))))) (($ (-923 (-549))) NIL (-1536 (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-594 (-1142))) (-4007 (|has| |#1| (-38 (-400 (-549)))))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1142)))))) (($ (-923 |#1|)) NIL (|has| |#2| (-594 (-1142)))) (((-1124) $) NIL (-12 (|has| |#1| (-1009 (-549))) (|has| |#2| (-594 (-1142))))) (((-923 |#1|) $) NIL (|has| |#2| (-594 (-1142))))) (-1931 ((|#1| $) 115 (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-923 |#1|) $) NIL (|has| |#2| (-594 (-1142)))) (((-1091 |#1| |#2|) $) 15) (($ (-1091 |#1| |#2|)) 16) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-521 |#2|)) NIL) (($ $ |#2| (-747)) 44) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3275 (($) 13 T CONST)) (-3494 (((-3 (-112) "failed") $ $) NIL)) (-3287 (($) 35 T CONST)) (-3118 (($ $ $ $ (-747)) 88 (|has| |#1| (-541)))) (-1805 (($ $ $ (-747)) 87 (|has| |#1| (-541)))) (-1700 (($ $ |#2|) NIL) (($ $ (-621 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) 54)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) 64)) (-2485 (($ $ $) 74)) (** (($ $ (-892)) NIL) (($ $ (-747)) 61)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 59) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+((-3444 (*1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-747)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-740)))))
+(-13 (-738) (-699) (-10 -8 (-15 -3444 ((-747))) (-15 -4300 ($ (-535)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-697) . T) ((-699) . T) ((-738) . T) ((-1067) . T))
+((-2680 (((-618 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 (-166 |#1|)))))) (-665 (-166 (-400 (-535)))) |#1|) 33)) (-2679 (((-618 (-166 |#1|)) (-665 (-166 (-400 (-535)))) |#1|) 23)) (-2689 (((-917 (-166 (-400 (-535)))) (-665 (-166 (-400 (-535)))) (-1142)) 20) (((-917 (-166 (-400 (-535)))) (-665 (-166 (-400 (-535))))) 19)))
+(((-741 |#1|) (-10 -7 (-15 -2689 ((-917 (-166 (-400 (-535)))) (-665 (-166 (-400 (-535)))))) (-15 -2689 ((-917 (-166 (-400 (-535)))) (-665 (-166 (-400 (-535)))) (-1142))) (-15 -2679 ((-618 (-166 |#1|)) (-665 (-166 (-400 (-535)))) |#1|)) (-15 -2680 ((-618 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 (-166 |#1|)))))) (-665 (-166 (-400 (-535)))) |#1|))) (-13 (-356) (-821))) (T -741))
+((-2680 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *2 (-618 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 (-166 *4))))))) (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *2 (-618 (-166 *4))) (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *4 (-1142)) (-5 *2 (-917 (-166 (-400 (-535))))) (-5 *1 (-741 *5)) (-4 *5 (-13 (-356) (-821))))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *2 (-917 (-166 (-400 (-535))))) (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))))
+(-10 -7 (-15 -2689 ((-917 (-166 (-400 (-535)))) (-665 (-166 (-400 (-535)))))) (-15 -2689 ((-917 (-166 (-400 (-535)))) (-665 (-166 (-400 (-535)))) (-1142))) (-15 -2679 ((-618 (-166 |#1|)) (-665 (-166 (-400 (-535)))) |#1|)) (-15 -2680 ((-618 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 (-166 |#1|)))))) (-665 (-166 (-400 (-535)))) |#1|)))
+((-2933 (((-172 (-535)) |#1|) 25)))
+(((-742 |#1|) (-10 -7 (-15 -2933 ((-172 (-535)) |#1|))) (-397)) (T -742))
+((-2933 (*1 *2 *3) (-12 (-5 *2 (-172 (-535))) (-5 *1 (-742 *3)) (-4 *3 (-397)))))
+(-10 -7 (-15 -2933 ((-172 (-535)) |#1|)))
+((-2868 ((|#1| |#1| |#1|) 24)) (-2869 ((|#1| |#1| |#1|) 23)) (-2858 ((|#1| |#1| |#1|) 32)) (-2866 ((|#1| |#1| |#1|) 28)) (-2867 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2874 (((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|) 22)))
+(((-743 |#1| |#2|) (-10 -7 (-15 -2874 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -2868 (|#1| |#1| |#1|)) (-15 -2867 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2858 (|#1| |#1| |#1|))) (-685 |#2|) (-356)) (T -743))
+((-2858 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2866 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2867 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2868 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2869 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-743 *3 *4)) (-4 *3 (-685 *4)))))
+(-10 -7 (-15 -2874 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -2868 (|#1| |#1| |#1|)) (-15 -2867 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2858 (|#1| |#1| |#1|)))
+((-4262 (((-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535)))) (-535)) 59)) (-4261 (((-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535))))) 57)) (-4100 (((-535)) 71)))
+(((-744 |#1| |#2|) (-10 -7 (-15 -4100 ((-535))) (-15 -4261 ((-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535)))))) (-15 -4262 ((-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535)))) (-535)))) (-1200 (-535)) (-403 (-535) |#1|)) (T -744))
+((-4262 (*1 *2 *3) (-12 (-5 *3 (-535)) (-4 *4 (-1200 *3)) (-5 *2 (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-744 *4 *5)) (-4 *5 (-403 *3 *4)))) (-4261 (*1 *2) (-12 (-4 *3 (-1200 (-535))) (-5 *2 (-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535))))) (-5 *1 (-744 *3 *4)) (-4 *4 (-403 (-535) *3)))) (-4100 (*1 *2) (-12 (-4 *3 (-1200 *2)) (-5 *2 (-535)) (-5 *1 (-744 *3 *4)) (-4 *4 (-403 *2 *3)))))
+(-10 -7 (-15 -4100 ((-535))) (-15 -4261 ((-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535)))))) (-15 -4262 ((-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535)) (|:| |basisInv| (-665 (-535)))) (-535))))
+((-2887 (((-112) $ $) NIL)) (-3490 (((-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $) 21)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20) (($ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13) (($ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) 18)) (-3375 (((-112) $ $) NIL)))
+(((-745) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4300 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4300 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $))))) (T -745))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-745)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-745)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-745)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-745)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-745)))))
+(-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4300 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4300 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-3 (|:| |nia| (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $))))
+((-2755 (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|))) 18) (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)) (-618 (-1142))) 17)) (-3919 (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|))) 20) (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)) (-618 (-1142))) 19)))
+(((-746 |#1|) (-10 -7 (-15 -2755 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -2755 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|))))) (-542)) (T -746))
+((-3919 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-746 *4)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-618 (-1142))) (-4 *5 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-746 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-746 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-618 (-1142))) (-4 *5 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-746 *5)))))
+(-10 -7 (-15 -2755 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -2755 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-917 |#1|)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2724 (($ $ $) 6)) (-1363 (((-3 $ "failed") $ $) 9)) (-2681 (($ $ (-535)) 7)) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($ $) NIL)) (-2882 (($ $ $) NIL)) (-2493 (((-112) $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3478 (($ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4300 (((-835) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ $ $) NIL)))
+(((-747) (-13 (-769) (-703) (-10 -8 (-15 -2882 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -3478 ($ $ $)) (-15 -3202 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -3803 ((-3 $ "failed") $ $)) (-15 -2681 ($ $ (-535))) (-15 -3315 ($ $)) (-6 (-4338 "*"))))) (T -747))
+((-2882 (*1 *1 *1 *1) (-5 *1 (-747))) (-2883 (*1 *1 *1 *1) (-5 *1 (-747))) (-3478 (*1 *1 *1 *1) (-5 *1 (-747))) (-3202 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2091 (-747)) (|:| -3223 (-747)))) (-5 *1 (-747)))) (-3803 (*1 *1 *1 *1) (|partial| -5 *1 (-747))) (-2681 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-747)))) (-3315 (*1 *1 *1) (-5 *1 (-747))))
+(-13 (-769) (-703) (-10 -8 (-15 -2882 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -3478 ($ $ $)) (-15 -3202 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -3803 ((-3 $ "failed") $ $)) (-15 -2681 ($ $ (-535))) (-15 -3315 ($ $)) (-6 (-4338 "*"))))
+((-3919 (((-3 |#2| "failed") |#2| |#2| (-113) (-1142)) 35)))
+(((-748 |#1| |#2|) (-10 -7 (-15 -3919 ((-3 |#2| "failed") |#2| |#2| (-113) (-1142)))) (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)) (-13 (-29 |#1|) (-1164) (-931))) (T -748))
+((-3919 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *1 (-748 *5 *2)) (-4 *2 (-13 (-29 *5) (-1164) (-931))))))
+(-10 -7 (-15 -3919 ((-3 |#2| "failed") |#2| |#2| (-113) (-1142))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 7)) (-3375 (((-112) $ $) 9)))
+(((-749) (-1067)) (T -749))
+NIL
+(-1067)
+((-4300 (((-749) |#1|) 8)))
+(((-750 |#1|) (-10 -7 (-15 -4300 ((-749) |#1|))) (-1178)) (T -750))
+((-4300 (*1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-750 *3)) (-4 *3 (-1178)))))
+(-10 -7 (-15 -4300 ((-749) |#1|)))
+((-3450 ((|#2| |#4|) 35)))
+(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3450 (|#2| |#4|))) (-444) (-1200 |#1|) (-701 |#1| |#2|) (-1200 |#3|)) (T -751))
+((-3450 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-701 *4 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-751 *4 *2 *5 *3)) (-4 *3 (-1200 *5)))))
+(-10 -7 (-15 -3450 (|#2| |#4|)))
+((-3804 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2684 (((-1230) (-1124) (-1124) |#4| |#5|) 33)) (-2682 ((|#4| |#4| |#5|) 73)) (-2683 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|) 77)) (-2685 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 16)))
+(((-752 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3804 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2682 (|#4| |#4| |#5|)) (-15 -2683 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -2684 ((-1230) (-1124) (-1124) |#4| |#5|)) (-15 -2685 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -752))
+((-2685 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2684 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1124)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *4 (-1032 *6 *7 *8)) (-5 *2 (-1230)) (-5 *1 (-752 *6 *7 *8 *4 *5)) (-4 *5 (-1038 *6 *7 *8 *4)))) (-2683 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2682 (*1 *2 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *2 (-1032 *4 *5 *6)) (-5 *1 (-752 *4 *5 *6 *2 *3)) (-4 *3 (-1038 *4 *5 *6 *2)))) (-3804 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3804 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2682 (|#4| |#4| |#5|)) (-15 -2683 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -2684 ((-1230) (-1124) (-1124) |#4| |#5|)) (-15 -2685 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)))
+((-3491 (((-3 (-1136 (-1136 |#1|)) "failed") |#4|) 43)) (-2686 (((-618 |#4|) |#4|) 15)) (-4271 ((|#4| |#4|) 11)))
+(((-753 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2686 ((-618 |#4|) |#4|)) (-15 -3491 ((-3 (-1136 (-1136 |#1|)) "failed") |#4|)) (-15 -4271 (|#4| |#4|))) (-343) (-322 |#1|) (-1200 |#2|) (-1200 |#3|) (-890)) (T -753))
+((-4271 (*1 *2 *2) (-12 (-4 *3 (-343)) (-4 *4 (-322 *3)) (-4 *5 (-1200 *4)) (-5 *1 (-753 *3 *4 *5 *2 *6)) (-4 *2 (-1200 *5)) (-14 *6 (-890)))) (-3491 (*1 *2 *3) (|partial| -12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1200 *5)) (-5 *2 (-1136 (-1136 *4))) (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1200 *6)) (-14 *7 (-890)))) (-2686 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1200 *5)) (-5 *2 (-618 *3)) (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1200 *6)) (-14 *7 (-890)))))
+(-10 -7 (-15 -2686 ((-618 |#4|) |#4|)) (-15 -3491 ((-3 (-1136 (-1136 |#1|)) "failed") |#4|)) (-15 -4271 (|#4| |#4|)))
+((-2687 (((-2 (|:| |deter| (-618 (-1136 |#5|))) (|:| |dterm| (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-618 |#1|)) (|:| |nlead| (-618 |#5|))) (-1136 |#5|) (-618 |#1|) (-618 |#5|)) 54)) (-2688 (((-618 (-747)) |#1|) 13)))
+(((-754 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2687 ((-2 (|:| |deter| (-618 (-1136 |#5|))) (|:| |dterm| (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-618 |#1|)) (|:| |nlead| (-618 |#5|))) (-1136 |#5|) (-618 |#1|) (-618 |#5|))) (-15 -2688 ((-618 (-747)) |#1|))) (-1200 |#4|) (-769) (-823) (-300) (-921 |#4| |#2| |#3|)) (T -754))
+((-2688 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-618 (-747))) (-5 *1 (-754 *3 *4 *5 *6 *7)) (-4 *3 (-1200 *6)) (-4 *7 (-921 *6 *4 *5)))) (-2687 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1200 *9)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-300)) (-4 *10 (-921 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-618 (-1136 *10))) (|:| |dterm| (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| *10))))) (|:| |nfacts| (-618 *6)) (|:| |nlead| (-618 *10)))) (-5 *1 (-754 *6 *7 *8 *9 *10)) (-5 *3 (-1136 *10)) (-5 *4 (-618 *6)) (-5 *5 (-618 *10)))))
+(-10 -7 (-15 -2687 ((-2 (|:| |deter| (-618 (-1136 |#5|))) (|:| |dterm| (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-618 |#1|)) (|:| |nlead| (-618 |#5|))) (-1136 |#5|) (-618 |#1|) (-618 |#5|))) (-15 -2688 ((-618 (-747)) |#1|)))
+((-2691 (((-618 (-2 (|:| |outval| |#1|) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 |#1|))))) (-665 (-400 (-535))) |#1|) 31)) (-2690 (((-618 |#1|) (-665 (-400 (-535))) |#1|) 21)) (-2689 (((-917 (-400 (-535))) (-665 (-400 (-535))) (-1142)) 18) (((-917 (-400 (-535))) (-665 (-400 (-535)))) 17)))
+(((-755 |#1|) (-10 -7 (-15 -2689 ((-917 (-400 (-535))) (-665 (-400 (-535))))) (-15 -2689 ((-917 (-400 (-535))) (-665 (-400 (-535))) (-1142))) (-15 -2690 ((-618 |#1|) (-665 (-400 (-535))) |#1|)) (-15 -2691 ((-618 (-2 (|:| |outval| |#1|) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 |#1|))))) (-665 (-400 (-535))) |#1|))) (-13 (-356) (-821))) (T -755))
+((-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *2 (-618 (-2 (|:| |outval| *4) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 *4)))))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))) (-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *2 (-618 *4)) (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *4 (-1142)) (-5 *2 (-917 (-400 (-535)))) (-5 *1 (-755 *5)) (-4 *5 (-13 (-356) (-821))))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *2 (-917 (-400 (-535)))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))))
+(-10 -7 (-15 -2689 ((-917 (-400 (-535))) (-665 (-400 (-535))))) (-15 -2689 ((-917 (-400 (-535))) (-665 (-400 (-535))) (-1142))) (-15 -2690 ((-618 |#1|) (-665 (-400 (-535))) |#1|)) (-15 -2691 ((-618 (-2 (|:| |outval| |#1|) (|:| |outmult| (-535)) (|:| |outvect| (-618 (-665 |#1|))))) (-665 (-400 (-535))) |#1|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 34)) (-3405 (((-618 |#2|) $) NIL)) (-3407 (((-1136 $) $ |#2|) NIL) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 |#2|)) NIL)) (-4139 (($ $) 28)) (-3500 (((-112) $ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4098 (($ $ $) 93 (|has| |#1| (-542)))) (-3482 (((-618 $) $ $) 106 (|has| |#1| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-917 (-400 (-535)))) NIL (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142))))) (((-3 $ #3#) (-917 (-535))) NIL (-3874 (-12 (|has| |#1| (-38 (-535))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535)))))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142)))))) (((-3 $ #3#) (-917 |#1|)) NIL (-3874 (-12 (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535))))) (-3659 (|has| |#1| (-38 (-535))))) (-12 (|has| |#1| (-38 (-535))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535))))) (-3659 (|has| |#1| (-534)))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-962 (-535))))))) (((-3 (-1091 |#1| |#2|) #2#) $) 18)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) ((|#2| $) NIL) (($ (-917 (-400 (-535)))) NIL (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142))))) (($ (-917 (-535))) NIL (-3874 (-12 (|has| |#1| (-38 (-535))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535)))))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142)))))) (($ (-917 |#1|)) NIL (-3874 (-12 (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535))))) (-3659 (|has| |#1| (-38 (-535))))) (-12 (|has| |#1| (-38 (-535))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535))))) (-3659 (|has| |#1| (-534)))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-962 (-535))))))) (((-1091 |#1| |#2|) $) NIL)) (-4099 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-542)))) (-4302 (($ $) NIL) (($ $ |#2|) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-4040 (((-112) $ $) NIL) (((-112) $ (-618 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3506 (((-112) $) NIL)) (-4095 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 70)) (-3477 (($ $) 119 (|has| |#1| (-444)))) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-3488 (($ $) NIL (|has| |#1| (-542)))) (-3489 (($ $) NIL (|has| |#1| (-542)))) (-3499 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3498 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1716 (($ $ |#1| (-521 |#2|) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| |#1| (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| |#1| (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-4041 (((-112) $ $) NIL) (((-112) $ (-618 $)) NIL)) (-3479 (($ $ $ $ $) 90 (|has| |#1| (-542)))) (-3514 ((|#2| $) 19)) (-3408 (($ (-1136 |#1|) |#2|) NIL) (($ (-1136 $) |#2|) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-521 |#2|)) NIL) (($ $ |#2| (-747)) 36) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-3493 (($ $ $) 60)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#2|) NIL)) (-3507 (((-112) $) NIL)) (-3141 (((-521 |#2|) $) NIL) (((-747) $ |#2|) NIL) (((-618 (-747)) $ (-618 |#2|)) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3513 (((-747) $) 20)) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-521 |#2|) (-521 |#2|)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3406 (((-3 |#2| #4="failed") $) NIL)) (-3474 (($ $) NIL (|has| |#1| (-444)))) (-3475 (($ $) NIL (|has| |#1| (-444)))) (-3502 (((-618 $) $) NIL)) (-3505 (($ $) 37)) (-3476 (($ $) NIL (|has| |#1| (-444)))) (-3503 (((-618 $) $) 41)) (-3504 (($ $) 39)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3492 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3818 (-747))) $ $) 82)) (-3494 (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $) 67) (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $ |#2|) NIL)) (-3495 (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $) NIL) (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $ |#2|) NIL)) (-3497 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3496 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3576 (((-1124) $) NIL)) (-3524 (($ $ $) 108 (|has| |#1| (-542)))) (-3510 (((-618 $) $) 30)) (-3144 (((-3 (-618 $) #4#) $) NIL)) (-3143 (((-3 (-618 $) #4#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| |#2|) (|:| -2484 (-747))) #4#) $) NIL)) (-4037 (((-112) $ $) NIL) (((-112) $ (-618 $)) NIL)) (-4032 (($ $ $) NIL)) (-3787 (($ $) 21)) (-4045 (((-112) $ $) NIL)) (-4038 (((-112) $ $) NIL) (((-112) $ (-618 $)) NIL)) (-4033 (($ $ $) NIL)) (-3512 (($ $) 23)) (-3577 (((-1086) $) NIL)) (-3483 (((-2 (|:| -3478 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-542)))) (-3484 (((-2 (|:| -3478 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-542)))) (-1911 (((-112) $) 52)) (-1910 ((|#1| $) 55)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 ((|#1| |#1| $) 116 (|has| |#1| (-444))) (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3485 (((-2 (|:| -3478 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-542)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-3486 (($ $ |#1|) 112 (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-3487 (($ $ |#1|) 111 (|has| |#1| (-542))) (($ $ $) NIL (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-618 |#2|) (-618 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-618 |#2|) (-618 $)) NIL)) (-4100 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-4153 (($ $ |#2|) NIL) (($ $ (-618 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-4290 (((-521 |#2|) $) NIL) (((-747) $ |#2|) 43) (((-618 (-747)) $ (-618 |#2|)) NIL)) (-3511 (($ $) NIL)) (-3509 (($ $) 33)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| |#1| (-594 (-524))) (|has| |#2| (-594 (-524))))) (($ (-917 (-400 (-535)))) NIL (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142))))) (($ (-917 (-535))) NIL (-3874 (-12 (|has| |#1| (-38 (-535))) (|has| |#2| (-594 (-1142))) (-3659 (|has| |#1| (-38 (-400 (-535)))))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#2| (-594 (-1142)))))) (($ (-917 |#1|)) NIL (|has| |#2| (-594 (-1142)))) (((-1124) $) NIL (-12 (|has| |#1| (-1009 (-535))) (|has| |#2| (-594 (-1142))))) (((-917 |#1|) $) NIL (|has| |#2| (-594 (-1142))))) (-3138 ((|#1| $) 115 (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-917 |#1|) $) NIL (|has| |#2| (-594 (-1142)))) (((-1091 |#1| |#2|) $) 15) (($ (-1091 |#1| |#2|)) 16) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-521 |#2|)) NIL) (($ $ |#2| (-747)) 44) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) 13 T CONST)) (-3501 (((-3 (-112) #3#) $ $) NIL)) (-2985 (($) 35 T CONST)) (-3480 (($ $ $ $ (-747)) 88 (|has| |#1| (-542)))) (-3481 (($ $ $ (-747)) 87 (|has| |#1| (-542)))) (-2990 (($ $ |#2|) NIL) (($ $ (-618 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 54)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) 64)) (-4182 (($ $ $) 74)) (** (($ $ (-890)) NIL) (($ $ (-747)) 61)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 59) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
(((-756 |#1| |#2|) (-13 (-1032 |#1| (-521 |#2|) |#2|) (-593 (-1091 |#1| |#2|)) (-1009 (-1091 |#1| |#2|))) (-1018) (-823)) (T -756))
NIL
(-13 (-1032 |#1| (-521 |#2|) |#2|) (-593 (-1091 |#1| |#2|)) (-1009 (-1091 |#1| |#2|)))
-((-2796 (((-758 |#2|) (-1 |#2| |#1|) (-758 |#1|)) 13)))
-(((-757 |#1| |#2|) (-10 -7 (-15 -2796 ((-758 |#2|) (-1 |#2| |#1|) (-758 |#1|)))) (-1018) (-1018)) (T -757))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-758 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-758 *6)) (-5 *1 (-757 *5 *6)))))
-(-10 -7 (-15 -2796 ((-758 |#2|) (-1 |#2| |#1|) (-758 |#1|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 12)) (-4186 (((-1225 |#1|) $ (-747)) NIL)) (-2271 (((-621 (-1048)) $) NIL)) (-1916 (($ (-1138 |#1|)) NIL)) (-2082 (((-1138 $) $ (-1048)) NIL) (((-1138 |#1|) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 (-1048))) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1782 (((-621 $) $ $) 39 (|has| |#1| (-541)))) (-3767 (($ $ $) 35 (|has| |#1| (-541)))) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-1912 (($ $) NIL (|has| |#1| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3831 (($ $ (-747)) NIL)) (-2912 (($ $ (-747)) NIL)) (-2806 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-1048) "failed") $) NIL) (((-3 (-1138 |#1|) "failed") $) 10)) (-2658 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-1048) $) NIL) (((-1138 |#1|) $) NIL)) (-2252 (($ $ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2069 (($ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-3856 (($ $ $) NIL)) (-3593 (($ $ $) 71 (|has| |#1| (-541)))) (-3285 (((-2 (|:| -1569 |#1|) (|:| -2112 $) (|:| -3249 $)) $ $) 70 (|has| |#1| (-541)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-4212 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#1| (-880)))) (-3744 (($ $ |#1| (-747) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1048) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1048) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2078 (((-747) $ $) NIL (|has| |#1| (-541)))) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-3982 (((-3 $ "failed") $) NIL (|has| |#1| (-1117)))) (-2258 (($ (-1138 |#1|) (-1048)) NIL) (($ (-1138 $) (-1048)) NIL)) (-2769 (($ $ (-747)) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-1973 (($ $ $) 20)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ (-1048)) NIL) (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2856 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-4058 (($ (-1 (-747) (-747)) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-2605 (((-1138 |#1|) $) NIL)) (-1790 (((-3 (-1048) "failed") $) NIL)) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-4244 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4002 (-747))) $ $) 26)) (-1711 (($ $ $) 29)) (-1382 (($ $ $) 32)) (-2097 (((-2 (|:| -1569 |#1|) (|:| |gap| (-747)) (|:| -2112 $) (|:| -3249 $)) $ $) 31)) (-2677 (((-1124) $) NIL)) (-2587 (($ $ $) 41 (|has| |#1| (-541)))) (-4175 (((-2 (|:| -2112 $) (|:| -3249 $)) $ (-747)) NIL)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| (-1048)) (|:| -3577 (-747))) "failed") $) NIL)) (-1531 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3060 (($) NIL (|has| |#1| (-1117)) CONST)) (-3988 (((-1086) $) NIL)) (-4227 (((-2 (|:| -3726 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-541)))) (-2337 (((-2 (|:| -3726 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-541)))) (-2601 (((-2 (|:| -2252 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-541)))) (-2029 (((-2 (|:| -2252 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-541)))) (-2002 (((-112) $) 13)) (-2012 ((|#1| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3314 (($ $ (-747) |#1| $) 19)) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-880)))) (-3416 (((-2 (|:| -3726 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-541)))) (-1483 (((-2 (|:| -2252 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-541)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1048) |#1|) NIL) (($ $ (-621 (-1048)) (-621 |#1|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-621 (-1048)) (-621 $)) NIL)) (-4091 (((-747) $) NIL (|has| |#1| (-356)))) (-3340 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-541))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-541)))) (-2646 (((-3 $ "failed") $ (-747)) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-3086 (($ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-3455 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3068 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-1048) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-1931 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3791 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#1| (-541)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-1048)) NIL) (((-1138 |#1|) $) 7) (($ (-1138 |#1|)) 8) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3275 (($) 21 T CONST)) (-3287 (($) 24 T CONST)) (-1700 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $) 28) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-758 |#1|) (-13 (-1201 |#1|) (-593 (-1138 |#1|)) (-1009 (-1138 |#1|)) (-10 -8 (-15 -3314 ($ $ (-747) |#1| $)) (-15 -1973 ($ $ $)) (-15 -4244 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4002 (-747))) $ $)) (-15 -1711 ($ $ $)) (-15 -2097 ((-2 (|:| -1569 |#1|) (|:| |gap| (-747)) (|:| -2112 $) (|:| -3249 $)) $ $)) (-15 -1382 ($ $ $)) (IF (|has| |#1| (-541)) (PROGN (-15 -1782 ((-621 $) $ $)) (-15 -2587 ($ $ $)) (-15 -3416 ((-2 (|:| -3726 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2337 ((-2 (|:| -3726 $) (|:| |coef1| $)) $ $)) (-15 -4227 ((-2 (|:| -3726 $) (|:| |coef2| $)) $ $)) (-15 -1483 ((-2 (|:| -2252 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2029 ((-2 (|:| -2252 |#1|) (|:| |coef1| $)) $ $)) (-15 -2601 ((-2 (|:| -2252 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1018)) (T -758))
-((-3314 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-758 *3)) (-4 *3 (-1018)))) (-1973 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1018)))) (-4244 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-758 *3)) (|:| |polden| *3) (|:| -4002 (-747)))) (-5 *1 (-758 *3)) (-4 *3 (-1018)))) (-1711 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1018)))) (-2097 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1569 *3) (|:| |gap| (-747)) (|:| -2112 (-758 *3)) (|:| -3249 (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-1018)))) (-1382 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1018)))) (-1782 (*1 *2 *1 *1) (-12 (-5 *2 (-621 (-758 *3))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))) (-2587 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-541)) (-4 *2 (-1018)))) (-3416 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3726 (-758 *3)) (|:| |coef1| (-758 *3)) (|:| |coef2| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))) (-2337 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3726 (-758 *3)) (|:| |coef1| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))) (-4227 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3726 (-758 *3)) (|:| |coef2| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))) (-1483 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2252 *3) (|:| |coef1| (-758 *3)) (|:| |coef2| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))) (-2029 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2252 *3) (|:| |coef1| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))) (-2601 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2252 *3) (|:| |coef2| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))))
-(-13 (-1201 |#1|) (-593 (-1138 |#1|)) (-1009 (-1138 |#1|)) (-10 -8 (-15 -3314 ($ $ (-747) |#1| $)) (-15 -1973 ($ $ $)) (-15 -4244 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4002 (-747))) $ $)) (-15 -1711 ($ $ $)) (-15 -2097 ((-2 (|:| -1569 |#1|) (|:| |gap| (-747)) (|:| -2112 $) (|:| -3249 $)) $ $)) (-15 -1382 ($ $ $)) (IF (|has| |#1| (-541)) (PROGN (-15 -1782 ((-621 $) $ $)) (-15 -2587 ($ $ $)) (-15 -3416 ((-2 (|:| -3726 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2337 ((-2 (|:| -3726 $) (|:| |coef1| $)) $ $)) (-15 -4227 ((-2 (|:| -3726 $) (|:| |coef2| $)) $ $)) (-15 -1483 ((-2 (|:| -2252 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2029 ((-2 (|:| -2252 |#1|) (|:| |coef1| $)) $ $)) (-15 -2601 ((-2 (|:| -2252 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-1381 ((|#1| (-747) |#1|) 32 (|has| |#1| (-38 (-400 (-549)))))) (-3575 ((|#1| (-747) |#1|) 22)) (-4185 ((|#1| (-747) |#1|) 34 (|has| |#1| (-38 (-400 (-549)))))))
-(((-759 |#1|) (-10 -7 (-15 -3575 (|#1| (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -4185 (|#1| (-747) |#1|)) (-15 -1381 (|#1| (-747) |#1|))) |%noBranch|)) (-170)) (T -759))
-((-1381 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-170)))) (-4185 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-170)))) (-3575 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-170)))))
-(-10 -7 (-15 -3575 (|#1| (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -4185 (|#1| (-747) |#1|)) (-15 -1381 (|#1| (-747) |#1|))) |%noBranch|))
-((-3833 (((-112) $ $) 7)) (-3684 (((-621 (-2 (|:| -2680 $) (|:| -1358 (-621 |#4|)))) (-621 |#4|)) 85)) (-3840 (((-621 $) (-621 |#4|)) 86) (((-621 $) (-621 |#4|) (-112)) 111)) (-2271 (((-621 |#3|) $) 33)) (-3863 (((-112) $) 26)) (-1771 (((-112) $) 17 (|has| |#1| (-541)))) (-2344 (((-112) |#4| $) 101) (((-112) $) 97)) (-1305 ((|#4| |#4| $) 92)) (-1912 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 $))) |#4| $) 126)) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |#3|) 27)) (-1323 (((-112) $ (-747)) 44)) (-1488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| "failed") $ |#3|) 79)) (-1705 (($) 45 T CONST)) (-1717 (((-112) $) 22 (|has| |#1| (-541)))) (-1766 (((-112) $ $) 24 (|has| |#1| (-541)))) (-2671 (((-112) $ $) 23 (|has| |#1| (-541)))) (-2498 (((-112) $) 25 (|has| |#1| (-541)))) (-3074 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1436 (((-621 |#4|) (-621 |#4|) $) 18 (|has| |#1| (-541)))) (-3001 (((-621 |#4|) (-621 |#4|) $) 19 (|has| |#1| (-541)))) (-2713 (((-3 $ "failed") (-621 |#4|)) 36)) (-2658 (($ (-621 |#4|)) 35)) (-3655 (((-3 $ "failed") $) 82)) (-2514 ((|#4| |#4| $) 89)) (-3675 (($ $) 68 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#4| $) 67 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3249 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-541)))) (-4042 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3678 ((|#4| |#4| $) 87)) (-2558 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2235 (((-2 (|:| -2680 (-621 |#4|)) (|:| -1358 (-621 |#4|))) $) 105)) (-4173 (((-112) |#4| $) 136)) (-1447 (((-112) |#4| $) 133)) (-2561 (((-112) |#4| $) 137) (((-112) $) 134)) (-2990 (((-621 |#4|) $) 52 (|has| $ (-6 -4336)))) (-3929 (((-112) |#4| $) 104) (((-112) $) 103)) (-4170 ((|#3| $) 34)) (-4202 (((-112) $ (-747)) 43)) (-1958 (((-621 |#4|) $) 53 (|has| $ (-6 -4336)))) (-2273 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#4| |#4|) $) 47)) (-1670 (((-621 |#3|) $) 32)) (-2911 (((-112) |#3| $) 31)) (-4289 (((-112) $ (-747)) 42)) (-2677 (((-1124) $) 9)) (-4145 (((-3 |#4| (-621 $)) |#4| |#4| $) 128)) (-2587 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 $))) |#4| |#4| $) 127)) (-3828 (((-3 |#4| "failed") $) 83)) (-2613 (((-621 $) |#4| $) 129)) (-1783 (((-3 (-112) (-621 $)) |#4| $) 132)) (-1350 (((-621 (-2 (|:| |val| (-112)) (|:| -1980 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1795 (((-621 $) |#4| $) 125) (((-621 $) (-621 |#4|) $) 124) (((-621 $) (-621 |#4|) (-621 $)) 123) (((-621 $) |#4| (-621 $)) 122)) (-1449 (($ |#4| $) 117) (($ (-621 |#4|) $) 116)) (-4069 (((-621 |#4|) $) 107)) (-3130 (((-112) |#4| $) 99) (((-112) $) 95)) (-2741 ((|#4| |#4| $) 90)) (-3739 (((-112) $ $) 110)) (-2205 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-541)))) (-1582 (((-112) |#4| $) 100) (((-112) $) 96)) (-3952 ((|#4| |#4| $) 91)) (-3988 (((-1086) $) 10)) (-3645 (((-3 |#4| "failed") $) 84)) (-1917 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1762 (((-3 $ "failed") $ |#4|) 78)) (-2975 (($ $ |#4|) 77) (((-621 $) |#4| $) 115) (((-621 $) |#4| (-621 $)) 114) (((-621 $) (-621 |#4|) $) 113) (((-621 $) (-621 |#4|) (-621 $)) 112)) (-2470 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#4|) (-621 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-621 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))) (-2732 (((-112) $ $) 38)) (-1807 (((-112) $) 41)) (-1461 (($) 40)) (-3068 (((-747) $) 106)) (-3997 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-2281 (($ $) 39)) (-2844 (((-525) $) 69 (|has| |#4| (-594 (-525))))) (-3853 (($ (-621 |#4|)) 60)) (-1651 (($ $ |#3|) 28)) (-3183 (($ $ |#3|) 30)) (-1821 (($ $) 88)) (-2432 (($ $ |#3|) 29)) (-3845 (((-834) $) 11) (((-621 |#4|) $) 37)) (-1509 (((-747) $) 76 (|has| |#3| (-361)))) (-3472 (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2197 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) 98)) (-1691 (((-621 $) |#4| $) 121) (((-621 $) |#4| (-621 $)) 120) (((-621 $) (-621 |#4|) $) 119) (((-621 $) (-621 |#4|) (-621 $)) 118)) (-2150 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-2691 (((-621 |#3|) $) 81)) (-1972 (((-112) |#4| $) 135)) (-2923 (((-112) |#3| $) 80)) (-2388 (((-112) $ $) 6)) (-3774 (((-747) $) 46 (|has| $ (-6 -4336)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 12)) (-4109 (((-1224 |#1|) $ (-747)) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4107 (($ (-1136 |#1|)) NIL)) (-3407 (((-1136 $) $ (-1048)) NIL) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1048))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-2695 (((-618 $) $ $) 39 (|has| |#1| (-542)))) (-4098 (($ $ $) 35 (|has| |#1| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4103 (($ $ (-747)) NIL)) (-4102 (($ $ (-747)) NIL)) (-4094 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-1048) #2#) $) NIL) (((-3 (-1136 |#1|) #2#) $) 10)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-1048) $) NIL) (((-1136 |#1|) $) NIL)) (-4099 (($ $ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-4101 (($ $ $) NIL)) (-4096 (($ $ $) 71 (|has| |#1| (-542)))) (-4095 (((-2 (|:| -4296 |#1|) (|:| -2091 $) (|:| -3223 $)) $ $) 70 (|has| |#1| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-747) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1048) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1048) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-4114 (((-747) $ $) NIL (|has| |#1| (-542)))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-1117)))) (-3408 (($ (-1136 |#1|) (-1048)) NIL) (($ (-1136 $) (-1048)) NIL)) (-4119 (($ $ (-747)) NIL)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-3493 (($ $ $) 20)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1048)) NIL) (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-3141 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-747) (-747)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4108 (((-1136 |#1|) $) NIL)) (-3406 (((-3 (-1048) #4="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3492 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3818 (-747))) $ $) 26)) (-2697 (($ $ $) 29)) (-2696 (($ $ $) 32)) (-3494 (((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $) 31)) (-3576 (((-1124) $) NIL)) (-3524 (($ $ $) 41 (|has| |#1| (-542)))) (-4104 (((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747)) NIL)) (-3144 (((-3 (-618 $) #4#) $) NIL)) (-3143 (((-3 (-618 $) #4#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-1048)) (|:| -2484 (-747))) #4#) $) NIL)) (-4155 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3787 (($) NIL (|has| |#1| (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3483 (((-2 (|:| -3478 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-542)))) (-3484 (((-2 (|:| -3478 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-542)))) (-2692 (((-2 (|:| -4099 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-542)))) (-2693 (((-2 (|:| -4099 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-542)))) (-1911 (((-112) $) 13)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-4081 (($ $ (-747) |#1| $) 19)) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3485 (((-2 (|:| -3478 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-542)))) (-2694 (((-2 (|:| -4099 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-542)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1048) |#1|) NIL) (($ $ (-618 (-1048)) (-618 |#1|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-618 (-1048)) (-618 $)) NIL)) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-542)))) (-4106 (((-3 $ #5="failed") $ (-747)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4100 (($ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-4153 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4290 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-1048) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4097 (((-3 $ #5#) $ $) NIL (|has| |#1| (-542))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#1| (-542)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-1048)) NIL) (((-1136 |#1|) $) 7) (($ (-1136 |#1|)) 8) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) 21 T CONST)) (-2985 (($) 24 T CONST)) (-2990 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) 28) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-757 |#1|) (-13 (-1200 |#1|) (-593 (-1136 |#1|)) (-1009 (-1136 |#1|)) (-10 -8 (-15 -4081 ($ $ (-747) |#1| $)) (-15 -3493 ($ $ $)) (-15 -3492 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3818 (-747))) $ $)) (-15 -2697 ($ $ $)) (-15 -3494 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -2696 ($ $ $)) (IF (|has| |#1| (-542)) (PROGN (-15 -2695 ((-618 $) $ $)) (-15 -3524 ($ $ $)) (-15 -3485 ((-2 (|:| -3478 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3484 ((-2 (|:| -3478 $) (|:| |coef1| $)) $ $)) (-15 -3483 ((-2 (|:| -3478 $) (|:| |coef2| $)) $ $)) (-15 -2694 ((-2 (|:| -4099 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2693 ((-2 (|:| -4099 |#1|) (|:| |coef1| $)) $ $)) (-15 -2692 ((-2 (|:| -4099 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1018)) (T -757))
+((-4081 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-757 *3)) (-4 *3 (-1018)))) (-3493 (*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-1018)))) (-3492 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-757 *3)) (|:| |polden| *3) (|:| -3818 (-747)))) (-5 *1 (-757 *3)) (-4 *3 (-1018)))) (-2697 (*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-1018)))) (-3494 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4296 *3) (|:| |gap| (-747)) (|:| -2091 (-757 *3)) (|:| -3223 (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-1018)))) (-2696 (*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-1018)))) (-2695 (*1 *2 *1 *1) (-12 (-5 *2 (-618 (-757 *3))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) (-3524 (*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-542)) (-4 *2 (-1018)))) (-3485 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3478 (-757 *3)) (|:| |coef1| (-757 *3)) (|:| |coef2| (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) (-3484 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3478 (-757 *3)) (|:| |coef1| (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) (-3483 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3478 (-757 *3)) (|:| |coef2| (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) (-2694 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4099 *3) (|:| |coef1| (-757 *3)) (|:| |coef2| (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) (-2693 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4099 *3) (|:| |coef1| (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))) (-2692 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4099 *3) (|:| |coef2| (-757 *3)))) (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))))
+(-13 (-1200 |#1|) (-593 (-1136 |#1|)) (-1009 (-1136 |#1|)) (-10 -8 (-15 -4081 ($ $ (-747) |#1| $)) (-15 -3493 ($ $ $)) (-15 -3492 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3818 (-747))) $ $)) (-15 -2697 ($ $ $)) (-15 -3494 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -2696 ($ $ $)) (IF (|has| |#1| (-542)) (PROGN (-15 -2695 ((-618 $) $ $)) (-15 -3524 ($ $ $)) (-15 -3485 ((-2 (|:| -3478 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3484 ((-2 (|:| -3478 $) (|:| |coef1| $)) $ $)) (-15 -3483 ((-2 (|:| -3478 $) (|:| |coef2| $)) $ $)) (-15 -2694 ((-2 (|:| -4099 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2693 ((-2 (|:| -4099 |#1|) (|:| |coef1| $)) $ $)) (-15 -2692 ((-2 (|:| -4099 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-4301 (((-757 |#2|) (-1 |#2| |#1|) (-757 |#1|)) 13)))
+(((-758 |#1| |#2|) (-10 -7 (-15 -4301 ((-757 |#2|) (-1 |#2| |#1|) (-757 |#1|)))) (-1018) (-1018)) (T -758))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-757 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-757 *6)) (-5 *1 (-758 *5 *6)))))
+(-10 -7 (-15 -4301 ((-757 |#2|) (-1 |#2| |#1|) (-757 |#1|))))
+((-2699 ((|#1| (-747) |#1|) 32 (|has| |#1| (-38 (-400 (-535)))))) (-3122 ((|#1| (-747) |#1|) 22)) (-2698 ((|#1| (-747) |#1|) 34 (|has| |#1| (-38 (-400 (-535)))))))
+(((-759 |#1|) (-10 -7 (-15 -3122 (|#1| (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -2698 (|#1| (-747) |#1|)) (-15 -2699 (|#1| (-747) |#1|))) |%noBranch|)) (-170)) (T -759))
+((-2699 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-170)))) (-2698 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-170)))) (-3122 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-170)))))
+(-10 -7 (-15 -3122 (|#1| (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -2698 (|#1| (-747) |#1|)) (-15 -2699 (|#1| (-747) |#1|))) |%noBranch|))
+((-2887 (((-112) $ $) 7)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) 85)) (-4028 (((-618 $) (-618 |#4|)) 86) (((-618 $) (-618 |#4|) (-112)) 111)) (-3405 (((-618 |#3|) $) 33)) (-3229 (((-112) $) 26)) (-3220 (((-112) $) 17 (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) 101) (((-112) $) 97)) (-4034 ((|#4| |#4| $) 92)) (-4117 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) 27)) (-1264 (((-112) $ (-747)) 44)) (-4056 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3879 (($) 45 T CONST)) (-3225 (((-112) $) 22 (|has| |#1| (-542)))) (-3227 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3226 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3228 (((-112) $) 25 (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3221 (((-618 |#4|) (-618 |#4|) $) 18 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) 19 (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 36)) (-3490 (($ (-618 |#4|)) 35)) (-4141 (((-3 $ #1#) $) 82)) (-4031 ((|#4| |#4| $) 89)) (-1394 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4029 ((|#4| |#4| $) 87)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) 105)) (-3531 (((-112) |#4| $) 136)) (-3529 (((-112) |#4| $) 133)) (-3532 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-618 |#4|) $) 52 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) 104) (((-112) $) 103)) (-3514 ((|#3| $) 34)) (-4065 (((-112) $ (-747)) 43)) (-2502 (((-618 |#4|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 47)) (-3235 (((-618 |#3|) $) 32)) (-3234 (((-112) |#3| $) 31)) (-4062 (((-112) $ (-747)) 42)) (-3576 (((-1124) $) 9)) (-3525 (((-3 |#4| (-618 $)) |#4| |#4| $) 128)) (-3524 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4140 (((-3 |#4| #1#) $) 83)) (-3526 (((-618 $) |#4| $) 129)) (-3528 (((-3 (-112) (-618 $)) |#4| $) 132)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3572 (((-618 $) |#4| $) 125) (((-618 $) (-618 |#4|) $) 124) (((-618 $) (-618 |#4|) (-618 $)) 123) (((-618 $) |#4| (-618 $)) 122)) (-3782 (($ |#4| $) 117) (($ (-618 |#4|) $) 116)) (-4043 (((-618 |#4|) $) 107)) (-4037 (((-112) |#4| $) 99) (((-112) $) 95)) (-4032 ((|#4| |#4| $) 90)) (-4045 (((-112) $ $) 110)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) 100) (((-112) $) 96)) (-4033 ((|#4| |#4| $) 91)) (-3577 (((-1086) $) 10)) (-4143 (((-3 |#4| #1#) $) 84)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4025 (((-3 $ #1#) $ |#4|) 78)) (-4111 (($ $ |#4|) 77) (((-618 $) |#4| $) 115) (((-618 $) |#4| (-618 $)) 114) (((-618 $) (-618 |#4|) $) 113) (((-618 $) (-618 |#4|) (-618 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) 38)) (-3745 (((-112) $) 41)) (-3911 (($) 40)) (-4290 (((-747) $) 106)) (-2064 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-3742 (($ $) 39)) (-4313 (((-524) $) 69 (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-3233 (($ $ |#3|) 30)) (-4030 (($ $) 88)) (-3232 (($ $ |#3|) 29)) (-4300 (((-835) $) 11) (((-618 |#4|) $) 37)) (-4024 (((-747) $) 76 (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) 98)) (-3523 (((-618 $) |#4| $) 121) (((-618 $) |#4| (-618 $)) 120) (((-618 $) (-618 |#4|) $) 119) (((-618 $) (-618 |#4|) (-618 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) 81)) (-3530 (((-112) |#4| $) 135)) (-4276 (((-112) |#3| $) 80)) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 46 (|has| $ (-6 -4336)))))
(((-760 |#1| |#2| |#3| |#4|) (-138) (-444) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -760))
NIL
(-13 (-1038 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-101) . T) ((-593 (-621 |#4|)) . T) ((-593 (-834)) . T) ((-149 |#4|) . T) ((-594 (-525)) |has| |#4| (-594 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1038 |#1| |#2| |#3| |#4|) . T) ((-1066) . T) ((-1172 |#1| |#2| |#3| |#4|) . T) ((-1179) . T))
-((-1946 (((-3 (-372) "failed") (-309 |#1|) (-892)) 62 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-3 (-372) "failed") (-309 |#1|)) 54 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-3 (-372) "failed") (-400 (-923 |#1|)) (-892)) 41 (|has| |#1| (-541))) (((-3 (-372) "failed") (-400 (-923 |#1|))) 40 (|has| |#1| (-541))) (((-3 (-372) "failed") (-923 |#1|) (-892)) 31 (|has| |#1| (-1018))) (((-3 (-372) "failed") (-923 |#1|)) 30 (|has| |#1| (-1018)))) (-1616 (((-372) (-309 |#1|) (-892)) 99 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-372) (-309 |#1|)) 94 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-372) (-400 (-923 |#1|)) (-892)) 91 (|has| |#1| (-541))) (((-372) (-400 (-923 |#1|))) 90 (|has| |#1| (-541))) (((-372) (-923 |#1|) (-892)) 86 (|has| |#1| (-1018))) (((-372) (-923 |#1|)) 85 (|has| |#1| (-1018))) (((-372) |#1| (-892)) 76) (((-372) |#1|) 22)) (-2816 (((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)) (-892)) 71 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-3 (-167 (-372)) "failed") (-309 (-167 |#1|))) 70 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-3 (-167 (-372)) "failed") (-309 |#1|) (-892)) 63 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-3 (-167 (-372)) "failed") (-309 |#1|)) 61 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-3 (-167 (-372)) "failed") (-400 (-923 (-167 |#1|))) (-892)) 46 (|has| |#1| (-541))) (((-3 (-167 (-372)) "failed") (-400 (-923 (-167 |#1|)))) 45 (|has| |#1| (-541))) (((-3 (-167 (-372)) "failed") (-400 (-923 |#1|)) (-892)) 39 (|has| |#1| (-541))) (((-3 (-167 (-372)) "failed") (-400 (-923 |#1|))) 38 (|has| |#1| (-541))) (((-3 (-167 (-372)) "failed") (-923 |#1|) (-892)) 28 (|has| |#1| (-1018))) (((-3 (-167 (-372)) "failed") (-923 |#1|)) 26 (|has| |#1| (-1018))) (((-3 (-167 (-372)) "failed") (-923 (-167 |#1|)) (-892)) 18 (|has| |#1| (-170))) (((-3 (-167 (-372)) "failed") (-923 (-167 |#1|))) 15 (|has| |#1| (-170)))) (-2044 (((-167 (-372)) (-309 (-167 |#1|)) (-892)) 102 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-167 (-372)) (-309 (-167 |#1|))) 101 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-167 (-372)) (-309 |#1|) (-892)) 100 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-167 (-372)) (-309 |#1|)) 98 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-167 (-372)) (-400 (-923 (-167 |#1|))) (-892)) 93 (|has| |#1| (-541))) (((-167 (-372)) (-400 (-923 (-167 |#1|)))) 92 (|has| |#1| (-541))) (((-167 (-372)) (-400 (-923 |#1|)) (-892)) 89 (|has| |#1| (-541))) (((-167 (-372)) (-400 (-923 |#1|))) 88 (|has| |#1| (-541))) (((-167 (-372)) (-923 |#1|) (-892)) 84 (|has| |#1| (-1018))) (((-167 (-372)) (-923 |#1|)) 83 (|has| |#1| (-1018))) (((-167 (-372)) (-923 (-167 |#1|)) (-892)) 78 (|has| |#1| (-170))) (((-167 (-372)) (-923 (-167 |#1|))) 77 (|has| |#1| (-170))) (((-167 (-372)) (-167 |#1|) (-892)) 80 (|has| |#1| (-170))) (((-167 (-372)) (-167 |#1|)) 79 (|has| |#1| (-170))) (((-167 (-372)) |#1| (-892)) 27) (((-167 (-372)) |#1|) 25)))
-(((-761 |#1|) (-10 -7 (-15 -1616 ((-372) |#1|)) (-15 -1616 ((-372) |#1| (-892))) (-15 -2044 ((-167 (-372)) |#1|)) (-15 -2044 ((-167 (-372)) |#1| (-892))) (IF (|has| |#1| (-170)) (PROGN (-15 -2044 ((-167 (-372)) (-167 |#1|))) (-15 -2044 ((-167 (-372)) (-167 |#1|) (-892))) (-15 -2044 ((-167 (-372)) (-923 (-167 |#1|)))) (-15 -2044 ((-167 (-372)) (-923 (-167 |#1|)) (-892)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -1616 ((-372) (-923 |#1|))) (-15 -1616 ((-372) (-923 |#1|) (-892))) (-15 -2044 ((-167 (-372)) (-923 |#1|))) (-15 -2044 ((-167 (-372)) (-923 |#1|) (-892)))) |%noBranch|) (IF (|has| |#1| (-541)) (PROGN (-15 -1616 ((-372) (-400 (-923 |#1|)))) (-15 -1616 ((-372) (-400 (-923 |#1|)) (-892))) (-15 -2044 ((-167 (-372)) (-400 (-923 |#1|)))) (-15 -2044 ((-167 (-372)) (-400 (-923 |#1|)) (-892))) (-15 -2044 ((-167 (-372)) (-400 (-923 (-167 |#1|))))) (-15 -2044 ((-167 (-372)) (-400 (-923 (-167 |#1|))) (-892))) (IF (|has| |#1| (-823)) (PROGN (-15 -1616 ((-372) (-309 |#1|))) (-15 -1616 ((-372) (-309 |#1|) (-892))) (-15 -2044 ((-167 (-372)) (-309 |#1|))) (-15 -2044 ((-167 (-372)) (-309 |#1|) (-892))) (-15 -2044 ((-167 (-372)) (-309 (-167 |#1|)))) (-15 -2044 ((-167 (-372)) (-309 (-167 |#1|)) (-892)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2816 ((-3 (-167 (-372)) "failed") (-923 (-167 |#1|)))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-923 (-167 |#1|)) (-892)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -1946 ((-3 (-372) "failed") (-923 |#1|))) (-15 -1946 ((-3 (-372) "failed") (-923 |#1|) (-892))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-923 |#1|))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-923 |#1|) (-892)))) |%noBranch|) (IF (|has| |#1| (-541)) (PROGN (-15 -1946 ((-3 (-372) "failed") (-400 (-923 |#1|)))) (-15 -1946 ((-3 (-372) "failed") (-400 (-923 |#1|)) (-892))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-400 (-923 |#1|)))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-400 (-923 |#1|)) (-892))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-400 (-923 (-167 |#1|))))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-400 (-923 (-167 |#1|))) (-892))) (IF (|has| |#1| (-823)) (PROGN (-15 -1946 ((-3 (-372) "failed") (-309 |#1|))) (-15 -1946 ((-3 (-372) "failed") (-309 |#1|) (-892))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-309 |#1|))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-309 |#1|) (-892))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)) (-892)))) |%noBranch|)) |%noBranch|)) (-594 (-372))) (T -761))
-((-2816 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2816 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-541)) (-4 *4 (-823)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-2816 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2816 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1946 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823)) (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))) (-1946 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823)) (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4)))) (-2816 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-923 (-167 *5)))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2816 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-923 (-167 *4)))) (-4 *4 (-541)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-2816 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2816 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1946 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))) (-1946 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4)))) (-2816 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2816 (*1 *2 *3) (|partial| -12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1946 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018)) (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))) (-1946 (*1 *2 *3) (|partial| -12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4)))) (-2816 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-923 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-170)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2816 (*1 *2 *3) (|partial| -12 (-5 *3 (-923 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-2044 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-541)) (-4 *4 (-823)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-2044 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823)) (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823)) (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4)))) (-2044 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 (-167 *5)))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 (-167 *4)))) (-4 *4 (-541)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-2044 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4)))) (-2044 (*1 *2 *3 *4) (-12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018)) (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4)))) (-2044 (*1 *2 *3 *4) (-12 (-5 *3 (-923 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-170)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-923 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-2044 (*1 *2 *3 *4) (-12 (-5 *3 (-167 *5)) (-5 *4 (-892)) (-4 *5 (-170)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-2044 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-5 *2 (-167 (-372))) (-5 *1 (-761 *3)) (-4 *3 (-594 (-372))))) (-2044 (*1 *2 *3) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-761 *3)) (-4 *3 (-594 (-372))))) (-1616 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-5 *2 (-372)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2)))) (-1616 (*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2)))))
-(-10 -7 (-15 -1616 ((-372) |#1|)) (-15 -1616 ((-372) |#1| (-892))) (-15 -2044 ((-167 (-372)) |#1|)) (-15 -2044 ((-167 (-372)) |#1| (-892))) (IF (|has| |#1| (-170)) (PROGN (-15 -2044 ((-167 (-372)) (-167 |#1|))) (-15 -2044 ((-167 (-372)) (-167 |#1|) (-892))) (-15 -2044 ((-167 (-372)) (-923 (-167 |#1|)))) (-15 -2044 ((-167 (-372)) (-923 (-167 |#1|)) (-892)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -1616 ((-372) (-923 |#1|))) (-15 -1616 ((-372) (-923 |#1|) (-892))) (-15 -2044 ((-167 (-372)) (-923 |#1|))) (-15 -2044 ((-167 (-372)) (-923 |#1|) (-892)))) |%noBranch|) (IF (|has| |#1| (-541)) (PROGN (-15 -1616 ((-372) (-400 (-923 |#1|)))) (-15 -1616 ((-372) (-400 (-923 |#1|)) (-892))) (-15 -2044 ((-167 (-372)) (-400 (-923 |#1|)))) (-15 -2044 ((-167 (-372)) (-400 (-923 |#1|)) (-892))) (-15 -2044 ((-167 (-372)) (-400 (-923 (-167 |#1|))))) (-15 -2044 ((-167 (-372)) (-400 (-923 (-167 |#1|))) (-892))) (IF (|has| |#1| (-823)) (PROGN (-15 -1616 ((-372) (-309 |#1|))) (-15 -1616 ((-372) (-309 |#1|) (-892))) (-15 -2044 ((-167 (-372)) (-309 |#1|))) (-15 -2044 ((-167 (-372)) (-309 |#1|) (-892))) (-15 -2044 ((-167 (-372)) (-309 (-167 |#1|)))) (-15 -2044 ((-167 (-372)) (-309 (-167 |#1|)) (-892)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2816 ((-3 (-167 (-372)) "failed") (-923 (-167 |#1|)))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-923 (-167 |#1|)) (-892)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -1946 ((-3 (-372) "failed") (-923 |#1|))) (-15 -1946 ((-3 (-372) "failed") (-923 |#1|) (-892))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-923 |#1|))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-923 |#1|) (-892)))) |%noBranch|) (IF (|has| |#1| (-541)) (PROGN (-15 -1946 ((-3 (-372) "failed") (-400 (-923 |#1|)))) (-15 -1946 ((-3 (-372) "failed") (-400 (-923 |#1|)) (-892))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-400 (-923 |#1|)))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-400 (-923 |#1|)) (-892))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-400 (-923 (-167 |#1|))))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-400 (-923 (-167 |#1|))) (-892))) (IF (|has| |#1| (-823)) (PROGN (-15 -1946 ((-3 (-372) "failed") (-309 |#1|))) (-15 -1946 ((-3 (-372) "failed") (-309 |#1|) (-892))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-309 |#1|))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-309 |#1|) (-892))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)))) (-15 -2816 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)) (-892)))) |%noBranch|)) |%noBranch|))
-((-3344 (((-892) (-1124)) 66)) (-1523 (((-3 (-372) "failed") (-1124)) 33)) (-3089 (((-372) (-1124)) 31)) (-2556 (((-892) (-1124)) 54)) (-2289 (((-1124) (-892)) 56)) (-1861 (((-1124) (-892)) 53)))
-(((-762) (-10 -7 (-15 -1861 ((-1124) (-892))) (-15 -2556 ((-892) (-1124))) (-15 -2289 ((-1124) (-892))) (-15 -3344 ((-892) (-1124))) (-15 -3089 ((-372) (-1124))) (-15 -1523 ((-3 (-372) "failed") (-1124))))) (T -762))
-((-1523 (*1 *2 *3) (|partial| -12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-762)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-762)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-892)) (-5 *1 (-762)))) (-2289 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1124)) (-5 *1 (-762)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-892)) (-5 *1 (-762)))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1124)) (-5 *1 (-762)))))
-(-10 -7 (-15 -1861 ((-1124) (-892))) (-15 -2556 ((-892) (-1124))) (-15 -2289 ((-1124) (-892))) (-15 -3344 ((-892) (-1124))) (-15 -3089 ((-372) (-1124))) (-15 -1523 ((-3 (-372) "failed") (-1124))))
-((-3833 (((-112) $ $) 7)) (-3515 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 15) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 13)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2388 (((-112) $ $) 6)))
+(((-34) . T) ((-101) . T) ((-593 (-618 |#4|)) . T) ((-593 (-835)) . T) ((-149 |#4|) . T) ((-594 (-524)) |has| |#4| (-594 (-524))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1038 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1173 |#1| |#2| |#3| |#4|) . T) ((-1178) . T))
+((-2702 (((-3 (-371) "failed") (-307 |#1|) (-890)) 62 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-3 (-371) "failed") (-307 |#1|)) 54 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-3 (-371) "failed") (-400 (-917 |#1|)) (-890)) 41 (|has| |#1| (-542))) (((-3 (-371) "failed") (-400 (-917 |#1|))) 40 (|has| |#1| (-542))) (((-3 (-371) "failed") (-917 |#1|) (-890)) 31 (|has| |#1| (-1018))) (((-3 (-371) "failed") (-917 |#1|)) 30 (|has| |#1| (-1018)))) (-2700 (((-371) (-307 |#1|) (-890)) 99 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-371) (-307 |#1|)) 94 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-371) (-400 (-917 |#1|)) (-890)) 91 (|has| |#1| (-542))) (((-371) (-400 (-917 |#1|))) 90 (|has| |#1| (-542))) (((-371) (-917 |#1|) (-890)) 86 (|has| |#1| (-1018))) (((-371) (-917 |#1|)) 85 (|has| |#1| (-1018))) (((-371) |#1| (-890)) 76) (((-371) |#1|) 22)) (-2703 (((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)) (-890)) 71 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-3 (-166 (-371)) "failed") (-307 (-166 |#1|))) 70 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-3 (-166 (-371)) "failed") (-307 |#1|) (-890)) 63 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-3 (-166 (-371)) "failed") (-307 |#1|)) 61 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-3 (-166 (-371)) "failed") (-400 (-917 (-166 |#1|))) (-890)) 46 (|has| |#1| (-542))) (((-3 (-166 (-371)) "failed") (-400 (-917 (-166 |#1|)))) 45 (|has| |#1| (-542))) (((-3 (-166 (-371)) "failed") (-400 (-917 |#1|)) (-890)) 39 (|has| |#1| (-542))) (((-3 (-166 (-371)) "failed") (-400 (-917 |#1|))) 38 (|has| |#1| (-542))) (((-3 (-166 (-371)) "failed") (-917 |#1|) (-890)) 28 (|has| |#1| (-1018))) (((-3 (-166 (-371)) "failed") (-917 |#1|)) 26 (|has| |#1| (-1018))) (((-3 (-166 (-371)) "failed") (-917 (-166 |#1|)) (-890)) 18 (|has| |#1| (-170))) (((-3 (-166 (-371)) "failed") (-917 (-166 |#1|))) 15 (|has| |#1| (-170)))) (-2701 (((-166 (-371)) (-307 (-166 |#1|)) (-890)) 102 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-166 (-371)) (-307 (-166 |#1|))) 101 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-166 (-371)) (-307 |#1|) (-890)) 100 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-166 (-371)) (-307 |#1|)) 98 (-12 (|has| |#1| (-542)) (|has| |#1| (-823)))) (((-166 (-371)) (-400 (-917 (-166 |#1|))) (-890)) 93 (|has| |#1| (-542))) (((-166 (-371)) (-400 (-917 (-166 |#1|)))) 92 (|has| |#1| (-542))) (((-166 (-371)) (-400 (-917 |#1|)) (-890)) 89 (|has| |#1| (-542))) (((-166 (-371)) (-400 (-917 |#1|))) 88 (|has| |#1| (-542))) (((-166 (-371)) (-917 |#1|) (-890)) 84 (|has| |#1| (-1018))) (((-166 (-371)) (-917 |#1|)) 83 (|has| |#1| (-1018))) (((-166 (-371)) (-917 (-166 |#1|)) (-890)) 78 (|has| |#1| (-170))) (((-166 (-371)) (-917 (-166 |#1|))) 77 (|has| |#1| (-170))) (((-166 (-371)) (-166 |#1|) (-890)) 80 (|has| |#1| (-170))) (((-166 (-371)) (-166 |#1|)) 79 (|has| |#1| (-170))) (((-166 (-371)) |#1| (-890)) 27) (((-166 (-371)) |#1|) 25)))
+(((-761 |#1|) (-10 -7 (-15 -2700 ((-371) |#1|)) (-15 -2700 ((-371) |#1| (-890))) (-15 -2701 ((-166 (-371)) |#1|)) (-15 -2701 ((-166 (-371)) |#1| (-890))) (IF (|has| |#1| (-170)) (PROGN (-15 -2701 ((-166 (-371)) (-166 |#1|))) (-15 -2701 ((-166 (-371)) (-166 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-917 (-166 |#1|)))) (-15 -2701 ((-166 (-371)) (-917 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -2700 ((-371) (-917 |#1|))) (-15 -2700 ((-371) (-917 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-917 |#1|))) (-15 -2701 ((-166 (-371)) (-917 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -2700 ((-371) (-400 (-917 |#1|)))) (-15 -2700 ((-371) (-400 (-917 |#1|)) (-890))) (-15 -2701 ((-166 (-371)) (-400 (-917 |#1|)))) (-15 -2701 ((-166 (-371)) (-400 (-917 |#1|)) (-890))) (-15 -2701 ((-166 (-371)) (-400 (-917 (-166 |#1|))))) (-15 -2701 ((-166 (-371)) (-400 (-917 (-166 |#1|))) (-890))) (IF (|has| |#1| (-823)) (PROGN (-15 -2700 ((-371) (-307 |#1|))) (-15 -2700 ((-371) (-307 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-307 |#1|))) (-15 -2701 ((-166 (-371)) (-307 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-307 (-166 |#1|)))) (-15 -2701 ((-166 (-371)) (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 (-166 |#1|)))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -2702 ((-3 (-371) "failed") (-917 |#1|))) (-15 -2702 ((-3 (-371) "failed") (-917 |#1|) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 |#1|))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -2702 ((-3 (-371) "failed") (-400 (-917 |#1|)))) (-15 -2702 ((-3 (-371) "failed") (-400 (-917 |#1|)) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 |#1|)))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 |#1|)) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 (-166 |#1|))))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 (-166 |#1|))) (-890))) (IF (|has| |#1| (-823)) (PROGN (-15 -2702 ((-3 (-371) "failed") (-307 |#1|))) (-15 -2702 ((-3 (-371) "failed") (-307 |#1|) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 |#1|))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 |#1|) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|)) (-594 (-371))) (T -761))
+((-2703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2702 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) (-2702 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) (-2703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-917 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-917 (-166 *4)))) (-4 *4 (-542)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2702 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) (-2702 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) (-2703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2702 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) (-2702 (*1 *2 *3) (|partial| -12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) (-2703 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-917 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-170)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-917 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823)) (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 (-166 *4)))) (-4 *4 (-542)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-917 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-170)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-917 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-890)) (-4 *5 (-170)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-170)) (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-166 (-371))) (-5 *1 (-761 *3)) (-4 *3 (-594 (-371))))) (-2701 (*1 *2 *3) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-761 *3)) (-4 *3 (-594 (-371))))) (-2700 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-371)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2)))) (-2700 (*1 *2 *3) (-12 (-5 *2 (-371)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2)))))
+(-10 -7 (-15 -2700 ((-371) |#1|)) (-15 -2700 ((-371) |#1| (-890))) (-15 -2701 ((-166 (-371)) |#1|)) (-15 -2701 ((-166 (-371)) |#1| (-890))) (IF (|has| |#1| (-170)) (PROGN (-15 -2701 ((-166 (-371)) (-166 |#1|))) (-15 -2701 ((-166 (-371)) (-166 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-917 (-166 |#1|)))) (-15 -2701 ((-166 (-371)) (-917 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -2700 ((-371) (-917 |#1|))) (-15 -2700 ((-371) (-917 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-917 |#1|))) (-15 -2701 ((-166 (-371)) (-917 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -2700 ((-371) (-400 (-917 |#1|)))) (-15 -2700 ((-371) (-400 (-917 |#1|)) (-890))) (-15 -2701 ((-166 (-371)) (-400 (-917 |#1|)))) (-15 -2701 ((-166 (-371)) (-400 (-917 |#1|)) (-890))) (-15 -2701 ((-166 (-371)) (-400 (-917 (-166 |#1|))))) (-15 -2701 ((-166 (-371)) (-400 (-917 (-166 |#1|))) (-890))) (IF (|has| |#1| (-823)) (PROGN (-15 -2700 ((-371) (-307 |#1|))) (-15 -2700 ((-371) (-307 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-307 |#1|))) (-15 -2701 ((-166 (-371)) (-307 |#1|) (-890))) (-15 -2701 ((-166 (-371)) (-307 (-166 |#1|)))) (-15 -2701 ((-166 (-371)) (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 (-166 |#1|)))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -2702 ((-3 (-371) "failed") (-917 |#1|))) (-15 -2702 ((-3 (-371) "failed") (-917 |#1|) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 |#1|))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-917 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -2702 ((-3 (-371) "failed") (-400 (-917 |#1|)))) (-15 -2702 ((-3 (-371) "failed") (-400 (-917 |#1|)) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 |#1|)))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 |#1|)) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 (-166 |#1|))))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-400 (-917 (-166 |#1|))) (-890))) (IF (|has| |#1| (-823)) (PROGN (-15 -2702 ((-3 (-371) "failed") (-307 |#1|))) (-15 -2702 ((-3 (-371) "failed") (-307 |#1|) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 |#1|))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 |#1|) (-890))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)))) (-15 -2703 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|))
+((-2707 (((-890) (-1124)) 66)) (-2709 (((-3 (-371) "failed") (-1124)) 33)) (-2708 (((-371) (-1124)) 31)) (-2705 (((-890) (-1124)) 54)) (-2706 (((-1124) (-890)) 56)) (-2704 (((-1124) (-890)) 53)))
+(((-762) (-10 -7 (-15 -2704 ((-1124) (-890))) (-15 -2705 ((-890) (-1124))) (-15 -2706 ((-1124) (-890))) (-15 -2707 ((-890) (-1124))) (-15 -2708 ((-371) (-1124))) (-15 -2709 ((-3 (-371) "failed") (-1124))))) (T -762))
+((-2709 (*1 *2 *3) (|partial| -12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-762)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-762)))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-890)) (-5 *1 (-762)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1124)) (-5 *1 (-762)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-890)) (-5 *1 (-762)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1124)) (-5 *1 (-762)))))
+(-10 -7 (-15 -2704 ((-1124) (-890))) (-15 -2705 ((-890) (-1124))) (-15 -2706 ((-1124) (-890))) (-15 -2707 ((-890) (-1124))) (-15 -2708 ((-371) (-1124))) (-15 -2709 ((-3 (-371) "failed") (-1124))))
+((-2887 (((-112) $ $) 7)) (-2710 (((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 15) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 13)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)))
(((-763) (-138)) (T -763))
-((-3467 (*1 *2 *3 *4) (-12 (-4 *1 (-763)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006)))))) (-3515 (*1 *2 *3 *2) (-12 (-4 *1 (-763)) (-5 *2 (-1006)) (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-3467 (*1 *2 *3 *4) (-12 (-4 *1 (-763)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006)))))) (-3515 (*1 *2 *3 *2) (-12 (-4 *1 (-763)) (-5 *2 (-1006)) (-5 *3 (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))))
-(-13 (-1066) (-10 -7 (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3515 ((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219))) (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3515 ((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-2794 (((-1230) (-1225 (-372)) (-549) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3042 (-372))) (-372) (-1225 (-372)) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372))) 44) (((-1230) (-1225 (-372)) (-549) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3042 (-372))) (-372) (-1225 (-372)) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372))) 43)) (-3962 (((-1230) (-1225 (-372)) (-549) (-372) (-372) (-549) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372))) 50)) (-1938 (((-1230) (-1225 (-372)) (-549) (-372) (-372) (-372) (-372) (-549) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372))) 41)) (-3286 (((-1230) (-1225 (-372)) (-549) (-372) (-372) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372))) 52) (((-1230) (-1225 (-372)) (-549) (-372) (-372) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372))) 51)))
-(((-764) (-10 -7 (-15 -3286 ((-1230) (-1225 (-372)) (-549) (-372) (-372) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)))) (-15 -3286 ((-1230) (-1225 (-372)) (-549) (-372) (-372) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)))) (-15 -1938 ((-1230) (-1225 (-372)) (-549) (-372) (-372) (-372) (-372) (-549) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)))) (-15 -2794 ((-1230) (-1225 (-372)) (-549) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3042 (-372))) (-372) (-1225 (-372)) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)))) (-15 -2794 ((-1230) (-1225 (-372)) (-549) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3042 (-372))) (-372) (-1225 (-372)) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)))) (-15 -3962 ((-1230) (-1225 (-372)) (-549) (-372) (-372) (-549) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)))))) (T -764))
-((-3962 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1230) (-1225 *5) (-1225 *5) (-372))) (-5 *3 (-1225 (-372))) (-5 *5 (-372)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-2794 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-549)) (-5 *6 (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3042 (-372)))) (-5 *7 (-1 (-1230) (-1225 *5) (-1225 *5) (-372))) (-5 *3 (-1225 (-372))) (-5 *5 (-372)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-2794 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-549)) (-5 *6 (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3042 (-372)))) (-5 *7 (-1 (-1230) (-1225 *5) (-1225 *5) (-372))) (-5 *3 (-1225 (-372))) (-5 *5 (-372)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-1938 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1230) (-1225 *5) (-1225 *5) (-372))) (-5 *3 (-1225 (-372))) (-5 *5 (-372)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-3286 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1230) (-1225 *5) (-1225 *5) (-372))) (-5 *3 (-1225 (-372))) (-5 *5 (-372)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-3286 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1230) (-1225 *5) (-1225 *5) (-372))) (-5 *3 (-1225 (-372))) (-5 *5 (-372)) (-5 *2 (-1230)) (-5 *1 (-764)))))
-(-10 -7 (-15 -3286 ((-1230) (-1225 (-372)) (-549) (-372) (-372) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)))) (-15 -3286 ((-1230) (-1225 (-372)) (-549) (-372) (-372) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)))) (-15 -1938 ((-1230) (-1225 (-372)) (-549) (-372) (-372) (-372) (-372) (-549) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)))) (-15 -2794 ((-1230) (-1225 (-372)) (-549) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3042 (-372))) (-372) (-1225 (-372)) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)))) (-15 -2794 ((-1230) (-1225 (-372)) (-549) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3042 (-372))) (-372) (-1225 (-372)) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)) (-1225 (-372)))) (-15 -3962 ((-1230) (-1225 (-372)) (-549) (-372) (-372) (-549) (-1 (-1230) (-1225 (-372)) (-1225 (-372)) (-372)))))
-((-3613 (((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549)) 53)) (-2482 (((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549)) 31)) (-2973 (((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549)) 52)) (-3644 (((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549)) 29)) (-2513 (((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549)) 51)) (-2974 (((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549)) 19)) (-4307 (((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549)) 32)) (-1376 (((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549)) 30)) (-3874 (((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549)) 28)))
-(((-765) (-10 -7 (-15 -3874 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549))) (-15 -1376 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549))) (-15 -4307 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549))) (-15 -2974 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -3644 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -2482 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -2513 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -2973 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -3613 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))))) (T -765))
-((-3613 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-2973 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-2513 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-3644 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-2974 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-4307 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-1376 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-3874 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))))
-(-10 -7 (-15 -3874 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549))) (-15 -1376 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549))) (-15 -4307 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549))) (-15 -2974 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -3644 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -2482 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -2513 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -2973 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -3613 ((-2 (|:| -4160 (-372)) (|:| -3041 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))))
-((-2917 (((-1174 |#1|) |#1| (-219) (-549)) 46)))
-(((-766 |#1|) (-10 -7 (-15 -2917 ((-1174 |#1|) |#1| (-219) (-549)))) (-945)) (T -766))
-((-2917 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-219)) (-5 *5 (-549)) (-5 *2 (-1174 *3)) (-5 *1 (-766 *3)) (-4 *3 (-945)))))
-(-10 -7 (-15 -2917 ((-1174 |#1|) |#1| (-219) (-549))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 24)) (-2384 (((-3 $ "failed") $ $) 26)) (-1705 (($) 23 T CONST)) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3275 (($) 22 T CONST)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)) (-2499 (($ $ $) 28) (($ $) 27)) (-2485 (($ $ $) 20)) (* (($ (-892) $) 21) (($ (-747) $) 25) (($ (-549) $) 29)))
+((-2989 (*1 *2 *3 *4) (-12 (-4 *1 (-763)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006)))))) (-2710 (*1 *2 *3 *2) (-12 (-4 *1 (-763)) (-5 *2 (-1006)) (-5 *3 (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-2989 (*1 *2 *3 *4) (-12 (-4 *1 (-763)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006)))))) (-2710 (*1 *2 *3 *2) (-12 (-4 *1 (-763)) (-5 *2 (-1006)) (-5 *3 (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))))
+(-13 (-1067) (-10 -7 (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2710 ((-1006) (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2710 ((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2713 (((-1230) (-1224 (-371)) (-535) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1224 (-371)) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371))) 44) (((-1230) (-1224 (-371)) (-535) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1224 (-371)) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371))) 43)) (-2714 (((-1230) (-1224 (-371)) (-535) (-371) (-371) (-535) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371))) 50)) (-2712 (((-1230) (-1224 (-371)) (-535) (-371) (-371) (-371) (-371) (-535) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371))) 41)) (-2711 (((-1230) (-1224 (-371)) (-535) (-371) (-371) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371))) 52) (((-1230) (-1224 (-371)) (-535) (-371) (-371) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371))) 51)))
+(((-764) (-10 -7 (-15 -2711 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))) (-15 -2711 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)))) (-15 -2712 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-371) (-371) (-535) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))) (-15 -2713 ((-1230) (-1224 (-371)) (-535) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1224 (-371)) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))) (-15 -2713 ((-1230) (-1224 (-371)) (-535) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1224 (-371)) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)))) (-15 -2714 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-535) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))))) (T -764))
+((-2714 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-2713 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-535)) (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) (-5 *7 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-2713 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-535)) (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) (-5 *7 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-2712 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-2711 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))) (-2711 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))))
+(-10 -7 (-15 -2711 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))) (-15 -2711 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)))) (-15 -2712 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-371) (-371) (-535) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))) (-15 -2713 ((-1230) (-1224 (-371)) (-535) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1224 (-371)) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))) (-15 -2713 ((-1230) (-1224 (-371)) (-535) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1224 (-371)) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)) (-1224 (-371)))) (-15 -2714 ((-1230) (-1224 (-371)) (-535) (-371) (-371) (-535) (-1 (-1230) (-1224 (-371)) (-1224 (-371)) (-371)))))
+((-2723 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)) 53)) (-2720 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)) 31)) (-2722 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)) 52)) (-2719 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)) 29)) (-2721 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)) 51)) (-2718 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535)) 19)) (-2717 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535)) 32)) (-2716 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535)) 30)) (-2715 (((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535)) 28)))
+(((-765) (-10 -7 (-15 -2715 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535))) (-15 -2716 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535))) (-15 -2717 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535))) (-15 -2718 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2719 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2720 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2721 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2722 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2723 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))))) (T -765))
+((-2723 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2722 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2721 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2720 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2719 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2718 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2717 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2716 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))) (-2715 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-535)))))
+(-10 -7 (-15 -2715 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535))) (-15 -2716 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535))) (-15 -2717 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535) (-535))) (-15 -2718 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2719 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2720 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2721 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2722 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))) (-15 -2723 ((-2 (|:| -3744 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-535)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-535) (-535))))
+((-4051 (((-1174 |#1|) |#1| (-219) (-535)) 46)))
+(((-766 |#1|) (-10 -7 (-15 -4051 ((-1174 |#1|) |#1| (-219) (-535)))) (-945)) (T -766))
+((-4051 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-219)) (-5 *5 (-535)) (-5 *2 (-1174 *3)) (-5 *1 (-766 *3)) (-4 *3 (-945)))))
+(-10 -7 (-15 -4051 ((-1174 |#1|) |#1| (-219) (-535))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 24)) (-1363 (((-3 $ "failed") $ $) 26)) (-3879 (($) 23 T CONST)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 22 T CONST)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4180 (($ $ $) 28) (($ $) 27)) (-4182 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-747) $) 25) (($ (-535) $) 29)))
(((-767) (-138)) (T -767))
NIL
-(-13 (-771) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-823) . T) ((-1066) . T))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 24)) (-1705 (($) 23 T CONST)) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3275 (($) 22 T CONST)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)) (-2485 (($ $ $) 20)) (* (($ (-892) $) 21) (($ (-747) $) 25)))
+(-13 (-773) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-823) . T) ((-1067) . T))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 24)) (-3879 (($) 23 T CONST)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 22 T CONST)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4182 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-747) $) 25)))
(((-768) (-138)) (T -768))
NIL
(-13 (-770) (-23))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-593 (-834)) . T) ((-770) . T) ((-823) . T) ((-1066) . T))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 24)) (-3100 (($ $ $) 27)) (-2384 (((-3 $ "failed") $ $) 26)) (-1705 (($) 23 T CONST)) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3275 (($) 22 T CONST)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)) (-2485 (($ $ $) 20)) (* (($ (-892) $) 21) (($ (-747) $) 25)))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-593 (-835)) . T) ((-770) . T) ((-823) . T) ((-1067) . T))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 24)) (-2724 (($ $ $) 27)) (-1363 (((-3 $ "failed") $ $) 26)) (-3879 (($) 23 T CONST)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 22 T CONST)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4182 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-747) $) 25)))
(((-769) (-138)) (T -769))
-((-3100 (*1 *1 *1 *1) (-4 *1 (-769))))
-(-13 (-771) (-10 -8 (-15 -3100 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-823) . T) ((-1066) . T))
-((-3833 (((-112) $ $) 7)) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)) (-2485 (($ $ $) 20)) (* (($ (-892) $) 21)))
+((-2724 (*1 *1 *1 *1) (-4 *1 (-769))))
+(-13 (-773) (-10 -8 (-15 -2724 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-823) . T) ((-1067) . T))
+((-2887 (((-112) $ $) 7)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4182 (($ $ $) 20)) (* (($ (-890) $) 21)))
(((-770) (-138)) (T -770))
NIL
(-13 (-823) (-25))
-(((-25) . T) ((-101) . T) ((-593 (-834)) . T) ((-823) . T) ((-1066) . T))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 24)) (-2384 (((-3 $ "failed") $ $) 26)) (-1705 (($) 23 T CONST)) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3275 (($) 22 T CONST)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)) (-2485 (($ $ $) 20)) (* (($ (-892) $) 21) (($ (-747) $) 25)))
-(((-771) (-138)) (T -771))
+(((-25) . T) ((-101) . T) ((-593 (-835)) . T) ((-823) . T) ((-1067) . T))
+((-3522 (((-112) $) 41)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 |#2| #1#) $) 44)) (-3490 (((-535) $) NIL) (((-400 (-535)) $) NIL) ((|#2| $) 42)) (-3345 (((-3 (-400 (-535)) "failed") $) 78)) (-3344 (((-112) $) 72)) (-3343 (((-400 (-535)) $) 76)) (-3450 ((|#2| $) 26)) (-4301 (($ (-1 |#2| |#2|) $) 23)) (-2725 (($ $) 61)) (-4313 (((-524) $) 67)) (-3330 (($ $) 21)) (-4300 (((-835) $) 56) (($ (-535)) 39) (($ |#2|) 37) (($ (-400 (-535))) NIL)) (-3444 (((-747)) 10)) (-3725 ((|#2| $) 71)) (-3375 (((-112) $ $) 29)) (-3006 (((-112) $ $) 69)) (-4180 (($ $) 31) (($ $ $) NIL)) (-4182 (($ $ $) 30)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-771 |#1| |#2|) (-10 -8 (-15 -3006 ((-112) |#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -3725 (|#2| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-772 |#2|) (-170)) (T -771))
+((-3444 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-771 *3 *4)) (-4 *3 (-772 *4)))))
+(-10 -8 (-15 -3006 ((-112) |#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -3725 (|#2| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3454 (((-747)) 51 (|has| |#1| (-361)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 92 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 90 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 88)) (-3490 (((-535) $) 93 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 91 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 87)) (-3804 (((-3 $ "failed") $) 32)) (-3989 ((|#1| $) 77)) (-3345 (((-3 (-400 (-535)) "failed") $) 64 (|has| |#1| (-534)))) (-3344 (((-112) $) 66 (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) 65 (|has| |#1| (-534)))) (-3315 (($) 54 (|has| |#1| (-361)))) (-2493 (((-112) $) 30)) (-2730 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3450 ((|#1| $) 69)) (-3660 (($ $ $) 60 (|has| |#1| (-823)))) (-3661 (($ $ $) 59 (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) 79)) (-2121 (((-890) $) 53 (|has| |#1| (-361)))) (-3576 (((-1124) $) 9)) (-2725 (($ $) 63 (|has| |#1| (-356)))) (-2483 (($ (-890)) 52 (|has| |#1| (-361)))) (-2727 ((|#1| $) 74)) (-2728 ((|#1| $) 75)) (-2729 ((|#1| $) 76)) (-3327 ((|#1| $) 70)) (-3328 ((|#1| $) 71)) (-3329 ((|#1| $) 72)) (-2726 ((|#1| $) 73)) (-3577 (((-1086) $) 10)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) 85 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 83 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) 82 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 81 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) 80 (|has| |#1| (-505 (-1142) |#1|)))) (-4142 (($ $ |#1|) 86 (|has| |#1| (-279 |#1| |#1|)))) (-4313 (((-524) $) 61 (|has| |#1| (-594 (-524))))) (-3330 (($ $) 78)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35) (($ (-400 (-535))) 89 (|has| |#1| (-1009 (-400 (-535)))))) (-3023 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-3725 ((|#1| $) 67 (|has| |#1| (-1027)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 57 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 56 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 58 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 55 (|has| |#1| (-823)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-772 |#1|) (-138) (-170)) (T -772))
+((-3330 (*1 *1 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-2730 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))) (-3345 (*1 *2 *1) (|partial| -12 (-4 *1 (-772 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))) (-2725 (*1 *1 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)) (-4 *2 (-356)))))
+(-13 (-38 |t#1|) (-405 |t#1|) (-331 |t#1|) (-10 -8 (-15 -3330 ($ $)) (-15 -3989 (|t#1| $)) (-15 -2729 (|t#1| $)) (-15 -2728 (|t#1| $)) (-15 -2727 (|t#1| $)) (-15 -2726 (|t#1| $)) (-15 -3329 (|t#1| $)) (-15 -3328 (|t#1| $)) (-15 -3327 (|t#1| $)) (-15 -3450 (|t#1| $)) (-15 -2730 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3725 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -2725 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-361) |has| |#1| (-361)) ((-331 |#1|) . T) ((-405 |#1|) . T) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-823) |has| |#1| (-823)) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 24)) (-1363 (((-3 $ "failed") $ $) 26)) (-3879 (($) 23 T CONST)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 22 T CONST)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4182 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-747) $) 25)))
+(((-773) (-138)) (T -773))
NIL
(-13 (-768) (-130))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-768) . T) ((-770) . T) ((-823) . T) ((-1066) . T))
-((-3166 (((-112) $) 41)) (-2713 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2658 (((-549) $) NIL) (((-400 (-549)) $) NIL) ((|#2| $) 42)) (-3156 (((-3 (-400 (-549)) "failed") $) 78)) (-3230 (((-112) $) 72)) (-3867 (((-400 (-549)) $) 76)) (-4117 ((|#2| $) 26)) (-2796 (($ (-1 |#2| |#2|) $) 23)) (-1991 (($ $) 61)) (-2844 (((-525) $) 67)) (-2538 (($ $) 21)) (-3845 (((-834) $) 56) (($ (-549)) 39) (($ |#2|) 37) (($ (-400 (-549))) NIL)) (-1723 (((-747)) 10)) (-3603 ((|#2| $) 71)) (-2388 (((-112) $ $) 29)) (-2411 (((-112) $ $) 69)) (-2499 (($ $) 31) (($ $ $) NIL)) (-2485 (($ $ $) 30)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-772 |#1| |#2|) (-10 -8 (-15 -2411 ((-112) |#1| |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -1991 (|#1| |#1|)) (-15 -3156 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3867 ((-400 (-549)) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 -3603 (|#2| |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -2538 (|#1| |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -3845 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 (|#1| (-549))) (-15 -1723 ((-747))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -2485 (|#1| |#1| |#1|)) (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|))) (-773 |#2|) (-170)) (T -772))
-((-1723 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-772 *3 *4)) (-4 *3 (-773 *4)))))
-(-10 -8 (-15 -2411 ((-112) |#1| |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -1991 (|#1| |#1|)) (-15 -3156 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3867 ((-400 (-549)) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 -3603 (|#2| |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -2538 (|#1| |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -3845 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 (|#1| (-549))) (-15 -1723 ((-747))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -2485 (|#1| |#1| |#1|)) (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-3615 (((-747)) 51 (|has| |#1| (-361)))) (-1705 (($) 17 T CONST)) (-2713 (((-3 (-549) "failed") $) 92 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 90 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 88)) (-2658 (((-549) $) 93 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 91 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 87)) (-3976 (((-3 $ "failed") $) 32)) (-2146 ((|#1| $) 77)) (-3156 (((-3 (-400 (-549)) "failed") $) 64 (|has| |#1| (-534)))) (-3230 (((-112) $) 66 (|has| |#1| (-534)))) (-3867 (((-400 (-549)) $) 65 (|has| |#1| (-534)))) (-3238 (($) 54 (|has| |#1| (-361)))) (-3987 (((-112) $) 30)) (-2955 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-4117 ((|#1| $) 69)) (-2862 (($ $ $) 60 (|has| |#1| (-823)))) (-3574 (($ $ $) 59 (|has| |#1| (-823)))) (-2796 (($ (-1 |#1| |#1|) $) 79)) (-2723 (((-892) $) 53 (|has| |#1| (-361)))) (-2677 (((-1124) $) 9)) (-1991 (($ $) 63 (|has| |#1| (-356)))) (-3491 (($ (-892)) 52 (|has| |#1| (-361)))) (-2573 ((|#1| $) 74)) (-3124 ((|#1| $) 75)) (-1577 ((|#1| $) 76)) (-3073 ((|#1| $) 70)) (-3811 ((|#1| $) 71)) (-2977 ((|#1| $) 72)) (-2309 ((|#1| $) 73)) (-3988 (((-1086) $) 10)) (-2685 (($ $ (-621 |#1|) (-621 |#1|)) 85 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 83 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) 82 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1142)) (-621 |#1|)) 81 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) 80 (|has| |#1| (-505 (-1142) |#1|)))) (-3340 (($ $ |#1|) 86 (|has| |#1| (-279 |#1| |#1|)))) (-2844 (((-525) $) 61 (|has| |#1| (-594 (-525))))) (-2538 (($ $) 78)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35) (($ (-400 (-549))) 89 (|has| |#1| (-1009 (-400 (-549)))))) (-3407 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-1723 (((-747)) 28)) (-3603 ((|#1| $) 67 (|has| |#1| (-1027)))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 57 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 56 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 58 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 55 (|has| |#1| (-823)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-773 |#1|) (-138) (-170)) (T -773))
-((-2538 (*1 *1 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-2955 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-549))))) (-3156 (*1 *2 *1) (|partial| -12 (-4 *1 (-773 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-549))))) (-1991 (*1 *1 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)) (-4 *2 (-356)))))
-(-13 (-38 |t#1|) (-404 |t#1|) (-331 |t#1|) (-10 -8 (-15 -2538 ($ $)) (-15 -2146 (|t#1| $)) (-15 -1577 (|t#1| $)) (-15 -3124 (|t#1| $)) (-15 -2573 (|t#1| $)) (-15 -2309 (|t#1| $)) (-15 -2977 (|t#1| $)) (-15 -3811 (|t#1| $)) (-15 -3073 (|t#1| $)) (-15 -4117 (|t#1| $)) (-15 -2955 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3603 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3230 ((-112) $)) (-15 -3867 ((-400 (-549)) $)) (-15 -3156 ((-3 (-400 (-549)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -1991 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-361) |has| |#1| (-361)) ((-331 |#1|) . T) ((-404 |#1|) . T) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-823) |has| |#1| (-823)) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-2796 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-774 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2796 (|#3| (-1 |#4| |#2|) |#1|))) (-773 |#2|) (-170) (-773 |#4|) (-170)) (T -774))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-773 *6)) (-5 *1 (-774 *4 *5 *2 *6)) (-4 *4 (-773 *5)))))
-(-10 -7 (-15 -2796 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3615 (((-747)) NIL (|has| |#1| (-361)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL) (((-3 (-970 |#1|) "failed") $) 35) (((-3 (-549) "failed") $) NIL (-1536 (|has| (-970 |#1|) (-1009 (-549))) (|has| |#1| (-1009 (-549))))) (((-3 (-400 (-549)) "failed") $) NIL (-1536 (|has| (-970 |#1|) (-1009 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-2658 ((|#1| $) NIL) (((-970 |#1|) $) 33) (((-549) $) NIL (-1536 (|has| (-970 |#1|) (-1009 (-549))) (|has| |#1| (-1009 (-549))))) (((-400 (-549)) $) NIL (-1536 (|has| (-970 |#1|) (-1009 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-3976 (((-3 $ "failed") $) NIL)) (-2146 ((|#1| $) 16)) (-3156 (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-534)))) (-3230 (((-112) $) NIL (|has| |#1| (-534)))) (-3867 (((-400 (-549)) $) NIL (|has| |#1| (-534)))) (-3238 (($) NIL (|has| |#1| (-361)))) (-3987 (((-112) $) NIL)) (-2955 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-970 |#1|) (-970 |#1|)) 29)) (-4117 ((|#1| $) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-2723 (((-892) $) NIL (|has| |#1| (-361)))) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL (|has| |#1| (-356)))) (-3491 (($ (-892)) NIL (|has| |#1| (-361)))) (-2573 ((|#1| $) 22)) (-3124 ((|#1| $) 20)) (-1577 ((|#1| $) 18)) (-3073 ((|#1| $) 26)) (-3811 ((|#1| $) 25)) (-2977 ((|#1| $) 24)) (-2309 ((|#1| $) 23)) (-3988 (((-1086) $) NIL)) (-2685 (($ $ (-621 |#1|) (-621 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1142)) (-621 |#1|)) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|)))) (-3340 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-2844 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-2538 (($ $) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-970 |#1|)) 30) (($ (-400 (-549))) NIL (-1536 (|has| (-970 |#1|) (-1009 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-3603 ((|#1| $) NIL (|has| |#1| (-1027)))) (-3275 (($) 8 T CONST)) (-3287 (($) 12 T CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-775 |#1|) (-13 (-773 |#1|) (-404 (-970 |#1|)) (-10 -8 (-15 -2955 ($ (-970 |#1|) (-970 |#1|))))) (-170)) (T -775))
-((-2955 (*1 *1 *2 *2) (-12 (-5 *2 (-970 *3)) (-4 *3 (-170)) (-5 *1 (-775 *3)))))
-(-13 (-773 |#1|) (-404 (-970 |#1|)) (-10 -8 (-15 -2955 ($ (-970 |#1|) (-970 |#1|)))))
-((-3833 (((-112) $ $) 7)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3016 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13)) (-2388 (((-112) $ $) 6)))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-768) . T) ((-770) . T) ((-823) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #1="failed") $) NIL) (((-3 (-967 |#1|) #1#) $) 35) (((-3 (-535) #1#) $) NIL (-3874 (|has| (-967 |#1|) (-1009 (-535))) (|has| |#1| (-1009 (-535))))) (((-3 (-400 (-535)) #1#) $) NIL (-3874 (|has| (-967 |#1|) (-1009 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-3490 ((|#1| $) NIL) (((-967 |#1|) $) 33) (((-535) $) NIL (-3874 (|has| (-967 |#1|) (-1009 (-535))) (|has| |#1| (-1009 (-535))))) (((-400 (-535)) $) NIL (-3874 (|has| (-967 |#1|) (-1009 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-3804 (((-3 $ "failed") $) NIL)) (-3989 ((|#1| $) 16)) (-3345 (((-3 (-400 (-535)) "failed") $) NIL (|has| |#1| (-534)))) (-3344 (((-112) $) NIL (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) NIL (|has| |#1| (-534)))) (-3315 (($) NIL (|has| |#1| (-361)))) (-2493 (((-112) $) NIL)) (-2730 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-967 |#1|) (-967 |#1|)) 29)) (-3450 ((|#1| $) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-2727 ((|#1| $) 22)) (-2728 ((|#1| $) 20)) (-2729 ((|#1| $) 18)) (-3327 ((|#1| $) 26)) (-3328 ((|#1| $) 25)) (-3329 ((|#1| $) 24)) (-2726 ((|#1| $) 23)) (-3577 (((-1086) $) NIL)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|)))) (-4142 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3330 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-967 |#1|)) 30) (($ (-400 (-535))) NIL (-3874 (|has| (-967 |#1|) (-1009 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-3725 ((|#1| $) NIL (|has| |#1| (-1027)))) (-2979 (($) 8 T CONST)) (-2985 (($) 12 T CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-774 |#1|) (-13 (-772 |#1|) (-405 (-967 |#1|)) (-10 -8 (-15 -2730 ($ (-967 |#1|) (-967 |#1|))))) (-170)) (T -774))
+((-2730 (*1 *1 *2 *2) (-12 (-5 *2 (-967 *3)) (-4 *3 (-170)) (-5 *1 (-774 *3)))))
+(-13 (-772 |#1|) (-405 (-967 |#1|)) (-10 -8 (-15 -2730 ($ (-967 |#1|) (-967 |#1|)))))
+((-4301 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-775 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#3| (-1 |#4| |#2|) |#1|))) (-772 |#2|) (-170) (-772 |#4|) (-170)) (T -775))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-772 *6)) (-5 *1 (-775 *4 *5 *2 *6)) (-4 *4 (-772 *5)))))
+(-10 -7 (-15 -4301 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2887 (((-112) $ $) 7)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2731 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13)) (-3375 (((-112) $ $) 6)))
(((-776) (-138)) (T -776))
-((-3467 (*1 *2 *3 *4) (-12 (-4 *1 (-776)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)))))) (-3016 (*1 *2 *3) (-12 (-4 *1 (-776)) (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1006)))))
-(-13 (-1066) (-10 -7 (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3016 ((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3538 (((-2 (|:| |particular| |#2|) (|:| -3420 (-621 |#2|))) |#3| |#2| (-1142)) 19)))
-(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -3538 ((-2 (|:| |particular| |#2|) (|:| -3420 (-621 |#2|))) |#3| |#2| (-1142)))) (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)) (-13 (-29 |#1|) (-1164) (-930)) (-632 |#2|)) (T -777))
-((-3538 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1142)) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-4 *4 (-13 (-29 *6) (-1164) (-930))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3420 (-621 *4)))) (-5 *1 (-777 *6 *4 *3)) (-4 *3 (-632 *4)))))
-(-10 -7 (-15 -3538 ((-2 (|:| |particular| |#2|) (|:| -3420 (-621 |#2|))) |#3| |#2| (-1142))))
-((-2808 (((-3 |#2| "failed") |#2| (-114) (-287 |#2|) (-621 |#2|)) 28) (((-3 |#2| "failed") (-287 |#2|) (-114) (-287 |#2|) (-621 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3420 (-621 |#2|))) |#2| "failed") |#2| (-114) (-1142)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3420 (-621 |#2|))) |#2| "failed") (-287 |#2|) (-114) (-1142)) 18) (((-3 (-2 (|:| |particular| (-1225 |#2|)) (|:| -3420 (-621 (-1225 |#2|)))) "failed") (-621 |#2|) (-621 (-114)) (-1142)) 24) (((-3 (-2 (|:| |particular| (-1225 |#2|)) (|:| -3420 (-621 (-1225 |#2|)))) "failed") (-621 (-287 |#2|)) (-621 (-114)) (-1142)) 26) (((-3 (-621 (-1225 |#2|)) "failed") (-665 |#2|) (-1142)) 37) (((-3 (-2 (|:| |particular| (-1225 |#2|)) (|:| -3420 (-621 (-1225 |#2|)))) "failed") (-665 |#2|) (-1225 |#2|) (-1142)) 35)))
-(((-778 |#1| |#2|) (-10 -7 (-15 -2808 ((-3 (-2 (|:| |particular| (-1225 |#2|)) (|:| -3420 (-621 (-1225 |#2|)))) "failed") (-665 |#2|) (-1225 |#2|) (-1142))) (-15 -2808 ((-3 (-621 (-1225 |#2|)) "failed") (-665 |#2|) (-1142))) (-15 -2808 ((-3 (-2 (|:| |particular| (-1225 |#2|)) (|:| -3420 (-621 (-1225 |#2|)))) "failed") (-621 (-287 |#2|)) (-621 (-114)) (-1142))) (-15 -2808 ((-3 (-2 (|:| |particular| (-1225 |#2|)) (|:| -3420 (-621 (-1225 |#2|)))) "failed") (-621 |#2|) (-621 (-114)) (-1142))) (-15 -2808 ((-3 (-2 (|:| |particular| |#2|) (|:| -3420 (-621 |#2|))) |#2| "failed") (-287 |#2|) (-114) (-1142))) (-15 -2808 ((-3 (-2 (|:| |particular| |#2|) (|:| -3420 (-621 |#2|))) |#2| "failed") |#2| (-114) (-1142))) (-15 -2808 ((-3 |#2| "failed") (-287 |#2|) (-114) (-287 |#2|) (-621 |#2|))) (-15 -2808 ((-3 |#2| "failed") |#2| (-114) (-287 |#2|) (-621 |#2|)))) (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)) (-13 (-29 |#1|) (-1164) (-930))) (T -778))
-((-2808 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-287 *2)) (-5 *5 (-621 *2)) (-4 *2 (-13 (-29 *6) (-1164) (-930))) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *1 (-778 *6 *2)))) (-2808 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-287 *2)) (-5 *4 (-114)) (-5 *5 (-621 *2)) (-4 *2 (-13 (-29 *6) (-1164) (-930))) (-5 *1 (-778 *6 *2)) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))))) (-2808 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1142)) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3420 (-621 *3))) *3 "failed")) (-5 *1 (-778 *6 *3)) (-4 *3 (-13 (-29 *6) (-1164) (-930))))) (-2808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-930))) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3420 (-621 *7))) *7 "failed")) (-5 *1 (-778 *6 *7)))) (-2808 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-621 *7)) (-5 *4 (-621 (-114))) (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-930))) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-2 (|:| |particular| (-1225 *7)) (|:| -3420 (-621 (-1225 *7))))) (-5 *1 (-778 *6 *7)))) (-2808 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-621 (-287 *7))) (-5 *4 (-621 (-114))) (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-930))) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-2 (|:| |particular| (-1225 *7)) (|:| -3420 (-621 (-1225 *7))))) (-5 *1 (-778 *6 *7)))) (-2808 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-665 *6)) (-5 *4 (-1142)) (-4 *6 (-13 (-29 *5) (-1164) (-930))) (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-621 (-1225 *6))) (-5 *1 (-778 *5 *6)))) (-2808 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-665 *7)) (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-930))) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-2 (|:| |particular| (-1225 *7)) (|:| -3420 (-621 (-1225 *7))))) (-5 *1 (-778 *6 *7)) (-5 *4 (-1225 *7)))))
-(-10 -7 (-15 -2808 ((-3 (-2 (|:| |particular| (-1225 |#2|)) (|:| -3420 (-621 (-1225 |#2|)))) "failed") (-665 |#2|) (-1225 |#2|) (-1142))) (-15 -2808 ((-3 (-621 (-1225 |#2|)) "failed") (-665 |#2|) (-1142))) (-15 -2808 ((-3 (-2 (|:| |particular| (-1225 |#2|)) (|:| -3420 (-621 (-1225 |#2|)))) "failed") (-621 (-287 |#2|)) (-621 (-114)) (-1142))) (-15 -2808 ((-3 (-2 (|:| |particular| (-1225 |#2|)) (|:| -3420 (-621 (-1225 |#2|)))) "failed") (-621 |#2|) (-621 (-114)) (-1142))) (-15 -2808 ((-3 (-2 (|:| |particular| |#2|) (|:| -3420 (-621 |#2|))) |#2| "failed") (-287 |#2|) (-114) (-1142))) (-15 -2808 ((-3 (-2 (|:| |particular| |#2|) (|:| -3420 (-621 |#2|))) |#2| "failed") |#2| (-114) (-1142))) (-15 -2808 ((-3 |#2| "failed") (-287 |#2|) (-114) (-287 |#2|) (-621 |#2|))) (-15 -2808 ((-3 |#2| "failed") |#2| (-114) (-287 |#2|) (-621 |#2|))))
-((-2989 (($) 9)) (-1302 (((-3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 31)) (-3449 (((-621 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 28)) (-1709 (($ (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))) 25)) (-3171 (($ (-621 (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) 23)) (-3607 (((-1230)) 12)))
-(((-779) (-10 -8 (-15 -2989 ($)) (-15 -3607 ((-1230))) (-15 -3449 ((-621 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -3171 ($ (-621 (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))))) (-15 -1709 ($ (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) (-15 -1302 ((-3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -779))
-((-1302 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))) (-5 *1 (-779)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))) (-5 *1 (-779)))) (-3171 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) (-5 *1 (-779)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-779)))) (-3607 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-779)))) (-2989 (*1 *1) (-5 *1 (-779))))
-(-10 -8 (-15 -2989 ($)) (-15 -3607 ((-1230))) (-15 -3449 ((-621 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -3171 ($ (-621 (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))))) (-15 -1709 ($ (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1792 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) (-15 -1302 ((-3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
-((-1964 ((|#2| |#2| (-1142)) 16)) (-1901 ((|#2| |#2| (-1142)) 51)) (-3399 (((-1 |#2| |#2|) (-1142)) 11)))
-(((-780 |#1| |#2|) (-10 -7 (-15 -1964 (|#2| |#2| (-1142))) (-15 -1901 (|#2| |#2| (-1142))) (-15 -3399 ((-1 |#2| |#2|) (-1142)))) (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)) (-13 (-29 |#1|) (-1164) (-930))) (T -780))
-((-3399 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-780 *4 *5)) (-4 *5 (-13 (-29 *4) (-1164) (-930))))) (-1901 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1164) (-930))))) (-1964 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1164) (-930))))))
-(-10 -7 (-15 -1964 (|#2| |#2| (-1142))) (-15 -1901 (|#2| |#2| (-1142))) (-15 -3399 ((-1 |#2| |#2|) (-1142))))
-((-2808 (((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-621 (-372)) (-372) (-372)) 116) (((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-621 (-372)) (-372)) 117) (((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-621 (-372)) (-372)) 119) (((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-372)) 120) (((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-372)) 121) (((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372))) 122) (((-1006) (-784) (-1030)) 108) (((-1006) (-784)) 109)) (-3467 (((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-784) (-1030)) 75) (((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-784)) 77)))
-(((-781) (-10 -7 (-15 -2808 ((-1006) (-784))) (-15 -2808 ((-1006) (-784) (-1030))) (-15 -2808 ((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)))) (-15 -2808 ((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-372))) (-15 -2808 ((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-372))) (-15 -2808 ((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-621 (-372)) (-372))) (-15 -2808 ((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-621 (-372)) (-372))) (-15 -2808 ((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-621 (-372)) (-372) (-372))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-784))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-784) (-1030))))) (T -781))
-((-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))))) (-5 *1 (-781)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))))) (-5 *1 (-781)))) (-2808 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1225 (-309 *4))) (-5 *5 (-621 (-372))) (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2808 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1225 (-309 *4))) (-5 *5 (-621 (-372))) (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2808 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1225 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-621 *4)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2808 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1225 (-309 *4))) (-5 *5 (-621 (-372))) (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2808 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1225 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-621 *4)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2808 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1225 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-621 *4)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1006)) (-5 *1 (-781)))))
-(-10 -7 (-15 -2808 ((-1006) (-784))) (-15 -2808 ((-1006) (-784) (-1030))) (-15 -2808 ((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)))) (-15 -2808 ((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-372))) (-15 -2808 ((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-372))) (-15 -2808 ((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-621 (-372)) (-372))) (-15 -2808 ((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-621 (-372)) (-372))) (-15 -2808 ((-1006) (-1225 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-621 (-372)) (-372) (-372))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-784))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-784) (-1030))))
-((-3268 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3420 (-621 |#4|))) (-629 |#4|) |#4|) 35)))
-(((-782 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3268 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3420 (-621 |#4|))) (-629 |#4|) |#4|))) (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))) (-1201 |#1|) (-1201 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -782))
-((-3268 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *4)) (-4 *4 (-335 *5 *6 *7)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *6 (-1201 *5)) (-4 *7 (-1201 (-400 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4)))) (-5 *1 (-782 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3268 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3420 (-621 |#4|))) (-629 |#4|) |#4|)))
-((-2840 (((-2 (|:| -2650 |#3|) (|:| |rh| (-621 (-400 |#2|)))) |#4| (-621 (-400 |#2|))) 52)) (-1383 (((-621 (-2 (|:| -2597 |#2|) (|:| -2389 |#2|))) |#4| |#2|) 60) (((-621 (-2 (|:| -2597 |#2|) (|:| -2389 |#2|))) |#4|) 59) (((-621 (-2 (|:| -2597 |#2|) (|:| -2389 |#2|))) |#3| |#2|) 20) (((-621 (-2 (|:| -2597 |#2|) (|:| -2389 |#2|))) |#3|) 21)) (-1516 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2064 ((|#2| |#3| (-621 (-400 |#2|))) 93) (((-3 |#2| "failed") |#3| (-400 |#2|)) 90)))
-(((-783 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2064 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -2064 (|#2| |#3| (-621 (-400 |#2|)))) (-15 -1383 ((-621 (-2 (|:| -2597 |#2|) (|:| -2389 |#2|))) |#3|)) (-15 -1383 ((-621 (-2 (|:| -2597 |#2|) (|:| -2389 |#2|))) |#3| |#2|)) (-15 -1516 (|#2| |#3| |#1|)) (-15 -1383 ((-621 (-2 (|:| -2597 |#2|) (|:| -2389 |#2|))) |#4|)) (-15 -1383 ((-621 (-2 (|:| -2597 |#2|) (|:| -2389 |#2|))) |#4| |#2|)) (-15 -1516 (|#2| |#4| |#1|)) (-15 -2840 ((-2 (|:| -2650 |#3|) (|:| |rh| (-621 (-400 |#2|)))) |#4| (-621 (-400 |#2|))))) (-13 (-356) (-145) (-1009 (-400 (-549)))) (-1201 |#1|) (-632 |#2|) (-632 (-400 |#2|))) (T -783))
-((-2840 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *6 (-1201 *5)) (-5 *2 (-2 (|:| -2650 *7) (|:| |rh| (-621 (-400 *6))))) (-5 *1 (-783 *5 *6 *7 *3)) (-5 *4 (-621 (-400 *6))) (-4 *7 (-632 *6)) (-4 *3 (-632 (-400 *6))))) (-1516 (*1 *2 *3 *4) (-12 (-4 *2 (-1201 *4)) (-5 *1 (-783 *4 *2 *5 *3)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-632 *2)) (-4 *3 (-632 (-400 *2))))) (-1383 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *4 (-1201 *5)) (-5 *2 (-621 (-2 (|:| -2597 *4) (|:| -2389 *4)))) (-5 *1 (-783 *5 *4 *6 *3)) (-4 *6 (-632 *4)) (-4 *3 (-632 (-400 *4))))) (-1383 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-1201 *4)) (-5 *2 (-621 (-2 (|:| -2597 *5) (|:| -2389 *5)))) (-5 *1 (-783 *4 *5 *6 *3)) (-4 *6 (-632 *5)) (-4 *3 (-632 (-400 *5))))) (-1516 (*1 *2 *3 *4) (-12 (-4 *2 (-1201 *4)) (-5 *1 (-783 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2)) (-4 *5 (-632 (-400 *2))))) (-1383 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *4 (-1201 *5)) (-5 *2 (-621 (-2 (|:| -2597 *4) (|:| -2389 *4)))) (-5 *1 (-783 *5 *4 *3 *6)) (-4 *3 (-632 *4)) (-4 *6 (-632 (-400 *4))))) (-1383 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-1201 *4)) (-5 *2 (-621 (-2 (|:| -2597 *5) (|:| -2389 *5)))) (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-632 *5)) (-4 *6 (-632 (-400 *5))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-400 *2))) (-4 *2 (-1201 *5)) (-5 *1 (-783 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2)) (-4 *6 (-632 (-400 *2))))) (-2064 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1201 *5)) (-5 *1 (-783 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2)) (-4 *6 (-632 *4)))))
-(-10 -7 (-15 -2064 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -2064 (|#2| |#3| (-621 (-400 |#2|)))) (-15 -1383 ((-621 (-2 (|:| -2597 |#2|) (|:| -2389 |#2|))) |#3|)) (-15 -1383 ((-621 (-2 (|:| -2597 |#2|) (|:| -2389 |#2|))) |#3| |#2|)) (-15 -1516 (|#2| |#3| |#1|)) (-15 -1383 ((-621 (-2 (|:| -2597 |#2|) (|:| -2389 |#2|))) |#4|)) (-15 -1383 ((-621 (-2 (|:| -2597 |#2|) (|:| -2389 |#2|))) |#4| |#2|)) (-15 -1516 (|#2| |#4| |#1|)) (-15 -2840 ((-2 (|:| -2650 |#3|) (|:| |rh| (-621 (-400 |#2|)))) |#4| (-621 (-400 |#2|)))))
-((-3833 (((-112) $ $) NIL)) (-2658 (((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $) 13)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 15) (($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 12)) (-2388 (((-112) $ $) NIL)))
-(((-784) (-13 (-1066) (-10 -8 (-15 -3845 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3845 ((-834) $)) (-15 -2658 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $))))) (T -784))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-784)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-784)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-784)))))
-(-13 (-1066) (-10 -8 (-15 -3845 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3845 ((-834) $)) (-15 -2658 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $))))
-((-2770 (((-621 (-2 (|:| |frac| (-400 |#2|)) (|:| -2650 |#3|))) |#3| (-1 (-621 |#2|) |#2| (-1138 |#2|)) (-1 (-411 |#2|) |#2|)) 118)) (-2219 (((-621 (-2 (|:| |poly| |#2|) (|:| -2650 |#3|))) |#3| (-1 (-621 |#1|) |#2|)) 46)) (-2056 (((-621 (-2 (|:| |deg| (-747)) (|:| -2650 |#2|))) |#3|) 95)) (-3236 ((|#2| |#3|) 37)) (-3701 (((-621 (-2 (|:| -2588 |#1|) (|:| -2650 |#3|))) |#3| (-1 (-621 |#1|) |#2|)) 82)) (-3698 ((|#3| |#3| (-400 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
-(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3236 (|#2| |#3|)) (-15 -2056 ((-621 (-2 (|:| |deg| (-747)) (|:| -2650 |#2|))) |#3|)) (-15 -3701 ((-621 (-2 (|:| -2588 |#1|) (|:| -2650 |#3|))) |#3| (-1 (-621 |#1|) |#2|))) (-15 -2219 ((-621 (-2 (|:| |poly| |#2|) (|:| -2650 |#3|))) |#3| (-1 (-621 |#1|) |#2|))) (-15 -2770 ((-621 (-2 (|:| |frac| (-400 |#2|)) (|:| -2650 |#3|))) |#3| (-1 (-621 |#2|) |#2| (-1138 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -3698 (|#3| |#3| |#2|)) (-15 -3698 (|#3| |#3| (-400 |#2|)))) (-13 (-356) (-145) (-1009 (-400 (-549)))) (-1201 |#1|) (-632 |#2|) (-632 (-400 |#2|))) (T -785))
-((-3698 (*1 *2 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-1201 *4)) (-5 *1 (-785 *4 *5 *2 *6)) (-4 *2 (-632 *5)) (-4 *6 (-632 *3)))) (-3698 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-1201 *4)) (-5 *1 (-785 *4 *3 *2 *5)) (-4 *2 (-632 *3)) (-4 *5 (-632 (-400 *3))))) (-2770 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-621 *7) *7 (-1138 *7))) (-5 *5 (-1 (-411 *7) *7)) (-4 *7 (-1201 *6)) (-4 *6 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-5 *2 (-621 (-2 (|:| |frac| (-400 *7)) (|:| -2650 *3)))) (-5 *1 (-785 *6 *7 *3 *8)) (-4 *3 (-632 *7)) (-4 *8 (-632 (-400 *7))))) (-2219 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-621 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *6 (-1201 *5)) (-5 *2 (-621 (-2 (|:| |poly| *6) (|:| -2650 *3)))) (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-632 *6)) (-4 *7 (-632 (-400 *6))))) (-3701 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-621 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *6 (-1201 *5)) (-5 *2 (-621 (-2 (|:| -2588 *5) (|:| -2650 *3)))) (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-632 *6)) (-4 *7 (-632 (-400 *6))))) (-2056 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-1201 *4)) (-5 *2 (-621 (-2 (|:| |deg| (-747)) (|:| -2650 *5)))) (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-632 *5)) (-4 *6 (-632 (-400 *5))))) (-3236 (*1 *2 *3) (-12 (-4 *2 (-1201 *4)) (-5 *1 (-785 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2)) (-4 *5 (-632 (-400 *2))))))
-(-10 -7 (-15 -3236 (|#2| |#3|)) (-15 -2056 ((-621 (-2 (|:| |deg| (-747)) (|:| -2650 |#2|))) |#3|)) (-15 -3701 ((-621 (-2 (|:| -2588 |#1|) (|:| -2650 |#3|))) |#3| (-1 (-621 |#1|) |#2|))) (-15 -2219 ((-621 (-2 (|:| |poly| |#2|) (|:| -2650 |#3|))) |#3| (-1 (-621 |#1|) |#2|))) (-15 -2770 ((-621 (-2 (|:| |frac| (-400 |#2|)) (|:| -2650 |#3|))) |#3| (-1 (-621 |#2|) |#2| (-1138 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -3698 (|#3| |#3| |#2|)) (-15 -3698 (|#3| |#3| (-400 |#2|))))
-((-2918 (((-2 (|:| -3420 (-621 (-400 |#2|))) (|:| -1859 (-665 |#1|))) (-630 |#2| (-400 |#2|)) (-621 (-400 |#2|))) 121) (((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -3420 (-621 (-400 |#2|)))) (-630 |#2| (-400 |#2|)) (-400 |#2|)) 120) (((-2 (|:| -3420 (-621 (-400 |#2|))) (|:| -1859 (-665 |#1|))) (-629 (-400 |#2|)) (-621 (-400 |#2|))) 115) (((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -3420 (-621 (-400 |#2|)))) (-629 (-400 |#2|)) (-400 |#2|)) 113)) (-1959 ((|#2| (-630 |#2| (-400 |#2|))) 80) ((|#2| (-629 (-400 |#2|))) 83)))
-(((-786 |#1| |#2|) (-10 -7 (-15 -2918 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -3420 (-621 (-400 |#2|)))) (-629 (-400 |#2|)) (-400 |#2|))) (-15 -2918 ((-2 (|:| -3420 (-621 (-400 |#2|))) (|:| -1859 (-665 |#1|))) (-629 (-400 |#2|)) (-621 (-400 |#2|)))) (-15 -2918 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -3420 (-621 (-400 |#2|)))) (-630 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -2918 ((-2 (|:| -3420 (-621 (-400 |#2|))) (|:| -1859 (-665 |#1|))) (-630 |#2| (-400 |#2|)) (-621 (-400 |#2|)))) (-15 -1959 (|#2| (-629 (-400 |#2|)))) (-15 -1959 (|#2| (-630 |#2| (-400 |#2|))))) (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))) (-1201 |#1|)) (T -786))
-((-1959 (*1 *2 *3) (-12 (-5 *3 (-630 *2 (-400 *2))) (-4 *2 (-1201 *4)) (-5 *1 (-786 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-629 (-400 *2))) (-4 *2 (-1201 *4)) (-5 *1 (-786 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6 (-400 *6))) (-4 *6 (-1201 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-2 (|:| -3420 (-621 (-400 *6))) (|:| -1859 (-665 *5)))) (-5 *1 (-786 *5 *6)) (-5 *4 (-621 (-400 *6))))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4)))) (-5 *1 (-786 *5 *6)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-400 *6))) (-4 *6 (-1201 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-2 (|:| -3420 (-621 (-400 *6))) (|:| -1859 (-665 *5)))) (-5 *1 (-786 *5 *6)) (-5 *4 (-621 (-400 *6))))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4)))) (-5 *1 (-786 *5 *6)))))
-(-10 -7 (-15 -2918 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -3420 (-621 (-400 |#2|)))) (-629 (-400 |#2|)) (-400 |#2|))) (-15 -2918 ((-2 (|:| -3420 (-621 (-400 |#2|))) (|:| -1859 (-665 |#1|))) (-629 (-400 |#2|)) (-621 (-400 |#2|)))) (-15 -2918 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -3420 (-621 (-400 |#2|)))) (-630 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -2918 ((-2 (|:| -3420 (-621 (-400 |#2|))) (|:| -1859 (-665 |#1|))) (-630 |#2| (-400 |#2|)) (-621 (-400 |#2|)))) (-15 -1959 (|#2| (-629 (-400 |#2|)))) (-15 -1959 (|#2| (-630 |#2| (-400 |#2|)))))
-((-3103 (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#1|))) |#5| |#4|) 48)))
-(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3103 ((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#1|))) |#5| |#4|))) (-356) (-632 |#1|) (-1201 |#1|) (-701 |#1| |#3|) (-632 |#4|)) (T -787))
-((-3103 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *7 (-1201 *5)) (-4 *4 (-701 *5 *7)) (-5 *2 (-2 (|:| -1859 (-665 *6)) (|:| |vec| (-1225 *5)))) (-5 *1 (-787 *5 *6 *7 *4 *3)) (-4 *6 (-632 *5)) (-4 *3 (-632 *4)))))
-(-10 -7 (-15 -3103 ((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#1|))) |#5| |#4|)))
-((-2770 (((-621 (-2 (|:| |frac| (-400 |#2|)) (|:| -2650 (-630 |#2| (-400 |#2|))))) (-630 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)) 47)) (-2849 (((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|))) 138 (|has| |#1| (-27))) (((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-411 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-621 (-400 |#2|)) (-629 (-400 |#2|))) 140 (|has| |#1| (-27))) (((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|) (-1 (-411 |#2|) |#2|)) 38) (((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|)) 39) (((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|) (-1 (-411 |#2|) |#2|)) 36) (((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|)) 37)) (-2219 (((-621 (-2 (|:| |poly| |#2|) (|:| -2650 (-630 |#2| (-400 |#2|))))) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|)) 83)))
-(((-788 |#1| |#2|) (-10 -7 (-15 -2849 ((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (-15 -2849 ((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -2849 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (-15 -2849 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -2770 ((-621 (-2 (|:| |frac| (-400 |#2|)) (|:| -2650 (-630 |#2| (-400 |#2|))))) (-630 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2219 ((-621 (-2 (|:| |poly| |#2|) (|:| -2650 (-630 |#2| (-400 |#2|))))) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2849 ((-621 (-400 |#2|)) (-629 (-400 |#2|)))) (-15 -2849 ((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2849 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)))) (-15 -2849 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)))) |%noBranch|)) (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))) (-1201 |#1|)) (T -788))
-((-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6 (-400 *6))) (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1201 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-630 *5 (-400 *5))) (-4 *5 (-1201 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-621 (-400 *5))) (-5 *1 (-788 *4 *5)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-400 *6))) (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1201 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-629 (-400 *5))) (-4 *5 (-1201 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-621 (-400 *5))) (-5 *1 (-788 *4 *5)))) (-2219 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-621 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *6 (-1201 *5)) (-5 *2 (-621 (-2 (|:| |poly| *6) (|:| -2650 (-630 *6 (-400 *6)))))) (-5 *1 (-788 *5 *6)) (-5 *3 (-630 *6 (-400 *6))))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1201 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-621 (-2 (|:| |frac| (-400 *6)) (|:| -2650 (-630 *6 (-400 *6)))))) (-5 *1 (-788 *5 *6)) (-5 *3 (-630 *6 (-400 *6))))) (-2849 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *7 (-400 *7))) (-5 *4 (-1 (-621 *6) *7)) (-5 *5 (-1 (-411 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *7 (-1201 *6)) (-5 *2 (-621 (-400 *7))) (-5 *1 (-788 *6 *7)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6 (-400 *6))) (-5 *4 (-1 (-621 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *6 (-1201 *5)) (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6)))) (-2849 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 (-400 *7))) (-5 *4 (-1 (-621 *6) *7)) (-5 *5 (-1 (-411 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *7 (-1201 *6)) (-5 *2 (-621 (-400 *7))) (-5 *1 (-788 *6 *7)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-400 *6))) (-5 *4 (-1 (-621 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *6 (-1201 *5)) (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6)))))
-(-10 -7 (-15 -2849 ((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (-15 -2849 ((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -2849 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (-15 -2849 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -2770 ((-621 (-2 (|:| |frac| (-400 |#2|)) (|:| -2650 (-630 |#2| (-400 |#2|))))) (-630 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2219 ((-621 (-2 (|:| |poly| |#2|) (|:| -2650 (-630 |#2| (-400 |#2|))))) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2849 ((-621 (-400 |#2|)) (-629 (-400 |#2|)))) (-15 -2849 ((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2849 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)))) (-15 -2849 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)))) |%noBranch|))
-((-4048 (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#1|))) (-665 |#2|) (-1225 |#1|)) 85) (((-2 (|:| A (-665 |#1|)) (|:| |eqs| (-621 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1225 |#1|)) (|:| -2650 |#2|) (|:| |rh| |#1|))))) (-665 |#1|) (-1225 |#1|)) 15)) (-4312 (((-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|)))) (-665 |#2|) (-1225 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3420 (-621 |#1|))) |#2| |#1|)) 92)) (-2808 (((-3 (-2 (|:| |particular| (-1225 |#1|)) (|:| -3420 (-665 |#1|))) "failed") (-665 |#1|) (-1225 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3420 (-621 |#1|))) "failed") |#2| |#1|)) 43)))
-(((-789 |#1| |#2|) (-10 -7 (-15 -4048 ((-2 (|:| A (-665 |#1|)) (|:| |eqs| (-621 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1225 |#1|)) (|:| -2650 |#2|) (|:| |rh| |#1|))))) (-665 |#1|) (-1225 |#1|))) (-15 -4048 ((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#1|))) (-665 |#2|) (-1225 |#1|))) (-15 -2808 ((-3 (-2 (|:| |particular| (-1225 |#1|)) (|:| -3420 (-665 |#1|))) "failed") (-665 |#1|) (-1225 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3420 (-621 |#1|))) "failed") |#2| |#1|))) (-15 -4312 ((-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|)))) (-665 |#2|) (-1225 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3420 (-621 |#1|))) |#2| |#1|)))) (-356) (-632 |#1|)) (T -789))
-((-4312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3420 (-621 *6))) *7 *6)) (-4 *6 (-356)) (-4 *7 (-632 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1225 *6) "failed")) (|:| -3420 (-621 (-1225 *6))))) (-5 *1 (-789 *6 *7)) (-5 *4 (-1225 *6)))) (-2808 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3420 (-621 *6))) "failed") *7 *6)) (-4 *6 (-356)) (-4 *7 (-632 *6)) (-5 *2 (-2 (|:| |particular| (-1225 *6)) (|:| -3420 (-665 *6)))) (-5 *1 (-789 *6 *7)) (-5 *3 (-665 *6)) (-5 *4 (-1225 *6)))) (-4048 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-632 *5)) (-5 *2 (-2 (|:| -1859 (-665 *6)) (|:| |vec| (-1225 *5)))) (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *6)) (-5 *4 (-1225 *5)))) (-4048 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| A (-665 *5)) (|:| |eqs| (-621 (-2 (|:| C (-665 *5)) (|:| |g| (-1225 *5)) (|:| -2650 *6) (|:| |rh| *5)))))) (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *5)) (-5 *4 (-1225 *5)) (-4 *6 (-632 *5)))))
-(-10 -7 (-15 -4048 ((-2 (|:| A (-665 |#1|)) (|:| |eqs| (-621 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1225 |#1|)) (|:| -2650 |#2|) (|:| |rh| |#1|))))) (-665 |#1|) (-1225 |#1|))) (-15 -4048 ((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#1|))) (-665 |#2|) (-1225 |#1|))) (-15 -2808 ((-3 (-2 (|:| |particular| (-1225 |#1|)) (|:| -3420 (-665 |#1|))) "failed") (-665 |#1|) (-1225 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3420 (-621 |#1|))) "failed") |#2| |#1|))) (-15 -4312 ((-2 (|:| |particular| (-3 (-1225 |#1|) "failed")) (|:| -3420 (-621 (-1225 |#1|)))) (-665 |#2|) (-1225 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3420 (-621 |#1|))) |#2| |#1|))))
-((-1704 (((-665 |#1|) (-621 |#1|) (-747)) 13) (((-665 |#1|) (-621 |#1|)) 14)) (-3406 (((-3 (-1225 |#1|) "failed") |#2| |#1| (-621 |#1|)) 34)) (-2216 (((-3 |#1| "failed") |#2| |#1| (-621 |#1|) (-1 |#1| |#1|)) 42)))
-(((-790 |#1| |#2|) (-10 -7 (-15 -1704 ((-665 |#1|) (-621 |#1|))) (-15 -1704 ((-665 |#1|) (-621 |#1|) (-747))) (-15 -3406 ((-3 (-1225 |#1|) "failed") |#2| |#1| (-621 |#1|))) (-15 -2216 ((-3 |#1| "failed") |#2| |#1| (-621 |#1|) (-1 |#1| |#1|)))) (-356) (-632 |#1|)) (T -790))
-((-2216 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-621 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) (-5 *1 (-790 *2 *3)) (-4 *3 (-632 *2)))) (-3406 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-621 *4)) (-4 *4 (-356)) (-5 *2 (-1225 *4)) (-5 *1 (-790 *4 *3)) (-4 *3 (-632 *4)))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-747)) (-4 *5 (-356)) (-5 *2 (-665 *5)) (-5 *1 (-790 *5 *6)) (-4 *6 (-632 *5)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4)) (-5 *1 (-790 *4 *5)) (-4 *5 (-632 *4)))))
-(-10 -7 (-15 -1704 ((-665 |#1|) (-621 |#1|))) (-15 -1704 ((-665 |#1|) (-621 |#1|) (-747))) (-15 -3406 ((-3 (-1225 |#1|) "failed") |#2| |#1| (-621 |#1|))) (-15 -2216 ((-3 |#1| "failed") |#2| |#1| (-621 |#1|) (-1 |#1| |#1|))))
-((-3833 (((-112) $ $) NIL (|has| |#2| (-1066)))) (-3166 (((-112) $) NIL (|has| |#2| (-130)))) (-3195 (($ (-892)) NIL (|has| |#2| (-1018)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-3100 (($ $ $) NIL (|has| |#2| (-769)))) (-2384 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1323 (((-112) $ (-747)) NIL)) (-3615 (((-747)) NIL (|has| |#2| (-361)))) (-3902 (((-549) $) NIL (|has| |#2| (-821)))) (-2253 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1066)))) (-2658 (((-549) $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066)))) (((-400 (-549)) $) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066)))) ((|#2| $) NIL (|has| |#2| (-1066)))) (-1698 (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) NIL (|has| |#2| (-1018)))) (-3976 (((-3 $ "failed") $) NIL (|has| |#2| (-703)))) (-3238 (($) NIL (|has| |#2| (-361)))) (-1878 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#2| $ (-549)) NIL)) (-3079 (((-112) $) NIL (|has| |#2| (-821)))) (-2990 (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3987 (((-112) $) NIL (|has| |#2| (-703)))) (-2847 (((-112) $) NIL (|has| |#2| (-821)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-1958 (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-1865 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#2| |#2|) $) NIL)) (-2723 (((-892) $) NIL (|has| |#2| (-361)))) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#2| (-1066)))) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3491 (($ (-892)) NIL (|has| |#2| (-361)))) (-3988 (((-1086) $) NIL (|has| |#2| (-1066)))) (-3645 ((|#2| $) NIL (|has| (-549) (-823)))) (-3158 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1738 (((-621 |#2|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) NIL)) (-4140 ((|#2| $ $) NIL (|has| |#2| (-1018)))) (-2168 (($ (-1225 |#2|)) NIL)) (-3128 (((-133)) NIL (|has| |#2| (-356)))) (-3455 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-3997 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-1225 |#2|) $) NIL) (($ (-549)) NIL (-1536 (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1066))) (|has| |#2| (-1018)))) (($ (-400 (-549))) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1066)))) (($ |#2|) NIL (|has| |#2| (-1066))) (((-834) $) NIL (|has| |#2| (-593 (-834))))) (-1723 (((-747)) NIL (|has| |#2| (-1018)))) (-2150 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3603 (($ $) NIL (|has| |#2| (-821)))) (-3275 (($) NIL (|has| |#2| (-130)) CONST)) (-3287 (($) NIL (|has| |#2| (-703)) CONST)) (-1700 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2448 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2424 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2388 (((-112) $ $) NIL (|has| |#2| (-1066)))) (-2436 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2411 (((-112) $ $) 11 (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2512 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2499 (($ $ $) NIL (|has| |#2| (-1018))) (($ $) NIL (|has| |#2| (-1018)))) (-2485 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-747)) NIL (|has| |#2| (-703))) (($ $ (-892)) NIL (|has| |#2| (-703)))) (* (($ (-549) $) NIL (|has| |#2| (-1018))) (($ $ $) NIL (|has| |#2| (-703))) (($ $ |#2|) NIL (|has| |#2| (-703))) (($ |#2| $) NIL (|has| |#2| (-703))) (($ (-747) $) NIL (|has| |#2| (-130))) (($ (-892) $) NIL (|has| |#2| (-25)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-791 |#1| |#2| |#3|) (-232 |#1| |#2|) (-747) (-769) (-1 (-112) (-1225 |#2|) (-1225 |#2|))) (T -791))
+((-2989 (*1 *2 *3 *4) (-12 (-4 *1 (-776)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)))))) (-2731 (*1 *2 *3) (-12 (-4 *1 (-776)) (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1006)))))
+(-13 (-1067) (-10 -7 (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2731 ((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2732 (((-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#3| |#2| (-1142)) 19)))
+(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2732 ((-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#3| |#2| (-1142)))) (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)) (-13 (-29 |#1|) (-1164) (-931)) (-634 |#2|)) (T -777))
+((-2732 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1142)) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-4 *4 (-13 (-29 *6) (-1164) (-931))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-618 *4)))) (-5 *1 (-777 *6 *4 *3)) (-4 *3 (-634 *4)))))
+(-10 -7 (-15 -2732 ((-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#3| |#2| (-1142))))
+((-3919 (((-3 |#2| #1="failed") |#2| (-113) (-286 |#2|) (-618 |#2|)) 28) (((-3 |#2| #1#) (-286 |#2|) (-113) (-286 |#2|) (-618 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#2| #2="failed") |#2| (-113) (-1142)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#2| #2#) (-286 |#2|) (-113) (-1142)) 18) (((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-618 |#2|) (-618 (-113)) (-1142)) 24) (((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-618 (-286 |#2|)) (-618 (-113)) (-1142)) 26) (((-3 (-618 (-1224 |#2|)) "failed") (-665 |#2|) (-1142)) 37) (((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-665 |#2|) (-1224 |#2|) (-1142)) 35)))
+(((-778 |#1| |#2|) (-10 -7 (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-665 |#2|) (-1224 |#2|) (-1142))) (-15 -3919 ((-3 (-618 (-1224 |#2|)) "failed") (-665 |#2|) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-618 (-286 |#2|)) (-618 (-113)) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-618 |#2|) (-618 (-113)) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#2| #1="failed") (-286 |#2|) (-113) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#2| #1#) |#2| (-113) (-1142))) (-15 -3919 ((-3 |#2| #2="failed") (-286 |#2|) (-113) (-286 |#2|) (-618 |#2|))) (-15 -3919 ((-3 |#2| #2#) |#2| (-113) (-286 |#2|) (-618 |#2|)))) (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)) (-13 (-29 |#1|) (-1164) (-931))) (T -778))
+((-3919 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-286 *2)) (-5 *5 (-618 *2)) (-4 *2 (-13 (-29 *6) (-1164) (-931))) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *1 (-778 *6 *2)))) (-3919 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-286 *2)) (-5 *4 (-113)) (-5 *5 (-618 *2)) (-4 *2 (-13 (-29 *6) (-1164) (-931))) (-5 *1 (-778 *6 *2)) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))))) (-3919 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1142)) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2123 (-618 *3))) *3 #1="failed")) (-5 *1 (-778 *6 *3)) (-4 *3 (-13 (-29 *6) (-1164) (-931))))) (-3919 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-931))) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2123 (-618 *7))) *7 #1#)) (-5 *1 (-778 *6 *7)))) (-3919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-618 *7)) (-5 *4 (-618 (-113))) (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-931))) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-2 (|:| |particular| (-1224 *7)) (|:| -2123 (-618 (-1224 *7))))) (-5 *1 (-778 *6 *7)))) (-3919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-618 (-286 *7))) (-5 *4 (-618 (-113))) (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-931))) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-2 (|:| |particular| (-1224 *7)) (|:| -2123 (-618 (-1224 *7))))) (-5 *1 (-778 *6 *7)))) (-3919 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-665 *6)) (-5 *4 (-1142)) (-4 *6 (-13 (-29 *5) (-1164) (-931))) (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-618 (-1224 *6))) (-5 *1 (-778 *5 *6)))) (-3919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-665 *7)) (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-931))) (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-2 (|:| |particular| (-1224 *7)) (|:| -2123 (-618 (-1224 *7))))) (-5 *1 (-778 *6 *7)) (-5 *4 (-1224 *7)))))
+(-10 -7 (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-665 |#2|) (-1224 |#2|) (-1142))) (-15 -3919 ((-3 (-618 (-1224 |#2|)) "failed") (-665 |#2|) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-618 (-286 |#2|)) (-618 (-113)) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#2|)) (|:| -2123 (-618 (-1224 |#2|)))) "failed") (-618 |#2|) (-618 (-113)) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#2| #1="failed") (-286 |#2|) (-113) (-1142))) (-15 -3919 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-618 |#2|))) |#2| #1#) |#2| (-113) (-1142))) (-15 -3919 ((-3 |#2| #2="failed") (-286 |#2|) (-113) (-286 |#2|) (-618 |#2|))) (-15 -3919 ((-3 |#2| #2#) |#2| (-113) (-286 |#2|) (-618 |#2|))))
+((-2733 (($) 9)) (-2737 (((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 31)) (-2735 (((-618 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 28)) (-3953 (($ (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))) 25)) (-2736 (($ (-618 (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) 23)) (-2734 (((-1230)) 12)))
+(((-779) (-10 -8 (-15 -2733 ($)) (-15 -2734 ((-1230))) (-15 -2735 ((-618 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2736 ($ (-618 (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))))) (-15 -3953 ($ (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-15 -2737 ((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -779))
+((-2737 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) (-5 *1 (-779)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))) (-5 *1 (-779)))) (-2736 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-5 *1 (-779)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-779)))) (-2734 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-779)))) (-2733 (*1 *1) (-5 *1 (-779))))
+(-10 -8 (-15 -2733 ($)) (-15 -2734 ((-1230))) (-15 -2735 ((-618 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2736 ($ (-618 (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))))) (-15 -3953 ($ (-2 (|:| -4203 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2184 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-15 -2737 ((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
+((-3807 ((|#2| |#2| (-1142)) 16)) (-2738 ((|#2| |#2| (-1142)) 51)) (-2739 (((-1 |#2| |#2|) (-1142)) 11)))
+(((-780 |#1| |#2|) (-10 -7 (-15 -3807 (|#2| |#2| (-1142))) (-15 -2738 (|#2| |#2| (-1142))) (-15 -2739 ((-1 |#2| |#2|) (-1142)))) (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)) (-13 (-29 |#1|) (-1164) (-931))) (T -780))
+((-2739 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-780 *4 *5)) (-4 *5 (-13 (-29 *4) (-1164) (-931))))) (-2738 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1164) (-931))))) (-3807 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1164) (-931))))))
+(-10 -7 (-15 -3807 (|#2| |#2| (-1142))) (-15 -2738 (|#2| |#2| (-1142))) (-15 -2739 ((-1 |#2| |#2|) (-1142))))
+((-3919 (((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-618 (-371)) (-371) (-371)) 116) (((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-618 (-371)) (-371)) 117) (((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-618 (-371)) (-371)) 119) (((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-371)) 120) (((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-371)) 121) (((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371))) 122) (((-1006) (-784) (-1030)) 108) (((-1006) (-784)) 109)) (-2989 (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-784) (-1030)) 75) (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-784)) 77)))
+(((-781) (-10 -7 (-15 -3919 ((-1006) (-784))) (-15 -3919 ((-1006) (-784) (-1030))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-618 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-618 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-618 (-371)) (-371) (-371))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-784))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-784) (-1030))))) (T -781))
+((-2989 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *1 (-781)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1224 (-307 *4))) (-5 *5 (-618 (-371))) (-5 *6 (-307 (-371))) (-5 *4 (-371)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1224 (-307 *4))) (-5 *5 (-618 (-371))) (-5 *6 (-307 (-371))) (-5 *4 (-371)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1224 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-618 *4)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1224 (-307 *4))) (-5 *5 (-618 (-371))) (-5 *6 (-307 (-371))) (-5 *4 (-371)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1224 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-618 *4)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1224 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-618 *4)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1006)) (-5 *1 (-781)))))
+(-10 -7 (-15 -3919 ((-1006) (-784))) (-15 -3919 ((-1006) (-784) (-1030))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-618 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-618 (-371)) (-371))) (-15 -3919 ((-1006) (-1224 (-307 (-371))) (-371) (-371) (-618 (-371)) (-307 (-371)) (-618 (-371)) (-371) (-371))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-784))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-784) (-1030))))
+((-2740 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2123 (-618 |#4|))) (-631 |#4|) |#4|) 35)))
+(((-782 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2740 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2123 (-618 |#4|))) (-631 |#4|) |#4|))) (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -782))
+((-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *4)) (-4 *4 (-335 *5 *6 *7)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-618 *4)))) (-5 *1 (-782 *5 *6 *7 *4)))))
+(-10 -7 (-15 -2740 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2123 (-618 |#4|))) (-631 |#4|) |#4|)))
+((-4084 (((-2 (|:| -3600 |#3|) (|:| |rh| (-618 (-400 |#2|)))) |#4| (-618 (-400 |#2|))) 52)) (-2742 (((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#4| |#2|) 60) (((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#4|) 59) (((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#3| |#2|) 20) (((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#3|) 21)) (-2743 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2741 ((|#2| |#3| (-618 (-400 |#2|))) 93) (((-3 |#2| "failed") |#3| (-400 |#2|)) 90)))
+(((-783 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2741 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -2741 (|#2| |#3| (-618 (-400 |#2|)))) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#3|)) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#3| |#2|)) (-15 -2743 (|#2| |#3| |#1|)) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#4|)) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#4| |#2|)) (-15 -2743 (|#2| |#4| |#1|)) (-15 -4084 ((-2 (|:| -3600 |#3|) (|:| |rh| (-618 (-400 |#2|)))) |#4| (-618 (-400 |#2|))))) (-13 (-356) (-145) (-1009 (-400 (-535)))) (-1200 |#1|) (-634 |#2|) (-634 (-400 |#2|))) (T -783))
+((-4084 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-2 (|:| -3600 *7) (|:| |rh| (-618 (-400 *6))))) (-5 *1 (-783 *5 *6 *7 *3)) (-5 *4 (-618 (-400 *6))) (-4 *7 (-634 *6)) (-4 *3 (-634 (-400 *6))))) (-2743 (*1 *2 *3 *4) (-12 (-4 *2 (-1200 *4)) (-5 *1 (-783 *4 *2 *5 *3)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-634 *2)) (-4 *3 (-634 (-400 *2))))) (-2742 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *4 (-1200 *5)) (-5 *2 (-618 (-2 (|:| -4115 *4) (|:| -3560 *4)))) (-5 *1 (-783 *5 *4 *6 *3)) (-4 *6 (-634 *4)) (-4 *3 (-634 (-400 *4))))) (-2742 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *2 (-618 (-2 (|:| -4115 *5) (|:| -3560 *5)))) (-5 *1 (-783 *4 *5 *6 *3)) (-4 *6 (-634 *5)) (-4 *3 (-634 (-400 *5))))) (-2743 (*1 *2 *3 *4) (-12 (-4 *2 (-1200 *4)) (-5 *1 (-783 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2)) (-4 *5 (-634 (-400 *2))))) (-2742 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *4 (-1200 *5)) (-5 *2 (-618 (-2 (|:| -4115 *4) (|:| -3560 *4)))) (-5 *1 (-783 *5 *4 *3 *6)) (-4 *3 (-634 *4)) (-4 *6 (-634 (-400 *4))))) (-2742 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *2 (-618 (-2 (|:| -4115 *5) (|:| -3560 *5)))) (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-634 (-400 *5))))) (-2741 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-400 *2))) (-4 *2 (-1200 *5)) (-5 *1 (-783 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2)) (-4 *6 (-634 (-400 *2))))) (-2741 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1200 *5)) (-5 *1 (-783 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2)) (-4 *6 (-634 *4)))))
+(-10 -7 (-15 -2741 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -2741 (|#2| |#3| (-618 (-400 |#2|)))) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#3|)) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#3| |#2|)) (-15 -2743 (|#2| |#3| |#1|)) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#4|)) (-15 -2742 ((-618 (-2 (|:| -4115 |#2|) (|:| -3560 |#2|))) |#4| |#2|)) (-15 -2743 (|#2| |#4| |#1|)) (-15 -4084 ((-2 (|:| -3600 |#3|) (|:| |rh| (-618 (-400 |#2|)))) |#4| (-618 (-400 |#2|)))))
+((-2887 (((-112) $ $) NIL)) (-3490 (((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $) 13)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 15) (($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 12)) (-3375 (((-112) $ $) NIL)))
+(((-784) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $))))) (T -784))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-784)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-784)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-784)))))
+(-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219))) (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $))))
+((-2751 (((-618 (-2 (|:| |frac| (-400 |#2|)) (|:| -3600 |#3|))) |#3| (-1 (-618 |#2|) |#2| (-1136 |#2|)) (-1 (-398 |#2|) |#2|)) 118)) (-2752 (((-618 (-2 (|:| |poly| |#2|) (|:| -3600 |#3|))) |#3| (-1 (-618 |#1|) |#2|)) 46)) (-2745 (((-618 (-2 (|:| |deg| (-747)) (|:| -3600 |#2|))) |#3|) 95)) (-2744 ((|#2| |#3|) 37)) (-2746 (((-618 (-2 (|:| -4294 |#1|) (|:| -3600 |#3|))) |#3| (-1 (-618 |#1|) |#2|)) 82)) (-2747 ((|#3| |#3| (-400 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
+(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2744 (|#2| |#3|)) (-15 -2745 ((-618 (-2 (|:| |deg| (-747)) (|:| -3600 |#2|))) |#3|)) (-15 -2746 ((-618 (-2 (|:| -4294 |#1|) (|:| -3600 |#3|))) |#3| (-1 (-618 |#1|) |#2|))) (-15 -2752 ((-618 (-2 (|:| |poly| |#2|) (|:| -3600 |#3|))) |#3| (-1 (-618 |#1|) |#2|))) (-15 -2751 ((-618 (-2 (|:| |frac| (-400 |#2|)) (|:| -3600 |#3|))) |#3| (-1 (-618 |#2|) |#2| (-1136 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2747 (|#3| |#3| |#2|)) (-15 -2747 (|#3| |#3| (-400 |#2|)))) (-13 (-356) (-145) (-1009 (-400 (-535)))) (-1200 |#1|) (-634 |#2|) (-634 (-400 |#2|))) (T -785))
+((-2747 (*1 *2 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *1 (-785 *4 *5 *2 *6)) (-4 *2 (-634 *5)) (-4 *6 (-634 *3)))) (-2747 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-1200 *4)) (-5 *1 (-785 *4 *3 *2 *5)) (-4 *2 (-634 *3)) (-4 *5 (-634 (-400 *3))))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-618 *7) *7 (-1136 *7))) (-5 *5 (-1 (-398 *7) *7)) (-4 *7 (-1200 *6)) (-4 *6 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-5 *2 (-618 (-2 (|:| |frac| (-400 *7)) (|:| -3600 *3)))) (-5 *1 (-785 *6 *7 *3 *8)) (-4 *3 (-634 *7)) (-4 *8 (-634 (-400 *7))))) (-2752 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-618 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-2 (|:| |poly| *6) (|:| -3600 *3)))) (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-634 *6)) (-4 *7 (-634 (-400 *6))))) (-2746 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-618 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-2 (|:| -4294 *5) (|:| -3600 *3)))) (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-634 *6)) (-4 *7 (-634 (-400 *6))))) (-2745 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4)) (-5 *2 (-618 (-2 (|:| |deg| (-747)) (|:| -3600 *5)))) (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-634 (-400 *5))))) (-2744 (*1 *2 *3) (-12 (-4 *2 (-1200 *4)) (-5 *1 (-785 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2)) (-4 *5 (-634 (-400 *2))))))
+(-10 -7 (-15 -2744 (|#2| |#3|)) (-15 -2745 ((-618 (-2 (|:| |deg| (-747)) (|:| -3600 |#2|))) |#3|)) (-15 -2746 ((-618 (-2 (|:| -4294 |#1|) (|:| -3600 |#3|))) |#3| (-1 (-618 |#1|) |#2|))) (-15 -2752 ((-618 (-2 (|:| |poly| |#2|) (|:| -3600 |#3|))) |#3| (-1 (-618 |#1|) |#2|))) (-15 -2751 ((-618 (-2 (|:| |frac| (-400 |#2|)) (|:| -3600 |#3|))) |#3| (-1 (-618 |#2|) |#2| (-1136 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2747 (|#3| |#3| |#2|)) (-15 -2747 (|#3| |#3| (-400 |#2|))))
+((-2748 (((-2 (|:| -2123 (-618 (-400 |#2|))) (|:| -1695 (-665 |#1|))) (-632 |#2| (-400 |#2|)) (-618 (-400 |#2|))) 121) (((-2 (|:| |particular| (-3 (-400 |#2|) #1="failed")) (|:| -2123 (-618 (-400 |#2|)))) (-632 |#2| (-400 |#2|)) (-400 |#2|)) 120) (((-2 (|:| -2123 (-618 (-400 |#2|))) (|:| -1695 (-665 |#1|))) (-631 (-400 |#2|)) (-618 (-400 |#2|))) 115) (((-2 (|:| |particular| (-3 (-400 |#2|) #1#)) (|:| -2123 (-618 (-400 |#2|)))) (-631 (-400 |#2|)) (-400 |#2|)) 113)) (-2749 ((|#2| (-632 |#2| (-400 |#2|))) 80) ((|#2| (-631 (-400 |#2|))) 83)))
+(((-786 |#1| |#2|) (-10 -7 (-15 -2748 ((-2 (|:| |particular| (-3 (-400 |#2|) #1="failed")) (|:| -2123 (-618 (-400 |#2|)))) (-631 (-400 |#2|)) (-400 |#2|))) (-15 -2748 ((-2 (|:| -2123 (-618 (-400 |#2|))) (|:| -1695 (-665 |#1|))) (-631 (-400 |#2|)) (-618 (-400 |#2|)))) (-15 -2748 ((-2 (|:| |particular| (-3 (-400 |#2|) #1#)) (|:| -2123 (-618 (-400 |#2|)))) (-632 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -2748 ((-2 (|:| -2123 (-618 (-400 |#2|))) (|:| -1695 (-665 |#1|))) (-632 |#2| (-400 |#2|)) (-618 (-400 |#2|)))) (-15 -2749 (|#2| (-631 (-400 |#2|)))) (-15 -2749 (|#2| (-632 |#2| (-400 |#2|))))) (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))) (-1200 |#1|)) (T -786))
+((-2749 (*1 *2 *3) (-12 (-5 *3 (-632 *2 (-400 *2))) (-4 *2 (-1200 *4)) (-5 *1 (-786 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-631 (-400 *2))) (-4 *2 (-1200 *4)) (-5 *1 (-786 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))))) (-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-2 (|:| -2123 (-618 (-400 *6))) (|:| -1695 (-665 *5)))) (-5 *1 (-786 *5 *6)) (-5 *4 (-618 (-400 *6))))) (-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-618 *4)))) (-5 *1 (-786 *5 *6)))) (-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-2 (|:| -2123 (-618 (-400 *6))) (|:| -1695 (-665 *5)))) (-5 *1 (-786 *5 *6)) (-5 *4 (-618 (-400 *6))))) (-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-618 *4)))) (-5 *1 (-786 *5 *6)))))
+(-10 -7 (-15 -2748 ((-2 (|:| |particular| (-3 (-400 |#2|) #1="failed")) (|:| -2123 (-618 (-400 |#2|)))) (-631 (-400 |#2|)) (-400 |#2|))) (-15 -2748 ((-2 (|:| -2123 (-618 (-400 |#2|))) (|:| -1695 (-665 |#1|))) (-631 (-400 |#2|)) (-618 (-400 |#2|)))) (-15 -2748 ((-2 (|:| |particular| (-3 (-400 |#2|) #1#)) (|:| -2123 (-618 (-400 |#2|)))) (-632 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -2748 ((-2 (|:| -2123 (-618 (-400 |#2|))) (|:| -1695 (-665 |#1|))) (-632 |#2| (-400 |#2|)) (-618 (-400 |#2|)))) (-15 -2749 (|#2| (-631 (-400 |#2|)))) (-15 -2749 (|#2| (-632 |#2| (-400 |#2|)))))
+((-2750 (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#1|))) |#5| |#4|) 48)))
+(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2750 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#1|))) |#5| |#4|))) (-356) (-634 |#1|) (-1200 |#1|) (-701 |#1| |#3|) (-634 |#4|)) (T -787))
+((-2750 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *7 (-1200 *5)) (-4 *4 (-701 *5 *7)) (-5 *2 (-2 (|:| -1695 (-665 *6)) (|:| |vec| (-1224 *5)))) (-5 *1 (-787 *5 *6 *7 *4 *3)) (-4 *6 (-634 *5)) (-4 *3 (-634 *4)))))
+(-10 -7 (-15 -2750 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#1|))) |#5| |#4|)))
+((-2751 (((-618 (-2 (|:| |frac| (-400 |#2|)) (|:| -3600 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)) 47)) (-2753 (((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|))) 138 (|has| |#1| (-27))) (((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-398 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-618 (-400 |#2|)) (-631 (-400 |#2|))) 140 (|has| |#1| (-27))) (((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|) (-1 (-398 |#2|) |#2|)) 38) (((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|)) 39) (((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|) (-1 (-398 |#2|) |#2|)) 36) (((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|)) 37)) (-2752 (((-618 (-2 (|:| |poly| |#2|) (|:| -3600 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|)) 83)))
+(((-788 |#1| |#2|) (-10 -7 (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2751 ((-618 (-2 (|:| |frac| (-400 |#2|)) (|:| -3600 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2752 ((-618 (-2 (|:| |poly| |#2|) (|:| -3600 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)))) (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)))) |%noBranch|)) (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))) (-1200 |#1|)) (T -788))
+((-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-632 *5 (-400 *5))) (-4 *5 (-1200 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-618 (-400 *5))) (-5 *1 (-788 *4 *5)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-631 (-400 *5))) (-4 *5 (-1200 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-618 (-400 *5))) (-5 *1 (-788 *4 *5)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-618 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-2 (|:| |poly| *6) (|:| -3600 (-632 *6 (-400 *6)))))) (-5 *1 (-788 *5 *6)) (-5 *3 (-632 *6 (-400 *6))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-5 *2 (-618 (-2 (|:| |frac| (-400 *6)) (|:| -3600 (-632 *6 (-400 *6)))))) (-5 *1 (-788 *5 *6)) (-5 *3 (-632 *6 (-400 *6))))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *7 (-400 *7))) (-5 *4 (-1 (-618 *6) *7)) (-5 *5 (-1 (-398 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *7 (-1200 *6)) (-5 *2 (-618 (-400 *7))) (-5 *1 (-788 *6 *7)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-618 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-400 *7))) (-5 *4 (-1 (-618 *6) *7)) (-5 *5 (-1 (-398 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *7 (-1200 *6)) (-5 *2 (-618 (-400 *7))) (-5 *1 (-788 *6 *7)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-618 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5)) (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6)))))
+(-10 -7 (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-618 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2751 ((-618 (-2 (|:| |frac| (-400 |#2|)) (|:| -3600 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2752 ((-618 (-2 (|:| |poly| |#2|) (|:| -3600 (-632 |#2| (-400 |#2|))))) (-632 |#2| (-400 |#2|)) (-1 (-618 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)))) (-15 -2753 ((-618 (-400 |#2|)) (-631 (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)))) (-15 -2753 ((-618 (-400 |#2|)) (-632 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)))) |%noBranch|))
+((-2754 (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#1|))) (-665 |#2|) (-1224 |#1|)) 85) (((-2 (|:| A (-665 |#1|)) (|:| |eqs| (-618 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1224 |#1|)) (|:| -3600 |#2|) (|:| |rh| |#1|))))) (-665 |#1|) (-1224 |#1|)) 15)) (-2755 (((-2 (|:| |particular| (-3 (-1224 |#1|) "failed")) (|:| -2123 (-618 (-1224 |#1|)))) (-665 |#2|) (-1224 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2123 (-618 |#1|))) |#2| |#1|)) 92)) (-3919 (((-3 (-2 (|:| |particular| (-1224 |#1|)) (|:| -2123 (-665 |#1|))) "failed") (-665 |#1|) (-1224 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) "failed") |#2| |#1|)) 43)))
+(((-789 |#1| |#2|) (-10 -7 (-15 -2754 ((-2 (|:| A (-665 |#1|)) (|:| |eqs| (-618 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1224 |#1|)) (|:| -3600 |#2|) (|:| |rh| |#1|))))) (-665 |#1|) (-1224 |#1|))) (-15 -2754 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#1|))) (-665 |#2|) (-1224 |#1|))) (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#1|)) (|:| -2123 (-665 |#1|))) "failed") (-665 |#1|) (-1224 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) "failed") |#2| |#1|))) (-15 -2755 ((-2 (|:| |particular| (-3 (-1224 |#1|) "failed")) (|:| -2123 (-618 (-1224 |#1|)))) (-665 |#2|) (-1224 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2123 (-618 |#1|))) |#2| |#1|)))) (-356) (-634 |#1|)) (T -789))
+((-2755 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2123 (-618 *6))) *7 *6)) (-4 *6 (-356)) (-4 *7 (-634 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1224 *6) "failed")) (|:| -2123 (-618 (-1224 *6))))) (-5 *1 (-789 *6 *7)) (-5 *4 (-1224 *6)))) (-3919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2123 (-618 *6))) "failed") *7 *6)) (-4 *6 (-356)) (-4 *7 (-634 *6)) (-5 *2 (-2 (|:| |particular| (-1224 *6)) (|:| -2123 (-665 *6)))) (-5 *1 (-789 *6 *7)) (-5 *3 (-665 *6)) (-5 *4 (-1224 *6)))) (-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-634 *5)) (-5 *2 (-2 (|:| -1695 (-665 *6)) (|:| |vec| (-1224 *5)))) (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *6)) (-5 *4 (-1224 *5)))) (-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| A (-665 *5)) (|:| |eqs| (-618 (-2 (|:| C (-665 *5)) (|:| |g| (-1224 *5)) (|:| -3600 *6) (|:| |rh| *5)))))) (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)) (-4 *6 (-634 *5)))))
+(-10 -7 (-15 -2754 ((-2 (|:| A (-665 |#1|)) (|:| |eqs| (-618 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1224 |#1|)) (|:| -3600 |#2|) (|:| |rh| |#1|))))) (-665 |#1|) (-1224 |#1|))) (-15 -2754 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#1|))) (-665 |#2|) (-1224 |#1|))) (-15 -3919 ((-3 (-2 (|:| |particular| (-1224 |#1|)) (|:| -2123 (-665 |#1|))) "failed") (-665 |#1|) (-1224 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-618 |#1|))) "failed") |#2| |#1|))) (-15 -2755 ((-2 (|:| |particular| (-3 (-1224 |#1|) "failed")) (|:| -2123 (-618 (-1224 |#1|)))) (-665 |#2|) (-1224 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2123 (-618 |#1|))) |#2| |#1|))))
+((-2756 (((-665 |#1|) (-618 |#1|) (-747)) 13) (((-665 |#1|) (-618 |#1|)) 14)) (-2757 (((-3 (-1224 |#1|) "failed") |#2| |#1| (-618 |#1|)) 34)) (-3682 (((-3 |#1| "failed") |#2| |#1| (-618 |#1|) (-1 |#1| |#1|)) 42)))
+(((-790 |#1| |#2|) (-10 -7 (-15 -2756 ((-665 |#1|) (-618 |#1|))) (-15 -2756 ((-665 |#1|) (-618 |#1|) (-747))) (-15 -2757 ((-3 (-1224 |#1|) "failed") |#2| |#1| (-618 |#1|))) (-15 -3682 ((-3 |#1| "failed") |#2| |#1| (-618 |#1|) (-1 |#1| |#1|)))) (-356) (-634 |#1|)) (T -790))
+((-3682 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-618 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) (-5 *1 (-790 *2 *3)) (-4 *3 (-634 *2)))) (-2757 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-618 *4)) (-4 *4 (-356)) (-5 *2 (-1224 *4)) (-5 *1 (-790 *4 *3)) (-4 *3 (-634 *4)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *5)) (-5 *4 (-747)) (-4 *5 (-356)) (-5 *2 (-665 *5)) (-5 *1 (-790 *5 *6)) (-4 *6 (-634 *5)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4)) (-5 *1 (-790 *4 *5)) (-4 *5 (-634 *4)))))
+(-10 -7 (-15 -2756 ((-665 |#1|) (-618 |#1|))) (-15 -2756 ((-665 |#1|) (-618 |#1|) (-747))) (-15 -2757 ((-3 (-1224 |#1|) "failed") |#2| |#1| (-618 |#1|))) (-15 -3682 ((-3 |#1| "failed") |#2| |#1| (-618 |#1|) (-1 |#1| |#1|))))
+((-2887 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-3522 (((-112) $) NIL (|has| |#2| (-130)))) (-4053 (($ (-890)) NIL (|has| |#2| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-2724 (($ $ $) NIL (|has| |#2| (-769)))) (-1363 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| |#2| (-361)))) (-3969 (((-535) $) NIL (|has| |#2| (-821)))) (-4130 ((|#2| $ (-535) |#2|) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-3 (-400 (-535)) #1#) $) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1067)))) (-3490 (((-535) $) NIL (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067)))) (((-400 (-535)) $) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) ((|#2| $) NIL (|has| |#2| (-1067)))) (-2353 (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#2| (-617 (-535))) (|has| |#2| (-1018)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) NIL (|has| |#2| (-1018)))) (-3804 (((-3 $ "failed") $) NIL (|has| |#2| (-703)))) (-3315 (($) NIL (|has| |#2| (-361)))) (-1632 ((|#2| $ (-535) |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ (-535)) NIL)) (-3520 (((-112) $) NIL (|has| |#2| (-821)))) (-2063 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL (|has| |#2| (-703)))) (-3521 (((-112) $) NIL (|has| |#2| (-821)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2502 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#2| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#2| (-1067)))) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-2483 (($ (-890)) NIL (|has| |#2| (-361)))) (-3577 (((-1086) $) NIL (|has| |#2| (-1067)))) (-4143 ((|#2| $) NIL (|has| (-535) (-823)))) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ (-535) |#2|) NIL) ((|#2| $ (-535)) NIL)) (-4179 ((|#2| $ $) NIL (|has| |#2| (-1018)))) (-1520 (($ (-1224 |#2|)) NIL)) (-4254 (((-133)) NIL (|has| |#2| (-356)))) (-4153 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2064 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1224 |#2|) $) NIL) (($ (-535)) NIL (-3874 (-12 (|has| |#2| (-1009 (-535))) (|has| |#2| (-1067))) (|has| |#2| (-1018)))) (($ (-400 (-535))) NIL (-12 (|has| |#2| (-1009 (-400 (-535)))) (|has| |#2| (-1067)))) (($ |#2|) NIL (|has| |#2| (-1067))) (((-835) $) NIL (|has| |#2| (-593 (-835))))) (-3444 (((-747)) NIL (|has| |#2| (-1018)))) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3725 (($ $) NIL (|has| |#2| (-821)))) (-2979 (($) NIL (|has| |#2| (-130)) CONST)) (-2985 (($) NIL (|has| |#2| (-703)) CONST)) (-2990 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#2| (-871 (-1142))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2885 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-3375 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-3005 (((-112) $ $) NIL (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-3006 (((-112) $ $) 11 (-3874 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $ $) NIL (|has| |#2| (-1018))) (($ $) NIL (|has| |#2| (-1018)))) (-4182 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-747)) NIL (|has| |#2| (-703))) (($ $ (-890)) NIL (|has| |#2| (-703)))) (* (($ (-535) $) NIL (|has| |#2| (-1018))) (($ $ $) NIL (|has| |#2| (-703))) (($ $ |#2|) NIL (|has| |#2| (-703))) (($ |#2| $) NIL (|has| |#2| (-703))) (($ (-747) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-791 |#1| |#2| |#3|) (-232 |#1| |#2|) (-747) (-769) (-1 (-112) (-1224 |#2|) (-1224 |#2|))) (T -791))
NIL
(-232 |#1| |#2|)
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3830 (((-621 (-747)) $) NIL) (((-621 (-747)) $ (-1142)) NIL)) (-1996 (((-747) $) NIL) (((-747) $ (-1142)) NIL)) (-2271 (((-621 (-794 (-1142))) $) NIL)) (-2082 (((-1138 $) $ (-794 (-1142))) NIL) (((-1138 |#1|) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 (-794 (-1142)))) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-1912 (($ $) NIL (|has| |#1| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-3851 (($ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-794 (-1142)) "failed") $) NIL) (((-3 (-1142) "failed") $) NIL) (((-3 (-1091 |#1| (-1142)) "failed") $) NIL)) (-2658 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-794 (-1142)) $) NIL) (((-1142) $) NIL) (((-1091 |#1| (-1142)) $) NIL)) (-2252 (($ $ $ (-794 (-1142))) NIL (|has| |#1| (-170)))) (-2069 (($ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-444))) (($ $ (-794 (-1142))) NIL (|has| |#1| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#1| (-880)))) (-3744 (($ $ |#1| (-521 (-794 (-1142))) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-794 (-1142)) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-794 (-1142)) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2078 (((-747) $ (-1142)) NIL) (((-747) $) NIL)) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-2258 (($ (-1138 |#1|) (-794 (-1142))) NIL) (($ (-1138 $) (-794 (-1142))) NIL)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-521 (-794 (-1142)))) NIL) (($ $ (-794 (-1142)) (-747)) NIL) (($ $ (-621 (-794 (-1142))) (-621 (-747))) NIL)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ (-794 (-1142))) NIL)) (-2856 (((-521 (-794 (-1142))) $) NIL) (((-747) $ (-794 (-1142))) NIL) (((-621 (-747)) $ (-621 (-794 (-1142)))) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-4058 (($ (-1 (-521 (-794 (-1142))) (-521 (-794 (-1142)))) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-2963 (((-1 $ (-747)) (-1142)) NIL) (((-1 $ (-747)) $) NIL (|has| |#1| (-227)))) (-1790 (((-3 (-794 (-1142)) "failed") $) NIL)) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-4051 (((-794 (-1142)) $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2677 (((-1124) $) NIL)) (-2747 (((-112) $) NIL)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| (-794 (-1142))) (|:| -3577 (-747))) "failed") $) NIL)) (-2257 (($ $) NIL)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) NIL)) (-2012 ((|#1| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-880)))) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-794 (-1142)) |#1|) NIL) (($ $ (-621 (-794 (-1142))) (-621 |#1|)) NIL) (($ $ (-794 (-1142)) $) NIL) (($ $ (-621 (-794 (-1142))) (-621 $)) NIL) (($ $ (-1142) $) NIL (|has| |#1| (-227))) (($ $ (-621 (-1142)) (-621 $)) NIL (|has| |#1| (-227))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-227))) (($ $ (-621 (-1142)) (-621 |#1|)) NIL (|has| |#1| (-227)))) (-3086 (($ $ (-794 (-1142))) NIL (|has| |#1| (-170)))) (-3455 (($ $ (-794 (-1142))) NIL) (($ $ (-621 (-794 (-1142)))) NIL) (($ $ (-794 (-1142)) (-747)) NIL) (($ $ (-621 (-794 (-1142))) (-621 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1727 (((-621 (-1142)) $) NIL)) (-3068 (((-521 (-794 (-1142))) $) NIL) (((-747) $ (-794 (-1142))) NIL) (((-621 (-747)) $ (-621 (-794 (-1142)))) NIL) (((-747) $ (-1142)) NIL)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| (-794 (-1142)) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-794 (-1142)) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-794 (-1142)) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-1931 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-794 (-1142))) NIL (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-794 (-1142))) NIL) (($ (-1142)) NIL) (($ (-1091 |#1| (-1142))) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-521 (-794 (-1142)))) NIL) (($ $ (-794 (-1142)) (-747)) NIL) (($ $ (-621 (-794 (-1142))) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-794 (-1142))) NIL) (($ $ (-621 (-794 (-1142)))) NIL) (($ $ (-794 (-1142)) (-747)) NIL) (($ $ (-621 (-794 (-1142))) (-621 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1538 (((-618 (-747)) $) NIL) (((-618 (-747)) $ (-1142)) NIL)) (-1572 (((-747) $) NIL) (((-747) $ (-1142)) NIL)) (-3405 (((-618 (-794 (-1142))) $) NIL)) (-3407 (((-1136 $) $ (-794 (-1142))) NIL) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-794 (-1142)))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-1534 (($ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-794 (-1142)) #2#) $) NIL) (((-3 (-1142) #2#) $) NIL) (((-3 (-1091 |#1| (-1142)) #2#) $) NIL)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-794 (-1142)) $) NIL) (((-1142) $) NIL) (((-1091 |#1| (-1142)) $) NIL)) (-4099 (($ $ $ (-794 (-1142))) NIL (|has| |#1| (-170)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ (-794 (-1142))) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-521 (-794 (-1142))) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-794 (-1142)) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-794 (-1142)) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-4114 (((-747) $ (-1142)) NIL) (((-747) $) NIL)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#1|) (-794 (-1142))) NIL) (($ (-1136 $) (-794 (-1142))) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-521 (-794 (-1142)))) NIL) (($ $ (-794 (-1142)) (-747)) NIL) (($ $ (-618 (-794 (-1142))) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-794 (-1142))) NIL)) (-3141 (((-521 (-794 (-1142))) $) NIL) (((-747) $ (-794 (-1142))) NIL) (((-618 (-747)) $ (-618 (-794 (-1142)))) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-521 (-794 (-1142))) (-521 (-794 (-1142)))) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-1 $ (-747)) (-1142)) NIL) (((-1 $ (-747)) $) NIL (|has| |#1| (-227)))) (-3406 (((-3 (-794 (-1142)) #3="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-1536 (((-794 (-1142)) $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-1537 (((-112) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-794 (-1142))) (|:| -2484 (-747))) #3#) $) NIL)) (-1535 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-794 (-1142)) |#1|) NIL) (($ $ (-618 (-794 (-1142))) (-618 |#1|)) NIL) (($ $ (-794 (-1142)) $) NIL) (($ $ (-618 (-794 (-1142))) (-618 $)) NIL) (($ $ (-1142) $) NIL (|has| |#1| (-227))) (($ $ (-618 (-1142)) (-618 $)) NIL (|has| |#1| (-227))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-227))) (($ $ (-618 (-1142)) (-618 |#1|)) NIL (|has| |#1| (-227)))) (-4100 (($ $ (-794 (-1142))) NIL (|has| |#1| (-170)))) (-4153 (($ $ (-794 (-1142))) NIL) (($ $ (-618 (-794 (-1142)))) NIL) (($ $ (-794 (-1142)) (-747)) NIL) (($ $ (-618 (-794 (-1142))) (-618 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-618 (-1142)) $) NIL)) (-4290 (((-521 (-794 (-1142))) $) NIL) (((-747) $ (-794 (-1142))) NIL) (((-618 (-747)) $ (-618 (-794 (-1142)))) NIL) (((-747) $ (-1142)) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-794 (-1142)) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-794 (-1142)) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-794 (-1142)) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-794 (-1142))) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-794 (-1142))) NIL) (($ (-1142)) NIL) (($ (-1091 |#1| (-1142))) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-521 (-794 (-1142)))) NIL) (($ $ (-794 (-1142)) (-747)) NIL) (($ $ (-618 (-794 (-1142))) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-794 (-1142))) NIL) (($ $ (-618 (-794 (-1142)))) NIL) (($ $ (-794 (-1142)) (-747)) NIL) (($ $ (-618 (-794 (-1142))) (-618 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-792 |#1|) (-13 (-246 |#1| (-1142) (-794 (-1142)) (-521 (-794 (-1142)))) (-1009 (-1091 |#1| (-1142)))) (-1018)) (T -792))
NIL
(-13 (-246 |#1| (-1142) (-794 (-1142)) (-521 (-794 (-1142)))) (-1009 (-1091 |#1| (-1142))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-356)))) (-2408 (($ $) NIL (|has| |#2| (-356)))) (-2477 (((-112) $) NIL (|has| |#2| (-356)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL (|has| |#2| (-356)))) (-3513 (((-411 $) $) NIL (|has| |#2| (-356)))) (-2647 (((-112) $ $) NIL (|has| |#2| (-356)))) (-1705 (($) NIL T CONST)) (-2094 (($ $ $) NIL (|has| |#2| (-356)))) (-3976 (((-3 $ "failed") $) NIL)) (-2066 (($ $ $) NIL (|has| |#2| (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#2| (-356)))) (-2471 (((-112) $) NIL (|has| |#2| (-356)))) (-3987 (((-112) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#2| (-356)))) (-3696 (($ (-621 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 20 (|has| |#2| (-356)))) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#2| (-356)))) (-3726 (($ (-621 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-2120 (((-411 $) $) NIL (|has| |#2| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#2| (-356)))) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#2| (-356)))) (-4091 (((-747) $) NIL (|has| |#2| (-356)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#2| (-356)))) (-3455 (($ $ (-747)) NIL) (($ $) 13)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-400 (-549))) NIL (|has| |#2| (-356))) (($ $) NIL (|has| |#2| (-356)))) (-1723 (((-747)) NIL)) (-4053 (((-112) $ $) NIL (|has| |#2| (-356)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-747)) NIL) (($ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) 15 (|has| |#2| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-892)) NIL) (($ $ (-549)) 18 (|has| |#2| (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-400 (-549)) $) NIL (|has| |#2| (-356))) (($ $ (-400 (-549))) NIL (|has| |#2| (-356)))))
-(((-793 |#1| |#2| |#3|) (-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -3845 ($ |#2|)) (-15 -3845 (|#2| $)))) (-1066) (-871 |#1|) |#1|) (T -793))
-((-3845 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-14 *4 *3) (-5 *1 (-793 *3 *2 *4)) (-4 *2 (-871 *3)))) (-3845 (*1 *2 *1) (-12 (-4 *2 (-871 *3)) (-5 *1 (-793 *3 *2 *4)) (-4 *3 (-1066)) (-14 *4 *3))))
-(-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -3845 ($ |#2|)) (-15 -3845 (|#2| $))))
-((-3833 (((-112) $ $) NIL)) (-1996 (((-747) $) NIL)) (-3010 ((|#1| $) 10)) (-2713 (((-3 |#1| "failed") $) NIL)) (-2658 ((|#1| $) NIL)) (-2078 (((-747) $) 11)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2963 (($ |#1| (-747)) 9)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3455 (($ $) NIL) (($ $ (-747)) NIL)) (-3845 (((-834) $) NIL) (($ |#1|) NIL)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) NIL)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-356)))) (-2171 (($ $) NIL (|has| |#2| (-356)))) (-2169 (((-112) $) NIL (|has| |#2| (-356)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#2| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#2| (-356)))) (-1700 (((-112) $ $) NIL (|has| |#2| (-356)))) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL (|has| |#2| (-356)))) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL (|has| |#2| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#2| (-356)))) (-4069 (((-112) $) NIL (|has| |#2| (-356)))) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL (|has| |#2| (-356)))) (-2008 (($ (-618 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 20 (|has| |#2| (-356)))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#2| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-4075 (((-398 $) $) NIL (|has| |#2| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#2| (-356)))) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#2| (-356)))) (-1699 (((-747) $) NIL (|has| |#2| (-356)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-356)))) (-4153 (($ $ (-747)) NIL) (($ $) 13)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-400 (-535))) NIL (|has| |#2| (-356))) (($ $) NIL (|has| |#2| (-356)))) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL (|has| |#2| (-356)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) 15 (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-890)) NIL) (($ $ (-535)) 18 (|has| |#2| (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-400 (-535)) $) NIL (|has| |#2| (-356))) (($ $ (-400 (-535))) NIL (|has| |#2| (-356)))))
+(((-793 |#1| |#2| |#3|) (-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -4300 ($ |#2|)) (-15 -4300 (|#2| $)))) (-1067) (-871 |#1|) |#1|) (T -793))
+((-4300 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-14 *4 *3) (-5 *1 (-793 *3 *2 *4)) (-4 *2 (-871 *3)))) (-4300 (*1 *2 *1) (-12 (-4 *2 (-871 *3)) (-5 *1 (-793 *3 *2 *4)) (-4 *3 (-1067)) (-14 *4 *3))))
+(-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -4300 ($ |#2|)) (-15 -4300 (|#2| $))))
+((-2887 (((-112) $ $) NIL)) (-1572 (((-747) $) NIL)) (-4174 ((|#1| $) 10)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-4114 (((-747) $) 11)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-1573 (($ |#1| (-747)) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4153 (($ $) NIL) (($ $ (-747)) NIL)) (-4300 (((-835) $) NIL) (($ |#1|) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)))
(((-794 |#1|) (-259 |#1|) (-823)) (T -794))
NIL
(-259 |#1|)
-((-3833 (((-112) $ $) NIL)) (-3303 (((-621 |#1|) $) 29)) (-3615 (((-747) $) NIL)) (-1705 (($) NIL T CONST)) (-3537 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2713 (((-3 |#1| "failed") $) NIL)) (-2658 ((|#1| $) NIL)) (-3655 (($ $) 31)) (-3976 (((-3 $ "failed") $) NIL)) (-4076 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3987 (((-112) $) NIL)) (-3570 ((|#1| $ (-549)) NIL)) (-4162 (((-747) $ (-549)) NIL)) (-3276 (($ $) 36)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-1656 (((-112) $ $) 34)) (-4209 (((-747) $) 25)) (-2677 (((-1124) $) NIL)) (-2455 (($ $ $) NIL)) (-1941 (($ $ $) NIL)) (-3988 (((-1086) $) NIL)) (-3645 ((|#1| $) 30)) (-2886 (((-621 (-2 (|:| |gen| |#1|) (|:| -2718 (-747)))) $) NIL)) (-2055 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3845 (((-834) $) NIL) (($ |#1|) NIL)) (-3287 (($) 15 T CONST)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 35)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ |#1| (-747)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-795 |#1|) (-13 (-819) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -3645 (|#1| $)) (-15 -3655 ($ $)) (-15 -3276 ($ $)) (-15 -1656 ((-112) $ $)) (-15 -1941 ($ $ $)) (-15 -2455 ($ $ $)) (-15 -3434 ((-3 $ "failed") $ $)) (-15 -3537 ((-3 $ "failed") $ $)) (-15 -3434 ((-3 $ "failed") $ |#1|)) (-15 -3537 ((-3 $ "failed") $ |#1|)) (-15 -2055 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4076 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3615 ((-747) $)) (-15 -4162 ((-747) $ (-549))) (-15 -3570 (|#1| $ (-549))) (-15 -2886 ((-621 (-2 (|:| |gen| |#1|) (|:| -2718 (-747)))) $)) (-15 -4209 ((-747) $)) (-15 -3303 ((-621 |#1|) $)))) (-823)) (T -795))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-3645 (*1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-3655 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-3276 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-1656 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-1941 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2455 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-3434 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-3537 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-3434 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-3537 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2055 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |rm| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-4076 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |mm| (-795 *3)) (|:| |rm| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-4162 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-747)) (-5 *1 (-795 *4)) (-4 *4 (-823)))) (-3570 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2718 (-747))))) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-795 *3)) (-4 *3 (-823)))))
-(-13 (-819) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -3645 (|#1| $)) (-15 -3655 ($ $)) (-15 -3276 ($ $)) (-15 -1656 ((-112) $ $)) (-15 -1941 ($ $ $)) (-15 -2455 ($ $ $)) (-15 -3434 ((-3 $ "failed") $ $)) (-15 -3537 ((-3 $ "failed") $ $)) (-15 -3434 ((-3 $ "failed") $ |#1|)) (-15 -3537 ((-3 $ "failed") $ |#1|)) (-15 -2055 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4076 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3615 ((-747) $)) (-15 -4162 ((-747) $ (-549))) (-15 -3570 (|#1| $ (-549))) (-15 -2886 ((-621 (-2 (|:| |gen| |#1|) (|:| -2718 (-747)))) $)) (-15 -4209 ((-747) $)) (-15 -3303 ((-621 |#1|) $))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-3902 (((-549) $) 51)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3079 (((-112) $) 49)) (-3987 (((-112) $) 30)) (-2847 (((-112) $) 50)) (-2862 (($ $ $) 48)) (-3574 (($ $ $) 47)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-2038 (((-3 $ "failed") $ $) 40)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-3603 (($ $) 52)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 45)) (-2424 (((-112) $ $) 44)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 46)) (-2411 (((-112) $ $) 43)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-2887 (((-112) $ $) NIL)) (-4277 (((-618 |#1|) $) 29)) (-3454 (((-747) $) NIL)) (-3879 (($) NIL T CONST)) (-4282 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-4141 (($ $) 31)) (-3804 (((-3 $ "failed") $) NIL)) (-2761 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2493 (((-112) $) NIL)) (-2759 ((|#1| $ (-535)) NIL)) (-2760 (((-747) $ (-535)) NIL)) (-4279 (($ $) 36)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4283 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2764 (((-112) $ $) 34)) (-4176 (((-747) $) 25)) (-3576 (((-1124) $) NIL)) (-2762 (($ $ $) NIL)) (-2763 (($ $ $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 ((|#1| $) 30)) (-2758 (((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $) NIL)) (-2884 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4300 (((-835) $) NIL) (($ |#1|) NIL)) (-2985 (($) 15 T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 35)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ |#1| (-747)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-795 |#1|) (-13 (-819) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -4143 (|#1| $)) (-15 -4141 ($ $)) (-15 -4279 ($ $)) (-15 -2764 ((-112) $ $)) (-15 -2763 ($ $ $)) (-15 -2762 ($ $ $)) (-15 -4283 ((-3 $ "failed") $ $)) (-15 -4282 ((-3 $ "failed") $ $)) (-15 -4283 ((-3 $ "failed") $ |#1|)) (-15 -4282 ((-3 $ "failed") $ |#1|)) (-15 -2884 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2761 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3454 ((-747) $)) (-15 -2760 ((-747) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2758 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $)) (-15 -4176 ((-747) $)) (-15 -4277 ((-618 |#1|) $)))) (-823)) (T -795))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4143 (*1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4141 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4279 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2764 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-2763 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2762 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4283 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4282 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4283 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4282 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2884 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |rm| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-2761 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |mm| (-795 *3)) (|:| |rm| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-2760 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-747)) (-5 *1 (-795 *4)) (-4 *4 (-823)))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 (-747))))) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-795 *3)) (-4 *3 (-823)))))
+(-13 (-819) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -4143 (|#1| $)) (-15 -4141 ($ $)) (-15 -4279 ($ $)) (-15 -2764 ((-112) $ $)) (-15 -2763 ($ $ $)) (-15 -2762 ($ $ $)) (-15 -4283 ((-3 $ "failed") $ $)) (-15 -4282 ((-3 $ "failed") $ $)) (-15 -4283 ((-3 $ "failed") $ |#1|)) (-15 -4282 ((-3 $ "failed") $ |#1|)) (-15 -2884 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2761 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3454 ((-747) $)) (-15 -2760 ((-747) $ (-535))) (-15 -2759 (|#1| $ (-535))) (-15 -2758 ((-618 (-2 (|:| |gen| |#1|) (|:| -4286 (-747)))) $)) (-15 -4176 ((-747) $)) (-15 -4277 ((-618 |#1|) $))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3969 (((-535) $) 51)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-3520 (((-112) $) 49)) (-2493 (((-112) $) 30)) (-3521 (((-112) $) 50)) (-3660 (($ $ $) 48)) (-3661 (($ $ $) 47)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ $) 40)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-3725 (($ $) 52)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 45)) (-2886 (((-112) $ $) 44)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 46)) (-3006 (((-112) $ $) 43)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-796) (-138)) (T -796))
NIL
-(-13 (-541) (-821))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-821) . T) ((-823) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3258 (($ (-1086)) 7)) (-2282 (((-112) $ (-1124) (-1086)) 15)) (-2352 (((-798) $) 12)) (-2625 (((-798) $) 11)) (-1372 (((-1230) $) 9)) (-1677 (((-112) $ (-1086)) 16)))
-(((-797) (-10 -8 (-15 -3258 ($ (-1086))) (-15 -1372 ((-1230) $)) (-15 -2625 ((-798) $)) (-15 -2352 ((-798) $)) (-15 -2282 ((-112) $ (-1124) (-1086))) (-15 -1677 ((-112) $ (-1086))))) (T -797))
-((-1677 (*1 *2 *1 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-112)) (-5 *1 (-797)))) (-2282 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-1086)) (-5 *2 (-112)) (-5 *1 (-797)))) (-2352 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-797)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-797)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-797)))) (-3258 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-797)))))
-(-10 -8 (-15 -3258 ($ (-1086))) (-15 -1372 ((-1230) $)) (-15 -2625 ((-798) $)) (-15 -2352 ((-798) $)) (-15 -2282 ((-112) $ (-1124) (-1086))) (-15 -1677 ((-112) $ (-1086))))
-((-1796 (((-1230) $ (-799)) 12)) (-3680 (((-1230) $ (-1142)) 32)) (-3677 (((-1230) $ (-1124) (-1124)) 34)) (-2584 (((-1230) $ (-1124)) 33)) (-1748 (((-1230) $) 19)) (-1669 (((-1230) $ (-549)) 28)) (-4104 (((-1230) $ (-219)) 30)) (-1837 (((-1230) $) 18)) (-3442 (((-1230) $) 26)) (-2608 (((-1230) $) 25)) (-2423 (((-1230) $) 23)) (-3483 (((-1230) $) 24)) (-3151 (((-1230) $) 22)) (-2895 (((-1230) $) 21)) (-1491 (((-1230) $) 20)) (-1610 (((-1230) $) 16)) (-3044 (((-1230) $) 17)) (-1662 (((-1230) $) 15)) (-2297 (((-1230) $) 14)) (-3244 (((-1230) $) 13)) (-3690 (($ (-1124) (-799)) 9)) (-3415 (($ (-1124) (-1124) (-799)) 8)) (-3953 (((-1142) $) 51)) (-3786 (((-1142) $) 55)) (-2655 (((-2 (|:| |cd| (-1124)) (|:| -2480 (-1124))) $) 54)) (-2756 (((-1124) $) 52)) (-4061 (((-1230) $) 41)) (-4259 (((-549) $) 49)) (-2854 (((-219) $) 50)) (-2986 (((-1230) $) 40)) (-2939 (((-1230) $) 48)) (-2773 (((-1230) $) 47)) (-2667 (((-1230) $) 45)) (-2748 (((-1230) $) 46)) (-1676 (((-1230) $) 44)) (-4238 (((-1230) $) 43)) (-3306 (((-1230) $) 42)) (-1609 (((-1230) $) 38)) (-3795 (((-1230) $) 39)) (-1472 (((-1230) $) 37)) (-1435 (((-1230) $) 36)) (-3706 (((-1230) $) 35)) (-3608 (((-1230) $) 11)))
-(((-798) (-10 -8 (-15 -3415 ($ (-1124) (-1124) (-799))) (-15 -3690 ($ (-1124) (-799))) (-15 -3608 ((-1230) $)) (-15 -1796 ((-1230) $ (-799))) (-15 -3244 ((-1230) $)) (-15 -2297 ((-1230) $)) (-15 -1662 ((-1230) $)) (-15 -1610 ((-1230) $)) (-15 -3044 ((-1230) $)) (-15 -1837 ((-1230) $)) (-15 -1748 ((-1230) $)) (-15 -1491 ((-1230) $)) (-15 -2895 ((-1230) $)) (-15 -3151 ((-1230) $)) (-15 -2423 ((-1230) $)) (-15 -3483 ((-1230) $)) (-15 -2608 ((-1230) $)) (-15 -3442 ((-1230) $)) (-15 -1669 ((-1230) $ (-549))) (-15 -4104 ((-1230) $ (-219))) (-15 -3680 ((-1230) $ (-1142))) (-15 -2584 ((-1230) $ (-1124))) (-15 -3677 ((-1230) $ (-1124) (-1124))) (-15 -3706 ((-1230) $)) (-15 -1435 ((-1230) $)) (-15 -1472 ((-1230) $)) (-15 -1609 ((-1230) $)) (-15 -3795 ((-1230) $)) (-15 -2986 ((-1230) $)) (-15 -4061 ((-1230) $)) (-15 -3306 ((-1230) $)) (-15 -4238 ((-1230) $)) (-15 -1676 ((-1230) $)) (-15 -2667 ((-1230) $)) (-15 -2748 ((-1230) $)) (-15 -2773 ((-1230) $)) (-15 -2939 ((-1230) $)) (-15 -4259 ((-549) $)) (-15 -2854 ((-219) $)) (-15 -3953 ((-1142) $)) (-15 -2756 ((-1124) $)) (-15 -2655 ((-2 (|:| |cd| (-1124)) (|:| -2480 (-1124))) $)) (-15 -3786 ((-1142) $)))) (T -798))
-((-3786 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-798)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1124)) (|:| -2480 (-1124)))) (-5 *1 (-798)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-798)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-798)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-798)))) (-4259 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-798)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-2748 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-3306 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-1435 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-3677 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-798)))) (-2584 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-798)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-798)))) (-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1230)) (-5 *1 (-798)))) (-1669 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-798)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-3483 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-2297 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-1796 (*1 *2 *1 *3) (-12 (-5 *3 (-799)) (-5 *2 (-1230)) (-5 *1 (-798)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-3690 (*1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-799)) (-5 *1 (-798)))) (-3415 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-799)) (-5 *1 (-798)))))
-(-10 -8 (-15 -3415 ($ (-1124) (-1124) (-799))) (-15 -3690 ($ (-1124) (-799))) (-15 -3608 ((-1230) $)) (-15 -1796 ((-1230) $ (-799))) (-15 -3244 ((-1230) $)) (-15 -2297 ((-1230) $)) (-15 -1662 ((-1230) $)) (-15 -1610 ((-1230) $)) (-15 -3044 ((-1230) $)) (-15 -1837 ((-1230) $)) (-15 -1748 ((-1230) $)) (-15 -1491 ((-1230) $)) (-15 -2895 ((-1230) $)) (-15 -3151 ((-1230) $)) (-15 -2423 ((-1230) $)) (-15 -3483 ((-1230) $)) (-15 -2608 ((-1230) $)) (-15 -3442 ((-1230) $)) (-15 -1669 ((-1230) $ (-549))) (-15 -4104 ((-1230) $ (-219))) (-15 -3680 ((-1230) $ (-1142))) (-15 -2584 ((-1230) $ (-1124))) (-15 -3677 ((-1230) $ (-1124) (-1124))) (-15 -3706 ((-1230) $)) (-15 -1435 ((-1230) $)) (-15 -1472 ((-1230) $)) (-15 -1609 ((-1230) $)) (-15 -3795 ((-1230) $)) (-15 -2986 ((-1230) $)) (-15 -4061 ((-1230) $)) (-15 -3306 ((-1230) $)) (-15 -4238 ((-1230) $)) (-15 -1676 ((-1230) $)) (-15 -2667 ((-1230) $)) (-15 -2748 ((-1230) $)) (-15 -2773 ((-1230) $)) (-15 -2939 ((-1230) $)) (-15 -4259 ((-549) $)) (-15 -2854 ((-219) $)) (-15 -3953 ((-1142) $)) (-15 -2756 ((-1124) $)) (-15 -2655 ((-2 (|:| |cd| (-1124)) (|:| -2480 (-1124))) $)) (-15 -3786 ((-1142) $)))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 12)) (-1899 (($) 15)) (-3805 (($) 13)) (-2810 (($) 16)) (-1273 (($) 14)) (-2388 (((-112) $ $) 8)))
-(((-799) (-13 (-1066) (-10 -8 (-15 -3805 ($)) (-15 -1899 ($)) (-15 -2810 ($)) (-15 -1273 ($))))) (T -799))
-((-3805 (*1 *1) (-5 *1 (-799))) (-1899 (*1 *1) (-5 *1 (-799))) (-2810 (*1 *1) (-5 *1 (-799))) (-1273 (*1 *1) (-5 *1 (-799))))
-(-13 (-1066) (-10 -8 (-15 -3805 ($)) (-15 -1899 ($)) (-15 -2810 ($)) (-15 -1273 ($))))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 21) (($ (-1142)) 17)) (-1672 (((-112) $) 10)) (-1293 (((-112) $) 9)) (-4127 (((-112) $) 11)) (-2396 (((-112) $) 8)) (-2388 (((-112) $ $) 19)))
-(((-800) (-13 (-1066) (-10 -8 (-15 -3845 ($ (-1142))) (-15 -2396 ((-112) $)) (-15 -1293 ((-112) $)) (-15 -1672 ((-112) $)) (-15 -4127 ((-112) $))))) (T -800))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-800)))) (-2396 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))))
-(-13 (-1066) (-10 -8 (-15 -3845 ($ (-1142))) (-15 -2396 ((-112) $)) (-15 -1293 ((-112) $)) (-15 -1672 ((-112) $)) (-15 -4127 ((-112) $))))
-((-3833 (((-112) $ $) NIL)) (-2710 (($ (-800) (-621 (-1142))) 24)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3720 (((-800) $) 25)) (-1673 (((-621 (-1142)) $) 26)) (-3845 (((-834) $) 23)) (-2388 (((-112) $ $) NIL)))
-(((-801) (-13 (-1066) (-10 -8 (-15 -3720 ((-800) $)) (-15 -1673 ((-621 (-1142)) $)) (-15 -2710 ($ (-800) (-621 (-1142))))))) (T -801))
-((-3720 (*1 *2 *1) (-12 (-5 *2 (-800)) (-5 *1 (-801)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-801)))) (-2710 (*1 *1 *2 *3) (-12 (-5 *2 (-800)) (-5 *3 (-621 (-1142))) (-5 *1 (-801)))))
-(-13 (-1066) (-10 -8 (-15 -3720 ((-800) $)) (-15 -1673 ((-621 (-1142)) $)) (-15 -2710 ($ (-800) (-621 (-1142))))))
-((-3135 (((-1230) (-798) (-309 |#1|) (-112)) 23) (((-1230) (-798) (-309 |#1|)) 79) (((-1124) (-309 |#1|) (-112)) 78) (((-1124) (-309 |#1|)) 77)))
-(((-802 |#1|) (-10 -7 (-15 -3135 ((-1124) (-309 |#1|))) (-15 -3135 ((-1124) (-309 |#1|) (-112))) (-15 -3135 ((-1230) (-798) (-309 |#1|))) (-15 -3135 ((-1230) (-798) (-309 |#1|) (-112)))) (-13 (-804) (-823) (-1018))) (T -802))
-((-3135 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-798)) (-5 *4 (-309 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-804) (-823) (-1018))) (-5 *2 (-1230)) (-5 *1 (-802 *6)))) (-3135 (*1 *2 *3 *4) (-12 (-5 *3 (-798)) (-5 *4 (-309 *5)) (-4 *5 (-13 (-804) (-823) (-1018))) (-5 *2 (-1230)) (-5 *1 (-802 *5)))) (-3135 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-804) (-823) (-1018))) (-5 *2 (-1124)) (-5 *1 (-802 *5)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-13 (-804) (-823) (-1018))) (-5 *2 (-1124)) (-5 *1 (-802 *4)))))
-(-10 -7 (-15 -3135 ((-1124) (-309 |#1|))) (-15 -3135 ((-1124) (-309 |#1|) (-112))) (-15 -3135 ((-1230) (-798) (-309 |#1|))) (-15 -3135 ((-1230) (-798) (-309 |#1|) (-112))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-1896 ((|#1| $) 10)) (-2719 (($ |#1|) 9)) (-3987 (((-112) $) NIL)) (-2244 (($ |#2| (-747)) NIL)) (-2856 (((-747) $) NIL)) (-2042 ((|#2| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3455 (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-3068 (((-747) $) NIL)) (-3845 (((-834) $) 17) (($ (-549)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-2944 ((|#2| $ (-747)) NIL)) (-1723 (((-747)) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-803 |#1| |#2|) (-13 (-685 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -2719 ($ |#1|)) (-15 -1896 (|#1| $)))) (-685 |#2|) (-1018)) (T -803))
-((-2719 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-803 *2 *3)) (-4 *2 (-685 *3)))) (-1896 (*1 *2 *1) (-12 (-4 *2 (-685 *3)) (-5 *1 (-803 *2 *3)) (-4 *3 (-1018)))))
-(-13 (-685 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -2719 ($ |#1|)) (-15 -1896 (|#1| $))))
-((-3135 (((-1230) (-798) $ (-112)) 9) (((-1230) (-798) $) 8) (((-1124) $ (-112)) 7) (((-1124) $) 6)))
-(((-804) (-138)) (T -804))
-((-3135 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-804)) (-5 *3 (-798)) (-5 *4 (-112)) (-5 *2 (-1230)))) (-3135 (*1 *2 *3 *1) (-12 (-4 *1 (-804)) (-5 *3 (-798)) (-5 *2 (-1230)))) (-3135 (*1 *2 *1 *3) (-12 (-4 *1 (-804)) (-5 *3 (-112)) (-5 *2 (-1124)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-804)) (-5 *2 (-1124)))))
-(-13 (-10 -8 (-15 -3135 ((-1124) $)) (-15 -3135 ((-1124) $ (-112))) (-15 -3135 ((-1230) (-798) $)) (-15 -3135 ((-1230) (-798) $ (-112)))))
-((-3152 (((-305) (-1124) (-1124)) 12)) (-3168 (((-112) (-1124) (-1124)) 34)) (-2578 (((-112) (-1124)) 33)) (-3251 (((-52) (-1124)) 25)) (-3056 (((-52) (-1124)) 23)) (-4275 (((-52) (-798)) 17)) (-2781 (((-621 (-1124)) (-1124)) 28)) (-2666 (((-621 (-1124))) 27)))
-(((-805) (-10 -7 (-15 -4275 ((-52) (-798))) (-15 -3056 ((-52) (-1124))) (-15 -3251 ((-52) (-1124))) (-15 -2666 ((-621 (-1124)))) (-15 -2781 ((-621 (-1124)) (-1124))) (-15 -2578 ((-112) (-1124))) (-15 -3168 ((-112) (-1124) (-1124))) (-15 -3152 ((-305) (-1124) (-1124))))) (T -805))
-((-3152 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-305)) (-5 *1 (-805)))) (-3168 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-805)))) (-2578 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-805)))) (-2781 (*1 *2 *3) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-805)) (-5 *3 (-1124)))) (-2666 (*1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-805)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-52)) (-5 *1 (-805)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-52)) (-5 *1 (-805)))) (-4275 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-52)) (-5 *1 (-805)))))
-(-10 -7 (-15 -4275 ((-52) (-798))) (-15 -3056 ((-52) (-1124))) (-15 -3251 ((-52) (-1124))) (-15 -2666 ((-621 (-1124)))) (-15 -2781 ((-621 (-1124)) (-1124))) (-15 -2578 ((-112) (-1124))) (-15 -3168 ((-112) (-1124) (-1124))) (-15 -3152 ((-305) (-1124) (-1124))))
-((-3833 (((-112) $ $) 19)) (-1440 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3755 (($ $ $) 72)) (-4063 (((-112) $ $) 73)) (-1323 (((-112) $ (-747)) 8)) (-2787 (($ (-621 |#1|)) 68) (($) 67)) (-3069 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-2992 (($ $) 62)) (-3675 (($ $) 58 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-4204 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3812 (($ |#1| $) 57 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-1353 (((-112) $ $) 64)) (-4202 (((-112) $ (-747)) 9)) (-2862 ((|#1| $) 78)) (-3019 (($ $ $) 81)) (-1586 (($ $ $) 80)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-3574 ((|#1| $) 79)) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22)) (-1795 (($ $ $) 69)) (-2349 ((|#1| $) 39)) (-1709 (($ |#1| $) 40) (($ |#1| $ (-747)) 63)) (-3988 (((-1086) $) 21)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2629 ((|#1| $) 41)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3903 (((-621 (-2 (|:| -1792 |#1|) (|:| -3997 (-747)))) $) 61)) (-4142 (($ $ |#1|) 71) (($ $ $) 70)) (-4252 (($) 49) (($ (-621 |#1|)) 48)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-2844 (((-525) $) 59 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 50)) (-3845 (((-834) $) 18)) (-4118 (($ (-621 |#1|)) 66) (($) 65)) (-1765 (($ (-621 |#1|)) 42)) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20)) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(-13 (-542) (-821))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-821) . T) ((-823) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2825 (((-1230) (-799) $ (-112)) 9) (((-1230) (-799) $) 8) (((-1124) $ (-112)) 7) (((-1124) $) 6)))
+(((-797) (-138)) (T -797))
+((-2825 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-797)) (-5 *3 (-799)) (-5 *4 (-112)) (-5 *2 (-1230)))) (-2825 (*1 *2 *3 *1) (-12 (-4 *1 (-797)) (-5 *3 (-799)) (-5 *2 (-1230)))) (-2825 (*1 *2 *1 *3) (-12 (-4 *1 (-797)) (-5 *3 (-112)) (-5 *2 (-1124)))) (-2825 (*1 *2 *1) (-12 (-4 *1 (-797)) (-5 *2 (-1124)))))
+(-13 (-10 -8 (-15 -2825 ((-1124) $)) (-15 -2825 ((-1124) $ (-112))) (-15 -2825 ((-1230) (-799) $)) (-15 -2825 ((-1230) (-799) $ (-112)))))
+((-2765 (($ (-1086)) 7)) (-2769 (((-112) $ (-1124) (-1086)) 15)) (-2768 (((-799) $) 12)) (-2767 (((-799) $) 11)) (-2766 (((-1230) $) 9)) (-2770 (((-112) $ (-1086)) 16)))
+(((-798) (-10 -8 (-15 -2765 ($ (-1086))) (-15 -2766 ((-1230) $)) (-15 -2767 ((-799) $)) (-15 -2768 ((-799) $)) (-15 -2769 ((-112) $ (-1124) (-1086))) (-15 -2770 ((-112) $ (-1086))))) (T -798))
+((-2770 (*1 *2 *1 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-112)) (-5 *1 (-798)))) (-2769 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-1086)) (-5 *2 (-112)) (-5 *1 (-798)))) (-2768 (*1 *2 *1) (-12 (-5 *2 (-799)) (-5 *1 (-798)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-799)) (-5 *1 (-798)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))) (-2765 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-798)))))
+(-10 -8 (-15 -2765 ($ (-1086))) (-15 -2766 ((-1230) $)) (-15 -2767 ((-799) $)) (-15 -2768 ((-799) $)) (-15 -2769 ((-112) $ (-1124) (-1086))) (-15 -2770 ((-112) $ (-1086))))
+((-2774 (((-1230) $ (-800)) 12)) (-2791 (((-1230) $ (-1142)) 32)) (-2793 (((-1230) $ (-1124) (-1124)) 34)) (-2792 (((-1230) $ (-1124)) 33)) (-2781 (((-1230) $) 19)) (-2789 (((-1230) $ (-535)) 28)) (-2790 (((-1230) $ (-219)) 30)) (-2780 (((-1230) $) 18)) (-2788 (((-1230) $) 26)) (-2787 (((-1230) $) 25)) (-2785 (((-1230) $) 23)) (-2786 (((-1230) $) 24)) (-2784 (((-1230) $) 22)) (-2783 (((-1230) $) 21)) (-2782 (((-1230) $) 20)) (-2778 (((-1230) $) 16)) (-2779 (((-1230) $) 17)) (-2777 (((-1230) $) 15)) (-2776 (((-1230) $) 14)) (-2775 (((-1230) $) 13)) (-2772 (($ (-1124) (-800)) 9)) (-2771 (($ (-1124) (-1124) (-800)) 8)) (-2810 (((-1142) $) 51)) (-2813 (((-1142) $) 55)) (-2812 (((-2 (|:| |cd| (-1124)) (|:| -3888 (-1124))) $) 54)) (-2811 (((-1124) $) 52)) (-2800 (((-1230) $) 41)) (-2808 (((-535) $) 49)) (-2809 (((-219) $) 50)) (-2799 (((-1230) $) 40)) (-2807 (((-1230) $) 48)) (-2806 (((-1230) $) 47)) (-2804 (((-1230) $) 45)) (-2805 (((-1230) $) 46)) (-2803 (((-1230) $) 44)) (-2802 (((-1230) $) 43)) (-2801 (((-1230) $) 42)) (-2797 (((-1230) $) 38)) (-2798 (((-1230) $) 39)) (-2796 (((-1230) $) 37)) (-2795 (((-1230) $) 36)) (-2794 (((-1230) $) 35)) (-2773 (((-1230) $) 11)))
+(((-799) (-10 -8 (-15 -2771 ($ (-1124) (-1124) (-800))) (-15 -2772 ($ (-1124) (-800))) (-15 -2773 ((-1230) $)) (-15 -2774 ((-1230) $ (-800))) (-15 -2775 ((-1230) $)) (-15 -2776 ((-1230) $)) (-15 -2777 ((-1230) $)) (-15 -2778 ((-1230) $)) (-15 -2779 ((-1230) $)) (-15 -2780 ((-1230) $)) (-15 -2781 ((-1230) $)) (-15 -2782 ((-1230) $)) (-15 -2783 ((-1230) $)) (-15 -2784 ((-1230) $)) (-15 -2785 ((-1230) $)) (-15 -2786 ((-1230) $)) (-15 -2787 ((-1230) $)) (-15 -2788 ((-1230) $)) (-15 -2789 ((-1230) $ (-535))) (-15 -2790 ((-1230) $ (-219))) (-15 -2791 ((-1230) $ (-1142))) (-15 -2792 ((-1230) $ (-1124))) (-15 -2793 ((-1230) $ (-1124) (-1124))) (-15 -2794 ((-1230) $)) (-15 -2795 ((-1230) $)) (-15 -2796 ((-1230) $)) (-15 -2797 ((-1230) $)) (-15 -2798 ((-1230) $)) (-15 -2799 ((-1230) $)) (-15 -2800 ((-1230) $)) (-15 -2801 ((-1230) $)) (-15 -2802 ((-1230) $)) (-15 -2803 ((-1230) $)) (-15 -2804 ((-1230) $)) (-15 -2805 ((-1230) $)) (-15 -2806 ((-1230) $)) (-15 -2807 ((-1230) $)) (-15 -2808 ((-535) $)) (-15 -2809 ((-219) $)) (-15 -2810 ((-1142) $)) (-15 -2811 ((-1124) $)) (-15 -2812 ((-2 (|:| |cd| (-1124)) (|:| -3888 (-1124))) $)) (-15 -2813 ((-1142) $)))) (T -799))
+((-2813 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-799)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1124)) (|:| -3888 (-1124)))) (-5 *1 (-799)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-799)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-799)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-799)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-799)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2793 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-799)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-799)))) (-2791 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-799)))) (-2790 (*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1230)) (-5 *1 (-799)))) (-2789 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-799)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2774 (*1 *2 *1 *3) (-12 (-5 *3 (-800)) (-5 *2 (-1230)) (-5 *1 (-799)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))) (-2772 (*1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-800)) (-5 *1 (-799)))) (-2771 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-800)) (-5 *1 (-799)))))
+(-10 -8 (-15 -2771 ($ (-1124) (-1124) (-800))) (-15 -2772 ($ (-1124) (-800))) (-15 -2773 ((-1230) $)) (-15 -2774 ((-1230) $ (-800))) (-15 -2775 ((-1230) $)) (-15 -2776 ((-1230) $)) (-15 -2777 ((-1230) $)) (-15 -2778 ((-1230) $)) (-15 -2779 ((-1230) $)) (-15 -2780 ((-1230) $)) (-15 -2781 ((-1230) $)) (-15 -2782 ((-1230) $)) (-15 -2783 ((-1230) $)) (-15 -2784 ((-1230) $)) (-15 -2785 ((-1230) $)) (-15 -2786 ((-1230) $)) (-15 -2787 ((-1230) $)) (-15 -2788 ((-1230) $)) (-15 -2789 ((-1230) $ (-535))) (-15 -2790 ((-1230) $ (-219))) (-15 -2791 ((-1230) $ (-1142))) (-15 -2792 ((-1230) $ (-1124))) (-15 -2793 ((-1230) $ (-1124) (-1124))) (-15 -2794 ((-1230) $)) (-15 -2795 ((-1230) $)) (-15 -2796 ((-1230) $)) (-15 -2797 ((-1230) $)) (-15 -2798 ((-1230) $)) (-15 -2799 ((-1230) $)) (-15 -2800 ((-1230) $)) (-15 -2801 ((-1230) $)) (-15 -2802 ((-1230) $)) (-15 -2803 ((-1230) $)) (-15 -2804 ((-1230) $)) (-15 -2805 ((-1230) $)) (-15 -2806 ((-1230) $)) (-15 -2807 ((-1230) $)) (-15 -2808 ((-535) $)) (-15 -2809 ((-219) $)) (-15 -2810 ((-1142) $)) (-15 -2811 ((-1124) $)) (-15 -2812 ((-2 (|:| |cd| (-1124)) (|:| -3888 (-1124))) $)) (-15 -2813 ((-1142) $)))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 12)) (-2816 (($) 15)) (-2817 (($) 13)) (-2815 (($) 16)) (-2814 (($) 14)) (-3375 (((-112) $ $) 8)))
+(((-800) (-13 (-1067) (-10 -8 (-15 -2817 ($)) (-15 -2816 ($)) (-15 -2815 ($)) (-15 -2814 ($))))) (T -800))
+((-2817 (*1 *1) (-5 *1 (-800))) (-2816 (*1 *1) (-5 *1 (-800))) (-2815 (*1 *1) (-5 *1 (-800))) (-2814 (*1 *1) (-5 *1 (-800))))
+(-13 (-1067) (-10 -8 (-15 -2817 ($)) (-15 -2816 ($)) (-15 -2815 ($)) (-15 -2814 ($))))
+((-2887 (((-112) $ $) NIL)) (-2818 (($ (-802) (-618 (-1142))) 24)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2820 (((-802) $) 25)) (-2819 (((-618 (-1142)) $) 26)) (-4300 (((-835) $) 23)) (-3375 (((-112) $ $) NIL)))
+(((-801) (-13 (-1067) (-10 -8 (-15 -2820 ((-802) $)) (-15 -2819 ((-618 (-1142)) $)) (-15 -2818 ($ (-802) (-618 (-1142))))))) (T -801))
+((-2820 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-801)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-801)))) (-2818 (*1 *1 *2 *3) (-12 (-5 *2 (-802)) (-5 *3 (-618 (-1142))) (-5 *1 (-801)))))
+(-13 (-1067) (-10 -8 (-15 -2820 ((-802) $)) (-15 -2819 ((-618 (-1142)) $)) (-15 -2818 ($ (-802) (-618 (-1142))))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 21) (($ (-1142)) 17)) (-2822 (((-112) $) 10)) (-2823 (((-112) $) 9)) (-2821 (((-112) $) 11)) (-2824 (((-112) $) 8)) (-3375 (((-112) $ $) 19)))
+(((-802) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-1142))) (-15 -2824 ((-112) $)) (-15 -2823 ((-112) $)) (-15 -2822 ((-112) $)) (-15 -2821 ((-112) $))))) (T -802))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-802)))) (-2824 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))))
+(-13 (-1067) (-10 -8 (-15 -4300 ($ (-1142))) (-15 -2824 ((-112) $)) (-15 -2823 ((-112) $)) (-15 -2822 ((-112) $)) (-15 -2821 ((-112) $))))
+((-2825 (((-1230) (-799) (-307 |#1|) (-112)) 23) (((-1230) (-799) (-307 |#1|)) 79) (((-1124) (-307 |#1|) (-112)) 78) (((-1124) (-307 |#1|)) 77)))
+(((-803 |#1|) (-10 -7 (-15 -2825 ((-1124) (-307 |#1|))) (-15 -2825 ((-1124) (-307 |#1|) (-112))) (-15 -2825 ((-1230) (-799) (-307 |#1|))) (-15 -2825 ((-1230) (-799) (-307 |#1|) (-112)))) (-13 (-797) (-823) (-1018))) (T -803))
+((-2825 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-799)) (-5 *4 (-307 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-797) (-823) (-1018))) (-5 *2 (-1230)) (-5 *1 (-803 *6)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-799)) (-5 *4 (-307 *5)) (-4 *5 (-13 (-797) (-823) (-1018))) (-5 *2 (-1230)) (-5 *1 (-803 *5)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-797) (-823) (-1018))) (-5 *2 (-1124)) (-5 *1 (-803 *5)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-13 (-797) (-823) (-1018))) (-5 *2 (-1124)) (-5 *1 (-803 *4)))))
+(-10 -7 (-15 -2825 ((-1124) (-307 |#1|))) (-15 -2825 ((-1124) (-307 |#1|) (-112))) (-15 -2825 ((-1230) (-799) (-307 |#1|))) (-15 -2825 ((-1230) (-799) (-307 |#1|) (-112))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2826 ((|#1| $) 10)) (-2827 (($ |#1|) 9)) (-2493 (((-112) $) NIL)) (-3214 (($ |#2| (-747)) NIL)) (-3141 (((-747) $) NIL)) (-3508 ((|#2| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4153 (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-4290 (((-747) $) NIL)) (-4300 (((-835) $) 17) (($ (-535)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-4023 ((|#2| $ (-747)) NIL)) (-3444 (((-747)) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-804 |#1| |#2|) (-13 (-685 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -2827 ($ |#1|)) (-15 -2826 (|#1| $)))) (-685 |#2|) (-1018)) (T -804))
+((-2827 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-804 *2 *3)) (-4 *2 (-685 *3)))) (-2826 (*1 *2 *1) (-12 (-4 *2 (-685 *3)) (-5 *1 (-804 *2 *3)) (-4 *3 (-1018)))))
+(-13 (-685 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -2827 ($ |#1|)) (-15 -2826 (|#1| $))))
+((-2835 (((-304) (-1124) (-1124)) 12)) (-2834 (((-112) (-1124) (-1124)) 34)) (-2833 (((-112) (-1124)) 33)) (-2830 (((-51) (-1124)) 25)) (-2829 (((-51) (-1124)) 23)) (-2828 (((-51) (-799)) 17)) (-2832 (((-618 (-1124)) (-1124)) 28)) (-2831 (((-618 (-1124))) 27)))
+(((-805) (-10 -7 (-15 -2828 ((-51) (-799))) (-15 -2829 ((-51) (-1124))) (-15 -2830 ((-51) (-1124))) (-15 -2831 ((-618 (-1124)))) (-15 -2832 ((-618 (-1124)) (-1124))) (-15 -2833 ((-112) (-1124))) (-15 -2834 ((-112) (-1124) (-1124))) (-15 -2835 ((-304) (-1124) (-1124))))) (T -805))
+((-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-805)))) (-2834 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-805)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-805)))) (-2832 (*1 *2 *3) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-805)) (-5 *3 (-1124)))) (-2831 (*1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-805)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-51)) (-5 *1 (-805)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-51)) (-5 *1 (-805)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-51)) (-5 *1 (-805)))))
+(-10 -7 (-15 -2828 ((-51) (-799))) (-15 -2829 ((-51) (-1124))) (-15 -2830 ((-51) (-1124))) (-15 -2831 ((-618 (-1124)))) (-15 -2832 ((-618 (-1124)) (-1124))) (-15 -2833 ((-112) (-1124))) (-15 -2834 ((-112) (-1124) (-1124))) (-15 -2835 ((-304) (-1124) (-1124))))
+((-2887 (((-112) $ $) 19)) (-3568 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3570 (($ $ $) 72)) (-3569 (((-112) $ $) 73)) (-1264 (((-112) $ (-747)) 8)) (-3573 (($ (-618 |#1|)) 68) (($) 67)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2446 (($ $) 62)) (-1394 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ |#1| $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) 64)) (-4065 (((-112) $ (-747)) 9)) (-3660 ((|#1| $) 78)) (-3180 (($ $ $) 81)) (-3855 (($ $ $) 80)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3661 ((|#1| $) 79)) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22)) (-3572 (($ $ $) 69)) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40) (($ |#1| $ (-747)) 63)) (-3577 (((-1086) $) 21)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2445 (((-618 (-2 (|:| -2184 |#1|) (|:| -2064 (-747)))) $) 61)) (-3571 (($ $ |#1|) 71) (($ $ $) 70)) (-1518 (($) 49) (($ (-618 |#1|)) 48)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 50)) (-4300 (((-835) $) 18)) (-3574 (($ (-618 |#1|)) 66) (($) 65)) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20)) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
(((-806 |#1|) (-138) (-823)) (T -806))
-((-2862 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-823)))))
-(-13 (-713 |t#1|) (-939 |t#1|) (-10 -8 (-15 -2862 (|t#1| $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-593 (-834)) . T) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-671 |#1|) . T) ((-713 |#1|) . T) ((-939 |#1|) . T) ((-1064 |#1|) . T) ((-1066) . T) ((-1179) . T))
-((-1492 (((-1230) (-1086) (-1086)) 47)) (-3066 (((-1230) (-797) (-52)) 44)) (-2209 (((-52) (-797)) 16)))
-(((-807) (-10 -7 (-15 -2209 ((-52) (-797))) (-15 -3066 ((-1230) (-797) (-52))) (-15 -1492 ((-1230) (-1086) (-1086))))) (T -807))
-((-1492 (*1 *2 *3 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-1230)) (-5 *1 (-807)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-797)) (-5 *4 (-52)) (-5 *2 (-1230)) (-5 *1 (-807)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-52)) (-5 *1 (-807)))))
-(-10 -7 (-15 -2209 ((-52) (-797))) (-15 -3066 ((-1230) (-797) (-52))) (-15 -1492 ((-1230) (-1086) (-1086))))
-((-2796 (((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|) (-809 |#2|)) 12) (((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|)) 13)))
-(((-808 |#1| |#2|) (-10 -7 (-15 -2796 ((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|))) (-15 -2796 ((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|) (-809 |#2|)))) (-1066) (-1066)) (T -808))
-((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-809 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-809 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *1 (-808 *5 *6)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-809 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-809 *6)) (-5 *1 (-808 *5 *6)))))
-(-10 -7 (-15 -2796 ((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|))) (-15 -2796 ((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|) (-809 |#2|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL (|has| |#1| (-21)))) (-2384 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3902 (((-549) $) NIL (|has| |#1| (-821)))) (-1705 (($) NIL (|has| |#1| (-21)) CONST)) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 15)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 9)) (-3976 (((-3 $ "failed") $) 40 (|has| |#1| (-821)))) (-3156 (((-3 (-400 (-549)) "failed") $) 49 (|has| |#1| (-534)))) (-3230 (((-112) $) 43 (|has| |#1| (-534)))) (-3867 (((-400 (-549)) $) 46 (|has| |#1| (-534)))) (-3079 (((-112) $) NIL (|has| |#1| (-821)))) (-3987 (((-112) $) NIL (|has| |#1| (-821)))) (-2847 (((-112) $) NIL (|has| |#1| (-821)))) (-2862 (($ $ $) NIL (|has| |#1| (-821)))) (-3574 (($ $ $) NIL (|has| |#1| (-821)))) (-2677 (((-1124) $) NIL)) (-1437 (($) 13)) (-2070 (((-112) $) 12)) (-3988 (((-1086) $) NIL)) (-1852 (((-112) $) 11)) (-3845 (((-834) $) 18) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) 8) (($ (-549)) NIL (-1536 (|has| |#1| (-821)) (|has| |#1| (-1009 (-549)))))) (-1723 (((-747)) 34 (|has| |#1| (-821)))) (-3603 (($ $) NIL (|has| |#1| (-821)))) (-3275 (($) 22 (|has| |#1| (-21)) CONST)) (-3287 (($) 31 (|has| |#1| (-821)) CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2388 (((-112) $ $) 20)) (-2436 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2411 (((-112) $ $) 42 (|has| |#1| (-821)))) (-2499 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2485 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-892)) NIL (|has| |#1| (-821))) (($ $ (-747)) NIL (|has| |#1| (-821)))) (* (($ $ $) 37 (|has| |#1| (-821))) (($ (-549) $) 25 (|has| |#1| (-21))) (($ (-747) $) NIL (|has| |#1| (-21))) (($ (-892) $) NIL (|has| |#1| (-21)))))
-(((-809 |#1|) (-13 (-1066) (-404 |#1|) (-10 -8 (-15 -1437 ($)) (-15 -1852 ((-112) $)) (-15 -2070 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3230 ((-112) $)) (-15 -3867 ((-400 (-549)) $)) (-15 -3156 ((-3 (-400 (-549)) "failed") $))) |%noBranch|))) (-1066)) (T -809))
-((-1437 (*1 *1) (-12 (-5 *1 (-809 *2)) (-4 *2 (-1066)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-809 *3)) (-4 *3 (-1066)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-809 *3)) (-4 *3 (-1066)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-809 *3)) (-4 *3 (-534)) (-4 *3 (-1066)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-809 *3)) (-4 *3 (-534)) (-4 *3 (-1066)))) (-3156 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-809 *3)) (-4 *3 (-534)) (-4 *3 (-1066)))))
-(-13 (-1066) (-404 |#1|) (-10 -8 (-15 -1437 ($)) (-15 -1852 ((-112) $)) (-15 -2070 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3230 ((-112) $)) (-15 -3867 ((-400 (-549)) $)) (-15 -3156 ((-3 (-400 (-549)) "failed") $))) |%noBranch|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2658 ((|#1| $) NIL) (((-114) $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3297 ((|#1| (-114) |#1|) NIL)) (-3987 (((-112) $) NIL)) (-3526 (($ |#1| (-354 (-114))) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1499 (($ $ (-1 |#1| |#1|)) NIL)) (-3981 (($ $ (-1 |#1| |#1|)) NIL)) (-3340 ((|#1| $ |#1|) NIL)) (-3522 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-2609 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ (-114) (-549)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
-(((-810 |#1|) (-13 (-1018) (-1009 |#1|) (-1009 (-114)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2609 ($ $)) (-15 -2609 ($ $ $)) (-15 -3522 (|#1| |#1|))) |%noBranch|) (-15 -3981 ($ $ (-1 |#1| |#1|))) (-15 -1499 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-549))) (-15 ** ($ $ (-549))) (-15 -3297 (|#1| (-114) |#1|)) (-15 -3526 ($ |#1| (-354 (-114)))))) (-1018)) (T -810))
-((-2609 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) (-2609 (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) (-3522 (*1 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) (-3981 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))) (-1499 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-549)) (-5 *1 (-810 *4)) (-4 *4 (-1018)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-810 *3)) (-4 *3 (-1018)))) (-3297 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-810 *2)) (-4 *2 (-1018)))) (-3526 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-114))) (-5 *1 (-810 *2)) (-4 *2 (-1018)))))
-(-13 (-1018) (-1009 |#1|) (-1009 (-114)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2609 ($ $)) (-15 -2609 ($ $ $)) (-15 -3522 (|#1| |#1|))) |%noBranch|) (-15 -3981 ($ $ (-1 |#1| |#1|))) (-15 -1499 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-549))) (-15 ** ($ $ (-549))) (-15 -3297 (|#1| (-114) |#1|)) (-15 -3526 ($ |#1| (-354 (-114))))))
-((-3012 (((-208 (-493)) (-1124)) 9)))
-(((-811) (-10 -7 (-15 -3012 ((-208 (-493)) (-1124))))) (T -811))
-((-3012 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-208 (-493))) (-5 *1 (-811)))))
-(-10 -7 (-15 -3012 ((-208 (-493)) (-1124))))
-((-3833 (((-112) $ $) 7)) (-3947 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 14) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 13)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 16) (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 15)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2388 (((-112) $ $) 6)))
+((-3660 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-823)))))
+(-13 (-714 |t#1|) (-939 |t#1|) (-10 -8 (-15 -3660 (|t#1| $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-593 (-835)) . T) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-671 |#1|) . T) ((-714 |#1|) . T) ((-939 |#1|) . T) ((-1065 |#1|) . T) ((-1067) . T) ((-1178) . T))
+((-2838 (((-1230) (-1086) (-1086)) 47)) (-2837 (((-1230) (-798) (-51)) 44)) (-2836 (((-51) (-798)) 16)))
+(((-807) (-10 -7 (-15 -2836 ((-51) (-798))) (-15 -2837 ((-1230) (-798) (-51))) (-15 -2838 ((-1230) (-1086) (-1086))))) (T -807))
+((-2838 (*1 *2 *3 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-1230)) (-5 *1 (-807)))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-798)) (-5 *4 (-51)) (-5 *2 (-1230)) (-5 *1 (-807)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-51)) (-5 *1 (-807)))))
+(-10 -7 (-15 -2836 ((-51) (-798))) (-15 -2837 ((-1230) (-798) (-51))) (-15 -2838 ((-1230) (-1086) (-1086))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL (|has| |#1| (-21)))) (-1363 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3969 (((-535) $) NIL (|has| |#1| (-821)))) (-3879 (($) NIL (|has| |#1| (-21)) CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 15)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 9)) (-3804 (((-3 $ "failed") $) 40 (|has| |#1| (-821)))) (-3345 (((-3 (-400 (-535)) "failed") $) 49 (|has| |#1| (-534)))) (-3344 (((-112) $) 43 (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) 46 (|has| |#1| (-534)))) (-3520 (((-112) $) NIL (|has| |#1| (-821)))) (-2493 (((-112) $) NIL (|has| |#1| (-821)))) (-3521 (((-112) $) NIL (|has| |#1| (-821)))) (-3660 (($ $ $) NIL (|has| |#1| (-821)))) (-3661 (($ $ $) NIL (|has| |#1| (-821)))) (-3576 (((-1124) $) NIL)) (-2839 (($) 13)) (-2851 (((-112) $) 12)) (-3577 (((-1086) $) NIL)) (-2852 (((-112) $) 11)) (-4300 (((-835) $) 18) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) 8) (($ (-535)) NIL (-3874 (|has| |#1| (-821)) (|has| |#1| (-1009 (-535)))))) (-3444 (((-747)) 34 (|has| |#1| (-821)))) (-3725 (($ $) NIL (|has| |#1| (-821)))) (-2979 (($) 22 (|has| |#1| (-21)) CONST)) (-2985 (($) 31 (|has| |#1| (-821)) CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3375 (((-112) $ $) 20)) (-3005 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3006 (((-112) $ $) 42 (|has| |#1| (-821)))) (-4180 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4182 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-890)) NIL (|has| |#1| (-821))) (($ $ (-747)) NIL (|has| |#1| (-821)))) (* (($ $ $) 37 (|has| |#1| (-821))) (($ (-535) $) 25 (|has| |#1| (-21))) (($ (-747) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-21)))))
+(((-808 |#1|) (-13 (-1067) (-405 |#1|) (-10 -8 (-15 -2839 ($)) (-15 -2852 ((-112) $)) (-15 -2851 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|))) (-1067)) (T -808))
+((-2839 (*1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1067)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-808 *3)) (-4 *3 (-1067)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-808 *3)) (-4 *3 (-1067)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-808 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-808 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) (-3345 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-808 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))))
+(-13 (-1067) (-405 |#1|) (-10 -8 (-15 -2839 ($)) (-15 -2852 ((-112) $)) (-15 -2851 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|)))
+((-4301 (((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|) (-808 |#2|)) 12) (((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)) 13)))
+(((-809 |#1| |#2|) (-10 -7 (-15 -4301 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|))) (-15 -4301 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|) (-808 |#2|)))) (-1067) (-1067)) (T -809))
+((-4301 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *1 (-809 *5 *6)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-808 *6)) (-5 *1 (-809 *5 *6)))))
+(-10 -7 (-15 -4301 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|))) (-15 -4301 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|) (-808 |#2|))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3490 ((|#1| $) NIL) (((-113) $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2841 ((|#1| (-113) |#1|) NIL)) (-2493 (((-112) $) NIL)) (-2840 (($ |#1| (-354 (-113))) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2842 (($ $ (-1 |#1| |#1|)) NIL)) (-2843 (($ $ (-1 |#1| |#1|)) NIL)) (-4142 ((|#1| $ |#1|) NIL)) (-2844 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-2845 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ (-113) (-535)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
+(((-810 |#1|) (-13 (-1018) (-1009 |#1|) (-1009 (-113)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2845 ($ $)) (-15 -2845 ($ $ $)) (-15 -2844 (|#1| |#1|))) |%noBranch|) (-15 -2843 ($ $ (-1 |#1| |#1|))) (-15 -2842 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-535))) (-15 ** ($ $ (-535))) (-15 -2841 (|#1| (-113) |#1|)) (-15 -2840 ($ |#1| (-354 (-113)))))) (-1018)) (T -810))
+((-2845 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) (-2845 (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) (-2844 (*1 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))) (-2842 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-535)) (-5 *1 (-810 *4)) (-4 *4 (-1018)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-810 *3)) (-4 *3 (-1018)))) (-2841 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-810 *2)) (-4 *2 (-1018)))) (-2840 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-113))) (-5 *1 (-810 *2)) (-4 *2 (-1018)))))
+(-13 (-1018) (-1009 |#1|) (-1009 (-113)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2845 ($ $)) (-15 -2845 ($ $ $)) (-15 -2844 (|#1| |#1|))) |%noBranch|) (-15 -2843 ($ $ (-1 |#1| |#1|))) (-15 -2842 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-535))) (-15 ** ($ $ (-535))) (-15 -2841 (|#1| (-113) |#1|)) (-15 -2840 ($ |#1| (-354 (-113))))))
+((-2846 (((-208 (-493)) (-1124)) 9)))
+(((-811) (-10 -7 (-15 -2846 ((-208 (-493)) (-1124))))) (T -811))
+((-2846 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-208 (-493))) (-5 *1 (-811)))))
+(-10 -7 (-15 -2846 ((-208 (-493)) (-1124))))
+((-2887 (((-112) $ $) 7)) (-2847 (((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 14) (((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 13)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 16) (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 15)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)))
(((-812) (-138)) (T -812))
-((-3467 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (-5 *2 (-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)))))) (-3467 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) (-5 *2 (-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)))))) (-3947 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) (-5 *2 (-1006)))) (-3947 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (-5 *2 (-1006)))))
-(-13 (-1066) (-10 -7 (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -3947 ((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -3947 ((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-1517 (((-1006) (-621 (-309 (-372))) (-621 (-372))) 147) (((-1006) (-309 (-372)) (-621 (-372))) 145) (((-1006) (-309 (-372)) (-621 (-372)) (-621 (-816 (-372))) (-621 (-816 (-372)))) 144) (((-1006) (-309 (-372)) (-621 (-372)) (-621 (-816 (-372))) (-621 (-309 (-372))) (-621 (-816 (-372)))) 143) (((-1006) (-814)) 117) (((-1006) (-814) (-1030)) 116)) (-3467 (((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-814) (-1030)) 82) (((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-814)) 84)) (-3432 (((-1006) (-621 (-309 (-372))) (-621 (-372))) 148) (((-1006) (-814)) 133)))
-(((-813) (-10 -7 (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-814))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-814) (-1030))) (-15 -1517 ((-1006) (-814) (-1030))) (-15 -1517 ((-1006) (-814))) (-15 -3432 ((-1006) (-814))) (-15 -1517 ((-1006) (-309 (-372)) (-621 (-372)) (-621 (-816 (-372))) (-621 (-309 (-372))) (-621 (-816 (-372))))) (-15 -1517 ((-1006) (-309 (-372)) (-621 (-372)) (-621 (-816 (-372))) (-621 (-816 (-372))))) (-15 -1517 ((-1006) (-309 (-372)) (-621 (-372)))) (-15 -1517 ((-1006) (-621 (-309 (-372))) (-621 (-372)))) (-15 -3432 ((-1006) (-621 (-309 (-372))) (-621 (-372)))))) (T -813))
-((-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-309 (-372)))) (-5 *4 (-621 (-372))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1517 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-309 (-372)))) (-5 *4 (-621 (-372))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1517 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-372))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1517 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-372))) (-5 *5 (-621 (-816 (-372)))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1517 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-621 (-372))) (-5 *5 (-621 (-816 (-372)))) (-5 *6 (-621 (-309 (-372)))) (-5 *3 (-309 (-372))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-3432 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1517 (*1 *2 *3 *4) (-12 (-5 *3 (-814)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-813)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-814)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))))) (-5 *1 (-813)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))))) (-5 *1 (-813)))))
-(-10 -7 (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-814))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-814) (-1030))) (-15 -1517 ((-1006) (-814) (-1030))) (-15 -1517 ((-1006) (-814))) (-15 -3432 ((-1006) (-814))) (-15 -1517 ((-1006) (-309 (-372)) (-621 (-372)) (-621 (-816 (-372))) (-621 (-309 (-372))) (-621 (-816 (-372))))) (-15 -1517 ((-1006) (-309 (-372)) (-621 (-372)) (-621 (-816 (-372))) (-621 (-816 (-372))))) (-15 -1517 ((-1006) (-309 (-372)) (-621 (-372)))) (-15 -1517 ((-1006) (-621 (-309 (-372))) (-621 (-372)))) (-15 -3432 ((-1006) (-621 (-309 (-372))) (-621 (-372)))))
-((-3833 (((-112) $ $) NIL)) (-2658 (((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) $) 21)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 20) (($ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 14) (($ (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))))) 18)) (-2388 (((-112) $ $) NIL)))
-(((-814) (-13 (-1066) (-10 -8 (-15 -3845 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))))) (-15 -3845 ($ (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -3845 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))))) (-15 -3845 ((-834) $)) (-15 -2658 ((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) $))))) (T -814))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-814)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (-5 *1 (-814)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) (-5 *1 (-814)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))))) (-5 *1 (-814)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))))) (-5 *1 (-814)))))
-(-13 (-1066) (-10 -8 (-15 -3845 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))))) (-15 -3845 ($ (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -3845 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))))) (-15 -3845 ((-834) $)) (-15 -2658 ((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) $))))
-((-2796 (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|) (-816 |#2|) (-816 |#2|)) 13) (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)) 14)))
-(((-815 |#1| |#2|) (-10 -7 (-15 -2796 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|))) (-15 -2796 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|) (-816 |#2|) (-816 |#2|)))) (-1066) (-1066)) (T -815))
-((-2796 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-816 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *1 (-815 *5 *6)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6)))))
-(-10 -7 (-15 -2796 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|))) (-15 -2796 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|) (-816 |#2|) (-816 |#2|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL (|has| |#1| (-21)))) (-4183 (((-1086) $) 24)) (-2384 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3902 (((-549) $) NIL (|has| |#1| (-821)))) (-1705 (($) NIL (|has| |#1| (-21)) CONST)) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 16)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 9)) (-3976 (((-3 $ "failed") $) 47 (|has| |#1| (-821)))) (-3156 (((-3 (-400 (-549)) "failed") $) 54 (|has| |#1| (-534)))) (-3230 (((-112) $) 49 (|has| |#1| (-534)))) (-3867 (((-400 (-549)) $) 52 (|has| |#1| (-534)))) (-3079 (((-112) $) NIL (|has| |#1| (-821)))) (-3045 (($) 13)) (-3987 (((-112) $) NIL (|has| |#1| (-821)))) (-2847 (((-112) $) NIL (|has| |#1| (-821)))) (-3058 (($) 14)) (-2862 (($ $ $) NIL (|has| |#1| (-821)))) (-3574 (($ $ $) NIL (|has| |#1| (-821)))) (-2677 (((-1124) $) NIL)) (-2070 (((-112) $) 12)) (-3988 (((-1086) $) NIL)) (-1852 (((-112) $) 11)) (-3845 (((-834) $) 22) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) 8) (($ (-549)) NIL (-1536 (|has| |#1| (-821)) (|has| |#1| (-1009 (-549)))))) (-1723 (((-747)) 41 (|has| |#1| (-821)))) (-3603 (($ $) NIL (|has| |#1| (-821)))) (-3275 (($) 29 (|has| |#1| (-21)) CONST)) (-3287 (($) 38 (|has| |#1| (-821)) CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2388 (((-112) $ $) 27)) (-2436 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2411 (((-112) $ $) 48 (|has| |#1| (-821)))) (-2499 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2485 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-892)) NIL (|has| |#1| (-821))) (($ $ (-747)) NIL (|has| |#1| (-821)))) (* (($ $ $) 44 (|has| |#1| (-821))) (($ (-549) $) 32 (|has| |#1| (-21))) (($ (-747) $) NIL (|has| |#1| (-21))) (($ (-892) $) NIL (|has| |#1| (-21)))))
-(((-816 |#1|) (-13 (-1066) (-404 |#1|) (-10 -8 (-15 -3045 ($)) (-15 -3058 ($)) (-15 -1852 ((-112) $)) (-15 -2070 ((-112) $)) (-15 -4183 ((-1086) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3230 ((-112) $)) (-15 -3867 ((-400 (-549)) $)) (-15 -3156 ((-3 (-400 (-549)) "failed") $))) |%noBranch|))) (-1066)) (T -816))
-((-3045 (*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1066)))) (-3058 (*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1066)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-1066)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-1066)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-816 *3)) (-4 *3 (-1066)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-534)) (-4 *3 (-1066)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-816 *3)) (-4 *3 (-534)) (-4 *3 (-1066)))) (-3156 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-816 *3)) (-4 *3 (-534)) (-4 *3 (-1066)))))
-(-13 (-1066) (-404 |#1|) (-10 -8 (-15 -3045 ($)) (-15 -3058 ($)) (-15 -1852 ((-112) $)) (-15 -2070 ((-112) $)) (-15 -4183 ((-1086) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3230 ((-112) $)) (-15 -3867 ((-400 (-549)) $)) (-15 -3156 ((-3 (-400 (-549)) "failed") $))) |%noBranch|)))
-((-3833 (((-112) $ $) 7)) (-3615 (((-747)) 20)) (-3238 (($) 23)) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2723 (((-892) $) 22)) (-2677 (((-1124) $) 9)) (-3491 (($ (-892)) 21)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)))
+((-2989 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)))))) (-2989 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)))))) (-2847 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) (-5 *2 (-1006)))) (-2847 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (-5 *2 (-1006)))))
+(-13 (-1067) (-10 -7 (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -2847 ((-1006) (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -2847 ((-1006) (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2848 (((-1006) (-618 (-307 (-371))) (-618 (-371))) 147) (((-1006) (-307 (-371)) (-618 (-371))) 145) (((-1006) (-307 (-371)) (-618 (-371)) (-618 (-815 (-371))) (-618 (-815 (-371)))) 144) (((-1006) (-307 (-371)) (-618 (-371)) (-618 (-815 (-371))) (-618 (-307 (-371))) (-618 (-815 (-371)))) 143) (((-1006) (-814)) 117) (((-1006) (-814) (-1030)) 116)) (-2989 (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-814) (-1030)) 82) (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-814)) 84)) (-2849 (((-1006) (-618 (-307 (-371))) (-618 (-371))) 148) (((-1006) (-814)) 133)))
+(((-813) (-10 -7 (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-814))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-814) (-1030))) (-15 -2848 ((-1006) (-814) (-1030))) (-15 -2848 ((-1006) (-814))) (-15 -2849 ((-1006) (-814))) (-15 -2848 ((-1006) (-307 (-371)) (-618 (-371)) (-618 (-815 (-371))) (-618 (-307 (-371))) (-618 (-815 (-371))))) (-15 -2848 ((-1006) (-307 (-371)) (-618 (-371)) (-618 (-815 (-371))) (-618 (-815 (-371))))) (-15 -2848 ((-1006) (-307 (-371)) (-618 (-371)))) (-15 -2848 ((-1006) (-618 (-307 (-371))) (-618 (-371)))) (-15 -2849 ((-1006) (-618 (-307 (-371))) (-618 (-371)))))) (T -813))
+((-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-307 (-371)))) (-5 *4 (-618 (-371))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-307 (-371)))) (-5 *4 (-618 (-371))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-371))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2848 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-371))) (-5 *5 (-618 (-815 (-371)))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2848 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-618 (-371))) (-5 *5 (-618 (-815 (-371)))) (-5 *6 (-618 (-307 (-371)))) (-5 *3 (-307 (-371))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-814)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2989 (*1 *2 *3 *4) (-12 (-5 *3 (-814)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *1 (-813)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *1 (-813)))))
+(-10 -7 (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-814))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-814) (-1030))) (-15 -2848 ((-1006) (-814) (-1030))) (-15 -2848 ((-1006) (-814))) (-15 -2849 ((-1006) (-814))) (-15 -2848 ((-1006) (-307 (-371)) (-618 (-371)) (-618 (-815 (-371))) (-618 (-307 (-371))) (-618 (-815 (-371))))) (-15 -2848 ((-1006) (-307 (-371)) (-618 (-371)) (-618 (-815 (-371))) (-618 (-815 (-371))))) (-15 -2848 ((-1006) (-307 (-371)) (-618 (-371)))) (-15 -2848 ((-1006) (-618 (-307 (-371))) (-618 (-371)))) (-15 -2849 ((-1006) (-618 (-307 (-371))) (-618 (-371)))))
+((-2887 (((-112) $ $) NIL)) (-3490 (((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) $) 21)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20) (($ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) 14) (($ (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) 18)) (-3375 (((-112) $ $) NIL)))
+(((-814) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))))) (-15 -4300 ($ (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -4300 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) $))))) (T -814))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-814)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (-5 *1 (-814)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))) (-5 *1 (-814)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) (-5 *1 (-814)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219))))))) (-5 *1 (-814)))))
+(-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219))))))) (-15 -4300 ($ (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) (-15 -4300 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219))) (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219)))) (|:| |ub| (-618 (-815 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))) $))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL (|has| |#1| (-21)))) (-2850 (((-1086) $) 24)) (-1363 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3969 (((-535) $) NIL (|has| |#1| (-821)))) (-3879 (($) NIL (|has| |#1| (-21)) CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 16)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 9)) (-3804 (((-3 $ "failed") $) 47 (|has| |#1| (-821)))) (-3345 (((-3 (-400 (-535)) "failed") $) 54 (|has| |#1| (-534)))) (-3344 (((-112) $) 49 (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) 52 (|has| |#1| (-534)))) (-3520 (((-112) $) NIL (|has| |#1| (-821)))) (-2854 (($) 13)) (-2493 (((-112) $) NIL (|has| |#1| (-821)))) (-3521 (((-112) $) NIL (|has| |#1| (-821)))) (-2853 (($) 14)) (-3660 (($ $ $) NIL (|has| |#1| (-821)))) (-3661 (($ $ $) NIL (|has| |#1| (-821)))) (-3576 (((-1124) $) NIL)) (-2851 (((-112) $) 12)) (-3577 (((-1086) $) NIL)) (-2852 (((-112) $) 11)) (-4300 (((-835) $) 22) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) 8) (($ (-535)) NIL (-3874 (|has| |#1| (-821)) (|has| |#1| (-1009 (-535)))))) (-3444 (((-747)) 41 (|has| |#1| (-821)))) (-3725 (($ $) NIL (|has| |#1| (-821)))) (-2979 (($) 29 (|has| |#1| (-21)) CONST)) (-2985 (($) 38 (|has| |#1| (-821)) CONST)) (-2885 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3375 (((-112) $ $) 27)) (-3005 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3006 (((-112) $ $) 48 (|has| |#1| (-821)))) (-4180 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4182 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-890)) NIL (|has| |#1| (-821))) (($ $ (-747)) NIL (|has| |#1| (-821)))) (* (($ $ $) 44 (|has| |#1| (-821))) (($ (-535) $) 32 (|has| |#1| (-21))) (($ (-747) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-21)))))
+(((-815 |#1|) (-13 (-1067) (-405 |#1|) (-10 -8 (-15 -2854 ($)) (-15 -2853 ($)) (-15 -2852 ((-112) $)) (-15 -2851 ((-112) $)) (-15 -2850 ((-1086) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|))) (-1067)) (T -815))
+((-2854 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1067)))) (-2853 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1067)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-1067)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-1067)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-815 *3)) (-4 *3 (-1067)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-815 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) (-3345 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-815 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))))
+(-13 (-1067) (-405 |#1|) (-10 -8 (-15 -2854 ($)) (-15 -2853 ($)) (-15 -2852 ((-112) $)) (-15 -2851 ((-112) $)) (-15 -2850 ((-1086) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|)))
+((-4301 (((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|) (-815 |#2|) (-815 |#2|)) 13) (((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|)) 14)))
+(((-816 |#1| |#2|) (-10 -7 (-15 -4301 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|))) (-15 -4301 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|) (-815 |#2|) (-815 |#2|)))) (-1067) (-1067)) (T -816))
+((-4301 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-815 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *1 (-816 *5 *6)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-815 *6)) (-5 *1 (-816 *5 *6)))))
+(-10 -7 (-15 -4301 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|))) (-15 -4301 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|) (-815 |#2|) (-815 |#2|))))
+((-2887 (((-112) $ $) 7)) (-3454 (((-747)) 20)) (-3315 (($) 23)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-2121 (((-890) $) 22)) (-3576 (((-1124) $) 9)) (-2483 (($ (-890)) 21)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)))
(((-817) (-138)) (T -817))
NIL
(-13 (-823) (-361))
-(((-101) . T) ((-593 (-834)) . T) ((-361) . T) ((-823) . T) ((-1066) . T))
-((-2505 (((-112) (-1225 |#2|) (-1225 |#2|)) 17)) (-1716 (((-112) (-1225 |#2|) (-1225 |#2|)) 18)) (-3617 (((-112) (-1225 |#2|) (-1225 |#2|)) 14)))
-(((-818 |#1| |#2|) (-10 -7 (-15 -3617 ((-112) (-1225 |#2|) (-1225 |#2|))) (-15 -2505 ((-112) (-1225 |#2|) (-1225 |#2|))) (-15 -1716 ((-112) (-1225 |#2|) (-1225 |#2|)))) (-747) (-768)) (T -818))
-((-1716 (*1 *2 *3 *3) (-12 (-5 *3 (-1225 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))) (-2505 (*1 *2 *3 *3) (-12 (-5 *3 (-1225 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))) (-3617 (*1 *2 *3 *3) (-12 (-5 *3 (-1225 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))))
-(-10 -7 (-15 -3617 ((-112) (-1225 |#2|) (-1225 |#2|))) (-15 -2505 ((-112) (-1225 |#2|) (-1225 |#2|))) (-15 -1716 ((-112) (-1225 |#2|) (-1225 |#2|))))
-((-3833 (((-112) $ $) 7)) (-1705 (($) 23 T CONST)) (-3976 (((-3 $ "failed") $) 26)) (-3987 (((-112) $) 24)) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3287 (($) 22 T CONST)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)) (** (($ $ (-892)) 21) (($ $ (-747)) 25)) (* (($ $ $) 20)))
+(((-101) . T) ((-593 (-835)) . T) ((-361) . T) ((-823) . T) ((-1067) . T))
+((-2856 (((-112) (-1224 |#2|) (-1224 |#2|)) 17)) (-2857 (((-112) (-1224 |#2|) (-1224 |#2|)) 18)) (-2855 (((-112) (-1224 |#2|) (-1224 |#2|)) 14)))
+(((-818 |#1| |#2|) (-10 -7 (-15 -2855 ((-112) (-1224 |#2|) (-1224 |#2|))) (-15 -2856 ((-112) (-1224 |#2|) (-1224 |#2|))) (-15 -2857 ((-112) (-1224 |#2|) (-1224 |#2|)))) (-747) (-768)) (T -818))
+((-2857 (*1 *2 *3 *3) (-12 (-5 *3 (-1224 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))) (-2856 (*1 *2 *3 *3) (-12 (-5 *3 (-1224 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))) (-2855 (*1 *2 *3 *3) (-12 (-5 *3 (-1224 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))))
+(-10 -7 (-15 -2855 ((-112) (-1224 |#2|) (-1224 |#2|))) (-15 -2856 ((-112) (-1224 |#2|) (-1224 |#2|))) (-15 -2857 ((-112) (-1224 |#2|) (-1224 |#2|))))
+((-2887 (((-112) $ $) 7)) (-3879 (($) 23 T CONST)) (-3804 (((-3 $ "failed") $) 26)) (-2493 (((-112) $) 24)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2985 (($) 22 T CONST)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (** (($ $ (-890)) 21) (($ $ (-747)) 25)) (* (($ $ $) 20)))
(((-819) (-138)) (T -819))
NIL
(-13 (-830) (-703))
-(((-101) . T) ((-593 (-834)) . T) ((-703) . T) ((-830) . T) ((-823) . T) ((-1078) . T) ((-1066) . T))
-((-3902 (((-549) $) 17)) (-3079 (((-112) $) 10)) (-2847 (((-112) $) 11)) (-3603 (($ $) 19)))
-(((-820 |#1|) (-10 -8 (-15 -3603 (|#1| |#1|)) (-15 -3902 ((-549) |#1|)) (-15 -2847 ((-112) |#1|)) (-15 -3079 ((-112) |#1|))) (-821)) (T -820))
+(((-101) . T) ((-593 (-835)) . T) ((-703) . T) ((-830) . T) ((-823) . T) ((-1078) . T) ((-1067) . T))
+((-3969 (((-535) $) 17)) (-3520 (((-112) $) 10)) (-3521 (((-112) $) 11)) (-3725 (($ $) 19)))
+(((-820 |#1|) (-10 -8 (-15 -3725 (|#1| |#1|)) (-15 -3969 ((-535) |#1|)) (-15 -3521 ((-112) |#1|)) (-15 -3520 ((-112) |#1|))) (-821)) (T -820))
NIL
-(-10 -8 (-15 -3603 (|#1| |#1|)) (-15 -3902 ((-549) |#1|)) (-15 -2847 ((-112) |#1|)) (-15 -3079 ((-112) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 24)) (-2384 (((-3 $ "failed") $ $) 26)) (-3902 (((-549) $) 33)) (-1705 (($) 23 T CONST)) (-3976 (((-3 $ "failed") $) 38)) (-3079 (((-112) $) 35)) (-3987 (((-112) $) 40)) (-2847 (((-112) $) 34)) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ (-549)) 43)) (-1723 (((-747)) 42)) (-3603 (($ $) 32)) (-3275 (($) 22 T CONST)) (-3287 (($) 41 T CONST)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)) (-2499 (($ $ $) 28) (($ $) 27)) (-2485 (($ $ $) 20)) (** (($ $ (-747)) 39) (($ $ (-892)) 36)) (* (($ (-892) $) 21) (($ (-747) $) 25) (($ (-549) $) 29) (($ $ $) 37)))
+(-10 -8 (-15 -3725 (|#1| |#1|)) (-15 -3969 ((-535) |#1|)) (-15 -3521 ((-112) |#1|)) (-15 -3520 ((-112) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 24)) (-1363 (((-3 $ "failed") $ $) 26)) (-3969 (((-535) $) 33)) (-3879 (($) 23 T CONST)) (-3804 (((-3 $ "failed") $) 38)) (-3520 (((-112) $) 35)) (-2493 (((-112) $) 40)) (-3521 (((-112) $) 34)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 43)) (-3444 (((-747)) 42)) (-3725 (($ $) 32)) (-2979 (($) 22 T CONST)) (-2985 (($) 41 T CONST)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (-4180 (($ $ $) 28) (($ $) 27)) (-4182 (($ $ $) 20)) (** (($ $ (-747)) 39) (($ $ (-890)) 36)) (* (($ (-890) $) 21) (($ (-747) $) 25) (($ (-535) $) 29) (($ $ $) 37)))
(((-821) (-138)) (T -821))
-((-3079 (*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-549)))) (-3603 (*1 *1 *1) (-4 *1 (-821))))
-(-13 (-767) (-1018) (-703) (-10 -8 (-15 -3079 ((-112) $)) (-15 -2847 ((-112) $)) (-15 -3902 ((-549) $)) (-15 -3603 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-823) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-2862 (($ $ $) 10)) (-3574 (($ $ $) 9)) (-2448 (((-112) $ $) 13)) (-2424 (((-112) $ $) 11)) (-2436 (((-112) $ $) 14)))
-(((-822 |#1|) (-10 -8 (-15 -2862 (|#1| |#1| |#1|)) (-15 -3574 (|#1| |#1| |#1|)) (-15 -2436 ((-112) |#1| |#1|)) (-15 -2448 ((-112) |#1| |#1|)) (-15 -2424 ((-112) |#1| |#1|))) (-823)) (T -822))
-NIL
-(-10 -8 (-15 -2862 (|#1| |#1| |#1|)) (-15 -3574 (|#1| |#1| |#1|)) (-15 -2436 ((-112) |#1| |#1|)) (-15 -2448 ((-112) |#1| |#1|)) (-15 -2424 ((-112) |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)))
+((-3520 (*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-535)))) (-3725 (*1 *1 *1) (-4 *1 (-821))))
+(-13 (-767) (-1018) (-703) (-10 -8 (-15 -3520 ((-112) $)) (-15 -3521 ((-112) $)) (-15 -3969 ((-535) $)) (-15 -3725 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-823) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-3660 (($ $ $) 10)) (-3661 (($ $ $) 9)) (-2885 (((-112) $ $) 13)) (-2886 (((-112) $ $) 11)) (-3005 (((-112) $ $) 14)))
+(((-822 |#1|) (-10 -8 (-15 -3660 (|#1| |#1| |#1|)) (-15 -3661 (|#1| |#1| |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2885 ((-112) |#1| |#1|)) (-15 -2886 ((-112) |#1| |#1|))) (-823)) (T -822))
+NIL
+(-10 -8 (-15 -3660 (|#1| |#1| |#1|)) (-15 -3661 (|#1| |#1| |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2885 ((-112) |#1| |#1|)) (-15 -2886 ((-112) |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)))
(((-823) (-138)) (T -823))
-((-2411 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-2424 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-2448 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-2436 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-3574 (*1 *1 *1 *1) (-4 *1 (-823))) (-2862 (*1 *1 *1 *1) (-4 *1 (-823))))
-(-13 (-1066) (-10 -8 (-15 -2411 ((-112) $ $)) (-15 -2424 ((-112) $ $)) (-15 -2448 ((-112) $ $)) (-15 -2436 ((-112) $ $)) (-15 -3574 ($ $ $)) (-15 -2862 ($ $ $))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3106 (($ $ $) 45)) (-3059 (($ $ $) 44)) (-3125 (($ $ $) 42)) (-3239 (($ $ $) 51)) (-1864 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 46)) (-1507 (((-3 $ "failed") $ $) 49)) (-2713 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-4212 (($ $) 35)) (-3822 (($ $ $) 39)) (-2300 (($ $ $) 38)) (-4264 (($ $ $) 47)) (-2080 (($ $ $) 53)) (-2726 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 41)) (-1409 (((-3 $ "failed") $ $) 48)) (-2038 (((-3 $ "failed") $ |#2|) 28)) (-1931 ((|#2| $) 32)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL) (($ |#2|) 12)) (-3330 (((-621 |#2|) $) 18)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-824 |#1| |#2|) (-10 -8 (-15 -4264 (|#1| |#1| |#1|)) (-15 -1864 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4246 |#1|)) |#1| |#1|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -1507 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3106 (|#1| |#1| |#1|)) (-15 -3059 (|#1| |#1| |#1|)) (-15 -3125 (|#1| |#1| |#1|)) (-15 -2726 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4246 |#1|)) |#1| |#1|)) (-15 -2080 (|#1| |#1| |#1|)) (-15 -1409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3822 (|#1| |#1| |#1|)) (-15 -2300 (|#1| |#1| |#1|)) (-15 -4212 (|#1| |#1|)) (-15 -1931 (|#2| |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3330 ((-621 |#2|) |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 (|#1| (-549))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -3845 ((-834) |#1|))) (-825 |#2|) (-1018)) (T -824))
-NIL
-(-10 -8 (-15 -4264 (|#1| |#1| |#1|)) (-15 -1864 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4246 |#1|)) |#1| |#1|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -1507 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3106 (|#1| |#1| |#1|)) (-15 -3059 (|#1| |#1| |#1|)) (-15 -3125 (|#1| |#1| |#1|)) (-15 -2726 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4246 |#1|)) |#1| |#1|)) (-15 -2080 (|#1| |#1| |#1|)) (-15 -1409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3822 (|#1| |#1| |#1|)) (-15 -2300 (|#1| |#1| |#1|)) (-15 -4212 (|#1| |#1|)) (-15 -1931 (|#2| |#1|)) (-15 -2038 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3330 ((-621 |#2|) |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 (|#1| (-549))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3106 (($ $ $) 43 (|has| |#1| (-356)))) (-3059 (($ $ $) 44 (|has| |#1| (-356)))) (-3125 (($ $ $) 46 (|has| |#1| (-356)))) (-3239 (($ $ $) 41 (|has| |#1| (-356)))) (-1864 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 40 (|has| |#1| (-356)))) (-1507 (((-3 $ "failed") $ $) 42 (|has| |#1| (-356)))) (-4081 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 45 (|has| |#1| (-356)))) (-2713 (((-3 (-549) "failed") $) 72 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 70 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 67)) (-2658 (((-549) $) 73 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 71 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 66)) (-2069 (($ $) 62)) (-3976 (((-3 $ "failed") $) 32)) (-4212 (($ $) 53 (|has| |#1| (-444)))) (-3987 (((-112) $) 30)) (-2244 (($ |#1| (-747)) 60)) (-4190 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55 (|has| |#1| (-541)))) (-3070 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 56 (|has| |#1| (-541)))) (-2856 (((-747) $) 64)) (-3822 (($ $ $) 50 (|has| |#1| (-356)))) (-2300 (($ $ $) 51 (|has| |#1| (-356)))) (-4264 (($ $ $) 39 (|has| |#1| (-356)))) (-2080 (($ $ $) 48 (|has| |#1| (-356)))) (-2726 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 47 (|has| |#1| (-356)))) (-1409 (((-3 $ "failed") $ $) 49 (|has| |#1| (-356)))) (-3325 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 52 (|has| |#1| (-356)))) (-2042 ((|#1| $) 63)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-2038 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-541)))) (-3068 (((-747) $) 65)) (-1931 ((|#1| $) 54 (|has| |#1| (-444)))) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 69 (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) 68)) (-3330 (((-621 |#1|) $) 59)) (-2944 ((|#1| $ (-747)) 61)) (-1723 (((-747)) 28)) (-3592 ((|#1| $ |#1| |#1|) 58)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
+((-3006 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-2886 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-2885 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-3005 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-3661 (*1 *1 *1 *1) (-4 *1 (-823))) (-3660 (*1 *1 *1 *1) (-4 *1 (-823))))
+(-13 (-1067) (-10 -8 (-15 -3006 ((-112) $ $)) (-15 -2886 ((-112) $ $)) (-15 -2885 ((-112) $ $)) (-15 -3005 ((-112) $ $)) (-15 -3661 ($ $ $)) (-15 -3660 ($ $ $))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2862 (($ $ $) 45)) (-2863 (($ $ $) 44)) (-2864 (($ $ $) 42)) (-2860 (($ $ $) 51)) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 46)) (-2861 (((-3 $ "failed") $ $) 49)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3840 (($ $) 35)) (-2868 (($ $ $) 39)) (-2869 (($ $ $) 38)) (-2858 (($ $ $) 47)) (-2866 (($ $ $) 53)) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 41)) (-2867 (((-3 $ "failed") $ $) 48)) (-3803 (((-3 $ "failed") $ |#2|) 28)) (-3138 ((|#2| $) 32)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL) (($ |#2|) 12)) (-4160 (((-618 |#2|) $) 18)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-824 |#1| |#2|) (-10 -8 (-15 -2858 (|#1| |#1| |#1|)) (-15 -2859 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2492 |#1|)) |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2862 (|#1| |#1| |#1|)) (-15 -2863 (|#1| |#1| |#1|)) (-15 -2864 (|#1| |#1| |#1|)) (-15 -2865 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2492 |#1|)) |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2867 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2868 (|#1| |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4160 ((-618 |#2|) |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4300 ((-835) |#1|))) (-825 |#2|) (-1018)) (T -824))
+NIL
+(-10 -8 (-15 -2858 (|#1| |#1| |#1|)) (-15 -2859 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2492 |#1|)) |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2862 (|#1| |#1| |#1|)) (-15 -2863 (|#1| |#1| |#1|)) (-15 -2864 (|#1| |#1| |#1|)) (-15 -2865 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2492 |#1|)) |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2867 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2868 (|#1| |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3803 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4160 ((-618 |#2|) |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-2862 (($ $ $) 43 (|has| |#1| (-356)))) (-2863 (($ $ $) 44 (|has| |#1| (-356)))) (-2864 (($ $ $) 46 (|has| |#1| (-356)))) (-2860 (($ $ $) 41 (|has| |#1| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 40 (|has| |#1| (-356)))) (-2861 (((-3 $ "failed") $ $) 42 (|has| |#1| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 45 (|has| |#1| (-356)))) (-3491 (((-3 (-535) #1="failed") $) 72 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 70 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 67)) (-3490 (((-535) $) 73 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 71 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 66)) (-4302 (($ $) 62)) (-3804 (((-3 $ "failed") $) 32)) (-3840 (($ $) 53 (|has| |#1| (-444)))) (-2493 (((-112) $) 30)) (-3214 (($ |#1| (-747)) 60)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55 (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 56 (|has| |#1| (-542)))) (-3141 (((-747) $) 64)) (-2868 (($ $ $) 50 (|has| |#1| (-356)))) (-2869 (($ $ $) 51 (|has| |#1| (-356)))) (-2858 (($ $ $) 39 (|has| |#1| (-356)))) (-2866 (($ $ $) 48 (|has| |#1| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 47 (|has| |#1| (-356)))) (-2867 (((-3 $ "failed") $ $) 49 (|has| |#1| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 52 (|has| |#1| (-356)))) (-3508 ((|#1| $) 63)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-542)))) (-4290 (((-747) $) 65)) (-3138 ((|#1| $) 54 (|has| |#1| (-444)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 69 (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) 68)) (-4160 (((-618 |#1|) $) 59)) (-4023 ((|#1| $ (-747)) 61)) (-3444 (((-747)) 28)) (-2871 ((|#1| $ |#1| |#1|) 58)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
(((-825 |#1|) (-138) (-1018)) (T -825))
-((-3068 (*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-2069 (*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-2944 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-2244 (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-621 *3)))) (-3592 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-2038 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))) (-3070 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-825 *3)))) (-4190 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-825 *3)))) (-1931 (*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444)))) (-4212 (*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444)))) (-3325 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-825 *3)))) (-2300 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-3822 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-1409 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2080 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2726 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4246 *1))) (-4 *1 (-825 *3)))) (-3125 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-4081 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-825 *3)))) (-3059 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-3106 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-1507 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-3239 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-1864 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4246 *1))) (-4 *1 (-825 *3)))) (-4264 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(-13 (-1018) (-111 |t#1| |t#1|) (-404 |t#1|) (-10 -8 (-15 -3068 ((-747) $)) (-15 -2856 ((-747) $)) (-15 -2042 (|t#1| $)) (-15 -2069 ($ $)) (-15 -2944 (|t#1| $ (-747))) (-15 -2244 ($ |t#1| (-747))) (-15 -3330 ((-621 |t#1|) $)) (-15 -3592 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-541)) (PROGN (-15 -2038 ((-3 $ "failed") $ |t#1|)) (-15 -3070 ((-2 (|:| -2112 $) (|:| -3249 $)) $ $)) (-15 -4190 ((-2 (|:| -2112 $) (|:| -3249 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -1931 (|t#1| $)) (-15 -4212 ($ $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -3325 ((-2 (|:| -2112 $) (|:| -3249 $)) $ $)) (-15 -2300 ($ $ $)) (-15 -3822 ($ $ $)) (-15 -1409 ((-3 $ "failed") $ $)) (-15 -2080 ($ $ $)) (-15 -2726 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $)) (-15 -3125 ($ $ $)) (-15 -4081 ((-2 (|:| -2112 $) (|:| -3249 $)) $ $)) (-15 -3059 ($ $ $)) (-15 -3106 ($ $ $)) (-15 -1507 ((-3 $ "failed") $ $)) (-15 -3239 ($ $ $)) (-15 -1864 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $)) (-15 -4264 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-404 |#1|) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3482 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-4081 (((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-356)))) (-4190 (((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-541)))) (-3070 (((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-541)))) (-3325 (((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-356)))) (-3592 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31)))
-(((-826 |#1| |#2|) (-10 -7 (-15 -3482 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3592 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-541)) (PROGN (-15 -3070 ((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -4190 ((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3325 ((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -4081 ((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1018) (-825 |#1|)) (T -826))
-((-4081 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-3325 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-4190 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-541)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-3070 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-541)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-3592 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1018)) (-5 *1 (-826 *2 *3)) (-4 *3 (-825 *2)))) (-3482 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1018)) (-5 *1 (-826 *5 *2)) (-4 *2 (-825 *5)))))
-(-10 -7 (-15 -3482 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3592 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-541)) (PROGN (-15 -3070 ((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -4190 ((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3325 ((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -4081 ((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-3106 (($ $ $) NIL (|has| |#1| (-356)))) (-3059 (($ $ $) NIL (|has| |#1| (-356)))) (-3125 (($ $ $) NIL (|has| |#1| (-356)))) (-3239 (($ $ $) NIL (|has| |#1| (-356)))) (-1864 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-1507 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-4081 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 32 (|has| |#1| (-356)))) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-444)))) (-3895 (((-834) $ (-834)) NIL)) (-3987 (((-112) $) NIL)) (-2244 (($ |#1| (-747)) NIL)) (-4190 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 28 (|has| |#1| (-541)))) (-3070 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 26 (|has| |#1| (-541)))) (-2856 (((-747) $) NIL)) (-3822 (($ $ $) NIL (|has| |#1| (-356)))) (-2300 (($ $ $) NIL (|has| |#1| (-356)))) (-4264 (($ $ $) NIL (|has| |#1| (-356)))) (-2080 (($ $ $) NIL (|has| |#1| (-356)))) (-2726 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-1409 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3325 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 30 (|has| |#1| (-356)))) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-3068 (((-747) $) NIL)) (-1931 ((|#1| $) NIL (|has| |#1| (-444)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) NIL)) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-747)) NIL)) (-1723 (((-747)) NIL)) (-3592 ((|#1| $ |#1| |#1|) 15)) (-3275 (($) NIL T CONST)) (-3287 (($) 20 T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) 19) (($ $ (-747)) 22)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-827 |#1| |#2| |#3|) (-13 (-825 |#1|) (-10 -8 (-15 -3895 ((-834) $ (-834))))) (-1018) (-98 |#1|) (-1 |#1| |#1|)) (T -827))
-((-3895 (*1 *2 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-827 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-825 |#1|) (-10 -8 (-15 -3895 ((-834) $ (-834)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-3106 (($ $ $) NIL (|has| |#2| (-356)))) (-3059 (($ $ $) NIL (|has| |#2| (-356)))) (-3125 (($ $ $) NIL (|has| |#2| (-356)))) (-3239 (($ $ $) NIL (|has| |#2| (-356)))) (-1864 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#2| (-356)))) (-1507 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-4081 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#2| (-356)))) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 |#2| "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) ((|#2| $) NIL)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#2| (-444)))) (-3987 (((-112) $) NIL)) (-2244 (($ |#2| (-747)) 16)) (-4190 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#2| (-541)))) (-3070 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#2| (-541)))) (-2856 (((-747) $) NIL)) (-3822 (($ $ $) NIL (|has| |#2| (-356)))) (-2300 (($ $ $) NIL (|has| |#2| (-356)))) (-4264 (($ $ $) NIL (|has| |#2| (-356)))) (-2080 (($ $ $) NIL (|has| |#2| (-356)))) (-2726 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#2| (-356)))) (-1409 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-3325 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#2| (-356)))) (-2042 ((|#2| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2038 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541)))) (-3068 (((-747) $) NIL)) (-1931 ((|#2| $) NIL (|has| |#2| (-444)))) (-3845 (((-834) $) 23) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#2| (-1009 (-400 (-549))))) (($ |#2|) NIL) (($ (-1221 |#1|)) 18)) (-3330 (((-621 |#2|) $) NIL)) (-2944 ((|#2| $ (-747)) NIL)) (-1723 (((-747)) NIL)) (-3592 ((|#2| $ |#2| |#2|) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) 13 T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-828 |#1| |#2| |#3| |#4|) (-13 (-825 |#2|) (-10 -8 (-15 -3845 ($ (-1221 |#1|))))) (-1142) (-1018) (-98 |#2|) (-1 |#2| |#2|)) (T -828))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1221 *3)) (-14 *3 (-1142)) (-5 *1 (-828 *3 *4 *5 *6)) (-4 *4 (-1018)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-825 |#2|) (-10 -8 (-15 -3845 ($ (-1221 |#1|)))))
-((-1836 ((|#1| (-747) |#1|) 35 (|has| |#1| (-38 (-400 (-549)))))) (-2878 ((|#1| (-747) (-747) |#1|) 27) ((|#1| (-747) |#1|) 20)) (-2430 ((|#1| (-747) |#1|) 31)) (-2383 ((|#1| (-747) |#1|) 29)) (-1986 ((|#1| (-747) |#1|) 28)))
-(((-829 |#1|) (-10 -7 (-15 -1986 (|#1| (-747) |#1|)) (-15 -2383 (|#1| (-747) |#1|)) (-15 -2430 (|#1| (-747) |#1|)) (-15 -2878 (|#1| (-747) |#1|)) (-15 -2878 (|#1| (-747) (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1836 (|#1| (-747) |#1|)) |%noBranch|)) (-170)) (T -829))
-((-1836 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-170)))) (-2878 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-2878 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-2430 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-2383 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-1986 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))))
-(-10 -7 (-15 -1986 (|#1| (-747) |#1|)) (-15 -2383 (|#1| (-747) |#1|)) (-15 -2430 (|#1| (-747) |#1|)) (-15 -2878 (|#1| (-747) |#1|)) (-15 -2878 (|#1| (-747) (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1836 (|#1| (-747) |#1|)) |%noBranch|))
-((-3833 (((-112) $ $) 7)) (-2862 (($ $ $) 13)) (-3574 (($ $ $) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2448 (((-112) $ $) 16)) (-2424 (((-112) $ $) 17)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 15)) (-2411 (((-112) $ $) 18)) (** (($ $ (-892)) 21)) (* (($ $ $) 20)))
+((-4290 (*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-618 *3)))) (-2871 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-3803 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-542)))) (-2872 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3)))) (-2873 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444)))) (-2874 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3)))) (-2869 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2868 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2867 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2866 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2865 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2492 *1))) (-4 *1 (-825 *3)))) (-2864 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2875 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3)))) (-2863 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2861 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2860 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2859 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2492 *1))) (-4 *1 (-825 *3)))) (-2858 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(-13 (-1018) (-111 |t#1| |t#1|) (-405 |t#1|) (-10 -8 (-15 -4290 ((-747) $)) (-15 -3141 ((-747) $)) (-15 -3508 (|t#1| $)) (-15 -4302 ($ $)) (-15 -4023 (|t#1| $ (-747))) (-15 -3214 ($ |t#1| (-747))) (-15 -4160 ((-618 |t#1|) $)) (-15 -2871 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -3803 ((-3 $ "failed") $ |t#1|)) (-15 -2872 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -2873 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3138 (|t#1| $)) (-15 -3840 ($ $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -2874 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -2869 ($ $ $)) (-15 -2868 ($ $ $)) (-15 -2867 ((-3 $ "failed") $ $)) (-15 -2866 ($ $ $)) (-15 -2865 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $)) (-15 -2864 ($ $ $)) (-15 -2875 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -2863 ($ $ $)) (-15 -2862 ($ $ $)) (-15 -2861 ((-3 $ "failed") $ $)) (-15 -2860 ($ $ $)) (-15 -2859 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $)) (-15 -2858 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-405 |#1|) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2870 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-2875 (((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-356)))) (-2873 (((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-542)))) (-2874 (((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-356)))) (-2871 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31)))
+(((-826 |#1| |#2|) (-10 -7 (-15 -2870 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2871 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-542)) (PROGN (-15 -2872 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2873 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2874 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2875 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1018) (-825 |#1|)) (T -826))
+((-2875 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-2874 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-2873 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-2872 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-2871 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1018)) (-5 *1 (-826 *2 *3)) (-4 *3 (-825 *2)))) (-2870 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1018)) (-5 *1 (-826 *5 *2)) (-4 *2 (-825 *5)))))
+(-10 -7 (-15 -2870 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2871 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-542)) (PROGN (-15 -2872 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2873 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2874 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2875 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2860 (($ $ $) NIL (|has| |#1| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2861 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 32 (|has| |#1| (-356)))) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444)))) (-3870 (((-835) $ (-835)) NIL)) (-2493 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) NIL)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 28 (|has| |#1| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 26 (|has| |#1| (-542)))) (-3141 (((-747) $) NIL)) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (($ $ $) NIL (|has| |#1| (-356)))) (-2858 (($ $ $) NIL (|has| |#1| (-356)))) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-2867 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 30 (|has| |#1| (-356)))) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-542)))) (-4290 (((-747) $) NIL)) (-3138 ((|#1| $) NIL (|has| |#1| (-444)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#1| (-1009 (-400 (-535))))) (($ |#1|) NIL)) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) NIL)) (-3444 (((-747)) NIL)) (-2871 ((|#1| $ |#1| |#1|) 15)) (-2979 (($) NIL T CONST)) (-2985 (($) 20 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) 19) (($ $ (-747)) 22)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-827 |#1| |#2| |#3|) (-13 (-825 |#1|) (-10 -8 (-15 -3870 ((-835) $ (-835))))) (-1018) (-98 |#1|) (-1 |#1| |#1|)) (T -827))
+((-3870 (*1 *2 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-827 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-825 |#1|) (-10 -8 (-15 -3870 ((-835) $ (-835)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-2862 (($ $ $) NIL (|has| |#2| (-356)))) (-2863 (($ $ $) NIL (|has| |#2| (-356)))) (-2864 (($ $ $) NIL (|has| |#2| (-356)))) (-2860 (($ $ $) NIL (|has| |#2| (-356)))) (-2859 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#2| (-356)))) (-2861 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-356)))) (-2875 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-356)))) (-3491 (((-3 (-535) #2="failed") $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 |#2| #2#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) ((|#2| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#2| (-444)))) (-2493 (((-112) $) NIL)) (-3214 (($ |#2| (-747)) 16)) (-2873 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-542)))) (-2872 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-542)))) (-3141 (((-747) $) NIL)) (-2868 (($ $ $) NIL (|has| |#2| (-356)))) (-2869 (($ $ $) NIL (|has| |#2| (-356)))) (-2858 (($ $ $) NIL (|has| |#2| (-356)))) (-2866 (($ $ $) NIL (|has| |#2| (-356)))) (-2865 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#2| (-356)))) (-2867 (((-3 $ #1#) $ $) NIL (|has| |#2| (-356)))) (-2874 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-356)))) (-3508 ((|#2| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-542)))) (-4290 (((-747) $) NIL)) (-3138 ((|#2| $) NIL (|has| |#2| (-444)))) (-4300 (((-835) $) 23) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#2| (-1009 (-400 (-535))))) (($ |#2|) NIL) (($ (-1221 |#1|)) 18)) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-747)) NIL)) (-3444 (((-747)) NIL)) (-2871 ((|#2| $ |#2| |#2|) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) 13 T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-828 |#1| |#2| |#3| |#4|) (-13 (-825 |#2|) (-10 -8 (-15 -4300 ($ (-1221 |#1|))))) (-1142) (-1018) (-98 |#2|) (-1 |#2| |#2|)) (T -828))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *3)) (-14 *3 (-1142)) (-5 *1 (-828 *3 *4 *5 *6)) (-4 *4 (-1018)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-825 |#2|) (-10 -8 (-15 -4300 ($ (-1221 |#1|)))))
+((-2878 ((|#1| (-747) |#1|) 35 (|has| |#1| (-38 (-400 (-535)))))) (-2877 ((|#1| (-747) (-747) |#1|) 27) ((|#1| (-747) |#1|) 20)) (-2876 ((|#1| (-747) |#1|) 31)) (-3121 ((|#1| (-747) |#1|) 29)) (-3120 ((|#1| (-747) |#1|) 28)))
+(((-829 |#1|) (-10 -7 (-15 -3120 (|#1| (-747) |#1|)) (-15 -3121 (|#1| (-747) |#1|)) (-15 -2876 (|#1| (-747) |#1|)) (-15 -2877 (|#1| (-747) |#1|)) (-15 -2877 (|#1| (-747) (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -2878 (|#1| (-747) |#1|)) |%noBranch|)) (-170)) (T -829))
+((-2878 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-170)))) (-2877 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-2877 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-2876 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-3121 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-3120 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))))
+(-10 -7 (-15 -3120 (|#1| (-747) |#1|)) (-15 -3121 (|#1| (-747) |#1|)) (-15 -2876 (|#1| (-747) |#1|)) (-15 -2877 (|#1| (-747) |#1|)) (-15 -2877 (|#1| (-747) (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -2878 (|#1| (-747) |#1|)) |%noBranch|))
+((-2887 (((-112) $ $) 7)) (-3660 (($ $ $) 13)) (-3661 (($ $ $) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2885 (((-112) $ $) 16)) (-2886 (((-112) $ $) 17)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 15)) (-3006 (((-112) $ $) 18)) (** (($ $ (-890)) 21)) (* (($ $ $) 20)))
(((-830) (-138)) (T -830))
NIL
(-13 (-823) (-1078))
-(((-101) . T) ((-593 (-834)) . T) ((-823) . T) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-4160 (((-549) $) 12)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 18) (($ (-549)) 11)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 8)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 9)))
-(((-831) (-13 (-823) (-10 -8 (-15 -3845 ($ (-549))) (-15 -4160 ((-549) $))))) (T -831))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-831)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-831)))))
-(-13 (-823) (-10 -8 (-15 -3845 ($ (-549))) (-15 -4160 ((-549) $))))
-((-1258 (((-1086) $ (-128)) 17)))
-(((-832 |#1|) (-10 -8 (-15 -1258 ((-1086) |#1| (-128)))) (-833)) (T -832))
-NIL
-(-10 -8 (-15 -1258 ((-1086) |#1| (-128))))
-((-1258 (((-1086) $ (-128)) 7)) (-1607 (((-1086) $ (-129)) 8)) (-3559 (($ $) 6)))
-(((-833) (-138)) (T -833))
-((-1607 (*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-129)) (-5 *2 (-1086)))) (-1258 (*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-128)) (-5 *2 (-1086)))))
-(-13 (-171) (-10 -8 (-15 -1607 ((-1086) $ (-129))) (-15 -1258 ((-1086) $ (-128)))))
+(((-101) . T) ((-593 (-835)) . T) ((-823) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3744 (((-535) $) 12)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 18) (($ (-535)) 11)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 8)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 9)))
+(((-831) (-13 (-823) (-10 -8 (-15 -4300 ($ (-535))) (-15 -3744 ((-535) $))))) (T -831))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-831)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-831)))))
+(-13 (-823) (-10 -8 (-15 -4300 ($ (-535))) (-15 -3744 ((-535) $))))
+((-2879 (((-1230) (-618 (-51))) 24)) (-3797 (((-1230) (-1124) (-835)) 14) (((-1230) (-835)) 9) (((-1230) (-1124)) 11)))
+(((-832) (-10 -7 (-15 -3797 ((-1230) (-1124))) (-15 -3797 ((-1230) (-835))) (-15 -3797 ((-1230) (-1124) (-835))) (-15 -2879 ((-1230) (-618 (-51)))))) (T -832))
+((-2879 (*1 *2 *3) (-12 (-5 *3 (-618 (-51))) (-5 *2 (-1230)) (-5 *1 (-832)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-835)) (-5 *2 (-1230)) (-5 *1 (-832)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-832)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-832)))))
+(-10 -7 (-15 -3797 ((-1230) (-1124))) (-15 -3797 ((-1230) (-835))) (-15 -3797 ((-1230) (-1124) (-835))) (-15 -2879 ((-1230) (-618 (-51)))))
+((-2880 (((-1086) $ (-129)) 17)))
+(((-833 |#1|) (-10 -8 (-15 -2880 ((-1086) |#1| (-129)))) (-834)) (T -833))
+NIL
+(-10 -8 (-15 -2880 ((-1086) |#1| (-129))))
+((-2880 (((-1086) $ (-129)) 7)) (-2881 (((-1086) $ (-128)) 8)) (-1811 (($ $) 6)))
+(((-834) (-138)) (T -834))
+((-2881 (*1 *2 *1 *3) (-12 (-4 *1 (-834)) (-5 *3 (-128)) (-5 *2 (-1086)))) (-2880 (*1 *2 *1 *3) (-12 (-4 *1 (-834)) (-5 *3 (-129)) (-5 *2 (-1086)))))
+(-13 (-171) (-10 -8 (-15 -2881 ((-1086) $ (-128))) (-15 -2880 ((-1086) $ (-129)))))
(((-171) . T))
-((-3833 (((-112) $ $) NIL) (($ $ $) 77)) (-4151 (($ $ $) 115)) (-2341 (((-549) $) 30) (((-549)) 35)) (-3011 (($ (-549)) 44)) (-4020 (($ $ $) 45) (($ (-621 $)) 76)) (-2260 (($ $ (-621 $)) 74)) (-2942 (((-549) $) 33)) (-1929 (($ $ $) 63)) (-2820 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-1922 (((-549) $) 32)) (-3161 (($ $ $) 62)) (-1524 (($ $) 105)) (-2981 (($ $ $) 119)) (-2861 (($ (-621 $)) 52)) (-4218 (($ $ (-621 $)) 69)) (-3302 (($ (-549) (-549)) 46)) (-3932 (($ $) 116) (($ $ $) 117)) (-3847 (($ $ (-549)) 40) (($ $) 43)) (-2094 (($ $ $) 89)) (-4056 (($ $ $) 122)) (-3468 (($ $) 106)) (-2066 (($ $ $) 90)) (-3825 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1804 (((-1230) $) 8)) (-3368 (($ $) 109) (($ $ (-747)) 112)) (-3707 (($ $ $) 65)) (-4229 (($ $ $) 64)) (-1887 (($ $ (-621 $)) 100)) (-2982 (($ $ $) 104)) (-1758 (($ (-621 $)) 50)) (-3390 (($ $) 60) (($ (-621 $)) 61)) (-1297 (($ $ $) 113)) (-3380 (($ $) 107)) (-2207 (($ $ $) 118)) (-3895 (($ (-549)) 20) (($ (-1142)) 22) (($ (-1124)) 29) (($ (-219)) 24)) (-4205 (($ $ $) 93)) (-4007 (($ $) 94)) (-3650 (((-1230) (-1124)) 14)) (-3700 (($ (-1124)) 13)) (-3945 (($ (-621 (-621 $))) 49)) (-3837 (($ $ (-549)) 39) (($ $) 42)) (-2677 (((-1124) $) NIL)) (-3398 (($ $ $) 121)) (-1964 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2419 (((-112) $) 98)) (-2619 (($ $ (-621 $)) 102) (($ $ $ $) 103)) (-2302 (($ (-549)) 36)) (-4035 (((-549) $) 31) (((-549)) 34)) (-1985 (($ $ $) 37) (($ (-621 $)) 75)) (-3988 (((-1086) $) NIL)) (-2038 (($ $ $) 91)) (-1461 (($) 12)) (-3340 (($ $ (-621 $)) 99)) (-4140 (($ $) 108) (($ $ (-747)) 111)) (-2055 (($ $ $) 88)) (-3455 (($ $ (-747)) 127)) (-3032 (($ (-621 $)) 51)) (-3845 (((-834) $) 18)) (-2597 (($ $ (-549)) 38) (($ $) 41)) (-1351 (($ $) 58) (($ (-621 $)) 59)) (-4118 (($ $) 56) (($ (-621 $)) 57)) (-4136 (($ $) 114)) (-2410 (($ (-621 $)) 55)) (-2224 (($ $ $) 97)) (-3881 (($ $ $) 120)) (-1820 (($ $ $) 92)) (-1856 (($ $ $) 95) (($ $) 96)) (-2448 (($ $ $) 81)) (-2424 (($ $ $) 79)) (-2388 (((-112) $ $) 15) (($ $ $) 16)) (-2436 (($ $ $) 80)) (-2411 (($ $ $) 78)) (-2512 (($ $ $) 86)) (-2499 (($ $ $) 83) (($ $) 84)) (-2485 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-834) (-13 (-1066) (-10 -8 (-15 -1804 ((-1230) $)) (-15 -3700 ($ (-1124))) (-15 -3650 ((-1230) (-1124))) (-15 -3895 ($ (-549))) (-15 -3895 ($ (-1142))) (-15 -3895 ($ (-1124))) (-15 -3895 ($ (-219))) (-15 -1461 ($)) (-15 -2341 ((-549) $)) (-15 -4035 ((-549) $)) (-15 -2341 ((-549))) (-15 -4035 ((-549))) (-15 -1922 ((-549) $)) (-15 -2942 ((-549) $)) (-15 -2302 ($ (-549))) (-15 -3011 ($ (-549))) (-15 -3302 ($ (-549) (-549))) (-15 -3837 ($ $ (-549))) (-15 -3847 ($ $ (-549))) (-15 -2597 ($ $ (-549))) (-15 -3837 ($ $)) (-15 -3847 ($ $)) (-15 -2597 ($ $)) (-15 -1985 ($ $ $)) (-15 -4020 ($ $ $)) (-15 -1985 ($ (-621 $))) (-15 -4020 ($ (-621 $))) (-15 -1887 ($ $ (-621 $))) (-15 -2619 ($ $ (-621 $))) (-15 -2619 ($ $ $ $)) (-15 -2982 ($ $ $)) (-15 -2419 ((-112) $)) (-15 -3340 ($ $ (-621 $))) (-15 -1524 ($ $)) (-15 -3398 ($ $ $)) (-15 -4136 ($ $)) (-15 -3945 ($ (-621 (-621 $)))) (-15 -4151 ($ $ $)) (-15 -3932 ($ $)) (-15 -3932 ($ $ $)) (-15 -2207 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -3881 ($ $ $)) (-15 -4056 ($ $ $)) (-15 -3455 ($ $ (-747))) (-15 -2224 ($ $ $)) (-15 -3161 ($ $ $)) (-15 -1929 ($ $ $)) (-15 -4229 ($ $ $)) (-15 -3707 ($ $ $)) (-15 -4218 ($ $ (-621 $))) (-15 -2260 ($ $ (-621 $))) (-15 -3468 ($ $)) (-15 -4140 ($ $)) (-15 -4140 ($ $ (-747))) (-15 -3368 ($ $)) (-15 -3368 ($ $ (-747))) (-15 -3380 ($ $)) (-15 -1297 ($ $ $)) (-15 -2820 ($ $)) (-15 -2820 ($ $ $)) (-15 -2820 ($ $ $ $)) (-15 -3825 ($ $)) (-15 -3825 ($ $ $)) (-15 -3825 ($ $ $ $)) (-15 -1964 ($ $)) (-15 -1964 ($ $ $)) (-15 -1964 ($ $ $ $)) (-15 -4118 ($ $)) (-15 -4118 ($ (-621 $))) (-15 -1351 ($ $)) (-15 -1351 ($ (-621 $))) (-15 -3390 ($ $)) (-15 -3390 ($ (-621 $))) (-15 -1758 ($ (-621 $))) (-15 -3032 ($ (-621 $))) (-15 -2861 ($ (-621 $))) (-15 -2410 ($ (-621 $))) (-15 -2388 ($ $ $)) (-15 -3833 ($ $ $)) (-15 -2411 ($ $ $)) (-15 -2424 ($ $ $)) (-15 -2436 ($ $ $)) (-15 -2448 ($ $ $)) (-15 -2485 ($ $ $)) (-15 -2499 ($ $ $)) (-15 -2499 ($ $)) (-15 * ($ $ $)) (-15 -2512 ($ $ $)) (-15 ** ($ $ $)) (-15 -2055 ($ $ $)) (-15 -2094 ($ $ $)) (-15 -2066 ($ $ $)) (-15 -2038 ($ $ $)) (-15 -1820 ($ $ $)) (-15 -4205 ($ $ $)) (-15 -4007 ($ $)) (-15 -1856 ($ $ $)) (-15 -1856 ($ $))))) (T -834))
-((-1804 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-834)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-834)))) (-3650 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-834)))) (-3895 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-3895 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-834)))) (-3895 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-834)))) (-3895 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-834)))) (-1461 (*1 *1) (-5 *1 (-834))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-2341 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-4035 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-2302 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-3011 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-3302 (*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-3847 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-2597 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-3837 (*1 *1 *1) (-5 *1 (-834))) (-3847 (*1 *1 *1) (-5 *1 (-834))) (-2597 (*1 *1 *1) (-5 *1 (-834))) (-1985 (*1 *1 *1 *1) (-5 *1 (-834))) (-4020 (*1 *1 *1 *1) (-5 *1 (-834))) (-1985 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-4020 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-1887 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-2619 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-2619 (*1 *1 *1 *1 *1) (-5 *1 (-834))) (-2982 (*1 *1 *1 *1) (-5 *1 (-834))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-1524 (*1 *1 *1) (-5 *1 (-834))) (-3398 (*1 *1 *1 *1) (-5 *1 (-834))) (-4136 (*1 *1 *1) (-5 *1 (-834))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-834)))) (-5 *1 (-834)))) (-4151 (*1 *1 *1 *1) (-5 *1 (-834))) (-3932 (*1 *1 *1) (-5 *1 (-834))) (-3932 (*1 *1 *1 *1) (-5 *1 (-834))) (-2207 (*1 *1 *1 *1) (-5 *1 (-834))) (-2981 (*1 *1 *1 *1) (-5 *1 (-834))) (-3881 (*1 *1 *1 *1) (-5 *1 (-834))) (-4056 (*1 *1 *1 *1) (-5 *1 (-834))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-834)))) (-2224 (*1 *1 *1 *1) (-5 *1 (-834))) (-3161 (*1 *1 *1 *1) (-5 *1 (-834))) (-1929 (*1 *1 *1 *1) (-5 *1 (-834))) (-4229 (*1 *1 *1 *1) (-5 *1 (-834))) (-3707 (*1 *1 *1 *1) (-5 *1 (-834))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-2260 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-3468 (*1 *1 *1) (-5 *1 (-834))) (-4140 (*1 *1 *1) (-5 *1 (-834))) (-4140 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-834)))) (-3368 (*1 *1 *1) (-5 *1 (-834))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-834)))) (-3380 (*1 *1 *1) (-5 *1 (-834))) (-1297 (*1 *1 *1 *1) (-5 *1 (-834))) (-2820 (*1 *1 *1) (-5 *1 (-834))) (-2820 (*1 *1 *1 *1) (-5 *1 (-834))) (-2820 (*1 *1 *1 *1 *1) (-5 *1 (-834))) (-3825 (*1 *1 *1) (-5 *1 (-834))) (-3825 (*1 *1 *1 *1) (-5 *1 (-834))) (-3825 (*1 *1 *1 *1 *1) (-5 *1 (-834))) (-1964 (*1 *1 *1) (-5 *1 (-834))) (-1964 (*1 *1 *1 *1) (-5 *1 (-834))) (-1964 (*1 *1 *1 *1 *1) (-5 *1 (-834))) (-4118 (*1 *1 *1) (-5 *1 (-834))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-1351 (*1 *1 *1) (-5 *1 (-834))) (-1351 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-3390 (*1 *1 *1) (-5 *1 (-834))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-1758 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-3032 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-2861 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-2388 (*1 *1 *1 *1) (-5 *1 (-834))) (-3833 (*1 *1 *1 *1) (-5 *1 (-834))) (-2411 (*1 *1 *1 *1) (-5 *1 (-834))) (-2424 (*1 *1 *1 *1) (-5 *1 (-834))) (-2436 (*1 *1 *1 *1) (-5 *1 (-834))) (-2448 (*1 *1 *1 *1) (-5 *1 (-834))) (-2485 (*1 *1 *1 *1) (-5 *1 (-834))) (-2499 (*1 *1 *1 *1) (-5 *1 (-834))) (-2499 (*1 *1 *1) (-5 *1 (-834))) (* (*1 *1 *1 *1) (-5 *1 (-834))) (-2512 (*1 *1 *1 *1) (-5 *1 (-834))) (** (*1 *1 *1 *1) (-5 *1 (-834))) (-2055 (*1 *1 *1 *1) (-5 *1 (-834))) (-2094 (*1 *1 *1 *1) (-5 *1 (-834))) (-2066 (*1 *1 *1 *1) (-5 *1 (-834))) (-2038 (*1 *1 *1 *1) (-5 *1 (-834))) (-1820 (*1 *1 *1 *1) (-5 *1 (-834))) (-4205 (*1 *1 *1 *1) (-5 *1 (-834))) (-4007 (*1 *1 *1) (-5 *1 (-834))) (-1856 (*1 *1 *1 *1) (-5 *1 (-834))) (-1856 (*1 *1 *1) (-5 *1 (-834))))
-(-13 (-1066) (-10 -8 (-15 -1804 ((-1230) $)) (-15 -3700 ($ (-1124))) (-15 -3650 ((-1230) (-1124))) (-15 -3895 ($ (-549))) (-15 -3895 ($ (-1142))) (-15 -3895 ($ (-1124))) (-15 -3895 ($ (-219))) (-15 -1461 ($)) (-15 -2341 ((-549) $)) (-15 -4035 ((-549) $)) (-15 -2341 ((-549))) (-15 -4035 ((-549))) (-15 -1922 ((-549) $)) (-15 -2942 ((-549) $)) (-15 -2302 ($ (-549))) (-15 -3011 ($ (-549))) (-15 -3302 ($ (-549) (-549))) (-15 -3837 ($ $ (-549))) (-15 -3847 ($ $ (-549))) (-15 -2597 ($ $ (-549))) (-15 -3837 ($ $)) (-15 -3847 ($ $)) (-15 -2597 ($ $)) (-15 -1985 ($ $ $)) (-15 -4020 ($ $ $)) (-15 -1985 ($ (-621 $))) (-15 -4020 ($ (-621 $))) (-15 -1887 ($ $ (-621 $))) (-15 -2619 ($ $ (-621 $))) (-15 -2619 ($ $ $ $)) (-15 -2982 ($ $ $)) (-15 -2419 ((-112) $)) (-15 -3340 ($ $ (-621 $))) (-15 -1524 ($ $)) (-15 -3398 ($ $ $)) (-15 -4136 ($ $)) (-15 -3945 ($ (-621 (-621 $)))) (-15 -4151 ($ $ $)) (-15 -3932 ($ $)) (-15 -3932 ($ $ $)) (-15 -2207 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -3881 ($ $ $)) (-15 -4056 ($ $ $)) (-15 -3455 ($ $ (-747))) (-15 -2224 ($ $ $)) (-15 -3161 ($ $ $)) (-15 -1929 ($ $ $)) (-15 -4229 ($ $ $)) (-15 -3707 ($ $ $)) (-15 -4218 ($ $ (-621 $))) (-15 -2260 ($ $ (-621 $))) (-15 -3468 ($ $)) (-15 -4140 ($ $)) (-15 -4140 ($ $ (-747))) (-15 -3368 ($ $)) (-15 -3368 ($ $ (-747))) (-15 -3380 ($ $)) (-15 -1297 ($ $ $)) (-15 -2820 ($ $)) (-15 -2820 ($ $ $)) (-15 -2820 ($ $ $ $)) (-15 -3825 ($ $)) (-15 -3825 ($ $ $)) (-15 -3825 ($ $ $ $)) (-15 -1964 ($ $)) (-15 -1964 ($ $ $)) (-15 -1964 ($ $ $ $)) (-15 -4118 ($ $)) (-15 -4118 ($ (-621 $))) (-15 -1351 ($ $)) (-15 -1351 ($ (-621 $))) (-15 -3390 ($ $)) (-15 -3390 ($ (-621 $))) (-15 -1758 ($ (-621 $))) (-15 -3032 ($ (-621 $))) (-15 -2861 ($ (-621 $))) (-15 -2410 ($ (-621 $))) (-15 -2388 ($ $ $)) (-15 -3833 ($ $ $)) (-15 -2411 ($ $ $)) (-15 -2424 ($ $ $)) (-15 -2436 ($ $ $)) (-15 -2448 ($ $ $)) (-15 -2485 ($ $ $)) (-15 -2499 ($ $ $)) (-15 -2499 ($ $)) (-15 * ($ $ $)) (-15 -2512 ($ $ $)) (-15 ** ($ $ $)) (-15 -2055 ($ $ $)) (-15 -2094 ($ $ $)) (-15 -2066 ($ $ $)) (-15 -2038 ($ $ $)) (-15 -1820 ($ $ $)) (-15 -4205 ($ $ $)) (-15 -4007 ($ $)) (-15 -1856 ($ $ $)) (-15 -1856 ($ $))))
-((-3400 (((-1230) (-621 (-52))) 24)) (-2075 (((-1230) (-1124) (-834)) 14) (((-1230) (-834)) 9) (((-1230) (-1124)) 11)))
-(((-835) (-10 -7 (-15 -2075 ((-1230) (-1124))) (-15 -2075 ((-1230) (-834))) (-15 -2075 ((-1230) (-1124) (-834))) (-15 -3400 ((-1230) (-621 (-52)))))) (T -835))
-((-3400 (*1 *2 *3) (-12 (-5 *3 (-621 (-52))) (-5 *2 (-1230)) (-5 *1 (-835)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-834)) (-5 *2 (-1230)) (-5 *1 (-835)))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1230)) (-5 *1 (-835)))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-835)))))
-(-10 -7 (-15 -2075 ((-1230) (-1124))) (-15 -2075 ((-1230) (-834))) (-15 -2075 ((-1230) (-1124) (-834))) (-15 -3400 ((-1230) (-621 (-52)))))
-((-3833 (((-112) $ $) NIL)) (-3010 (((-3 $ "failed") (-1142)) 33)) (-3615 (((-747)) 31)) (-3238 (($) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2723 (((-892) $) 29)) (-2677 (((-1124) $) 39)) (-3491 (($ (-892)) 28)) (-3988 (((-1086) $) NIL)) (-2844 (((-1142) $) 13) (((-525) $) 19) (((-863 (-372)) $) 26) (((-863 (-549)) $) 22)) (-3845 (((-834) $) 16)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 36)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 35)))
-(((-836 |#1|) (-13 (-817) (-594 (-1142)) (-594 (-525)) (-594 (-863 (-372))) (-594 (-863 (-549))) (-10 -8 (-15 -3010 ((-3 $ "failed") (-1142))))) (-621 (-1142))) (T -836))
-((-3010 (*1 *1 *2) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-836 *3)) (-14 *3 (-621 *2)))))
-(-13 (-817) (-594 (-1142)) (-594 (-525)) (-594 (-863 (-372))) (-594 (-863 (-549))) (-10 -8 (-15 -3010 ((-3 $ "failed") (-1142)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) NIL)) (-3987 (((-112) $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (((-923 |#1|) $) NIL) (($ (-923 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-1723 (((-747)) NIL)) (-3565 (((-1230) (-747)) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2388 (((-112) $ $) NIL)) (-2512 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
-(((-837 |#1| |#2| |#3| |#4|) (-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3845 ((-923 |#1|) $)) (-15 -3845 ($ (-923 |#1|))) (IF (|has| |#1| (-356)) (-15 -2512 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3565 ((-1230) (-747))))) (-1018) (-621 (-1142)) (-621 (-747)) (-747)) (T -837))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-923 *3)) (-5 *1 (-837 *3 *4 *5 *6)) (-4 *3 (-1018)) (-14 *4 (-621 (-1142))) (-14 *5 (-621 (-747))) (-14 *6 (-747)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-923 *3)) (-4 *3 (-1018)) (-5 *1 (-837 *3 *4 *5 *6)) (-14 *4 (-621 (-1142))) (-14 *5 (-621 (-747))) (-14 *6 (-747)))) (-2512 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-837 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *2 (-1018)) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-747))) (-14 *5 (-747)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *4 (-1018)) (-14 *5 (-621 (-1142))) (-14 *6 (-621 *3)) (-14 *7 *3))))
-(-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3845 ((-923 |#1|) $)) (-15 -3845 ($ (-923 |#1|))) (IF (|has| |#1| (-356)) (-15 -2512 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3565 ((-1230) (-747)))))
-((-2412 (((-3 (-172 |#3|) "failed") (-747) (-747) |#2| |#2|) 31)) (-3918 (((-3 (-400 |#3|) "failed") (-747) (-747) |#2| |#2|) 24)))
-(((-838 |#1| |#2| |#3|) (-10 -7 (-15 -3918 ((-3 (-400 |#3|) "failed") (-747) (-747) |#2| |#2|)) (-15 -2412 ((-3 (-172 |#3|) "failed") (-747) (-747) |#2| |#2|))) (-356) (-1216 |#1|) (-1201 |#1|)) (T -838))
-((-2412 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-172 *6)) (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1216 *5)) (-4 *6 (-1201 *5)))) (-3918 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-400 *6)) (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1216 *5)) (-4 *6 (-1201 *5)))))
-(-10 -7 (-15 -3918 ((-3 (-400 |#3|) "failed") (-747) (-747) |#2| |#2|)) (-15 -2412 ((-3 (-172 |#3|) "failed") (-747) (-747) |#2| |#2|)))
-((-3918 (((-3 (-400 (-1198 |#2| |#1|)) "failed") (-747) (-747) (-1217 |#1| |#2| |#3|)) 28) (((-3 (-400 (-1198 |#2| |#1|)) "failed") (-747) (-747) (-1217 |#1| |#2| |#3|) (-1217 |#1| |#2| |#3|)) 26)))
-(((-839 |#1| |#2| |#3|) (-10 -7 (-15 -3918 ((-3 (-400 (-1198 |#2| |#1|)) "failed") (-747) (-747) (-1217 |#1| |#2| |#3|) (-1217 |#1| |#2| |#3|))) (-15 -3918 ((-3 (-400 (-1198 |#2| |#1|)) "failed") (-747) (-747) (-1217 |#1| |#2| |#3|)))) (-356) (-1142) |#1|) (T -839))
-((-3918 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1217 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1142)) (-14 *7 *5) (-5 *2 (-400 (-1198 *6 *5))) (-5 *1 (-839 *5 *6 *7)))) (-3918 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1217 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1142)) (-14 *7 *5) (-5 *2 (-400 (-1198 *6 *5))) (-5 *1 (-839 *5 *6 *7)))))
-(-10 -7 (-15 -3918 ((-3 (-400 (-1198 |#2| |#1|)) "failed") (-747) (-747) (-1217 |#1| |#2| |#3|) (-1217 |#1| |#2| |#3|))) (-15 -3918 ((-3 (-400 (-1198 |#2| |#1|)) "failed") (-747) (-747) (-1217 |#1| |#2| |#3|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-2134 (($ $ (-549)) 60)) (-2647 (((-112) $ $) 57)) (-1705 (($) 17 T CONST)) (-3932 (($ (-1138 (-549)) (-549)) 59)) (-2094 (($ $ $) 53)) (-3976 (((-3 $ "failed") $) 32)) (-3504 (($ $) 62)) (-2066 (($ $ $) 54)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-2078 (((-747) $) 67)) (-3987 (((-112) $) 30)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-2968 (((-549)) 64)) (-2013 (((-549) $) 63)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2975 (($ $ (-549)) 66)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-4091 (((-747) $) 56)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55)) (-1587 (((-1122 (-549)) $) 68)) (-1814 (($ $) 65)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-2660 (((-549) $ (-549)) 61)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
-(((-840 |#1|) (-138) (-549)) (T -840))
-((-1587 (*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-5 *2 (-1122 (-549))))) (-2078 (*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-5 *2 (-747)))) (-2975 (*1 *1 *1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))) (-1814 (*1 *1 *1) (-4 *1 (-840 *2))) (-2968 (*1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))) (-3504 (*1 *1 *1) (-4 *1 (-840 *2))) (-2660 (*1 *2 *1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))) (-2134 (*1 *1 *1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))) (-3932 (*1 *1 *2 *3) (-12 (-5 *2 (-1138 (-549))) (-5 *3 (-549)) (-4 *1 (-840 *4)))))
-(-13 (-300) (-145) (-10 -8 (-15 -1587 ((-1122 (-549)) $)) (-15 -2078 ((-747) $)) (-15 -2975 ($ $ (-549))) (-15 -1814 ($ $)) (-15 -2968 ((-549))) (-15 -2013 ((-549) $)) (-15 -3504 ($ $)) (-15 -2660 ((-549) $ (-549))) (-15 -2134 ($ $ (-549))) (-15 -3932 ($ (-1138 (-549)) (-549)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $ (-549)) NIL)) (-2647 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-3932 (($ (-1138 (-549)) (-549)) NIL)) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3504 (($ $) NIL)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2078 (((-747) $) NIL)) (-3987 (((-112) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2968 (((-549)) NIL)) (-2013 (((-549) $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2975 (($ $ (-549)) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-1587 (((-1122 (-549)) $) NIL)) (-1814 (($ $) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL)) (-1723 (((-747)) NIL)) (-4053 (((-112) $ $) NIL)) (-2660 (((-549) $ (-549)) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL)))
-(((-841 |#1|) (-840 |#1|) (-549)) (T -841))
-NIL
-(-840 |#1|)
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2364 (((-841 |#1|) $) NIL (|has| (-841 |#1|) (-300)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-841 |#1|) (-880)))) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| (-841 |#1|) (-880)))) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL (|has| (-841 |#1|) (-796)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-841 |#1|) "failed") $) NIL) (((-3 (-1142) "failed") $) NIL (|has| (-841 |#1|) (-1009 (-1142)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-841 |#1|) (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| (-841 |#1|) (-1009 (-549))))) (-2658 (((-841 |#1|) $) NIL) (((-1142) $) NIL (|has| (-841 |#1|) (-1009 (-1142)))) (((-400 (-549)) $) NIL (|has| (-841 |#1|) (-1009 (-549)))) (((-549) $) NIL (|has| (-841 |#1|) (-1009 (-549))))) (-3817 (($ $) NIL) (($ (-549) $) NIL)) (-2094 (($ $ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| (-841 |#1|) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| (-841 |#1|) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-841 |#1|))) (|:| |vec| (-1225 (-841 |#1|)))) (-665 $) (-1225 $)) NIL) (((-665 (-841 |#1|)) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| (-841 |#1|) (-534)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3079 (((-112) $) NIL (|has| (-841 |#1|) (-796)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-841 |#1|) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-841 |#1|) (-857 (-372))))) (-3987 (((-112) $) NIL)) (-2053 (($ $) NIL)) (-1393 (((-841 |#1|) $) NIL)) (-3982 (((-3 $ "failed") $) NIL (|has| (-841 |#1|) (-1117)))) (-2847 (((-112) $) NIL (|has| (-841 |#1|) (-796)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2862 (($ $ $) NIL (|has| (-841 |#1|) (-823)))) (-3574 (($ $ $) NIL (|has| (-841 |#1|) (-823)))) (-2796 (($ (-1 (-841 |#1|) (-841 |#1|)) $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| (-841 |#1|) (-1117)) CONST)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1260 (($ $) NIL (|has| (-841 |#1|) (-300)))) (-4060 (((-841 |#1|) $) NIL (|has| (-841 |#1|) (-534)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-841 |#1|) (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-841 |#1|) (-880)))) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2685 (($ $ (-621 (-841 |#1|)) (-621 (-841 |#1|))) NIL (|has| (-841 |#1|) (-302 (-841 |#1|)))) (($ $ (-841 |#1|) (-841 |#1|)) NIL (|has| (-841 |#1|) (-302 (-841 |#1|)))) (($ $ (-287 (-841 |#1|))) NIL (|has| (-841 |#1|) (-302 (-841 |#1|)))) (($ $ (-621 (-287 (-841 |#1|)))) NIL (|has| (-841 |#1|) (-302 (-841 |#1|)))) (($ $ (-621 (-1142)) (-621 (-841 |#1|))) NIL (|has| (-841 |#1|) (-505 (-1142) (-841 |#1|)))) (($ $ (-1142) (-841 |#1|)) NIL (|has| (-841 |#1|) (-505 (-1142) (-841 |#1|))))) (-4091 (((-747) $) NIL)) (-3340 (($ $ (-841 |#1|)) NIL (|has| (-841 |#1|) (-279 (-841 |#1|) (-841 |#1|))))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3455 (($ $) NIL (|has| (-841 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-841 |#1|) (-227))) (($ $ (-1142)) NIL (|has| (-841 |#1|) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-841 |#1|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-841 |#1|) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-841 |#1|) (-871 (-1142)))) (($ $ (-1 (-841 |#1|) (-841 |#1|)) (-747)) NIL) (($ $ (-1 (-841 |#1|) (-841 |#1|))) NIL)) (-4288 (($ $) NIL)) (-1404 (((-841 |#1|) $) NIL)) (-2844 (((-863 (-549)) $) NIL (|has| (-841 |#1|) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-841 |#1|) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-841 |#1|) (-594 (-525)))) (((-372) $) NIL (|has| (-841 |#1|) (-993))) (((-219) $) NIL (|has| (-841 |#1|) (-993)))) (-2020 (((-172 (-400 (-549))) $) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-841 |#1|) (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-841 |#1|)) NIL) (($ (-1142)) NIL (|has| (-841 |#1|) (-1009 (-1142))))) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-841 |#1|) (-880))) (|has| (-841 |#1|) (-143))))) (-1723 (((-747)) NIL)) (-2926 (((-841 |#1|) $) NIL (|has| (-841 |#1|) (-534)))) (-4053 (((-112) $ $) NIL)) (-2660 (((-400 (-549)) $ (-549)) NIL)) (-3603 (($ $) NIL (|has| (-841 |#1|) (-796)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $) NIL (|has| (-841 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-841 |#1|) (-227))) (($ $ (-1142)) NIL (|has| (-841 |#1|) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-841 |#1|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-841 |#1|) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-841 |#1|) (-871 (-1142)))) (($ $ (-1 (-841 |#1|) (-841 |#1|)) (-747)) NIL) (($ $ (-1 (-841 |#1|) (-841 |#1|))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-841 |#1|) (-823)))) (-2424 (((-112) $ $) NIL (|has| (-841 |#1|) (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| (-841 |#1|) (-823)))) (-2411 (((-112) $ $) NIL (|has| (-841 |#1|) (-823)))) (-2512 (($ $ $) NIL) (($ (-841 |#1|) (-841 |#1|)) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-841 |#1|) $) NIL) (($ $ (-841 |#1|)) NIL)))
-(((-842 |#1|) (-13 (-963 (-841 |#1|)) (-10 -8 (-15 -2660 ((-400 (-549)) $ (-549))) (-15 -2020 ((-172 (-400 (-549))) $)) (-15 -3817 ($ $)) (-15 -3817 ($ (-549) $)))) (-549)) (T -842))
-((-2660 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-842 *4)) (-14 *4 *3) (-5 *3 (-549)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-549)))) (-5 *1 (-842 *3)) (-14 *3 (-549)))) (-3817 (*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-14 *2 (-549)))) (-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-842 *3)) (-14 *3 *2))))
-(-13 (-963 (-841 |#1|)) (-10 -8 (-15 -2660 ((-400 (-549)) $ (-549))) (-15 -2020 ((-172 (-400 (-549))) $)) (-15 -3817 ($ $)) (-15 -3817 ($ (-549) $))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2364 ((|#2| $) NIL (|has| |#2| (-300)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL (|has| |#2| (-796)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#2| "failed") $) NIL) (((-3 (-1142) "failed") $) NIL (|has| |#2| (-1009 (-1142)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549))))) (-2658 ((|#2| $) NIL) (((-1142) $) NIL (|has| |#2| (-1009 (-1142)))) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-549)))) (((-549) $) NIL (|has| |#2| (-1009 (-549))))) (-3817 (($ $) 31) (($ (-549) $) 32)) (-2094 (($ $ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) 53)) (-3238 (($) NIL (|has| |#2| (-534)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3079 (((-112) $) NIL (|has| |#2| (-796)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| |#2| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| |#2| (-857 (-372))))) (-3987 (((-112) $) NIL)) (-2053 (($ $) NIL)) (-1393 ((|#2| $) NIL)) (-3982 (((-3 $ "failed") $) NIL (|has| |#2| (-1117)))) (-2847 (((-112) $) NIL (|has| |#2| (-796)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2862 (($ $ $) NIL (|has| |#2| (-823)))) (-3574 (($ $ $) NIL (|has| |#2| (-823)))) (-2796 (($ (-1 |#2| |#2|) $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 49)) (-3060 (($) NIL (|has| |#2| (-1117)) CONST)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1260 (($ $) NIL (|has| |#2| (-300)))) (-4060 ((|#2| $) NIL (|has| |#2| (-534)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2685 (($ $ (-621 |#2|) (-621 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-302 |#2|))) (($ $ (-287 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ (-621 (-287 |#2|))) NIL (|has| |#2| (-302 |#2|))) (($ $ (-621 (-1142)) (-621 |#2|)) NIL (|has| |#2| (-505 (-1142) |#2|))) (($ $ (-1142) |#2|) NIL (|has| |#2| (-505 (-1142) |#2|)))) (-4091 (((-747) $) NIL)) (-3340 (($ $ |#2|) NIL (|has| |#2| (-279 |#2| |#2|)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3455 (($ $) NIL (|has| |#2| (-227))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4288 (($ $) NIL)) (-1404 ((|#2| $) NIL)) (-2844 (((-863 (-549)) $) NIL (|has| |#2| (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| |#2| (-594 (-863 (-372))))) (((-525) $) NIL (|has| |#2| (-594 (-525)))) (((-372) $) NIL (|has| |#2| (-993))) (((-219) $) NIL (|has| |#2| (-993)))) (-2020 (((-172 (-400 (-549))) $) 68)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880))))) (-3845 (((-834) $) 87) (($ (-549)) 19) (($ $) NIL) (($ (-400 (-549))) 24) (($ |#2|) 18) (($ (-1142)) NIL (|has| |#2| (-1009 (-1142))))) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#2| (-143))))) (-1723 (((-747)) NIL)) (-2926 ((|#2| $) NIL (|has| |#2| (-534)))) (-4053 (((-112) $ $) NIL)) (-2660 (((-400 (-549)) $ (-549)) 60)) (-3603 (($ $) NIL (|has| |#2| (-796)))) (-3275 (($) 14 T CONST)) (-3287 (($) 16 T CONST)) (-1700 (($ $) NIL (|has| |#2| (-227))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2388 (((-112) $ $) 35)) (-2436 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2512 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2499 (($ $) 39) (($ $ $) 41)) (-2485 (($ $ $) 37)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 50)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 42) (($ $ $) 44) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-843 |#1| |#2|) (-13 (-963 |#2|) (-10 -8 (-15 -2660 ((-400 (-549)) $ (-549))) (-15 -2020 ((-172 (-400 (-549))) $)) (-15 -3817 ($ $)) (-15 -3817 ($ (-549) $)))) (-549) (-840 |#1|)) (T -843))
-((-2660 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-400 (-549))) (-5 *1 (-843 *4 *5)) (-5 *3 (-549)) (-4 *5 (-840 *4)))) (-2020 (*1 *2 *1) (-12 (-14 *3 (-549)) (-5 *2 (-172 (-400 (-549)))) (-5 *1 (-843 *3 *4)) (-4 *4 (-840 *3)))) (-3817 (*1 *1 *1) (-12 (-14 *2 (-549)) (-5 *1 (-843 *2 *3)) (-4 *3 (-840 *2)))) (-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-14 *3 *2) (-5 *1 (-843 *3 *4)) (-4 *4 (-840 *3)))))
-(-13 (-963 |#2|) (-10 -8 (-15 -2660 ((-400 (-549)) $ (-549))) (-15 -2020 ((-172 (-400 (-549))) $)) (-15 -3817 ($ $)) (-15 -3817 ($ (-549) $))))
-((-3833 (((-112) $ $) NIL (-12 (|has| |#1| (-1066)) (|has| |#2| (-1066))))) (-2828 ((|#2| $) 12)) (-3527 (($ |#1| |#2|) 9)) (-2677 (((-1124) $) NIL (-12 (|has| |#1| (-1066)) (|has| |#2| (-1066))))) (-3988 (((-1086) $) NIL (-12 (|has| |#1| (-1066)) (|has| |#2| (-1066))))) (-3645 ((|#1| $) 11)) (-3853 (($ |#1| |#2|) 10)) (-3845 (((-834) $) 18 (-1536 (-12 (|has| |#1| (-593 (-834))) (|has| |#2| (-593 (-834)))) (-12 (|has| |#1| (-1066)) (|has| |#2| (-1066)))))) (-2388 (((-112) $ $) 22 (-12 (|has| |#1| (-1066)) (|has| |#2| (-1066))))))
-(((-844 |#1| |#2|) (-13 (-1179) (-10 -8 (IF (|has| |#1| (-593 (-834))) (IF (|has| |#2| (-593 (-834))) (-6 (-593 (-834))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1066)) (IF (|has| |#2| (-1066)) (-6 (-1066)) |%noBranch|) |%noBranch|) (-15 -3527 ($ |#1| |#2|)) (-15 -3853 ($ |#1| |#2|)) (-15 -3645 (|#1| $)) (-15 -2828 (|#2| $)))) (-1179) (-1179)) (T -844))
-((-3527 (*1 *1 *2 *3) (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1179)) (-4 *3 (-1179)))) (-3853 (*1 *1 *2 *3) (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1179)) (-4 *3 (-1179)))) (-3645 (*1 *2 *1) (-12 (-4 *2 (-1179)) (-5 *1 (-844 *2 *3)) (-4 *3 (-1179)))) (-2828 (*1 *2 *1) (-12 (-4 *2 (-1179)) (-5 *1 (-844 *3 *2)) (-4 *3 (-1179)))))
-(-13 (-1179) (-10 -8 (IF (|has| |#1| (-593 (-834))) (IF (|has| |#2| (-593 (-834))) (-6 (-593 (-834))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1066)) (IF (|has| |#2| (-1066)) (-6 (-1066)) |%noBranch|) |%noBranch|) (-15 -3527 ($ |#1| |#2|)) (-15 -3853 ($ |#1| |#2|)) (-15 -3645 (|#1| $)) (-15 -2828 (|#2| $))))
-((-3833 (((-112) $ $) NIL)) (-1357 (((-549) $) 15)) (-2764 (($ (-155)) 11)) (-3009 (($ (-155)) 12)) (-2677 (((-1124) $) NIL)) (-1621 (((-155) $) 13)) (-3988 (((-1086) $) NIL)) (-2727 (($ (-155)) 9)) (-2443 (($ (-155)) 8)) (-3845 (((-834) $) 23) (($ (-155)) 16)) (-3270 (($ (-155)) 10)) (-2388 (((-112) $ $) NIL)))
-(((-845) (-13 (-1066) (-10 -8 (-15 -2443 ($ (-155))) (-15 -2727 ($ (-155))) (-15 -3270 ($ (-155))) (-15 -2764 ($ (-155))) (-15 -3009 ($ (-155))) (-15 -1621 ((-155) $)) (-15 -1357 ((-549) $)) (-15 -3845 ($ (-155)))))) (T -845))
-((-2443 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-2727 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-3270 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-2764 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-3009 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-845)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
-(-13 (-1066) (-10 -8 (-15 -2443 ($ (-155))) (-15 -2727 ($ (-155))) (-15 -3270 ($ (-155))) (-15 -2764 ($ (-155))) (-15 -3009 ($ (-155))) (-15 -1621 ((-155) $)) (-15 -1357 ((-549) $)) (-15 -3845 ($ (-155)))))
-((-3845 (((-309 (-549)) (-400 (-923 (-48)))) 23) (((-309 (-549)) (-923 (-48))) 18)))
-(((-846) (-10 -7 (-15 -3845 ((-309 (-549)) (-923 (-48)))) (-15 -3845 ((-309 (-549)) (-400 (-923 (-48))))))) (T -846))
-((-3845 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 (-48)))) (-5 *2 (-309 (-549))) (-5 *1 (-846)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-923 (-48))) (-5 *2 (-309 (-549))) (-5 *1 (-846)))))
-(-10 -7 (-15 -3845 ((-309 (-549)) (-923 (-48)))) (-15 -3845 ((-309 (-549)) (-400 (-923 (-48))))))
-((-2796 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 14)))
-(((-847 |#1| |#2|) (-10 -7 (-15 -2796 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) (-1179) (-1179)) (T -847))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6)))))
-(-10 -7 (-15 -2796 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|))))
-((-2953 (($ |#1| |#1|) 8)) (-4116 ((|#1| $ (-747)) 10)))
-(((-848 |#1|) (-10 -8 (-15 -2953 ($ |#1| |#1|)) (-15 -4116 (|#1| $ (-747)))) (-1179)) (T -848))
-((-4116 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-848 *2)) (-4 *2 (-1179)))) (-2953 (*1 *1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1179)))))
-(-10 -8 (-15 -2953 ($ |#1| |#1|)) (-15 -4116 (|#1| $ (-747))))
-((-2796 (((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)) 14)))
-(((-849 |#1| |#2|) (-10 -7 (-15 -2796 ((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)))) (-1179) (-1179)) (T -849))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-850 *6)) (-5 *1 (-849 *5 *6)))))
-(-10 -7 (-15 -2796 ((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|))))
-((-2953 (($ |#1| |#1| |#1|) 8)) (-4116 ((|#1| $ (-747)) 10)))
-(((-850 |#1|) (-10 -8 (-15 -2953 ($ |#1| |#1| |#1|)) (-15 -4116 (|#1| $ (-747)))) (-1179)) (T -850))
-((-4116 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-850 *2)) (-4 *2 (-1179)))) (-2953 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-850 *2)) (-4 *2 (-1179)))))
-(-10 -8 (-15 -2953 ($ |#1| |#1| |#1|)) (-15 -4116 (|#1| $ (-747))))
-((-3092 (((-621 (-1147)) (-1124)) 9)))
-(((-851) (-10 -7 (-15 -3092 ((-621 (-1147)) (-1124))))) (T -851))
-((-3092 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-621 (-1147))) (-5 *1 (-851)))))
-(-10 -7 (-15 -3092 ((-621 (-1147)) (-1124))))
-((-2796 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14)))
-(((-852 |#1| |#2|) (-10 -7 (-15 -2796 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) (-1179) (-1179)) (T -852))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))))
-(-10 -7 (-15 -2796 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))))
-((-2958 (($ |#1| |#1| |#1|) 8)) (-4116 ((|#1| $ (-747)) 10)))
-(((-853 |#1|) (-10 -8 (-15 -2958 ($ |#1| |#1| |#1|)) (-15 -4116 (|#1| $ (-747)))) (-1179)) (T -853))
-((-4116 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-853 *2)) (-4 *2 (-1179)))) (-2958 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1179)))))
-(-10 -8 (-15 -2958 ($ |#1| |#1| |#1|)) (-15 -4116 (|#1| $ (-747))))
-((-3772 (((-1122 (-621 (-549))) (-621 (-549)) (-1122 (-621 (-549)))) 32)) (-1537 (((-1122 (-621 (-549))) (-621 (-549)) (-621 (-549))) 28)) (-3358 (((-1122 (-621 (-549))) (-621 (-549))) 41) (((-1122 (-621 (-549))) (-621 (-549)) (-621 (-549))) 40)) (-4194 (((-1122 (-621 (-549))) (-549)) 42)) (-3237 (((-1122 (-621 (-549))) (-549) (-549)) 22) (((-1122 (-621 (-549))) (-549)) 16) (((-1122 (-621 (-549))) (-549) (-549) (-549)) 12)) (-1939 (((-1122 (-621 (-549))) (-1122 (-621 (-549)))) 26)) (-2538 (((-621 (-549)) (-621 (-549))) 25)))
-(((-854) (-10 -7 (-15 -3237 ((-1122 (-621 (-549))) (-549) (-549) (-549))) (-15 -3237 ((-1122 (-621 (-549))) (-549))) (-15 -3237 ((-1122 (-621 (-549))) (-549) (-549))) (-15 -2538 ((-621 (-549)) (-621 (-549)))) (-15 -1939 ((-1122 (-621 (-549))) (-1122 (-621 (-549))))) (-15 -1537 ((-1122 (-621 (-549))) (-621 (-549)) (-621 (-549)))) (-15 -3772 ((-1122 (-621 (-549))) (-621 (-549)) (-1122 (-621 (-549))))) (-15 -3358 ((-1122 (-621 (-549))) (-621 (-549)) (-621 (-549)))) (-15 -3358 ((-1122 (-621 (-549))) (-621 (-549)))) (-15 -4194 ((-1122 (-621 (-549))) (-549))))) (T -854))
-((-4194 (*1 *2 *3) (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549)))) (-3358 (*1 *2 *3) (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-621 (-549))))) (-3358 (*1 *2 *3 *3) (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-621 (-549))))) (-3772 (*1 *2 *3 *2) (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *3 (-621 (-549))) (-5 *1 (-854)))) (-1537 (*1 *2 *3 *3) (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-621 (-549))))) (-1939 (*1 *2 *2) (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)))) (-2538 (*1 *2 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-854)))) (-3237 (*1 *2 *3 *3) (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549)))) (-3237 (*1 *2 *3) (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549)))) (-3237 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549)))))
-(-10 -7 (-15 -3237 ((-1122 (-621 (-549))) (-549) (-549) (-549))) (-15 -3237 ((-1122 (-621 (-549))) (-549))) (-15 -3237 ((-1122 (-621 (-549))) (-549) (-549))) (-15 -2538 ((-621 (-549)) (-621 (-549)))) (-15 -1939 ((-1122 (-621 (-549))) (-1122 (-621 (-549))))) (-15 -1537 ((-1122 (-621 (-549))) (-621 (-549)) (-621 (-549)))) (-15 -3772 ((-1122 (-621 (-549))) (-621 (-549)) (-1122 (-621 (-549))))) (-15 -3358 ((-1122 (-621 (-549))) (-621 (-549)) (-621 (-549)))) (-15 -3358 ((-1122 (-621 (-549))) (-621 (-549)))) (-15 -4194 ((-1122 (-621 (-549))) (-549))))
-((-2844 (((-863 (-372)) $) 9 (|has| |#1| (-594 (-863 (-372))))) (((-863 (-549)) $) 8 (|has| |#1| (-594 (-863 (-549)))))))
-(((-855 |#1|) (-138) (-1179)) (T -855))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-594 (-863 (-549)))) (-6 (-594 (-863 (-549)))) |%noBranch|) (IF (|has| |t#1| (-594 (-863 (-372)))) (-6 (-594 (-863 (-372)))) |%noBranch|)))
-(((-594 (-863 (-372))) |has| |#1| (-594 (-863 (-372)))) ((-594 (-863 (-549))) |has| |#1| (-594 (-863 (-549)))))
-((-3833 (((-112) $ $) NIL)) (-3743 (($) 14)) (-4184 (($ (-860 |#1| |#2|) (-860 |#1| |#3|)) 27)) (-3182 (((-860 |#1| |#3|) $) 16)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1276 (((-112) $) 22)) (-4150 (($) 19)) (-3845 (((-834) $) 30)) (-2286 (((-860 |#1| |#2|) $) 15)) (-2388 (((-112) $ $) 25)))
-(((-856 |#1| |#2| |#3|) (-13 (-1066) (-10 -8 (-15 -1276 ((-112) $)) (-15 -4150 ($)) (-15 -3743 ($)) (-15 -4184 ($ (-860 |#1| |#2|) (-860 |#1| |#3|))) (-15 -2286 ((-860 |#1| |#2|) $)) (-15 -3182 ((-860 |#1| |#3|) $)))) (-1066) (-1066) (-642 |#2|)) (T -856))
-((-1276 (*1 *2 *1) (-12 (-4 *4 (-1066)) (-5 *2 (-112)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1066)) (-4 *5 (-642 *4)))) (-4150 (*1 *1) (-12 (-4 *3 (-1066)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1066)) (-4 *4 (-642 *3)))) (-3743 (*1 *1) (-12 (-4 *3 (-1066)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1066)) (-4 *4 (-642 *3)))) (-4184 (*1 *1 *2 *3) (-12 (-5 *2 (-860 *4 *5)) (-5 *3 (-860 *4 *6)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-642 *5)) (-5 *1 (-856 *4 *5 *6)))) (-2286 (*1 *2 *1) (-12 (-4 *4 (-1066)) (-5 *2 (-860 *3 *4)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1066)) (-4 *5 (-642 *4)))) (-3182 (*1 *2 *1) (-12 (-4 *4 (-1066)) (-5 *2 (-860 *3 *5)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1066)) (-4 *5 (-642 *4)))))
-(-13 (-1066) (-10 -8 (-15 -1276 ((-112) $)) (-15 -4150 ($)) (-15 -3743 ($)) (-15 -4184 ($ (-860 |#1| |#2|) (-860 |#1| |#3|))) (-15 -2286 ((-860 |#1| |#2|) $)) (-15 -3182 ((-860 |#1| |#3|) $))))
-((-3833 (((-112) $ $) 7)) (-1289 (((-860 |#1| $) $ (-863 |#1|) (-860 |#1| $)) 13)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2388 (((-112) $ $) 6)))
-(((-857 |#1|) (-138) (-1066)) (T -857))
-((-1289 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-860 *4 *1)) (-5 *3 (-863 *4)) (-4 *1 (-857 *4)) (-4 *4 (-1066)))))
-(-13 (-1066) (-10 -8 (-15 -1289 ((-860 |t#1| $) $ (-863 |t#1|) (-860 |t#1| $)))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-1581 (((-112) (-621 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1737 (((-860 |#1| |#2|) |#2| |#3|) 43 (-12 (-4007 (|has| |#2| (-1009 (-1142)))) (-4007 (|has| |#2| (-1018))))) (((-621 (-287 (-923 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1018)) (-4007 (|has| |#2| (-1009 (-1142)))))) (((-621 (-287 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1009 (-1142)))) (((-856 |#1| |#2| (-621 |#2|)) (-621 |#2|) |#3|) 21)))
-(((-858 |#1| |#2| |#3|) (-10 -7 (-15 -1581 ((-112) |#2| |#3|)) (-15 -1581 ((-112) (-621 |#2|) |#3|)) (-15 -1737 ((-856 |#1| |#2| (-621 |#2|)) (-621 |#2|) |#3|)) (IF (|has| |#2| (-1009 (-1142))) (-15 -1737 ((-621 (-287 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1018)) (-15 -1737 ((-621 (-287 (-923 |#2|))) |#2| |#3|)) (-15 -1737 ((-860 |#1| |#2|) |#2| |#3|))))) (-1066) (-857 |#1|) (-594 (-863 |#1|))) (T -858))
-((-1737 (*1 *2 *3 *4) (-12 (-4 *5 (-1066)) (-5 *2 (-860 *5 *3)) (-5 *1 (-858 *5 *3 *4)) (-4007 (-4 *3 (-1009 (-1142)))) (-4007 (-4 *3 (-1018))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5))))) (-1737 (*1 *2 *3 *4) (-12 (-4 *5 (-1066)) (-5 *2 (-621 (-287 (-923 *3)))) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-1018)) (-4007 (-4 *3 (-1009 (-1142)))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5))))) (-1737 (*1 *2 *3 *4) (-12 (-4 *5 (-1066)) (-5 *2 (-621 (-287 *3))) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-1009 (-1142))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5))))) (-1737 (*1 *2 *3 *4) (-12 (-4 *5 (-1066)) (-4 *6 (-857 *5)) (-5 *2 (-856 *5 *6 (-621 *6))) (-5 *1 (-858 *5 *6 *4)) (-5 *3 (-621 *6)) (-4 *4 (-594 (-863 *5))))) (-1581 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6)) (-4 *6 (-857 *5)) (-4 *5 (-1066)) (-5 *2 (-112)) (-5 *1 (-858 *5 *6 *4)) (-4 *4 (-594 (-863 *5))))) (-1581 (*1 *2 *3 *4) (-12 (-4 *5 (-1066)) (-5 *2 (-112)) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5))))))
-(-10 -7 (-15 -1581 ((-112) |#2| |#3|)) (-15 -1581 ((-112) (-621 |#2|) |#3|)) (-15 -1737 ((-856 |#1| |#2| (-621 |#2|)) (-621 |#2|) |#3|)) (IF (|has| |#2| (-1009 (-1142))) (-15 -1737 ((-621 (-287 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1018)) (-15 -1737 ((-621 (-287 (-923 |#2|))) |#2| |#3|)) (-15 -1737 ((-860 |#1| |#2|) |#2| |#3|)))))
-((-2796 (((-860 |#1| |#3|) (-1 |#3| |#2|) (-860 |#1| |#2|)) 22)))
-(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-860 |#1| |#3|) (-1 |#3| |#2|) (-860 |#1| |#2|)))) (-1066) (-1066) (-1066)) (T -859))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-860 *5 *6)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-860 *5 *7)) (-5 *1 (-859 *5 *6 *7)))))
-(-10 -7 (-15 -2796 ((-860 |#1| |#3|) (-1 |#3| |#2|) (-860 |#1| |#2|))))
-((-3833 (((-112) $ $) NIL)) (-1440 (($ $ $) 39)) (-3536 (((-3 (-112) "failed") $ (-863 |#1|)) 36)) (-3743 (($) 12)) (-2677 (((-1124) $) NIL)) (-3071 (($ (-863 |#1|) |#2| $) 20)) (-3988 (((-1086) $) NIL)) (-2447 (((-3 |#2| "failed") (-863 |#1|) $) 50)) (-1276 (((-112) $) 15)) (-4150 (($) 13)) (-2196 (((-621 (-2 (|:| -3337 (-1142)) (|:| -1792 |#2|))) $) 25)) (-3853 (($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 |#2|)))) 23)) (-3845 (((-834) $) 44)) (-3711 (($ (-863 |#1|) |#2| $ |#2|) 48)) (-4310 (($ (-863 |#1|) |#2| $) 47)) (-2388 (((-112) $ $) 41)))
-(((-860 |#1| |#2|) (-13 (-1066) (-10 -8 (-15 -1276 ((-112) $)) (-15 -4150 ($)) (-15 -3743 ($)) (-15 -1440 ($ $ $)) (-15 -2447 ((-3 |#2| "failed") (-863 |#1|) $)) (-15 -4310 ($ (-863 |#1|) |#2| $)) (-15 -3071 ($ (-863 |#1|) |#2| $)) (-15 -3711 ($ (-863 |#1|) |#2| $ |#2|)) (-15 -2196 ((-621 (-2 (|:| -3337 (-1142)) (|:| -1792 |#2|))) $)) (-15 -3853 ($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 |#2|))))) (-15 -3536 ((-3 (-112) "failed") $ (-863 |#1|))))) (-1066) (-1066)) (T -860))
-((-1276 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-860 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)))) (-4150 (*1 *1) (-12 (-5 *1 (-860 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))) (-3743 (*1 *1) (-12 (-5 *1 (-860 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))) (-1440 (*1 *1 *1 *1) (-12 (-5 *1 (-860 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))) (-2447 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-863 *4)) (-4 *4 (-1066)) (-4 *2 (-1066)) (-5 *1 (-860 *4 *2)))) (-4310 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-863 *4)) (-4 *4 (-1066)) (-5 *1 (-860 *4 *3)) (-4 *3 (-1066)))) (-3071 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-863 *4)) (-4 *4 (-1066)) (-5 *1 (-860 *4 *3)) (-4 *3 (-1066)))) (-3711 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-863 *4)) (-4 *4 (-1066)) (-5 *1 (-860 *4 *3)) (-4 *3 (-1066)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 *4)))) (-5 *1 (-860 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 *4)))) (-4 *4 (-1066)) (-5 *1 (-860 *3 *4)) (-4 *3 (-1066)))) (-3536 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-863 *4)) (-4 *4 (-1066)) (-5 *2 (-112)) (-5 *1 (-860 *4 *5)) (-4 *5 (-1066)))))
-(-13 (-1066) (-10 -8 (-15 -1276 ((-112) $)) (-15 -4150 ($)) (-15 -3743 ($)) (-15 -1440 ($ $ $)) (-15 -2447 ((-3 |#2| "failed") (-863 |#1|) $)) (-15 -4310 ($ (-863 |#1|) |#2| $)) (-15 -3071 ($ (-863 |#1|) |#2| $)) (-15 -3711 ($ (-863 |#1|) |#2| $ |#2|)) (-15 -2196 ((-621 (-2 (|:| -3337 (-1142)) (|:| -1792 |#2|))) $)) (-15 -3853 ($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 |#2|))))) (-15 -3536 ((-3 (-112) "failed") $ (-863 |#1|)))))
-((-1862 (((-863 |#1|) (-863 |#1|) (-621 (-1142)) (-1 (-112) (-621 |#2|))) 32) (((-863 |#1|) (-863 |#1|) (-621 (-1 (-112) |#2|))) 43) (((-863 |#1|) (-863 |#1|) (-1 (-112) |#2|)) 35)) (-3536 (((-112) (-621 |#2|) (-863 |#1|)) 40) (((-112) |#2| (-863 |#1|)) 36)) (-2823 (((-1 (-112) |#2|) (-863 |#1|)) 16)) (-3081 (((-621 |#2|) (-863 |#1|)) 24)) (-3580 (((-863 |#1|) (-863 |#1|) |#2|) 20)))
-(((-861 |#1| |#2|) (-10 -7 (-15 -1862 ((-863 |#1|) (-863 |#1|) (-1 (-112) |#2|))) (-15 -1862 ((-863 |#1|) (-863 |#1|) (-621 (-1 (-112) |#2|)))) (-15 -1862 ((-863 |#1|) (-863 |#1|) (-621 (-1142)) (-1 (-112) (-621 |#2|)))) (-15 -2823 ((-1 (-112) |#2|) (-863 |#1|))) (-15 -3536 ((-112) |#2| (-863 |#1|))) (-15 -3536 ((-112) (-621 |#2|) (-863 |#1|))) (-15 -3580 ((-863 |#1|) (-863 |#1|) |#2|)) (-15 -3081 ((-621 |#2|) (-863 |#1|)))) (-1066) (-1179)) (T -861))
-((-3081 (*1 *2 *3) (-12 (-5 *3 (-863 *4)) (-4 *4 (-1066)) (-5 *2 (-621 *5)) (-5 *1 (-861 *4 *5)) (-4 *5 (-1179)))) (-3580 (*1 *2 *2 *3) (-12 (-5 *2 (-863 *4)) (-4 *4 (-1066)) (-5 *1 (-861 *4 *3)) (-4 *3 (-1179)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6)) (-5 *4 (-863 *5)) (-4 *5 (-1066)) (-4 *6 (-1179)) (-5 *2 (-112)) (-5 *1 (-861 *5 *6)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *4 (-863 *5)) (-4 *5 (-1066)) (-5 *2 (-112)) (-5 *1 (-861 *5 *3)) (-4 *3 (-1179)))) (-2823 (*1 *2 *3) (-12 (-5 *3 (-863 *4)) (-4 *4 (-1066)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-861 *4 *5)) (-4 *5 (-1179)))) (-1862 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-863 *5)) (-5 *3 (-621 (-1142))) (-5 *4 (-1 (-112) (-621 *6))) (-4 *5 (-1066)) (-4 *6 (-1179)) (-5 *1 (-861 *5 *6)))) (-1862 (*1 *2 *2 *3) (-12 (-5 *2 (-863 *4)) (-5 *3 (-621 (-1 (-112) *5))) (-4 *4 (-1066)) (-4 *5 (-1179)) (-5 *1 (-861 *4 *5)))) (-1862 (*1 *2 *2 *3) (-12 (-5 *2 (-863 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1066)) (-4 *5 (-1179)) (-5 *1 (-861 *4 *5)))))
-(-10 -7 (-15 -1862 ((-863 |#1|) (-863 |#1|) (-1 (-112) |#2|))) (-15 -1862 ((-863 |#1|) (-863 |#1|) (-621 (-1 (-112) |#2|)))) (-15 -1862 ((-863 |#1|) (-863 |#1|) (-621 (-1142)) (-1 (-112) (-621 |#2|)))) (-15 -2823 ((-1 (-112) |#2|) (-863 |#1|))) (-15 -3536 ((-112) |#2| (-863 |#1|))) (-15 -3536 ((-112) (-621 |#2|) (-863 |#1|))) (-15 -3580 ((-863 |#1|) (-863 |#1|) |#2|)) (-15 -3081 ((-621 |#2|) (-863 |#1|))))
-((-2796 (((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)) 19)))
-(((-862 |#1| |#2|) (-10 -7 (-15 -2796 ((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)))) (-1066) (-1066)) (T -862))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-863 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-863 *6)) (-5 *1 (-862 *5 *6)))))
-(-10 -7 (-15 -2796 ((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|))))
-((-3833 (((-112) $ $) NIL)) (-2372 (($ $ (-621 (-52))) 64)) (-2271 (((-621 $) $) 118)) (-1337 (((-2 (|:| |var| (-621 (-1142))) (|:| |pred| (-52))) $) 24)) (-1874 (((-112) $) 30)) (-1870 (($ $ (-621 (-1142)) (-52)) 25)) (-3110 (($ $ (-621 (-52))) 63)) (-2713 (((-3 |#1| "failed") $) 61) (((-3 (-1142) "failed") $) 140)) (-2658 ((|#1| $) 58) (((-1142) $) NIL)) (-2420 (($ $) 108)) (-3779 (((-112) $) 47)) (-3511 (((-621 (-52)) $) 45)) (-1328 (($ (-1142) (-112) (-112) (-112)) 65)) (-2336 (((-3 (-621 $) "failed") (-621 $)) 72)) (-1696 (((-112) $) 50)) (-4223 (((-112) $) 49)) (-2677 (((-1124) $) NIL)) (-4201 (((-3 (-621 $) "failed") $) 36)) (-3980 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1572 (((-3 (-2 (|:| |val| $) (|:| -3577 $)) "failed") $) 83)) (-1462 (((-3 (-621 $) "failed") $) 33)) (-3746 (((-3 (-621 $) "failed") $ (-114)) 107) (((-3 (-2 (|:| -2719 (-114)) (|:| |arg| (-621 $))) "failed") $) 95)) (-2453 (((-3 (-621 $) "failed") $) 37)) (-4219 (((-3 (-2 (|:| |val| $) (|:| -3577 (-747))) "failed") $) 40)) (-2639 (((-112) $) 29)) (-3988 (((-1086) $) NIL)) (-1841 (((-112) $) 21)) (-1797 (((-112) $) 46)) (-3819 (((-621 (-52)) $) 111)) (-3458 (((-112) $) 48)) (-3340 (($ (-114) (-621 $)) 92)) (-1319 (((-747) $) 28)) (-2281 (($ $) 62)) (-2844 (($ (-621 $)) 59)) (-3983 (((-112) $) 26)) (-3845 (((-834) $) 53) (($ |#1|) 18) (($ (-1142)) 66)) (-3580 (($ $ (-52)) 110)) (-3275 (($) 91 T CONST)) (-3287 (($) 73 T CONST)) (-2388 (((-112) $ $) 79)) (-2512 (($ $ $) 100)) (-2485 (($ $ $) 104)) (** (($ $ (-747)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
-(((-863 |#1|) (-13 (-1066) (-1009 |#1|) (-1009 (-1142)) (-10 -8 (-15 0 ($) -2588) (-15 1 ($) -2588) (-15 -1462 ((-3 (-621 $) "failed") $)) (-15 -4201 ((-3 (-621 $) "failed") $)) (-15 -3746 ((-3 (-621 $) "failed") $ (-114))) (-15 -3746 ((-3 (-2 (|:| -2719 (-114)) (|:| |arg| (-621 $))) "failed") $)) (-15 -4219 ((-3 (-2 (|:| |val| $) (|:| -3577 (-747))) "failed") $)) (-15 -3980 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2453 ((-3 (-621 $) "failed") $)) (-15 -1572 ((-3 (-2 (|:| |val| $) (|:| -3577 $)) "failed") $)) (-15 -3340 ($ (-114) (-621 $))) (-15 -2485 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ $)) (-15 -2512 ($ $ $)) (-15 -1319 ((-747) $)) (-15 -2844 ($ (-621 $))) (-15 -2281 ($ $)) (-15 -2639 ((-112) $)) (-15 -3779 ((-112) $)) (-15 -1874 ((-112) $)) (-15 -3983 ((-112) $)) (-15 -3458 ((-112) $)) (-15 -4223 ((-112) $)) (-15 -1696 ((-112) $)) (-15 -1797 ((-112) $)) (-15 -3511 ((-621 (-52)) $)) (-15 -3110 ($ $ (-621 (-52)))) (-15 -2372 ($ $ (-621 (-52)))) (-15 -1328 ($ (-1142) (-112) (-112) (-112))) (-15 -1870 ($ $ (-621 (-1142)) (-52))) (-15 -1337 ((-2 (|:| |var| (-621 (-1142))) (|:| |pred| (-52))) $)) (-15 -1841 ((-112) $)) (-15 -2420 ($ $)) (-15 -3580 ($ $ (-52))) (-15 -3819 ((-621 (-52)) $)) (-15 -2271 ((-621 $) $)) (-15 -2336 ((-3 (-621 $) "failed") (-621 $))))) (-1066)) (T -863))
-((-3275 (*1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066)))) (-3287 (*1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066)))) (-1462 (*1 *2 *1) (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-4201 (*1 *2 *1) (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-3746 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-621 (-863 *4))) (-5 *1 (-863 *4)) (-4 *4 (-1066)))) (-3746 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2719 (-114)) (|:| |arg| (-621 (-863 *3))))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-4219 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-863 *3)) (|:| -3577 (-747)))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-3980 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-863 *3)) (|:| |den| (-863 *3)))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-2453 (*1 *2 *1) (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-1572 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-863 *3)) (|:| -3577 (-863 *3)))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-3340 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-621 (-863 *4))) (-5 *1 (-863 *4)) (-4 *4 (-1066)))) (-2485 (*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066)))) (-2512 (*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-2281 (*1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-3779 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-3110 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-2372 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-1328 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-112)) (-5 *1 (-863 *4)) (-4 *4 (-1066)))) (-1870 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-52)) (-5 *1 (-863 *4)) (-4 *4 (-1066)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-621 (-1142))) (|:| |pred| (-52)))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-2420 (*1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066)))) (-3580 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))) (-2336 (*1 *2 *2) (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(-13 (-1066) (-1009 |#1|) (-1009 (-1142)) (-10 -8 (-15 (-3275) ($) -2588) (-15 (-3287) ($) -2588) (-15 -1462 ((-3 (-621 $) "failed") $)) (-15 -4201 ((-3 (-621 $) "failed") $)) (-15 -3746 ((-3 (-621 $) "failed") $ (-114))) (-15 -3746 ((-3 (-2 (|:| -2719 (-114)) (|:| |arg| (-621 $))) "failed") $)) (-15 -4219 ((-3 (-2 (|:| |val| $) (|:| -3577 (-747))) "failed") $)) (-15 -3980 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2453 ((-3 (-621 $) "failed") $)) (-15 -1572 ((-3 (-2 (|:| |val| $) (|:| -3577 $)) "failed") $)) (-15 -3340 ($ (-114) (-621 $))) (-15 -2485 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ $)) (-15 -2512 ($ $ $)) (-15 -1319 ((-747) $)) (-15 -2844 ($ (-621 $))) (-15 -2281 ($ $)) (-15 -2639 ((-112) $)) (-15 -3779 ((-112) $)) (-15 -1874 ((-112) $)) (-15 -3983 ((-112) $)) (-15 -3458 ((-112) $)) (-15 -4223 ((-112) $)) (-15 -1696 ((-112) $)) (-15 -1797 ((-112) $)) (-15 -3511 ((-621 (-52)) $)) (-15 -3110 ($ $ (-621 (-52)))) (-15 -2372 ($ $ (-621 (-52)))) (-15 -1328 ($ (-1142) (-112) (-112) (-112))) (-15 -1870 ($ $ (-621 (-1142)) (-52))) (-15 -1337 ((-2 (|:| |var| (-621 (-1142))) (|:| |pred| (-52))) $)) (-15 -1841 ((-112) $)) (-15 -2420 ($ $)) (-15 -3580 ($ $ (-52))) (-15 -3819 ((-621 (-52)) $)) (-15 -2271 ((-621 $) $)) (-15 -2336 ((-3 (-621 $) "failed") (-621 $)))))
-((-3833 (((-112) $ $) NIL)) (-3303 (((-621 |#1|) $) 16)) (-2061 (((-112) $) 38)) (-2713 (((-3 (-648 |#1|) "failed") $) 43)) (-2658 (((-648 |#1|) $) 41)) (-3655 (($ $) 18)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-4209 (((-747) $) 46)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3645 (((-648 |#1|) $) 17)) (-3845 (((-834) $) 37) (($ (-648 |#1|)) 21) (((-795 |#1|) $) 27) (($ |#1|) 20)) (-3287 (($) 8 T CONST)) (-2729 (((-621 (-648 |#1|)) $) 23)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 11)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 49)))
-(((-864 |#1|) (-13 (-823) (-1009 (-648 |#1|)) (-10 -8 (-15 1 ($) -2588) (-15 -3845 ((-795 |#1|) $)) (-15 -3845 ($ |#1|)) (-15 -3645 ((-648 |#1|) $)) (-15 -4209 ((-747) $)) (-15 -2729 ((-621 (-648 |#1|)) $)) (-15 -3655 ($ $)) (-15 -2061 ((-112) $)) (-15 -3303 ((-621 |#1|) $)))) (-823)) (T -864))
-((-3287 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-3845 (*1 *1 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-648 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-621 (-648 *3))) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-3655 (*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))))
-(-13 (-823) (-1009 (-648 |#1|)) (-10 -8 (-15 (-3287) ($) -2588) (-15 -3845 ((-795 |#1|) $)) (-15 -3845 ($ |#1|)) (-15 -3645 ((-648 |#1|) $)) (-15 -4209 ((-747) $)) (-15 -2729 ((-621 (-648 |#1|)) $)) (-15 -3655 ($ $)) (-15 -2061 ((-112) $)) (-15 -3303 ((-621 |#1|) $))))
-((-3994 ((|#1| |#1| |#1|) 19)))
-(((-865 |#1| |#2|) (-10 -7 (-15 -3994 (|#1| |#1| |#1|))) (-1201 |#2|) (-1018)) (T -865))
-((-3994 (*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-865 *2 *3)) (-4 *2 (-1201 *3)))))
-(-10 -7 (-15 -3994 (|#1| |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3467 (((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 14)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-1943 (((-1006) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 13)) (-2388 (((-112) $ $) 6)))
+((-2887 (((-112) $ $) NIL) (($ $ $) 77)) (-2908 (($ $ $) 115)) (-2923 (((-535) $) 30) (((-535)) 35)) (-2918 (($ (-535)) 44)) (-2915 (($ $ $) 45) (($ (-618 $)) 76)) (-2899 (($ $ (-618 $)) 74)) (-2920 (((-535) $) 33)) (-2902 (($ $ $) 63)) (-3869 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2921 (((-535) $) 32)) (-2903 (($ $ $) 62)) (-3881 (($ $) 105)) (-2906 (($ $ $) 119)) (-2889 (($ (-618 $)) 52)) (-3886 (($ $ (-618 $)) 69)) (-2917 (($ (-535) (-535)) 46)) (-2928 (($ $) 116) (($ $ $) 117)) (-3455 (($ $ (-535)) 40) (($ $) 43)) (-2883 (($ $ $) 89)) (-2904 (($ $ $) 122)) (-2898 (($ $) 106)) (-2882 (($ $ $) 90)) (-2894 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3158 (((-1230) $) 8)) (-2897 (($ $) 109) (($ $ (-747)) 112)) (-2900 (($ $ $) 65)) (-2901 (($ $ $) 64)) (-2914 (($ $ (-618 $)) 100)) (-2912 (($ $ $) 104)) (-2891 (($ (-618 $)) 50)) (-2892 (($ $) 60) (($ (-618 $)) 61)) (-2895 (($ $ $) 113)) (-2896 (($ $) 107)) (-2907 (($ $ $) 118)) (-3870 (($ (-535)) 20) (($ (-1142)) 22) (($ (-1124)) 29) (($ (-219)) 24)) (-3178 (($ $ $) 93)) (-3659 (($ $) 94)) (-2924 (((-1230) (-1124)) 14)) (-2925 (($ (-1124)) 13)) (-3442 (($ (-618 (-618 $))) 49)) (-3456 (($ $ (-535)) 39) (($ $) 42)) (-3576 (((-1124) $) NIL)) (-2910 (($ $ $) 121)) (-3807 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2911 (((-112) $) 98)) (-2913 (($ $ (-618 $)) 102) (($ $ $ $) 103)) (-2919 (($ (-535)) 36)) (-2922 (((-535) $) 31) (((-535)) 34)) (-2916 (($ $ $) 37) (($ (-618 $)) 75)) (-3577 (((-1086) $) NIL)) (-3803 (($ $ $) 91)) (-3911 (($) 12)) (-4142 (($ $ (-618 $)) 99)) (-4179 (($ $) 108) (($ $ (-747)) 111)) (-2884 (($ $ $) 88)) (-4153 (($ $ (-747)) 127)) (-2890 (($ (-618 $)) 51)) (-4300 (((-835) $) 18)) (-4115 (($ $ (-535)) 38) (($ $) 41)) (-2893 (($ $) 58) (($ (-618 $)) 59)) (-3574 (($ $) 56) (($ (-618 $)) 57)) (-2909 (($ $) 114)) (-2888 (($ (-618 $)) 55)) (-3420 (($ $ $) 97)) (-2905 (($ $ $) 120)) (-3179 (($ $ $) 92)) (-4080 (($ $ $) 95) (($ $) 96)) (-2885 (($ $ $) 81)) (-2886 (($ $ $) 79)) (-3375 (((-112) $ $) 15) (($ $ $) 16)) (-3005 (($ $ $) 80)) (-3006 (($ $ $) 78)) (-4291 (($ $ $) 86)) (-4180 (($ $ $) 83) (($ $) 84)) (-4182 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-835) (-13 (-1067) (-10 -8 (-15 -3158 ((-1230) $)) (-15 -2925 ($ (-1124))) (-15 -2924 ((-1230) (-1124))) (-15 -3870 ($ (-535))) (-15 -3870 ($ (-1142))) (-15 -3870 ($ (-1124))) (-15 -3870 ($ (-219))) (-15 -3911 ($)) (-15 -2923 ((-535) $)) (-15 -2922 ((-535) $)) (-15 -2923 ((-535))) (-15 -2922 ((-535))) (-15 -2921 ((-535) $)) (-15 -2920 ((-535) $)) (-15 -2919 ($ (-535))) (-15 -2918 ($ (-535))) (-15 -2917 ($ (-535) (-535))) (-15 -3456 ($ $ (-535))) (-15 -3455 ($ $ (-535))) (-15 -4115 ($ $ (-535))) (-15 -3456 ($ $)) (-15 -3455 ($ $)) (-15 -4115 ($ $)) (-15 -2916 ($ $ $)) (-15 -2915 ($ $ $)) (-15 -2916 ($ (-618 $))) (-15 -2915 ($ (-618 $))) (-15 -2914 ($ $ (-618 $))) (-15 -2913 ($ $ (-618 $))) (-15 -2913 ($ $ $ $)) (-15 -2912 ($ $ $)) (-15 -2911 ((-112) $)) (-15 -4142 ($ $ (-618 $))) (-15 -3881 ($ $)) (-15 -2910 ($ $ $)) (-15 -2909 ($ $)) (-15 -3442 ($ (-618 (-618 $)))) (-15 -2908 ($ $ $)) (-15 -2928 ($ $)) (-15 -2928 ($ $ $)) (-15 -2907 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -2905 ($ $ $)) (-15 -2904 ($ $ $)) (-15 -4153 ($ $ (-747))) (-15 -3420 ($ $ $)) (-15 -2903 ($ $ $)) (-15 -2902 ($ $ $)) (-15 -2901 ($ $ $)) (-15 -2900 ($ $ $)) (-15 -3886 ($ $ (-618 $))) (-15 -2899 ($ $ (-618 $))) (-15 -2898 ($ $)) (-15 -4179 ($ $)) (-15 -4179 ($ $ (-747))) (-15 -2897 ($ $)) (-15 -2897 ($ $ (-747))) (-15 -2896 ($ $)) (-15 -2895 ($ $ $)) (-15 -3869 ($ $)) (-15 -3869 ($ $ $)) (-15 -3869 ($ $ $ $)) (-15 -2894 ($ $)) (-15 -2894 ($ $ $)) (-15 -2894 ($ $ $ $)) (-15 -3807 ($ $)) (-15 -3807 ($ $ $)) (-15 -3807 ($ $ $ $)) (-15 -3574 ($ $)) (-15 -3574 ($ (-618 $))) (-15 -2893 ($ $)) (-15 -2893 ($ (-618 $))) (-15 -2892 ($ $)) (-15 -2892 ($ (-618 $))) (-15 -2891 ($ (-618 $))) (-15 -2890 ($ (-618 $))) (-15 -2889 ($ (-618 $))) (-15 -2888 ($ (-618 $))) (-15 -3375 ($ $ $)) (-15 -2887 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -2886 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -2885 ($ $ $)) (-15 -4182 ($ $ $)) (-15 -4180 ($ $ $)) (-15 -4180 ($ $)) (-15 * ($ $ $)) (-15 -4291 ($ $ $)) (-15 ** ($ $ $)) (-15 -2884 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -3803 ($ $ $)) (-15 -3179 ($ $ $)) (-15 -3178 ($ $ $)) (-15 -3659 ($ $)) (-15 -4080 ($ $ $)) (-15 -4080 ($ $))))) (T -835))
+((-3158 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-835)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-835)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-835)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-835)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-835)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-835)))) (-3911 (*1 *1) (-5 *1 (-835))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2923 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2922 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2918 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-2917 (*1 *1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))) (-3456 (*1 *1 *1) (-5 *1 (-835))) (-3455 (*1 *1 *1) (-5 *1 (-835))) (-4115 (*1 *1 *1) (-5 *1 (-835))) (-2916 (*1 *1 *1 *1) (-5 *1 (-835))) (-2915 (*1 *1 *1 *1) (-5 *1 (-835))) (-2916 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2915 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2914 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2913 (*1 *1 *1 *1 *1) (-5 *1 (-835))) (-2912 (*1 *1 *1 *1) (-5 *1 (-835))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-3881 (*1 *1 *1) (-5 *1 (-835))) (-2910 (*1 *1 *1 *1) (-5 *1 (-835))) (-2909 (*1 *1 *1) (-5 *1 (-835))) (-3442 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-835)))) (-5 *1 (-835)))) (-2908 (*1 *1 *1 *1) (-5 *1 (-835))) (-2928 (*1 *1 *1) (-5 *1 (-835))) (-2928 (*1 *1 *1 *1) (-5 *1 (-835))) (-2907 (*1 *1 *1 *1) (-5 *1 (-835))) (-2906 (*1 *1 *1 *1) (-5 *1 (-835))) (-2905 (*1 *1 *1 *1) (-5 *1 (-835))) (-2904 (*1 *1 *1 *1) (-5 *1 (-835))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-835)))) (-3420 (*1 *1 *1 *1) (-5 *1 (-835))) (-2903 (*1 *1 *1 *1) (-5 *1 (-835))) (-2902 (*1 *1 *1 *1) (-5 *1 (-835))) (-2901 (*1 *1 *1 *1) (-5 *1 (-835))) (-2900 (*1 *1 *1 *1) (-5 *1 (-835))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2899 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2898 (*1 *1 *1) (-5 *1 (-835))) (-4179 (*1 *1 *1) (-5 *1 (-835))) (-4179 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-835)))) (-2897 (*1 *1 *1) (-5 *1 (-835))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-835)))) (-2896 (*1 *1 *1) (-5 *1 (-835))) (-2895 (*1 *1 *1 *1) (-5 *1 (-835))) (-3869 (*1 *1 *1) (-5 *1 (-835))) (-3869 (*1 *1 *1 *1) (-5 *1 (-835))) (-3869 (*1 *1 *1 *1 *1) (-5 *1 (-835))) (-2894 (*1 *1 *1) (-5 *1 (-835))) (-2894 (*1 *1 *1 *1) (-5 *1 (-835))) (-2894 (*1 *1 *1 *1 *1) (-5 *1 (-835))) (-3807 (*1 *1 *1) (-5 *1 (-835))) (-3807 (*1 *1 *1 *1) (-5 *1 (-835))) (-3807 (*1 *1 *1 *1 *1) (-5 *1 (-835))) (-3574 (*1 *1 *1) (-5 *1 (-835))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2893 (*1 *1 *1) (-5 *1 (-835))) (-2893 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2892 (*1 *1 *1) (-5 *1 (-835))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2891 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2890 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2889 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-2888 (*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))) (-3375 (*1 *1 *1 *1) (-5 *1 (-835))) (-2887 (*1 *1 *1 *1) (-5 *1 (-835))) (-3006 (*1 *1 *1 *1) (-5 *1 (-835))) (-2886 (*1 *1 *1 *1) (-5 *1 (-835))) (-3005 (*1 *1 *1 *1) (-5 *1 (-835))) (-2885 (*1 *1 *1 *1) (-5 *1 (-835))) (-4182 (*1 *1 *1 *1) (-5 *1 (-835))) (-4180 (*1 *1 *1 *1) (-5 *1 (-835))) (-4180 (*1 *1 *1) (-5 *1 (-835))) (* (*1 *1 *1 *1) (-5 *1 (-835))) (-4291 (*1 *1 *1 *1) (-5 *1 (-835))) (** (*1 *1 *1 *1) (-5 *1 (-835))) (-2884 (*1 *1 *1 *1) (-5 *1 (-835))) (-2883 (*1 *1 *1 *1) (-5 *1 (-835))) (-2882 (*1 *1 *1 *1) (-5 *1 (-835))) (-3803 (*1 *1 *1 *1) (-5 *1 (-835))) (-3179 (*1 *1 *1 *1) (-5 *1 (-835))) (-3178 (*1 *1 *1 *1) (-5 *1 (-835))) (-3659 (*1 *1 *1) (-5 *1 (-835))) (-4080 (*1 *1 *1 *1) (-5 *1 (-835))) (-4080 (*1 *1 *1) (-5 *1 (-835))))
+(-13 (-1067) (-10 -8 (-15 -3158 ((-1230) $)) (-15 -2925 ($ (-1124))) (-15 -2924 ((-1230) (-1124))) (-15 -3870 ($ (-535))) (-15 -3870 ($ (-1142))) (-15 -3870 ($ (-1124))) (-15 -3870 ($ (-219))) (-15 -3911 ($)) (-15 -2923 ((-535) $)) (-15 -2922 ((-535) $)) (-15 -2923 ((-535))) (-15 -2922 ((-535))) (-15 -2921 ((-535) $)) (-15 -2920 ((-535) $)) (-15 -2919 ($ (-535))) (-15 -2918 ($ (-535))) (-15 -2917 ($ (-535) (-535))) (-15 -3456 ($ $ (-535))) (-15 -3455 ($ $ (-535))) (-15 -4115 ($ $ (-535))) (-15 -3456 ($ $)) (-15 -3455 ($ $)) (-15 -4115 ($ $)) (-15 -2916 ($ $ $)) (-15 -2915 ($ $ $)) (-15 -2916 ($ (-618 $))) (-15 -2915 ($ (-618 $))) (-15 -2914 ($ $ (-618 $))) (-15 -2913 ($ $ (-618 $))) (-15 -2913 ($ $ $ $)) (-15 -2912 ($ $ $)) (-15 -2911 ((-112) $)) (-15 -4142 ($ $ (-618 $))) (-15 -3881 ($ $)) (-15 -2910 ($ $ $)) (-15 -2909 ($ $)) (-15 -3442 ($ (-618 (-618 $)))) (-15 -2908 ($ $ $)) (-15 -2928 ($ $)) (-15 -2928 ($ $ $)) (-15 -2907 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -2905 ($ $ $)) (-15 -2904 ($ $ $)) (-15 -4153 ($ $ (-747))) (-15 -3420 ($ $ $)) (-15 -2903 ($ $ $)) (-15 -2902 ($ $ $)) (-15 -2901 ($ $ $)) (-15 -2900 ($ $ $)) (-15 -3886 ($ $ (-618 $))) (-15 -2899 ($ $ (-618 $))) (-15 -2898 ($ $)) (-15 -4179 ($ $)) (-15 -4179 ($ $ (-747))) (-15 -2897 ($ $)) (-15 -2897 ($ $ (-747))) (-15 -2896 ($ $)) (-15 -2895 ($ $ $)) (-15 -3869 ($ $)) (-15 -3869 ($ $ $)) (-15 -3869 ($ $ $ $)) (-15 -2894 ($ $)) (-15 -2894 ($ $ $)) (-15 -2894 ($ $ $ $)) (-15 -3807 ($ $)) (-15 -3807 ($ $ $)) (-15 -3807 ($ $ $ $)) (-15 -3574 ($ $)) (-15 -3574 ($ (-618 $))) (-15 -2893 ($ $)) (-15 -2893 ($ (-618 $))) (-15 -2892 ($ $)) (-15 -2892 ($ (-618 $))) (-15 -2891 ($ (-618 $))) (-15 -2890 ($ (-618 $))) (-15 -2889 ($ (-618 $))) (-15 -2888 ($ (-618 $))) (-15 -3375 ($ $ $)) (-15 -2887 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -2886 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -2885 ($ $ $)) (-15 -4182 ($ $ $)) (-15 -4180 ($ $ $)) (-15 -4180 ($ $)) (-15 * ($ $ $)) (-15 -4291 ($ $ $)) (-15 ** ($ $ $)) (-15 -2884 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -3803 ($ $ $)) (-15 -3179 ($ $ $)) (-15 -3178 ($ $ $)) (-15 -3659 ($ $)) (-15 -4080 ($ $ $)) (-15 -4080 ($ $))))
+((-2887 (((-112) $ $) NIL)) (-4174 (((-3 $ "failed") (-1142)) 33)) (-3454 (((-747)) 31)) (-3315 (($) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-2121 (((-890) $) 29)) (-3576 (((-1124) $) 39)) (-2483 (($ (-890)) 28)) (-3577 (((-1086) $) NIL)) (-4313 (((-1142) $) 13) (((-524) $) 19) (((-861 (-371)) $) 26) (((-861 (-535)) $) 22)) (-4300 (((-835) $) 16)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 36)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 35)))
+(((-836 |#1|) (-13 (-817) (-594 (-1142)) (-594 (-524)) (-594 (-861 (-371))) (-594 (-861 (-535))) (-10 -8 (-15 -4174 ((-3 $ "failed") (-1142))))) (-618 (-1142))) (T -836))
+((-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-836 *3)) (-14 *3 (-618 *2)))))
+(-13 (-817) (-594 (-1142)) (-594 (-524)) (-594 (-861 (-371))) (-594 (-861 (-535))) (-10 -8 (-15 -4174 ((-3 $ "failed") (-1142)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (((-917 |#1|) $) NIL) (($ (-917 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-3444 (((-747)) NIL)) (-4266 (((-1230) (-747)) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4291 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
+(((-837 |#1| |#2| |#3| |#4|) (-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4300 ((-917 |#1|) $)) (-15 -4300 ($ (-917 |#1|))) (IF (|has| |#1| (-356)) (-15 -4291 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4266 ((-1230) (-747))))) (-1018) (-618 (-1142)) (-618 (-747)) (-747)) (T -837))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-917 *3)) (-5 *1 (-837 *3 *4 *5 *6)) (-4 *3 (-1018)) (-14 *4 (-618 (-1142))) (-14 *5 (-618 (-747))) (-14 *6 (-747)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1018)) (-5 *1 (-837 *3 *4 *5 *6)) (-14 *4 (-618 (-1142))) (-14 *5 (-618 (-747))) (-14 *6 (-747)))) (-4291 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-837 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *2 (-1018)) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-747))) (-14 *5 (-747)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *4 (-1018)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 *3)) (-14 *7 *3))))
+(-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4300 ((-917 |#1|) $)) (-15 -4300 ($ (-917 |#1|))) (IF (|has| |#1| (-356)) (-15 -4291 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4266 ((-1230) (-747)))))
+((-2926 (((-3 (-172 |#3|) "failed") (-747) (-747) |#2| |#2|) 31)) (-2927 (((-3 (-400 |#3|) "failed") (-747) (-747) |#2| |#2|) 24)))
+(((-838 |#1| |#2| |#3|) (-10 -7 (-15 -2927 ((-3 (-400 |#3|) "failed") (-747) (-747) |#2| |#2|)) (-15 -2926 ((-3 (-172 |#3|) "failed") (-747) (-747) |#2| |#2|))) (-356) (-1217 |#1|) (-1200 |#1|)) (T -838))
+((-2926 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-172 *6)) (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1217 *5)) (-4 *6 (-1200 *5)))) (-2927 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-400 *6)) (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1217 *5)) (-4 *6 (-1200 *5)))))
+(-10 -7 (-15 -2927 ((-3 (-400 |#3|) "failed") (-747) (-747) |#2| |#2|)) (-15 -2926 ((-3 (-172 |#3|) "failed") (-747) (-747) |#2| |#2|)))
+((-2927 (((-3 (-400 (-1193 |#2| |#1|)) "failed") (-747) (-747) (-1214 |#1| |#2| |#3|)) 28) (((-3 (-400 (-1193 |#2| |#1|)) "failed") (-747) (-747) (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)) 26)))
+(((-839 |#1| |#2| |#3|) (-10 -7 (-15 -2927 ((-3 (-400 (-1193 |#2| |#1|)) "failed") (-747) (-747) (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|))) (-15 -2927 ((-3 (-400 (-1193 |#2| |#1|)) "failed") (-747) (-747) (-1214 |#1| |#2| |#3|)))) (-356) (-1142) |#1|) (T -839))
+((-2927 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1214 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1142)) (-14 *7 *5) (-5 *2 (-400 (-1193 *6 *5))) (-5 *1 (-839 *5 *6 *7)))) (-2927 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1214 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1142)) (-14 *7 *5) (-5 *2 (-400 (-1193 *6 *5))) (-5 *1 (-839 *5 *6 *7)))))
+(-10 -7 (-15 -2927 ((-3 (-400 (-1193 |#2| |#1|)) "failed") (-747) (-747) (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|))) (-15 -2927 ((-3 (-400 (-1193 |#2| |#1|)) "failed") (-747) (-747) (-1214 |#1| |#2| |#3|))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $ (-535)) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2928 (($ (-1136 (-535)) (-535)) NIL)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2929 (($ $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4114 (((-747) $) NIL)) (-2493 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2931 (((-535)) NIL)) (-2930 (((-535) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4111 (($ $ (-535)) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-2932 (((-1119 (-535)) $) NIL)) (-3212 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL)) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL)) (-4112 (((-535) $ (-535)) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL)))
+(((-840 |#1|) (-841 |#1|) (-535)) (T -840))
+NIL
+(-841 |#1|)
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3358 (($ $ (-535)) 60)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-2928 (($ (-1136 (-535)) (-535)) 59)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2929 (($ $) 62)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4114 (((-747) $) 67)) (-2493 (((-112) $) 30)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2931 (((-535)) 64)) (-2930 (((-535) $) 63)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-4111 (($ $ (-535)) 66)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-2932 (((-1119 (-535)) $) 68)) (-3212 (($ $) 65)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-4112 (((-535) $ (-535)) 61)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
+(((-841 |#1|) (-138) (-535)) (T -841))
+((-2932 (*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-5 *2 (-1119 (-535))))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-5 *2 (-747)))) (-4111 (*1 *1 *1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) (-3212 (*1 *1 *1) (-4 *1 (-841 *2))) (-2931 (*1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) (-2929 (*1 *1 *1) (-4 *1 (-841 *2))) (-4112 (*1 *2 *1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) (-3358 (*1 *1 *1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))) (-2928 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *3 (-535)) (-4 *1 (-841 *4)))))
+(-13 (-300) (-145) (-10 -8 (-15 -2932 ((-1119 (-535)) $)) (-15 -4114 ((-747) $)) (-15 -4111 ($ $ (-535))) (-15 -3212 ($ $)) (-15 -2931 ((-535))) (-15 -2930 ((-535) $)) (-15 -2929 ($ $)) (-15 -4112 ((-535) $ (-535))) (-15 -3358 ($ $ (-535))) (-15 -2928 ($ (-1136 (-535)) (-535)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-840 |#1|) $) NIL (|has| (-840 |#1|) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-840 |#1|) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-840 |#1|) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-840 |#1|) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-840 |#1|) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| (-840 |#1|) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| (-840 |#1|) (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| (-840 |#1|) (-1009 (-535))))) (-3490 (((-840 |#1|) $) NIL) (((-1142) $) NIL (|has| (-840 |#1|) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-840 |#1|) (-1009 (-535)))) (((-535) $) NIL (|has| (-840 |#1|) (-1009 (-535))))) (-4073 (($ $) NIL) (($ (-535) $) NIL)) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-840 |#1|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-840 |#1|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-840 |#1|))) (|:| |vec| (-1224 (-840 |#1|)))) (-665 $) (-1224 $)) NIL) (((-665 (-840 |#1|)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-840 |#1|) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| (-840 |#1|) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-840 |#1|) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-840 |#1|) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-840 |#1|) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| (-840 |#1|) (-1117)))) (-3521 (((-112) $) NIL (|has| (-840 |#1|) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-840 |#1|) (-823)))) (-3661 (($ $ $) NIL (|has| (-840 |#1|) (-823)))) (-4301 (($ (-1 (-840 |#1|) (-840 |#1|)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-840 |#1|) (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-840 |#1|) (-300)))) (-3448 (((-840 |#1|) $) NIL (|has| (-840 |#1|) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-840 |#1|) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-840 |#1|) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-840 |#1|)) (-618 (-840 |#1|))) NIL (|has| (-840 |#1|) (-302 (-840 |#1|)))) (($ $ (-840 |#1|) (-840 |#1|)) NIL (|has| (-840 |#1|) (-302 (-840 |#1|)))) (($ $ (-286 (-840 |#1|))) NIL (|has| (-840 |#1|) (-302 (-840 |#1|)))) (($ $ (-618 (-286 (-840 |#1|)))) NIL (|has| (-840 |#1|) (-302 (-840 |#1|)))) (($ $ (-618 (-1142)) (-618 (-840 |#1|))) NIL (|has| (-840 |#1|) (-505 (-1142) (-840 |#1|)))) (($ $ (-1142) (-840 |#1|)) NIL (|has| (-840 |#1|) (-505 (-1142) (-840 |#1|))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-840 |#1|)) NIL (|has| (-840 |#1|) (-279 (-840 |#1|) (-840 |#1|))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| (-840 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-840 |#1|) (-227))) (($ $ (-1142)) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-1 (-840 |#1|) (-840 |#1|)) (-747)) NIL) (($ $ (-1 (-840 |#1|) (-840 |#1|))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-840 |#1|) $) NIL)) (-4313 (((-861 (-535)) $) NIL (|has| (-840 |#1|) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-840 |#1|) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-840 |#1|) (-594 (-524)))) (((-371) $) NIL (|has| (-840 |#1|) (-991))) (((-219) $) NIL (|has| (-840 |#1|) (-991)))) (-2933 (((-172 (-400 (-535))) $) NIL)) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-840 |#1|) (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL) (($ (-840 |#1|)) NIL) (($ (-1142)) NIL (|has| (-840 |#1|) (-1009 (-1142))))) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-840 |#1|) (-881))) (|has| (-840 |#1|) (-143))))) (-3444 (((-747)) NIL)) (-3449 (((-840 |#1|) $) NIL (|has| (-840 |#1|) (-534)))) (-2170 (((-112) $ $) NIL)) (-4112 (((-400 (-535)) $ (-535)) NIL)) (-3725 (($ $) NIL (|has| (-840 |#1|) (-796)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $) NIL (|has| (-840 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-840 |#1|) (-227))) (($ $ (-1142)) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-840 |#1|) (-871 (-1142)))) (($ $ (-1 (-840 |#1|) (-840 |#1|)) (-747)) NIL) (($ $ (-1 (-840 |#1|) (-840 |#1|))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-840 |#1|) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-840 |#1|) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-840 |#1|) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-840 |#1|) (-823)))) (-4291 (($ $ $) NIL) (($ (-840 |#1|) (-840 |#1|)) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-840 |#1|) $) NIL) (($ $ (-840 |#1|)) NIL)))
+(((-842 |#1|) (-13 (-962 (-840 |#1|)) (-10 -8 (-15 -4112 ((-400 (-535)) $ (-535))) (-15 -2933 ((-172 (-400 (-535))) $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $)))) (-535)) (T -842))
+((-4112 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-842 *4)) (-14 *4 *3) (-5 *3 (-535)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-535)))) (-5 *1 (-842 *3)) (-14 *3 (-535)))) (-4073 (*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-14 *2 (-535)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-842 *3)) (-14 *3 *2))))
+(-13 (-962 (-840 |#1|)) (-10 -8 (-15 -4112 ((-400 (-535)) $ (-535))) (-15 -2933 ((-172 (-400 (-535))) $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 ((|#2| $) NIL (|has| |#2| (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| |#2| (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (|has| |#2| (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-535) #2#) $) NIL (|has| |#2| (-1009 (-535))))) (-3490 ((|#2| $) NIL) (((-1142) $) NIL (|has| |#2| (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-535)))) (((-535) $) NIL (|has| |#2| (-1009 (-535))))) (-4073 (($ $) 31) (($ (-535) $) 32)) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) 53)) (-3315 (($) NIL (|has| |#2| (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) NIL (|has| |#2| (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| |#2| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| |#2| (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 ((|#2| $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| |#2| (-1117)))) (-3521 (((-112) $) NIL (|has| |#2| (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| |#2| (-823)))) (-3661 (($ $ $) NIL (|has| |#2| (-823)))) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 49)) (-3787 (($) NIL (|has| |#2| (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| |#2| (-300)))) (-3448 ((|#2| $) NIL (|has| |#2| (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 |#2|) (-618 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-302 |#2|))) (($ $ (-286 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ (-618 (-286 |#2|))) NIL (|has| |#2| (-302 |#2|))) (($ $ (-618 (-1142)) (-618 |#2|)) NIL (|has| |#2| (-505 (-1142) |#2|))) (($ $ (-1142) |#2|) NIL (|has| |#2| (-505 (-1142) |#2|)))) (-1699 (((-747) $) NIL)) (-4142 (($ $ |#2|) NIL (|has| |#2| (-279 |#2| |#2|)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) NIL (|has| |#2| (-227))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3316 (($ $) NIL)) (-3318 ((|#2| $) NIL)) (-4313 (((-861 (-535)) $) NIL (|has| |#2| (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| |#2| (-594 (-861 (-371))))) (((-524) $) NIL (|has| |#2| (-594 (-524)))) (((-371) $) NIL (|has| |#2| (-991))) (((-219) $) NIL (|has| |#2| (-991)))) (-2933 (((-172 (-400 (-535))) $) 68)) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-881))))) (-4300 (((-835) $) 87) (($ (-535)) 19) (($ $) NIL) (($ (-400 (-535))) 24) (($ |#2|) 18) (($ (-1142)) NIL (|has| |#2| (-1009 (-1142))))) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#2| (-143))))) (-3444 (((-747)) NIL)) (-3449 ((|#2| $) NIL (|has| |#2| (-534)))) (-2170 (((-112) $ $) NIL)) (-4112 (((-400 (-535)) $ (-535)) 60)) (-3725 (($ $) NIL (|has| |#2| (-796)))) (-2979 (($) 14 T CONST)) (-2985 (($) 16 T CONST)) (-2990 (($ $) NIL (|has| |#2| (-227))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3375 (((-112) $ $) 35)) (-3005 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#2| (-823)))) (-4291 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4180 (($ $) 39) (($ $ $) 41)) (-4182 (($ $ $) 37)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) 50)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 42) (($ $ $) 44) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-843 |#1| |#2|) (-13 (-962 |#2|) (-10 -8 (-15 -4112 ((-400 (-535)) $ (-535))) (-15 -2933 ((-172 (-400 (-535))) $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $)))) (-535) (-841 |#1|)) (T -843))
+((-4112 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-400 (-535))) (-5 *1 (-843 *4 *5)) (-5 *3 (-535)) (-4 *5 (-841 *4)))) (-2933 (*1 *2 *1) (-12 (-14 *3 (-535)) (-5 *2 (-172 (-400 (-535)))) (-5 *1 (-843 *3 *4)) (-4 *4 (-841 *3)))) (-4073 (*1 *1 *1) (-12 (-14 *2 (-535)) (-5 *1 (-843 *2 *3)) (-4 *3 (-841 *2)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-14 *3 *2) (-5 *1 (-843 *3 *4)) (-4 *4 (-841 *3)))))
+(-13 (-962 |#2|) (-10 -8 (-15 -4112 ((-400 (-535)) $ (-535))) (-15 -2933 ((-172 (-400 (-535))) $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $))))
+((-2887 (((-112) $ $) NIL (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))))) (-4138 ((|#2| $) 12)) (-2934 (($ |#1| |#2|) 9)) (-3576 (((-1124) $) NIL (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))))) (-3577 (((-1086) $) NIL (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#1| $) 11)) (-3867 (($ |#1| |#2|) 10)) (-4300 (((-835) $) 18 (-3874 (-12 (|has| |#1| (-593 (-835))) (|has| |#2| (-593 (-835)))) (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067)))))) (-3375 (((-112) $ $) 22 (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))))))
+(((-844 |#1| |#2|) (-13 (-1178) (-10 -8 (IF (|has| |#1| (-593 (-835))) (IF (|has| |#2| (-593 (-835))) (-6 (-593 (-835))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1067)) (IF (|has| |#2| (-1067)) (-6 (-1067)) |%noBranch|) |%noBranch|) (-15 -2934 ($ |#1| |#2|)) (-15 -3867 ($ |#1| |#2|)) (-15 -4143 (|#1| $)) (-15 -4138 (|#2| $)))) (-1178) (-1178)) (T -844))
+((-2934 (*1 *1 *2 *3) (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1178)) (-4 *3 (-1178)))) (-3867 (*1 *1 *2 *3) (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1178)) (-4 *3 (-1178)))) (-4143 (*1 *2 *1) (-12 (-4 *2 (-1178)) (-5 *1 (-844 *2 *3)) (-4 *3 (-1178)))) (-4138 (*1 *2 *1) (-12 (-4 *2 (-1178)) (-5 *1 (-844 *3 *2)) (-4 *3 (-1178)))))
+(-13 (-1178) (-10 -8 (IF (|has| |#1| (-593 (-835))) (IF (|has| |#2| (-593 (-835))) (-6 (-593 (-835))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1067)) (IF (|has| |#2| (-1067)) (-6 (-1067)) |%noBranch|) |%noBranch|) (-15 -2934 ($ |#1| |#2|)) (-15 -3867 ($ |#1| |#2|)) (-15 -4143 (|#1| $)) (-15 -4138 (|#2| $))))
+((-2887 (((-112) $ $) NIL)) (-3278 (((-535) $) 15)) (-2936 (($ (-155)) 11)) (-2935 (($ (-155)) 12)) (-3576 (((-1124) $) NIL)) (-3277 (((-155) $) 13)) (-3577 (((-1086) $) NIL)) (-2938 (($ (-155)) 9)) (-2939 (($ (-155)) 8)) (-4300 (((-835) $) 23) (($ (-155)) 16)) (-2937 (($ (-155)) 10)) (-3375 (((-112) $ $) NIL)))
+(((-845) (-13 (-1067) (-10 -8 (-15 -2939 ($ (-155))) (-15 -2938 ($ (-155))) (-15 -2937 ($ (-155))) (-15 -2936 ($ (-155))) (-15 -2935 ($ (-155))) (-15 -3277 ((-155) $)) (-15 -3278 ((-535) $)) (-15 -4300 ($ (-155)))))) (T -845))
+((-2939 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-2938 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-2937 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-2936 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-2935 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-845)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+(-13 (-1067) (-10 -8 (-15 -2939 ($ (-155))) (-15 -2938 ($ (-155))) (-15 -2937 ($ (-155))) (-15 -2936 ($ (-155))) (-15 -2935 ($ (-155))) (-15 -3277 ((-155) $)) (-15 -3278 ((-535) $)) (-15 -4300 ($ (-155)))))
+((-4300 (((-307 (-535)) (-400 (-917 (-48)))) 23) (((-307 (-535)) (-917 (-48))) 18)))
+(((-846) (-10 -7 (-15 -4300 ((-307 (-535)) (-917 (-48)))) (-15 -4300 ((-307 (-535)) (-400 (-917 (-48))))))) (T -846))
+((-4300 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 (-48)))) (-5 *2 (-307 (-535))) (-5 *1 (-846)))) (-4300 (*1 *2 *3) (-12 (-5 *3 (-917 (-48))) (-5 *2 (-307 (-535))) (-5 *1 (-846)))))
+(-10 -7 (-15 -4300 ((-307 (-535)) (-917 (-48)))) (-15 -4300 ((-307 (-535)) (-400 (-917 (-48))))))
+((-4301 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 14)))
+(((-847 |#1| |#2|) (-10 -7 (-15 -4301 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) (-1178) (-1178)) (T -847))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6)))))
+(-10 -7 (-15 -4301 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|))))
+((-3713 (($ |#1| |#1|) 8)) (-2942 ((|#1| $ (-747)) 10)))
+(((-848 |#1|) (-10 -8 (-15 -3713 ($ |#1| |#1|)) (-15 -2942 (|#1| $ (-747)))) (-1178)) (T -848))
+((-2942 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-848 *2)) (-4 *2 (-1178)))) (-3713 (*1 *1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1178)))))
+(-10 -8 (-15 -3713 ($ |#1| |#1|)) (-15 -2942 (|#1| $ (-747))))
+((-4301 (((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)) 14)))
+(((-849 |#1| |#2|) (-10 -7 (-15 -4301 ((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)))) (-1178) (-1178)) (T -849))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-850 *6)) (-5 *1 (-849 *5 *6)))))
+(-10 -7 (-15 -4301 ((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|))))
+((-3713 (($ |#1| |#1| |#1|) 8)) (-2942 ((|#1| $ (-747)) 10)))
+(((-850 |#1|) (-10 -8 (-15 -3713 ($ |#1| |#1| |#1|)) (-15 -2942 (|#1| $ (-747)))) (-1178)) (T -850))
+((-2942 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-850 *2)) (-4 *2 (-1178)))) (-3713 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-850 *2)) (-4 *2 (-1178)))))
+(-10 -8 (-15 -3713 ($ |#1| |#1| |#1|)) (-15 -2942 (|#1| $ (-747))))
+((-2940 (((-618 (-1147)) (-1124)) 9)))
+(((-851) (-10 -7 (-15 -2940 ((-618 (-1147)) (-1124))))) (T -851))
+((-2940 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-618 (-1147))) (-5 *1 (-851)))))
+(-10 -7 (-15 -2940 ((-618 (-1147)) (-1124))))
+((-4301 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14)))
+(((-852 |#1| |#2|) (-10 -7 (-15 -4301 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) (-1178) (-1178)) (T -852))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))))
+(-10 -7 (-15 -4301 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))))
+((-2941 (($ |#1| |#1| |#1|) 8)) (-2942 ((|#1| $ (-747)) 10)))
+(((-853 |#1|) (-10 -8 (-15 -2941 ($ |#1| |#1| |#1|)) (-15 -2942 (|#1| $ (-747)))) (-1178)) (T -853))
+((-2942 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-853 *2)) (-4 *2 (-1178)))) (-2941 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1178)))))
+(-10 -8 (-15 -2941 ($ |#1| |#1| |#1|)) (-15 -2942 (|#1| $ (-747))))
+((-2946 (((-1119 (-618 (-535))) (-618 (-535)) (-1119 (-618 (-535)))) 32)) (-2945 (((-1119 (-618 (-535))) (-618 (-535)) (-618 (-535))) 28)) (-2947 (((-1119 (-618 (-535))) (-618 (-535))) 41) (((-1119 (-618 (-535))) (-618 (-535)) (-618 (-535))) 40)) (-2948 (((-1119 (-618 (-535))) (-535)) 42)) (-2943 (((-1119 (-618 (-535))) (-535) (-535)) 22) (((-1119 (-618 (-535))) (-535)) 16) (((-1119 (-618 (-535))) (-535) (-535) (-535)) 12)) (-2944 (((-1119 (-618 (-535))) (-1119 (-618 (-535)))) 26)) (-3330 (((-618 (-535)) (-618 (-535))) 25)))
+(((-854) (-10 -7 (-15 -2943 ((-1119 (-618 (-535))) (-535) (-535) (-535))) (-15 -2943 ((-1119 (-618 (-535))) (-535))) (-15 -2943 ((-1119 (-618 (-535))) (-535) (-535))) (-15 -3330 ((-618 (-535)) (-618 (-535)))) (-15 -2944 ((-1119 (-618 (-535))) (-1119 (-618 (-535))))) (-15 -2945 ((-1119 (-618 (-535))) (-618 (-535)) (-618 (-535)))) (-15 -2946 ((-1119 (-618 (-535))) (-618 (-535)) (-1119 (-618 (-535))))) (-15 -2947 ((-1119 (-618 (-535))) (-618 (-535)) (-618 (-535)))) (-15 -2947 ((-1119 (-618 (-535))) (-618 (-535)))) (-15 -2948 ((-1119 (-618 (-535))) (-535))))) (T -854))
+((-2948 (*1 *2 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535)))) (-2947 (*1 *2 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-618 (-535))))) (-2947 (*1 *2 *3 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-618 (-535))))) (-2946 (*1 *2 *3 *2) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *3 (-618 (-535))) (-5 *1 (-854)))) (-2945 (*1 *2 *3 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-618 (-535))))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)))) (-3330 (*1 *2 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-854)))) (-2943 (*1 *2 *3 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535)))) (-2943 (*1 *2 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535)))) (-2943 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535)))))
+(-10 -7 (-15 -2943 ((-1119 (-618 (-535))) (-535) (-535) (-535))) (-15 -2943 ((-1119 (-618 (-535))) (-535))) (-15 -2943 ((-1119 (-618 (-535))) (-535) (-535))) (-15 -3330 ((-618 (-535)) (-618 (-535)))) (-15 -2944 ((-1119 (-618 (-535))) (-1119 (-618 (-535))))) (-15 -2945 ((-1119 (-618 (-535))) (-618 (-535)) (-618 (-535)))) (-15 -2946 ((-1119 (-618 (-535))) (-618 (-535)) (-1119 (-618 (-535))))) (-15 -2947 ((-1119 (-618 (-535))) (-618 (-535)) (-618 (-535)))) (-15 -2947 ((-1119 (-618 (-535))) (-618 (-535)))) (-15 -2948 ((-1119 (-618 (-535))) (-535))))
+((-4313 (((-861 (-371)) $) 9 (|has| |#1| (-594 (-861 (-371))))) (((-861 (-535)) $) 8 (|has| |#1| (-594 (-861 (-535)))))))
+(((-855 |#1|) (-138) (-1178)) (T -855))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-594 (-861 (-535)))) (-6 (-594 (-861 (-535)))) |%noBranch|) (IF (|has| |t#1| (-594 (-861 (-371)))) (-6 (-594 (-861 (-371)))) |%noBranch|)))
+(((-594 (-861 (-371))) |has| |#1| (-594 (-861 (-371)))) ((-594 (-861 (-535))) |has| |#1| (-594 (-861 (-535)))))
+((-2887 (((-112) $ $) NIL)) (-3960 (($) 14)) (-2951 (($ (-859 |#1| |#2|) (-859 |#1| |#3|)) 27)) (-2949 (((-859 |#1| |#3|) $) 16)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-2959 (((-112) $) 22)) (-2958 (($) 19)) (-4300 (((-835) $) 30)) (-2950 (((-859 |#1| |#2|) $) 15)) (-3375 (((-112) $ $) 25)))
+(((-856 |#1| |#2| |#3|) (-13 (-1067) (-10 -8 (-15 -2959 ((-112) $)) (-15 -2958 ($)) (-15 -3960 ($)) (-15 -2951 ($ (-859 |#1| |#2|) (-859 |#1| |#3|))) (-15 -2950 ((-859 |#1| |#2|) $)) (-15 -2949 ((-859 |#1| |#3|) $)))) (-1067) (-1067) (-642 |#2|)) (T -856))
+((-2959 (*1 *2 *1) (-12 (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1067)) (-4 *5 (-642 *4)))) (-2958 (*1 *1) (-12 (-4 *3 (-1067)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1067)) (-4 *4 (-642 *3)))) (-3960 (*1 *1) (-12 (-4 *3 (-1067)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1067)) (-4 *4 (-642 *3)))) (-2951 (*1 *1 *2 *3) (-12 (-5 *2 (-859 *4 *5)) (-5 *3 (-859 *4 *6)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-642 *5)) (-5 *1 (-856 *4 *5 *6)))) (-2950 (*1 *2 *1) (-12 (-4 *4 (-1067)) (-5 *2 (-859 *3 *4)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1067)) (-4 *5 (-642 *4)))) (-2949 (*1 *2 *1) (-12 (-4 *4 (-1067)) (-5 *2 (-859 *3 *5)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1067)) (-4 *5 (-642 *4)))))
+(-13 (-1067) (-10 -8 (-15 -2959 ((-112) $)) (-15 -2958 ($)) (-15 -3960 ($)) (-15 -2951 ($ (-859 |#1| |#2|) (-859 |#1| |#3|))) (-15 -2950 ((-859 |#1| |#2|) $)) (-15 -2949 ((-859 |#1| |#3|) $))))
+((-2887 (((-112) $ $) 7)) (-3117 (((-859 |#1| $) $ (-861 |#1|) (-859 |#1| $)) 13)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)))
+(((-857 |#1|) (-138) (-1067)) (T -857))
+((-3117 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-859 *4 *1)) (-5 *3 (-861 *4)) (-4 *1 (-857 *4)) (-4 *4 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -3117 ((-859 |t#1| $) $ (-861 |t#1|) (-859 |t#1| $)))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2952 (((-112) (-618 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2953 (((-859 |#1| |#2|) |#2| |#3|) 43 (-12 (-3659 (|has| |#2| (-1009 (-1142)))) (-3659 (|has| |#2| (-1018))))) (((-618 (-286 (-917 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1018)) (-3659 (|has| |#2| (-1009 (-1142)))))) (((-618 (-286 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1009 (-1142)))) (((-856 |#1| |#2| (-618 |#2|)) (-618 |#2|) |#3|) 21)))
+(((-858 |#1| |#2| |#3|) (-10 -7 (-15 -2952 ((-112) |#2| |#3|)) (-15 -2952 ((-112) (-618 |#2|) |#3|)) (-15 -2953 ((-856 |#1| |#2| (-618 |#2|)) (-618 |#2|) |#3|)) (IF (|has| |#2| (-1009 (-1142))) (-15 -2953 ((-618 (-286 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1018)) (-15 -2953 ((-618 (-286 (-917 |#2|))) |#2| |#3|)) (-15 -2953 ((-859 |#1| |#2|) |#2| |#3|))))) (-1067) (-857 |#1|) (-594 (-861 |#1|))) (T -858))
+((-2953 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-5 *2 (-859 *5 *3)) (-5 *1 (-858 *5 *3 *4)) (-3659 (-4 *3 (-1009 (-1142)))) (-3659 (-4 *3 (-1018))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-861 *5))))) (-2953 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-5 *2 (-618 (-286 (-917 *3)))) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-1018)) (-3659 (-4 *3 (-1009 (-1142)))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-861 *5))))) (-2953 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-5 *2 (-618 (-286 *3))) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-1009 (-1142))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-861 *5))))) (-2953 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *6 (-857 *5)) (-5 *2 (-856 *5 *6 (-618 *6))) (-5 *1 (-858 *5 *6 *4)) (-5 *3 (-618 *6)) (-4 *4 (-594 (-861 *5))))) (-2952 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *6)) (-4 *6 (-857 *5)) (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-858 *5 *6 *4)) (-4 *4 (-594 (-861 *5))))) (-2952 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-857 *5)) (-4 *4 (-594 (-861 *5))))))
+(-10 -7 (-15 -2952 ((-112) |#2| |#3|)) (-15 -2952 ((-112) (-618 |#2|) |#3|)) (-15 -2953 ((-856 |#1| |#2| (-618 |#2|)) (-618 |#2|) |#3|)) (IF (|has| |#2| (-1009 (-1142))) (-15 -2953 ((-618 (-286 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1018)) (-15 -2953 ((-618 (-286 (-917 |#2|))) |#2| |#3|)) (-15 -2953 ((-859 |#1| |#2|) |#2| |#3|)))))
+((-2887 (((-112) $ $) NIL)) (-3568 (($ $ $) 39)) (-2980 (((-3 (-112) "failed") $ (-861 |#1|)) 36)) (-3960 (($) 12)) (-3576 (((-1124) $) NIL)) (-2955 (($ (-861 |#1|) |#2| $) 20)) (-3577 (((-1086) $) NIL)) (-2957 (((-3 |#2| "failed") (-861 |#1|) $) 50)) (-2959 (((-112) $) 15)) (-2958 (($) 13)) (-3591 (((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 |#2|))) $) 25)) (-3867 (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 |#2|)))) 23)) (-4300 (((-835) $) 44)) (-2954 (($ (-861 |#1|) |#2| $ |#2|) 48)) (-2956 (($ (-861 |#1|) |#2| $) 47)) (-3375 (((-112) $ $) 41)))
+(((-859 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -2959 ((-112) $)) (-15 -2958 ($)) (-15 -3960 ($)) (-15 -3568 ($ $ $)) (-15 -2957 ((-3 |#2| "failed") (-861 |#1|) $)) (-15 -2956 ($ (-861 |#1|) |#2| $)) (-15 -2955 ($ (-861 |#1|) |#2| $)) (-15 -2954 ($ (-861 |#1|) |#2| $ |#2|)) (-15 -3591 ((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 |#2|))) $)) (-15 -3867 ($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 |#2|))))) (-15 -2980 ((-3 (-112) "failed") $ (-861 |#1|))))) (-1067) (-1067)) (T -859))
+((-2959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-2958 (*1 *1) (-12 (-5 *1 (-859 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3960 (*1 *1) (-12 (-5 *1 (-859 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3568 (*1 *1 *1 *1) (-12 (-5 *1 (-859 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-2957 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-4 *2 (-1067)) (-5 *1 (-859 *4 *2)))) (-2956 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1067)))) (-2955 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1067)))) (-2954 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1067)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 *4)))) (-5 *1 (-859 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 *4)))) (-4 *4 (-1067)) (-5 *1 (-859 *3 *4)) (-4 *3 (-1067)))) (-2980 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-859 *4 *5)) (-4 *5 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -2959 ((-112) $)) (-15 -2958 ($)) (-15 -3960 ($)) (-15 -3568 ($ $ $)) (-15 -2957 ((-3 |#2| "failed") (-861 |#1|) $)) (-15 -2956 ($ (-861 |#1|) |#2| $)) (-15 -2955 ($ (-861 |#1|) |#2| $)) (-15 -2954 ($ (-861 |#1|) |#2| $ |#2|)) (-15 -3591 ((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 |#2|))) $)) (-15 -3867 ($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 |#2|))))) (-15 -2980 ((-3 (-112) "failed") $ (-861 |#1|)))))
+((-4301 (((-859 |#1| |#3|) (-1 |#3| |#2|) (-859 |#1| |#2|)) 22)))
+(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -4301 ((-859 |#1| |#3|) (-1 |#3| |#2|) (-859 |#1| |#2|)))) (-1067) (-1067) (-1067)) (T -860))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-859 *5 *6)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-859 *5 *7)) (-5 *1 (-860 *5 *6 *7)))))
+(-10 -7 (-15 -4301 ((-859 |#1| |#3|) (-1 |#3| |#2|) (-859 |#1| |#2|))))
+((-2887 (((-112) $ $) NIL)) (-2967 (($ $ (-618 (-51))) 64)) (-3405 (((-618 $) $) 118)) (-2964 (((-2 (|:| |var| (-618 (-1142))) (|:| |pred| (-51))) $) 24)) (-3594 (((-112) $) 30)) (-2965 (($ $ (-618 (-1142)) (-51)) 25)) (-2968 (($ $ (-618 (-51))) 63)) (-3491 (((-3 |#1| #1="failed") $) 61) (((-3 (-1142) #1#) $) 140)) (-3490 ((|#1| $) 58) (((-1142) $) NIL)) (-2962 (($ $) 108)) (-2974 (((-112) $) 47)) (-2969 (((-618 (-51)) $) 45)) (-2966 (($ (-1142) (-112) (-112) (-112)) 65)) (-2960 (((-3 (-618 $) "failed") (-618 $)) 72)) (-2971 (((-112) $) 50)) (-2972 (((-112) $) 49)) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) "failed") $) 36)) (-2977 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3146 (((-3 (-2 (|:| |val| $) (|:| -2484 $)) "failed") $) 83)) (-3143 (((-3 (-618 $) "failed") $) 33)) (-2978 (((-3 (-618 $) "failed") $ (-113)) 107) (((-3 (-2 (|:| -2827 (-113)) (|:| |arg| (-618 $))) "failed") $) 95)) (-2976 (((-3 (-618 $) "failed") $) 37)) (-3145 (((-3 (-2 (|:| |val| $) (|:| -2484 (-747))) "failed") $) 40)) (-2975 (((-112) $) 29)) (-3577 (((-1086) $) NIL)) (-2963 (((-112) $) 21)) (-2970 (((-112) $) 46)) (-2961 (((-618 (-51)) $) 111)) (-2973 (((-112) $) 48)) (-4142 (($ (-113) (-618 $)) 92)) (-3665 (((-747) $) 28)) (-3742 (($ $) 62)) (-4313 (($ (-618 $)) 59)) (-4295 (((-112) $) 26)) (-4300 (((-835) $) 53) (($ |#1|) 18) (($ (-1142)) 66)) (-2981 (($ $ (-51)) 110)) (-2979 (($) 91 T CONST)) (-2985 (($) 73 T CONST)) (-3375 (((-112) $ $) 79)) (-4291 (($ $ $) 100)) (-4182 (($ $ $) 104)) (** (($ $ (-747)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
+(((-861 |#1|) (-13 (-1067) (-1009 |#1|) (-1009 (-1142)) (-10 -8 (-15 0 ($) -4294) (-15 1 ($) -4294) (-15 -3143 ((-3 (-618 $) "failed") $)) (-15 -3144 ((-3 (-618 $) "failed") $)) (-15 -2978 ((-3 (-618 $) "failed") $ (-113))) (-15 -2978 ((-3 (-2 (|:| -2827 (-113)) (|:| |arg| (-618 $))) "failed") $)) (-15 -3145 ((-3 (-2 (|:| |val| $) (|:| -2484 (-747))) "failed") $)) (-15 -2977 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2976 ((-3 (-618 $) "failed") $)) (-15 -3146 ((-3 (-2 (|:| |val| $) (|:| -2484 $)) "failed") $)) (-15 -4142 ($ (-113) (-618 $))) (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ $)) (-15 -4291 ($ $ $)) (-15 -3665 ((-747) $)) (-15 -4313 ($ (-618 $))) (-15 -3742 ($ $)) (-15 -2975 ((-112) $)) (-15 -2974 ((-112) $)) (-15 -3594 ((-112) $)) (-15 -4295 ((-112) $)) (-15 -2973 ((-112) $)) (-15 -2972 ((-112) $)) (-15 -2971 ((-112) $)) (-15 -2970 ((-112) $)) (-15 -2969 ((-618 (-51)) $)) (-15 -2968 ($ $ (-618 (-51)))) (-15 -2967 ($ $ (-618 (-51)))) (-15 -2966 ($ (-1142) (-112) (-112) (-112))) (-15 -2965 ($ $ (-618 (-1142)) (-51))) (-15 -2964 ((-2 (|:| |var| (-618 (-1142))) (|:| |pred| (-51))) $)) (-15 -2963 ((-112) $)) (-15 -2962 ($ $)) (-15 -2981 ($ $ (-51))) (-15 -2961 ((-618 (-51)) $)) (-15 -3405 ((-618 $) $)) (-15 -2960 ((-3 (-618 $) "failed") (-618 $))))) (-1067)) (T -861))
+((-2979 (*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (-2985 (*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (-3143 (*1 *2 *1) (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-3144 (*1 *2 *1) (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2978 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-618 (-861 *4))) (-5 *1 (-861 *4)) (-4 *4 (-1067)))) (-2978 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2827 (-113)) (|:| |arg| (-618 (-861 *3))))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-3145 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -2484 (-747)))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2977 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-861 *3)) (|:| |den| (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2976 (*1 *2 *1) (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-3146 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -2484 (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-4142 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-618 (-861 *4))) (-5 *1 (-861 *4)) (-4 *4 (-1067)))) (-4182 (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (-4291 (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-3742 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2968 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2967 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2966 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-112)) (-5 *1 (-861 *4)) (-4 *4 (-1067)))) (-2965 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-51)) (-5 *1 (-861 *4)) (-4 *4 (-1067)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-618 (-1142))) (|:| |pred| (-51)))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2962 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))) (-2981 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))) (-2960 (*1 *2 *2) (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(-13 (-1067) (-1009 |#1|) (-1009 (-1142)) (-10 -8 (-15 (-2979) ($) -4294) (-15 (-2985) ($) -4294) (-15 -3143 ((-3 (-618 $) "failed") $)) (-15 -3144 ((-3 (-618 $) "failed") $)) (-15 -2978 ((-3 (-618 $) "failed") $ (-113))) (-15 -2978 ((-3 (-2 (|:| -2827 (-113)) (|:| |arg| (-618 $))) "failed") $)) (-15 -3145 ((-3 (-2 (|:| |val| $) (|:| -2484 (-747))) "failed") $)) (-15 -2977 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2976 ((-3 (-618 $) "failed") $)) (-15 -3146 ((-3 (-2 (|:| |val| $) (|:| -2484 $)) "failed") $)) (-15 -4142 ($ (-113) (-618 $))) (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ $)) (-15 -4291 ($ $ $)) (-15 -3665 ((-747) $)) (-15 -4313 ($ (-618 $))) (-15 -3742 ($ $)) (-15 -2975 ((-112) $)) (-15 -2974 ((-112) $)) (-15 -3594 ((-112) $)) (-15 -4295 ((-112) $)) (-15 -2973 ((-112) $)) (-15 -2972 ((-112) $)) (-15 -2971 ((-112) $)) (-15 -2970 ((-112) $)) (-15 -2969 ((-618 (-51)) $)) (-15 -2968 ($ $ (-618 (-51)))) (-15 -2967 ($ $ (-618 (-51)))) (-15 -2966 ($ (-1142) (-112) (-112) (-112))) (-15 -2965 ($ $ (-618 (-1142)) (-51))) (-15 -2964 ((-2 (|:| |var| (-618 (-1142))) (|:| |pred| (-51))) $)) (-15 -2963 ((-112) $)) (-15 -2962 ($ $)) (-15 -2981 ($ $ (-51))) (-15 -2961 ((-618 (-51)) $)) (-15 -3405 ((-618 $) $)) (-15 -2960 ((-3 (-618 $) "failed") (-618 $)))))
+((-3543 (((-861 |#1|) (-861 |#1|) (-618 (-1142)) (-1 (-112) (-618 |#2|))) 32) (((-861 |#1|) (-861 |#1|) (-618 (-1 (-112) |#2|))) 43) (((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|)) 35)) (-2980 (((-112) (-618 |#2|) (-861 |#1|)) 40) (((-112) |#2| (-861 |#1|)) 36)) (-3868 (((-1 (-112) |#2|) (-861 |#1|)) 16)) (-2982 (((-618 |#2|) (-861 |#1|)) 24)) (-2981 (((-861 |#1|) (-861 |#1|) |#2|) 20)))
+(((-862 |#1| |#2|) (-10 -7 (-15 -3543 ((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|))) (-15 -3543 ((-861 |#1|) (-861 |#1|) (-618 (-1 (-112) |#2|)))) (-15 -3543 ((-861 |#1|) (-861 |#1|) (-618 (-1142)) (-1 (-112) (-618 |#2|)))) (-15 -3868 ((-1 (-112) |#2|) (-861 |#1|))) (-15 -2980 ((-112) |#2| (-861 |#1|))) (-15 -2980 ((-112) (-618 |#2|) (-861 |#1|))) (-15 -2981 ((-861 |#1|) (-861 |#1|) |#2|)) (-15 -2982 ((-618 |#2|) (-861 |#1|)))) (-1067) (-1178)) (T -862))
+((-2982 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-5 *2 (-618 *5)) (-5 *1 (-862 *4 *5)) (-4 *5 (-1178)))) (-2981 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1178)))) (-2980 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *6 (-1178)) (-5 *2 (-112)) (-5 *1 (-862 *5 *6)))) (-2980 (*1 *2 *3 *4) (-12 (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-862 *5 *3)) (-4 *3 (-1178)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-862 *4 *5)) (-4 *5 (-1178)))) (-3543 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-861 *5)) (-5 *3 (-618 (-1142))) (-5 *4 (-1 (-112) (-618 *6))) (-4 *5 (-1067)) (-4 *6 (-1178)) (-5 *1 (-862 *5 *6)))) (-3543 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-5 *3 (-618 (-1 (-112) *5))) (-4 *4 (-1067)) (-4 *5 (-1178)) (-5 *1 (-862 *4 *5)))) (-3543 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1067)) (-4 *5 (-1178)) (-5 *1 (-862 *4 *5)))))
+(-10 -7 (-15 -3543 ((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|))) (-15 -3543 ((-861 |#1|) (-861 |#1|) (-618 (-1 (-112) |#2|)))) (-15 -3543 ((-861 |#1|) (-861 |#1|) (-618 (-1142)) (-1 (-112) (-618 |#2|)))) (-15 -3868 ((-1 (-112) |#2|) (-861 |#1|))) (-15 -2980 ((-112) |#2| (-861 |#1|))) (-15 -2980 ((-112) (-618 |#2|) (-861 |#1|))) (-15 -2981 ((-861 |#1|) (-861 |#1|) |#2|)) (-15 -2982 ((-618 |#2|) (-861 |#1|))))
+((-4301 (((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)) 19)))
+(((-863 |#1| |#2|) (-10 -7 (-15 -4301 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) (-1067) (-1067)) (T -863))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-861 *6)) (-5 *1 (-863 *5 *6)))))
+(-10 -7 (-15 -4301 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|))))
+((-2887 (((-112) $ $) NIL)) (-4277 (((-618 |#1|) $) 16)) (-2983 (((-112) $) 38)) (-3491 (((-3 (-648 |#1|) "failed") $) 43)) (-3490 (((-648 |#1|) $) 41)) (-4141 (($ $) 18)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-4176 (((-747) $) 46)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-648 |#1|) $) 17)) (-4300 (((-835) $) 37) (($ (-648 |#1|)) 21) (((-795 |#1|) $) 27) (($ |#1|) 20)) (-2985 (($) 8 T CONST)) (-2984 (((-618 (-648 |#1|)) $) 23)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 11)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 49)))
+(((-864 |#1|) (-13 (-823) (-1009 (-648 |#1|)) (-10 -8 (-15 1 ($) -4294) (-15 -4300 ((-795 |#1|) $)) (-15 -4300 ($ |#1|)) (-15 -4143 ((-648 |#1|) $)) (-15 -4176 ((-747) $)) (-15 -2984 ((-618 (-648 |#1|)) $)) (-15 -4141 ($ $)) (-15 -2983 ((-112) $)) (-15 -4277 ((-618 |#1|) $)))) (-823)) (T -864))
+((-2985 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-4300 (*1 *1 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-648 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-618 (-648 *3))) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-4141 (*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))))
+(-13 (-823) (-1009 (-648 |#1|)) (-10 -8 (-15 (-2985) ($) -4294) (-15 -4300 ((-795 |#1|) $)) (-15 -4300 ($ |#1|)) (-15 -4143 ((-648 |#1|) $)) (-15 -4176 ((-747) $)) (-15 -2984 ((-618 (-648 |#1|)) $)) (-15 -4141 ($ $)) (-15 -2983 ((-112) $)) (-15 -4277 ((-618 |#1|) $))))
+((-3811 ((|#1| |#1| |#1|) 19)))
+(((-865 |#1| |#2|) (-10 -7 (-15 -3811 (|#1| |#1| |#1|))) (-1200 |#2|) (-1018)) (T -865))
+((-3811 (*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-865 *2 *3)) (-4 *2 (-1200 *3)))))
+(-10 -7 (-15 -3811 (|#1| |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-2989 (((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 14)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2986 (((-1006) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 13)) (-3375 (((-112) $ $) 6)))
(((-866) (-138)) (T -866))
-((-3467 (*1 *2 *3 *4) (-12 (-4 *1 (-866)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *2 (-2 (|:| -3467 (-372)) (|:| |explanations| (-1124)))))) (-1943 (*1 *2 *3) (-12 (-4 *1 (-866)) (-5 *3 (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *2 (-1006)))))
-(-13 (-1066) (-10 -7 (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))) (-15 -1943 ((-1006) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3956 ((|#1| |#1| (-747)) 24)) (-2703 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3702 (((-3 (-2 (|:| -3837 |#1|) (|:| -3847 |#1|)) "failed") |#1| (-747) (-747)) 27) (((-621 |#1|) |#1|) 29)))
-(((-867 |#1| |#2|) (-10 -7 (-15 -3702 ((-621 |#1|) |#1|)) (-15 -3702 ((-3 (-2 (|:| -3837 |#1|) (|:| -3847 |#1|)) "failed") |#1| (-747) (-747))) (-15 -2703 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3956 (|#1| |#1| (-747)))) (-1201 |#2|) (-356)) (T -867))
-((-3956 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-5 *1 (-867 *2 *4)) (-4 *2 (-1201 *4)))) (-2703 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-867 *2 *3)) (-4 *2 (-1201 *3)))) (-3702 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-747)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3837 *3) (|:| -3847 *3))) (-5 *1 (-867 *3 *5)) (-4 *3 (-1201 *5)))) (-3702 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-621 *3)) (-5 *1 (-867 *3 *4)) (-4 *3 (-1201 *4)))))
-(-10 -7 (-15 -3702 ((-621 |#1|) |#1|)) (-15 -3702 ((-3 (-2 (|:| -3837 |#1|) (|:| -3847 |#1|)) "failed") |#1| (-747) (-747))) (-15 -2703 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3956 (|#1| |#1| (-747))))
-((-2808 (((-1006) (-372) (-372) (-372) (-372) (-747) (-747) (-621 (-309 (-372))) (-621 (-621 (-309 (-372)))) (-1124)) 96) (((-1006) (-372) (-372) (-372) (-372) (-747) (-747) (-621 (-309 (-372))) (-621 (-621 (-309 (-372)))) (-1124) (-219)) 91) (((-1006) (-869) (-1030)) 83) (((-1006) (-869)) 84)) (-3467 (((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-869) (-1030)) 59) (((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-869)) 61)))
-(((-868) (-10 -7 (-15 -2808 ((-1006) (-869))) (-15 -2808 ((-1006) (-869) (-1030))) (-15 -2808 ((-1006) (-372) (-372) (-372) (-372) (-747) (-747) (-621 (-309 (-372))) (-621 (-621 (-309 (-372)))) (-1124) (-219))) (-15 -2808 ((-1006) (-372) (-372) (-372) (-372) (-747) (-747) (-621 (-309 (-372))) (-621 (-621 (-309 (-372)))) (-1124))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-869))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-869) (-1030))))) (T -868))
-((-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-869)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))))) (-5 *1 (-868)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-869)) (-5 *2 (-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124))))) (-5 *1 (-868)))) (-2808 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-747)) (-5 *6 (-621 (-621 (-309 *3)))) (-5 *7 (-1124)) (-5 *5 (-621 (-309 (-372)))) (-5 *3 (-372)) (-5 *2 (-1006)) (-5 *1 (-868)))) (-2808 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-747)) (-5 *6 (-621 (-621 (-309 *3)))) (-5 *7 (-1124)) (-5 *8 (-219)) (-5 *5 (-621 (-309 (-372)))) (-5 *3 (-372)) (-5 *2 (-1006)) (-5 *1 (-868)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-869)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-868)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-869)) (-5 *2 (-1006)) (-5 *1 (-868)))))
-(-10 -7 (-15 -2808 ((-1006) (-869))) (-15 -2808 ((-1006) (-869) (-1030))) (-15 -2808 ((-1006) (-372) (-372) (-372) (-372) (-747) (-747) (-621 (-309 (-372))) (-621 (-621 (-309 (-372)))) (-1124) (-219))) (-15 -2808 ((-1006) (-372) (-372) (-372) (-372) (-747) (-747) (-621 (-309 (-372))) (-621 (-621 (-309 (-372)))) (-1124))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-869))) (-15 -3467 ((-2 (|:| -3467 (-372)) (|:| -2480 (-1124)) (|:| |explanations| (-621 (-1124)))) (-869) (-1030))))
-((-3833 (((-112) $ $) NIL)) (-2658 (((-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))) $) 19)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 21) (($ (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 18)) (-2388 (((-112) $ $) NIL)))
-(((-869) (-13 (-1066) (-10 -8 (-15 -3845 ($ (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))) (-15 -3845 ((-834) $)) (-15 -2658 ((-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))) $))))) (T -869))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-869)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *1 (-869)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *1 (-869)))))
-(-13 (-1066) (-10 -8 (-15 -3845 ($ (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))) (-15 -3845 ((-834) $)) (-15 -2658 ((-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))) $))))
-((-3455 (($ $ |#2|) NIL) (($ $ (-621 |#2|)) 10) (($ $ |#2| (-747)) 12) (($ $ (-621 |#2|) (-621 (-747))) 15)) (-1700 (($ $ |#2|) 16) (($ $ (-621 |#2|)) 18) (($ $ |#2| (-747)) 19) (($ $ (-621 |#2|) (-621 (-747))) 21)))
-(((-870 |#1| |#2|) (-10 -8 (-15 -1700 (|#1| |#1| (-621 |#2|) (-621 (-747)))) (-15 -1700 (|#1| |#1| |#2| (-747))) (-15 -1700 (|#1| |#1| (-621 |#2|))) (-15 -1700 (|#1| |#1| |#2|)) (-15 -3455 (|#1| |#1| (-621 |#2|) (-621 (-747)))) (-15 -3455 (|#1| |#1| |#2| (-747))) (-15 -3455 (|#1| |#1| (-621 |#2|))) (-15 -3455 (|#1| |#1| |#2|))) (-871 |#2|) (-1066)) (T -870))
-NIL
-(-10 -8 (-15 -1700 (|#1| |#1| (-621 |#2|) (-621 (-747)))) (-15 -1700 (|#1| |#1| |#2| (-747))) (-15 -1700 (|#1| |#1| (-621 |#2|))) (-15 -1700 (|#1| |#1| |#2|)) (-15 -3455 (|#1| |#1| (-621 |#2|) (-621 (-747)))) (-15 -3455 (|#1| |#1| |#2| (-747))) (-15 -3455 (|#1| |#1| (-621 |#2|))) (-15 -3455 (|#1| |#1| |#2|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3455 (($ $ |#1|) 40) (($ $ (-621 |#1|)) 39) (($ $ |#1| (-747)) 38) (($ $ (-621 |#1|) (-621 (-747))) 37)) (-3845 (((-834) $) 11) (($ (-549)) 27)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ |#1|) 36) (($ $ (-621 |#1|)) 35) (($ $ |#1| (-747)) 34) (($ $ (-621 |#1|) (-621 (-747))) 33)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
-(((-871 |#1|) (-138) (-1066)) (T -871))
-((-3455 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1066)))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1066)))) (-3455 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1066)))) (-3455 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 (-747))) (-4 *1 (-871 *4)) (-4 *4 (-1066)))) (-1700 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1066)))) (-1700 (*1 *1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1066)))) (-1700 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1066)))) (-1700 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 (-747))) (-4 *1 (-871 *4)) (-4 *4 (-1066)))))
-(-13 (-1018) (-10 -8 (-15 -3455 ($ $ |t#1|)) (-15 -3455 ($ $ (-621 |t#1|))) (-15 -3455 ($ $ |t#1| (-747))) (-15 -3455 ($ $ (-621 |t#1|) (-621 (-747)))) (-15 -1700 ($ $ |t#1|)) (-15 -1700 ($ $ (-621 |t#1|))) (-15 -1700 ($ $ |t#1| (-747))) (-15 -1700 ($ $ (-621 |t#1|) (-621 (-747))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-4160 ((|#1| $) 26)) (-1323 (((-112) $ (-747)) NIL)) (-3751 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-1501 (($ $ $) NIL (|has| $ (-6 -4337)))) (-1885 (($ $ $) NIL (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ "left" $) NIL (|has| $ (-6 -4337))) (($ $ "right" $) NIL (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) NIL (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-3847 (($ $) 25)) (-2778 (($ |#1|) 12) (($ $ $) 17)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) NIL)) (-1742 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-3837 (($ $) 23)) (-3590 (((-621 |#1|) $) NIL)) (-2456 (((-112) $) 20)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1953 (((-549) $ $) NIL)) (-4187 (((-112) $) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-1165 |#1|) $) 9) (((-834) $) 29 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) NIL)) (-2937 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 21 (|has| |#1| (-1066)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-872 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -2778 ($ |#1|)) (-15 -2778 ($ $ $)) (-15 -3845 ((-1165 |#1|) $)))) (-1066)) (T -872))
-((-2778 (*1 *1 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1066)))) (-2778 (*1 *1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1066)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-872 *3)) (-4 *3 (-1066)))))
-(-13 (-119 |#1|) (-10 -8 (-15 -2778 ($ |#1|)) (-15 -2778 ($ $ $)) (-15 -3845 ((-1165 |#1|) $))))
-((-3723 ((|#2| (-1108 |#1| |#2|)) 40)))
-(((-873 |#1| |#2|) (-10 -7 (-15 -3723 (|#2| (-1108 |#1| |#2|)))) (-892) (-13 (-1018) (-10 -7 (-6 (-4338 "*"))))) (T -873))
-((-3723 (*1 *2 *3) (-12 (-5 *3 (-1108 *4 *2)) (-14 *4 (-892)) (-4 *2 (-13 (-1018) (-10 -7 (-6 (-4338 "*"))))) (-5 *1 (-873 *4 *2)))))
-(-10 -7 (-15 -3723 (|#2| (-1108 |#1| |#2|))))
-((-3833 (((-112) $ $) 7)) (-1705 (($) 18 T CONST)) (-3976 (((-3 $ "failed") $) 15)) (-1759 (((-1068 |#1|) $ |#1|) 32)) (-3987 (((-112) $) 17)) (-2862 (($ $ $) 30 (-1536 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-3574 (($ $ $) 29 (-1536 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-2677 (((-1124) $) 9)) (-1991 (($ $) 24)) (-3988 (((-1086) $) 10)) (-2685 ((|#1| $ |#1|) 34)) (-3340 ((|#1| $ |#1|) 33)) (-2457 (($ (-621 (-621 |#1|))) 35)) (-4113 (($ (-621 |#1|)) 36)) (-2538 (($ $ $) 21)) (-1911 (($ $ $) 20)) (-3845 (((-834) $) 11)) (-3287 (($) 19 T CONST)) (-2448 (((-112) $ $) 27 (-1536 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-2424 (((-112) $ $) 26 (-1536 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 28 (-1536 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-2411 (((-112) $ $) 31)) (-2512 (($ $ $) 23)) (** (($ $ (-892)) 13) (($ $ (-747)) 16) (($ $ (-549)) 22)) (* (($ $ $) 14)))
-(((-874 |#1|) (-138) (-1066)) (T -874))
-((-4113 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-4 *1 (-874 *3)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1066)) (-4 *1 (-874 *3)))) (-2685 (*1 *2 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1066)))) (-3340 (*1 *2 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1066)))) (-1759 (*1 *2 *1 *3) (-12 (-4 *1 (-874 *3)) (-4 *3 (-1066)) (-5 *2 (-1068 *3)))) (-2411 (*1 *2 *1 *1) (-12 (-4 *1 (-874 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))))
-(-13 (-465) (-10 -8 (-15 -4113 ($ (-621 |t#1|))) (-15 -2457 ($ (-621 (-621 |t#1|)))) (-15 -2685 (|t#1| $ |t#1|)) (-15 -3340 (|t#1| $ |t#1|)) (-15 -1759 ((-1068 |t#1|) $ |t#1|)) (-15 -2411 ((-112) $ $)) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-361)) (-6 (-823)) |%noBranch|)))
-(((-101) . T) ((-593 (-834)) . T) ((-465) . T) ((-703) . T) ((-823) -1536 (|has| |#1| (-823)) (|has| |#1| (-361))) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-2445 (((-621 (-621 (-747))) $) 108)) (-2317 (((-621 (-747)) (-876 |#1|) $) 130)) (-4153 (((-621 (-747)) (-876 |#1|) $) 131)) (-2030 (((-621 (-876 |#1|)) $) 98)) (-3238 (((-876 |#1|) $ (-549)) 103) (((-876 |#1|) $) 104)) (-1419 (($ (-621 (-876 |#1|))) 110)) (-2078 (((-747) $) 105)) (-1627 (((-1068 (-1068 |#1|)) $) 128)) (-1759 (((-1068 |#1|) $ |#1|) 121) (((-1068 (-1068 |#1|)) $ (-1068 |#1|)) 139) (((-1068 (-621 |#1|)) $ (-621 |#1|)) 142)) (-2386 (((-1068 |#1|) $) 101)) (-2273 (((-112) (-876 |#1|) $) 92)) (-2677 (((-1124) $) NIL)) (-4214 (((-1230) $) 95) (((-1230) $ (-549) (-549)) 143)) (-3988 (((-1086) $) NIL)) (-1914 (((-621 (-876 |#1|)) $) 96)) (-3340 (((-876 |#1|) $ (-747)) 99)) (-3068 (((-747) $) 106)) (-3845 (((-834) $) 119) (((-621 (-876 |#1|)) $) 23) (($ (-621 (-876 |#1|))) 109)) (-1863 (((-621 |#1|) $) 107)) (-2388 (((-112) $ $) 136)) (-2436 (((-112) $ $) 134)) (-2411 (((-112) $ $) 133)))
-(((-875 |#1|) (-13 (-1066) (-10 -8 (-15 -3845 ((-621 (-876 |#1|)) $)) (-15 -1914 ((-621 (-876 |#1|)) $)) (-15 -3340 ((-876 |#1|) $ (-747))) (-15 -3238 ((-876 |#1|) $ (-549))) (-15 -3238 ((-876 |#1|) $)) (-15 -2078 ((-747) $)) (-15 -3068 ((-747) $)) (-15 -1863 ((-621 |#1|) $)) (-15 -2030 ((-621 (-876 |#1|)) $)) (-15 -2445 ((-621 (-621 (-747))) $)) (-15 -3845 ($ (-621 (-876 |#1|)))) (-15 -1419 ($ (-621 (-876 |#1|)))) (-15 -1759 ((-1068 |#1|) $ |#1|)) (-15 -1627 ((-1068 (-1068 |#1|)) $)) (-15 -1759 ((-1068 (-1068 |#1|)) $ (-1068 |#1|))) (-15 -1759 ((-1068 (-621 |#1|)) $ (-621 |#1|))) (-15 -2273 ((-112) (-876 |#1|) $)) (-15 -2317 ((-621 (-747)) (-876 |#1|) $)) (-15 -4153 ((-621 (-747)) (-876 |#1|) $)) (-15 -2386 ((-1068 |#1|) $)) (-15 -2411 ((-112) $ $)) (-15 -2436 ((-112) $ $)) (-15 -4214 ((-1230) $)) (-15 -4214 ((-1230) $ (-549) (-549))))) (-1066)) (T -875))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-876 *4)) (-5 *1 (-875 *4)) (-4 *4 (-1066)))) (-3238 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-876 *4)) (-5 *1 (-875 *4)) (-4 *4 (-1066)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-876 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-747)))) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-876 *3))) (-4 *3 (-1066)) (-5 *1 (-875 *3)))) (-1419 (*1 *1 *2) (-12 (-5 *2 (-621 (-876 *3))) (-4 *3 (-1066)) (-5 *1 (-875 *3)))) (-1759 (*1 *2 *1 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-1068 (-1068 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-1759 (*1 *2 *1 *3) (-12 (-4 *4 (-1066)) (-5 *2 (-1068 (-1068 *4))) (-5 *1 (-875 *4)) (-5 *3 (-1068 *4)))) (-1759 (*1 *2 *1 *3) (-12 (-4 *4 (-1066)) (-5 *2 (-1068 (-621 *4))) (-5 *1 (-875 *4)) (-5 *3 (-621 *4)))) (-2273 (*1 *2 *3 *1) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1066)) (-5 *2 (-112)) (-5 *1 (-875 *4)))) (-2317 (*1 *2 *3 *1) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1066)) (-5 *2 (-621 (-747))) (-5 *1 (-875 *4)))) (-4153 (*1 *2 *3 *1) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1066)) (-5 *2 (-621 (-747))) (-5 *1 (-875 *4)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-2411 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-2436 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-4214 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))) (-4214 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-875 *4)) (-4 *4 (-1066)))))
-(-13 (-1066) (-10 -8 (-15 -3845 ((-621 (-876 |#1|)) $)) (-15 -1914 ((-621 (-876 |#1|)) $)) (-15 -3340 ((-876 |#1|) $ (-747))) (-15 -3238 ((-876 |#1|) $ (-549))) (-15 -3238 ((-876 |#1|) $)) (-15 -2078 ((-747) $)) (-15 -3068 ((-747) $)) (-15 -1863 ((-621 |#1|) $)) (-15 -2030 ((-621 (-876 |#1|)) $)) (-15 -2445 ((-621 (-621 (-747))) $)) (-15 -3845 ($ (-621 (-876 |#1|)))) (-15 -1419 ($ (-621 (-876 |#1|)))) (-15 -1759 ((-1068 |#1|) $ |#1|)) (-15 -1627 ((-1068 (-1068 |#1|)) $)) (-15 -1759 ((-1068 (-1068 |#1|)) $ (-1068 |#1|))) (-15 -1759 ((-1068 (-621 |#1|)) $ (-621 |#1|))) (-15 -2273 ((-112) (-876 |#1|) $)) (-15 -2317 ((-621 (-747)) (-876 |#1|) $)) (-15 -4153 ((-621 (-747)) (-876 |#1|) $)) (-15 -2386 ((-1068 |#1|) $)) (-15 -2411 ((-112) $ $)) (-15 -2436 ((-112) $ $)) (-15 -4214 ((-1230) $)) (-15 -4214 ((-1230) $ (-549) (-549)))))
-((-3833 (((-112) $ $) NIL)) (-3193 (((-621 $) (-621 $)) 77)) (-3902 (((-549) $) 60)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) NIL)) (-2078 (((-747) $) 58)) (-1759 (((-1068 |#1|) $ |#1|) 49)) (-3987 (((-112) $) NIL)) (-3061 (((-112) $) 63)) (-2590 (((-747) $) 61)) (-2386 (((-1068 |#1|) $) 42)) (-2862 (($ $ $) NIL (-1536 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-3574 (($ $ $) NIL (-1536 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-2259 (((-2 (|:| |preimage| (-621 |#1|)) (|:| |image| (-621 |#1|))) $) 37)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 93)) (-3988 (((-1086) $) NIL)) (-2324 (((-1068 |#1|) $) 100 (|has| |#1| (-361)))) (-4062 (((-112) $) 59)) (-2685 ((|#1| $ |#1|) 47)) (-3340 ((|#1| $ |#1|) 94)) (-3068 (((-747) $) 44)) (-2457 (($ (-621 (-621 |#1|))) 85)) (-4110 (((-942) $) 53)) (-4113 (($ (-621 |#1|)) 21)) (-2538 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-1761 (($ (-621 (-621 |#1|))) 39)) (-4177 (($ (-621 (-621 |#1|))) 88)) (-3961 (($ (-621 |#1|)) 96)) (-3845 (((-834) $) 84) (($ (-621 (-621 |#1|))) 66) (($ (-621 |#1|)) 67)) (-3287 (($) 16 T CONST)) (-2448 (((-112) $ $) NIL (-1536 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-2424 (((-112) $ $) NIL (-1536 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-2388 (((-112) $ $) 45)) (-2436 (((-112) $ $) NIL (-1536 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-2411 (((-112) $ $) 65)) (-2512 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ $ $) 22)))
-(((-876 |#1|) (-13 (-874 |#1|) (-10 -8 (-15 -2259 ((-2 (|:| |preimage| (-621 |#1|)) (|:| |image| (-621 |#1|))) $)) (-15 -1761 ($ (-621 (-621 |#1|)))) (-15 -3845 ($ (-621 (-621 |#1|)))) (-15 -3845 ($ (-621 |#1|))) (-15 -4177 ($ (-621 (-621 |#1|)))) (-15 -3068 ((-747) $)) (-15 -2386 ((-1068 |#1|) $)) (-15 -4110 ((-942) $)) (-15 -2078 ((-747) $)) (-15 -2590 ((-747) $)) (-15 -3902 ((-549) $)) (-15 -4062 ((-112) $)) (-15 -3061 ((-112) $)) (-15 -3193 ((-621 $) (-621 $))) (IF (|has| |#1| (-361)) (-15 -2324 ((-1068 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-534)) (-15 -3961 ($ (-621 |#1|))) (IF (|has| |#1| (-361)) (-15 -3961 ($ (-621 |#1|))) |%noBranch|)))) (-1066)) (T -876))
-((-2259 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-621 *3)) (|:| |image| (-621 *3)))) (-5 *1 (-876 *3)) (-4 *3 (-1066)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1066)) (-5 *1 (-876 *3)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1066)) (-5 *1 (-876 *3)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-876 *3)))) (-4177 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1066)) (-5 *1 (-876 *3)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-942)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1066)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-876 *3)) (-4 *3 (-361)) (-4 *3 (-1066)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-876 *3)))))
-(-13 (-874 |#1|) (-10 -8 (-15 -2259 ((-2 (|:| |preimage| (-621 |#1|)) (|:| |image| (-621 |#1|))) $)) (-15 -1761 ($ (-621 (-621 |#1|)))) (-15 -3845 ($ (-621 (-621 |#1|)))) (-15 -3845 ($ (-621 |#1|))) (-15 -4177 ($ (-621 (-621 |#1|)))) (-15 -3068 ((-747) $)) (-15 -2386 ((-1068 |#1|) $)) (-15 -4110 ((-942) $)) (-15 -2078 ((-747) $)) (-15 -2590 ((-747) $)) (-15 -3902 ((-549) $)) (-15 -4062 ((-112) $)) (-15 -3061 ((-112) $)) (-15 -3193 ((-621 $) (-621 $))) (IF (|has| |#1| (-361)) (-15 -2324 ((-1068 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-534)) (-15 -3961 ($ (-621 |#1|))) (IF (|has| |#1| (-361)) (-15 -3961 ($ (-621 |#1|))) |%noBranch|))))
-((-2018 (((-3 (-621 (-1138 |#4|)) "failed") (-621 (-1138 |#4|)) (-1138 |#4|)) 128)) (-1584 ((|#1|) 77)) (-3651 (((-411 (-1138 |#4|)) (-1138 |#4|)) 137)) (-1526 (((-411 (-1138 |#4|)) (-621 |#3|) (-1138 |#4|)) 69)) (-2700 (((-411 (-1138 |#4|)) (-1138 |#4|)) 147)) (-3766 (((-3 (-621 (-1138 |#4|)) "failed") (-621 (-1138 |#4|)) (-1138 |#4|) |#3|) 92)))
-(((-877 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2018 ((-3 (-621 (-1138 |#4|)) "failed") (-621 (-1138 |#4|)) (-1138 |#4|))) (-15 -2700 ((-411 (-1138 |#4|)) (-1138 |#4|))) (-15 -3651 ((-411 (-1138 |#4|)) (-1138 |#4|))) (-15 -1584 (|#1|)) (-15 -3766 ((-3 (-621 (-1138 |#4|)) "failed") (-621 (-1138 |#4|)) (-1138 |#4|) |#3|)) (-15 -1526 ((-411 (-1138 |#4|)) (-621 |#3|) (-1138 |#4|)))) (-880) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -877))
-((-1526 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *7)) (-4 *7 (-823)) (-4 *5 (-880)) (-4 *6 (-769)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-411 (-1138 *8))) (-5 *1 (-877 *5 *6 *7 *8)) (-5 *4 (-1138 *8)))) (-3766 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-621 (-1138 *7))) (-5 *3 (-1138 *7)) (-4 *7 (-920 *5 *6 *4)) (-4 *5 (-880)) (-4 *6 (-769)) (-4 *4 (-823)) (-5 *1 (-877 *5 *6 *4 *7)))) (-1584 (*1 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-880)) (-5 *1 (-877 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (-3651 (*1 *2 *3) (-12 (-4 *4 (-880)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-411 (-1138 *7))) (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-1138 *7)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-880)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-411 (-1138 *7))) (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-1138 *7)))) (-2018 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-1138 *7))) (-5 *3 (-1138 *7)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-880)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-877 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2018 ((-3 (-621 (-1138 |#4|)) "failed") (-621 (-1138 |#4|)) (-1138 |#4|))) (-15 -2700 ((-411 (-1138 |#4|)) (-1138 |#4|))) (-15 -3651 ((-411 (-1138 |#4|)) (-1138 |#4|))) (-15 -1584 (|#1|)) (-15 -3766 ((-3 (-621 (-1138 |#4|)) "failed") (-621 (-1138 |#4|)) (-1138 |#4|) |#3|)) (-15 -1526 ((-411 (-1138 |#4|)) (-621 |#3|) (-1138 |#4|))))
-((-2018 (((-3 (-621 (-1138 |#2|)) "failed") (-621 (-1138 |#2|)) (-1138 |#2|)) 36)) (-1584 ((|#1|) 54)) (-3651 (((-411 (-1138 |#2|)) (-1138 |#2|)) 102)) (-1526 (((-411 (-1138 |#2|)) (-1138 |#2|)) 90)) (-2700 (((-411 (-1138 |#2|)) (-1138 |#2|)) 113)))
-(((-878 |#1| |#2|) (-10 -7 (-15 -2018 ((-3 (-621 (-1138 |#2|)) "failed") (-621 (-1138 |#2|)) (-1138 |#2|))) (-15 -2700 ((-411 (-1138 |#2|)) (-1138 |#2|))) (-15 -3651 ((-411 (-1138 |#2|)) (-1138 |#2|))) (-15 -1584 (|#1|)) (-15 -1526 ((-411 (-1138 |#2|)) (-1138 |#2|)))) (-880) (-1201 |#1|)) (T -878))
-((-1526 (*1 *2 *3) (-12 (-4 *4 (-880)) (-4 *5 (-1201 *4)) (-5 *2 (-411 (-1138 *5))) (-5 *1 (-878 *4 *5)) (-5 *3 (-1138 *5)))) (-1584 (*1 *2) (-12 (-4 *2 (-880)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1201 *2)))) (-3651 (*1 *2 *3) (-12 (-4 *4 (-880)) (-4 *5 (-1201 *4)) (-5 *2 (-411 (-1138 *5))) (-5 *1 (-878 *4 *5)) (-5 *3 (-1138 *5)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-880)) (-4 *5 (-1201 *4)) (-5 *2 (-411 (-1138 *5))) (-5 *1 (-878 *4 *5)) (-5 *3 (-1138 *5)))) (-2018 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-1138 *5))) (-5 *3 (-1138 *5)) (-4 *5 (-1201 *4)) (-4 *4 (-880)) (-5 *1 (-878 *4 *5)))))
-(-10 -7 (-15 -2018 ((-3 (-621 (-1138 |#2|)) "failed") (-621 (-1138 |#2|)) (-1138 |#2|))) (-15 -2700 ((-411 (-1138 |#2|)) (-1138 |#2|))) (-15 -3651 ((-411 (-1138 |#2|)) (-1138 |#2|))) (-15 -1584 (|#1|)) (-15 -1526 ((-411 (-1138 |#2|)) (-1138 |#2|))))
-((-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 41)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 18)) (-3407 (((-3 $ "failed") $) 35)))
-(((-879 |#1|) (-10 -8 (-15 -3407 ((-3 |#1| "failed") |#1|)) (-15 -1512 ((-3 (-621 (-1138 |#1|)) "failed") (-621 (-1138 |#1|)) (-1138 |#1|))) (-15 -1443 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)))) (-880)) (T -879))
-NIL
-(-10 -8 (-15 -3407 ((-3 |#1| "failed") |#1|)) (-15 -1512 ((-3 (-621 (-1138 |#1|)) "failed") (-621 (-1138 |#1|)) (-1138 |#1|))) (-15 -1443 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-2461 (((-411 (-1138 $)) (-1138 $)) 58)) (-1912 (($ $) 49)) (-3513 (((-411 $) $) 50)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 55)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-2471 (((-112) $) 51)) (-3987 (((-112) $) 30)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-1873 (((-411 (-1138 $)) (-1138 $)) 56)) (-4120 (((-411 (-1138 $)) (-1138 $)) 57)) (-2120 (((-411 $) $) 48)) (-2038 (((-3 $ "failed") $ $) 40)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 54 (|has| $ (-143)))) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-3407 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
-(((-880) (-138)) (T -880))
-((-1443 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *1)) (-4 *1 (-880)))) (-2461 (*1 *2 *3) (-12 (-4 *1 (-880)) (-5 *2 (-411 (-1138 *1))) (-5 *3 (-1138 *1)))) (-4120 (*1 *2 *3) (-12 (-4 *1 (-880)) (-5 *2 (-411 (-1138 *1))) (-5 *3 (-1138 *1)))) (-1873 (*1 *2 *3) (-12 (-4 *1 (-880)) (-5 *2 (-411 (-1138 *1))) (-5 *3 (-1138 *1)))) (-1512 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-1138 *1))) (-5 *3 (-1138 *1)) (-4 *1 (-880)))) (-3119 (*1 *2 *3) (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-143)) (-4 *1 (-880)) (-5 *2 (-1225 *1)))) (-3407 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-880)))))
-(-13 (-1183) (-10 -8 (-15 -2461 ((-411 (-1138 $)) (-1138 $))) (-15 -4120 ((-411 (-1138 $)) (-1138 $))) (-15 -1873 ((-411 (-1138 $)) (-1138 $))) (-15 -1443 ((-1138 $) (-1138 $) (-1138 $))) (-15 -1512 ((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $))) (IF (|has| $ (-143)) (PROGN (-15 -3119 ((-3 (-1225 $) "failed") (-665 $))) (-15 -3407 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1183) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2642 (((-112) $) NIL)) (-1703 (((-747)) NIL)) (-2905 (($ $ (-892)) NIL (|has| $ (-361))) (($ $) NIL)) (-2572 (((-1152 (-892) (-747)) (-549)) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3615 (((-747)) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 $ "failed") $) NIL)) (-2658 (($ $) NIL)) (-2127 (($ (-1225 $)) NIL)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-1327 (($) NIL)) (-1729 (((-112) $) NIL)) (-3225 (($ $) NIL) (($ $ (-747)) NIL)) (-2471 (((-112) $) NIL)) (-2078 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-3987 (((-112) $) NIL)) (-2308 (($) NIL (|has| $ (-361)))) (-2815 (((-112) $) NIL (|has| $ (-361)))) (-4117 (($ $ (-892)) NIL (|has| $ (-361))) (($ $) NIL)) (-3982 (((-3 $ "failed") $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4030 (((-1138 $) $ (-892)) NIL (|has| $ (-361))) (((-1138 $) $) NIL)) (-2723 (((-892) $) NIL)) (-4228 (((-1138 $) $) NIL (|has| $ (-361)))) (-3609 (((-3 (-1138 $) "failed") $ $) NIL (|has| $ (-361))) (((-1138 $) $) NIL (|has| $ (-361)))) (-3289 (($ $ (-1138 $)) NIL (|has| $ (-361)))) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL T CONST)) (-3491 (($ (-892)) NIL)) (-2360 (((-112) $) NIL)) (-3988 (((-1086) $) NIL)) (-4246 (($) NIL (|has| $ (-361)))) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL)) (-2120 (((-411 $) $) NIL)) (-3656 (((-892)) NIL) (((-809 (-892))) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2591 (((-3 (-747) "failed") $ $) NIL) (((-747) $) NIL)) (-3128 (((-133)) NIL)) (-3455 (($ $ (-747)) NIL) (($ $) NIL)) (-3068 (((-892) $) NIL) (((-809 (-892)) $) NIL)) (-2539 (((-1138 $)) NIL)) (-3191 (($) NIL)) (-3250 (($) NIL (|has| $ (-361)))) (-4163 (((-665 $) (-1225 $)) NIL) (((-1225 $) $) NIL)) (-2844 (((-549) $) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL)) (-3407 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1723 (((-747)) NIL)) (-3420 (((-1225 $) (-892)) NIL) (((-1225 $)) NIL)) (-4053 (((-112) $ $) NIL)) (-2923 (((-112) $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2731 (($ $ (-747)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-1700 (($ $ (-747)) NIL) (($ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
-(((-881 |#1|) (-13 (-342) (-322 $) (-594 (-549))) (-892)) (T -881))
-NIL
-(-13 (-342) (-322 $) (-594 (-549)))
-((-3686 (((-3 (-2 (|:| -2078 (-747)) (|:| -3567 |#5|)) "failed") (-329 |#2| |#3| |#4| |#5|)) 79)) (-1945 (((-112) (-329 |#2| |#3| |#4| |#5|)) 17)) (-2078 (((-3 (-747) "failed") (-329 |#2| |#3| |#4| |#5|)) 15)))
-(((-882 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2078 ((-3 (-747) "failed") (-329 |#2| |#3| |#4| |#5|))) (-15 -1945 ((-112) (-329 |#2| |#3| |#4| |#5|))) (-15 -3686 ((-3 (-2 (|:| -2078 (-747)) (|:| -3567 |#5|)) "failed") (-329 |#2| |#3| |#4| |#5|)))) (-13 (-823) (-541) (-1009 (-549))) (-423 |#1|) (-1201 |#2|) (-1201 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -882))
-((-3686 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1201 *5)) (-4 *7 (-1201 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-2 (|:| -2078 (-747)) (|:| -3567 *8))) (-5 *1 (-882 *4 *5 *6 *7 *8)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1201 *5)) (-4 *7 (-1201 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-112)) (-5 *1 (-882 *4 *5 *6 *7 *8)))) (-2078 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1201 *5)) (-4 *7 (-1201 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-747)) (-5 *1 (-882 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2078 ((-3 (-747) "failed") (-329 |#2| |#3| |#4| |#5|))) (-15 -1945 ((-112) (-329 |#2| |#3| |#4| |#5|))) (-15 -3686 ((-3 (-2 (|:| -2078 (-747)) (|:| -3567 |#5|)) "failed") (-329 |#2| |#3| |#4| |#5|))))
-((-3686 (((-3 (-2 (|:| -2078 (-747)) (|:| -3567 |#3|)) "failed") (-329 (-400 (-549)) |#1| |#2| |#3|)) 56)) (-1945 (((-112) (-329 (-400 (-549)) |#1| |#2| |#3|)) 16)) (-2078 (((-3 (-747) "failed") (-329 (-400 (-549)) |#1| |#2| |#3|)) 14)))
-(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -2078 ((-3 (-747) "failed") (-329 (-400 (-549)) |#1| |#2| |#3|))) (-15 -1945 ((-112) (-329 (-400 (-549)) |#1| |#2| |#3|))) (-15 -3686 ((-3 (-2 (|:| -2078 (-747)) (|:| -3567 |#3|)) "failed") (-329 (-400 (-549)) |#1| |#2| |#3|)))) (-1201 (-400 (-549))) (-1201 (-400 |#1|)) (-335 (-400 (-549)) |#1| |#2|)) (T -883))
-((-3686 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 (-400 (-549)) *4 *5 *6)) (-4 *4 (-1201 (-400 (-549)))) (-4 *5 (-1201 (-400 *4))) (-4 *6 (-335 (-400 (-549)) *4 *5)) (-5 *2 (-2 (|:| -2078 (-747)) (|:| -3567 *6))) (-5 *1 (-883 *4 *5 *6)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-329 (-400 (-549)) *4 *5 *6)) (-4 *4 (-1201 (-400 (-549)))) (-4 *5 (-1201 (-400 *4))) (-4 *6 (-335 (-400 (-549)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-883 *4 *5 *6)))) (-2078 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 (-400 (-549)) *4 *5 *6)) (-4 *4 (-1201 (-400 (-549)))) (-4 *5 (-1201 (-400 *4))) (-4 *6 (-335 (-400 (-549)) *4 *5)) (-5 *2 (-747)) (-5 *1 (-883 *4 *5 *6)))))
-(-10 -7 (-15 -2078 ((-3 (-747) "failed") (-329 (-400 (-549)) |#1| |#2| |#3|))) (-15 -1945 ((-112) (-329 (-400 (-549)) |#1| |#2| |#3|))) (-15 -3686 ((-3 (-2 (|:| -2078 (-747)) (|:| -3567 |#3|)) "failed") (-329 (-400 (-549)) |#1| |#2| |#3|))))
-((-2249 ((|#2| |#2|) 26)) (-2768 (((-549) (-621 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))))) 15)) (-4247 (((-892) (-549)) 35)) (-2040 (((-549) |#2|) 42)) (-2416 (((-549) |#2|) 21) (((-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))) |#1|) 20)))
-(((-884 |#1| |#2|) (-10 -7 (-15 -4247 ((-892) (-549))) (-15 -2416 ((-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))) |#1|)) (-15 -2416 ((-549) |#2|)) (-15 -2768 ((-549) (-621 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))))) (-15 -2040 ((-549) |#2|)) (-15 -2249 (|#2| |#2|))) (-1201 (-400 (-549))) (-1201 (-400 |#1|))) (T -884))
-((-2249 (*1 *2 *2) (-12 (-4 *3 (-1201 (-400 (-549)))) (-5 *1 (-884 *3 *2)) (-4 *2 (-1201 (-400 *3))))) (-2040 (*1 *2 *3) (-12 (-4 *4 (-1201 (-400 *2))) (-5 *2 (-549)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1201 (-400 *4))))) (-2768 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))))) (-4 *4 (-1201 (-400 *2))) (-5 *2 (-549)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1201 (-400 *4))))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-1201 (-400 *2))) (-5 *2 (-549)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1201 (-400 *4))))) (-2416 (*1 *2 *3) (-12 (-4 *3 (-1201 (-400 (-549)))) (-5 *2 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))) (-5 *1 (-884 *3 *4)) (-4 *4 (-1201 (-400 *3))))) (-4247 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-1201 (-400 *3))) (-5 *2 (-892)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1201 (-400 *4))))))
-(-10 -7 (-15 -4247 ((-892) (-549))) (-15 -2416 ((-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))) |#1|)) (-15 -2416 ((-549) |#2|)) (-15 -2768 ((-549) (-621 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))))) (-15 -2040 ((-549) |#2|)) (-15 -2249 (|#2| |#2|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2364 ((|#1| $) 81)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-2094 (($ $ $) NIL)) (-3976 (((-3 $ "failed") $) 75)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3834 (($ |#1| (-411 |#1|)) 73)) (-1370 (((-1138 |#1|) |#1| |#1|) 41)) (-2200 (($ $) 49)) (-3987 (((-112) $) NIL)) (-1640 (((-549) $) 78)) (-4283 (($ $ (-549)) 80)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3178 ((|#1| $) 77)) (-2510 (((-411 |#1|) $) 76)) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) 74)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-1722 (($ $) 39)) (-3845 (((-834) $) 99) (($ (-549)) 54) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) 31) (((-400 |#1|) $) 59) (($ (-400 (-411 |#1|))) 67)) (-1723 (((-747)) 52)) (-4053 (((-112) $ $) NIL)) (-3275 (($) 23 T CONST)) (-3287 (($) 12 T CONST)) (-2388 (((-112) $ $) 68)) (-2512 (($ $ $) NIL)) (-2499 (($ $) 88) (($ $ $) NIL)) (-2485 (($ $ $) 38)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 90) (($ $ $) 37) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-885 |#1|) (-13 (-356) (-38 |#1|) (-10 -8 (-15 -3845 ((-400 |#1|) $)) (-15 -3845 ($ (-400 (-411 |#1|)))) (-15 -1722 ($ $)) (-15 -2510 ((-411 |#1|) $)) (-15 -3178 (|#1| $)) (-15 -4283 ($ $ (-549))) (-15 -1640 ((-549) $)) (-15 -1370 ((-1138 |#1|) |#1| |#1|)) (-15 -2200 ($ $)) (-15 -3834 ($ |#1| (-411 |#1|))) (-15 -2364 (|#1| $)))) (-300)) (T -885))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-400 (-411 *3))) (-4 *3 (-300)) (-5 *1 (-885 *3)))) (-1722 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-411 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-3178 (*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) (-4283 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-1370 (*1 *2 *3 *3) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-2200 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) (-3834 (*1 *1 *2 *3) (-12 (-5 *3 (-411 *2)) (-4 *2 (-300)) (-5 *1 (-885 *2)))) (-2364 (*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))))
-(-13 (-356) (-38 |#1|) (-10 -8 (-15 -3845 ((-400 |#1|) $)) (-15 -3845 ($ (-400 (-411 |#1|)))) (-15 -1722 ($ $)) (-15 -2510 ((-411 |#1|) $)) (-15 -3178 (|#1| $)) (-15 -4283 ($ $ (-549))) (-15 -1640 ((-549) $)) (-15 -1370 ((-1138 |#1|) |#1| |#1|)) (-15 -2200 ($ $)) (-15 -3834 ($ |#1| (-411 |#1|))) (-15 -2364 (|#1| $))))
-((-3834 (((-52) (-923 |#1|) (-411 (-923 |#1|)) (-1142)) 17) (((-52) (-400 (-923 |#1|)) (-1142)) 18)))
-(((-886 |#1|) (-10 -7 (-15 -3834 ((-52) (-400 (-923 |#1|)) (-1142))) (-15 -3834 ((-52) (-923 |#1|) (-411 (-923 |#1|)) (-1142)))) (-13 (-300) (-145))) (T -886))
-((-3834 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-411 (-923 *6))) (-5 *5 (-1142)) (-5 *3 (-923 *6)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-886 *6)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-886 *5)))))
-(-10 -7 (-15 -3834 ((-52) (-400 (-923 |#1|)) (-1142))) (-15 -3834 ((-52) (-923 |#1|) (-411 (-923 |#1|)) (-1142))))
-((-4026 ((|#4| (-621 |#4|)) 121) (((-1138 |#4|) (-1138 |#4|) (-1138 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3726 (((-1138 |#4|) (-621 (-1138 |#4|))) 114) (((-1138 |#4|) (-1138 |#4|) (-1138 |#4|)) 50) ((|#4| (-621 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
-(((-887 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 (|#4| |#4| |#4|)) (-15 -3726 (|#4| (-621 |#4|))) (-15 -3726 ((-1138 |#4|) (-1138 |#4|) (-1138 |#4|))) (-15 -3726 ((-1138 |#4|) (-621 (-1138 |#4|)))) (-15 -4026 (|#4| |#4| |#4|)) (-15 -4026 ((-1138 |#4|) (-1138 |#4|) (-1138 |#4|))) (-15 -4026 (|#4| (-621 |#4|)))) (-769) (-823) (-300) (-920 |#3| |#1| |#2|)) (T -887))
-((-4026 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *6 *4 *5)) (-5 *1 (-887 *4 *5 *6 *2)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)))) (-4026 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *6)) (-4 *6 (-920 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6)))) (-4026 (*1 *2 *2 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *2)) (-4 *2 (-920 *5 *3 *4)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-621 (-1138 *7))) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-1138 *7)) (-5 *1 (-887 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))) (-3726 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *6)) (-4 *6 (-920 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *6 *4 *5)) (-5 *1 (-887 *4 *5 *6 *2)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)))) (-3726 (*1 *2 *2 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *2)) (-4 *2 (-920 *5 *3 *4)))))
-(-10 -7 (-15 -3726 (|#4| |#4| |#4|)) (-15 -3726 (|#4| (-621 |#4|))) (-15 -3726 ((-1138 |#4|) (-1138 |#4|) (-1138 |#4|))) (-15 -3726 ((-1138 |#4|) (-621 (-1138 |#4|)))) (-15 -4026 (|#4| |#4| |#4|)) (-15 -4026 ((-1138 |#4|) (-1138 |#4|) (-1138 |#4|))) (-15 -4026 (|#4| (-621 |#4|))))
-((-1388 (((-875 (-549)) (-942)) 23) (((-875 (-549)) (-621 (-549))) 20)) (-2092 (((-875 (-549)) (-621 (-549))) 48) (((-875 (-549)) (-892)) 49)) (-1495 (((-875 (-549))) 24)) (-3145 (((-875 (-549))) 38) (((-875 (-549)) (-621 (-549))) 37)) (-2909 (((-875 (-549))) 36) (((-875 (-549)) (-621 (-549))) 35)) (-2672 (((-875 (-549))) 34) (((-875 (-549)) (-621 (-549))) 33)) (-3077 (((-875 (-549))) 32) (((-875 (-549)) (-621 (-549))) 31)) (-2927 (((-875 (-549))) 30) (((-875 (-549)) (-621 (-549))) 29)) (-1903 (((-875 (-549))) 40) (((-875 (-549)) (-621 (-549))) 39)) (-3179 (((-875 (-549)) (-621 (-549))) 52) (((-875 (-549)) (-892)) 53)) (-3782 (((-875 (-549)) (-621 (-549))) 50) (((-875 (-549)) (-892)) 51)) (-1479 (((-875 (-549)) (-621 (-549))) 46) (((-875 (-549)) (-892)) 47)) (-2980 (((-875 (-549)) (-621 (-892))) 43)))
-(((-888) (-10 -7 (-15 -2092 ((-875 (-549)) (-892))) (-15 -2092 ((-875 (-549)) (-621 (-549)))) (-15 -1479 ((-875 (-549)) (-892))) (-15 -1479 ((-875 (-549)) (-621 (-549)))) (-15 -2980 ((-875 (-549)) (-621 (-892)))) (-15 -3782 ((-875 (-549)) (-892))) (-15 -3782 ((-875 (-549)) (-621 (-549)))) (-15 -3179 ((-875 (-549)) (-892))) (-15 -3179 ((-875 (-549)) (-621 (-549)))) (-15 -2927 ((-875 (-549)) (-621 (-549)))) (-15 -2927 ((-875 (-549)))) (-15 -3077 ((-875 (-549)) (-621 (-549)))) (-15 -3077 ((-875 (-549)))) (-15 -2672 ((-875 (-549)) (-621 (-549)))) (-15 -2672 ((-875 (-549)))) (-15 -2909 ((-875 (-549)) (-621 (-549)))) (-15 -2909 ((-875 (-549)))) (-15 -3145 ((-875 (-549)) (-621 (-549)))) (-15 -3145 ((-875 (-549)))) (-15 -1903 ((-875 (-549)) (-621 (-549)))) (-15 -1903 ((-875 (-549)))) (-15 -1495 ((-875 (-549)))) (-15 -1388 ((-875 (-549)) (-621 (-549)))) (-15 -1388 ((-875 (-549)) (-942))))) (T -888))
-((-1388 (*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-1495 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-1903 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3145 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2909 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2909 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2672 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2672 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3077 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2927 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-621 (-892))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
-(-10 -7 (-15 -2092 ((-875 (-549)) (-892))) (-15 -2092 ((-875 (-549)) (-621 (-549)))) (-15 -1479 ((-875 (-549)) (-892))) (-15 -1479 ((-875 (-549)) (-621 (-549)))) (-15 -2980 ((-875 (-549)) (-621 (-892)))) (-15 -3782 ((-875 (-549)) (-892))) (-15 -3782 ((-875 (-549)) (-621 (-549)))) (-15 -3179 ((-875 (-549)) (-892))) (-15 -3179 ((-875 (-549)) (-621 (-549)))) (-15 -2927 ((-875 (-549)) (-621 (-549)))) (-15 -2927 ((-875 (-549)))) (-15 -3077 ((-875 (-549)) (-621 (-549)))) (-15 -3077 ((-875 (-549)))) (-15 -2672 ((-875 (-549)) (-621 (-549)))) (-15 -2672 ((-875 (-549)))) (-15 -2909 ((-875 (-549)) (-621 (-549)))) (-15 -2909 ((-875 (-549)))) (-15 -3145 ((-875 (-549)) (-621 (-549)))) (-15 -3145 ((-875 (-549)))) (-15 -1903 ((-875 (-549)) (-621 (-549)))) (-15 -1903 ((-875 (-549)))) (-15 -1495 ((-875 (-549)))) (-15 -1388 ((-875 (-549)) (-621 (-549)))) (-15 -1388 ((-875 (-549)) (-942))))
-((-3965 (((-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1142))) 12)) (-3136 (((-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1142))) 11)))
-(((-889 |#1|) (-10 -7 (-15 -3136 ((-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1142)))) (-15 -3965 ((-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1142))))) (-444)) (T -889))
-((-3965 (*1 *2 *2 *3) (-12 (-5 *2 (-621 (-923 *4))) (-5 *3 (-621 (-1142))) (-4 *4 (-444)) (-5 *1 (-889 *4)))) (-3136 (*1 *2 *2 *3) (-12 (-5 *2 (-621 (-923 *4))) (-5 *3 (-621 (-1142))) (-4 *4 (-444)) (-5 *1 (-889 *4)))))
-(-10 -7 (-15 -3136 ((-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1142)))) (-15 -3965 ((-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1142)))))
-((-3845 (((-309 |#1|) (-469)) 16)))
-(((-890 |#1|) (-10 -7 (-15 -3845 ((-309 |#1|) (-469)))) (-13 (-823) (-541))) (T -890))
-((-3845 (*1 *2 *3) (-12 (-5 *3 (-469)) (-5 *2 (-309 *4)) (-5 *1 (-890 *4)) (-4 *4 (-13 (-823) (-541))))))
-(-10 -7 (-15 -3845 ((-309 |#1|) (-469))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-3987 (((-112) $) 30)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
-(((-891) (-138)) (T -891))
-((-3614 (*1 *2 *3) (-12 (-4 *1 (-891)) (-5 *2 (-2 (|:| -1569 (-621 *1)) (|:| -4246 *1))) (-5 *3 (-621 *1)))) (-2245 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-621 *1)) (-4 *1 (-891)))))
-(-13 (-444) (-10 -8 (-15 -3614 ((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $))) (-15 -2245 ((-3 (-621 $) "failed") (-621 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) NIL)) (-3987 (((-112) $) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3726 (($ $ $) NIL)) (-3845 (((-834) $) NIL)) (-3287 (($) NIL T CONST)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-892)) NIL)) (* (($ (-892) $) NIL) (($ $ $) NIL)))
-(((-892) (-13 (-770) (-703) (-10 -8 (-15 -3726 ($ $ $)) (-6 (-4338 "*"))))) (T -892))
-((-3726 (*1 *1 *1 *1) (-5 *1 (-892))))
-(-13 (-770) (-703) (-10 -8 (-15 -3726 ($ $ $)) (-6 (-4338 "*"))))
-((-2779 ((|#2| (-621 |#1|) (-621 |#1|)) 24)))
-(((-893 |#1| |#2|) (-10 -7 (-15 -2779 (|#2| (-621 |#1|) (-621 |#1|)))) (-356) (-1201 |#1|)) (T -893))
-((-2779 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-356)) (-4 *2 (-1201 *4)) (-5 *1 (-893 *4 *2)))))
-(-10 -7 (-15 -2779 (|#2| (-621 |#1|) (-621 |#1|))))
-((-2959 (((-1138 |#2|) (-621 |#2|) (-621 |#2|)) 17) (((-1198 |#1| |#2|) (-1198 |#1| |#2|) (-621 |#2|) (-621 |#2|)) 13)))
-(((-894 |#1| |#2|) (-10 -7 (-15 -2959 ((-1198 |#1| |#2|) (-1198 |#1| |#2|) (-621 |#2|) (-621 |#2|))) (-15 -2959 ((-1138 |#2|) (-621 |#2|) (-621 |#2|)))) (-1142) (-356)) (T -894))
-((-2959 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-356)) (-5 *2 (-1138 *5)) (-5 *1 (-894 *4 *5)) (-14 *4 (-1142)))) (-2959 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1198 *4 *5)) (-5 *3 (-621 *5)) (-14 *4 (-1142)) (-4 *5 (-356)) (-5 *1 (-894 *4 *5)))))
-(-10 -7 (-15 -2959 ((-1198 |#1| |#2|) (-1198 |#1| |#2|) (-621 |#2|) (-621 |#2|))) (-15 -2959 ((-1138 |#2|) (-621 |#2|) (-621 |#2|))))
-((-4200 (((-549) (-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-1124)) 139)) (-3809 ((|#4| |#4|) 155)) (-3740 (((-621 (-400 (-923 |#1|))) (-621 (-1142))) 118)) (-1427 (((-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))) (-665 |#4|) (-621 (-400 (-923 |#1|))) (-621 (-621 |#4|)) (-747) (-747) (-549)) 75)) (-3213 (((-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))) (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))) (-621 |#4|)) 59)) (-3381 (((-665 |#4|) (-665 |#4|) (-621 |#4|)) 55)) (-2832 (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-1124)) 151)) (-2941 (((-549) (-665 |#4|) (-892) (-1124)) 132) (((-549) (-665 |#4|) (-621 (-1142)) (-892) (-1124)) 131) (((-549) (-665 |#4|) (-621 |#4|) (-892) (-1124)) 130) (((-549) (-665 |#4|) (-1124)) 127) (((-549) (-665 |#4|) (-621 (-1142)) (-1124)) 126) (((-549) (-665 |#4|) (-621 |#4|) (-1124)) 125) (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-892)) 124) (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 (-1142)) (-892)) 123) (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 |#4|) (-892)) 122) (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|)) 120) (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 (-1142))) 119) (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 |#4|)) 115)) (-2126 ((|#4| (-923 |#1|)) 68)) (-4180 (((-112) (-621 |#4|) (-621 (-621 |#4|))) 152)) (-2689 (((-621 (-621 (-549))) (-549) (-549)) 129)) (-2714 (((-621 (-621 |#4|)) (-621 (-621 |#4|))) 88)) (-2233 (((-747) (-621 (-2 (|:| -3122 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|))))) 86)) (-3728 (((-747) (-621 (-2 (|:| -3122 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|))))) 85)) (-2033 (((-112) (-621 (-923 |#1|))) 17) (((-112) (-621 |#4|)) 13)) (-3735 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-621 |#4|)) (|:| |n0| (-621 |#4|))) (-621 |#4|) (-621 |#4|)) 71)) (-3247 (((-621 |#4|) |#4|) 49)) (-1628 (((-621 (-400 (-923 |#1|))) (-621 |#4|)) 114) (((-665 (-400 (-923 |#1|))) (-665 |#4|)) 56) (((-400 (-923 |#1|)) |#4|) 111)) (-1817 (((-2 (|:| |rgl| (-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))))))) (|:| |rgsz| (-549))) (-665 |#4|) (-621 (-400 (-923 |#1|))) (-747) (-1124) (-549)) 93)) (-4279 (((-621 (-2 (|:| -3122 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))) (-665 |#4|) (-747)) 84)) (-4192 (((-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549))))) (-665 |#4|) (-747)) 101)) (-2451 (((-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))) (-2 (|:| -1859 (-665 (-400 (-923 |#1|)))) (|:| |vec| (-621 (-400 (-923 |#1|)))) (|:| -3122 (-747)) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549))))) 48)))
-(((-895 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2941 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 |#4|))) (-15 -2941 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 (-1142)))) (-15 -2941 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|))) (-15 -2941 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 |#4|) (-892))) (-15 -2941 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 (-1142)) (-892))) (-15 -2941 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-892))) (-15 -2941 ((-549) (-665 |#4|) (-621 |#4|) (-1124))) (-15 -2941 ((-549) (-665 |#4|) (-621 (-1142)) (-1124))) (-15 -2941 ((-549) (-665 |#4|) (-1124))) (-15 -2941 ((-549) (-665 |#4|) (-621 |#4|) (-892) (-1124))) (-15 -2941 ((-549) (-665 |#4|) (-621 (-1142)) (-892) (-1124))) (-15 -2941 ((-549) (-665 |#4|) (-892) (-1124))) (-15 -4200 ((-549) (-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-1124))) (-15 -2832 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-1124))) (-15 -1817 ((-2 (|:| |rgl| (-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))))))) (|:| |rgsz| (-549))) (-665 |#4|) (-621 (-400 (-923 |#1|))) (-747) (-1124) (-549))) (-15 -1628 ((-400 (-923 |#1|)) |#4|)) (-15 -1628 ((-665 (-400 (-923 |#1|))) (-665 |#4|))) (-15 -1628 ((-621 (-400 (-923 |#1|))) (-621 |#4|))) (-15 -3740 ((-621 (-400 (-923 |#1|))) (-621 (-1142)))) (-15 -2126 (|#4| (-923 |#1|))) (-15 -3735 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-621 |#4|)) (|:| |n0| (-621 |#4|))) (-621 |#4|) (-621 |#4|))) (-15 -4279 ((-621 (-2 (|:| -3122 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))) (-665 |#4|) (-747))) (-15 -3213 ((-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))) (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))) (-621 |#4|))) (-15 -2451 ((-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))) (-2 (|:| -1859 (-665 (-400 (-923 |#1|)))) (|:| |vec| (-621 (-400 (-923 |#1|)))) (|:| -3122 (-747)) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (-15 -3247 ((-621 |#4|) |#4|)) (-15 -3728 ((-747) (-621 (-2 (|:| -3122 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))))) (-15 -2233 ((-747) (-621 (-2 (|:| -3122 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))))) (-15 -2714 ((-621 (-621 |#4|)) (-621 (-621 |#4|)))) (-15 -2689 ((-621 (-621 (-549))) (-549) (-549))) (-15 -4180 ((-112) (-621 |#4|) (-621 (-621 |#4|)))) (-15 -4192 ((-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549))))) (-665 |#4|) (-747))) (-15 -3381 ((-665 |#4|) (-665 |#4|) (-621 |#4|))) (-15 -1427 ((-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))) (-665 |#4|) (-621 (-400 (-923 |#1|))) (-621 (-621 |#4|)) (-747) (-747) (-549))) (-15 -3809 (|#4| |#4|)) (-15 -2033 ((-112) (-621 |#4|))) (-15 -2033 ((-112) (-621 (-923 |#1|))))) (-13 (-300) (-145)) (-13 (-823) (-594 (-1142))) (-769) (-920 |#1| |#3| |#2|)) (T -895))
-((-2033 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1142)))) (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-920 *3 *5 *4)))) (-1427 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549))))) (-5 *4 (-665 *12)) (-5 *5 (-621 (-400 (-923 *9)))) (-5 *6 (-621 (-621 *12))) (-5 *7 (-747)) (-5 *8 (-549)) (-4 *9 (-13 (-300) (-145))) (-4 *12 (-920 *9 *11 *10)) (-4 *10 (-13 (-823) (-594 (-1142)))) (-4 *11 (-769)) (-5 *2 (-2 (|:| |eqzro| (-621 *12)) (|:| |neqzro| (-621 *12)) (|:| |wcond| (-621 (-923 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 *9)))) (|:| -3420 (-621 (-1225 (-400 (-923 *9))))))))) (-5 *1 (-895 *9 *10 *11 *12)))) (-3381 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))) (-4192 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-747)) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-621 (-2 (|:| |det| *8) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (-5 *1 (-895 *5 *6 *7 *8)))) (-4180 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-621 *8))) (-5 *3 (-621 *8)) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *5 *6 *7 *8)))) (-2689 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-621 (-621 (-549)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-549)) (-4 *7 (-920 *4 *6 *5)))) (-2714 (*1 *2 *2) (-12 (-5 *2 (-621 (-621 *6))) (-4 *6 (-920 *3 *5 *4)) (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1142)))) (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *6)))) (-2233 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -3122 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| *7) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 *7))))) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-747)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -3122 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| *7) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 *7))))) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-747)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3247 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-621 *3)) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-920 *4 *6 *5)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1859 (-665 (-400 (-923 *4)))) (|:| |vec| (-621 (-400 (-923 *4)))) (|:| -3122 (-747)) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549))))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-2 (|:| |partsol| (-1225 (-400 (-923 *4)))) (|:| -3420 (-621 (-1225 (-400 (-923 *4))))))) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))) (-3213 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1225 (-400 (-923 *4)))) (|:| -3420 (-621 (-1225 (-400 (-923 *4))))))) (-5 *3 (-621 *7)) (-4 *4 (-13 (-300) (-145))) (-4 *7 (-920 *4 *6 *5)) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-621 (-2 (|:| -3122 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| *8) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 *8))))) (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-747)))) (-3735 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-4 *7 (-920 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-621 *7)) (|:| |n0| (-621 *7)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-2126 (*1 *2 *3) (-12 (-5 *3 (-923 *4)) (-4 *4 (-13 (-300) (-145))) (-4 *2 (-920 *4 *6 *5)) (-5 *1 (-895 *4 *5 *6 *2)) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-621 (-1142))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-621 (-400 (-923 *4)))) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-621 (-400 (-923 *4)))) (-5 *1 (-895 *4 *5 *6 *7)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-665 (-400 (-923 *4)))) (-5 *1 (-895 *4 *5 *6 *7)))) (-1628 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-400 (-923 *4))) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-920 *4 *6 *5)))) (-1817 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-665 *11)) (-5 *4 (-621 (-400 (-923 *8)))) (-5 *5 (-747)) (-5 *6 (-1124)) (-4 *8 (-13 (-300) (-145))) (-4 *11 (-920 *8 *10 *9)) (-4 *9 (-13 (-823) (-594 (-1142)))) (-4 *10 (-769)) (-5 *2 (-2 (|:| |rgl| (-621 (-2 (|:| |eqzro| (-621 *11)) (|:| |neqzro| (-621 *11)) (|:| |wcond| (-621 (-923 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 *8)))) (|:| -3420 (-621 (-1225 (-400 (-923 *8)))))))))) (|:| |rgsz| (-549)))) (-5 *1 (-895 *8 *9 *10 *11)) (-5 *7 (-549)))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *7)) (|:| |neqzro| (-621 *7)) (|:| |wcond| (-621 (-923 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 *4)))) (|:| -3420 (-621 (-1225 (-400 (-923 *4)))))))))) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8)) (|:| |wcond| (-621 (-923 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 *5)))) (|:| -3420 (-621 (-1225 (-400 (-923 *5)))))))))) (-5 *4 (-1124)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-920 *5 *7 *6)) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *5 *6 *7 *8)))) (-2941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-892)) (-5 *5 (-1124)) (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *6 *7 *8 *9)))) (-2941 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 *10)) (-5 *4 (-621 (-1142))) (-5 *5 (-892)) (-5 *6 (-1124)) (-4 *10 (-920 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-823) (-594 (-1142)))) (-4 *9 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *7 *8 *9 *10)))) (-2941 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 *10)) (-5 *4 (-621 *10)) (-5 *5 (-892)) (-5 *6 (-1124)) (-4 *10 (-920 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-823) (-594 (-1142)))) (-4 *9 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *7 *8 *9 *10)))) (-2941 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-1124)) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *5 *6 *7 *8)))) (-2941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-621 (-1142))) (-5 *5 (-1124)) (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *6 *7 *8 *9)))) (-2941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-621 *9)) (-5 *5 (-1124)) (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *6 *7 *8 *9)))) (-2941 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-892)) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8)) (|:| |wcond| (-621 (-923 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 *5)))) (|:| -3420 (-621 (-1225 (-400 (-923 *5)))))))))) (-5 *1 (-895 *5 *6 *7 *8)))) (-2941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-621 (-1142))) (-5 *5 (-892)) (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *9)) (|:| |neqzro| (-621 *9)) (|:| |wcond| (-621 (-923 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 *6)))) (|:| -3420 (-621 (-1225 (-400 (-923 *6)))))))))) (-5 *1 (-895 *6 *7 *8 *9)))) (-2941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *5 (-892)) (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *9)) (|:| |neqzro| (-621 *9)) (|:| |wcond| (-621 (-923 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 *6)))) (|:| -3420 (-621 (-1225 (-400 (-923 *6)))))))))) (-5 *1 (-895 *6 *7 *8 *9)) (-5 *4 (-621 *9)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *7)) (|:| |neqzro| (-621 *7)) (|:| |wcond| (-621 (-923 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 *4)))) (|:| -3420 (-621 (-1225 (-400 (-923 *4)))))))))) (-5 *1 (-895 *4 *5 *6 *7)))) (-2941 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-621 (-1142))) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8)) (|:| |wcond| (-621 (-923 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 *5)))) (|:| -3420 (-621 (-1225 (-400 (-923 *5)))))))))) (-5 *1 (-895 *5 *6 *7 *8)))) (-2941 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8)) (|:| |wcond| (-621 (-923 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 *5)))) (|:| -3420 (-621 (-1225 (-400 (-923 *5)))))))))) (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-621 *8)))))
-(-10 -7 (-15 -2941 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 |#4|))) (-15 -2941 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 (-1142)))) (-15 -2941 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|))) (-15 -2941 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 |#4|) (-892))) (-15 -2941 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 (-1142)) (-892))) (-15 -2941 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-665 |#4|) (-892))) (-15 -2941 ((-549) (-665 |#4|) (-621 |#4|) (-1124))) (-15 -2941 ((-549) (-665 |#4|) (-621 (-1142)) (-1124))) (-15 -2941 ((-549) (-665 |#4|) (-1124))) (-15 -2941 ((-549) (-665 |#4|) (-621 |#4|) (-892) (-1124))) (-15 -2941 ((-549) (-665 |#4|) (-621 (-1142)) (-892) (-1124))) (-15 -2941 ((-549) (-665 |#4|) (-892) (-1124))) (-15 -4200 ((-549) (-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-1124))) (-15 -2832 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|))))))))) (-1124))) (-15 -1817 ((-2 (|:| |rgl| (-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))))))) (|:| |rgsz| (-549))) (-665 |#4|) (-621 (-400 (-923 |#1|))) (-747) (-1124) (-549))) (-15 -1628 ((-400 (-923 |#1|)) |#4|)) (-15 -1628 ((-665 (-400 (-923 |#1|))) (-665 |#4|))) (-15 -1628 ((-621 (-400 (-923 |#1|))) (-621 |#4|))) (-15 -3740 ((-621 (-400 (-923 |#1|))) (-621 (-1142)))) (-15 -2126 (|#4| (-923 |#1|))) (-15 -3735 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-621 |#4|)) (|:| |n0| (-621 |#4|))) (-621 |#4|) (-621 |#4|))) (-15 -4279 ((-621 (-2 (|:| -3122 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))) (-665 |#4|) (-747))) (-15 -3213 ((-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))) (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))) (-621 |#4|))) (-15 -2451 ((-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))) (-2 (|:| -1859 (-665 (-400 (-923 |#1|)))) (|:| |vec| (-621 (-400 (-923 |#1|)))) (|:| -3122 (-747)) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (-15 -3247 ((-621 |#4|) |#4|)) (-15 -3728 ((-747) (-621 (-2 (|:| -3122 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))))) (-15 -2233 ((-747) (-621 (-2 (|:| -3122 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))))) (-15 -2714 ((-621 (-621 |#4|)) (-621 (-621 |#4|)))) (-15 -2689 ((-621 (-621 (-549))) (-549) (-549))) (-15 -4180 ((-112) (-621 |#4|) (-621 (-621 |#4|)))) (-15 -4192 ((-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549))))) (-665 |#4|) (-747))) (-15 -3381 ((-665 |#4|) (-665 |#4|) (-621 |#4|))) (-15 -1427 ((-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1225 (-400 (-923 |#1|)))) (|:| -3420 (-621 (-1225 (-400 (-923 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))) (-665 |#4|) (-621 (-400 (-923 |#1|))) (-621 (-621 |#4|)) (-747) (-747) (-549))) (-15 -3809 (|#4| |#4|)) (-15 -2033 ((-112) (-621 |#4|))) (-15 -2033 ((-112) (-621 (-923 |#1|)))))
-((-1546 (((-898) |#1| (-1142)) 17) (((-898) |#1| (-1142) (-1060 (-219))) 21)) (-2426 (((-898) |#1| |#1| (-1142) (-1060 (-219))) 19) (((-898) |#1| (-1142) (-1060 (-219))) 15)))
-(((-896 |#1|) (-10 -7 (-15 -2426 ((-898) |#1| (-1142) (-1060 (-219)))) (-15 -2426 ((-898) |#1| |#1| (-1142) (-1060 (-219)))) (-15 -1546 ((-898) |#1| (-1142) (-1060 (-219)))) (-15 -1546 ((-898) |#1| (-1142)))) (-594 (-525))) (T -896))
-((-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-898)) (-5 *1 (-896 *3)) (-4 *3 (-594 (-525))))) (-1546 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-1060 (-219))) (-5 *2 (-898)) (-5 *1 (-896 *3)) (-4 *3 (-594 (-525))))) (-2426 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-1060 (-219))) (-5 *2 (-898)) (-5 *1 (-896 *3)) (-4 *3 (-594 (-525))))) (-2426 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-1060 (-219))) (-5 *2 (-898)) (-5 *1 (-896 *3)) (-4 *3 (-594 (-525))))))
-(-10 -7 (-15 -2426 ((-898) |#1| (-1142) (-1060 (-219)))) (-15 -2426 ((-898) |#1| |#1| (-1142) (-1060 (-219)))) (-15 -1546 ((-898) |#1| (-1142) (-1060 (-219)))) (-15 -1546 ((-898) |#1| (-1142))))
-((-3958 (($ $ (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 70)) (-1855 (((-1060 (-219)) $) 40)) (-1842 (((-1060 (-219)) $) 39)) (-1831 (((-1060 (-219)) $) 38)) (-1752 (((-621 (-621 (-219))) $) 43)) (-3322 (((-1060 (-219)) $) 41)) (-4112 (((-549) (-549)) 32)) (-2486 (((-549) (-549)) 28)) (-3784 (((-549) (-549)) 30)) (-1774 (((-112) (-112)) 35)) (-2545 (((-549)) 31)) (-1571 (($ $ (-1060 (-219))) 73) (($ $) 74)) (-1540 (($ (-1 (-914 (-219)) (-219)) (-1060 (-219))) 78) (($ (-1 (-914 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 79)) (-2426 (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 82) (($ $ (-1060 (-219))) 76)) (-1434 (((-549)) 36)) (-2395 (((-549)) 27)) (-1810 (((-549)) 29)) (-3087 (((-621 (-621 (-914 (-219)))) $) 95)) (-2803 (((-112) (-112)) 37)) (-3845 (((-834) $) 94)) (-2910 (((-112)) 34)))
-(((-897) (-13 (-945) (-10 -8 (-15 -1540 ($ (-1 (-914 (-219)) (-219)) (-1060 (-219)))) (-15 -1540 ($ (-1 (-914 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -2426 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)))) (-15 -2426 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -2426 ($ $ (-1060 (-219)))) (-15 -3958 ($ $ (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -1571 ($ $ (-1060 (-219)))) (-15 -1571 ($ $)) (-15 -3322 ((-1060 (-219)) $)) (-15 -1752 ((-621 (-621 (-219))) $)) (-15 -2395 ((-549))) (-15 -2486 ((-549) (-549))) (-15 -1810 ((-549))) (-15 -3784 ((-549) (-549))) (-15 -2545 ((-549))) (-15 -4112 ((-549) (-549))) (-15 -2910 ((-112))) (-15 -1774 ((-112) (-112))) (-15 -1434 ((-549))) (-15 -2803 ((-112) (-112)))))) (T -897))
-((-1540 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-897)))) (-1540 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-897)))) (-2426 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-897)))) (-2426 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-897)))) (-2426 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-897)))) (-3958 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-897)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-897)))) (-1571 (*1 *1 *1) (-5 *1 (-897))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-897)))) (-1752 (*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-219)))) (-5 *1 (-897)))) (-2395 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-2486 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-1810 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-3784 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-2545 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-4112 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-2910 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-897)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-897)))) (-1434 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-2803 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-897)))))
-(-13 (-945) (-10 -8 (-15 -1540 ($ (-1 (-914 (-219)) (-219)) (-1060 (-219)))) (-15 -1540 ($ (-1 (-914 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -2426 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)))) (-15 -2426 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -2426 ($ $ (-1060 (-219)))) (-15 -3958 ($ $ (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -1571 ($ $ (-1060 (-219)))) (-15 -1571 ($ $)) (-15 -3322 ((-1060 (-219)) $)) (-15 -1752 ((-621 (-621 (-219))) $)) (-15 -2395 ((-549))) (-15 -2486 ((-549) (-549))) (-15 -1810 ((-549))) (-15 -3784 ((-549) (-549))) (-15 -2545 ((-549))) (-15 -4112 ((-549) (-549))) (-15 -2910 ((-112))) (-15 -1774 ((-112) (-112))) (-15 -1434 ((-549))) (-15 -2803 ((-112) (-112)))))
-((-3958 (($ $ (-1060 (-219))) 70) (($ $ (-1060 (-219)) (-1060 (-219))) 71)) (-1842 (((-1060 (-219)) $) 44)) (-1831 (((-1060 (-219)) $) 43)) (-3322 (((-1060 (-219)) $) 45)) (-2935 (((-549) (-549)) 37)) (-2850 (((-549) (-549)) 33)) (-3134 (((-549) (-549)) 35)) (-1642 (((-112) (-112)) 39)) (-3036 (((-549)) 36)) (-1571 (($ $ (-1060 (-219))) 74) (($ $) 75)) (-1540 (($ (-1 (-914 (-219)) (-219)) (-1060 (-219))) 84) (($ (-1 (-914 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 85)) (-1546 (($ (-1 (-219) (-219)) (-1060 (-219))) 92) (($ (-1 (-219) (-219))) 95)) (-2426 (($ (-1 (-219) (-219)) (-1060 (-219))) 79) (($ (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219))) 80) (($ (-621 (-1 (-219) (-219))) (-1060 (-219))) 87) (($ (-621 (-1 (-219) (-219))) (-1060 (-219)) (-1060 (-219))) 88) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 82) (($ $ (-1060 (-219))) 76)) (-3329 (((-112) $) 40)) (-3641 (((-549)) 41)) (-2096 (((-549)) 32)) (-3920 (((-549)) 34)) (-3087 (((-621 (-621 (-914 (-219)))) $) 23)) (-1688 (((-112) (-112)) 42)) (-3845 (((-834) $) 106)) (-3051 (((-112)) 38)))
-(((-898) (-13 (-926) (-10 -8 (-15 -2426 ($ (-1 (-219) (-219)) (-1060 (-219)))) (-15 -2426 ($ (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -2426 ($ (-621 (-1 (-219) (-219))) (-1060 (-219)))) (-15 -2426 ($ (-621 (-1 (-219) (-219))) (-1060 (-219)) (-1060 (-219)))) (-15 -2426 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)))) (-15 -2426 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -1540 ($ (-1 (-914 (-219)) (-219)) (-1060 (-219)))) (-15 -1540 ($ (-1 (-914 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -1546 ($ (-1 (-219) (-219)) (-1060 (-219)))) (-15 -1546 ($ (-1 (-219) (-219)))) (-15 -2426 ($ $ (-1060 (-219)))) (-15 -3329 ((-112) $)) (-15 -3958 ($ $ (-1060 (-219)))) (-15 -3958 ($ $ (-1060 (-219)) (-1060 (-219)))) (-15 -1571 ($ $ (-1060 (-219)))) (-15 -1571 ($ $)) (-15 -3322 ((-1060 (-219)) $)) (-15 -2096 ((-549))) (-15 -2850 ((-549) (-549))) (-15 -3920 ((-549))) (-15 -3134 ((-549) (-549))) (-15 -3036 ((-549))) (-15 -2935 ((-549) (-549))) (-15 -3051 ((-112))) (-15 -1642 ((-112) (-112))) (-15 -3641 ((-549))) (-15 -1688 ((-112) (-112)))))) (T -898))
-((-2426 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-898)))) (-2426 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-898)))) (-2426 (*1 *1 *2 *3) (-12 (-5 *2 (-621 (-1 (-219) (-219)))) (-5 *3 (-1060 (-219))) (-5 *1 (-898)))) (-2426 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-621 (-1 (-219) (-219)))) (-5 *3 (-1060 (-219))) (-5 *1 (-898)))) (-2426 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-898)))) (-2426 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-898)))) (-1540 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-898)))) (-1540 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-898)))) (-1546 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-898)))) (-1546 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-898)))) (-2426 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-898)))) (-3329 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898)))) (-3958 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-898)))) (-3958 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-898)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-898)))) (-1571 (*1 *1 *1) (-5 *1 (-898))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-898)))) (-2096 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-3920 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-3134 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-3036 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-3051 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))) (-3641 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-1688 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
-(-13 (-926) (-10 -8 (-15 -2426 ($ (-1 (-219) (-219)) (-1060 (-219)))) (-15 -2426 ($ (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -2426 ($ (-621 (-1 (-219) (-219))) (-1060 (-219)))) (-15 -2426 ($ (-621 (-1 (-219) (-219))) (-1060 (-219)) (-1060 (-219)))) (-15 -2426 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)))) (-15 -2426 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -1540 ($ (-1 (-914 (-219)) (-219)) (-1060 (-219)))) (-15 -1540 ($ (-1 (-914 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -1546 ($ (-1 (-219) (-219)) (-1060 (-219)))) (-15 -1546 ($ (-1 (-219) (-219)))) (-15 -2426 ($ $ (-1060 (-219)))) (-15 -3329 ((-112) $)) (-15 -3958 ($ $ (-1060 (-219)))) (-15 -3958 ($ $ (-1060 (-219)) (-1060 (-219)))) (-15 -1571 ($ $ (-1060 (-219)))) (-15 -1571 ($ $)) (-15 -3322 ((-1060 (-219)) $)) (-15 -2096 ((-549))) (-15 -2850 ((-549) (-549))) (-15 -3920 ((-549))) (-15 -3134 ((-549) (-549))) (-15 -3036 ((-549))) (-15 -2935 ((-549) (-549))) (-15 -3051 ((-112))) (-15 -1642 ((-112) (-112))) (-15 -3641 ((-549))) (-15 -1688 ((-112) (-112)))))
-((-1713 (((-621 (-1060 (-219))) (-621 (-621 (-914 (-219))))) 24)))
-(((-899) (-10 -7 (-15 -1713 ((-621 (-1060 (-219))) (-621 (-621 (-914 (-219)))))))) (T -899))
-((-1713 (*1 *2 *3) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *2 (-621 (-1060 (-219)))) (-5 *1 (-899)))))
-(-10 -7 (-15 -1713 ((-621 (-1060 (-219))) (-621 (-621 (-914 (-219)))))))
-((-2414 ((|#2| |#2|) 26)) (-1777 ((|#2| |#2|) 27)) (-2588 ((|#2| |#2|) 25)) (-3052 ((|#2| |#2| (-1124)) 24)))
-(((-900 |#1| |#2|) (-10 -7 (-15 -3052 (|#2| |#2| (-1124))) (-15 -2588 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -1777 (|#2| |#2|))) (-823) (-423 |#1|)) (T -900))
-((-1777 (*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-900 *3 *2)) (-4 *2 (-423 *3)))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-900 *3 *2)) (-4 *2 (-423 *3)))) (-2588 (*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-900 *3 *2)) (-4 *2 (-423 *3)))) (-3052 (*1 *2 *2 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-823)) (-5 *1 (-900 *4 *2)) (-4 *2 (-423 *4)))))
-(-10 -7 (-15 -3052 (|#2| |#2| (-1124))) (-15 -2588 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -1777 (|#2| |#2|)))
-((-2414 (((-309 (-549)) (-1142)) 16)) (-1777 (((-309 (-549)) (-1142)) 14)) (-2588 (((-309 (-549)) (-1142)) 12)) (-3052 (((-309 (-549)) (-1142) (-1124)) 19)))
-(((-901) (-10 -7 (-15 -3052 ((-309 (-549)) (-1142) (-1124))) (-15 -2588 ((-309 (-549)) (-1142))) (-15 -2414 ((-309 (-549)) (-1142))) (-15 -1777 ((-309 (-549)) (-1142))))) (T -901))
-((-1777 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-309 (-549))) (-5 *1 (-901)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-309 (-549))) (-5 *1 (-901)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-309 (-549))) (-5 *1 (-901)))) (-3052 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-1124)) (-5 *2 (-309 (-549))) (-5 *1 (-901)))))
-(-10 -7 (-15 -3052 ((-309 (-549)) (-1142) (-1124))) (-15 -2588 ((-309 (-549)) (-1142))) (-15 -2414 ((-309 (-549)) (-1142))) (-15 -1777 ((-309 (-549)) (-1142))))
-((-1289 (((-860 |#1| |#3|) |#2| (-863 |#1|) (-860 |#1| |#3|)) 25)) (-3741 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -3741 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1289 ((-860 |#1| |#3|) |#2| (-863 |#1|) (-860 |#1| |#3|)))) (-1066) (-857 |#1|) (-13 (-1066) (-1009 |#2|))) (T -902))
-((-1289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 *6)) (-5 *4 (-863 *5)) (-4 *5 (-1066)) (-4 *6 (-13 (-1066) (-1009 *3))) (-4 *3 (-857 *5)) (-5 *1 (-902 *5 *3 *6)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1066) (-1009 *5))) (-4 *5 (-857 *4)) (-4 *4 (-1066)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-902 *4 *5 *6)))))
-(-10 -7 (-15 -3741 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1289 ((-860 |#1| |#3|) |#2| (-863 |#1|) (-860 |#1| |#3|))))
-((-1289 (((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)) 30)))
-(((-903 |#1| |#2| |#3|) (-10 -7 (-15 -1289 ((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)))) (-1066) (-13 (-541) (-823) (-857 |#1|)) (-13 (-423 |#2|) (-594 (-863 |#1|)) (-857 |#1|) (-1009 (-592 $)))) (T -903))
-((-1289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 *3)) (-4 *5 (-1066)) (-4 *3 (-13 (-423 *6) (-594 *4) (-857 *5) (-1009 (-592 $)))) (-5 *4 (-863 *5)) (-4 *6 (-13 (-541) (-823) (-857 *5))) (-5 *1 (-903 *5 *6 *3)))))
-(-10 -7 (-15 -1289 ((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))))
-((-1289 (((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|)) 13)))
-(((-904 |#1|) (-10 -7 (-15 -1289 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|)))) (-534)) (T -904))
-((-1289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 (-549) *3)) (-5 *4 (-863 (-549))) (-4 *3 (-534)) (-5 *1 (-904 *3)))))
-(-10 -7 (-15 -1289 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))))
-((-1289 (((-860 |#1| |#2|) (-592 |#2|) (-863 |#1|) (-860 |#1| |#2|)) 54)))
-(((-905 |#1| |#2|) (-10 -7 (-15 -1289 ((-860 |#1| |#2|) (-592 |#2|) (-863 |#1|) (-860 |#1| |#2|)))) (-1066) (-13 (-823) (-1009 (-592 $)) (-594 (-863 |#1|)) (-857 |#1|))) (T -905))
-((-1289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 *6)) (-5 *3 (-592 *6)) (-4 *5 (-1066)) (-4 *6 (-13 (-823) (-1009 (-592 $)) (-594 *4) (-857 *5))) (-5 *4 (-863 *5)) (-5 *1 (-905 *5 *6)))))
-(-10 -7 (-15 -1289 ((-860 |#1| |#2|) (-592 |#2|) (-863 |#1|) (-860 |#1| |#2|))))
-((-1289 (((-856 |#1| |#2| |#3|) |#3| (-863 |#1|) (-856 |#1| |#2| |#3|)) 15)))
-(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -1289 ((-856 |#1| |#2| |#3|) |#3| (-863 |#1|) (-856 |#1| |#2| |#3|)))) (-1066) (-857 |#1|) (-642 |#2|)) (T -906))
-((-1289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-856 *5 *6 *3)) (-5 *4 (-863 *5)) (-4 *5 (-1066)) (-4 *6 (-857 *5)) (-4 *3 (-642 *6)) (-5 *1 (-906 *5 *6 *3)))))
-(-10 -7 (-15 -1289 ((-856 |#1| |#2| |#3|) |#3| (-863 |#1|) (-856 |#1| |#2| |#3|))))
-((-1289 (((-860 |#1| |#5|) |#5| (-863 |#1|) (-860 |#1| |#5|)) 17 (|has| |#3| (-857 |#1|))) (((-860 |#1| |#5|) |#5| (-863 |#1|) (-860 |#1| |#5|) (-1 (-860 |#1| |#5|) |#3| (-863 |#1|) (-860 |#1| |#5|))) 16)))
-(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1289 ((-860 |#1| |#5|) |#5| (-863 |#1|) (-860 |#1| |#5|) (-1 (-860 |#1| |#5|) |#3| (-863 |#1|) (-860 |#1| |#5|)))) (IF (|has| |#3| (-857 |#1|)) (-15 -1289 ((-860 |#1| |#5|) |#5| (-863 |#1|) (-860 |#1| |#5|))) |%noBranch|)) (-1066) (-769) (-823) (-13 (-1018) (-823) (-857 |#1|)) (-13 (-920 |#4| |#2| |#3|) (-594 (-863 |#1|)))) (T -907))
-((-1289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 *3)) (-4 *5 (-1066)) (-4 *3 (-13 (-920 *8 *6 *7) (-594 *4))) (-5 *4 (-863 *5)) (-4 *7 (-857 *5)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-13 (-1018) (-823) (-857 *5))) (-5 *1 (-907 *5 *6 *7 *8 *3)))) (-1289 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-860 *6 *3) *8 (-863 *6) (-860 *6 *3))) (-4 *8 (-823)) (-5 *2 (-860 *6 *3)) (-5 *4 (-863 *6)) (-4 *6 (-1066)) (-4 *3 (-13 (-920 *9 *7 *8) (-594 *4))) (-4 *7 (-769)) (-4 *9 (-13 (-1018) (-823) (-857 *6))) (-5 *1 (-907 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -1289 ((-860 |#1| |#5|) |#5| (-863 |#1|) (-860 |#1| |#5|) (-1 (-860 |#1| |#5|) |#3| (-863 |#1|) (-860 |#1| |#5|)))) (IF (|has| |#3| (-857 |#1|)) (-15 -1289 ((-860 |#1| |#5|) |#5| (-863 |#1|) (-860 |#1| |#5|))) |%noBranch|))
-((-1862 ((|#2| |#2| (-621 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -1862 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1862 (|#2| |#2| (-621 (-1 (-112) |#3|))))) (-823) (-423 |#1|) (-1179)) (T -908))
-((-1862 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-1 (-112) *5))) (-4 *5 (-1179)) (-4 *4 (-823)) (-5 *1 (-908 *4 *2 *5)) (-4 *2 (-423 *4)))) (-1862 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1179)) (-4 *4 (-823)) (-5 *1 (-908 *4 *2 *5)) (-4 *2 (-423 *4)))))
-(-10 -7 (-15 -1862 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1862 (|#2| |#2| (-621 (-1 (-112) |#3|)))))
-((-1862 (((-309 (-549)) (-1142) (-621 (-1 (-112) |#1|))) 18) (((-309 (-549)) (-1142) (-1 (-112) |#1|)) 15)))
-(((-909 |#1|) (-10 -7 (-15 -1862 ((-309 (-549)) (-1142) (-1 (-112) |#1|))) (-15 -1862 ((-309 (-549)) (-1142) (-621 (-1 (-112) |#1|))))) (-1179)) (T -909))
-((-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-621 (-1 (-112) *5))) (-4 *5 (-1179)) (-5 *2 (-309 (-549))) (-5 *1 (-909 *5)))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1179)) (-5 *2 (-309 (-549))) (-5 *1 (-909 *5)))))
-(-10 -7 (-15 -1862 ((-309 (-549)) (-1142) (-1 (-112) |#1|))) (-15 -1862 ((-309 (-549)) (-1142) (-621 (-1 (-112) |#1|)))))
-((-1289 (((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)) 25)))
-(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -1289 ((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)))) (-1066) (-13 (-541) (-857 |#1|) (-594 (-863 |#1|))) (-963 |#2|)) (T -910))
-((-1289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 *3)) (-4 *5 (-1066)) (-4 *3 (-963 *6)) (-4 *6 (-13 (-541) (-857 *5) (-594 *4))) (-5 *4 (-863 *5)) (-5 *1 (-910 *5 *6 *3)))))
-(-10 -7 (-15 -1289 ((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))))
-((-1289 (((-860 |#1| (-1142)) (-1142) (-863 |#1|) (-860 |#1| (-1142))) 17)))
-(((-911 |#1|) (-10 -7 (-15 -1289 ((-860 |#1| (-1142)) (-1142) (-863 |#1|) (-860 |#1| (-1142))))) (-1066)) (T -911))
-((-1289 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 (-1142))) (-5 *3 (-1142)) (-5 *4 (-863 *5)) (-4 *5 (-1066)) (-5 *1 (-911 *5)))))
-(-10 -7 (-15 -1289 ((-860 |#1| (-1142)) (-1142) (-863 |#1|) (-860 |#1| (-1142)))))
-((-1641 (((-860 |#1| |#3|) (-621 |#3|) (-621 (-863 |#1|)) (-860 |#1| |#3|) (-1 (-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))) 33)) (-1289 (((-860 |#1| |#3|) (-621 |#3|) (-621 (-863 |#1|)) (-1 |#3| (-621 |#3|)) (-860 |#1| |#3|) (-1 (-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))) 32)))
-(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -1289 ((-860 |#1| |#3|) (-621 |#3|) (-621 (-863 |#1|)) (-1 |#3| (-621 |#3|)) (-860 |#1| |#3|) (-1 (-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)))) (-15 -1641 ((-860 |#1| |#3|) (-621 |#3|) (-621 (-863 |#1|)) (-860 |#1| |#3|) (-1 (-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))))) (-1066) (-13 (-1018) (-823)) (-13 (-1018) (-594 (-863 |#1|)) (-1009 |#2|))) (T -912))
-((-1641 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 (-863 *6))) (-5 *5 (-1 (-860 *6 *8) *8 (-863 *6) (-860 *6 *8))) (-4 *6 (-1066)) (-4 *8 (-13 (-1018) (-594 (-863 *6)) (-1009 *7))) (-5 *2 (-860 *6 *8)) (-4 *7 (-13 (-1018) (-823))) (-5 *1 (-912 *6 *7 *8)))) (-1289 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-621 (-863 *7))) (-5 *5 (-1 *9 (-621 *9))) (-5 *6 (-1 (-860 *7 *9) *9 (-863 *7) (-860 *7 *9))) (-4 *7 (-1066)) (-4 *9 (-13 (-1018) (-594 (-863 *7)) (-1009 *8))) (-5 *2 (-860 *7 *9)) (-5 *3 (-621 *9)) (-4 *8 (-13 (-1018) (-823))) (-5 *1 (-912 *7 *8 *9)))))
-(-10 -7 (-15 -1289 ((-860 |#1| |#3|) (-621 |#3|) (-621 (-863 |#1|)) (-1 |#3| (-621 |#3|)) (-860 |#1| |#3|) (-1 (-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)))) (-15 -1641 ((-860 |#1| |#3|) (-621 |#3|) (-621 (-863 |#1|)) (-860 |#1| |#3|) (-1 (-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)))))
-((-1902 (((-1138 (-400 (-549))) (-549)) 63)) (-4107 (((-1138 (-549)) (-549)) 66)) (-3116 (((-1138 (-549)) (-549)) 60)) (-1598 (((-549) (-1138 (-549))) 55)) (-3148 (((-1138 (-400 (-549))) (-549)) 49)) (-3575 (((-1138 (-549)) (-549)) 38)) (-2383 (((-1138 (-549)) (-549)) 68)) (-1986 (((-1138 (-549)) (-549)) 67)) (-1414 (((-1138 (-400 (-549))) (-549)) 51)))
-(((-913) (-10 -7 (-15 -1414 ((-1138 (-400 (-549))) (-549))) (-15 -1986 ((-1138 (-549)) (-549))) (-15 -2383 ((-1138 (-549)) (-549))) (-15 -3575 ((-1138 (-549)) (-549))) (-15 -3148 ((-1138 (-400 (-549))) (-549))) (-15 -1598 ((-549) (-1138 (-549)))) (-15 -3116 ((-1138 (-549)) (-549))) (-15 -4107 ((-1138 (-549)) (-549))) (-15 -1902 ((-1138 (-400 (-549))) (-549))))) (T -913))
-((-1902 (*1 *2 *3) (-12 (-5 *2 (-1138 (-400 (-549)))) (-5 *1 (-913)) (-5 *3 (-549)))) (-4107 (*1 *2 *3) (-12 (-5 *2 (-1138 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))) (-3116 (*1 *2 *3) (-12 (-5 *2 (-1138 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-1138 (-549))) (-5 *2 (-549)) (-5 *1 (-913)))) (-3148 (*1 *2 *3) (-12 (-5 *2 (-1138 (-400 (-549)))) (-5 *1 (-913)) (-5 *3 (-549)))) (-3575 (*1 *2 *3) (-12 (-5 *2 (-1138 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))) (-2383 (*1 *2 *3) (-12 (-5 *2 (-1138 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))) (-1986 (*1 *2 *3) (-12 (-5 *2 (-1138 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))) (-1414 (*1 *2 *3) (-12 (-5 *2 (-1138 (-400 (-549)))) (-5 *1 (-913)) (-5 *3 (-549)))))
-(-10 -7 (-15 -1414 ((-1138 (-400 (-549))) (-549))) (-15 -1986 ((-1138 (-549)) (-549))) (-15 -2383 ((-1138 (-549)) (-549))) (-15 -3575 ((-1138 (-549)) (-549))) (-15 -3148 ((-1138 (-400 (-549))) (-549))) (-15 -1598 ((-549) (-1138 (-549)))) (-15 -3116 ((-1138 (-549)) (-549))) (-15 -4107 ((-1138 (-549)) (-549))) (-15 -1902 ((-1138 (-400 (-549))) (-549))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3768 (($ (-747)) NIL (|has| |#1| (-23)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4106 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#1| $ (-549) |#1|) 11 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) NIL (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) NIL)) (-2882 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1066))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1066)))) (-2797 (($ (-621 |#1|)) 13)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4049 (((-665 |#1|) $ $) NIL (|has| |#1| (-1018)))) (-3743 (($ (-747) |#1|) 8)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) 10 (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-1586 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3054 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-4289 (((-112) $ (-747)) NIL)) (-4209 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2614 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3645 ((|#1| $) NIL (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3158 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2975 (($ $ (-621 |#1|)) 26)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 20) (($ $ (-1192 (-549))) NIL)) (-4140 ((|#1| $ $) NIL (|has| |#1| (-1018)))) (-3128 (((-892) $) 16)) (-2166 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-1420 (($ $ $) 24)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| |#1| (-594 (-525)))) (($ (-621 |#1|)) 17)) (-3853 (($ (-621 |#1|)) NIL)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-621 $)) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2499 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2485 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-549) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-703))) (($ $ |#1|) NIL (|has| |#1| (-703)))) (-3774 (((-747) $) 14 (|has| $ (-6 -4336)))))
+((-2989 (*1 *2 *3 *4) (-12 (-4 *1 (-866)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124)))))) (-2986 (*1 *2 *3) (-12 (-4 *1 (-866)) (-5 *3 (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *2 (-1006)))))
+(-13 (-1067) (-10 -7 (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))) (-1030) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))) (-15 -2986 ((-1006) (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2988 ((|#1| |#1| (-747)) 24)) (-2987 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3777 (((-3 (-2 (|:| -3456 |#1|) (|:| -3455 |#1|)) "failed") |#1| (-747) (-747)) 27) (((-618 |#1|) |#1|) 29)))
+(((-867 |#1| |#2|) (-10 -7 (-15 -3777 ((-618 |#1|) |#1|)) (-15 -3777 ((-3 (-2 (|:| -3456 |#1|) (|:| -3455 |#1|)) "failed") |#1| (-747) (-747))) (-15 -2987 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2988 (|#1| |#1| (-747)))) (-1200 |#2|) (-356)) (T -867))
+((-2988 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-5 *1 (-867 *2 *4)) (-4 *2 (-1200 *4)))) (-2987 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-867 *2 *3)) (-4 *2 (-1200 *3)))) (-3777 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-747)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3456 *3) (|:| -3455 *3))) (-5 *1 (-867 *3 *5)) (-4 *3 (-1200 *5)))) (-3777 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-618 *3)) (-5 *1 (-867 *3 *4)) (-4 *3 (-1200 *4)))))
+(-10 -7 (-15 -3777 ((-618 |#1|) |#1|)) (-15 -3777 ((-3 (-2 (|:| -3456 |#1|) (|:| -3455 |#1|)) "failed") |#1| (-747) (-747))) (-15 -2987 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2988 (|#1| |#1| (-747))))
+((-3919 (((-1006) (-371) (-371) (-371) (-371) (-747) (-747) (-618 (-307 (-371))) (-618 (-618 (-307 (-371)))) (-1124)) 96) (((-1006) (-371) (-371) (-371) (-371) (-747) (-747) (-618 (-307 (-371))) (-618 (-618 (-307 (-371)))) (-1124) (-219)) 91) (((-1006) (-869) (-1030)) 83) (((-1006) (-869)) 84)) (-2989 (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-869) (-1030)) 59) (((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-869)) 61)))
+(((-868) (-10 -7 (-15 -3919 ((-1006) (-869))) (-15 -3919 ((-1006) (-869) (-1030))) (-15 -3919 ((-1006) (-371) (-371) (-371) (-371) (-747) (-747) (-618 (-307 (-371))) (-618 (-618 (-307 (-371)))) (-1124) (-219))) (-15 -3919 ((-1006) (-371) (-371) (-371) (-371) (-747) (-747) (-618 (-307 (-371))) (-618 (-618 (-307 (-371)))) (-1124))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-869))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-869) (-1030))))) (T -868))
+((-2989 (*1 *2 *3 *4) (-12 (-5 *3 (-869)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *1 (-868)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-869)) (-5 *2 (-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124))))) (-5 *1 (-868)))) (-3919 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-747)) (-5 *6 (-618 (-618 (-307 *3)))) (-5 *7 (-1124)) (-5 *5 (-618 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1006)) (-5 *1 (-868)))) (-3919 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-747)) (-5 *6 (-618 (-618 (-307 *3)))) (-5 *7 (-1124)) (-5 *8 (-219)) (-5 *5 (-618 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1006)) (-5 *1 (-868)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-869)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-868)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-869)) (-5 *2 (-1006)) (-5 *1 (-868)))))
+(-10 -7 (-15 -3919 ((-1006) (-869))) (-15 -3919 ((-1006) (-869) (-1030))) (-15 -3919 ((-1006) (-371) (-371) (-371) (-371) (-747) (-747) (-618 (-307 (-371))) (-618 (-618 (-307 (-371)))) (-1124) (-219))) (-15 -3919 ((-1006) (-371) (-371) (-371) (-371) (-747) (-747) (-618 (-307 (-371))) (-618 (-618 (-307 (-371)))) (-1124))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-869))) (-15 -2989 ((-2 (|:| -2989 (-371)) (|:| -3888 (-1124)) (|:| |explanations| (-618 (-1124)))) (-869) (-1030))))
+((-2887 (((-112) $ $) NIL)) (-3490 (((-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))) $) 19)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 21) (($ (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) 18)) (-3375 (((-112) $ $) NIL)))
+(((-869) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))) $))))) (T -869))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-869)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *1 (-869)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219)))) (-5 *1 (-869)))))
+(-13 (-1067) (-10 -8 (-15 -4300 ($ (-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))))) (-15 -4300 ((-835) $)) (-15 -3490 ((-2 (|:| |pde| (-618 (-307 (-219)))) (|:| |constraints| (-618 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124)) (|:| |tol| (-219))) $))))
+((-4153 (($ $ |#2|) NIL) (($ $ (-618 |#2|)) 10) (($ $ |#2| (-747)) 12) (($ $ (-618 |#2|) (-618 (-747))) 15)) (-2990 (($ $ |#2|) 16) (($ $ (-618 |#2|)) 18) (($ $ |#2| (-747)) 19) (($ $ (-618 |#2|) (-618 (-747))) 21)))
+(((-870 |#1| |#2|) (-10 -8 (-15 -2990 (|#1| |#1| (-618 |#2|) (-618 (-747)))) (-15 -2990 (|#1| |#1| |#2| (-747))) (-15 -2990 (|#1| |#1| (-618 |#2|))) (-15 -2990 (|#1| |#1| |#2|)) (-15 -4153 (|#1| |#1| (-618 |#2|) (-618 (-747)))) (-15 -4153 (|#1| |#1| |#2| (-747))) (-15 -4153 (|#1| |#1| (-618 |#2|))) (-15 -4153 (|#1| |#1| |#2|))) (-871 |#2|) (-1067)) (T -870))
+NIL
+(-10 -8 (-15 -2990 (|#1| |#1| (-618 |#2|) (-618 (-747)))) (-15 -2990 (|#1| |#1| |#2| (-747))) (-15 -2990 (|#1| |#1| (-618 |#2|))) (-15 -2990 (|#1| |#1| |#2|)) (-15 -4153 (|#1| |#1| (-618 |#2|) (-618 (-747)))) (-15 -4153 (|#1| |#1| |#2| (-747))) (-15 -4153 (|#1| |#1| (-618 |#2|))) (-15 -4153 (|#1| |#1| |#2|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4153 (($ $ |#1|) 40) (($ $ (-618 |#1|)) 39) (($ $ |#1| (-747)) 38) (($ $ (-618 |#1|) (-618 (-747))) 37)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ |#1|) 36) (($ $ (-618 |#1|)) 35) (($ $ |#1| (-747)) 34) (($ $ (-618 |#1|) (-618 (-747))) 33)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
+(((-871 |#1|) (-138) (-1067)) (T -871))
+((-4153 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1067)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1067)))) (-4153 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1067)))) (-4153 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 (-747))) (-4 *1 (-871 *4)) (-4 *4 (-1067)))) (-2990 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1067)))) (-2990 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1067)))) (-2990 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1067)))) (-2990 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 (-747))) (-4 *1 (-871 *4)) (-4 *4 (-1067)))))
+(-13 (-1018) (-10 -8 (-15 -4153 ($ $ |t#1|)) (-15 -4153 ($ $ (-618 |t#1|))) (-15 -4153 ($ $ |t#1| (-747))) (-15 -4153 ($ $ (-618 |t#1|) (-618 (-747)))) (-15 -2990 ($ $ |t#1|)) (-15 -2990 ($ $ (-618 |t#1|))) (-15 -2990 ($ $ |t#1| (-747))) (-15 -2990 ($ $ (-618 |t#1|) (-618 (-747))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) 26)) (-1264 (((-112) $ (-747)) NIL)) (-3346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-1348 (($ $ $) NIL (|has| $ (-6 -4337)))) (-1349 (($ $ $) NIL (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) (($ $ #2="left" $) NIL (|has| $ (-6 -4337))) (($ $ #3="right" $) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3455 (($ $) 25)) (-2991 (($ |#1|) 12) (($ $ $) 17)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3456 (($ $) 23)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) 20)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3350 (((-535) $ $) NIL)) (-3979 (((-112) $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1165 |#1|) $) 9) (((-835) $) 29 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 21 (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-872 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -2991 ($ |#1|)) (-15 -2991 ($ $ $)) (-15 -4300 ((-1165 |#1|) $)))) (-1067)) (T -872))
+((-2991 (*1 *1 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1067)))) (-2991 (*1 *1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1067)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-872 *3)) (-4 *3 (-1067)))))
+(-13 (-119 |#1|) (-10 -8 (-15 -2991 ($ |#1|)) (-15 -2991 ($ $ $)) (-15 -4300 ((-1165 |#1|) $))))
+((-2887 (((-112) $ $) NIL)) (-3230 (((-618 $) (-618 $)) 77)) (-3969 (((-535) $) 60)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-4114 (((-747) $) 58)) (-3011 (((-1063 |#1|) $ |#1|) 49)) (-2493 (((-112) $) NIL)) (-2994 (((-112) $) 63)) (-2996 (((-747) $) 61)) (-3007 (((-1063 |#1|) $) 42)) (-3660 (($ $ $) NIL (-3874 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-3661 (($ $ $) NIL (-3874 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-3000 (((-2 (|:| |preimage| (-618 |#1|)) (|:| |image| (-618 |#1|))) $) 37)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 93)) (-3577 (((-1086) $) NIL)) (-2993 (((-1063 |#1|) $) 100 (|has| |#1| (-361)))) (-2995 (((-112) $) 59)) (-4110 ((|#1| $ |#1|) 47)) (-4142 ((|#1| $ |#1|) 94)) (-4290 (((-747) $) 44)) (-3002 (($ (-618 (-618 |#1|))) 85)) (-2997 (((-942) $) 53)) (-3003 (($ (-618 |#1|)) 21)) (-3330 (($ $ $) NIL)) (-2677 (($ $ $) NIL)) (-2999 (($ (-618 (-618 |#1|))) 39)) (-2998 (($ (-618 (-618 |#1|))) 88)) (-2992 (($ (-618 |#1|)) 96)) (-4300 (((-835) $) 84) (($ (-618 (-618 |#1|))) 66) (($ (-618 |#1|)) 67)) (-2985 (($) 16 T CONST)) (-2885 (((-112) $ $) NIL (-3874 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-3375 (((-112) $ $) 45)) (-3005 (((-112) $ $) NIL (-3874 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-3006 (((-112) $ $) 65)) (-4291 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ $ $) 22)))
+(((-873 |#1|) (-13 (-875 |#1|) (-10 -8 (-15 -3000 ((-2 (|:| |preimage| (-618 |#1|)) (|:| |image| (-618 |#1|))) $)) (-15 -2999 ($ (-618 (-618 |#1|)))) (-15 -4300 ($ (-618 (-618 |#1|)))) (-15 -4300 ($ (-618 |#1|))) (-15 -2998 ($ (-618 (-618 |#1|)))) (-15 -4290 ((-747) $)) (-15 -3007 ((-1063 |#1|) $)) (-15 -2997 ((-942) $)) (-15 -4114 ((-747) $)) (-15 -2996 ((-747) $)) (-15 -3969 ((-535) $)) (-15 -2995 ((-112) $)) (-15 -2994 ((-112) $)) (-15 -3230 ((-618 $) (-618 $))) (IF (|has| |#1| (-361)) (-15 -2993 ((-1063 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-534)) (-15 -2992 ($ (-618 |#1|))) (IF (|has| |#1| (-361)) (-15 -2992 ($ (-618 |#1|))) |%noBranch|)))) (-1067)) (T -873))
+((-3000 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-618 *3)) (|:| |image| (-618 *3)))) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-873 *3)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-873 *3)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-873 *3)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-873 *3)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-942)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-3230 (*1 *2 *2) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1067)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-873 *3)) (-4 *3 (-361)) (-4 *3 (-1067)))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-873 *3)))))
+(-13 (-875 |#1|) (-10 -8 (-15 -3000 ((-2 (|:| |preimage| (-618 |#1|)) (|:| |image| (-618 |#1|))) $)) (-15 -2999 ($ (-618 (-618 |#1|)))) (-15 -4300 ($ (-618 (-618 |#1|)))) (-15 -4300 ($ (-618 |#1|))) (-15 -2998 ($ (-618 (-618 |#1|)))) (-15 -4290 ((-747) $)) (-15 -3007 ((-1063 |#1|) $)) (-15 -2997 ((-942) $)) (-15 -4114 ((-747) $)) (-15 -2996 ((-747) $)) (-15 -3969 ((-535) $)) (-15 -2995 ((-112) $)) (-15 -2994 ((-112) $)) (-15 -3230 ((-618 $) (-618 $))) (IF (|has| |#1| (-361)) (-15 -2993 ((-1063 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-534)) (-15 -2992 ($ (-618 |#1|))) (IF (|has| |#1| (-361)) (-15 -2992 ($ (-618 |#1|))) |%noBranch|))))
+((-3001 ((|#2| (-1108 |#1| |#2|)) 40)))
+(((-874 |#1| |#2|) (-10 -7 (-15 -3001 (|#2| (-1108 |#1| |#2|)))) (-890) (-13 (-1018) (-10 -7 (-6 (-4338 "*"))))) (T -874))
+((-3001 (*1 *2 *3) (-12 (-5 *3 (-1108 *4 *2)) (-14 *4 (-890)) (-4 *2 (-13 (-1018) (-10 -7 (-6 (-4338 "*"))))) (-5 *1 (-874 *4 *2)))))
+(-10 -7 (-15 -3001 (|#2| (-1108 |#1| |#2|))))
+((-2887 (((-112) $ $) 7)) (-3879 (($) 18 T CONST)) (-3804 (((-3 $ "failed") $) 15)) (-3011 (((-1063 |#1|) $ |#1|) 32)) (-2493 (((-112) $) 17)) (-3660 (($ $ $) 30 (-3874 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-3661 (($ $ $) 29 (-3874 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-3576 (((-1124) $) 9)) (-2725 (($ $) 24)) (-3577 (((-1086) $) 10)) (-4110 ((|#1| $ |#1|) 34)) (-4142 ((|#1| $ |#1|) 33)) (-3002 (($ (-618 (-618 |#1|))) 35)) (-3003 (($ (-618 |#1|)) 36)) (-3330 (($ $ $) 21)) (-2677 (($ $ $) 20)) (-4300 (((-835) $) 11)) (-2985 (($) 19 T CONST)) (-2885 (((-112) $ $) 27 (-3874 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-2886 (((-112) $ $) 26 (-3874 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 28 (-3874 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-3006 (((-112) $ $) 31)) (-4291 (($ $ $) 23)) (** (($ $ (-890)) 13) (($ $ (-747)) 16) (($ $ (-535)) 22)) (* (($ $ $) 14)))
+(((-875 |#1|) (-138) (-1067)) (T -875))
+((-3003 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-875 *3)))) (-3002 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-4 *1 (-875 *3)))) (-4110 (*1 *2 *1 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1067)))) (-4142 (*1 *2 *1 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1067)))) (-3011 (*1 *2 *1 *3) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1067)) (-5 *2 (-1063 *3)))) (-3006 (*1 *2 *1 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(-13 (-465) (-10 -8 (-15 -3003 ($ (-618 |t#1|))) (-15 -3002 ($ (-618 (-618 |t#1|)))) (-15 -4110 (|t#1| $ |t#1|)) (-15 -4142 (|t#1| $ |t#1|)) (-15 -3011 ((-1063 |t#1|) $ |t#1|)) (-15 -3006 ((-112) $ $)) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-361)) (-6 (-823)) |%noBranch|)))
+(((-101) . T) ((-593 (-835)) . T) ((-465) . T) ((-703) . T) ((-823) -3874 (|has| |#1| (-823)) (|has| |#1| (-361))) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3013 (((-618 (-618 (-747))) $) 108)) (-3009 (((-618 (-747)) (-873 |#1|) $) 130)) (-3008 (((-618 (-747)) (-873 |#1|) $) 131)) (-3014 (((-618 (-873 |#1|)) $) 98)) (-3315 (((-873 |#1|) $ (-535)) 103) (((-873 |#1|) $) 104)) (-3012 (($ (-618 (-873 |#1|))) 110)) (-4114 (((-747) $) 105)) (-3010 (((-1063 (-1063 |#1|)) $) 128)) (-3011 (((-1063 |#1|) $ |#1|) 121) (((-1063 (-1063 |#1|)) $ (-1063 |#1|)) 139) (((-1063 (-618 |#1|)) $ (-618 |#1|)) 142)) (-3007 (((-1063 |#1|) $) 101)) (-3579 (((-112) (-873 |#1|) $) 92)) (-3576 (((-1124) $) NIL)) (-3004 (((-1230) $) 95) (((-1230) $ (-535) (-535)) 143)) (-3577 (((-1086) $) NIL)) (-3016 (((-618 (-873 |#1|)) $) 96)) (-4142 (((-873 |#1|) $ (-747)) 99)) (-4290 (((-747) $) 106)) (-4300 (((-835) $) 119) (((-618 (-873 |#1|)) $) 23) (($ (-618 (-873 |#1|))) 109)) (-3015 (((-618 |#1|) $) 107)) (-3375 (((-112) $ $) 136)) (-3005 (((-112) $ $) 134)) (-3006 (((-112) $ $) 133)))
+(((-876 |#1|) (-13 (-1067) (-10 -8 (-15 -4300 ((-618 (-873 |#1|)) $)) (-15 -3016 ((-618 (-873 |#1|)) $)) (-15 -4142 ((-873 |#1|) $ (-747))) (-15 -3315 ((-873 |#1|) $ (-535))) (-15 -3315 ((-873 |#1|) $)) (-15 -4114 ((-747) $)) (-15 -4290 ((-747) $)) (-15 -3015 ((-618 |#1|) $)) (-15 -3014 ((-618 (-873 |#1|)) $)) (-15 -3013 ((-618 (-618 (-747))) $)) (-15 -4300 ($ (-618 (-873 |#1|)))) (-15 -3012 ($ (-618 (-873 |#1|)))) (-15 -3011 ((-1063 |#1|) $ |#1|)) (-15 -3010 ((-1063 (-1063 |#1|)) $)) (-15 -3011 ((-1063 (-1063 |#1|)) $ (-1063 |#1|))) (-15 -3011 ((-1063 (-618 |#1|)) $ (-618 |#1|))) (-15 -3579 ((-112) (-873 |#1|) $)) (-15 -3009 ((-618 (-747)) (-873 |#1|) $)) (-15 -3008 ((-618 (-747)) (-873 |#1|) $)) (-15 -3007 ((-1063 |#1|) $)) (-15 -3006 ((-112) $ $)) (-15 -3005 ((-112) $ $)) (-15 -3004 ((-1230) $)) (-15 -3004 ((-1230) $ (-535) (-535))))) (-1067)) (T -876))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-873 *4)) (-5 *1 (-876 *4)) (-4 *4 (-1067)))) (-3315 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-873 *4)) (-5 *1 (-876 *4)) (-4 *4 (-1067)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-873 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-747)))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-618 (-873 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3)))) (-3012 (*1 *1 *2) (-12 (-5 *2 (-618 (-873 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3)))) (-3011 (*1 *2 *1 *3) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-1063 (-1063 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3011 (*1 *2 *1 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-1063 (-1063 *4))) (-5 *1 (-876 *4)) (-5 *3 (-1063 *4)))) (-3011 (*1 *2 *1 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-1063 (-618 *4))) (-5 *1 (-876 *4)) (-5 *3 (-618 *4)))) (-3579 (*1 *2 *3 *1) (-12 (-5 *3 (-873 *4)) (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-876 *4)))) (-3009 (*1 *2 *3 *1) (-12 (-5 *3 (-873 *4)) (-4 *4 (-1067)) (-5 *2 (-618 (-747))) (-5 *1 (-876 *4)))) (-3008 (*1 *2 *3 *1) (-12 (-5 *3 (-873 *4)) (-4 *4 (-1067)) (-5 *2 (-618 (-747))) (-5 *1 (-876 *4)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3006 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3005 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3004 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-876 *4)) (-4 *4 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -4300 ((-618 (-873 |#1|)) $)) (-15 -3016 ((-618 (-873 |#1|)) $)) (-15 -4142 ((-873 |#1|) $ (-747))) (-15 -3315 ((-873 |#1|) $ (-535))) (-15 -3315 ((-873 |#1|) $)) (-15 -4114 ((-747) $)) (-15 -4290 ((-747) $)) (-15 -3015 ((-618 |#1|) $)) (-15 -3014 ((-618 (-873 |#1|)) $)) (-15 -3013 ((-618 (-618 (-747))) $)) (-15 -4300 ($ (-618 (-873 |#1|)))) (-15 -3012 ($ (-618 (-873 |#1|)))) (-15 -3011 ((-1063 |#1|) $ |#1|)) (-15 -3010 ((-1063 (-1063 |#1|)) $)) (-15 -3011 ((-1063 (-1063 |#1|)) $ (-1063 |#1|))) (-15 -3011 ((-1063 (-618 |#1|)) $ (-618 |#1|))) (-15 -3579 ((-112) (-873 |#1|) $)) (-15 -3009 ((-618 (-747)) (-873 |#1|) $)) (-15 -3008 ((-618 (-747)) (-873 |#1|) $)) (-15 -3007 ((-1063 |#1|) $)) (-15 -3006 ((-112) $ $)) (-15 -3005 ((-112) $ $)) (-15 -3004 ((-1230) $)) (-15 -3004 ((-1230) $ (-535) (-535)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-4275 (((-112) $) NIL)) (-4272 (((-747)) NIL)) (-3672 (($ $ (-890)) NIL (|has| $ (-361))) (($ $) NIL)) (-1786 (((-1151 (-890) (-747)) (-535)) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3454 (((-747)) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 $ "failed") $) NIL)) (-3490 (($ $) NIL)) (-1906 (($ (-1224 $)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-3154 (($) NIL)) (-1791 (((-112) $) NIL)) (-1881 (($ $) NIL) (($ $ (-747)) NIL)) (-4069 (((-112) $) NIL)) (-4114 (((-808 (-890)) $) NIL) (((-890) $) NIL)) (-2493 (((-112) $) NIL)) (-2124 (($) NIL (|has| $ (-361)))) (-2122 (((-112) $) NIL (|has| $ (-361)))) (-3450 (($ $ (-890)) NIL (|has| $ (-361))) (($ $) NIL)) (-3786 (((-3 $ "failed") $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2125 (((-1136 $) $ (-890)) NIL (|has| $ (-361))) (((-1136 $) $) NIL)) (-2121 (((-890) $) NIL)) (-1719 (((-1136 $) $) NIL (|has| $ (-361)))) (-1718 (((-3 (-1136 $) "failed") $ $) NIL (|has| $ (-361))) (((-1136 $) $) NIL (|has| $ (-361)))) (-1720 (($ $ (-1136 $)) NIL (|has| $ (-361)))) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL T CONST)) (-2483 (($ (-890)) NIL)) (-4274 (((-112) $) NIL)) (-3577 (((-1086) $) NIL)) (-2492 (($) NIL (|has| $ (-361)))) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL)) (-4075 (((-398 $) $) NIL)) (-4273 (((-890)) NIL) (((-808 (-890))) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-1882 (((-3 (-747) "failed") $ $) NIL) (((-747) $) NIL)) (-4254 (((-133)) NIL)) (-4153 (($ $ (-747)) NIL) (($ $) NIL)) (-4290 (((-890) $) NIL) (((-808 (-890)) $) NIL)) (-3519 (((-1136 $)) NIL)) (-1785 (($) NIL)) (-1721 (($) NIL (|has| $ (-361)))) (-3558 (((-665 $) (-1224 $)) NIL) (((-1224 $) $) NIL)) (-4313 (((-535) $) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL)) (-3023 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3444 (((-747)) NIL)) (-2123 (((-1224 $) (-890)) NIL) (((-1224 $)) NIL)) (-2170 (((-112) $ $) NIL)) (-4276 (((-112) $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-4271 (($ $ (-747)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL)))
+(((-877 |#1|) (-13 (-343) (-322 $) (-594 (-535))) (-890)) (T -877))
+NIL
+(-13 (-343) (-322 $) (-594 (-535)))
+((-3018 (((-3 (-618 (-1136 |#4|)) "failed") (-618 (-1136 |#4|)) (-1136 |#4|)) 128)) (-3021 ((|#1|) 77)) (-3020 (((-398 (-1136 |#4|)) (-1136 |#4|)) 137)) (-3022 (((-398 (-1136 |#4|)) (-618 |#3|) (-1136 |#4|)) 69)) (-3019 (((-398 (-1136 |#4|)) (-1136 |#4|)) 147)) (-3017 (((-3 (-618 (-1136 |#4|)) "failed") (-618 (-1136 |#4|)) (-1136 |#4|) |#3|) 92)))
+(((-878 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3018 ((-3 (-618 (-1136 |#4|)) "failed") (-618 (-1136 |#4|)) (-1136 |#4|))) (-15 -3019 ((-398 (-1136 |#4|)) (-1136 |#4|))) (-15 -3020 ((-398 (-1136 |#4|)) (-1136 |#4|))) (-15 -3021 (|#1|)) (-15 -3017 ((-3 (-618 (-1136 |#4|)) "failed") (-618 (-1136 |#4|)) (-1136 |#4|) |#3|)) (-15 -3022 ((-398 (-1136 |#4|)) (-618 |#3|) (-1136 |#4|)))) (-881) (-769) (-823) (-921 |#1| |#2| |#3|)) (T -878))
+((-3022 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *7)) (-4 *7 (-823)) (-4 *5 (-881)) (-4 *6 (-769)) (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-398 (-1136 *8))) (-5 *1 (-878 *5 *6 *7 *8)) (-5 *4 (-1136 *8)))) (-3017 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-618 (-1136 *7))) (-5 *3 (-1136 *7)) (-4 *7 (-921 *5 *6 *4)) (-4 *5 (-881)) (-4 *6 (-769)) (-4 *4 (-823)) (-5 *1 (-878 *5 *6 *4 *7)))) (-3021 (*1 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-881)) (-5 *1 (-878 *2 *3 *4 *5)) (-4 *5 (-921 *2 *3 *4)))) (-3020 (*1 *2 *3) (-12 (-4 *4 (-881)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-878 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) (-3019 (*1 *2 *3) (-12 (-4 *4 (-881)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-878 *4 *5 *6 *7)) (-5 *3 (-1136 *7)))) (-3018 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-1136 *7))) (-5 *3 (-1136 *7)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-881)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-878 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3018 ((-3 (-618 (-1136 |#4|)) "failed") (-618 (-1136 |#4|)) (-1136 |#4|))) (-15 -3019 ((-398 (-1136 |#4|)) (-1136 |#4|))) (-15 -3020 ((-398 (-1136 |#4|)) (-1136 |#4|))) (-15 -3021 (|#1|)) (-15 -3017 ((-3 (-618 (-1136 |#4|)) "failed") (-618 (-1136 |#4|)) (-1136 |#4|) |#3|)) (-15 -3022 ((-398 (-1136 |#4|)) (-618 |#3|) (-1136 |#4|))))
+((-3018 (((-3 (-618 (-1136 |#2|)) "failed") (-618 (-1136 |#2|)) (-1136 |#2|)) 36)) (-3021 ((|#1|) 54)) (-3020 (((-398 (-1136 |#2|)) (-1136 |#2|)) 102)) (-3022 (((-398 (-1136 |#2|)) (-1136 |#2|)) 90)) (-3019 (((-398 (-1136 |#2|)) (-1136 |#2|)) 113)))
+(((-879 |#1| |#2|) (-10 -7 (-15 -3018 ((-3 (-618 (-1136 |#2|)) "failed") (-618 (-1136 |#2|)) (-1136 |#2|))) (-15 -3019 ((-398 (-1136 |#2|)) (-1136 |#2|))) (-15 -3020 ((-398 (-1136 |#2|)) (-1136 |#2|))) (-15 -3021 (|#1|)) (-15 -3022 ((-398 (-1136 |#2|)) (-1136 |#2|)))) (-881) (-1200 |#1|)) (T -879))
+((-3022 (*1 *2 *3) (-12 (-4 *4 (-881)) (-4 *5 (-1200 *4)) (-5 *2 (-398 (-1136 *5))) (-5 *1 (-879 *4 *5)) (-5 *3 (-1136 *5)))) (-3021 (*1 *2) (-12 (-4 *2 (-881)) (-5 *1 (-879 *2 *3)) (-4 *3 (-1200 *2)))) (-3020 (*1 *2 *3) (-12 (-4 *4 (-881)) (-4 *5 (-1200 *4)) (-5 *2 (-398 (-1136 *5))) (-5 *1 (-879 *4 *5)) (-5 *3 (-1136 *5)))) (-3019 (*1 *2 *3) (-12 (-4 *4 (-881)) (-4 *5 (-1200 *4)) (-5 *2 (-398 (-1136 *5))) (-5 *1 (-879 *4 *5)) (-5 *3 (-1136 *5)))) (-3018 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-1136 *5))) (-5 *3 (-1136 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-881)) (-5 *1 (-879 *4 *5)))))
+(-10 -7 (-15 -3018 ((-3 (-618 (-1136 |#2|)) "failed") (-618 (-1136 |#2|)) (-1136 |#2|))) (-15 -3019 ((-398 (-1136 |#2|)) (-1136 |#2|))) (-15 -3020 ((-398 (-1136 |#2|)) (-1136 |#2|))) (-15 -3021 (|#1|)) (-15 -3022 ((-398 (-1136 |#2|)) (-1136 |#2|))))
+((-3025 (((-3 (-618 (-1136 $)) "failed") (-618 (-1136 $)) (-1136 $)) 41)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 18)) (-3023 (((-3 $ "failed") $) 35)))
+(((-880 |#1|) (-10 -8 (-15 -3023 ((-3 |#1| "failed") |#1|)) (-15 -3025 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|)))) (-881)) (T -880))
+NIL
+(-10 -8 (-15 -3023 ((-3 |#1| "failed") |#1|)) (-15 -3025 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3028 (((-398 (-1136 $)) (-1136 $)) 58)) (-4117 (($ $) 49)) (-4312 (((-398 $) $) 50)) (-3025 (((-3 (-618 (-1136 $)) "failed") (-618 (-1136 $)) (-1136 $)) 55)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-4069 (((-112) $) 51)) (-2493 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3026 (((-398 (-1136 $)) (-1136 $)) 56)) (-3027 (((-398 (-1136 $)) (-1136 $)) 57)) (-4075 (((-398 $) $) 48)) (-3803 (((-3 $ "failed") $ $) 40)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) 54 (|has| $ (-143)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3023 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
+(((-881) (-138)) (T -881))
+((-3029 (*1 *2 *2 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-881)))) (-3028 (*1 *2 *3) (-12 (-4 *1 (-881)) (-5 *2 (-398 (-1136 *1))) (-5 *3 (-1136 *1)))) (-3027 (*1 *2 *3) (-12 (-4 *1 (-881)) (-5 *2 (-398 (-1136 *1))) (-5 *3 (-1136 *1)))) (-3026 (*1 *2 *3) (-12 (-4 *1 (-881)) (-5 *2 (-398 (-1136 *1))) (-5 *3 (-1136 *1)))) (-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 (-1136 *1))) (-5 *3 (-1136 *1)) (-4 *1 (-881)))) (-3024 (*1 *2 *3) (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-143)) (-4 *1 (-881)) (-5 *2 (-1224 *1)))) (-3023 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-881)))))
+(-13 (-1183) (-10 -8 (-15 -3028 ((-398 (-1136 $)) (-1136 $))) (-15 -3027 ((-398 (-1136 $)) (-1136 $))) (-15 -3026 ((-398 (-1136 $)) (-1136 $))) (-15 -3029 ((-1136 $) (-1136 $) (-1136 $))) (-15 -3025 ((-3 (-618 (-1136 $)) "failed") (-618 (-1136 $)) (-1136 $))) (IF (|has| $ (-143)) (PROGN (-15 -3024 ((-3 (-1224 $) "failed") (-665 $))) (-15 -3023 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T))
+((-3031 (((-3 (-2 (|:| -4114 (-747)) (|:| -2466 |#5|)) "failed") (-326 |#2| |#3| |#4| |#5|)) 79)) (-3030 (((-112) (-326 |#2| |#3| |#4| |#5|)) 17)) (-4114 (((-3 (-747) "failed") (-326 |#2| |#3| |#4| |#5|)) 15)))
+(((-882 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4114 ((-3 (-747) "failed") (-326 |#2| |#3| |#4| |#5|))) (-15 -3030 ((-112) (-326 |#2| |#3| |#4| |#5|))) (-15 -3031 ((-3 (-2 (|:| -4114 (-747)) (|:| -2466 |#5|)) "failed") (-326 |#2| |#3| |#4| |#5|)))) (-13 (-823) (-542) (-1009 (-535))) (-414 |#1|) (-1200 |#2|) (-1200 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -882))
+((-3031 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-2 (|:| -4114 (-747)) (|:| -2466 *8))) (-5 *1 (-882 *4 *5 *6 *7 *8)))) (-3030 (*1 *2 *3) (-12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-112)) (-5 *1 (-882 *4 *5 *6 *7 *8)))) (-4114 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-747)) (-5 *1 (-882 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4114 ((-3 (-747) "failed") (-326 |#2| |#3| |#4| |#5|))) (-15 -3030 ((-112) (-326 |#2| |#3| |#4| |#5|))) (-15 -3031 ((-3 (-2 (|:| -4114 (-747)) (|:| -2466 |#5|)) "failed") (-326 |#2| |#3| |#4| |#5|))))
+((-3031 (((-3 (-2 (|:| -4114 (-747)) (|:| -2466 |#3|)) "failed") (-326 (-400 (-535)) |#1| |#2| |#3|)) 56)) (-3030 (((-112) (-326 (-400 (-535)) |#1| |#2| |#3|)) 16)) (-4114 (((-3 (-747) "failed") (-326 (-400 (-535)) |#1| |#2| |#3|)) 14)))
+(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -4114 ((-3 (-747) "failed") (-326 (-400 (-535)) |#1| |#2| |#3|))) (-15 -3030 ((-112) (-326 (-400 (-535)) |#1| |#2| |#3|))) (-15 -3031 ((-3 (-2 (|:| -4114 (-747)) (|:| -2466 |#3|)) "failed") (-326 (-400 (-535)) |#1| |#2| |#3|)))) (-1200 (-400 (-535))) (-1200 (-400 |#1|)) (-335 (-400 (-535)) |#1| |#2|)) (T -883))
+((-3031 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-400 (-535)) *4 *5 *6)) (-4 *4 (-1200 (-400 (-535)))) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 (-400 (-535)) *4 *5)) (-5 *2 (-2 (|:| -4114 (-747)) (|:| -2466 *6))) (-5 *1 (-883 *4 *5 *6)))) (-3030 (*1 *2 *3) (-12 (-5 *3 (-326 (-400 (-535)) *4 *5 *6)) (-4 *4 (-1200 (-400 (-535)))) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 (-400 (-535)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-883 *4 *5 *6)))) (-4114 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-400 (-535)) *4 *5 *6)) (-4 *4 (-1200 (-400 (-535)))) (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 (-400 (-535)) *4 *5)) (-5 *2 (-747)) (-5 *1 (-883 *4 *5 *6)))))
+(-10 -7 (-15 -4114 ((-3 (-747) "failed") (-326 (-400 (-535)) |#1| |#2| |#3|))) (-15 -3030 ((-112) (-326 (-400 (-535)) |#1| |#2| |#3|))) (-15 -3031 ((-3 (-2 (|:| -4114 (-747)) (|:| -2466 |#3|)) "failed") (-326 (-400 (-535)) |#1| |#2| |#3|))))
+((-3036 ((|#2| |#2|) 26)) (-3034 (((-535) (-618 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535))))) 15)) (-3032 (((-890) (-535)) 35)) (-3035 (((-535) |#2|) 42)) (-3033 (((-535) |#2|) 21) (((-2 (|:| |den| (-535)) (|:| |gcdnum| (-535))) |#1|) 20)))
+(((-884 |#1| |#2|) (-10 -7 (-15 -3032 ((-890) (-535))) (-15 -3033 ((-2 (|:| |den| (-535)) (|:| |gcdnum| (-535))) |#1|)) (-15 -3033 ((-535) |#2|)) (-15 -3034 ((-535) (-618 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535)))))) (-15 -3035 ((-535) |#2|)) (-15 -3036 (|#2| |#2|))) (-1200 (-400 (-535))) (-1200 (-400 |#1|))) (T -884))
+((-3036 (*1 *2 *2) (-12 (-4 *3 (-1200 (-400 (-535)))) (-5 *1 (-884 *3 *2)) (-4 *2 (-1200 (-400 *3))))) (-3035 (*1 *2 *3) (-12 (-4 *4 (-1200 (-400 *2))) (-5 *2 (-535)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1200 (-400 *4))))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535))))) (-4 *4 (-1200 (-400 *2))) (-5 *2 (-535)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1200 (-400 *4))))) (-3033 (*1 *2 *3) (-12 (-4 *4 (-1200 (-400 *2))) (-5 *2 (-535)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1200 (-400 *4))))) (-3033 (*1 *2 *3) (-12 (-4 *3 (-1200 (-400 (-535)))) (-5 *2 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535)))) (-5 *1 (-884 *3 *4)) (-4 *4 (-1200 (-400 *3))))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-535)) (-4 *4 (-1200 (-400 *3))) (-5 *2 (-890)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1200 (-400 *4))))))
+(-10 -7 (-15 -3032 ((-890) (-535))) (-15 -3033 ((-2 (|:| |den| (-535)) (|:| |gcdnum| (-535))) |#1|)) (-15 -3033 ((-535) |#2|)) (-15 -3034 ((-535) (-618 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535)))))) (-15 -3035 ((-535) |#2|)) (-15 -3036 (|#2| |#2|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 ((|#1| $) 81)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-2883 (($ $ $) NIL)) (-3804 (((-3 $ "failed") $) 75)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3044 (($ |#1| (-398 |#1|)) 73)) (-3038 (((-1136 |#1|) |#1| |#1|) 41)) (-3037 (($ $) 49)) (-2493 (((-112) $) NIL)) (-3039 (((-535) $) 78)) (-3040 (($ $ (-535)) 80)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3041 ((|#1| $) 77)) (-3042 (((-398 |#1|) $) 76)) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) 74)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-3043 (($ $) 39)) (-4300 (((-835) $) 99) (($ (-535)) 54) (($ $) NIL) (($ (-400 (-535))) NIL) (($ |#1|) 31) (((-400 |#1|) $) 59) (($ (-400 (-398 |#1|))) 67)) (-3444 (((-747)) 52)) (-2170 (((-112) $ $) NIL)) (-2979 (($) 23 T CONST)) (-2985 (($) 12 T CONST)) (-3375 (((-112) $ $) 68)) (-4291 (($ $ $) NIL)) (-4180 (($ $) 88) (($ $ $) NIL)) (-4182 (($ $ $) 38)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 90) (($ $ $) 37) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-885 |#1|) (-13 (-356) (-38 |#1|) (-10 -8 (-15 -4300 ((-400 |#1|) $)) (-15 -4300 ($ (-400 (-398 |#1|)))) (-15 -3043 ($ $)) (-15 -3042 ((-398 |#1|) $)) (-15 -3041 (|#1| $)) (-15 -3040 ($ $ (-535))) (-15 -3039 ((-535) $)) (-15 -3038 ((-1136 |#1|) |#1| |#1|)) (-15 -3037 ($ $)) (-15 -3044 ($ |#1| (-398 |#1|))) (-15 -3447 (|#1| $)))) (-300)) (T -885))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-400 (-398 *3))) (-4 *3 (-300)) (-5 *1 (-885 *3)))) (-3043 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-3041 (*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) (-3040 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-3038 (*1 *2 *3 *3) (-12 (-5 *2 (-1136 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-3037 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) (-3044 (*1 *1 *2 *3) (-12 (-5 *3 (-398 *2)) (-4 *2 (-300)) (-5 *1 (-885 *2)))) (-3447 (*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))))
+(-13 (-356) (-38 |#1|) (-10 -8 (-15 -4300 ((-400 |#1|) $)) (-15 -4300 ($ (-400 (-398 |#1|)))) (-15 -3043 ($ $)) (-15 -3042 ((-398 |#1|) $)) (-15 -3041 (|#1| $)) (-15 -3040 ($ $ (-535))) (-15 -3039 ((-535) $)) (-15 -3038 ((-1136 |#1|) |#1| |#1|)) (-15 -3037 ($ $)) (-15 -3044 ($ |#1| (-398 |#1|))) (-15 -3447 (|#1| $))))
+((-3044 (((-51) (-917 |#1|) (-398 (-917 |#1|)) (-1142)) 17) (((-51) (-400 (-917 |#1|)) (-1142)) 18)))
+(((-886 |#1|) (-10 -7 (-15 -3044 ((-51) (-400 (-917 |#1|)) (-1142))) (-15 -3044 ((-51) (-917 |#1|) (-398 (-917 |#1|)) (-1142)))) (-13 (-300) (-145))) (T -886))
+((-3044 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-398 (-917 *6))) (-5 *5 (-1142)) (-5 *3 (-917 *6)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-51)) (-5 *1 (-886 *6)))) (-3044 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-51)) (-5 *1 (-886 *5)))))
+(-10 -7 (-15 -3044 ((-51) (-400 (-917 |#1|)) (-1142))) (-15 -3044 ((-51) (-917 |#1|) (-398 (-917 |#1|)) (-1142))))
+((-3045 ((|#4| (-618 |#4|)) 121) (((-1136 |#4|) (-1136 |#4|) (-1136 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3478 (((-1136 |#4|) (-618 (-1136 |#4|))) 114) (((-1136 |#4|) (-1136 |#4|) (-1136 |#4|)) 50) ((|#4| (-618 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
+(((-887 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3478 (|#4| |#4| |#4|)) (-15 -3478 (|#4| (-618 |#4|))) (-15 -3478 ((-1136 |#4|) (-1136 |#4|) (-1136 |#4|))) (-15 -3478 ((-1136 |#4|) (-618 (-1136 |#4|)))) (-15 -3045 (|#4| |#4| |#4|)) (-15 -3045 ((-1136 |#4|) (-1136 |#4|) (-1136 |#4|))) (-15 -3045 (|#4| (-618 |#4|)))) (-769) (-823) (-300) (-921 |#3| |#1| |#2|)) (T -887))
+((-3045 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *6 *4 *5)) (-5 *1 (-887 *4 *5 *6 *2)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)))) (-3045 (*1 *2 *2 *2) (-12 (-5 *2 (-1136 *6)) (-4 *6 (-921 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6)))) (-3045 (*1 *2 *2 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *2)) (-4 *2 (-921 *5 *3 *4)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-618 (-1136 *7))) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-1136 *7)) (-5 *1 (-887 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))) (-3478 (*1 *2 *2 *2) (-12 (-5 *2 (-1136 *6)) (-4 *6 (-921 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *6 *4 *5)) (-5 *1 (-887 *4 *5 *6 *2)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)))) (-3478 (*1 *2 *2 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *2)) (-4 *2 (-921 *5 *3 *4)))))
+(-10 -7 (-15 -3478 (|#4| |#4| |#4|)) (-15 -3478 (|#4| (-618 |#4|))) (-15 -3478 ((-1136 |#4|) (-1136 |#4|) (-1136 |#4|))) (-15 -3478 ((-1136 |#4|) (-618 (-1136 |#4|)))) (-15 -3045 (|#4| |#4| |#4|)) (-15 -3045 ((-1136 |#4|) (-1136 |#4|) (-1136 |#4|))) (-15 -3045 (|#4| (-618 |#4|))))
+((-3058 (((-876 (-535)) (-942)) 23) (((-876 (-535)) (-618 (-535))) 20)) (-3046 (((-876 (-535)) (-618 (-535))) 48) (((-876 (-535)) (-890)) 49)) (-3057 (((-876 (-535))) 24)) (-3055 (((-876 (-535))) 38) (((-876 (-535)) (-618 (-535))) 37)) (-3054 (((-876 (-535))) 36) (((-876 (-535)) (-618 (-535))) 35)) (-3053 (((-876 (-535))) 34) (((-876 (-535)) (-618 (-535))) 33)) (-3052 (((-876 (-535))) 32) (((-876 (-535)) (-618 (-535))) 31)) (-3051 (((-876 (-535))) 30) (((-876 (-535)) (-618 (-535))) 29)) (-3056 (((-876 (-535))) 40) (((-876 (-535)) (-618 (-535))) 39)) (-3050 (((-876 (-535)) (-618 (-535))) 52) (((-876 (-535)) (-890)) 53)) (-3049 (((-876 (-535)) (-618 (-535))) 50) (((-876 (-535)) (-890)) 51)) (-3047 (((-876 (-535)) (-618 (-535))) 46) (((-876 (-535)) (-890)) 47)) (-3048 (((-876 (-535)) (-618 (-890))) 43)))
+(((-888) (-10 -7 (-15 -3046 ((-876 (-535)) (-890))) (-15 -3046 ((-876 (-535)) (-618 (-535)))) (-15 -3047 ((-876 (-535)) (-890))) (-15 -3047 ((-876 (-535)) (-618 (-535)))) (-15 -3048 ((-876 (-535)) (-618 (-890)))) (-15 -3049 ((-876 (-535)) (-890))) (-15 -3049 ((-876 (-535)) (-618 (-535)))) (-15 -3050 ((-876 (-535)) (-890))) (-15 -3050 ((-876 (-535)) (-618 (-535)))) (-15 -3051 ((-876 (-535)) (-618 (-535)))) (-15 -3051 ((-876 (-535)))) (-15 -3052 ((-876 (-535)) (-618 (-535)))) (-15 -3052 ((-876 (-535)))) (-15 -3053 ((-876 (-535)) (-618 (-535)))) (-15 -3053 ((-876 (-535)))) (-15 -3054 ((-876 (-535)) (-618 (-535)))) (-15 -3054 ((-876 (-535)))) (-15 -3055 ((-876 (-535)) (-618 (-535)))) (-15 -3055 ((-876 (-535)))) (-15 -3056 ((-876 (-535)) (-618 (-535)))) (-15 -3056 ((-876 (-535)))) (-15 -3057 ((-876 (-535)))) (-15 -3058 ((-876 (-535)) (-618 (-535)))) (-15 -3058 ((-876 (-535)) (-942))))) (T -888))
+((-3058 (*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3057 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3056 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3055 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3054 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3053 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3052 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3051 (*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-618 (-890))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(-10 -7 (-15 -3046 ((-876 (-535)) (-890))) (-15 -3046 ((-876 (-535)) (-618 (-535)))) (-15 -3047 ((-876 (-535)) (-890))) (-15 -3047 ((-876 (-535)) (-618 (-535)))) (-15 -3048 ((-876 (-535)) (-618 (-890)))) (-15 -3049 ((-876 (-535)) (-890))) (-15 -3049 ((-876 (-535)) (-618 (-535)))) (-15 -3050 ((-876 (-535)) (-890))) (-15 -3050 ((-876 (-535)) (-618 (-535)))) (-15 -3051 ((-876 (-535)) (-618 (-535)))) (-15 -3051 ((-876 (-535)))) (-15 -3052 ((-876 (-535)) (-618 (-535)))) (-15 -3052 ((-876 (-535)))) (-15 -3053 ((-876 (-535)) (-618 (-535)))) (-15 -3053 ((-876 (-535)))) (-15 -3054 ((-876 (-535)) (-618 (-535)))) (-15 -3054 ((-876 (-535)))) (-15 -3055 ((-876 (-535)) (-618 (-535)))) (-15 -3055 ((-876 (-535)))) (-15 -3056 ((-876 (-535)) (-618 (-535)))) (-15 -3056 ((-876 (-535)))) (-15 -3057 ((-876 (-535)))) (-15 -3058 ((-876 (-535)) (-618 (-535)))) (-15 -3058 ((-876 (-535)) (-942))))
+((-3060 (((-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142))) 12)) (-3059 (((-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142))) 11)))
+(((-889 |#1|) (-10 -7 (-15 -3059 ((-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -3060 ((-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142))))) (-444)) (T -889))
+((-3060 (*1 *2 *2 *3) (-12 (-5 *2 (-618 (-917 *4))) (-5 *3 (-618 (-1142))) (-4 *4 (-444)) (-5 *1 (-889 *4)))) (-3059 (*1 *2 *2 *3) (-12 (-5 *2 (-618 (-917 *4))) (-5 *3 (-618 (-1142))) (-4 *4 (-444)) (-5 *1 (-889 *4)))))
+(-10 -7 (-15 -3059 ((-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -3060 ((-618 (-917 |#1|)) (-618 (-917 |#1|)) (-618 (-1142)))))
+((-2887 (((-112) $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3478 (($ $ $) NIL)) (-4300 (((-835) $) NIL)) (-2985 (($) NIL T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ $ $) NIL)))
+(((-890) (-13 (-770) (-703) (-10 -8 (-15 -3478 ($ $ $)) (-6 (-4338 "*"))))) (T -890))
+((-3478 (*1 *1 *1 *1) (-5 *1 (-890))))
+(-13 (-770) (-703) (-10 -8 (-15 -3478 ($ $ $)) (-6 (-4338 "*"))))
+((-4300 (((-307 |#1|) (-469)) 16)))
+(((-891 |#1|) (-10 -7 (-15 -4300 ((-307 |#1|) (-469)))) (-13 (-823) (-542))) (T -891))
+((-4300 (*1 *2 *3) (-12 (-5 *3 (-469)) (-5 *2 (-307 *4)) (-5 *1 (-891 *4)) (-4 *4 (-13 (-823) (-542))))))
+(-10 -7 (-15 -4300 ((-307 |#1|) (-469))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-2493 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
+(((-892) (-138)) (T -892))
+((-3062 (*1 *2 *3) (-12 (-4 *1 (-892)) (-5 *2 (-2 (|:| -4296 (-618 *1)) (|:| -2492 *1))) (-5 *3 (-618 *1)))) (-3061 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-618 *1)) (-4 *1 (-892)))))
+(-13 (-444) (-10 -8 (-15 -3062 ((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $))) (-15 -3061 ((-3 (-618 $) "failed") (-618 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-3424 (((-1136 |#2|) (-618 |#2|) (-618 |#2|)) 17) (((-1193 |#1| |#2|) (-1193 |#1| |#2|) (-618 |#2|) (-618 |#2|)) 13)))
+(((-893 |#1| |#2|) (-10 -7 (-15 -3424 ((-1193 |#1| |#2|) (-1193 |#1| |#2|) (-618 |#2|) (-618 |#2|))) (-15 -3424 ((-1136 |#2|) (-618 |#2|) (-618 |#2|)))) (-1142) (-356)) (T -893))
+((-3424 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *5)) (-4 *5 (-356)) (-5 *2 (-1136 *5)) (-5 *1 (-893 *4 *5)) (-14 *4 (-1142)))) (-3424 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1193 *4 *5)) (-5 *3 (-618 *5)) (-14 *4 (-1142)) (-4 *5 (-356)) (-5 *1 (-893 *4 *5)))))
+(-10 -7 (-15 -3424 ((-1193 |#1| |#2|) (-1193 |#1| |#2|) (-618 |#2|) (-618 |#2|))) (-15 -3424 ((-1136 |#2|) (-618 |#2|) (-618 |#2|))))
+((-3063 ((|#2| (-618 |#1|) (-618 |#1|)) 24)))
+(((-894 |#1| |#2|) (-10 -7 (-15 -3063 (|#2| (-618 |#1|) (-618 |#1|)))) (-356) (-1200 |#1|)) (T -894))
+((-3063 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-356)) (-4 *2 (-1200 *4)) (-5 *1 (-894 *4 *2)))))
+(-10 -7 (-15 -3063 (|#2| (-618 |#1|) (-618 |#1|))))
+((-3065 (((-535) (-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-1124)) 139)) (-3084 ((|#4| |#4|) 155)) (-3069 (((-618 (-400 (-917 |#1|))) (-618 (-1142))) 118)) (-3083 (((-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))) (-665 |#4|) (-618 (-400 (-917 |#1|))) (-618 (-618 |#4|)) (-747) (-747) (-535)) 75)) (-3073 (((-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-618 |#4|)) 59)) (-3082 (((-665 |#4|) (-665 |#4|) (-618 |#4|)) 55)) (-3066 (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-1124)) 151)) (-3064 (((-535) (-665 |#4|) (-890) (-1124)) 132) (((-535) (-665 |#4|) (-618 (-1142)) (-890) (-1124)) 131) (((-535) (-665 |#4|) (-618 |#4|) (-890) (-1124)) 130) (((-535) (-665 |#4|) (-1124)) 127) (((-535) (-665 |#4|) (-618 (-1142)) (-1124)) 126) (((-535) (-665 |#4|) (-618 |#4|) (-1124)) 125) (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-890)) 124) (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 (-1142)) (-890)) 123) (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 |#4|) (-890)) 122) (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|)) 120) (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 (-1142))) 119) (((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 |#4|)) 115)) (-3070 ((|#4| (-917 |#1|)) 68)) (-3080 (((-112) (-618 |#4|) (-618 (-618 |#4|))) 152)) (-3079 (((-618 (-618 (-535))) (-535) (-535)) 129)) (-3078 (((-618 (-618 |#4|)) (-618 (-618 |#4|))) 88)) (-3077 (((-747) (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|))))) 86)) (-3076 (((-747) (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|))))) 85)) (-3085 (((-112) (-618 (-917 |#1|))) 17) (((-112) (-618 |#4|)) 13)) (-3071 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-618 |#4|)) (|:| |n0| (-618 |#4|))) (-618 |#4|) (-618 |#4|)) 71)) (-3075 (((-618 |#4|) |#4|) 49)) (-3068 (((-618 (-400 (-917 |#1|))) (-618 |#4|)) 114) (((-665 (-400 (-917 |#1|))) (-665 |#4|)) 56) (((-400 (-917 |#1|)) |#4|) 111)) (-3067 (((-2 (|:| |rgl| (-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))))))) (|:| |rgsz| (-535))) (-665 |#4|) (-618 (-400 (-917 |#1|))) (-747) (-1124) (-535)) 93)) (-3072 (((-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))) (-665 |#4|) (-747)) 84)) (-3081 (((-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) (-665 |#4|) (-747)) 101)) (-3074 (((-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-2 (|:| -1695 (-665 (-400 (-917 |#1|)))) (|:| |vec| (-618 (-400 (-917 |#1|)))) (|:| -3427 (-747)) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) 48)))
+(((-895 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 |#4|))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 (-1142)))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 |#4|) (-890))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 (-1142)) (-890))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-890))) (-15 -3064 ((-535) (-665 |#4|) (-618 |#4|) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-618 (-1142)) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-618 |#4|) (-890) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-618 (-1142)) (-890) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-890) (-1124))) (-15 -3065 ((-535) (-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-1124))) (-15 -3066 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-1124))) (-15 -3067 ((-2 (|:| |rgl| (-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))))))) (|:| |rgsz| (-535))) (-665 |#4|) (-618 (-400 (-917 |#1|))) (-747) (-1124) (-535))) (-15 -3068 ((-400 (-917 |#1|)) |#4|)) (-15 -3068 ((-665 (-400 (-917 |#1|))) (-665 |#4|))) (-15 -3068 ((-618 (-400 (-917 |#1|))) (-618 |#4|))) (-15 -3069 ((-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3070 (|#4| (-917 |#1|))) (-15 -3071 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-618 |#4|)) (|:| |n0| (-618 |#4|))) (-618 |#4|) (-618 |#4|))) (-15 -3072 ((-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))) (-665 |#4|) (-747))) (-15 -3073 ((-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-618 |#4|))) (-15 -3074 ((-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-2 (|:| -1695 (-665 (-400 (-917 |#1|)))) (|:| |vec| (-618 (-400 (-917 |#1|)))) (|:| -3427 (-747)) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (-15 -3075 ((-618 |#4|) |#4|)) (-15 -3076 ((-747) (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))))) (-15 -3077 ((-747) (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))))) (-15 -3078 ((-618 (-618 |#4|)) (-618 (-618 |#4|)))) (-15 -3079 ((-618 (-618 (-535))) (-535) (-535))) (-15 -3080 ((-112) (-618 |#4|) (-618 (-618 |#4|)))) (-15 -3081 ((-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) (-665 |#4|) (-747))) (-15 -3082 ((-665 |#4|) (-665 |#4|) (-618 |#4|))) (-15 -3083 ((-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))) (-665 |#4|) (-618 (-400 (-917 |#1|))) (-618 (-618 |#4|)) (-747) (-747) (-535))) (-15 -3084 (|#4| |#4|)) (-15 -3085 ((-112) (-618 |#4|))) (-15 -3085 ((-112) (-618 (-917 |#1|))))) (-13 (-300) (-145)) (-13 (-823) (-594 (-1142))) (-769) (-921 |#1| |#3| |#2|)) (T -895))
+((-3085 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3084 (*1 *2 *2) (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1142)))) (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-921 *3 *5 *4)))) (-3083 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) (-5 *4 (-665 *12)) (-5 *5 (-618 (-400 (-917 *9)))) (-5 *6 (-618 (-618 *12))) (-5 *7 (-747)) (-5 *8 (-535)) (-4 *9 (-13 (-300) (-145))) (-4 *12 (-921 *9 *11 *10)) (-4 *10 (-13 (-823) (-594 (-1142)))) (-4 *11 (-769)) (-5 *2 (-2 (|:| |eqzro| (-618 *12)) (|:| |neqzro| (-618 *12)) (|:| |wcond| (-618 (-917 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *9)))) (|:| -2123 (-618 (-1224 (-400 (-917 *9))))))))) (-5 *1 (-895 *9 *10 *11 *12)))) (-3082 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-747)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-618 (-2 (|:| |det| *8) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (-5 *1 (-895 *5 *6 *7 *8)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-618 *8))) (-5 *3 (-618 *8)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *5 *6 *7 *8)))) (-3079 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-618 (-618 (-535)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-535)) (-4 *7 (-921 *4 *6 *5)))) (-3078 (*1 *2 *2) (-12 (-5 *2 (-618 (-618 *6))) (-4 *6 (-921 *3 *5 *4)) (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1142)))) (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *6)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| *7) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 *7))))) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-747)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| *7) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 *7))))) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-747)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-618 *3)) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-921 *4 *6 *5)))) (-3074 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1695 (-665 (-400 (-917 *4)))) (|:| |vec| (-618 (-400 (-917 *4)))) (|:| -3427 (-747)) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-2 (|:| |partsol| (-1224 (-400 (-917 *4)))) (|:| -2123 (-618 (-1224 (-400 (-917 *4))))))) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5)))) (-3073 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1224 (-400 (-917 *4)))) (|:| -2123 (-618 (-1224 (-400 (-917 *4))))))) (-5 *3 (-618 *7)) (-4 *4 (-13 (-300) (-145))) (-4 *7 (-921 *4 *6 *5)) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| *8) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 *8))))) (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-747)))) (-3071 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-4 *7 (-921 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-618 *7)) (|:| |n0| (-618 *7)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-917 *4)) (-4 *4 (-13 (-300) (-145))) (-4 *2 (-921 *4 *6 *5)) (-5 *1 (-895 *4 *5 *6 *2)) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-618 (-400 (-917 *4)))) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-618 (-400 (-917 *4)))) (-5 *1 (-895 *4 *5 *6 *7)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-665 (-400 (-917 *4)))) (-5 *1 (-895 *4 *5 *6 *7)))) (-3068 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-400 (-917 *4))) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-921 *4 *6 *5)))) (-3067 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-665 *11)) (-5 *4 (-618 (-400 (-917 *8)))) (-5 *5 (-747)) (-5 *6 (-1124)) (-4 *8 (-13 (-300) (-145))) (-4 *11 (-921 *8 *10 *9)) (-4 *9 (-13 (-823) (-594 (-1142)))) (-4 *10 (-769)) (-5 *2 (-2 (|:| |rgl| (-618 (-2 (|:| |eqzro| (-618 *11)) (|:| |neqzro| (-618 *11)) (|:| |wcond| (-618 (-917 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *8)))) (|:| -2123 (-618 (-1224 (-400 (-917 *8)))))))))) (|:| |rgsz| (-535)))) (-5 *1 (-895 *8 *9 *10 *11)) (-5 *7 (-535)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *7)) (|:| |neqzro| (-618 *7)) (|:| |wcond| (-618 (-917 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *4)))) (|:| -2123 (-618 (-1224 (-400 (-917 *4)))))))))) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8)) (|:| |wcond| (-618 (-917 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *5)))) (|:| -2123 (-618 (-1224 (-400 (-917 *5)))))))))) (-5 *4 (-1124)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-921 *5 *7 *6)) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *5 *6 *7 *8)))) (-3064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-890)) (-5 *5 (-1124)) (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *6 *7 *8 *9)))) (-3064 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 *10)) (-5 *4 (-618 (-1142))) (-5 *5 (-890)) (-5 *6 (-1124)) (-4 *10 (-921 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-823) (-594 (-1142)))) (-4 *9 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *7 *8 *9 *10)))) (-3064 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 *10)) (-5 *4 (-618 *10)) (-5 *5 (-890)) (-5 *6 (-1124)) (-4 *10 (-921 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-823) (-594 (-1142)))) (-4 *9 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *7 *8 *9 *10)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-1124)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *5 *6 *7 *8)))) (-3064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-618 (-1142))) (-5 *5 (-1124)) (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *6 *7 *8 *9)))) (-3064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-618 *9)) (-5 *5 (-1124)) (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *6 *7 *8 *9)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-890)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8)) (|:| |wcond| (-618 (-917 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *5)))) (|:| -2123 (-618 (-1224 (-400 (-917 *5)))))))))) (-5 *1 (-895 *5 *6 *7 *8)))) (-3064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-618 (-1142))) (-5 *5 (-890)) (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *9)) (|:| |neqzro| (-618 *9)) (|:| |wcond| (-618 (-917 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *6)))) (|:| -2123 (-618 (-1224 (-400 (-917 *6)))))))))) (-5 *1 (-895 *6 *7 *8 *9)))) (-3064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *5 (-890)) (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *9)) (|:| |neqzro| (-618 *9)) (|:| |wcond| (-618 (-917 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *6)))) (|:| -2123 (-618 (-1224 (-400 (-917 *6)))))))))) (-5 *1 (-895 *6 *7 *8 *9)) (-5 *4 (-618 *9)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *7)) (|:| |neqzro| (-618 *7)) (|:| |wcond| (-618 (-917 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *4)))) (|:| -2123 (-618 (-1224 (-400 (-917 *4)))))))))) (-5 *1 (-895 *4 *5 *6 *7)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-618 (-1142))) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8)) (|:| |wcond| (-618 (-917 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *5)))) (|:| -2123 (-618 (-1224 (-400 (-917 *5)))))))))) (-5 *1 (-895 *5 *6 *7 *8)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-618 (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8)) (|:| |wcond| (-618 (-917 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 *5)))) (|:| -2123 (-618 (-1224 (-400 (-917 *5)))))))))) (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-618 *8)))))
+(-10 -7 (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 |#4|))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 (-1142)))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 |#4|) (-890))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-618 (-1142)) (-890))) (-15 -3064 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-665 |#4|) (-890))) (-15 -3064 ((-535) (-665 |#4|) (-618 |#4|) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-618 (-1142)) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-618 |#4|) (-890) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-618 (-1142)) (-890) (-1124))) (-15 -3064 ((-535) (-665 |#4|) (-890) (-1124))) (-15 -3065 ((-535) (-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-1124))) (-15 -3066 ((-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|))))))))) (-1124))) (-15 -3067 ((-2 (|:| |rgl| (-618 (-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))))))) (|:| |rgsz| (-535))) (-665 |#4|) (-618 (-400 (-917 |#1|))) (-747) (-1124) (-535))) (-15 -3068 ((-400 (-917 |#1|)) |#4|)) (-15 -3068 ((-665 (-400 (-917 |#1|))) (-665 |#4|))) (-15 -3068 ((-618 (-400 (-917 |#1|))) (-618 |#4|))) (-15 -3069 ((-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3070 (|#4| (-917 |#1|))) (-15 -3071 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-618 |#4|)) (|:| |n0| (-618 |#4|))) (-618 |#4|) (-618 |#4|))) (-15 -3072 ((-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))) (-665 |#4|) (-747))) (-15 -3073 ((-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-618 |#4|))) (-15 -3074 ((-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))) (-2 (|:| -1695 (-665 (-400 (-917 |#1|)))) (|:| |vec| (-618 (-400 (-917 |#1|)))) (|:| -3427 (-747)) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (-15 -3075 ((-618 |#4|) |#4|)) (-15 -3076 ((-747) (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))))) (-15 -3077 ((-747) (-618 (-2 (|:| -3427 (-747)) (|:| |eqns| (-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))) (|:| |fgb| (-618 |#4|)))))) (-15 -3078 ((-618 (-618 |#4|)) (-618 (-618 |#4|)))) (-15 -3079 ((-618 (-618 (-535))) (-535) (-535))) (-15 -3080 ((-112) (-618 |#4|) (-618 (-618 |#4|)))) (-15 -3081 ((-618 (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535))))) (-665 |#4|) (-747))) (-15 -3082 ((-665 |#4|) (-665 |#4|) (-618 |#4|))) (-15 -3083 ((-2 (|:| |eqzro| (-618 |#4|)) (|:| |neqzro| (-618 |#4|)) (|:| |wcond| (-618 (-917 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1224 (-400 (-917 |#1|)))) (|:| -2123 (-618 (-1224 (-400 (-917 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))) (-665 |#4|) (-618 (-400 (-917 |#1|))) (-618 (-618 |#4|)) (-747) (-747) (-535))) (-15 -3084 (|#4| |#4|)) (-15 -3085 ((-112) (-618 |#4|))) (-15 -3085 ((-112) (-618 (-917 |#1|)))))
+((-4217 (($ $ (-1055 (-219))) 70) (($ $ (-1055 (-219)) (-1055 (-219))) 71)) (-3217 (((-1055 (-219)) $) 44)) (-3218 (((-1055 (-219)) $) 43)) (-3109 (((-1055 (-219)) $) 45)) (-3090 (((-535) (-535)) 37)) (-3094 (((-535) (-535)) 33)) (-3092 (((-535) (-535)) 35)) (-3088 (((-112) (-112)) 39)) (-3091 (((-535)) 36)) (-3452 (($ $ (-1055 (-219))) 74) (($ $) 75)) (-3111 (($ (-1 (-914 (-219)) (-219)) (-1055 (-219))) 84) (($ (-1 (-914 (-219)) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219))) 85)) (-3097 (($ (-1 (-219) (-219)) (-1055 (-219))) 92) (($ (-1 (-219) (-219))) 95)) (-3110 (($ (-1 (-219) (-219)) (-1055 (-219))) 79) (($ (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219))) 80) (($ (-618 (-1 (-219) (-219))) (-1055 (-219))) 87) (($ (-618 (-1 (-219) (-219))) (-1055 (-219)) (-1055 (-219))) 88) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219))) 82) (($ $ (-1055 (-219))) 76)) (-3096 (((-112) $) 40)) (-3087 (((-535)) 41)) (-3095 (((-535)) 32)) (-3093 (((-535)) 34)) (-3219 (((-618 (-618 (-914 (-219)))) $) 23)) (-3086 (((-112) (-112)) 42)) (-4300 (((-835) $) 106)) (-3089 (((-112)) 38)))
+(((-896) (-13 (-926) (-10 -8 (-15 -3110 ($ (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ (-618 (-1 (-219) (-219))) (-1055 (-219)))) (-15 -3110 ($ (-618 (-1 (-219) (-219))) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)))) (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3097 ($ (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3097 ($ (-1 (-219) (-219)))) (-15 -3110 ($ $ (-1055 (-219)))) (-15 -3096 ((-112) $)) (-15 -4217 ($ $ (-1055 (-219)))) (-15 -4217 ($ $ (-1055 (-219)) (-1055 (-219)))) (-15 -3452 ($ $ (-1055 (-219)))) (-15 -3452 ($ $)) (-15 -3109 ((-1055 (-219)) $)) (-15 -3095 ((-535))) (-15 -3094 ((-535) (-535))) (-15 -3093 ((-535))) (-15 -3092 ((-535) (-535))) (-15 -3091 ((-535))) (-15 -3090 ((-535) (-535))) (-15 -3089 ((-112))) (-15 -3088 ((-112) (-112))) (-15 -3087 ((-535))) (-15 -3086 ((-112) (-112)))))) (T -896))
+((-3110 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3110 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3110 (*1 *1 *2 *3) (-12 (-5 *2 (-618 (-1 (-219) (-219)))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3110 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-618 (-1 (-219) (-219)))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3110 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3110 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3111 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3097 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896)))) (-3097 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-896)))) (-3110 (*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) (-4217 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) (-3452 (*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) (-3452 (*1 *1 *1) (-5 *1 (-896))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896)))) (-3095 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3093 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3092 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3091 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3090 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3089 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-3088 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-3087 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))))
+(-13 (-926) (-10 -8 (-15 -3110 ($ (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ (-618 (-1 (-219) (-219))) (-1055 (-219)))) (-15 -3110 ($ (-618 (-1 (-219) (-219))) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)))) (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3097 ($ (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3097 ($ (-1 (-219) (-219)))) (-15 -3110 ($ $ (-1055 (-219)))) (-15 -3096 ((-112) $)) (-15 -4217 ($ $ (-1055 (-219)))) (-15 -4217 ($ $ (-1055 (-219)) (-1055 (-219)))) (-15 -3452 ($ $ (-1055 (-219)))) (-15 -3452 ($ $)) (-15 -3109 ((-1055 (-219)) $)) (-15 -3095 ((-535))) (-15 -3094 ((-535) (-535))) (-15 -3093 ((-535))) (-15 -3092 ((-535) (-535))) (-15 -3091 ((-535))) (-15 -3090 ((-535) (-535))) (-15 -3089 ((-112))) (-15 -3088 ((-112) (-112))) (-15 -3087 ((-535))) (-15 -3086 ((-112) (-112)))))
+((-3097 (((-896) |#1| (-1142)) 17) (((-896) |#1| (-1142) (-1055 (-219))) 21)) (-3110 (((-896) |#1| |#1| (-1142) (-1055 (-219))) 19) (((-896) |#1| (-1142) (-1055 (-219))) 15)))
+(((-897 |#1|) (-10 -7 (-15 -3110 ((-896) |#1| (-1142) (-1055 (-219)))) (-15 -3110 ((-896) |#1| |#1| (-1142) (-1055 (-219)))) (-15 -3097 ((-896) |#1| (-1142) (-1055 (-219)))) (-15 -3097 ((-896) |#1| (-1142)))) (-594 (-524))) (T -897))
+((-3097 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-5 *2 (-896)) (-5 *1 (-897 *3)) (-4 *3 (-594 (-524))))) (-3097 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-1055 (-219))) (-5 *2 (-896)) (-5 *1 (-897 *3)) (-4 *3 (-594 (-524))))) (-3110 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-1055 (-219))) (-5 *2 (-896)) (-5 *1 (-897 *3)) (-4 *3 (-594 (-524))))) (-3110 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1142)) (-5 *5 (-1055 (-219))) (-5 *2 (-896)) (-5 *1 (-897 *3)) (-4 *3 (-594 (-524))))))
+(-10 -7 (-15 -3110 ((-896) |#1| (-1142) (-1055 (-219)))) (-15 -3110 ((-896) |#1| |#1| (-1142) (-1055 (-219)))) (-15 -3097 ((-896) |#1| (-1142) (-1055 (-219)))) (-15 -3097 ((-896) |#1| (-1142))))
+((-4217 (($ $ (-1055 (-219)) (-1055 (-219)) (-1055 (-219))) 70)) (-3216 (((-1055 (-219)) $) 40)) (-3217 (((-1055 (-219)) $) 39)) (-3218 (((-1055 (-219)) $) 38)) (-3108 (((-618 (-618 (-219))) $) 43)) (-3109 (((-1055 (-219)) $) 41)) (-3102 (((-535) (-535)) 32)) (-3106 (((-535) (-535)) 28)) (-3104 (((-535) (-535)) 30)) (-3100 (((-112) (-112)) 35)) (-3103 (((-535)) 31)) (-3452 (($ $ (-1055 (-219))) 73) (($ $) 74)) (-3111 (($ (-1 (-914 (-219)) (-219)) (-1055 (-219))) 78) (($ (-1 (-914 (-219)) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219))) 79)) (-3110 (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219))) 82) (($ $ (-1055 (-219))) 76)) (-3099 (((-535)) 36)) (-3107 (((-535)) 27)) (-3105 (((-535)) 29)) (-3219 (((-618 (-618 (-914 (-219)))) $) 95)) (-3098 (((-112) (-112)) 37)) (-4300 (((-835) $) 94)) (-3101 (((-112)) 34)))
+(((-898) (-13 (-945) (-10 -8 (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)))) (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ $ (-1055 (-219)))) (-15 -4217 ($ $ (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3452 ($ $ (-1055 (-219)))) (-15 -3452 ($ $)) (-15 -3109 ((-1055 (-219)) $)) (-15 -3108 ((-618 (-618 (-219))) $)) (-15 -3107 ((-535))) (-15 -3106 ((-535) (-535))) (-15 -3105 ((-535))) (-15 -3104 ((-535) (-535))) (-15 -3103 ((-535))) (-15 -3102 ((-535) (-535))) (-15 -3101 ((-112))) (-15 -3100 ((-112) (-112))) (-15 -3099 ((-535))) (-15 -3098 ((-112) (-112)))))) (T -898))
+((-3111 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-898)))) (-3111 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-898)))) (-3110 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-898)))) (-3110 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-898)))) (-3110 (*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898)))) (-4217 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898)))) (-3452 (*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898)))) (-3452 (*1 *1 *1) (-5 *1 (-898))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-219)))) (-5 *1 (-898)))) (-3107 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3106 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3105 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3104 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3103 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3101 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))) (-3100 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))) (-3099 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
+(-13 (-945) (-10 -8 (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)))) (-15 -3111 ($ (-1 (-914 (-219)) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)))) (-15 -3110 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3110 ($ $ (-1055 (-219)))) (-15 -4217 ($ $ (-1055 (-219)) (-1055 (-219)) (-1055 (-219)))) (-15 -3452 ($ $ (-1055 (-219)))) (-15 -3452 ($ $)) (-15 -3109 ((-1055 (-219)) $)) (-15 -3108 ((-618 (-618 (-219))) $)) (-15 -3107 ((-535))) (-15 -3106 ((-535) (-535))) (-15 -3105 ((-535))) (-15 -3104 ((-535) (-535))) (-15 -3103 ((-535))) (-15 -3102 ((-535) (-535))) (-15 -3101 ((-112))) (-15 -3100 ((-112) (-112))) (-15 -3099 ((-535))) (-15 -3098 ((-112) (-112)))))
+((-3112 (((-618 (-1055 (-219))) (-618 (-618 (-914 (-219))))) 24)))
+(((-899) (-10 -7 (-15 -3112 ((-618 (-1055 (-219))) (-618 (-618 (-914 (-219)))))))) (T -899))
+((-3112 (*1 *2 *3) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *2 (-618 (-1055 (-219)))) (-5 *1 (-899)))))
+(-10 -7 (-15 -3112 ((-618 (-1055 (-219))) (-618 (-618 (-914 (-219)))))))
+((-3114 (((-307 (-535)) (-1142)) 16)) (-3115 (((-307 (-535)) (-1142)) 14)) (-4294 (((-307 (-535)) (-1142)) 12)) (-3113 (((-307 (-535)) (-1142) (-1124)) 19)))
+(((-900) (-10 -7 (-15 -3113 ((-307 (-535)) (-1142) (-1124))) (-15 -4294 ((-307 (-535)) (-1142))) (-15 -3114 ((-307 (-535)) (-1142))) (-15 -3115 ((-307 (-535)) (-1142))))) (T -900))
+((-3115 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-307 (-535))) (-5 *1 (-900)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-307 (-535))) (-5 *1 (-900)))) (-4294 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-307 (-535))) (-5 *1 (-900)))) (-3113 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-1124)) (-5 *2 (-307 (-535))) (-5 *1 (-900)))))
+(-10 -7 (-15 -3113 ((-307 (-535)) (-1142) (-1124))) (-15 -4294 ((-307 (-535)) (-1142))) (-15 -3114 ((-307 (-535)) (-1142))) (-15 -3115 ((-307 (-535)) (-1142))))
+((-3114 ((|#2| |#2|) 26)) (-3115 ((|#2| |#2|) 27)) (-4294 ((|#2| |#2|) 25)) (-3113 ((|#2| |#2| (-1124)) 24)))
+(((-901 |#1| |#2|) (-10 -7 (-15 -3113 (|#2| |#2| (-1124))) (-15 -4294 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -3115 (|#2| |#2|))) (-823) (-414 |#1|)) (T -901))
+((-3115 (*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-901 *3 *2)) (-4 *2 (-414 *3)))) (-3114 (*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-901 *3 *2)) (-4 *2 (-414 *3)))) (-4294 (*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-901 *3 *2)) (-4 *2 (-414 *3)))) (-3113 (*1 *2 *2 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-823)) (-5 *1 (-901 *4 *2)) (-4 *2 (-414 *4)))))
+(-10 -7 (-15 -3113 (|#2| |#2| (-1124))) (-15 -4294 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -3115 (|#2| |#2|)))
+((-3117 (((-859 |#1| |#3|) |#2| (-861 |#1|) (-859 |#1| |#3|)) 25)) (-3116 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -3116 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3117 ((-859 |#1| |#3|) |#2| (-861 |#1|) (-859 |#1| |#3|)))) (-1067) (-857 |#1|) (-13 (-1067) (-1009 |#2|))) (T -902))
+((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *6 (-13 (-1067) (-1009 *3))) (-4 *3 (-857 *5)) (-5 *1 (-902 *5 *3 *6)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1067) (-1009 *5))) (-4 *5 (-857 *4)) (-4 *4 (-1067)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-902 *4 *5 *6)))))
+(-10 -7 (-15 -3116 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3117 ((-859 |#1| |#3|) |#2| (-861 |#1|) (-859 |#1| |#3|))))
+((-3117 (((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)) 30)))
+(((-903 |#1| |#2| |#3|) (-10 -7 (-15 -3117 ((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)))) (-1067) (-13 (-542) (-823) (-857 |#1|)) (-13 (-414 |#2|) (-594 (-861 |#1|)) (-857 |#1|) (-1009 (-591 $)))) (T -903))
+((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *3)) (-4 *5 (-1067)) (-4 *3 (-13 (-414 *6) (-594 *4) (-857 *5) (-1009 (-591 $)))) (-5 *4 (-861 *5)) (-4 *6 (-13 (-542) (-823) (-857 *5))) (-5 *1 (-903 *5 *6 *3)))))
+(-10 -7 (-15 -3117 ((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))))
+((-3117 (((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|)) 13)))
+(((-904 |#1|) (-10 -7 (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|)))) (-534)) (T -904))
+((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 (-535) *3)) (-5 *4 (-861 (-535))) (-4 *3 (-534)) (-5 *1 (-904 *3)))))
+(-10 -7 (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))))
+((-3117 (((-859 |#1| |#2|) (-591 |#2|) (-861 |#1|) (-859 |#1| |#2|)) 54)))
+(((-905 |#1| |#2|) (-10 -7 (-15 -3117 ((-859 |#1| |#2|) (-591 |#2|) (-861 |#1|) (-859 |#1| |#2|)))) (-1067) (-13 (-823) (-1009 (-591 $)) (-594 (-861 |#1|)) (-857 |#1|))) (T -905))
+((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *6)) (-5 *3 (-591 *6)) (-4 *5 (-1067)) (-4 *6 (-13 (-823) (-1009 (-591 $)) (-594 *4) (-857 *5))) (-5 *4 (-861 *5)) (-5 *1 (-905 *5 *6)))))
+(-10 -7 (-15 -3117 ((-859 |#1| |#2|) (-591 |#2|) (-861 |#1|) (-859 |#1| |#2|))))
+((-3117 (((-856 |#1| |#2| |#3|) |#3| (-861 |#1|) (-856 |#1| |#2| |#3|)) 15)))
+(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -3117 ((-856 |#1| |#2| |#3|) |#3| (-861 |#1|) (-856 |#1| |#2| |#3|)))) (-1067) (-857 |#1|) (-642 |#2|)) (T -906))
+((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-856 *5 *6 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *6 (-857 *5)) (-4 *3 (-642 *6)) (-5 *1 (-906 *5 *6 *3)))))
+(-10 -7 (-15 -3117 ((-856 |#1| |#2| |#3|) |#3| (-861 |#1|) (-856 |#1| |#2| |#3|))))
+((-3117 (((-859 |#1| |#5|) |#5| (-861 |#1|) (-859 |#1| |#5|)) 17 (|has| |#3| (-857 |#1|))) (((-859 |#1| |#5|) |#5| (-861 |#1|) (-859 |#1| |#5|) (-1 (-859 |#1| |#5|) |#3| (-861 |#1|) (-859 |#1| |#5|))) 16)))
+(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3117 ((-859 |#1| |#5|) |#5| (-861 |#1|) (-859 |#1| |#5|) (-1 (-859 |#1| |#5|) |#3| (-861 |#1|) (-859 |#1| |#5|)))) (IF (|has| |#3| (-857 |#1|)) (-15 -3117 ((-859 |#1| |#5|) |#5| (-861 |#1|) (-859 |#1| |#5|))) |%noBranch|)) (-1067) (-769) (-823) (-13 (-1018) (-823) (-857 |#1|)) (-13 (-921 |#4| |#2| |#3|) (-594 (-861 |#1|)))) (T -907))
+((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *3)) (-4 *5 (-1067)) (-4 *3 (-13 (-921 *8 *6 *7) (-594 *4))) (-5 *4 (-861 *5)) (-4 *7 (-857 *5)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-13 (-1018) (-823) (-857 *5))) (-5 *1 (-907 *5 *6 *7 *8 *3)))) (-3117 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-859 *6 *3) *8 (-861 *6) (-859 *6 *3))) (-4 *8 (-823)) (-5 *2 (-859 *6 *3)) (-5 *4 (-861 *6)) (-4 *6 (-1067)) (-4 *3 (-13 (-921 *9 *7 *8) (-594 *4))) (-4 *7 (-769)) (-4 *9 (-13 (-1018) (-823) (-857 *6))) (-5 *1 (-907 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3117 ((-859 |#1| |#5|) |#5| (-861 |#1|) (-859 |#1| |#5|) (-1 (-859 |#1| |#5|) |#3| (-861 |#1|) (-859 |#1| |#5|)))) (IF (|has| |#3| (-857 |#1|)) (-15 -3117 ((-859 |#1| |#5|) |#5| (-861 |#1|) (-859 |#1| |#5|))) |%noBranch|))
+((-3543 (((-307 (-535)) (-1142) (-618 (-1 (-112) |#1|))) 18) (((-307 (-535)) (-1142) (-1 (-112) |#1|)) 15)))
+(((-908 |#1|) (-10 -7 (-15 -3543 ((-307 (-535)) (-1142) (-1 (-112) |#1|))) (-15 -3543 ((-307 (-535)) (-1142) (-618 (-1 (-112) |#1|))))) (-1178)) (T -908))
+((-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-618 (-1 (-112) *5))) (-4 *5 (-1178)) (-5 *2 (-307 (-535))) (-5 *1 (-908 *5)))) (-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1178)) (-5 *2 (-307 (-535))) (-5 *1 (-908 *5)))))
+(-10 -7 (-15 -3543 ((-307 (-535)) (-1142) (-1 (-112) |#1|))) (-15 -3543 ((-307 (-535)) (-1142) (-618 (-1 (-112) |#1|)))))
+((-3543 ((|#2| |#2| (-618 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-909 |#1| |#2| |#3|) (-10 -7 (-15 -3543 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3543 (|#2| |#2| (-618 (-1 (-112) |#3|))))) (-823) (-414 |#1|) (-1178)) (T -909))
+((-3543 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-1 (-112) *5))) (-4 *5 (-1178)) (-4 *4 (-823)) (-5 *1 (-909 *4 *2 *5)) (-4 *2 (-414 *4)))) (-3543 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1178)) (-4 *4 (-823)) (-5 *1 (-909 *4 *2 *5)) (-4 *2 (-414 *4)))))
+(-10 -7 (-15 -3543 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3543 (|#2| |#2| (-618 (-1 (-112) |#3|)))))
+((-3117 (((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)) 25)))
+(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -3117 ((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)))) (-1067) (-13 (-542) (-857 |#1|) (-594 (-861 |#1|))) (-962 |#2|)) (T -910))
+((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *3)) (-4 *5 (-1067)) (-4 *3 (-962 *6)) (-4 *6 (-13 (-542) (-857 *5) (-594 *4))) (-5 *4 (-861 *5)) (-5 *1 (-910 *5 *6 *3)))))
+(-10 -7 (-15 -3117 ((-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))))
+((-3117 (((-859 |#1| (-1142)) (-1142) (-861 |#1|) (-859 |#1| (-1142))) 17)))
+(((-911 |#1|) (-10 -7 (-15 -3117 ((-859 |#1| (-1142)) (-1142) (-861 |#1|) (-859 |#1| (-1142))))) (-1067)) (T -911))
+((-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 (-1142))) (-5 *3 (-1142)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-5 *1 (-911 *5)))))
+(-10 -7 (-15 -3117 ((-859 |#1| (-1142)) (-1142) (-861 |#1|) (-859 |#1| (-1142)))))
+((-3118 (((-859 |#1| |#3|) (-618 |#3|) (-618 (-861 |#1|)) (-859 |#1| |#3|) (-1 (-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))) 33)) (-3117 (((-859 |#1| |#3|) (-618 |#3|) (-618 (-861 |#1|)) (-1 |#3| (-618 |#3|)) (-859 |#1| |#3|) (-1 (-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))) 32)))
+(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -3117 ((-859 |#1| |#3|) (-618 |#3|) (-618 (-861 |#1|)) (-1 |#3| (-618 |#3|)) (-859 |#1| |#3|) (-1 (-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)))) (-15 -3118 ((-859 |#1| |#3|) (-618 |#3|) (-618 (-861 |#1|)) (-859 |#1| |#3|) (-1 (-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|))))) (-1067) (-13 (-1018) (-823)) (-13 (-1018) (-594 (-861 |#1|)) (-1009 |#2|))) (T -912))
+((-3118 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 (-861 *6))) (-5 *5 (-1 (-859 *6 *8) *8 (-861 *6) (-859 *6 *8))) (-4 *6 (-1067)) (-4 *8 (-13 (-1018) (-594 (-861 *6)) (-1009 *7))) (-5 *2 (-859 *6 *8)) (-4 *7 (-13 (-1018) (-823))) (-5 *1 (-912 *6 *7 *8)))) (-3117 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-618 (-861 *7))) (-5 *5 (-1 *9 (-618 *9))) (-5 *6 (-1 (-859 *7 *9) *9 (-861 *7) (-859 *7 *9))) (-4 *7 (-1067)) (-4 *9 (-13 (-1018) (-594 (-861 *7)) (-1009 *8))) (-5 *2 (-859 *7 *9)) (-5 *3 (-618 *9)) (-4 *8 (-13 (-1018) (-823))) (-5 *1 (-912 *7 *8 *9)))))
+(-10 -7 (-15 -3117 ((-859 |#1| |#3|) (-618 |#3|) (-618 (-861 |#1|)) (-1 |#3| (-618 |#3|)) (-859 |#1| |#3|) (-1 (-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)))) (-15 -3118 ((-859 |#1| |#3|) (-618 |#3|) (-618 (-861 |#1|)) (-859 |#1| |#3|) (-1 (-859 |#1| |#3|) |#3| (-861 |#1|) (-859 |#1| |#3|)))))
+((-3126 (((-1136 (-400 (-535))) (-535)) 63)) (-3125 (((-1136 (-535)) (-535)) 66)) (-3676 (((-1136 (-535)) (-535)) 60)) (-3124 (((-535) (-1136 (-535))) 55)) (-3123 (((-1136 (-400 (-535))) (-535)) 49)) (-3122 (((-1136 (-535)) (-535)) 38)) (-3121 (((-1136 (-535)) (-535)) 68)) (-3120 (((-1136 (-535)) (-535)) 67)) (-3119 (((-1136 (-400 (-535))) (-535)) 51)))
+(((-913) (-10 -7 (-15 -3119 ((-1136 (-400 (-535))) (-535))) (-15 -3120 ((-1136 (-535)) (-535))) (-15 -3121 ((-1136 (-535)) (-535))) (-15 -3122 ((-1136 (-535)) (-535))) (-15 -3123 ((-1136 (-400 (-535))) (-535))) (-15 -3124 ((-535) (-1136 (-535)))) (-15 -3676 ((-1136 (-535)) (-535))) (-15 -3125 ((-1136 (-535)) (-535))) (-15 -3126 ((-1136 (-400 (-535))) (-535))))) (T -913))
+((-3126 (*1 *2 *3) (-12 (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3125 (*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3676 (*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-1136 (-535))) (-5 *2 (-535)) (-5 *1 (-913)))) (-3123 (*1 *2 *3) (-12 (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3122 (*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3121 (*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3120 (*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))) (-3119 (*1 *2 *3) (-12 (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-913)) (-5 *3 (-535)))))
+(-10 -7 (-15 -3119 ((-1136 (-400 (-535))) (-535))) (-15 -3120 ((-1136 (-535)) (-535))) (-15 -3121 ((-1136 (-535)) (-535))) (-15 -3122 ((-1136 (-535)) (-535))) (-15 -3123 ((-1136 (-400 (-535))) (-535))) (-15 -3124 ((-535) (-1136 (-535)))) (-15 -3676 ((-1136 (-535)) (-535))) (-15 -3125 ((-1136 (-535)) (-535))) (-15 -3126 ((-1136 (-400 (-535))) (-535))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4181 (($ (-747)) NIL (|has| |#1| (-23)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) |#1|) 11 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-4052 (($ (-618 |#1|)) 13)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4178 (((-665 |#1|) $ $) NIL (|has| |#1| (-1018)))) (-3960 (($ (-747) |#1|) 8)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 10 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4175 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-4062 (((-112) $ (-747)) NIL)) (-4176 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-4111 (($ $ (-618 |#1|)) 26)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) 20) (($ $ (-1191 (-535))) NIL)) (-4179 ((|#1| $ $) NIL (|has| |#1| (-1018)))) (-4254 (((-890) $) 16)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-4177 (($ $ $) 24)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524)))) (($ (-618 |#1|)) 17)) (-3867 (($ (-618 |#1|)) NIL)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4180 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4182 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-535) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-703))) (($ $ |#1|) NIL (|has| |#1| (-703)))) (-4299 (((-747) $) 14 (|has| $ (-6 -4336)))))
(((-914 |#1|) (-951 |#1|) (-1018)) (T -914))
NIL
(-951 |#1|)
-((-3146 (((-473 |#1| |#2|) (-923 |#2|)) 20)) (-2223 (((-241 |#1| |#2|) (-923 |#2|)) 33)) (-2409 (((-923 |#2|) (-473 |#1| |#2|)) 25)) (-1988 (((-241 |#1| |#2|) (-473 |#1| |#2|)) 55)) (-1960 (((-923 |#2|) (-241 |#1| |#2|)) 30)) (-1847 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 46)))
-(((-915 |#1| |#2|) (-10 -7 (-15 -1847 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -1988 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -3146 ((-473 |#1| |#2|) (-923 |#2|))) (-15 -2409 ((-923 |#2|) (-473 |#1| |#2|))) (-15 -1960 ((-923 |#2|) (-241 |#1| |#2|))) (-15 -2223 ((-241 |#1| |#2|) (-923 |#2|)))) (-621 (-1142)) (-1018)) (T -915))
-((-2223 (*1 *2 *3) (-12 (-5 *3 (-923 *5)) (-4 *5 (-1018)) (-5 *2 (-241 *4 *5)) (-5 *1 (-915 *4 *5)) (-14 *4 (-621 (-1142))))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-621 (-1142))) (-4 *5 (-1018)) (-5 *2 (-923 *5)) (-5 *1 (-915 *4 *5)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-621 (-1142))) (-4 *5 (-1018)) (-5 *2 (-923 *5)) (-5 *1 (-915 *4 *5)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-923 *5)) (-4 *5 (-1018)) (-5 *2 (-473 *4 *5)) (-5 *1 (-915 *4 *5)) (-14 *4 (-621 (-1142))))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-621 (-1142))) (-4 *5 (-1018)) (-5 *2 (-241 *4 *5)) (-5 *1 (-915 *4 *5)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-621 (-1142))) (-4 *5 (-1018)) (-5 *2 (-473 *4 *5)) (-5 *1 (-915 *4 *5)))))
-(-10 -7 (-15 -1847 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -1988 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -3146 ((-473 |#1| |#2|) (-923 |#2|))) (-15 -2409 ((-923 |#2|) (-473 |#1| |#2|))) (-15 -1960 ((-923 |#2|) (-241 |#1| |#2|))) (-15 -2223 ((-241 |#1| |#2|) (-923 |#2|))))
-((-3635 (((-621 |#2|) |#2| |#2|) 10)) (-4281 (((-747) (-621 |#1|)) 37 (|has| |#1| (-821)))) (-1967 (((-621 |#2|) |#2|) 11)) (-4197 (((-747) (-621 |#1|) (-549) (-549)) 39 (|has| |#1| (-821)))) (-2792 ((|#1| |#2|) 32 (|has| |#1| (-821)))))
-(((-916 |#1| |#2|) (-10 -7 (-15 -3635 ((-621 |#2|) |#2| |#2|)) (-15 -1967 ((-621 |#2|) |#2|)) (IF (|has| |#1| (-821)) (PROGN (-15 -2792 (|#1| |#2|)) (-15 -4281 ((-747) (-621 |#1|))) (-15 -4197 ((-747) (-621 |#1|) (-549) (-549)))) |%noBranch|)) (-356) (-1201 |#1|)) (T -916))
-((-4197 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-549)) (-4 *5 (-821)) (-4 *5 (-356)) (-5 *2 (-747)) (-5 *1 (-916 *5 *6)) (-4 *6 (-1201 *5)))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-821)) (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-916 *4 *5)) (-4 *5 (-1201 *4)))) (-2792 (*1 *2 *3) (-12 (-4 *2 (-356)) (-4 *2 (-821)) (-5 *1 (-916 *2 *3)) (-4 *3 (-1201 *2)))) (-1967 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-621 *3)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1201 *4)))) (-3635 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-621 *3)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1201 *4)))))
-(-10 -7 (-15 -3635 ((-621 |#2|) |#2| |#2|)) (-15 -1967 ((-621 |#2|) |#2|)) (IF (|has| |#1| (-821)) (PROGN (-15 -2792 (|#1| |#2|)) (-15 -4281 ((-747) (-621 |#1|))) (-15 -4197 ((-747) (-621 |#1|) (-549) (-549)))) |%noBranch|))
-((-2796 (((-923 |#2|) (-1 |#2| |#1|) (-923 |#1|)) 19)))
-(((-917 |#1| |#2|) (-10 -7 (-15 -2796 ((-923 |#2|) (-1 |#2| |#1|) (-923 |#1|)))) (-1018) (-1018)) (T -917))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-923 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-923 *6)) (-5 *1 (-917 *5 *6)))))
-(-10 -7 (-15 -2796 ((-923 |#2|) (-1 |#2| |#1|) (-923 |#1|))))
-((-2082 (((-1198 |#1| (-923 |#2|)) (-923 |#2|) (-1221 |#1|)) 18)))
-(((-918 |#1| |#2|) (-10 -7 (-15 -2082 ((-1198 |#1| (-923 |#2|)) (-923 |#2|) (-1221 |#1|)))) (-1142) (-1018)) (T -918))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *4 (-1221 *5)) (-14 *5 (-1142)) (-4 *6 (-1018)) (-5 *2 (-1198 *5 (-923 *6))) (-5 *1 (-918 *5 *6)) (-5 *3 (-923 *6)))))
-(-10 -7 (-15 -2082 ((-1198 |#1| (-923 |#2|)) (-923 |#2|) (-1221 |#1|))))
-((-1689 (((-747) $) 71) (((-747) $ (-621 |#4|)) 74)) (-1912 (($ $) 173)) (-3513 (((-411 $) $) 165)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 116)) (-2713 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 (-549) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2658 ((|#2| $) NIL) (((-400 (-549)) $) NIL) (((-549) $) NIL) ((|#4| $) 59)) (-2252 (($ $ $ |#4|) 76)) (-1698 (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) 106) (((-665 |#2|) (-665 $)) 99)) (-4212 (($ $) 180) (($ $ |#4|) 183)) (-2057 (((-621 $) $) 63)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 199) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 192)) (-1298 (((-621 $) $) 28)) (-2244 (($ |#2| |#3|) NIL) (($ $ |#4| (-747)) NIL) (($ $ (-621 |#4|) (-621 (-747))) 57)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ |#4|) 162)) (-4201 (((-3 (-621 $) "failed") $) 42)) (-1462 (((-3 (-621 $) "failed") $) 31)) (-4219 (((-3 (-2 (|:| |var| |#4|) (|:| -3577 (-747))) "failed") $) 47)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 109)) (-1873 (((-411 (-1138 $)) (-1138 $)) 122)) (-4120 (((-411 (-1138 $)) (-1138 $)) 120)) (-2120 (((-411 $) $) 140)) (-2685 (($ $ (-621 (-287 $))) 21) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-621 |#4|) (-621 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-621 |#4|) (-621 $)) NIL)) (-3086 (($ $ |#4|) 78)) (-2844 (((-863 (-372)) $) 213) (((-863 (-549)) $) 206) (((-525) $) 221)) (-1931 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 154)) (-2944 ((|#2| $ |#3|) NIL) (($ $ |#4| (-747)) 52) (($ $ (-621 |#4|) (-621 (-747))) 55)) (-3407 (((-3 $ "failed") $) 156)) (-2411 (((-112) $ $) 186)))
-(((-919 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1443 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -3513 ((-411 |#1|) |#1|)) (-15 -1912 (|#1| |#1|)) (-15 -3407 ((-3 |#1| "failed") |#1|)) (-15 -2411 ((-112) |#1| |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -2844 ((-863 (-549)) |#1|)) (-15 -2844 ((-863 (-372)) |#1|)) (-15 -1289 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -1289 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -2120 ((-411 |#1|) |#1|)) (-15 -4120 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -1873 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -1512 ((-3 (-621 (-1138 |#1|)) "failed") (-621 (-1138 |#1|)) (-1138 |#1|))) (-15 -3119 ((-3 (-1225 |#1|) "failed") (-665 |#1|))) (-15 -4212 (|#1| |#1| |#4|)) (-15 -1931 (|#1| |#1| |#4|)) (-15 -3086 (|#1| |#1| |#4|)) (-15 -2252 (|#1| |#1| |#1| |#4|)) (-15 -2057 ((-621 |#1|) |#1|)) (-15 -1689 ((-747) |#1| (-621 |#4|))) (-15 -1689 ((-747) |#1|)) (-15 -4219 ((-3 (-2 (|:| |var| |#4|) (|:| -3577 (-747))) "failed") |#1|)) (-15 -4201 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -1462 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2244 (|#1| |#1| (-621 |#4|) (-621 (-747)))) (-15 -2244 (|#1| |#1| |#4| (-747))) (-15 -4188 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1| |#4|)) (-15 -1298 ((-621 |#1|) |#1|)) (-15 -2944 (|#1| |#1| (-621 |#4|) (-621 (-747)))) (-15 -2944 (|#1| |#1| |#4| (-747))) (-15 -1698 ((-665 |#2|) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-665 (-549)) (-665 |#1|))) (-15 -2658 (|#4| |#1|)) (-15 -2713 ((-3 |#4| "failed") |#1|)) (-15 -2685 (|#1| |#1| (-621 |#4|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#4| |#1|)) (-15 -2685 (|#1| |#1| (-621 |#4|) (-621 |#2|))) (-15 -2685 (|#1| |#1| |#4| |#2|)) (-15 -2685 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#1| |#1|)) (-15 -2685 (|#1| |#1| (-287 |#1|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -2244 (|#1| |#2| |#3|)) (-15 -2944 (|#2| |#1| |#3|)) (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -1931 (|#2| |#1|)) (-15 -4212 (|#1| |#1|))) (-920 |#2| |#3| |#4|) (-1018) (-769) (-823)) (T -919))
-NIL
-(-10 -8 (-15 -1443 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -3513 ((-411 |#1|) |#1|)) (-15 -1912 (|#1| |#1|)) (-15 -3407 ((-3 |#1| "failed") |#1|)) (-15 -2411 ((-112) |#1| |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -2844 ((-863 (-549)) |#1|)) (-15 -2844 ((-863 (-372)) |#1|)) (-15 -1289 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -1289 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -2120 ((-411 |#1|) |#1|)) (-15 -4120 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -1873 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -1512 ((-3 (-621 (-1138 |#1|)) "failed") (-621 (-1138 |#1|)) (-1138 |#1|))) (-15 -3119 ((-3 (-1225 |#1|) "failed") (-665 |#1|))) (-15 -4212 (|#1| |#1| |#4|)) (-15 -1931 (|#1| |#1| |#4|)) (-15 -3086 (|#1| |#1| |#4|)) (-15 -2252 (|#1| |#1| |#1| |#4|)) (-15 -2057 ((-621 |#1|) |#1|)) (-15 -1689 ((-747) |#1| (-621 |#4|))) (-15 -1689 ((-747) |#1|)) (-15 -4219 ((-3 (-2 (|:| |var| |#4|) (|:| -3577 (-747))) "failed") |#1|)) (-15 -4201 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -1462 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2244 (|#1| |#1| (-621 |#4|) (-621 (-747)))) (-15 -2244 (|#1| |#1| |#4| (-747))) (-15 -4188 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1| |#4|)) (-15 -1298 ((-621 |#1|) |#1|)) (-15 -2944 (|#1| |#1| (-621 |#4|) (-621 (-747)))) (-15 -2944 (|#1| |#1| |#4| (-747))) (-15 -1698 ((-665 |#2|) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-665 (-549)) (-665 |#1|))) (-15 -2658 (|#4| |#1|)) (-15 -2713 ((-3 |#4| "failed") |#1|)) (-15 -2685 (|#1| |#1| (-621 |#4|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#4| |#1|)) (-15 -2685 (|#1| |#1| (-621 |#4|) (-621 |#2|))) (-15 -2685 (|#1| |#1| |#4| |#2|)) (-15 -2685 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#1| |#1|)) (-15 -2685 (|#1| |#1| (-287 |#1|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -2244 (|#1| |#2| |#3|)) (-15 -2944 (|#2| |#1| |#3|)) (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -1931 (|#2| |#1|)) (-15 -4212 (|#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2271 (((-621 |#3|) $) 108)) (-2082 (((-1138 $) $ |#3|) 123) (((-1138 |#1|) $) 122)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 85 (|has| |#1| (-541)))) (-2408 (($ $) 86 (|has| |#1| (-541)))) (-2477 (((-112) $) 88 (|has| |#1| (-541)))) (-1689 (((-747) $) 110) (((-747) $ (-621 |#3|)) 109)) (-2384 (((-3 $ "failed") $ $) 19)) (-2461 (((-411 (-1138 $)) (-1138 $)) 98 (|has| |#1| (-880)))) (-1912 (($ $) 96 (|has| |#1| (-444)))) (-3513 (((-411 $) $) 95 (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 101 (|has| |#1| (-880)))) (-1705 (($) 17 T CONST)) (-2713 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-549)) "failed") $) 160 (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) 158 (|has| |#1| (-1009 (-549)))) (((-3 |#3| "failed") $) 134)) (-2658 ((|#1| $) 163) (((-400 (-549)) $) 159 (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) 157 (|has| |#1| (-1009 (-549)))) ((|#3| $) 133)) (-2252 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-2069 (($ $) 152)) (-1698 (((-665 (-549)) (-665 $)) 132 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 131 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-3976 (((-3 $ "failed") $) 32)) (-4212 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-2057 (((-621 $) $) 107)) (-2471 (((-112) $) 94 (|has| |#1| (-880)))) (-3744 (($ $ |#1| |#2| $) 170)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 82 (-12 (|has| |#3| (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 81 (-12 (|has| |#3| (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-3987 (((-112) $) 30)) (-3454 (((-747) $) 167)) (-2258 (($ (-1138 |#1|) |#3|) 115) (($ (-1138 $) |#3|) 114)) (-1298 (((-621 $) $) 124)) (-2427 (((-112) $) 150)) (-2244 (($ |#1| |#2|) 151) (($ $ |#3| (-747)) 117) (($ $ (-621 |#3|) (-621 (-747))) 116)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ |#3|) 118)) (-2856 ((|#2| $) 168) (((-747) $ |#3|) 120) (((-621 (-747)) $ (-621 |#3|)) 119)) (-2862 (($ $ $) 77 (|has| |#1| (-823)))) (-3574 (($ $ $) 76 (|has| |#1| (-823)))) (-4058 (($ (-1 |#2| |#2|) $) 169)) (-2796 (($ (-1 |#1| |#1|) $) 149)) (-1790 (((-3 |#3| "failed") $) 121)) (-2027 (($ $) 147)) (-2042 ((|#1| $) 146)) (-3696 (($ (-621 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-2677 (((-1124) $) 9)) (-4201 (((-3 (-621 $) "failed") $) 112)) (-1462 (((-3 (-621 $) "failed") $) 113)) (-4219 (((-3 (-2 (|:| |var| |#3|) (|:| -3577 (-747))) "failed") $) 111)) (-3988 (((-1086) $) 10)) (-2002 (((-112) $) 164)) (-2012 ((|#1| $) 165)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 93 (|has| |#1| (-444)))) (-3726 (($ (-621 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) 100 (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) 99 (|has| |#1| (-880)))) (-2120 (((-411 $) $) 97 (|has| |#1| (-880)))) (-2038 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-541)))) (-2685 (($ $ (-621 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-621 $) (-621 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-621 |#3|) (-621 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-621 |#3|) (-621 $)) 136)) (-3086 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-3455 (($ $ |#3|) 40) (($ $ (-621 |#3|)) 39) (($ $ |#3| (-747)) 38) (($ $ (-621 |#3|) (-621 (-747))) 37)) (-3068 ((|#2| $) 148) (((-747) $ |#3|) 128) (((-621 (-747)) $ (-621 |#3|)) 127)) (-2844 (((-863 (-372)) $) 80 (-12 (|has| |#3| (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) 79 (-12 (|has| |#3| (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) 78 (-12 (|has| |#3| (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-1931 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 102 (-1820 (|has| $ (-143)) (|has| |#1| (-880))))) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-541))) (($ (-400 (-549))) 70 (-1536 (|has| |#1| (-1009 (-400 (-549)))) (|has| |#1| (-38 (-400 (-549))))))) (-3330 (((-621 |#1|) $) 166)) (-2944 ((|#1| $ |#2|) 153) (($ $ |#3| (-747)) 126) (($ $ (-621 |#3|) (-621 (-747))) 125)) (-3407 (((-3 $ "failed") $) 71 (-1536 (-1820 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) 28)) (-1544 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-4053 (((-112) $ $) 87 (|has| |#1| (-541)))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ |#3|) 36) (($ $ (-621 |#3|)) 35) (($ $ |#3| (-747)) 34) (($ $ (-621 |#3|) (-621 (-747))) 33)) (-2448 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 73 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 75 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 72 (|has| |#1| (-823)))) (-2512 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 156 (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) 155 (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
-(((-920 |#1| |#2| |#3|) (-138) (-1018) (-769) (-823)) (T -920))
-((-4212 (*1 *1 *1) (-12 (-4 *1 (-920 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-3068 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-747)))) (-3068 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *6)) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 (-747))))) (-2944 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-920 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *2 (-823)))) (-2944 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *6)) (-5 *3 (-621 (-747))) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)))) (-1298 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-920 *3 *4 *5)))) (-2082 (*1 *2 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-1138 *1)) (-4 *1 (-920 *4 *5 *3)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-1138 *3)))) (-1790 (*1 *2 *1) (|partial| -12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-2856 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-747)))) (-2856 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *6)) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 (-747))))) (-4188 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-920 *4 *5 *3)))) (-2244 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-920 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *2 (-823)))) (-2244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *6)) (-5 *3 (-621 (-747))) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)))) (-2258 (*1 *1 *2 *3) (-12 (-5 *2 (-1138 *4)) (-4 *4 (-1018)) (-4 *1 (-920 *4 *5 *3)) (-4 *5 (-769)) (-4 *3 (-823)))) (-2258 (*1 *1 *2 *3) (-12 (-5 *2 (-1138 *1)) (-4 *1 (-920 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)))) (-1462 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-920 *3 *4 *5)))) (-4201 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-920 *3 *4 *5)))) (-4219 (*1 *2 *1) (|partial| -12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| |var| *5) (|:| -3577 (-747)))))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-747)))) (-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *6)) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *5)))) (-2057 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-920 *3 *4 *5)))) (-2252 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-170)))) (-3086 (*1 *1 *1 *2) (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-170)))) (-1931 (*1 *1 *1 *2) (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-444)))) (-4212 (*1 *1 *1 *2) (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-444)))) (-1912 (*1 *1 *1) (-12 (-4 *1 (-920 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-3513 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-411 *1)) (-4 *1 (-920 *3 *4 *5)))))
-(-13 (-871 |t#3|) (-319 |t#1| |t#2|) (-302 $) (-505 |t#3| |t#1|) (-505 |t#3| $) (-1009 |t#3|) (-370 |t#1|) (-10 -8 (-15 -3068 ((-747) $ |t#3|)) (-15 -3068 ((-621 (-747)) $ (-621 |t#3|))) (-15 -2944 ($ $ |t#3| (-747))) (-15 -2944 ($ $ (-621 |t#3|) (-621 (-747)))) (-15 -1298 ((-621 $) $)) (-15 -2082 ((-1138 $) $ |t#3|)) (-15 -2082 ((-1138 |t#1|) $)) (-15 -1790 ((-3 |t#3| "failed") $)) (-15 -2856 ((-747) $ |t#3|)) (-15 -2856 ((-621 (-747)) $ (-621 |t#3|))) (-15 -4188 ((-2 (|:| -2112 $) (|:| -3249 $)) $ $ |t#3|)) (-15 -2244 ($ $ |t#3| (-747))) (-15 -2244 ($ $ (-621 |t#3|) (-621 (-747)))) (-15 -2258 ($ (-1138 |t#1|) |t#3|)) (-15 -2258 ($ (-1138 $) |t#3|)) (-15 -1462 ((-3 (-621 $) "failed") $)) (-15 -4201 ((-3 (-621 $) "failed") $)) (-15 -4219 ((-3 (-2 (|:| |var| |t#3|) (|:| -3577 (-747))) "failed") $)) (-15 -1689 ((-747) $)) (-15 -1689 ((-747) $ (-621 |t#3|))) (-15 -2271 ((-621 |t#3|) $)) (-15 -2057 ((-621 $) $)) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-594 (-525))) (IF (|has| |t#3| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-594 (-863 (-549)))) (IF (|has| |t#3| (-594 (-863 (-549)))) (-6 (-594 (-863 (-549)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-594 (-863 (-372)))) (IF (|has| |t#3| (-594 (-863 (-372)))) (-6 (-594 (-863 (-372)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-857 (-549))) (IF (|has| |t#3| (-857 (-549))) (-6 (-857 (-549))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-857 (-372))) (IF (|has| |t#3| (-857 (-372))) (-6 (-857 (-372))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -2252 ($ $ $ |t#3|)) (-15 -3086 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-6 (-444)) (-15 -1931 ($ $ |t#3|)) (-15 -4212 ($ $)) (-15 -4212 ($ $ |t#3|)) (-15 -3513 ((-411 $) $)) (-15 -1912 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4334)) (-6 -4334) |%noBranch|) (IF (|has| |t#1| (-880)) (-6 (-880)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-594 (-525)) -12 (|has| |#1| (-594 (-525))) (|has| |#3| (-594 (-525)))) ((-594 (-863 (-372))) -12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#3| (-594 (-863 (-372))))) ((-594 (-863 (-549))) -12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#3| (-594 (-863 (-549))))) ((-283) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1536 (|has| |#1| (-880)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-541) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 |#3|) . T) ((-857 (-372)) -12 (|has| |#1| (-857 (-372))) (|has| |#3| (-857 (-372)))) ((-857 (-549)) -12 (|has| |#1| (-857 (-549))) (|has| |#3| (-857 (-549)))) ((-880) |has| |#1| (-880)) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1009 |#3|) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1183) |has| |#1| (-880)))
-((-2271 (((-621 |#2|) |#5|) 36)) (-2082 (((-1138 |#5|) |#5| |#2| (-1138 |#5|)) 23) (((-400 (-1138 |#5|)) |#5| |#2|) 16)) (-2258 ((|#5| (-400 (-1138 |#5|)) |#2|) 30)) (-1790 (((-3 |#2| "failed") |#5|) 65)) (-4201 (((-3 (-621 |#5|) "failed") |#5|) 59)) (-1572 (((-3 (-2 (|:| |val| |#5|) (|:| -3577 (-549))) "failed") |#5|) 47)) (-1462 (((-3 (-621 |#5|) "failed") |#5|) 61)) (-4219 (((-3 (-2 (|:| |var| |#2|) (|:| -3577 (-549))) "failed") |#5|) 51)))
-(((-921 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2271 ((-621 |#2|) |#5|)) (-15 -1790 ((-3 |#2| "failed") |#5|)) (-15 -2082 ((-400 (-1138 |#5|)) |#5| |#2|)) (-15 -2258 (|#5| (-400 (-1138 |#5|)) |#2|)) (-15 -2082 ((-1138 |#5|) |#5| |#2| (-1138 |#5|))) (-15 -1462 ((-3 (-621 |#5|) "failed") |#5|)) (-15 -4201 ((-3 (-621 |#5|) "failed") |#5|)) (-15 -4219 ((-3 (-2 (|:| |var| |#2|) (|:| -3577 (-549))) "failed") |#5|)) (-15 -1572 ((-3 (-2 (|:| |val| |#5|) (|:| -3577 (-549))) "failed") |#5|))) (-769) (-823) (-1018) (-920 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -3845 ($ |#4|)) (-15 -1393 (|#4| $)) (-15 -1404 (|#4| $))))) (T -921))
-((-1572 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3577 (-549)))) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $))))))) (-4219 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3577 (-549)))) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $))))))) (-4201 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-621 *3)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $))))))) (-1462 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-621 *3)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $))))))) (-2082 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $))))) (-4 *7 (-920 *6 *5 *4)) (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-5 *1 (-921 *5 *4 *6 *7 *3)))) (-2258 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1138 *2))) (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-4 *2 (-13 (-356) (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $))))) (-5 *1 (-921 *5 *4 *6 *7 *2)) (-4 *7 (-920 *6 *5 *4)))) (-2082 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-4 *7 (-920 *6 *5 *4)) (-5 *2 (-400 (-1138 *3))) (-5 *1 (-921 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $))))))) (-1790 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-1018)) (-4 *6 (-920 *5 *4 *2)) (-4 *2 (-823)) (-5 *1 (-921 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3845 ($ *6)) (-15 -1393 (*6 $)) (-15 -1404 (*6 $))))))) (-2271 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-621 *5)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $))))))))
-(-10 -7 (-15 -2271 ((-621 |#2|) |#5|)) (-15 -1790 ((-3 |#2| "failed") |#5|)) (-15 -2082 ((-400 (-1138 |#5|)) |#5| |#2|)) (-15 -2258 (|#5| (-400 (-1138 |#5|)) |#2|)) (-15 -2082 ((-1138 |#5|) |#5| |#2| (-1138 |#5|))) (-15 -1462 ((-3 (-621 |#5|) "failed") |#5|)) (-15 -4201 ((-3 (-621 |#5|) "failed") |#5|)) (-15 -4219 ((-3 (-2 (|:| |var| |#2|) (|:| -3577 (-549))) "failed") |#5|)) (-15 -1572 ((-3 (-2 (|:| |val| |#5|) (|:| -3577 (-549))) "failed") |#5|)))
-((-2796 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-922 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2796 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-769) (-823) (-1018) (-920 |#3| |#1| |#2|) (-13 (-1066) (-10 -8 (-15 -2485 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747)))))) (T -922))
-((-2796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-823)) (-4 *8 (-1018)) (-4 *6 (-769)) (-4 *2 (-13 (-1066) (-10 -8 (-15 -2485 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747)))))) (-5 *1 (-922 *6 *7 *8 *5 *2)) (-4 *5 (-920 *8 *6 *7)))))
-(-10 -7 (-15 -2796 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2271 (((-621 (-1142)) $) 16)) (-2082 (((-1138 $) $ (-1142)) 21) (((-1138 |#1|) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 (-1142))) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-1912 (($ $) NIL (|has| |#1| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) 8) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-1142) "failed") $) NIL)) (-2658 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-1142) $) NIL)) (-2252 (($ $ $ (-1142)) NIL (|has| |#1| (-170)))) (-2069 (($ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1142)) NIL (|has| |#1| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#1| (-880)))) (-3744 (($ $ |#1| (-521 (-1142)) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1142) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1142) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-2258 (($ (-1138 |#1|) (-1142)) NIL) (($ (-1138 $) (-1142)) NIL)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-521 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ (-1142)) NIL)) (-2856 (((-521 (-1142)) $) NIL) (((-747) $ (-1142)) NIL) (((-621 (-747)) $ (-621 (-1142))) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-4058 (($ (-1 (-521 (-1142)) (-521 (-1142))) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-1790 (((-3 (-1142) "failed") $) 19)) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2677 (((-1124) $) NIL)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| (-1142)) (|:| -3577 (-747))) "failed") $) NIL)) (-1531 (($ $ (-1142)) 29 (|has| |#1| (-38 (-400 (-549)))))) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) NIL)) (-2012 ((|#1| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-880)))) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1142) |#1|) NIL) (($ $ (-621 (-1142)) (-621 |#1|)) NIL) (($ $ (-1142) $) NIL) (($ $ (-621 (-1142)) (-621 $)) NIL)) (-3086 (($ $ (-1142)) NIL (|has| |#1| (-170)))) (-3455 (($ $ (-1142)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL)) (-3068 (((-521 (-1142)) $) NIL) (((-747) $ (-1142)) NIL) (((-621 (-747)) $ (-621 (-1142))) NIL)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| (-1142) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-1142) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-1142) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-1931 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1142)) NIL (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3845 (((-834) $) 25) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-1142)) 27) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-521 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-1142)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-923 |#1|) (-13 (-920 |#1| (-521 (-1142)) (-1142)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1142))) |%noBranch|))) (-1018)) (T -923))
-((-1531 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-923 *3)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)))))
-(-13 (-920 |#1| (-521 (-1142)) (-1142)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1142))) |%noBranch|)))
-((-2483 (((-2 (|:| -3577 (-747)) (|:| -1569 |#5|) (|:| |radicand| |#5|)) |#3| (-747)) 38)) (-2026 (((-2 (|:| -3577 (-747)) (|:| -1569 |#5|) (|:| |radicand| |#5|)) (-400 (-549)) (-747)) 34)) (-1336 (((-2 (|:| -3577 (-747)) (|:| -1569 |#4|) (|:| |radicand| (-621 |#4|))) |#4| (-747)) 54)) (-3248 (((-2 (|:| -3577 (-747)) (|:| -1569 |#5|) (|:| |radicand| |#5|)) |#5| (-747)) 64 (|has| |#3| (-444)))))
-(((-924 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2483 ((-2 (|:| -3577 (-747)) (|:| -1569 |#5|) (|:| |radicand| |#5|)) |#3| (-747))) (-15 -2026 ((-2 (|:| -3577 (-747)) (|:| -1569 |#5|) (|:| |radicand| |#5|)) (-400 (-549)) (-747))) (IF (|has| |#3| (-444)) (-15 -3248 ((-2 (|:| -3577 (-747)) (|:| -1569 |#5|) (|:| |radicand| |#5|)) |#5| (-747))) |%noBranch|) (-15 -1336 ((-2 (|:| -3577 (-747)) (|:| -1569 |#4|) (|:| |radicand| (-621 |#4|))) |#4| (-747)))) (-769) (-823) (-541) (-920 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -1393 (|#4| $)) (-15 -1404 (|#4| $)) (-15 -3845 ($ |#4|))))) (T -924))
-((-1336 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-541)) (-4 *3 (-920 *7 *5 *6)) (-5 *2 (-2 (|:| -3577 (-747)) (|:| -1569 *3) (|:| |radicand| (-621 *3)))) (-5 *1 (-924 *5 *6 *7 *3 *8)) (-5 *4 (-747)) (-4 *8 (-13 (-356) (-10 -8 (-15 -1393 (*3 $)) (-15 -1404 (*3 $)) (-15 -3845 ($ *3))))))) (-3248 (*1 *2 *3 *4) (-12 (-4 *7 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-541)) (-4 *8 (-920 *7 *5 *6)) (-5 *2 (-2 (|:| -3577 (-747)) (|:| -1569 *3) (|:| |radicand| *3))) (-5 *1 (-924 *5 *6 *7 *8 *3)) (-5 *4 (-747)) (-4 *3 (-13 (-356) (-10 -8 (-15 -1393 (*8 $)) (-15 -1404 (*8 $)) (-15 -3845 ($ *8))))))) (-2026 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-549))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-541)) (-4 *8 (-920 *7 *5 *6)) (-5 *2 (-2 (|:| -3577 (-747)) (|:| -1569 *9) (|:| |radicand| *9))) (-5 *1 (-924 *5 *6 *7 *8 *9)) (-5 *4 (-747)) (-4 *9 (-13 (-356) (-10 -8 (-15 -1393 (*8 $)) (-15 -1404 (*8 $)) (-15 -3845 ($ *8))))))) (-2483 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-541)) (-4 *7 (-920 *3 *5 *6)) (-5 *2 (-2 (|:| -3577 (-747)) (|:| -1569 *8) (|:| |radicand| *8))) (-5 *1 (-924 *5 *6 *3 *7 *8)) (-5 *4 (-747)) (-4 *8 (-13 (-356) (-10 -8 (-15 -1393 (*7 $)) (-15 -1404 (*7 $)) (-15 -3845 ($ *7))))))))
-(-10 -7 (-15 -2483 ((-2 (|:| -3577 (-747)) (|:| -1569 |#5|) (|:| |radicand| |#5|)) |#3| (-747))) (-15 -2026 ((-2 (|:| -3577 (-747)) (|:| -1569 |#5|) (|:| |radicand| |#5|)) (-400 (-549)) (-747))) (IF (|has| |#3| (-444)) (-15 -3248 ((-2 (|:| -3577 (-747)) (|:| -1569 |#5|) (|:| |radicand| |#5|)) |#5| (-747))) |%noBranch|) (-15 -1336 ((-2 (|:| -3577 (-747)) (|:| -1569 |#4|) (|:| |radicand| (-621 |#4|))) |#4| (-747))))
-((-3833 (((-112) $ $) NIL)) (-1734 (($ (-1086)) 8)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 14) (((-1086) $) 11)) (-2388 (((-112) $ $) 10)))
-(((-925) (-13 (-1066) (-593 (-1086)) (-10 -8 (-15 -1734 ($ (-1086)))))) (T -925))
-((-1734 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-925)))))
-(-13 (-1066) (-593 (-1086)) (-10 -8 (-15 -1734 ($ (-1086)))))
-((-1842 (((-1060 (-219)) $) 8)) (-1831 (((-1060 (-219)) $) 9)) (-3087 (((-621 (-621 (-914 (-219)))) $) 10)) (-3845 (((-834) $) 6)))
+((-3129 (((-473 |#1| |#2|) (-917 |#2|)) 20)) (-3132 (((-241 |#1| |#2|) (-917 |#2|)) 33)) (-3130 (((-917 |#2|) (-473 |#1| |#2|)) 25)) (-3128 (((-241 |#1| |#2|) (-473 |#1| |#2|)) 55)) (-3131 (((-917 |#2|) (-241 |#1| |#2|)) 30)) (-3127 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 46)))
+(((-915 |#1| |#2|) (-10 -7 (-15 -3127 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -3128 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -3129 ((-473 |#1| |#2|) (-917 |#2|))) (-15 -3130 ((-917 |#2|) (-473 |#1| |#2|))) (-15 -3131 ((-917 |#2|) (-241 |#1| |#2|))) (-15 -3132 ((-241 |#1| |#2|) (-917 |#2|)))) (-618 (-1142)) (-1018)) (T -915))
+((-3132 (*1 *2 *3) (-12 (-5 *3 (-917 *5)) (-4 *5 (-1018)) (-5 *2 (-241 *4 *5)) (-5 *1 (-915 *4 *5)) (-14 *4 (-618 (-1142))))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018)) (-5 *2 (-917 *5)) (-5 *1 (-915 *4 *5)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018)) (-5 *2 (-917 *5)) (-5 *1 (-915 *4 *5)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-917 *5)) (-4 *5 (-1018)) (-5 *2 (-473 *4 *5)) (-5 *1 (-915 *4 *5)) (-14 *4 (-618 (-1142))))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018)) (-5 *2 (-241 *4 *5)) (-5 *1 (-915 *4 *5)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018)) (-5 *2 (-473 *4 *5)) (-5 *1 (-915 *4 *5)))))
+(-10 -7 (-15 -3127 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -3128 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -3129 ((-473 |#1| |#2|) (-917 |#2|))) (-15 -3130 ((-917 |#2|) (-473 |#1| |#2|))) (-15 -3131 ((-917 |#2|) (-241 |#1| |#2|))) (-15 -3132 ((-241 |#1| |#2|) (-917 |#2|))))
+((-3133 (((-618 |#2|) |#2| |#2|) 10)) (-3136 (((-747) (-618 |#1|)) 37 (|has| |#1| (-821)))) (-3134 (((-618 |#2|) |#2|) 11)) (-3137 (((-747) (-618 |#1|) (-535) (-535)) 39 (|has| |#1| (-821)))) (-3135 ((|#1| |#2|) 32 (|has| |#1| (-821)))))
+(((-916 |#1| |#2|) (-10 -7 (-15 -3133 ((-618 |#2|) |#2| |#2|)) (-15 -3134 ((-618 |#2|) |#2|)) (IF (|has| |#1| (-821)) (PROGN (-15 -3135 (|#1| |#2|)) (-15 -3136 ((-747) (-618 |#1|))) (-15 -3137 ((-747) (-618 |#1|) (-535) (-535)))) |%noBranch|)) (-356) (-1200 |#1|)) (T -916))
+((-3137 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 *5)) (-5 *4 (-535)) (-4 *5 (-821)) (-4 *5 (-356)) (-5 *2 (-747)) (-5 *1 (-916 *5 *6)) (-4 *6 (-1200 *5)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-821)) (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-916 *4 *5)) (-4 *5 (-1200 *4)))) (-3135 (*1 *2 *3) (-12 (-4 *2 (-356)) (-4 *2 (-821)) (-5 *1 (-916 *2 *3)) (-4 *3 (-1200 *2)))) (-3134 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-618 *3)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1200 *4)))) (-3133 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-618 *3)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1200 *4)))))
+(-10 -7 (-15 -3133 ((-618 |#2|) |#2| |#2|)) (-15 -3134 ((-618 |#2|) |#2|)) (IF (|has| |#1| (-821)) (PROGN (-15 -3135 (|#1| |#2|)) (-15 -3136 ((-747) (-618 |#1|))) (-15 -3137 ((-747) (-618 |#1|) (-535) (-535)))) |%noBranch|))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1142)) $) 16)) (-3407 (((-1136 $) $ (-1142)) 21) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1142))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) 8) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-1142) #2#) $) NIL)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-1142) $) NIL)) (-4099 (($ $ $ (-1142)) NIL (|has| |#1| (-170)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1142)) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-521 (-1142)) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1142) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1142) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#1|) (-1142)) NIL) (($ (-1136 $) (-1142)) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-521 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1142)) NIL)) (-3141 (((-521 (-1142)) $) NIL) (((-747) $ (-1142)) NIL) (((-618 (-747)) $ (-618 (-1142))) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-521 (-1142)) (-521 (-1142))) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3406 (((-3 (-1142) #3="failed") $) 19)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-1142)) (|:| -2484 (-747))) #3#) $) NIL)) (-4155 (($ $ (-1142)) 29 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1142) |#1|) NIL) (($ $ (-618 (-1142)) (-618 |#1|)) NIL) (($ $ (-1142) $) NIL) (($ $ (-618 (-1142)) (-618 $)) NIL)) (-4100 (($ $ (-1142)) NIL (|has| |#1| (-170)))) (-4153 (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-4290 (((-521 (-1142)) $) NIL) (((-747) $ (-1142)) NIL) (((-618 (-747)) $ (-618 (-1142))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-1142) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-1142) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-1142) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1142)) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) 25) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-1142)) 27) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-521 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-917 |#1|) (-13 (-921 |#1| (-521 (-1142)) (-1142)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1142))) |%noBranch|))) (-1018)) (T -917))
+((-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-917 *3)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)))))
+(-13 (-921 |#1| (-521 (-1142)) (-1142)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1142))) |%noBranch|)))
+((-4301 (((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)) 19)))
+(((-918 |#1| |#2|) (-10 -7 (-15 -4301 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) (-1018) (-1018)) (T -918))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-917 *6)) (-5 *1 (-918 *5 *6)))))
+(-10 -7 (-15 -4301 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|))))
+((-3407 (((-1193 |#1| (-917 |#2|)) (-917 |#2|) (-1221 |#1|)) 18)))
+(((-919 |#1| |#2|) (-10 -7 (-15 -3407 ((-1193 |#1| (-917 |#2|)) (-917 |#2|) (-1221 |#1|)))) (-1142) (-1018)) (T -919))
+((-3407 (*1 *2 *3 *4) (-12 (-5 *4 (-1221 *5)) (-14 *5 (-1142)) (-4 *6 (-1018)) (-5 *2 (-1193 *5 (-917 *6))) (-5 *1 (-919 *5 *6)) (-5 *3 (-917 *6)))))
+(-10 -7 (-15 -3407 ((-1193 |#1| (-917 |#2|)) (-917 |#2|) (-1221 |#1|))))
+((-3140 (((-747) $) 71) (((-747) $ (-618 |#4|)) 74)) (-4117 (($ $) 173)) (-4312 (((-398 $) $) 165)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 116)) (-3491 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL) (((-3 (-535) #2#) $) NIL) (((-3 |#4| #2#) $) 60)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) NIL) (((-535) $) NIL) ((|#4| $) 59)) (-4099 (($ $ $ |#4|) 76)) (-2353 (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) 106) (((-665 |#2|) (-665 $)) 99)) (-3840 (($ $) 180) (($ $ |#4|) 183)) (-3139 (((-618 $) $) 63)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 199) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 192)) (-3142 (((-618 $) $) 28)) (-3214 (($ |#2| |#3|) NIL) (($ $ |#4| (-747)) NIL) (($ $ (-618 |#4|) (-618 (-747))) 57)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#4|) 162)) (-3144 (((-3 (-618 $) "failed") $) 42)) (-3143 (((-3 (-618 $) "failed") $) 31)) (-3145 (((-3 (-2 (|:| |var| |#4|) (|:| -2484 (-747))) "failed") $) 47)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 109)) (-3026 (((-398 (-1136 $)) (-1136 $)) 122)) (-3027 (((-398 (-1136 $)) (-1136 $)) 120)) (-4075 (((-398 $) $) 140)) (-4110 (($ $ (-618 (-286 $))) 21) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-618 |#4|) (-618 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-618 |#4|) (-618 $)) NIL)) (-4100 (($ $ |#4|) 78)) (-4313 (((-861 (-371)) $) 213) (((-861 (-535)) $) 206) (((-524) $) 221)) (-3138 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 154)) (-4023 ((|#2| $ |#3|) NIL) (($ $ |#4| (-747)) 52) (($ $ (-618 |#4|) (-618 (-747))) 55)) (-3023 (((-3 $ #1#) $) 156)) (-3006 (((-112) $ $) 186)))
+(((-920 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -3023 ((-3 |#1| #1="failed") |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3027 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3026 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3025 ((-3 (-618 (-1136 |#1|)) #1#) (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3024 ((-3 (-1224 |#1|) #1#) (-665 |#1|))) (-15 -3840 (|#1| |#1| |#4|)) (-15 -3138 (|#1| |#1| |#4|)) (-15 -4100 (|#1| |#1| |#4|)) (-15 -4099 (|#1| |#1| |#1| |#4|)) (-15 -3139 ((-618 |#1|) |#1|)) (-15 -3140 ((-747) |#1| (-618 |#4|))) (-15 -3140 ((-747) |#1|)) (-15 -3145 ((-3 (-2 (|:| |var| |#4|) (|:| -2484 (-747))) "failed") |#1|)) (-15 -3144 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3143 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3214 (|#1| |#1| (-618 |#4|) (-618 (-747)))) (-15 -3214 (|#1| |#1| |#4| (-747))) (-15 -4105 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1| |#4|)) (-15 -3142 ((-618 |#1|) |#1|)) (-15 -4023 (|#1| |#1| (-618 |#4|) (-618 (-747)))) (-15 -4023 (|#1| |#1| |#4| (-747))) (-15 -2353 ((-665 |#2|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -3490 (|#4| |#1|)) (-15 -3491 ((-3 |#4| #2="failed") |#1|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#4| |#1|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#4| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -3214 (|#1| |#2| |#3|)) (-15 -4023 (|#2| |#1| |#3|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #2#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #2#) |#1|)) (-15 -3491 ((-3 |#2| #2#) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3840 (|#1| |#1|))) (-921 |#2| |#3| |#4|) (-1018) (-769) (-823)) (T -920))
+NIL
+(-10 -8 (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -3023 ((-3 |#1| #1="failed") |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3027 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3026 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3025 ((-3 (-618 (-1136 |#1|)) #1#) (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3024 ((-3 (-1224 |#1|) #1#) (-665 |#1|))) (-15 -3840 (|#1| |#1| |#4|)) (-15 -3138 (|#1| |#1| |#4|)) (-15 -4100 (|#1| |#1| |#4|)) (-15 -4099 (|#1| |#1| |#1| |#4|)) (-15 -3139 ((-618 |#1|) |#1|)) (-15 -3140 ((-747) |#1| (-618 |#4|))) (-15 -3140 ((-747) |#1|)) (-15 -3145 ((-3 (-2 (|:| |var| |#4|) (|:| -2484 (-747))) "failed") |#1|)) (-15 -3144 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3143 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3214 (|#1| |#1| (-618 |#4|) (-618 (-747)))) (-15 -3214 (|#1| |#1| |#4| (-747))) (-15 -4105 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1| |#4|)) (-15 -3142 ((-618 |#1|) |#1|)) (-15 -4023 (|#1| |#1| (-618 |#4|) (-618 (-747)))) (-15 -4023 (|#1| |#1| |#4| (-747))) (-15 -2353 ((-665 |#2|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -3490 (|#4| |#1|)) (-15 -3491 ((-3 |#4| #2="failed") |#1|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#4| |#1|)) (-15 -4110 (|#1| |#1| (-618 |#4|) (-618 |#2|))) (-15 -4110 (|#1| |#1| |#4| |#2|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -3214 (|#1| |#2| |#3|)) (-15 -4023 (|#2| |#1| |#3|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #2#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #2#) |#1|)) (-15 -3491 ((-3 |#2| #2#) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -3840 (|#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 |#3|) $) 108)) (-3407 (((-1136 $) $ |#3|) 123) (((-1136 |#1|) $) 122)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-2171 (($ $) 86 (|has| |#1| (-542)))) (-2169 (((-112) $) 88 (|has| |#1| (-542)))) (-3140 (((-747) $) 110) (((-747) $ (-618 |#3|)) 109)) (-1363 (((-3 $ "failed") $ $) 19)) (-3028 (((-398 (-1136 $)) (-1136 $)) 98 (|has| |#1| (-881)))) (-4117 (($ $) 96 (|has| |#1| (-444)))) (-4312 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 101 (|has| |#1| (-881)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-535)) #2#) $) 160 (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) 158 (|has| |#1| (-1009 (-535)))) (((-3 |#3| #2#) $) 134)) (-3490 ((|#1| $) 163) (((-400 (-535)) $) 159 (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) 157 (|has| |#1| (-1009 (-535)))) ((|#3| $) 133)) (-4099 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4302 (($ $) 152)) (-2353 (((-665 (-535)) (-665 $)) 132 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 131 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-3804 (((-3 $ "failed") $) 32)) (-3840 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3139 (((-618 $) $) 107)) (-4069 (((-112) $) 94 (|has| |#1| (-881)))) (-1716 (($ $ |#1| |#2| $) 170)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 82 (-12 (|has| |#3| (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 81 (-12 (|has| |#3| (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-2493 (((-112) $) 30)) (-2501 (((-747) $) 167)) (-3408 (($ (-1136 |#1|) |#3|) 115) (($ (-1136 $) |#3|) 114)) (-3142 (((-618 $) $) 124)) (-4280 (((-112) $) 150)) (-3214 (($ |#1| |#2|) 151) (($ $ |#3| (-747)) 117) (($ $ (-618 |#3|) (-618 (-747))) 116)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#3|) 118)) (-3141 ((|#2| $) 168) (((-747) $ |#3|) 120) (((-618 (-747)) $ (-618 |#3|)) 119)) (-3660 (($ $ $) 77 (|has| |#1| (-823)))) (-3661 (($ $ $) 76 (|has| |#1| (-823)))) (-1717 (($ (-1 |#2| |#2|) $) 169)) (-4301 (($ (-1 |#1| |#1|) $) 149)) (-3406 (((-3 |#3| "failed") $) 121)) (-3215 (($ $) 147)) (-3508 ((|#1| $) 146)) (-2008 (($ (-618 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3576 (((-1124) $) 9)) (-3144 (((-3 (-618 $) "failed") $) 112)) (-3143 (((-3 (-618 $) "failed") $) 113)) (-3145 (((-3 (-2 (|:| |var| |#3|) (|:| -2484 (-747))) "failed") $) 111)) (-3577 (((-1086) $) 10)) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 93 (|has| |#1| (-444)))) (-3478 (($ (-618 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 100 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 99 (|has| |#1| (-881)))) (-4075 (((-398 $) $) 97 (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-618 $) (-618 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-618 |#3|) (-618 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-618 |#3|) (-618 $)) 136)) (-4100 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4153 (($ $ |#3|) 40) (($ $ (-618 |#3|)) 39) (($ $ |#3| (-747)) 38) (($ $ (-618 |#3|) (-618 (-747))) 37)) (-4290 ((|#2| $) 148) (((-747) $ |#3|) 128) (((-618 (-747)) $ (-618 |#3|)) 127)) (-4313 (((-861 (-371)) $) 80 (-12 (|has| |#3| (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) 79 (-12 (|has| |#3| (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) 78 (-12 (|has| |#3| (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 102 (-3179 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-542))) (($ (-400 (-535))) 70 (-3874 (|has| |#1| (-1009 (-400 (-535)))) (|has| |#1| (-38 (-400 (-535))))))) (-4160 (((-618 |#1|) $) 166)) (-4023 ((|#1| $ |#2|) 153) (($ $ |#3| (-747)) 126) (($ $ (-618 |#3|) (-618 (-747))) 125)) (-3023 (((-3 $ "failed") $) 71 (-3874 (-3179 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) 28)) (-1715 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-2170 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ |#3|) 36) (($ $ (-618 |#3|)) 35) (($ $ |#3| (-747)) 34) (($ $ (-618 |#3|) (-618 (-747))) 33)) (-2885 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 73 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 75 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 72 (|has| |#1| (-823)))) (-4291 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 156 (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) 155 (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(((-921 |#1| |#2| |#3|) (-138) (-1018) (-769) (-823)) (T -921))
+((-3840 (*1 *1 *1) (-12 (-4 *1 (-921 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-4290 (*1 *2 *1 *3) (-12 (-4 *1 (-921 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-747)))) (-4290 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *6)) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 (-747))))) (-4023 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-921 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *2 (-823)))) (-4023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *6)) (-5 *3 (-618 (-747))) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)))) (-3142 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-921 *3 *4 *5)))) (-3407 (*1 *2 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-1136 *1)) (-4 *1 (-921 *4 *5 *3)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-1136 *3)))) (-3406 (*1 *2 *1) (|partial| -12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3141 (*1 *2 *1 *3) (-12 (-4 *1 (-921 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-747)))) (-3141 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *6)) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 (-747))))) (-4105 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-921 *4 *5 *3)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-921 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *2 (-823)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *6)) (-5 *3 (-618 (-747))) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 *4)) (-4 *4 (-1018)) (-4 *1 (-921 *4 *5 *3)) (-4 *5 (-769)) (-4 *3 (-823)))) (-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-921 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)))) (-3143 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-921 *3 *4 *5)))) (-3144 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-921 *3 *4 *5)))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| |var| *5) (|:| -2484 (-747)))))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-747)))) (-3140 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *6)) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *5)))) (-3139 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-921 *3 *4 *5)))) (-4099 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-170)))) (-4100 (*1 *1 *1 *2) (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-170)))) (-3138 (*1 *1 *1 *2) (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-444)))) (-3840 (*1 *1 *1 *2) (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-444)))) (-4117 (*1 *1 *1) (-12 (-4 *1 (-921 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-4312 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-398 *1)) (-4 *1 (-921 *3 *4 *5)))))
+(-13 (-871 |t#3|) (-319 |t#1| |t#2|) (-302 $) (-505 |t#3| |t#1|) (-505 |t#3| $) (-1009 |t#3|) (-370 |t#1|) (-10 -8 (-15 -4290 ((-747) $ |t#3|)) (-15 -4290 ((-618 (-747)) $ (-618 |t#3|))) (-15 -4023 ($ $ |t#3| (-747))) (-15 -4023 ($ $ (-618 |t#3|) (-618 (-747)))) (-15 -3142 ((-618 $) $)) (-15 -3407 ((-1136 $) $ |t#3|)) (-15 -3407 ((-1136 |t#1|) $)) (-15 -3406 ((-3 |t#3| "failed") $)) (-15 -3141 ((-747) $ |t#3|)) (-15 -3141 ((-618 (-747)) $ (-618 |t#3|))) (-15 -4105 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |t#3|)) (-15 -3214 ($ $ |t#3| (-747))) (-15 -3214 ($ $ (-618 |t#3|) (-618 (-747)))) (-15 -3408 ($ (-1136 |t#1|) |t#3|)) (-15 -3408 ($ (-1136 $) |t#3|)) (-15 -3143 ((-3 (-618 $) "failed") $)) (-15 -3144 ((-3 (-618 $) "failed") $)) (-15 -3145 ((-3 (-2 (|:| |var| |t#3|) (|:| -2484 (-747))) "failed") $)) (-15 -3140 ((-747) $)) (-15 -3140 ((-747) $ (-618 |t#3|))) (-15 -3405 ((-618 |t#3|) $)) (-15 -3139 ((-618 $) $)) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-594 (-524))) (IF (|has| |t#3| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-594 (-861 (-535)))) (IF (|has| |t#3| (-594 (-861 (-535)))) (-6 (-594 (-861 (-535)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-594 (-861 (-371)))) (IF (|has| |t#3| (-594 (-861 (-371)))) (-6 (-594 (-861 (-371)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-857 (-535))) (IF (|has| |t#3| (-857 (-535))) (-6 (-857 (-535))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-857 (-371))) (IF (|has| |t#3| (-857 (-371))) (-6 (-857 (-371))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4099 ($ $ $ |t#3|)) (-15 -4100 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-6 (-444)) (-15 -3138 ($ $ |t#3|)) (-15 -3840 ($ $)) (-15 -3840 ($ $ |t#3|)) (-15 -4312 ((-398 $) $)) (-15 -4117 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4334)) (-6 -4334) |%noBranch|) (IF (|has| |t#1| (-881)) (-6 (-881)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-594 (-524)) -12 (|has| |#1| (-594 (-524))) (|has| |#3| (-594 (-524)))) ((-594 (-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#3| (-594 (-861 (-371))))) ((-594 (-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#3| (-594 (-861 (-535))))) ((-283) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3874 (|has| |#1| (-881)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-542) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 |#3|) . T) ((-857 (-371)) -12 (|has| |#1| (-857 (-371))) (|has| |#3| (-857 (-371)))) ((-857 (-535)) -12 (|has| |#1| (-857 (-535))) (|has| |#3| (-857 (-535)))) ((-881) |has| |#1| (-881)) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1009 |#3|) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) |has| |#1| (-881)))
+((-3405 (((-618 |#2|) |#5|) 36)) (-3407 (((-1136 |#5|) |#5| |#2| (-1136 |#5|)) 23) (((-400 (-1136 |#5|)) |#5| |#2|) 16)) (-3408 ((|#5| (-400 (-1136 |#5|)) |#2|) 30)) (-3406 (((-3 |#2| "failed") |#5|) 65)) (-3144 (((-3 (-618 |#5|) "failed") |#5|) 59)) (-3146 (((-3 (-2 (|:| |val| |#5|) (|:| -2484 (-535))) "failed") |#5|) 47)) (-3143 (((-3 (-618 |#5|) "failed") |#5|) 61)) (-3145 (((-3 (-2 (|:| |var| |#2|) (|:| -2484 (-535))) "failed") |#5|) 51)))
+(((-922 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3405 ((-618 |#2|) |#5|)) (-15 -3406 ((-3 |#2| "failed") |#5|)) (-15 -3407 ((-400 (-1136 |#5|)) |#5| |#2|)) (-15 -3408 (|#5| (-400 (-1136 |#5|)) |#2|)) (-15 -3407 ((-1136 |#5|) |#5| |#2| (-1136 |#5|))) (-15 -3143 ((-3 (-618 |#5|) "failed") |#5|)) (-15 -3144 ((-3 (-618 |#5|) "failed") |#5|)) (-15 -3145 ((-3 (-2 (|:| |var| |#2|) (|:| -2484 (-535))) "failed") |#5|)) (-15 -3146 ((-3 (-2 (|:| |val| |#5|) (|:| -2484 (-535))) "failed") |#5|))) (-769) (-823) (-1018) (-921 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -4300 ($ |#4|)) (-15 -3319 (|#4| $)) (-15 -3318 (|#4| $))))) (T -922))
+((-3146 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2484 (-535)))) (-5 *1 (-922 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))) (-3145 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2484 (-535)))) (-5 *1 (-922 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))) (-3144 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-618 *3)) (-5 *1 (-922 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))) (-3143 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-618 *3)) (-5 *1 (-922 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))) (-3407 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1136 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))) (-4 *7 (-921 *6 *5 *4)) (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-5 *1 (-922 *5 *4 *6 *7 *3)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1136 *2))) (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-4 *2 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))) (-5 *1 (-922 *5 *4 *6 *7 *2)) (-4 *7 (-921 *6 *5 *4)))) (-3407 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *5 *4)) (-5 *2 (-400 (-1136 *3))) (-5 *1 (-922 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))) (-3406 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-1018)) (-4 *6 (-921 *5 *4 *2)) (-4 *2 (-823)) (-5 *1 (-922 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *6)) (-15 -3319 (*6 $)) (-15 -3318 (*6 $))))))) (-3405 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-618 *5)) (-5 *1 (-922 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))))
+(-10 -7 (-15 -3405 ((-618 |#2|) |#5|)) (-15 -3406 ((-3 |#2| "failed") |#5|)) (-15 -3407 ((-400 (-1136 |#5|)) |#5| |#2|)) (-15 -3408 (|#5| (-400 (-1136 |#5|)) |#2|)) (-15 -3407 ((-1136 |#5|) |#5| |#2| (-1136 |#5|))) (-15 -3143 ((-3 (-618 |#5|) "failed") |#5|)) (-15 -3144 ((-3 (-618 |#5|) "failed") |#5|)) (-15 -3145 ((-3 (-2 (|:| |var| |#2|) (|:| -2484 (-535))) "failed") |#5|)) (-15 -3146 ((-3 (-2 (|:| |val| |#5|) (|:| -2484 (-535))) "failed") |#5|)))
+((-4301 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-923 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4301 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-769) (-823) (-1018) (-921 |#3| |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747)))))) (T -923))
+((-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-823)) (-4 *8 (-1018)) (-4 *6 (-769)) (-4 *2 (-13 (-1067) (-10 -8 (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747)))))) (-5 *1 (-923 *6 *7 *8 *5 *2)) (-4 *5 (-921 *8 *6 *7)))))
+(-10 -7 (-15 -4301 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-3147 (((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) |#3| (-747)) 38)) (-3148 (((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) (-400 (-535)) (-747)) 34)) (-3150 (((-2 (|:| -2484 (-747)) (|:| -4296 |#4|) (|:| |radicand| (-618 |#4|))) |#4| (-747)) 54)) (-3149 (((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) |#5| (-747)) 64 (|has| |#3| (-444)))))
+(((-924 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3147 ((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) |#3| (-747))) (-15 -3148 ((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) (-400 (-535)) (-747))) (IF (|has| |#3| (-444)) (-15 -3149 ((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) |#5| (-747))) |%noBranch|) (-15 -3150 ((-2 (|:| -2484 (-747)) (|:| -4296 |#4|) (|:| |radicand| (-618 |#4|))) |#4| (-747)))) (-769) (-823) (-542) (-921 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -3319 (|#4| $)) (-15 -3318 (|#4| $)) (-15 -4300 ($ |#4|))))) (T -924))
+((-3150 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-542)) (-4 *3 (-921 *7 *5 *6)) (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *3) (|:| |radicand| (-618 *3)))) (-5 *1 (-924 *5 *6 *7 *3 *8)) (-5 *4 (-747)) (-4 *8 (-13 (-356) (-10 -8 (-15 -3319 (*3 $)) (-15 -3318 (*3 $)) (-15 -4300 ($ *3))))))) (-3149 (*1 *2 *3 *4) (-12 (-4 *7 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-542)) (-4 *8 (-921 *7 *5 *6)) (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *3) (|:| |radicand| *3))) (-5 *1 (-924 *5 *6 *7 *8 *3)) (-5 *4 (-747)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3319 (*8 $)) (-15 -3318 (*8 $)) (-15 -4300 ($ *8))))))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-535))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-542)) (-4 *8 (-921 *7 *5 *6)) (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *9) (|:| |radicand| *9))) (-5 *1 (-924 *5 *6 *7 *8 *9)) (-5 *4 (-747)) (-4 *9 (-13 (-356) (-10 -8 (-15 -3319 (*8 $)) (-15 -3318 (*8 $)) (-15 -4300 ($ *8))))))) (-3147 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-542)) (-4 *7 (-921 *3 *5 *6)) (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *8) (|:| |radicand| *8))) (-5 *1 (-924 *5 *6 *3 *7 *8)) (-5 *4 (-747)) (-4 *8 (-13 (-356) (-10 -8 (-15 -3319 (*7 $)) (-15 -3318 (*7 $)) (-15 -4300 ($ *7))))))))
+(-10 -7 (-15 -3147 ((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) |#3| (-747))) (-15 -3148 ((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) (-400 (-535)) (-747))) (IF (|has| |#3| (-444)) (-15 -3149 ((-2 (|:| -2484 (-747)) (|:| -4296 |#5|) (|:| |radicand| |#5|)) |#5| (-747))) |%noBranch|) (-15 -3150 ((-2 (|:| -2484 (-747)) (|:| -4296 |#4|) (|:| |radicand| (-618 |#4|))) |#4| (-747))))
+((-2887 (((-112) $ $) NIL)) (-3151 (($ (-1086)) 8)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 14) (((-1086) $) 11)) (-3375 (((-112) $ $) 10)))
+(((-925) (-13 (-1067) (-593 (-1086)) (-10 -8 (-15 -3151 ($ (-1086)))))) (T -925))
+((-3151 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-925)))))
+(-13 (-1067) (-593 (-1086)) (-10 -8 (-15 -3151 ($ (-1086)))))
+((-3217 (((-1055 (-219)) $) 8)) (-3218 (((-1055 (-219)) $) 9)) (-3219 (((-618 (-618 (-914 (-219)))) $) 10)) (-4300 (((-835) $) 6)))
(((-926) (-138)) (T -926))
-((-3087 (*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-621 (-621 (-914 (-219))))))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1060 (-219))))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1060 (-219))))))
-(-13 (-593 (-834)) (-10 -8 (-15 -3087 ((-621 (-621 (-914 (-219)))) $)) (-15 -1831 ((-1060 (-219)) $)) (-15 -1842 ((-1060 (-219)) $))))
-(((-593 (-834)) . T))
-((-2843 (((-3 (-665 |#1|) "failed") |#2| (-892)) 15)))
-(((-927 |#1| |#2|) (-10 -7 (-15 -2843 ((-3 (-665 |#1|) "failed") |#2| (-892)))) (-541) (-632 |#1|)) (T -927))
-((-2843 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-892)) (-4 *5 (-541)) (-5 *2 (-665 *5)) (-5 *1 (-927 *5 *3)) (-4 *3 (-632 *5)))))
-(-10 -7 (-15 -2843 ((-3 (-665 |#1|) "failed") |#2| (-892))))
-((-3076 (((-929 |#2|) (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|) 16)) (-2558 ((|#2| (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|) 18)) (-2796 (((-929 |#2|) (-1 |#2| |#1|) (-929 |#1|)) 13)))
-(((-928 |#1| |#2|) (-10 -7 (-15 -3076 ((-929 |#2|) (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -2558 (|#2| (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -2796 ((-929 |#2|) (-1 |#2| |#1|) (-929 |#1|)))) (-1179) (-1179)) (T -928))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-929 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-929 *6)) (-5 *1 (-928 *5 *6)))) (-2558 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-929 *5)) (-4 *5 (-1179)) (-4 *2 (-1179)) (-5 *1 (-928 *5 *2)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-929 *6)) (-4 *6 (-1179)) (-4 *5 (-1179)) (-5 *2 (-929 *5)) (-5 *1 (-928 *6 *5)))))
-(-10 -7 (-15 -3076 ((-929 |#2|) (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -2558 (|#2| (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -2796 ((-929 |#2|) (-1 |#2| |#1|) (-929 |#1|))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4106 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#1| $ (-549) |#1|) 16 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) NIL (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) 15 (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) 13)) (-2882 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1066))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1066)))) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3743 (($ (-747) |#1|) 12)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) 10 (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-1586 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2614 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3645 ((|#1| $) NIL (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3158 (($ $ |#1|) 17 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) 11)) (-3340 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 14) (($ $ (-1192 (-549))) NIL)) (-2166 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) NIL)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3774 (((-747) $) 8 (|has| $ (-6 -4336)))))
-(((-929 |#1|) (-19 |#1|) (-1179)) (T -929))
+((-3219 (*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-618 (-618 (-914 (-219))))))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1055 (-219))))) (-3217 (*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1055 (-219))))))
+(-13 (-593 (-835)) (-10 -8 (-15 -3219 ((-618 (-618 (-914 (-219)))) $)) (-15 -3218 ((-1055 (-219)) $)) (-15 -3217 ((-1055 (-219)) $))))
+(((-593 (-835)) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 61 (|has| |#1| (-542)))) (-2171 (($ $) 62 (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 28)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-4302 (($ $) 24)) (-3804 (((-3 $ "failed") $) 35)) (-3840 (($ $) NIL (|has| |#1| (-444)))) (-1716 (($ $ |#1| |#2| $) 48)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) 16)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| |#2|) NIL)) (-3141 ((|#2| $) 19)) (-1717 (($ (-1 |#2| |#2|) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3215 (($ $) 23)) (-3508 ((|#1| $) 21)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) 40)) (-1910 ((|#1| $) NIL)) (-4081 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-542))))) (-3803 (((-3 $ "failed") $ $) 74 (|has| |#1| (-542))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-542)))) (-4290 ((|#2| $) 17)) (-3138 ((|#1| $) NIL (|has| |#1| (-444)))) (-4300 (((-835) $) NIL) (($ (-535)) 39) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 34) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ |#2|) 31)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) 15)) (-1715 (($ $ $ (-747)) 57 (|has| |#1| (-170)))) (-2170 (((-112) $ $) 67 (|has| |#1| (-542)))) (-2979 (($) 22 T CONST)) (-2985 (($) 12 T CONST)) (-3375 (((-112) $ $) 66)) (-4291 (($ $ |#1|) 75 (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) 54) (($ $ (-747)) 52)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-927 |#1| |#2|) (-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| |#2| (-130)) (-15 -4081 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|))) (-1018) (-768)) (T -927))
+((-4081 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-927 *3 *2)) (-4 *2 (-130)) (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *2 (-768)))))
+(-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| |#2| (-130)) (-15 -4081 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|)))
+((-3152 (((-3 (-665 |#1|) "failed") |#2| (-890)) 15)))
+(((-928 |#1| |#2|) (-10 -7 (-15 -3152 ((-3 (-665 |#1|) "failed") |#2| (-890)))) (-542) (-634 |#1|)) (T -928))
+((-3152 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-890)) (-4 *5 (-542)) (-5 *2 (-665 *5)) (-5 *1 (-928 *5 *3)) (-4 *3 (-634 *5)))))
+(-10 -7 (-15 -3152 ((-3 (-665 |#1|) "failed") |#2| (-890))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) |#1|) 16 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 15 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 13)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) |#1|) 12)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) 10 (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) 17 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) 11)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) 14) (($ $ (-1191 (-535))) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) NIL)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4299 (((-747) $) 8 (|has| $ (-6 -4336)))))
+(((-929 |#1|) (-19 |#1|) (-1178)) (T -929))
NIL
(-19 |#1|)
-((-4211 (($ $ (-1058 $)) 7) (($ $ (-1142)) 6)))
-(((-930) (-138)) (T -930))
-((-4211 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-930)))) (-4211 (*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-1142)))))
-(-13 (-10 -8 (-15 -4211 ($ $ (-1142))) (-15 -4211 ($ $ (-1058 $)))))
-((-1327 (((-2 (|:| -1569 (-621 (-549))) (|:| |poly| (-621 (-1138 |#1|))) (|:| |prim| (-1138 |#1|))) (-621 (-923 |#1|)) (-621 (-1142)) (-1142)) 25) (((-2 (|:| -1569 (-621 (-549))) (|:| |poly| (-621 (-1138 |#1|))) (|:| |prim| (-1138 |#1|))) (-621 (-923 |#1|)) (-621 (-1142))) 26) (((-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1138 |#1|))) (-923 |#1|) (-1142) (-923 |#1|) (-1142)) 43)))
-(((-931 |#1|) (-10 -7 (-15 -1327 ((-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1138 |#1|))) (-923 |#1|) (-1142) (-923 |#1|) (-1142))) (-15 -1327 ((-2 (|:| -1569 (-621 (-549))) (|:| |poly| (-621 (-1138 |#1|))) (|:| |prim| (-1138 |#1|))) (-621 (-923 |#1|)) (-621 (-1142)))) (-15 -1327 ((-2 (|:| -1569 (-621 (-549))) (|:| |poly| (-621 (-1138 |#1|))) (|:| |prim| (-1138 |#1|))) (-621 (-923 |#1|)) (-621 (-1142)) (-1142)))) (-13 (-356) (-145))) (T -931))
-((-1327 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 (-923 *6))) (-5 *4 (-621 (-1142))) (-5 *5 (-1142)) (-4 *6 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -1569 (-621 (-549))) (|:| |poly| (-621 (-1138 *6))) (|:| |prim| (-1138 *6)))) (-5 *1 (-931 *6)))) (-1327 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-621 (-1142))) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -1569 (-621 (-549))) (|:| |poly| (-621 (-1138 *5))) (|:| |prim| (-1138 *5)))) (-5 *1 (-931 *5)))) (-1327 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-923 *5)) (-5 *4 (-1142)) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1138 *5)))) (-5 *1 (-931 *5)))))
-(-10 -7 (-15 -1327 ((-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1138 |#1|))) (-923 |#1|) (-1142) (-923 |#1|) (-1142))) (-15 -1327 ((-2 (|:| -1569 (-621 (-549))) (|:| |poly| (-621 (-1138 |#1|))) (|:| |prim| (-1138 |#1|))) (-621 (-923 |#1|)) (-621 (-1142)))) (-15 -1327 ((-2 (|:| -1569 (-621 (-549))) (|:| |poly| (-621 (-1138 |#1|))) (|:| |prim| (-1138 |#1|))) (-621 (-923 |#1|)) (-621 (-1142)) (-1142))))
-((-2606 (((-621 |#1|) |#1| |#1|) 42)) (-2471 (((-112) |#1|) 39)) (-3572 ((|#1| |#1|) 65)) (-3556 ((|#1| |#1|) 64)))
-(((-932 |#1|) (-10 -7 (-15 -2471 ((-112) |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -3572 (|#1| |#1|)) (-15 -2606 ((-621 |#1|) |#1| |#1|))) (-534)) (T -932))
-((-2606 (*1 *2 *3 *3) (-12 (-5 *2 (-621 *3)) (-5 *1 (-932 *3)) (-4 *3 (-534)))) (-3572 (*1 *2 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-534)))) (-3556 (*1 *2 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-534)))) (-2471 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-932 *3)) (-4 *3 (-534)))))
-(-10 -7 (-15 -2471 ((-112) |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -3572 (|#1| |#1|)) (-15 -2606 ((-621 |#1|) |#1| |#1|)))
-((-1804 (((-1230) (-834)) 9)))
-(((-933) (-10 -7 (-15 -1804 ((-1230) (-834))))) (T -933))
-((-1804 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1230)) (-5 *1 (-933)))))
-(-10 -7 (-15 -1804 ((-1230) (-834))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 61 (|has| |#1| (-541)))) (-2408 (($ $) 62 (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 28)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2069 (($ $) 24)) (-3976 (((-3 $ "failed") $) 35)) (-4212 (($ $) NIL (|has| |#1| (-444)))) (-3744 (($ $ |#1| |#2| $) 48)) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) 16)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| |#2|) NIL)) (-2856 ((|#2| $) 19)) (-4058 (($ (-1 |#2| |#2|) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-2027 (($ $) 23)) (-2042 ((|#1| $) 21)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) 40)) (-2012 ((|#1| $) NIL)) (-3314 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-541))))) (-2038 (((-3 $ "failed") $ $) 74 (|has| |#1| (-541))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-541)))) (-3068 ((|#2| $) 17)) (-1931 ((|#1| $) NIL (|has| |#1| (-444)))) (-3845 (((-834) $) NIL) (($ (-549)) 39) (($ $) NIL (|has| |#1| (-541))) (($ |#1|) 34) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ |#2|) 31)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) 15)) (-1544 (($ $ $ (-747)) 57 (|has| |#1| (-170)))) (-4053 (((-112) $ $) 67 (|has| |#1| (-541)))) (-3275 (($) 22 T CONST)) (-3287 (($) 12 T CONST)) (-2388 (((-112) $ $) 66)) (-2512 (($ $ |#1|) 75 (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) 54) (($ $ (-747)) 52)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-934 |#1| |#2|) (-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-541)) (IF (|has| |#2| (-130)) (-15 -3314 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|))) (-1018) (-768)) (T -934))
-((-3314 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-934 *3 *2)) (-4 *2 (-130)) (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *2 (-768)))))
-(-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-541)) (IF (|has| |#2| (-130)) (-15 -3314 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))))) (-3100 (($ $ $) 63 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))) (-2384 (((-3 $ "failed") $ $) 50 (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))))) (-3615 (((-747)) 34 (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3335 ((|#2| $) 21)) (-1415 ((|#1| $) 20)) (-1705 (($) NIL (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))) CONST)) (-3976 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))) (-3238 (($) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3987 (((-112) $) NIL (-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))) (-2862 (($ $ $) NIL (-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-3574 (($ $ $) NIL (-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-4315 (($ |#1| |#2|) 19)) (-2723 (((-892) $) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 37 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-3491 (($ (-892)) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3988 (((-1086) $) NIL)) (-2538 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-1911 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-3845 (((-834) $) 14)) (-3275 (($) 40 (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))) CONST)) (-3287 (($) 24 (-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))) CONST)) (-2448 (((-112) $ $) NIL (-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-2424 (((-112) $ $) NIL (-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-2388 (((-112) $ $) 18)) (-2436 (((-112) $ $) NIL (-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-2411 (((-112) $ $) 66 (-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-2512 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2499 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2485 (($ $ $) 43 (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))))) (** (($ $ (-549)) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465)))) (($ $ (-747)) 31 (-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))))) (($ $ (-892)) NIL (-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))) (* (($ (-549) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-747) $) 46 (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))) (($ (-892) $) NIL (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))) (($ $ $) 27 (-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))))
-(((-935 |#1| |#2|) (-13 (-1066) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-703)) (IF (|has| |#2| (-703)) (-6 (-703)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-769)) (IF (|has| |#2| (-769)) (-6 (-769)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-823)) (IF (|has| |#2| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (-15 -4315 ($ |#1| |#2|)) (-15 -1415 (|#1| $)) (-15 -3335 (|#2| $)))) (-1066) (-1066)) (T -935))
-((-4315 (*1 *1 *2 *3) (-12 (-5 *1 (-935 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))) (-1415 (*1 *2 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1066)))) (-3335 (*1 *2 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-935 *3 *2)) (-4 *3 (-1066)))))
-(-13 (-1066) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-703)) (IF (|has| |#2| (-703)) (-6 (-703)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-769)) (IF (|has| |#2| (-769)) (-6 (-769)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-823)) (IF (|has| |#2| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (-15 -4315 ($ |#1| |#2|)) (-15 -1415 (|#1| $)) (-15 -3335 (|#2| $))))
-((-4160 (((-1070) $) 12)) (-1997 (($ (-1142) (-1070)) 13)) (-2480 (((-1142) $) 10)) (-3845 (((-834) $) 22)))
-(((-936) (-13 (-593 (-834)) (-10 -8 (-15 -2480 ((-1142) $)) (-15 -4160 ((-1070) $)) (-15 -1997 ($ (-1142) (-1070)))))) (T -936))
-((-2480 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-936)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-936)))) (-1997 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1070)) (-5 *1 (-936)))))
-(-13 (-593 (-834)) (-10 -8 (-15 -2480 ((-1142) $)) (-15 -4160 ((-1070) $)) (-15 -1997 ($ (-1142) (-1070)))))
-((-3833 (((-112) $ $) NIL)) (-2271 (((-1068 (-1142)) $) 19)) (-2095 (((-112) $) 26)) (-3010 (((-1142) $) 27)) (-3850 (((-112) $) 24)) (-2784 ((|#1| $) 25)) (-1364 (((-844 $ $) $) 34)) (-3414 (((-112) $) 33)) (-4205 (($ $ $) 12)) (-1290 (($ $) 29)) (-3369 (((-112) $) 28)) (-4007 (($ $) 10)) (-2677 (((-1124) $) NIL)) (-4161 (((-844 $ $) $) 36)) (-1487 (((-112) $) 35)) (-2441 (($ $ $) 13)) (-3988 (((-1086) $) NIL)) (-2071 (((-844 $ $) $) 38)) (-2890 (((-112) $) 37)) (-2788 (($ $ $) 14)) (-3845 (((-834) $) 40) (($ |#1|) 7) (($ (-1142)) 9)) (-3265 (((-844 $ $) $) 32)) (-2321 (((-112) $) 30)) (-1820 (($ $ $) 11)) (-2388 (((-112) $ $) NIL)))
-(((-937 |#1|) (-13 (-938) (-10 -8 (-15 -3845 ($ |#1|)) (-15 -3845 ($ (-1142))) (-15 -2271 ((-1068 (-1142)) $)) (-15 -3850 ((-112) $)) (-15 -2784 (|#1| $)) (-15 -2095 ((-112) $)) (-15 -3010 ((-1142) $)) (-15 -3369 ((-112) $)) (-15 -1290 ($ $)) (-15 -2321 ((-112) $)) (-15 -3265 ((-844 $ $) $)) (-15 -3414 ((-112) $)) (-15 -1364 ((-844 $ $) $)) (-15 -1487 ((-112) $)) (-15 -4161 ((-844 $ $) $)) (-15 -2890 ((-112) $)) (-15 -2071 ((-844 $ $) $)))) (-938)) (T -937))
-((-3845 (*1 *1 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-1068 (-1142))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3850 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-2784 (*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3369 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-1290 (*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
-(-13 (-938) (-10 -8 (-15 -3845 ($ |#1|)) (-15 -3845 ($ (-1142))) (-15 -2271 ((-1068 (-1142)) $)) (-15 -3850 ((-112) $)) (-15 -2784 (|#1| $)) (-15 -2095 ((-112) $)) (-15 -3010 ((-1142) $)) (-15 -3369 ((-112) $)) (-15 -1290 ($ $)) (-15 -2321 ((-112) $)) (-15 -3265 ((-844 $ $) $)) (-15 -3414 ((-112) $)) (-15 -1364 ((-844 $ $) $)) (-15 -1487 ((-112) $)) (-15 -4161 ((-844 $ $) $)) (-15 -2890 ((-112) $)) (-15 -2071 ((-844 $ $) $))))
-((-3833 (((-112) $ $) 7)) (-4205 (($ $ $) 15)) (-4007 (($ $) 17)) (-2677 (((-1124) $) 9)) (-2441 (($ $ $) 14)) (-3988 (((-1086) $) 10)) (-2788 (($ $ $) 13)) (-3845 (((-834) $) 11)) (-1820 (($ $ $) 16)) (-2388 (((-112) $ $) 6)))
+((-4184 (((-929 |#2|) (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|) 16)) (-4185 ((|#2| (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|) 18)) (-4301 (((-929 |#2|) (-1 |#2| |#1|) (-929 |#1|)) 13)))
+(((-930 |#1| |#2|) (-10 -7 (-15 -4184 ((-929 |#2|) (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -4301 ((-929 |#2|) (-1 |#2| |#1|) (-929 |#1|)))) (-1178) (-1178)) (T -930))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-929 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-929 *6)) (-5 *1 (-930 *5 *6)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-929 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) (-5 *1 (-930 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-929 *6)) (-4 *6 (-1178)) (-4 *5 (-1178)) (-5 *2 (-929 *5)) (-5 *1 (-930 *6 *5)))))
+(-10 -7 (-15 -4184 ((-929 |#2|) (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -4301 ((-929 |#2|) (-1 |#2| |#1|) (-929 |#1|))))
+((-3153 (($ $ (-1058 $)) 7) (($ $ (-1142)) 6)))
+(((-931) (-138)) (T -931))
+((-3153 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-931)))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-1142)))))
+(-13 (-10 -8 (-15 -3153 ($ $ (-1142))) (-15 -3153 ($ $ (-1058 $)))))
+((-3154 (((-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 |#1|))) (|:| |prim| (-1136 |#1|))) (-618 (-917 |#1|)) (-618 (-1142)) (-1142)) 25) (((-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 |#1|))) (|:| |prim| (-1136 |#1|))) (-618 (-917 |#1|)) (-618 (-1142))) 26) (((-2 (|:| |coef1| (-535)) (|:| |coef2| (-535)) (|:| |prim| (-1136 |#1|))) (-917 |#1|) (-1142) (-917 |#1|) (-1142)) 43)))
+(((-932 |#1|) (-10 -7 (-15 -3154 ((-2 (|:| |coef1| (-535)) (|:| |coef2| (-535)) (|:| |prim| (-1136 |#1|))) (-917 |#1|) (-1142) (-917 |#1|) (-1142))) (-15 -3154 ((-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 |#1|))) (|:| |prim| (-1136 |#1|))) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -3154 ((-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 |#1|))) (|:| |prim| (-1136 |#1|))) (-618 (-917 |#1|)) (-618 (-1142)) (-1142)))) (-13 (-356) (-145))) (T -932))
+((-3154 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 (-917 *6))) (-5 *4 (-618 (-1142))) (-5 *5 (-1142)) (-4 *6 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 *6))) (|:| |prim| (-1136 *6)))) (-5 *1 (-932 *6)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-618 (-1142))) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 *5))) (|:| |prim| (-1136 *5)))) (-5 *1 (-932 *5)))) (-3154 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-917 *5)) (-5 *4 (-1142)) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| |coef1| (-535)) (|:| |coef2| (-535)) (|:| |prim| (-1136 *5)))) (-5 *1 (-932 *5)))))
+(-10 -7 (-15 -3154 ((-2 (|:| |coef1| (-535)) (|:| |coef2| (-535)) (|:| |prim| (-1136 |#1|))) (-917 |#1|) (-1142) (-917 |#1|) (-1142))) (-15 -3154 ((-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 |#1|))) (|:| |prim| (-1136 |#1|))) (-618 (-917 |#1|)) (-618 (-1142)))) (-15 -3154 ((-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 |#1|))) (|:| |prim| (-1136 |#1|))) (-618 (-917 |#1|)) (-618 (-1142)) (-1142))))
+((-3157 (((-618 |#1|) |#1| |#1|) 42)) (-4069 (((-112) |#1|) 39)) (-3156 ((|#1| |#1|) 65)) (-3155 ((|#1| |#1|) 64)))
+(((-933 |#1|) (-10 -7 (-15 -4069 ((-112) |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3157 ((-618 |#1|) |#1| |#1|))) (-534)) (T -933))
+((-3157 (*1 *2 *3 *3) (-12 (-5 *2 (-618 *3)) (-5 *1 (-933 *3)) (-4 *3 (-534)))) (-3156 (*1 *2 *2) (-12 (-5 *1 (-933 *2)) (-4 *2 (-534)))) (-3155 (*1 *2 *2) (-12 (-5 *1 (-933 *2)) (-4 *2 (-534)))) (-4069 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-534)))))
+(-10 -7 (-15 -4069 ((-112) |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3157 ((-618 |#1|) |#1| |#1|)))
+((-3158 (((-1230) (-835)) 9)))
+(((-934) (-10 -7 (-15 -3158 ((-1230) (-835))))) (T -934))
+((-3158 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-934)))))
+(-10 -7 (-15 -3158 ((-1230) (-835))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))))) (-2724 (($ $ $) 63 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))) (-1363 (((-3 $ "failed") $ $) 50 (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))))) (-3454 (((-747)) 34 (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3159 ((|#2| $) 21)) (-3160 ((|#1| $) 20)) (-3879 (($) NIL (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))) CONST)) (-3804 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))) (-3315 (($) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-2493 (((-112) $) NIL (-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))) (-3660 (($ $ $) NIL (-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-3661 (($ $ $) NIL (-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-3161 (($ |#1| |#2|) 19)) (-2121 (((-890) $) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 37 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2483 (($ (-890)) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3577 (((-1086) $) NIL)) (-3330 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2677 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-4300 (((-835) $) 14)) (-2979 (($) 40 (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))) CONST)) (-2985 (($) 24 (-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))) CONST)) (-2885 (((-112) $ $) NIL (-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-2886 (((-112) $ $) NIL (-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-3375 (((-112) $ $) 18)) (-3005 (((-112) $ $) NIL (-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-3006 (((-112) $ $) 66 (-3874 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-4291 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-4180 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4182 (($ $ $) 43 (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))))) (** (($ $ (-535)) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465)))) (($ $ (-747)) 31 (-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))))) (($ $ (-890)) NIL (-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))) (* (($ (-535) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-747) $) 46 (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))) (($ (-890) $) NIL (-3874 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))) (($ $ $) 27 (-3874 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))))
+(((-935 |#1| |#2|) (-13 (-1067) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-703)) (IF (|has| |#2| (-703)) (-6 (-703)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-769)) (IF (|has| |#2| (-769)) (-6 (-769)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-823)) (IF (|has| |#2| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (-15 -3161 ($ |#1| |#2|)) (-15 -3160 (|#1| $)) (-15 -3159 (|#2| $)))) (-1067) (-1067)) (T -935))
+((-3161 (*1 *1 *2 *3) (-12 (-5 *1 (-935 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3160 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1067)))) (-3159 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-935 *3 *2)) (-4 *3 (-1067)))))
+(-13 (-1067) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-703)) (IF (|has| |#2| (-703)) (-6 (-703)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-769)) (IF (|has| |#2| (-769)) (-6 (-769)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-823)) (IF (|has| |#2| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (-15 -3161 ($ |#1| |#2|)) (-15 -3160 (|#1| $)) (-15 -3159 (|#2| $))))
+((-3744 (((-1069) $) 12)) (-3162 (($ (-1142) (-1069)) 13)) (-3888 (((-1142) $) 10)) (-4300 (((-835) $) 22)))
+(((-936) (-13 (-593 (-835)) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -3744 ((-1069) $)) (-15 -3162 ($ (-1142) (-1069)))))) (T -936))
+((-3888 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-936)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-936)))) (-3162 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1069)) (-5 *1 (-936)))))
+(-13 (-593 (-835)) (-10 -8 (-15 -3888 ((-1142) $)) (-15 -3744 ((-1069) $)) (-15 -3162 ($ (-1142) (-1069)))))
+((-2887 (((-112) $ $) NIL)) (-3405 (((-1063 (-1142)) $) 19)) (-3173 (((-112) $) 26)) (-4174 (((-1142) $) 27)) (-3175 (((-112) $) 24)) (-3174 ((|#1| $) 25)) (-3167 (((-844 $ $) $) 34)) (-3168 (((-112) $) 33)) (-3178 (($ $ $) 12)) (-3171 (($ $) 29)) (-3172 (((-112) $) 28)) (-3659 (($ $) 10)) (-3576 (((-1124) $) NIL)) (-3165 (((-844 $ $) $) 36)) (-3166 (((-112) $) 35)) (-3177 (($ $ $) 13)) (-3577 (((-1086) $) NIL)) (-3163 (((-844 $ $) $) 38)) (-3164 (((-112) $) 37)) (-3176 (($ $ $) 14)) (-4300 (((-835) $) 40) (($ |#1|) 7) (($ (-1142)) 9)) (-3169 (((-844 $ $) $) 32)) (-3170 (((-112) $) 30)) (-3179 (($ $ $) 11)) (-3375 (((-112) $ $) NIL)))
+(((-937 |#1|) (-13 (-938) (-10 -8 (-15 -4300 ($ |#1|)) (-15 -4300 ($ (-1142))) (-15 -3405 ((-1063 (-1142)) $)) (-15 -3175 ((-112) $)) (-15 -3174 (|#1| $)) (-15 -3173 ((-112) $)) (-15 -4174 ((-1142) $)) (-15 -3172 ((-112) $)) (-15 -3171 ($ $)) (-15 -3170 ((-112) $)) (-15 -3169 ((-844 $ $) $)) (-15 -3168 ((-112) $)) (-15 -3167 ((-844 $ $) $)) (-15 -3166 ((-112) $)) (-15 -3165 ((-844 $ $) $)) (-15 -3164 ((-112) $)) (-15 -3163 ((-844 $ $) $)))) (-938)) (T -937))
+((-4300 (*1 *1 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-1063 (-1142))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3174 (*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3171 (*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3168 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3167 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(-13 (-938) (-10 -8 (-15 -4300 ($ |#1|)) (-15 -4300 ($ (-1142))) (-15 -3405 ((-1063 (-1142)) $)) (-15 -3175 ((-112) $)) (-15 -3174 (|#1| $)) (-15 -3173 ((-112) $)) (-15 -4174 ((-1142) $)) (-15 -3172 ((-112) $)) (-15 -3171 ($ $)) (-15 -3170 ((-112) $)) (-15 -3169 ((-844 $ $) $)) (-15 -3168 ((-112) $)) (-15 -3167 ((-844 $ $) $)) (-15 -3166 ((-112) $)) (-15 -3165 ((-844 $ $) $)) (-15 -3164 ((-112) $)) (-15 -3163 ((-844 $ $) $))))
+((-2887 (((-112) $ $) 7)) (-3178 (($ $ $) 15)) (-3659 (($ $) 17)) (-3576 (((-1124) $) 9)) (-3177 (($ $ $) 14)) (-3577 (((-1086) $) 10)) (-3176 (($ $ $) 13)) (-4300 (((-835) $) 11)) (-3179 (($ $ $) 16)) (-3375 (((-112) $ $) 6)))
(((-938) (-138)) (T -938))
-((-4007 (*1 *1 *1) (-4 *1 (-938))) (-1820 (*1 *1 *1 *1) (-4 *1 (-938))) (-4205 (*1 *1 *1 *1) (-4 *1 (-938))) (-2441 (*1 *1 *1 *1) (-4 *1 (-938))) (-2788 (*1 *1 *1 *1) (-4 *1 (-938))))
-(-13 (-1066) (-10 -8 (-15 -4007 ($ $)) (-15 -1820 ($ $ $)) (-15 -4205 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -2788 ($ $ $))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) 8)) (-1705 (($) 7 T CONST)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-3019 (($ $ $) 43)) (-1586 (($ $ $) 44)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-3574 ((|#1| $) 45)) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2349 ((|#1| $) 39)) (-1709 (($ |#1| $) 40)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-2629 ((|#1| $) 41)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1765 (($ (-621 |#1|)) 42)) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
+((-3659 (*1 *1 *1) (-4 *1 (-938))) (-3179 (*1 *1 *1 *1) (-4 *1 (-938))) (-3178 (*1 *1 *1 *1) (-4 *1 (-938))) (-3177 (*1 *1 *1 *1) (-4 *1 (-938))) (-3176 (*1 *1 *1 *1) (-4 *1 (-938))))
+(-13 (-1067) (-10 -8 (-15 -3659 ($ $)) (-15 -3179 ($ $ $)) (-15 -3178 ($ $ $)) (-15 -3177 ($ $ $)) (-15 -3176 ($ $ $))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-3180 (($ $ $) 43)) (-3855 (($ $ $) 44)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3661 ((|#1| $) 45)) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
(((-939 |#1|) (-138) (-823)) (T -939))
-((-3574 (*1 *2 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))) (-1586 (*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))) (-3019 (*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))))
-(-13 (-106 |t#1|) (-10 -8 (-6 -4336) (-15 -3574 (|t#1| $)) (-15 -1586 ($ $ $)) (-15 -3019 ($ $ $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-1974 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3726 |#2|)) |#2| |#2|) 85)) (-3767 ((|#2| |#2| |#2|) 83)) (-2929 (((-2 (|:| |coef2| |#2|) (|:| -3726 |#2|)) |#2| |#2|) 87)) (-3280 (((-2 (|:| |coef1| |#2|) (|:| -3726 |#2|)) |#2| |#2|) 89)) (-4005 (((-2 (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|) 107 (|has| |#1| (-444)))) (-2340 (((-2 (|:| |coef2| |#2|) (|:| -2252 |#1|)) |#2| |#2|) 46)) (-1567 (((-2 (|:| |coef2| |#2|) (|:| -2252 |#1|)) |#2| |#2|) 64)) (-2603 (((-2 (|:| |coef1| |#2|) (|:| -2252 |#1|)) |#2| |#2|) 66)) (-1695 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3898 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 71)) (-3391 (((-2 (|:| |coef2| |#2|) (|:| -3086 |#1|)) |#2|) 97)) (-3424 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 74)) (-3139 (((-621 (-747)) |#2| |#2|) 82)) (-2996 ((|#1| |#2| |#2|) 42)) (-2478 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|) 105 (|has| |#1| (-444)))) (-3829 ((|#1| |#2| |#2|) 103 (|has| |#1| (-444)))) (-2454 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2252 |#1|)) |#2| |#2|) 44)) (-2771 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2252 |#1|)) |#2| |#2|) 63)) (-2252 ((|#1| |#2| |#2|) 61)) (-3285 (((-2 (|:| -1569 |#1|) (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2|) 35)) (-2065 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3137 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2587 ((|#2| |#2| |#2|) 75)) (-2301 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 69)) (-1438 ((|#2| |#2| |#2| (-747)) 67)) (-3726 ((|#2| |#2| |#2|) 111 (|has| |#1| (-444)))) (-2038 (((-1225 |#2|) (-1225 |#2|) |#1|) 21)) (-1346 (((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2|) 39)) (-3738 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3086 |#1|)) |#2|) 95)) (-3086 ((|#1| |#2|) 92)) (-1789 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 73)) (-1949 ((|#2| |#2| |#2| (-747)) 72)) (-3708 (((-621 |#2|) |#2| |#2|) 80)) (-3879 ((|#2| |#2| |#1| |#1| (-747)) 50)) (-3662 ((|#1| |#1| |#1| (-747)) 49)) (* (((-1225 |#2|) |#1| (-1225 |#2|)) 16)))
-(((-940 |#1| |#2|) (-10 -7 (-15 -2252 (|#1| |#2| |#2|)) (-15 -2771 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2252 |#1|)) |#2| |#2|)) (-15 -1567 ((-2 (|:| |coef2| |#2|) (|:| -2252 |#1|)) |#2| |#2|)) (-15 -2603 ((-2 (|:| |coef1| |#2|) (|:| -2252 |#1|)) |#2| |#2|)) (-15 -1438 (|#2| |#2| |#2| (-747))) (-15 -2301 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3898 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -1949 (|#2| |#2| |#2| (-747))) (-15 -1789 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3424 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -2587 (|#2| |#2| |#2|)) (-15 -3137 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1695 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3767 (|#2| |#2| |#2|)) (-15 -1974 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3726 |#2|)) |#2| |#2|)) (-15 -2929 ((-2 (|:| |coef2| |#2|) (|:| -3726 |#2|)) |#2| |#2|)) (-15 -3280 ((-2 (|:| |coef1| |#2|) (|:| -3726 |#2|)) |#2| |#2|)) (-15 -3086 (|#1| |#2|)) (-15 -3738 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3086 |#1|)) |#2|)) (-15 -3391 ((-2 (|:| |coef2| |#2|) (|:| -3086 |#1|)) |#2|)) (-15 -3708 ((-621 |#2|) |#2| |#2|)) (-15 -3139 ((-621 (-747)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -3829 (|#1| |#2| |#2|)) (-15 -2478 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|)) (-15 -4005 ((-2 (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|)) (-15 -3726 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1225 |#2|) |#1| (-1225 |#2|))) (-15 -2038 ((-1225 |#2|) (-1225 |#2|) |#1|)) (-15 -3285 ((-2 (|:| -1569 |#1|) (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2|)) (-15 -1346 ((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2|)) (-15 -3662 (|#1| |#1| |#1| (-747))) (-15 -3879 (|#2| |#2| |#1| |#1| (-747))) (-15 -2065 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2996 (|#1| |#2| |#2|)) (-15 -2454 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2252 |#1|)) |#2| |#2|)) (-15 -2340 ((-2 (|:| |coef2| |#2|) (|:| -2252 |#1|)) |#2| |#2|))) (-541) (-1201 |#1|)) (T -940))
-((-2340 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2252 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-2454 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2252 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-2996 (*1 *2 *3 *3) (-12 (-4 *2 (-541)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1201 *2)))) (-2065 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1201 *3)))) (-3879 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1201 *3)))) (-3662 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *2 (-541)) (-5 *1 (-940 *2 *4)) (-4 *4 (-1201 *2)))) (-1346 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-3285 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| -1569 *4) (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-2038 (*1 *2 *2 *3) (-12 (-5 *2 (-1225 *4)) (-4 *4 (-1201 *3)) (-4 *3 (-541)) (-5 *1 (-940 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1225 *4)) (-4 *4 (-1201 *3)) (-4 *3 (-541)) (-5 *1 (-940 *3 *4)))) (-3726 (*1 *2 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1201 *3)))) (-4005 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3829 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-2478 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3829 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-3829 (*1 *2 *3 *3) (-12 (-4 *2 (-541)) (-4 *2 (-444)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1201 *2)))) (-3139 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 (-747))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-3708 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 *3)) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-3391 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3086 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3086 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-3086 (*1 *2 *3) (-12 (-4 *2 (-541)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1201 *2)))) (-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3726 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-2929 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3726 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-1974 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3726 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-3767 (*1 *2 *2 *2) (-12 (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1201 *3)))) (-1695 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-3137 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-2587 (*1 *2 *2 *2) (-12 (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1201 *3)))) (-3424 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1201 *5)))) (-1789 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1201 *5)))) (-1949 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-541)) (-5 *1 (-940 *4 *2)) (-4 *2 (-1201 *4)))) (-3898 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1201 *5)))) (-2301 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1201 *5)))) (-1438 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-541)) (-5 *1 (-940 *4 *2)) (-4 *2 (-1201 *4)))) (-2603 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2252 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-1567 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2252 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-2771 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2252 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))) (-2252 (*1 *2 *3 *3) (-12 (-4 *2 (-541)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1201 *2)))))
-(-10 -7 (-15 -2252 (|#1| |#2| |#2|)) (-15 -2771 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2252 |#1|)) |#2| |#2|)) (-15 -1567 ((-2 (|:| |coef2| |#2|) (|:| -2252 |#1|)) |#2| |#2|)) (-15 -2603 ((-2 (|:| |coef1| |#2|) (|:| -2252 |#1|)) |#2| |#2|)) (-15 -1438 (|#2| |#2| |#2| (-747))) (-15 -2301 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3898 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -1949 (|#2| |#2| |#2| (-747))) (-15 -1789 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3424 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -2587 (|#2| |#2| |#2|)) (-15 -3137 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1695 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3767 (|#2| |#2| |#2|)) (-15 -1974 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3726 |#2|)) |#2| |#2|)) (-15 -2929 ((-2 (|:| |coef2| |#2|) (|:| -3726 |#2|)) |#2| |#2|)) (-15 -3280 ((-2 (|:| |coef1| |#2|) (|:| -3726 |#2|)) |#2| |#2|)) (-15 -3086 (|#1| |#2|)) (-15 -3738 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3086 |#1|)) |#2|)) (-15 -3391 ((-2 (|:| |coef2| |#2|) (|:| -3086 |#1|)) |#2|)) (-15 -3708 ((-621 |#2|) |#2| |#2|)) (-15 -3139 ((-621 (-747)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -3829 (|#1| |#2| |#2|)) (-15 -2478 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|)) (-15 -4005 ((-2 (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|)) (-15 -3726 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1225 |#2|) |#1| (-1225 |#2|))) (-15 -2038 ((-1225 |#2|) (-1225 |#2|) |#1|)) (-15 -3285 ((-2 (|:| -1569 |#1|) (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2|)) (-15 -1346 ((-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) |#2| |#2|)) (-15 -3662 (|#1| |#1| |#1| (-747))) (-15 -3879 (|#2| |#2| |#1| |#1| (-747))) (-15 -2065 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2996 (|#1| |#2| |#2|)) (-15 -2454 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2252 |#1|)) |#2| |#2|)) (-15 -2340 ((-2 (|:| |coef2| |#2|) (|:| -2252 |#1|)) |#2| |#2|)))
-((-3833 (((-112) $ $) NIL)) (-2099 (((-1178) $) 13)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3954 (((-1101) $) 10)) (-3845 (((-834) $) 22) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-941) (-13 (-1049) (-10 -8 (-15 -3954 ((-1101) $)) (-15 -2099 ((-1178) $))))) (T -941))
-((-3954 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-941)))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-941)))))
-(-13 (-1049) (-10 -8 (-15 -3954 ((-1101) $)) (-15 -2099 ((-1178) $))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) 27)) (-1705 (($) NIL T CONST)) (-4221 (((-621 (-621 (-549))) (-621 (-549))) 29)) (-3824 (((-549) $) 45)) (-1806 (($ (-621 (-549))) 17)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2844 (((-621 (-549)) $) 12)) (-2538 (($ $) 32)) (-3845 (((-834) $) 43) (((-621 (-549)) $) 10)) (-3275 (($) 7 T CONST)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 20)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 19)) (-2485 (($ $ $) 21)) (* (($ (-892) $) NIL) (($ (-747) $) 25)))
-(((-942) (-13 (-771) (-594 (-621 (-549))) (-10 -8 (-15 -1806 ($ (-621 (-549)))) (-15 -4221 ((-621 (-621 (-549))) (-621 (-549)))) (-15 -3824 ((-549) $)) (-15 -2538 ($ $)) (-15 -3845 ((-621 (-549)) $))))) (T -942))
-((-1806 (*1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-942)))) (-4221 (*1 *2 *3) (-12 (-5 *2 (-621 (-621 (-549)))) (-5 *1 (-942)) (-5 *3 (-621 (-549))))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-942)))) (-2538 (*1 *1 *1) (-5 *1 (-942))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-942)))))
-(-13 (-771) (-594 (-621 (-549))) (-10 -8 (-15 -1806 ($ (-621 (-549)))) (-15 -4221 ((-621 (-621 (-549))) (-621 (-549)))) (-15 -3824 ((-549) $)) (-15 -2538 ($ $)) (-15 -3845 ((-621 (-549)) $))))
-((-2512 (($ $ |#2|) 30)) (-2499 (($ $) 22) (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-400 (-549)) $) 26) (($ $ (-400 (-549))) 28)))
-(((-943 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -2512 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|))) (-944 |#2| |#3| |#4|) (-1018) (-768) (-823)) (T -943))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -2512 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2271 (((-621 |#3|) $) 72)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2408 (($ $) 50 (|has| |#1| (-541)))) (-2477 (((-112) $) 52 (|has| |#1| (-541)))) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2069 (($ $) 58)) (-3976 (((-3 $ "failed") $) 32)) (-3155 (((-112) $) 71)) (-3987 (((-112) $) 30)) (-2427 (((-112) $) 60)) (-2244 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-621 |#3|) (-621 |#2|)) 73)) (-2796 (($ (-1 |#1| |#1|) $) 61)) (-2027 (($ $) 63)) (-2042 ((|#1| $) 64)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-2038 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-3068 ((|#2| $) 62)) (-1814 (($ $) 70)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541))) (($ |#1|) 45 (|has| |#1| (-170)))) (-2944 ((|#1| $ |#2|) 57)) (-3407 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 51 (|has| |#1| (-541)))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+((-3661 (*1 *2 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))) (-3855 (*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))) (-3180 (*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))))
+(-13 (-106 |t#1|) (-10 -8 (-6 -4336) (-15 -3661 (|t#1| $)) (-15 -3855 ($ $ $)) (-15 -3180 ($ $ $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-3192 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3478 |#2|)) |#2| |#2|) 85)) (-4098 ((|#2| |#2| |#2|) 83)) (-3193 (((-2 (|:| |coef2| |#2|) (|:| -3478 |#2|)) |#2| |#2|) 87)) (-3194 (((-2 (|:| |coef1| |#2|) (|:| -3478 |#2|)) |#2| |#2|) 89)) (-3201 (((-2 (|:| |coef2| |#2|) (|:| -3199 |#1|)) |#2| |#2|) 107 (|has| |#1| (-444)))) (-3208 (((-2 (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|) 46)) (-3182 (((-2 (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|) 64)) (-3183 (((-2 (|:| |coef1| |#2|) (|:| -4099 |#1|)) |#2| |#2|) 66)) (-3191 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3186 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 71)) (-3196 (((-2 (|:| |coef2| |#2|) (|:| -4100 |#1|)) |#2|) 97)) (-3189 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 74)) (-3198 (((-618 (-747)) |#2| |#2|) 82)) (-3206 ((|#1| |#2| |#2|) 42)) (-3200 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3199 |#1|)) |#2| |#2|) 105 (|has| |#1| (-444)))) (-3199 ((|#1| |#2| |#2|) 103 (|has| |#1| (-444)))) (-3207 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|) 44)) (-3181 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|) 63)) (-4099 ((|#1| |#2| |#2|) 61)) (-4095 (((-2 (|:| -4296 |#1|) (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2|) 35)) (-3205 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3190 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3524 ((|#2| |#2| |#2|) 75)) (-3185 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 69)) (-3184 ((|#2| |#2| |#2| (-747)) 67)) (-3478 ((|#2| |#2| |#2|) 111 (|has| |#1| (-444)))) (-3803 (((-1224 |#2|) (-1224 |#2|) |#1|) 21)) (-3202 (((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2|) 39)) (-3195 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4100 |#1|)) |#2|) 95)) (-4100 ((|#1| |#2|) 92)) (-3188 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 73)) (-3187 ((|#2| |#2| |#2| (-747)) 72)) (-3197 (((-618 |#2|) |#2| |#2|) 80)) (-3204 ((|#2| |#2| |#1| |#1| (-747)) 50)) (-3203 ((|#1| |#1| |#1| (-747)) 49)) (* (((-1224 |#2|) |#1| (-1224 |#2|)) 16)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -4099 (|#1| |#2| |#2|)) (-15 -3181 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3182 ((-2 (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3183 ((-2 (|:| |coef1| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3184 (|#2| |#2| |#2| (-747))) (-15 -3185 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3186 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3187 (|#2| |#2| |#2| (-747))) (-15 -3188 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3189 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3524 (|#2| |#2| |#2|)) (-15 -3190 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3191 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4098 (|#2| |#2| |#2|)) (-15 -3192 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3478 |#2|)) |#2| |#2|)) (-15 -3193 ((-2 (|:| |coef2| |#2|) (|:| -3478 |#2|)) |#2| |#2|)) (-15 -3194 ((-2 (|:| |coef1| |#2|) (|:| -3478 |#2|)) |#2| |#2|)) (-15 -4100 (|#1| |#2|)) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4100 |#1|)) |#2|)) (-15 -3196 ((-2 (|:| |coef2| |#2|) (|:| -4100 |#1|)) |#2|)) (-15 -3197 ((-618 |#2|) |#2| |#2|)) (-15 -3198 ((-618 (-747)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -3199 (|#1| |#2| |#2|)) (-15 -3200 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3199 |#1|)) |#2| |#2|)) (-15 -3201 ((-2 (|:| |coef2| |#2|) (|:| -3199 |#1|)) |#2| |#2|)) (-15 -3478 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1224 |#2|) |#1| (-1224 |#2|))) (-15 -3803 ((-1224 |#2|) (-1224 |#2|) |#1|)) (-15 -4095 ((-2 (|:| -4296 |#1|) (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2|)) (-15 -3202 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2|)) (-15 -3203 (|#1| |#1| |#1| (-747))) (-15 -3204 (|#2| |#2| |#1| |#1| (-747))) (-15 -3205 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3206 (|#1| |#2| |#2|)) (-15 -3207 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|))) (-542) (-1200 |#1|)) (T -940))
+((-3208 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4099 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3207 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4099 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3206 (*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2)))) (-3205 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) (-3204 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) (-3203 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *2 (-542)) (-5 *1 (-940 *2 *4)) (-4 *4 (-1200 *2)))) (-3202 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-4095 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -4296 *4) (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3803 (*1 *2 *2 *3) (-12 (-5 *2 (-1224 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-542)) (-5 *1 (-940 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1224 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-542)) (-5 *1 (-940 *3 *4)))) (-3478 (*1 *2 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) (-3201 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3199 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3200 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3199 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3199 (*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-4 *2 (-444)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2)))) (-3198 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 (-747))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3197 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 *3)) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3196 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4100 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3195 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4100 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-4100 (*1 *2 *3) (-12 (-4 *2 (-542)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2)))) (-3194 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3478 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3193 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3478 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3192 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3478 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-4098 (*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) (-3191 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3190 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3524 (*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))) (-3189 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1200 *5)))) (-3188 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1200 *5)))) (-3187 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-542)) (-5 *1 (-940 *4 *2)) (-4 *2 (-1200 *4)))) (-3186 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1200 *5)))) (-3185 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1200 *5)))) (-3184 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-542)) (-5 *1 (-940 *4 *2)) (-4 *2 (-1200 *4)))) (-3183 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4099 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3182 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4099 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-3181 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4099 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))) (-4099 (*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2)))))
+(-10 -7 (-15 -4099 (|#1| |#2| |#2|)) (-15 -3181 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3182 ((-2 (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3183 ((-2 (|:| |coef1| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3184 (|#2| |#2| |#2| (-747))) (-15 -3185 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3186 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3187 (|#2| |#2| |#2| (-747))) (-15 -3188 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3189 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3524 (|#2| |#2| |#2|)) (-15 -3190 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3191 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4098 (|#2| |#2| |#2|)) (-15 -3192 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3478 |#2|)) |#2| |#2|)) (-15 -3193 ((-2 (|:| |coef2| |#2|) (|:| -3478 |#2|)) |#2| |#2|)) (-15 -3194 ((-2 (|:| |coef1| |#2|) (|:| -3478 |#2|)) |#2| |#2|)) (-15 -4100 (|#1| |#2|)) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4100 |#1|)) |#2|)) (-15 -3196 ((-2 (|:| |coef2| |#2|) (|:| -4100 |#1|)) |#2|)) (-15 -3197 ((-618 |#2|) |#2| |#2|)) (-15 -3198 ((-618 (-747)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -3199 (|#1| |#2| |#2|)) (-15 -3200 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3199 |#1|)) |#2| |#2|)) (-15 -3201 ((-2 (|:| |coef2| |#2|) (|:| -3199 |#1|)) |#2| |#2|)) (-15 -3478 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1224 |#2|) |#1| (-1224 |#2|))) (-15 -3803 ((-1224 |#2|) (-1224 |#2|) |#1|)) (-15 -4095 ((-2 (|:| -4296 |#1|) (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2|)) (-15 -3202 ((-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) |#2| |#2|)) (-15 -3203 (|#1| |#1| |#1| (-747))) (-15 -3204 (|#2| |#2| |#1| |#1| (-747))) (-15 -3205 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3206 (|#1| |#2| |#2|)) (-15 -3207 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| -4099 |#1|)) |#2| |#2|)))
+((-2887 (((-112) $ $) NIL)) (-3652 (((-1179) $) 13)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3540 (((-1101) $) 10)) (-4300 (((-835) $) 22) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-941) (-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3652 ((-1179) $))))) (T -941))
+((-3540 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-941)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-941)))))
+(-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3652 ((-1179) $))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) 27)) (-3879 (($) NIL T CONST)) (-3210 (((-618 (-618 (-535))) (-618 (-535))) 29)) (-3209 (((-535) $) 45)) (-3211 (($ (-618 (-535))) 17)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4313 (((-618 (-535)) $) 12)) (-3330 (($ $) 32)) (-4300 (((-835) $) 43) (((-618 (-535)) $) 10)) (-2979 (($) 7 T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 20)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 19)) (-4182 (($ $ $) 21)) (* (($ (-890) $) NIL) (($ (-747) $) 25)))
+(((-942) (-13 (-773) (-594 (-618 (-535))) (-10 -8 (-15 -3211 ($ (-618 (-535)))) (-15 -3210 ((-618 (-618 (-535))) (-618 (-535)))) (-15 -3209 ((-535) $)) (-15 -3330 ($ $)) (-15 -4300 ((-618 (-535)) $))))) (T -942))
+((-3211 (*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-942)))) (-3210 (*1 *2 *3) (-12 (-5 *2 (-618 (-618 (-535)))) (-5 *1 (-942)) (-5 *3 (-618 (-535))))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-942)))) (-3330 (*1 *1 *1) (-5 *1 (-942))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-942)))))
+(-13 (-773) (-594 (-618 (-535))) (-10 -8 (-15 -3211 ($ (-618 (-535)))) (-15 -3210 ((-618 (-618 (-535))) (-618 (-535)))) (-15 -3209 ((-535) $)) (-15 -3330 ($ $)) (-15 -4300 ((-618 (-535)) $))))
+((-4291 (($ $ |#2|) 30)) (-4180 (($ $) 22) (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-400 (-535)) $) 26) (($ $ (-400 (-535))) 28)))
+(((-943 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -4291 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|))) (-944 |#2| |#3| |#4|) (-1018) (-768) (-823)) (T -943))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-400 (-535)))) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 -4291 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-890) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 |#3|) $) 72)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-3213 (((-112) $) 71)) (-2493 (((-112) $) 30)) (-4280 (((-112) $) 60)) (-3214 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-618 |#3|) (-618 |#2|)) 73)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-4290 ((|#2| $) 62)) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4023 ((|#1| $ |#2|) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535)))))))
(((-944 |#1| |#2| |#3|) (-138) (-1018) (-768) (-823)) (T -944))
-((-2042 (*1 *2 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *3 (-768)) (-4 *4 (-823)) (-4 *2 (-1018)))) (-2027 (*1 *1 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *4 (-823)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *2 *4)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *2 (-768)))) (-2244 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-944 *4 *3 *2)) (-4 *4 (-1018)) (-4 *3 (-768)) (-4 *2 (-823)))) (-2244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *6)) (-5 *3 (-621 *5)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-768)) (-4 *6 (-823)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *5 (-823)) (-5 *2 (-621 *5)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *5 (-823)) (-5 *2 (-112)))) (-1814 (*1 *1 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *4 (-823)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2244 ($ $ |t#3| |t#2|)) (-15 -2244 ($ $ (-621 |t#3|) (-621 |t#2|))) (-15 -2027 ($ $)) (-15 -2042 (|t#1| $)) (-15 -3068 (|t#2| $)) (-15 -2271 ((-621 |t#3|) $)) (-15 -3155 ((-112) $)) (-15 -1814 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-283) |has| |#1| (-541)) ((-541) |has| |#1| (-541)) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-1855 (((-1060 (-219)) $) 8)) (-1842 (((-1060 (-219)) $) 9)) (-1831 (((-1060 (-219)) $) 10)) (-3087 (((-621 (-621 (-914 (-219)))) $) 11)) (-3845 (((-834) $) 6)))
+((-3508 (*1 *2 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *3 (-768)) (-4 *4 (-823)) (-4 *2 (-1018)))) (-3215 (*1 *1 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *4 (-823)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *2 *4)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *2 (-768)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-944 *4 *3 *2)) (-4 *4 (-1018)) (-4 *3 (-768)) (-4 *2 (-823)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 *6)) (-5 *3 (-618 *5)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-768)) (-4 *6 (-823)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *5 (-823)) (-5 *2 (-618 *5)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3212 (*1 *1 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *4 (-823)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3214 ($ $ |t#3| |t#2|)) (-15 -3214 ($ $ (-618 |t#3|) (-618 |t#2|))) (-15 -3215 ($ $)) (-15 -3508 (|t#1| $)) (-15 -4290 (|t#2| $)) (-15 -3405 ((-618 |t#3|) $)) (-15 -3213 ((-112) $)) (-15 -3212 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-283) |has| |#1| (-542)) ((-542) |has| |#1| (-542)) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-3216 (((-1055 (-219)) $) 8)) (-3217 (((-1055 (-219)) $) 9)) (-3218 (((-1055 (-219)) $) 10)) (-3219 (((-618 (-618 (-914 (-219)))) $) 11)) (-4300 (((-835) $) 6)))
(((-945) (-138)) (T -945))
-((-3087 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-621 (-621 (-914 (-219))))))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1060 (-219))))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1060 (-219))))) (-1855 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1060 (-219))))))
-(-13 (-593 (-834)) (-10 -8 (-15 -3087 ((-621 (-621 (-914 (-219)))) $)) (-15 -1831 ((-1060 (-219)) $)) (-15 -1842 ((-1060 (-219)) $)) (-15 -1855 ((-1060 (-219)) $))))
-(((-593 (-834)) . T))
-((-2271 (((-621 |#4|) $) 23)) (-3863 (((-112) $) 48)) (-1771 (((-112) $) 47)) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |#4|) 36)) (-1717 (((-112) $) 49)) (-1766 (((-112) $ $) 55)) (-2671 (((-112) $ $) 58)) (-2498 (((-112) $) 53)) (-1436 (((-621 |#5|) (-621 |#5|) $) 90)) (-3001 (((-621 |#5|) (-621 |#5|) $) 87)) (-3249 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1670 (((-621 |#4|) $) 27)) (-2911 (((-112) |#4| $) 30)) (-2205 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-1651 (($ $ |#4|) 33)) (-3183 (($ $ |#4|) 32)) (-2432 (($ $ |#4|) 34)) (-2388 (((-112) $ $) 40)))
-(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1771 ((-112) |#1|)) (-15 -1436 ((-621 |#5|) (-621 |#5|) |#1|)) (-15 -3001 ((-621 |#5|) (-621 |#5|) |#1|)) (-15 -3249 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2205 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1717 ((-112) |#1|)) (-15 -2671 ((-112) |#1| |#1|)) (-15 -1766 ((-112) |#1| |#1|)) (-15 -2498 ((-112) |#1|)) (-15 -3863 ((-112) |#1|)) (-15 -3193 ((-2 (|:| |under| |#1|) (|:| -4060 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1651 (|#1| |#1| |#4|)) (-15 -2432 (|#1| |#1| |#4|)) (-15 -3183 (|#1| |#1| |#4|)) (-15 -2911 ((-112) |#4| |#1|)) (-15 -1670 ((-621 |#4|) |#1|)) (-15 -2271 ((-621 |#4|) |#1|)) (-15 -2388 ((-112) |#1| |#1|))) (-947 |#2| |#3| |#4| |#5|) (-1018) (-769) (-823) (-1032 |#2| |#3| |#4|)) (T -946))
-NIL
-(-10 -8 (-15 -1771 ((-112) |#1|)) (-15 -1436 ((-621 |#5|) (-621 |#5|) |#1|)) (-15 -3001 ((-621 |#5|) (-621 |#5|) |#1|)) (-15 -3249 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2205 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1717 ((-112) |#1|)) (-15 -2671 ((-112) |#1| |#1|)) (-15 -1766 ((-112) |#1| |#1|)) (-15 -2498 ((-112) |#1|)) (-15 -3863 ((-112) |#1|)) (-15 -3193 ((-2 (|:| |under| |#1|) (|:| -4060 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1651 (|#1| |#1| |#4|)) (-15 -2432 (|#1| |#1| |#4|)) (-15 -3183 (|#1| |#1| |#4|)) (-15 -2911 ((-112) |#4| |#1|)) (-15 -1670 ((-621 |#4|) |#1|)) (-15 -2271 ((-621 |#4|) |#1|)) (-15 -2388 ((-112) |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-2271 (((-621 |#3|) $) 33)) (-3863 (((-112) $) 26)) (-1771 (((-112) $) 17 (|has| |#1| (-541)))) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |#3|) 27)) (-1323 (((-112) $ (-747)) 44)) (-1488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336)))) (-1705 (($) 45 T CONST)) (-1717 (((-112) $) 22 (|has| |#1| (-541)))) (-1766 (((-112) $ $) 24 (|has| |#1| (-541)))) (-2671 (((-112) $ $) 23 (|has| |#1| (-541)))) (-2498 (((-112) $) 25 (|has| |#1| (-541)))) (-1436 (((-621 |#4|) (-621 |#4|) $) 18 (|has| |#1| (-541)))) (-3001 (((-621 |#4|) (-621 |#4|) $) 19 (|has| |#1| (-541)))) (-2713 (((-3 $ "failed") (-621 |#4|)) 36)) (-2658 (($ (-621 |#4|)) 35)) (-3675 (($ $) 68 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#4| $) 67 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3249 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-541)))) (-2558 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336)))) (-2990 (((-621 |#4|) $) 52 (|has| $ (-6 -4336)))) (-4170 ((|#3| $) 34)) (-4202 (((-112) $ (-747)) 43)) (-1958 (((-621 |#4|) $) 53 (|has| $ (-6 -4336)))) (-2273 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#4| |#4|) $) 47)) (-1670 (((-621 |#3|) $) 32)) (-2911 (((-112) |#3| $) 31)) (-4289 (((-112) $ (-747)) 42)) (-2677 (((-1124) $) 9)) (-2205 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-541)))) (-3988 (((-1086) $) 10)) (-1917 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2470 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#4|) (-621 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-621 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))) (-2732 (((-112) $ $) 38)) (-1807 (((-112) $) 41)) (-1461 (($) 40)) (-3997 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-2281 (($ $) 39)) (-2844 (((-525) $) 69 (|has| |#4| (-594 (-525))))) (-3853 (($ (-621 |#4|)) 60)) (-1651 (($ $ |#3|) 28)) (-3183 (($ $ |#3|) 30)) (-2432 (($ $ |#3|) 29)) (-3845 (((-834) $) 11) (((-621 |#4|) $) 37)) (-2150 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 6)) (-3774 (((-747) $) 46 (|has| $ (-6 -4336)))))
+((-3219 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-618 (-618 (-914 (-219))))))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1055 (-219))))) (-3217 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1055 (-219))))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1055 (-219))))))
+(-13 (-593 (-835)) (-10 -8 (-15 -3219 ((-618 (-618 (-914 (-219)))) $)) (-15 -3218 ((-1055 (-219)) $)) (-15 -3217 ((-1055 (-219)) $)) (-15 -3216 ((-1055 (-219)) $))))
+(((-593 (-835)) . T))
+((-3405 (((-618 |#4|) $) 23)) (-3229 (((-112) $) 48)) (-3220 (((-112) $) 47)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#4|) 36)) (-3225 (((-112) $) 49)) (-3227 (((-112) $ $) 55)) (-3226 (((-112) $ $) 58)) (-3228 (((-112) $) 53)) (-3221 (((-618 |#5|) (-618 |#5|) $) 90)) (-3222 (((-618 |#5|) (-618 |#5|) $) 87)) (-3223 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3235 (((-618 |#4|) $) 27)) (-3234 (((-112) |#4| $) 30)) (-3224 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3231 (($ $ |#4|) 33)) (-3233 (($ $ |#4|) 32)) (-3232 (($ $ |#4|) 34)) (-3375 (((-112) $ $) 40)))
+(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3220 ((-112) |#1|)) (-15 -3221 ((-618 |#5|) (-618 |#5|) |#1|)) (-15 -3222 ((-618 |#5|) (-618 |#5|) |#1|)) (-15 -3223 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3224 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3225 ((-112) |#1|)) (-15 -3226 ((-112) |#1| |#1|)) (-15 -3227 ((-112) |#1| |#1|)) (-15 -3228 ((-112) |#1|)) (-15 -3229 ((-112) |#1|)) (-15 -3230 ((-2 (|:| |under| |#1|) (|:| -3448 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -3232 (|#1| |#1| |#4|)) (-15 -3233 (|#1| |#1| |#4|)) (-15 -3234 ((-112) |#4| |#1|)) (-15 -3235 ((-618 |#4|) |#1|)) (-15 -3405 ((-618 |#4|) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-947 |#2| |#3| |#4| |#5|) (-1018) (-769) (-823) (-1032 |#2| |#3| |#4|)) (T -946))
+NIL
+(-10 -8 (-15 -3220 ((-112) |#1|)) (-15 -3221 ((-618 |#5|) (-618 |#5|) |#1|)) (-15 -3222 ((-618 |#5|) (-618 |#5|) |#1|)) (-15 -3223 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3224 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3225 ((-112) |#1|)) (-15 -3226 ((-112) |#1| |#1|)) (-15 -3227 ((-112) |#1| |#1|)) (-15 -3228 ((-112) |#1|)) (-15 -3229 ((-112) |#1|)) (-15 -3230 ((-2 (|:| |under| |#1|) (|:| -3448 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -3232 (|#1| |#1| |#4|)) (-15 -3233 (|#1| |#1| |#4|)) (-15 -3234 ((-112) |#4| |#1|)) (-15 -3235 ((-618 |#4|) |#1|)) (-15 -3405 ((-618 |#4|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3405 (((-618 |#3|) $) 33)) (-3229 (((-112) $) 26)) (-3220 (((-112) $) 17 (|has| |#1| (-542)))) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) 27)) (-1264 (((-112) $ (-747)) 44)) (-4056 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336)))) (-3879 (($) 45 T CONST)) (-3225 (((-112) $) 22 (|has| |#1| (-542)))) (-3227 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3226 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3228 (((-112) $) 25 (|has| |#1| (-542)))) (-3221 (((-618 |#4|) (-618 |#4|) $) 18 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) 19 (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 36)) (-3490 (($ (-618 |#4|)) 35)) (-1394 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336)))) (-2063 (((-618 |#4|) $) 52 (|has| $ (-6 -4336)))) (-3514 ((|#3| $) 34)) (-4065 (((-112) $ (-747)) 43)) (-2502 (((-618 |#4|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 47)) (-3235 (((-618 |#3|) $) 32)) (-3234 (((-112) |#3| $) 31)) (-4062 (((-112) $ (-747)) 42)) (-3576 (((-1124) $) 9)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-3577 (((-1086) $) 10)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) 38)) (-3745 (((-112) $) 41)) (-3911 (($) 40)) (-2064 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-3742 (($ $) 39)) (-4313 (((-524) $) 69 (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-3233 (($ $ |#3|) 30)) (-3232 (($ $ |#3|) 29)) (-4300 (((-835) $) 11) (((-618 |#4|) $) 37)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 46 (|has| $ (-6 -4336)))))
(((-947 |#1| |#2| |#3| |#4|) (-138) (-1018) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -947))
-((-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-1032 *3 *4 *2)) (-4 *2 (-823)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *5)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *5)))) (-2911 (*1 *2 *3 *1) (-12 (-4 *1 (-947 *4 *5 *3 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112)))) (-3183 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))) (-2432 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))) (-1651 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))) (-3193 (*1 *2 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -4060 *1) (|:| |upper| *1))) (-4 *1 (-947 *4 *5 *3 *6)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-2498 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-5 *2 (-112)))) (-1766 (*1 *2 *1 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-5 *2 (-112)))) (-2671 (*1 *2 *1 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-5 *2 (-112)))) (-1717 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-5 *2 (-112)))) (-2205 (*1 *2 *3 *1) (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3249 (*1 *2 *3 *1) (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3001 (*1 *2 *2 *1) (-12 (-5 *2 (-621 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)))) (-1436 (*1 *2 *2 *1) (-12 (-5 *2 (-621 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-5 *2 (-112)))))
-(-13 (-1066) (-149 |t#4|) (-593 (-621 |t#4|)) (-10 -8 (-6 -4336) (-15 -2713 ((-3 $ "failed") (-621 |t#4|))) (-15 -2658 ($ (-621 |t#4|))) (-15 -4170 (|t#3| $)) (-15 -2271 ((-621 |t#3|) $)) (-15 -1670 ((-621 |t#3|) $)) (-15 -2911 ((-112) |t#3| $)) (-15 -3183 ($ $ |t#3|)) (-15 -2432 ($ $ |t#3|)) (-15 -1651 ($ $ |t#3|)) (-15 -3193 ((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |t#3|)) (-15 -3863 ((-112) $)) (IF (|has| |t#1| (-541)) (PROGN (-15 -2498 ((-112) $)) (-15 -1766 ((-112) $ $)) (-15 -2671 ((-112) $ $)) (-15 -1717 ((-112) $)) (-15 -2205 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3249 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3001 ((-621 |t#4|) (-621 |t#4|) $)) (-15 -1436 ((-621 |t#4|) (-621 |t#4|) $)) (-15 -1771 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-101) . T) ((-593 (-621 |#4|)) . T) ((-593 (-834)) . T) ((-149 |#4|) . T) ((-594 (-525)) |has| |#4| (-594 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))) ((-1066) . T) ((-1179) . T))
-((-3905 (((-621 |#4|) |#4| |#4|) 118)) (-2119 (((-621 |#4|) (-621 |#4|) (-112)) 107 (|has| |#1| (-444))) (((-621 |#4|) (-621 |#4|)) 108 (|has| |#1| (-444)))) (-2997 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|)) 35)) (-3224 (((-112) |#4|) 34)) (-2612 (((-621 |#4|) |#4|) 103 (|has| |#1| (-444)))) (-2550 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-1 (-112) |#4|) (-621 |#4|)) 20)) (-2272 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 (-1 (-112) |#4|)) (-621 |#4|)) 22)) (-1552 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 (-1 (-112) |#4|)) (-621 |#4|)) 23)) (-3864 (((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|)) 73)) (-4243 (((-621 |#4|) (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2236 (((-621 |#4|) (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3745 (((-621 |#4|) (-621 |#4|)) 110)) (-2857 (((-621 |#4|) (-621 |#4|) (-621 |#4|) (-112)) 48) (((-621 |#4|) (-621 |#4|) (-621 |#4|)) 50)) (-2610 ((|#4| |#4| (-621 |#4|)) 49)) (-3062 (((-621 |#4|) (-621 |#4|) (-621 |#4|)) 114 (|has| |#1| (-444)))) (-1613 (((-621 |#4|) (-621 |#4|) (-621 |#4|)) 117 (|has| |#1| (-444)))) (-1680 (((-621 |#4|) (-621 |#4|) (-621 |#4|)) 116 (|has| |#1| (-444)))) (-4210 (((-621 |#4|) (-621 |#4|) (-621 |#4|) (-1 (-621 |#4|) (-621 |#4|))) 87) (((-621 |#4|) (-621 |#4|) (-621 |#4|)) 89) (((-621 |#4|) (-621 |#4|) |#4|) 121) (((-621 |#4|) |#4| |#4|) 119) (((-621 |#4|) (-621 |#4|)) 88)) (-1883 (((-621 |#4|) (-621 |#4|) (-621 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3827 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|)) 41)) (-3404 (((-112) (-621 |#4|)) 62)) (-3401 (((-112) (-621 |#4|) (-621 (-621 |#4|))) 53)) (-2149 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|)) 29)) (-2786 (((-112) |#4|) 28)) (-1843 (((-621 |#4|) (-621 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-2143 (((-621 |#4|) (-621 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-2464 (((-621 |#4|) (-621 |#4|)) 66)) (-2693 (((-621 |#4|) (-621 |#4|)) 79)) (-3681 (((-112) (-621 |#4|) (-621 |#4|)) 51)) (-2490 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|)) 39)) (-3461 (((-112) |#4|) 36)))
-(((-948 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4210 ((-621 |#4|) (-621 |#4|))) (-15 -4210 ((-621 |#4|) |#4| |#4|)) (-15 -3745 ((-621 |#4|) (-621 |#4|))) (-15 -3905 ((-621 |#4|) |#4| |#4|)) (-15 -4210 ((-621 |#4|) (-621 |#4|) |#4|)) (-15 -4210 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -4210 ((-621 |#4|) (-621 |#4|) (-621 |#4|) (-1 (-621 |#4|) (-621 |#4|)))) (-15 -3681 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3401 ((-112) (-621 |#4|) (-621 (-621 |#4|)))) (-15 -3404 ((-112) (-621 |#4|))) (-15 -2550 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-1 (-112) |#4|) (-621 |#4|))) (-15 -2272 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 (-1 (-112) |#4|)) (-621 |#4|))) (-15 -1552 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 (-1 (-112) |#4|)) (-621 |#4|))) (-15 -3827 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -3224 ((-112) |#4|)) (-15 -2997 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -2786 ((-112) |#4|)) (-15 -2149 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -3461 ((-112) |#4|)) (-15 -2490 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -2857 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -2857 ((-621 |#4|) (-621 |#4|) (-621 |#4|) (-112))) (-15 -2610 (|#4| |#4| (-621 |#4|))) (-15 -2464 ((-621 |#4|) (-621 |#4|))) (-15 -3864 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|))) (-15 -2693 ((-621 |#4|) (-621 |#4|))) (-15 -4243 ((-621 |#4|) (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2236 ((-621 |#4|) (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -2612 ((-621 |#4|) |#4|)) (-15 -2119 ((-621 |#4|) (-621 |#4|))) (-15 -2119 ((-621 |#4|) (-621 |#4|) (-112))) (-15 -3062 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -1680 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -1613 ((-621 |#4|) (-621 |#4|) (-621 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -2143 ((-621 |#4|) (-621 |#4|))) (-15 -1843 ((-621 |#4|) (-621 |#4|))) (-15 -1883 ((-621 |#4|) (-621 |#4|) (-621 |#4|)))) |%noBranch|) |%noBranch|)) (-541) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -948))
-((-1883 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-1843 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-2143 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-1613 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-1680 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3062 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-2119 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))) (-2119 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-2612 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-2236 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-621 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-948 *5 *6 *7 *8)))) (-4243 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-621 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-541)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *1 (-948 *6 *7 *8 *9)))) (-2693 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3864 (*1 *2 *3) (|partial| -12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -2316 (-621 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-2464 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-2610 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *2)))) (-2857 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))) (-2857 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-2490 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-3461 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-2149 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-2786 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-2997 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-3224 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3827 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-1552 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |goodPols| (-621 *8)) (|:| |badPols| (-621 *8)))) (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-621 *8)))) (-2272 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |goodPols| (-621 *8)) (|:| |badPols| (-621 *8)))) (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-621 *8)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |goodPols| (-621 *8)) (|:| |badPols| (-621 *8)))) (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-621 *8)))) (-3404 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *7)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-621 *8))) (-5 *3 (-621 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *5 *6 *7 *8)))) (-3681 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *7)))) (-4210 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-621 *7) (-621 *7))) (-5 *2 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))) (-4210 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-4210 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *3)))) (-3905 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-4210 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-4210 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
-(-10 -7 (-15 -4210 ((-621 |#4|) (-621 |#4|))) (-15 -4210 ((-621 |#4|) |#4| |#4|)) (-15 -3745 ((-621 |#4|) (-621 |#4|))) (-15 -3905 ((-621 |#4|) |#4| |#4|)) (-15 -4210 ((-621 |#4|) (-621 |#4|) |#4|)) (-15 -4210 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -4210 ((-621 |#4|) (-621 |#4|) (-621 |#4|) (-1 (-621 |#4|) (-621 |#4|)))) (-15 -3681 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3401 ((-112) (-621 |#4|) (-621 (-621 |#4|)))) (-15 -3404 ((-112) (-621 |#4|))) (-15 -2550 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-1 (-112) |#4|) (-621 |#4|))) (-15 -2272 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 (-1 (-112) |#4|)) (-621 |#4|))) (-15 -1552 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 (-1 (-112) |#4|)) (-621 |#4|))) (-15 -3827 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -3224 ((-112) |#4|)) (-15 -2997 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -2786 ((-112) |#4|)) (-15 -2149 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -3461 ((-112) |#4|)) (-15 -2490 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -2857 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -2857 ((-621 |#4|) (-621 |#4|) (-621 |#4|) (-112))) (-15 -2610 (|#4| |#4| (-621 |#4|))) (-15 -2464 ((-621 |#4|) (-621 |#4|))) (-15 -3864 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|))) (-15 -2693 ((-621 |#4|) (-621 |#4|))) (-15 -4243 ((-621 |#4|) (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2236 ((-621 |#4|) (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -2612 ((-621 |#4|) |#4|)) (-15 -2119 ((-621 |#4|) (-621 |#4|))) (-15 -2119 ((-621 |#4|) (-621 |#4|) (-112))) (-15 -3062 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -1680 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -1613 ((-621 |#4|) (-621 |#4|) (-621 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -2143 ((-621 |#4|) (-621 |#4|))) (-15 -1843 ((-621 |#4|) (-621 |#4|))) (-15 -1883 ((-621 |#4|) (-621 |#4|) (-621 |#4|)))) |%noBranch|) |%noBranch|))
-((-4128 (((-2 (|:| R (-665 |#1|)) (|:| A (-665 |#1|)) (|:| |Ainv| (-665 |#1|))) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-1645 (((-621 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1225 |#1|)))) (-665 |#1|) (-1225 |#1|)) 36)) (-3339 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16)))
-(((-949 |#1|) (-10 -7 (-15 -4128 ((-2 (|:| R (-665 |#1|)) (|:| A (-665 |#1|)) (|:| |Ainv| (-665 |#1|))) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3339 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -1645 ((-621 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1225 |#1|)))) (-665 |#1|) (-1225 |#1|)))) (-356)) (T -949))
-((-1645 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-621 (-2 (|:| C (-665 *5)) (|:| |g| (-1225 *5))))) (-5 *1 (-949 *5)) (-5 *3 (-665 *5)) (-5 *4 (-1225 *5)))) (-3339 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-665 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-949 *5)))) (-4128 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) (-5 *2 (-2 (|:| R (-665 *6)) (|:| A (-665 *6)) (|:| |Ainv| (-665 *6)))) (-5 *1 (-949 *6)) (-5 *3 (-665 *6)))))
-(-10 -7 (-15 -4128 ((-2 (|:| R (-665 |#1|)) (|:| A (-665 |#1|)) (|:| |Ainv| (-665 |#1|))) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3339 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -1645 ((-621 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1225 |#1|)))) (-665 |#1|) (-1225 |#1|))))
-((-3513 (((-411 |#4|) |#4|) 48)))
-(((-950 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3513 ((-411 |#4|) |#4|))) (-823) (-769) (-444) (-920 |#3| |#2| |#1|)) (T -950))
-((-3513 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-444)) (-5 *2 (-411 *3)) (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-920 *6 *5 *4)))))
-(-10 -7 (-15 -3513 ((-411 |#4|) |#4|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-3768 (($ (-747)) 112 (|has| |#1| (-23)))) (-2932 (((-1230) $ (-549) (-549)) 40 (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-4106 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1323 (((-112) $ (-747)) 8)) (-2253 ((|#1| $ (-549) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) 58 (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-4273 (($ $) 90 (|has| $ (-6 -4337)))) (-3063 (($ $) 100)) (-3675 (($ $) 78 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#1| $) 77 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) 51)) (-2882 (((-549) (-1 (-112) |#1|) $) 97) (((-549) |#1| $) 96 (|has| |#1| (-1066))) (((-549) |#1| $ (-549)) 95 (|has| |#1| (-1066)))) (-2797 (($ (-621 |#1|)) 118)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4049 (((-665 |#1|) $ $) 105 (|has| |#1| (-1018)))) (-3743 (($ (-747) |#1|) 69)) (-4202 (((-112) $ (-747)) 9)) (-3485 (((-549) $) 43 (|has| (-549) (-823)))) (-2862 (($ $ $) 87 (|has| |#1| (-823)))) (-1586 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 44 (|has| (-549) (-823)))) (-3574 (($ $ $) 86 (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3054 ((|#1| $) 102 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-4289 (((-112) $ (-747)) 10)) (-4209 ((|#1| $) 103 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2614 (($ |#1| $ (-549)) 60) (($ $ $ (-549)) 59)) (-3927 (((-621 (-549)) $) 46)) (-1286 (((-112) (-549) $) 47)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-3645 ((|#1| $) 42 (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3158 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2975 (($ $ (-621 |#1|)) 115)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) 48)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ (-549) |#1|) 50) ((|#1| $ (-549)) 49) (($ $ (-1192 (-549))) 63)) (-4140 ((|#1| $ $) 106 (|has| |#1| (-1018)))) (-3128 (((-892) $) 117)) (-2166 (($ $ (-549)) 62) (($ $ (-1192 (-549))) 61)) (-1420 (($ $ $) 104)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1665 (($ $ $ (-549)) 91 (|has| $ (-6 -4337)))) (-2281 (($ $) 13)) (-2844 (((-525) $) 79 (|has| |#1| (-594 (-525)))) (($ (-621 |#1|)) 116)) (-3853 (($ (-621 |#1|)) 70)) (-1951 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 83 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-2436 (((-112) $ $) 85 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 82 (|has| |#1| (-823)))) (-2499 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2485 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-549) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-703))) (($ $ |#1|) 107 (|has| |#1| (-703)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
+((-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-1032 *3 *4 *2)) (-4 *2 (-823)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *5)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *5)))) (-3234 (*1 *2 *3 *1) (-12 (-4 *1 (-947 *4 *5 *3 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112)))) (-3233 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))) (-3232 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))) (-3231 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))) (-3230 (*1 *2 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3448 *1) (|:| |upper| *1))) (-4 *1 (-947 *4 *5 *3 *6)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-3227 (*1 *2 *1 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-3226 (*1 *2 *1 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))) (-3224 (*1 *2 *3 *1) (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3223 (*1 *2 *3 *1) (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3222 (*1 *2 *2 *1) (-12 (-5 *2 (-618 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)))) (-3221 (*1 *2 *2 *1) (-12 (-5 *2 (-618 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))))
+(-13 (-1067) (-149 |t#4|) (-593 (-618 |t#4|)) (-10 -8 (-6 -4336) (-15 -3491 ((-3 $ "failed") (-618 |t#4|))) (-15 -3490 ($ (-618 |t#4|))) (-15 -3514 (|t#3| $)) (-15 -3405 ((-618 |t#3|) $)) (-15 -3235 ((-618 |t#3|) $)) (-15 -3234 ((-112) |t#3| $)) (-15 -3233 ($ $ |t#3|)) (-15 -3232 ($ $ |t#3|)) (-15 -3231 ($ $ |t#3|)) (-15 -3230 ((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |t#3|)) (-15 -3229 ((-112) $)) (IF (|has| |t#1| (-542)) (PROGN (-15 -3228 ((-112) $)) (-15 -3227 ((-112) $ $)) (-15 -3226 ((-112) $ $)) (-15 -3225 ((-112) $)) (-15 -3224 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3223 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3222 ((-618 |t#4|) (-618 |t#4|) $)) (-15 -3221 ((-618 |t#4|) (-618 |t#4|) $)) (-15 -3220 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-101) . T) ((-593 (-618 |#4|)) . T) ((-593 (-835)) . T) ((-149 |#4|) . T) ((-594 (-524)) |has| |#4| (-594 (-524))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-1067) . T) ((-1178) . T))
+((-3237 (((-618 |#4|) |#4| |#4|) 118)) (-3260 (((-618 |#4|) (-618 |#4|) (-112)) 107 (|has| |#1| (-444))) (((-618 |#4|) (-618 |#4|)) 108 (|has| |#1| (-444)))) (-3247 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|)) 35)) (-3246 (((-112) |#4|) 34)) (-3259 (((-618 |#4|) |#4|) 103 (|has| |#1| (-444)))) (-3242 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-1 (-112) |#4|) (-618 |#4|)) 20)) (-3243 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 (-1 (-112) |#4|)) (-618 |#4|)) 22)) (-3244 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 (-1 (-112) |#4|)) (-618 |#4|)) 23)) (-3255 (((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3666 (-618 |#4|))) "failed") (-618 |#4|)) 73)) (-3257 (((-618 |#4|) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3258 (((-618 |#4|) (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3236 (((-618 |#4|) (-618 |#4|)) 110)) (-3252 (((-618 |#4|) (-618 |#4|) (-618 |#4|) (-112)) 48) (((-618 |#4|) (-618 |#4|) (-618 |#4|)) 50)) (-3253 ((|#4| |#4| (-618 |#4|)) 49)) (-3261 (((-618 |#4|) (-618 |#4|) (-618 |#4|)) 114 (|has| |#1| (-444)))) (-3263 (((-618 |#4|) (-618 |#4|) (-618 |#4|)) 117 (|has| |#1| (-444)))) (-3262 (((-618 |#4|) (-618 |#4|) (-618 |#4|)) 116 (|has| |#1| (-444)))) (-3238 (((-618 |#4|) (-618 |#4|) (-618 |#4|) (-1 (-618 |#4|) (-618 |#4|))) 87) (((-618 |#4|) (-618 |#4|) (-618 |#4|)) 89) (((-618 |#4|) (-618 |#4|) |#4|) 121) (((-618 |#4|) |#4| |#4|) 119) (((-618 |#4|) (-618 |#4|)) 88)) (-3266 (((-618 |#4|) (-618 |#4|) (-618 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3245 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|)) 41)) (-3241 (((-112) (-618 |#4|)) 62)) (-3240 (((-112) (-618 |#4|) (-618 (-618 |#4|))) 53)) (-3249 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|)) 29)) (-3248 (((-112) |#4|) 28)) (-3265 (((-618 |#4|) (-618 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3264 (((-618 |#4|) (-618 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3254 (((-618 |#4|) (-618 |#4|)) 66)) (-3256 (((-618 |#4|) (-618 |#4|)) 79)) (-3239 (((-112) (-618 |#4|) (-618 |#4|)) 51)) (-3251 (((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|)) 39)) (-3250 (((-112) |#4|) 36)))
+(((-948 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3238 ((-618 |#4|) (-618 |#4|))) (-15 -3238 ((-618 |#4|) |#4| |#4|)) (-15 -3236 ((-618 |#4|) (-618 |#4|))) (-15 -3237 ((-618 |#4|) |#4| |#4|)) (-15 -3238 ((-618 |#4|) (-618 |#4|) |#4|)) (-15 -3238 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3238 ((-618 |#4|) (-618 |#4|) (-618 |#4|) (-1 (-618 |#4|) (-618 |#4|)))) (-15 -3239 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3240 ((-112) (-618 |#4|) (-618 (-618 |#4|)))) (-15 -3241 ((-112) (-618 |#4|))) (-15 -3242 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-1 (-112) |#4|) (-618 |#4|))) (-15 -3243 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 (-1 (-112) |#4|)) (-618 |#4|))) (-15 -3244 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 (-1 (-112) |#4|)) (-618 |#4|))) (-15 -3245 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3246 ((-112) |#4|)) (-15 -3247 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3248 ((-112) |#4|)) (-15 -3249 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3250 ((-112) |#4|)) (-15 -3251 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3252 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3252 ((-618 |#4|) (-618 |#4|) (-618 |#4|) (-112))) (-15 -3253 (|#4| |#4| (-618 |#4|))) (-15 -3254 ((-618 |#4|) (-618 |#4|))) (-15 -3255 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3666 (-618 |#4|))) "failed") (-618 |#4|))) (-15 -3256 ((-618 |#4|) (-618 |#4|))) (-15 -3257 ((-618 |#4|) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3258 ((-618 |#4|) (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3259 ((-618 |#4|) |#4|)) (-15 -3260 ((-618 |#4|) (-618 |#4|))) (-15 -3260 ((-618 |#4|) (-618 |#4|) (-112))) (-15 -3261 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3262 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3263 ((-618 |#4|) (-618 |#4|) (-618 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -3264 ((-618 |#4|) (-618 |#4|))) (-15 -3265 ((-618 |#4|) (-618 |#4|))) (-15 -3266 ((-618 |#4|) (-618 |#4|) (-618 |#4|)))) |%noBranch|) |%noBranch|)) (-542) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -948))
+((-3266 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3263 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3262 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3261 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3260 (*1 *2 *2 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3259 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3258 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-618 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-948 *5 *6 *7 *8)))) (-3257 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-618 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *1 (-948 *6 *7 *8 *9)))) (-3256 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3255 (*1 *2 *3) (|partial| -12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -3666 (-618 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3253 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *2)))) (-3252 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-618 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))) (-3252 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3251 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-3250 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3249 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-3248 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3247 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-3246 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3245 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |goodPols| (-618 *8)) (|:| |badPols| (-618 *8)))) (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-618 *8)))) (-3243 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |goodPols| (-618 *8)) (|:| |badPols| (-618 *8)))) (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-618 *8)))) (-3242 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |goodPols| (-618 *8)) (|:| |badPols| (-618 *8)))) (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-618 *8)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *7)))) (-3240 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-618 *8))) (-5 *3 (-618 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *5 *6 *7 *8)))) (-3239 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *7)))) (-3238 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-618 *7) (-618 *7))) (-5 *2 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))) (-3238 (*1 *2 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3238 (*1 *2 *2 *3) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *3)))) (-3237 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3236 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3238 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3238 (*1 *2 *2) (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3238 ((-618 |#4|) (-618 |#4|))) (-15 -3238 ((-618 |#4|) |#4| |#4|)) (-15 -3236 ((-618 |#4|) (-618 |#4|))) (-15 -3237 ((-618 |#4|) |#4| |#4|)) (-15 -3238 ((-618 |#4|) (-618 |#4|) |#4|)) (-15 -3238 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3238 ((-618 |#4|) (-618 |#4|) (-618 |#4|) (-1 (-618 |#4|) (-618 |#4|)))) (-15 -3239 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3240 ((-112) (-618 |#4|) (-618 (-618 |#4|)))) (-15 -3241 ((-112) (-618 |#4|))) (-15 -3242 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-1 (-112) |#4|) (-618 |#4|))) (-15 -3243 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 (-1 (-112) |#4|)) (-618 |#4|))) (-15 -3244 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 (-1 (-112) |#4|)) (-618 |#4|))) (-15 -3245 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3246 ((-112) |#4|)) (-15 -3247 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3248 ((-112) |#4|)) (-15 -3249 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3250 ((-112) |#4|)) (-15 -3251 ((-2 (|:| |goodPols| (-618 |#4|)) (|:| |badPols| (-618 |#4|))) (-618 |#4|))) (-15 -3252 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3252 ((-618 |#4|) (-618 |#4|) (-618 |#4|) (-112))) (-15 -3253 (|#4| |#4| (-618 |#4|))) (-15 -3254 ((-618 |#4|) (-618 |#4|))) (-15 -3255 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3666 (-618 |#4|))) "failed") (-618 |#4|))) (-15 -3256 ((-618 |#4|) (-618 |#4|))) (-15 -3257 ((-618 |#4|) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3258 ((-618 |#4|) (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3259 ((-618 |#4|) |#4|)) (-15 -3260 ((-618 |#4|) (-618 |#4|))) (-15 -3260 ((-618 |#4|) (-618 |#4|) (-112))) (-15 -3261 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3262 ((-618 |#4|) (-618 |#4|) (-618 |#4|))) (-15 -3263 ((-618 |#4|) (-618 |#4|) (-618 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -3264 ((-618 |#4|) (-618 |#4|))) (-15 -3265 ((-618 |#4|) (-618 |#4|))) (-15 -3266 ((-618 |#4|) (-618 |#4|) (-618 |#4|)))) |%noBranch|) |%noBranch|))
+((-3267 (((-2 (|:| R (-665 |#1|)) (|:| A (-665 |#1|)) (|:| |Ainv| (-665 |#1|))) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-3269 (((-618 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1224 |#1|)))) (-665 |#1|) (-1224 |#1|)) 36)) (-3268 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16)))
+(((-949 |#1|) (-10 -7 (-15 -3267 ((-2 (|:| R (-665 |#1|)) (|:| A (-665 |#1|)) (|:| |Ainv| (-665 |#1|))) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3268 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3269 ((-618 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1224 |#1|)))) (-665 |#1|) (-1224 |#1|)))) (-356)) (T -949))
+((-3269 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-618 (-2 (|:| C (-665 *5)) (|:| |g| (-1224 *5))))) (-5 *1 (-949 *5)) (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)))) (-3268 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-665 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-949 *5)))) (-3267 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) (-5 *2 (-2 (|:| R (-665 *6)) (|:| A (-665 *6)) (|:| |Ainv| (-665 *6)))) (-5 *1 (-949 *6)) (-5 *3 (-665 *6)))))
+(-10 -7 (-15 -3267 ((-2 (|:| R (-665 |#1|)) (|:| A (-665 |#1|)) (|:| |Ainv| (-665 |#1|))) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3268 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3269 ((-618 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1224 |#1|)))) (-665 |#1|) (-1224 |#1|))))
+((-4312 (((-398 |#4|) |#4|) 48)))
+(((-950 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4312 ((-398 |#4|) |#4|))) (-823) (-769) (-444) (-921 |#3| |#2| |#1|)) (T -950))
+((-4312 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-444)) (-5 *2 (-398 *3)) (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-921 *6 *5 *4)))))
+(-10 -7 (-15 -4312 ((-398 |#4|) |#4|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4181 (($ (-747)) 112 (|has| |#1| (-23)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2368 (($ $) 90 (|has| $ (-6 -4337)))) (-2369 (($ $) 100)) (-1394 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 51)) (-3761 (((-535) (-1 (-112) |#1|) $) 97) (((-535) |#1| $) 96 (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) 95 (|has| |#1| (-1067)))) (-4052 (($ (-618 |#1|)) 118)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4178 (((-665 |#1|) $ $) 105 (|has| |#1| (-1018)))) (-3960 (($ (-747) |#1|) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 87 (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 86 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4175 ((|#1| $) 102 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-4062 (((-112) $ (-747)) 10)) (-4176 ((|#1| $) 103 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 42 (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2297 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-4111 (($ $ (-618 |#1|)) 115)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) |#1|) 50) ((|#1| $ (-535)) 49) (($ $ (-1191 (-535))) 63)) (-4179 ((|#1| $ $) 106 (|has| |#1| (-1018)))) (-4254 (((-890) $) 117)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-4177 (($ $ $) 104)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 91 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| |#1| (-594 (-524)))) (($ (-618 |#1|)) 116)) (-3867 (($ (-618 |#1|)) 70)) (-4144 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 83 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 82 (|has| |#1| (-823)))) (-4180 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4182 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-535) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-703))) (($ $ |#1|) 107 (|has| |#1| (-703)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
(((-951 |#1|) (-138) (-1018)) (T -951))
-((-2797 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1018)) (-5 *2 (-892)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3)))) (-1420 (*1 *1 *1 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1018)))) (-2975 (*1 *1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *1 (-951 *3)) (-4 *3 (-1018)))))
-(-13 (-1223 |t#1|) (-10 -8 (-15 -2797 ($ (-621 |t#1|))) (-15 -3128 ((-892) $)) (-15 -2844 ($ (-621 |t#1|))) (-15 -1420 ($ $ $)) (-15 -2975 ($ $ (-621 |t#1|)))))
-(((-34) . T) ((-101) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823))) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-627 |#1|) . T) ((-19 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1066) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823))) ((-1179) . T) ((-1223 |#1|) . T))
-((-2796 (((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|)) 17)))
-(((-952 |#1| |#2|) (-10 -7 (-15 -2796 ((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|)))) (-1018) (-1018)) (T -952))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-914 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-914 *6)) (-5 *1 (-952 *5 *6)))))
-(-10 -7 (-15 -2796 ((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|))))
-((-2400 ((|#1| (-914 |#1|)) 13)) (-3571 ((|#1| (-914 |#1|)) 12)) (-2833 ((|#1| (-914 |#1|)) 11)) (-1583 ((|#1| (-914 |#1|)) 15)) (-1357 ((|#1| (-914 |#1|)) 21)) (-3806 ((|#1| (-914 |#1|)) 14)) (-2872 ((|#1| (-914 |#1|)) 16)) (-1621 ((|#1| (-914 |#1|)) 20)) (-1898 ((|#1| (-914 |#1|)) 19)))
-(((-953 |#1|) (-10 -7 (-15 -2833 (|#1| (-914 |#1|))) (-15 -3571 (|#1| (-914 |#1|))) (-15 -2400 (|#1| (-914 |#1|))) (-15 -3806 (|#1| (-914 |#1|))) (-15 -1583 (|#1| (-914 |#1|))) (-15 -2872 (|#1| (-914 |#1|))) (-15 -1898 (|#1| (-914 |#1|))) (-15 -1621 (|#1| (-914 |#1|))) (-15 -1357 (|#1| (-914 |#1|)))) (-1018)) (T -953))
-((-1357 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
-(-10 -7 (-15 -2833 (|#1| (-914 |#1|))) (-15 -3571 (|#1| (-914 |#1|))) (-15 -2400 (|#1| (-914 |#1|))) (-15 -3806 (|#1| (-914 |#1|))) (-15 -1583 (|#1| (-914 |#1|))) (-15 -2872 (|#1| (-914 |#1|))) (-15 -1898 (|#1| (-914 |#1|))) (-15 -1621 (|#1| (-914 |#1|))) (-15 -1357 (|#1| (-914 |#1|))))
-((-2315 (((-3 |#1| "failed") |#1|) 18)) (-1643 (((-3 |#1| "failed") |#1|) 6)) (-1999 (((-3 |#1| "failed") |#1|) 16)) (-2585 (((-3 |#1| "failed") |#1|) 4)) (-3241 (((-3 |#1| "failed") |#1|) 20)) (-3017 (((-3 |#1| "failed") |#1|) 8)) (-3835 (((-3 |#1| "failed") |#1| (-747)) 1)) (-1424 (((-3 |#1| "failed") |#1|) 3)) (-1308 (((-3 |#1| "failed") |#1|) 2)) (-4015 (((-3 |#1| "failed") |#1|) 21)) (-1558 (((-3 |#1| "failed") |#1|) 9)) (-1301 (((-3 |#1| "failed") |#1|) 19)) (-2657 (((-3 |#1| "failed") |#1|) 7)) (-3165 (((-3 |#1| "failed") |#1|) 17)) (-2712 (((-3 |#1| "failed") |#1|) 5)) (-1990 (((-3 |#1| "failed") |#1|) 24)) (-2949 (((-3 |#1| "failed") |#1|) 12)) (-4274 (((-3 |#1| "failed") |#1|) 22)) (-2433 (((-3 |#1| "failed") |#1|) 10)) (-2920 (((-3 |#1| "failed") |#1|) 26)) (-1366 (((-3 |#1| "failed") |#1|) 14)) (-1266 (((-3 |#1| "failed") |#1|) 27)) (-2318 (((-3 |#1| "failed") |#1|) 15)) (-1644 (((-3 |#1| "failed") |#1|) 25)) (-2147 (((-3 |#1| "failed") |#1|) 13)) (-3024 (((-3 |#1| "failed") |#1|) 23)) (-3942 (((-3 |#1| "failed") |#1|) 11)))
+((-4052 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1018)) (-5 *2 (-890)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3)))) (-4177 (*1 *1 *1 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1018)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-951 *3)) (-4 *3 (-1018)))))
+(-13 (-1223 |t#1|) (-10 -8 (-15 -4052 ($ (-618 |t#1|))) (-15 -4254 ((-890) $)) (-15 -4313 ($ (-618 |t#1|))) (-15 -4177 ($ $ $)) (-15 -4111 ($ $ (-618 |t#1|)))))
+(((-34) . T) ((-101) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-19 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1067) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1178) . T) ((-1223 |#1|) . T))
+((-4301 (((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|)) 17)))
+(((-952 |#1| |#2|) (-10 -7 (-15 -4301 ((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|)))) (-1018) (-1018)) (T -952))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-914 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-914 *6)) (-5 *1 (-952 *5 *6)))))
+(-10 -7 (-15 -4301 ((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|))))
+((-3272 ((|#1| (-914 |#1|)) 13)) (-3271 ((|#1| (-914 |#1|)) 12)) (-3270 ((|#1| (-914 |#1|)) 11)) (-3274 ((|#1| (-914 |#1|)) 15)) (-3278 ((|#1| (-914 |#1|)) 21)) (-3273 ((|#1| (-914 |#1|)) 14)) (-3275 ((|#1| (-914 |#1|)) 16)) (-3277 ((|#1| (-914 |#1|)) 20)) (-3276 ((|#1| (-914 |#1|)) 19)))
+(((-953 |#1|) (-10 -7 (-15 -3270 (|#1| (-914 |#1|))) (-15 -3271 (|#1| (-914 |#1|))) (-15 -3272 (|#1| (-914 |#1|))) (-15 -3273 (|#1| (-914 |#1|))) (-15 -3274 (|#1| (-914 |#1|))) (-15 -3275 (|#1| (-914 |#1|))) (-15 -3276 (|#1| (-914 |#1|))) (-15 -3277 (|#1| (-914 |#1|))) (-15 -3278 (|#1| (-914 |#1|)))) (-1018)) (T -953))
+((-3278 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3271 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3270 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(-10 -7 (-15 -3270 (|#1| (-914 |#1|))) (-15 -3271 (|#1| (-914 |#1|))) (-15 -3272 (|#1| (-914 |#1|))) (-15 -3273 (|#1| (-914 |#1|))) (-15 -3274 (|#1| (-914 |#1|))) (-15 -3275 (|#1| (-914 |#1|))) (-15 -3276 (|#1| (-914 |#1|))) (-15 -3277 (|#1| (-914 |#1|))) (-15 -3278 (|#1| (-914 |#1|))))
+((-3296 (((-3 |#1| "failed") |#1|) 18)) (-3284 (((-3 |#1| "failed") |#1|) 6)) (-3294 (((-3 |#1| "failed") |#1|) 16)) (-3282 (((-3 |#1| "failed") |#1|) 4)) (-3298 (((-3 |#1| "failed") |#1|) 20)) (-3286 (((-3 |#1| "failed") |#1|) 8)) (-3279 (((-3 |#1| "failed") |#1| (-747)) 1)) (-3281 (((-3 |#1| "failed") |#1|) 3)) (-3280 (((-3 |#1| "failed") |#1|) 2)) (-3299 (((-3 |#1| "failed") |#1|) 21)) (-3287 (((-3 |#1| "failed") |#1|) 9)) (-3297 (((-3 |#1| "failed") |#1|) 19)) (-3285 (((-3 |#1| "failed") |#1|) 7)) (-3295 (((-3 |#1| "failed") |#1|) 17)) (-3283 (((-3 |#1| "failed") |#1|) 5)) (-3302 (((-3 |#1| "failed") |#1|) 24)) (-3290 (((-3 |#1| "failed") |#1|) 12)) (-3300 (((-3 |#1| "failed") |#1|) 22)) (-3288 (((-3 |#1| "failed") |#1|) 10)) (-3304 (((-3 |#1| "failed") |#1|) 26)) (-3292 (((-3 |#1| "failed") |#1|) 14)) (-3305 (((-3 |#1| "failed") |#1|) 27)) (-3293 (((-3 |#1| "failed") |#1|) 15)) (-3303 (((-3 |#1| "failed") |#1|) 25)) (-3291 (((-3 |#1| "failed") |#1|) 13)) (-3301 (((-3 |#1| "failed") |#1|) 23)) (-3289 (((-3 |#1| "failed") |#1|) 11)))
(((-954 |#1|) (-138) (-1164)) (T -954))
-((-1266 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-2920 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-1644 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-1990 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3024 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-4274 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-4015 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3241 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-1301 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-2315 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3165 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-1999 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-2318 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-1366 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-2147 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-2949 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3942 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-2433 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-1558 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3017 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-2657 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-1643 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-2712 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-2585 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-1424 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-1308 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3835 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-747)) (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(-13 (-10 -7 (-15 -3835 ((-3 |t#1| "failed") |t#1| (-747))) (-15 -1308 ((-3 |t#1| "failed") |t#1|)) (-15 -1424 ((-3 |t#1| "failed") |t#1|)) (-15 -2585 ((-3 |t#1| "failed") |t#1|)) (-15 -2712 ((-3 |t#1| "failed") |t#1|)) (-15 -1643 ((-3 |t#1| "failed") |t#1|)) (-15 -2657 ((-3 |t#1| "failed") |t#1|)) (-15 -3017 ((-3 |t#1| "failed") |t#1|)) (-15 -1558 ((-3 |t#1| "failed") |t#1|)) (-15 -2433 ((-3 |t#1| "failed") |t#1|)) (-15 -3942 ((-3 |t#1| "failed") |t#1|)) (-15 -2949 ((-3 |t#1| "failed") |t#1|)) (-15 -2147 ((-3 |t#1| "failed") |t#1|)) (-15 -1366 ((-3 |t#1| "failed") |t#1|)) (-15 -2318 ((-3 |t#1| "failed") |t#1|)) (-15 -1999 ((-3 |t#1| "failed") |t#1|)) (-15 -3165 ((-3 |t#1| "failed") |t#1|)) (-15 -2315 ((-3 |t#1| "failed") |t#1|)) (-15 -1301 ((-3 |t#1| "failed") |t#1|)) (-15 -3241 ((-3 |t#1| "failed") |t#1|)) (-15 -4015 ((-3 |t#1| "failed") |t#1|)) (-15 -4274 ((-3 |t#1| "failed") |t#1|)) (-15 -3024 ((-3 |t#1| "failed") |t#1|)) (-15 -1990 ((-3 |t#1| "failed") |t#1|)) (-15 -1644 ((-3 |t#1| "failed") |t#1|)) (-15 -2920 ((-3 |t#1| "failed") |t#1|)) (-15 -1266 ((-3 |t#1| "failed") |t#1|))))
-((-1605 ((|#4| |#4| (-621 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3543 ((|#4| |#4| (-621 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2796 ((|#4| (-1 |#4| (-923 |#1|)) |#4|) 30)))
-(((-955 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3543 (|#4| |#4| |#3|)) (-15 -3543 (|#4| |#4| (-621 |#3|))) (-15 -1605 (|#4| |#4| |#3|)) (-15 -1605 (|#4| |#4| (-621 |#3|))) (-15 -2796 (|#4| (-1 |#4| (-923 |#1|)) |#4|))) (-1018) (-769) (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $)) (-15 -3010 ((-3 $ "failed") (-1142))))) (-920 (-923 |#1|) |#2| |#3|)) (T -955))
-((-2796 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-923 *4))) (-4 *4 (-1018)) (-4 *2 (-920 (-923 *4) *5 *6)) (-4 *5 (-769)) (-4 *6 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $)) (-15 -3010 ((-3 $ "failed") (-1142)))))) (-5 *1 (-955 *4 *5 *6 *2)))) (-1605 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *6)) (-4 *6 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $)) (-15 -3010 ((-3 $ "failed") (-1142)))))) (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2)) (-4 *2 (-920 (-923 *4) *5 *6)))) (-1605 (*1 *2 *2 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $)) (-15 -3010 ((-3 $ "failed") (-1142)))))) (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-920 (-923 *4) *5 *3)))) (-3543 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *6)) (-4 *6 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $)) (-15 -3010 ((-3 $ "failed") (-1142)))))) (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2)) (-4 *2 (-920 (-923 *4) *5 *6)))) (-3543 (*1 *2 *2 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $)) (-15 -3010 ((-3 $ "failed") (-1142)))))) (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-920 (-923 *4) *5 *3)))))
-(-10 -7 (-15 -3543 (|#4| |#4| |#3|)) (-15 -3543 (|#4| |#4| (-621 |#3|))) (-15 -1605 (|#4| |#4| |#3|)) (-15 -1605 (|#4| |#4| (-621 |#3|))) (-15 -2796 (|#4| (-1 |#4| (-923 |#1|)) |#4|)))
-((-3859 ((|#2| |#3|) 35)) (-2675 (((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|) 73)) (-2581 (((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) 89)))
-(((-956 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2581 ((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -2675 ((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|)) (-15 -3859 (|#2| |#3|))) (-342) (-1201 |#1|) (-1201 |#2|) (-701 |#2| |#3|)) (T -956))
-((-3859 (*1 *2 *3) (-12 (-4 *3 (-1201 *2)) (-4 *2 (-1201 *4)) (-5 *1 (-956 *4 *2 *3 *5)) (-4 *4 (-342)) (-4 *5 (-701 *2 *3)))) (-2675 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *3 (-1201 *4)) (-4 *5 (-1201 *3)) (-5 *2 (-2 (|:| -3420 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-956 *4 *3 *5 *6)) (-4 *6 (-701 *3 *5)))) (-2581 (*1 *2) (-12 (-4 *3 (-342)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 *4)) (-5 *2 (-2 (|:| -3420 (-665 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-665 *4)))) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-701 *4 *5)))))
-(-10 -7 (-15 -2581 ((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -2675 ((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|)) (-15 -3859 (|#2| |#3|)))
-((-4284 (((-958 (-400 (-549)) (-836 |#1|) (-234 |#2| (-747)) (-241 |#1| (-400 (-549)))) (-958 (-400 (-549)) (-836 |#1|) (-234 |#2| (-747)) (-241 |#1| (-400 (-549))))) 69)))
-(((-957 |#1| |#2|) (-10 -7 (-15 -4284 ((-958 (-400 (-549)) (-836 |#1|) (-234 |#2| (-747)) (-241 |#1| (-400 (-549)))) (-958 (-400 (-549)) (-836 |#1|) (-234 |#2| (-747)) (-241 |#1| (-400 (-549))))))) (-621 (-1142)) (-747)) (T -957))
-((-4284 (*1 *2 *2) (-12 (-5 *2 (-958 (-400 (-549)) (-836 *3) (-234 *4 (-747)) (-241 *3 (-400 (-549))))) (-14 *3 (-621 (-1142))) (-14 *4 (-747)) (-5 *1 (-957 *3 *4)))))
-(-10 -7 (-15 -4284 ((-958 (-400 (-549)) (-836 |#1|) (-234 |#2| (-747)) (-241 |#1| (-400 (-549)))) (-958 (-400 (-549)) (-836 |#1|) (-234 |#2| (-747)) (-241 |#1| (-400 (-549)))))))
-((-3833 (((-112) $ $) NIL)) (-1463 (((-3 (-112) "failed") $) 69)) (-2237 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-2229 (($ $ (-3 (-112) "failed")) 70)) (-3973 (($ (-621 |#4|) |#4|) 25)) (-2677 (((-1124) $) NIL)) (-1832 (($ $) 67)) (-3988 (((-1086) $) NIL)) (-1807 (((-112) $) 68)) (-1461 (($) 30)) (-3204 ((|#4| $) 72)) (-2190 (((-621 |#4|) $) 71)) (-3845 (((-834) $) 66)) (-2388 (((-112) $ $) NIL)))
-(((-958 |#1| |#2| |#3| |#4|) (-13 (-1066) (-593 (-834)) (-10 -8 (-15 -1461 ($)) (-15 -3973 ($ (-621 |#4|) |#4|)) (-15 -1463 ((-3 (-112) "failed") $)) (-15 -2229 ($ $ (-3 (-112) "failed"))) (-15 -1807 ((-112) $)) (-15 -2190 ((-621 |#4|) $)) (-15 -3204 (|#4| $)) (-15 -1832 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -2237 ($ $)) |%noBranch|) |%noBranch|))) (-444) (-823) (-769) (-920 |#1| |#3| |#2|)) (T -958))
-((-1461 (*1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-958 *2 *3 *4 *5)) (-4 *5 (-920 *2 *4 *3)))) (-3973 (*1 *1 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-920 *4 *6 *5)) (-4 *4 (-444)) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *1 (-958 *4 *5 *6 *3)))) (-1463 (*1 *2 *1) (|partial| -12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4)))) (-2229 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4)))) (-1807 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4)))) (-2190 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-621 *6)) (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4)))) (-3204 (*1 *2 *1) (-12 (-4 *2 (-920 *3 *5 *4)) (-5 *1 (-958 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)))) (-1832 (*1 *1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-958 *2 *3 *4 *5)) (-4 *5 (-920 *2 *4 *3)))) (-2237 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-958 *2 *3 *4 *5)) (-4 *5 (-920 *2 *4 *3)))))
-(-13 (-1066) (-593 (-834)) (-10 -8 (-15 -1461 ($)) (-15 -3973 ($ (-621 |#4|) |#4|)) (-15 -1463 ((-3 (-112) "failed") $)) (-15 -2229 ($ $ (-3 (-112) "failed"))) (-15 -1807 ((-112) $)) (-15 -2190 ((-621 |#4|) $)) (-15 -3204 (|#4| $)) (-15 -1832 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -2237 ($ $)) |%noBranch|) |%noBranch|)))
-((-1259 (((-112) |#5| |#5|) 38)) (-1384 (((-112) |#5| |#5|) 52)) (-2661 (((-112) |#5| (-621 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-2010 (((-112) (-621 |#4|) (-621 |#4|)) 58)) (-1444 (((-112) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) 63)) (-3523 (((-1230)) 33)) (-3727 (((-1230) (-1124) (-1124) (-1124)) 29)) (-2789 (((-621 |#5|) (-621 |#5|)) 81)) (-1715 (((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)))) 79)) (-2599 (((-621 (-2 (|:| -2650 (-621 |#4|)) (|:| -1980 |#5|) (|:| |ineq| (-621 |#4|)))) (-621 |#4|) (-621 |#5|) (-112) (-112)) 101)) (-2211 (((-112) |#5| |#5|) 47)) (-2967 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3307 (((-112) (-621 |#4|) (-621 |#4|)) 57)) (-4088 (((-112) (-621 |#4|) (-621 |#4|)) 59)) (-3739 (((-112) (-621 |#4|) (-621 |#4|)) 60)) (-3005 (((-3 (-2 (|:| -2650 (-621 |#4|)) (|:| -1980 |#5|) (|:| |ineq| (-621 |#4|))) "failed") (-621 |#4|) |#5| (-621 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-4067 (((-621 |#5|) (-621 |#5|)) 43)))
-(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3727 ((-1230) (-1124) (-1124) (-1124))) (-15 -3523 ((-1230))) (-15 -1259 ((-112) |#5| |#5|)) (-15 -4067 ((-621 |#5|) (-621 |#5|))) (-15 -2211 ((-112) |#5| |#5|)) (-15 -1384 ((-112) |#5| |#5|)) (-15 -2010 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3307 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -4088 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3739 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -2967 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2661 ((-112) |#5| |#5|)) (-15 -2661 ((-112) |#5| (-621 |#5|))) (-15 -2789 ((-621 |#5|) (-621 |#5|))) (-15 -1444 ((-112) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)))) (-15 -1715 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) (-15 -2599 ((-621 (-2 (|:| -2650 (-621 |#4|)) (|:| -1980 |#5|) (|:| |ineq| (-621 |#4|)))) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -3005 ((-3 (-2 (|:| -2650 (-621 |#4|)) (|:| -1980 |#5|) (|:| |ineq| (-621 |#4|))) "failed") (-621 |#4|) |#5| (-621 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -959))
-((-3005 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| -2650 (-621 *9)) (|:| -1980 *4) (|:| |ineq| (-621 *9)))) (-5 *1 (-959 *6 *7 *8 *9 *4)) (-5 *3 (-621 *9)) (-4 *4 (-1038 *6 *7 *8 *9)))) (-2599 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-621 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-621 (-2 (|:| -2650 (-621 *9)) (|:| -1980 *10) (|:| |ineq| (-621 *9))))) (-5 *1 (-959 *6 *7 *8 *9 *10)) (-5 *3 (-621 *9)))) (-1715 (*1 *2 *2) (-12 (-5 *2 (-621 (-2 (|:| |val| (-621 *6)) (|:| -1980 *7)))) (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) (-1444 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1980 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)))) (-2789 (*1 *2 *2) (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-959 *5 *6 *7 *8 *3)))) (-2661 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-2967 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3739 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-4088 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3307 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-2010 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-1384 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-2211 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) (-1259 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3523 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-959 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3727 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3727 ((-1230) (-1124) (-1124) (-1124))) (-15 -3523 ((-1230))) (-15 -1259 ((-112) |#5| |#5|)) (-15 -4067 ((-621 |#5|) (-621 |#5|))) (-15 -2211 ((-112) |#5| |#5|)) (-15 -1384 ((-112) |#5| |#5|)) (-15 -2010 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3307 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -4088 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3739 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -2967 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2661 ((-112) |#5| |#5|)) (-15 -2661 ((-112) |#5| (-621 |#5|))) (-15 -2789 ((-621 |#5|) (-621 |#5|))) (-15 -1444 ((-112) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)))) (-15 -1715 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) (-15 -2599 ((-621 (-2 (|:| -2650 (-621 |#4|)) (|:| -1980 |#5|) (|:| |ineq| (-621 |#4|)))) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -3005 ((-3 (-2 (|:| -2650 (-621 |#4|)) (|:| -1980 |#5|) (|:| |ineq| (-621 |#4|))) "failed") (-621 |#4|) |#5| (-621 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-3010 (((-1142) $) 15)) (-4160 (((-1124) $) 16)) (-2389 (($ (-1142) (-1124)) 14)) (-3845 (((-834) $) 13)))
-(((-960) (-13 (-593 (-834)) (-10 -8 (-15 -2389 ($ (-1142) (-1124))) (-15 -3010 ((-1142) $)) (-15 -4160 ((-1124) $))))) (T -960))
-((-2389 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1124)) (-5 *1 (-960)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-960)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-960)))))
-(-13 (-593 (-834)) (-10 -8 (-15 -2389 ($ (-1142) (-1124))) (-15 -3010 ((-1142) $)) (-15 -4160 ((-1124) $))))
-((-2796 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-961 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2796 (|#4| (-1 |#2| |#1|) |#3|))) (-541) (-541) (-963 |#1|) (-963 |#2|)) (T -961))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-541)) (-4 *6 (-541)) (-4 *2 (-963 *6)) (-5 *1 (-961 *5 *6 *4 *2)) (-4 *4 (-963 *5)))))
-(-10 -7 (-15 -2796 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2713 (((-3 |#2| "failed") $) NIL) (((-3 (-1142) "failed") $) 65) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 (-549) "failed") $) 95)) (-2658 ((|#2| $) NIL) (((-1142) $) 60) (((-400 (-549)) $) NIL) (((-549) $) 92)) (-1698 (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) 112) (((-665 |#2|) (-665 $)) 28)) (-3238 (($) 98)) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 75) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 84)) (-2053 (($ $) 10)) (-3982 (((-3 $ "failed") $) 20)) (-2796 (($ (-1 |#2| |#2|) $) 22)) (-3060 (($) 16)) (-1260 (($ $) 54)) (-3455 (($ $) NIL) (($ $ (-747)) NIL) (($ $ (-1142)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-4288 (($ $) 12)) (-2844 (((-863 (-549)) $) 70) (((-863 (-372)) $) 79) (((-525) $) 40) (((-372) $) 44) (((-219) $) 47)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) 90) (($ |#2|) NIL) (($ (-1142)) 57)) (-1723 (((-747)) 31)) (-2411 (((-112) $ $) 50)))
-(((-962 |#1| |#2|) (-10 -8 (-15 -2411 ((-112) |#1| |#1|)) (-15 -3060 (|#1|)) (-15 -3982 ((-3 |#1| "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2844 ((-219) |#1|)) (-15 -2844 ((-372) |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -2658 ((-1142) |#1|)) (-15 -2713 ((-3 (-1142) "failed") |#1|)) (-15 -3845 (|#1| (-1142))) (-15 -3238 (|#1|)) (-15 -1260 (|#1| |#1|)) (-15 -4288 (|#1| |#1|)) (-15 -2053 (|#1| |#1|)) (-15 -1289 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -1289 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2844 ((-863 (-372)) |#1|)) (-15 -2844 ((-863 (-549)) |#1|)) (-15 -1698 ((-665 |#2|) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-665 (-549)) (-665 |#1|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 (|#1| |#1|)) (-15 -3845 (|#1| (-549))) (-15 -1723 ((-747))) (-15 -3845 ((-834) |#1|))) (-963 |#2|) (-541)) (T -962))
-((-1723 (*1 *2) (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-962 *3 *4)) (-4 *3 (-963 *4)))))
-(-10 -8 (-15 -2411 ((-112) |#1| |#1|)) (-15 -3060 (|#1|)) (-15 -3982 ((-3 |#1| "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2844 ((-219) |#1|)) (-15 -2844 ((-372) |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -2658 ((-1142) |#1|)) (-15 -2713 ((-3 (-1142) "failed") |#1|)) (-15 -3845 (|#1| (-1142))) (-15 -3238 (|#1|)) (-15 -1260 (|#1| |#1|)) (-15 -4288 (|#1| |#1|)) (-15 -2053 (|#1| |#1|)) (-15 -1289 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -1289 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2844 ((-863 (-372)) |#1|)) (-15 -2844 ((-863 (-549)) |#1|)) (-15 -1698 ((-665 |#2|) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-665 (-549)) (-665 |#1|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 (|#1| |#1|)) (-15 -3845 (|#1| (-549))) (-15 -1723 ((-747))) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2364 ((|#1| $) 136 (|has| |#1| (-300)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-2461 (((-411 (-1138 $)) (-1138 $)) 127 (|has| |#1| (-880)))) (-1912 (($ $) 70)) (-3513 (((-411 $) $) 69)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 130 (|has| |#1| (-880)))) (-2647 (((-112) $ $) 57)) (-3902 (((-549) $) 117 (|has| |#1| (-796)))) (-1705 (($) 17 T CONST)) (-2713 (((-3 |#1| "failed") $) 175) (((-3 (-1142) "failed") $) 125 (|has| |#1| (-1009 (-1142)))) (((-3 (-400 (-549)) "failed") $) 109 (|has| |#1| (-1009 (-549)))) (((-3 (-549) "failed") $) 107 (|has| |#1| (-1009 (-549))))) (-2658 ((|#1| $) 174) (((-1142) $) 124 (|has| |#1| (-1009 (-1142)))) (((-400 (-549)) $) 108 (|has| |#1| (-1009 (-549)))) (((-549) $) 106 (|has| |#1| (-1009 (-549))))) (-2094 (($ $ $) 53)) (-1698 (((-665 (-549)) (-665 $)) 149 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 148 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 147) (((-665 |#1|) (-665 $)) 146)) (-3976 (((-3 $ "failed") $) 32)) (-3238 (($) 134 (|has| |#1| (-534)))) (-2066 (($ $ $) 54)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-2471 (((-112) $) 68)) (-3079 (((-112) $) 119 (|has| |#1| (-796)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 143 (|has| |#1| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 142 (|has| |#1| (-857 (-372))))) (-3987 (((-112) $) 30)) (-2053 (($ $) 138)) (-1393 ((|#1| $) 140)) (-3982 (((-3 $ "failed") $) 105 (|has| |#1| (-1117)))) (-2847 (((-112) $) 118 (|has| |#1| (-796)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-2862 (($ $ $) 115 (|has| |#1| (-823)))) (-3574 (($ $ $) 114 (|has| |#1| (-823)))) (-2796 (($ (-1 |#1| |#1|) $) 166)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 67)) (-3060 (($) 104 (|has| |#1| (-1117)) CONST)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-1260 (($ $) 135 (|has| |#1| (-300)))) (-4060 ((|#1| $) 132 (|has| |#1| (-534)))) (-1873 (((-411 (-1138 $)) (-1138 $)) 129 (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) 128 (|has| |#1| (-880)))) (-2120 (((-411 $) $) 71)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-2685 (($ $ (-621 |#1|) (-621 |#1|)) 172 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 170 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) 169 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1142)) (-621 |#1|)) 168 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) 167 (|has| |#1| (-505 (-1142) |#1|)))) (-4091 (((-747) $) 56)) (-3340 (($ $ |#1|) 173 (|has| |#1| (-279 |#1| |#1|)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55)) (-3455 (($ $) 165 (|has| |#1| (-227))) (($ $ (-747)) 163 (|has| |#1| (-227))) (($ $ (-1142)) 161 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) 160 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 159 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) 158 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-4288 (($ $) 137)) (-1404 ((|#1| $) 139)) (-2844 (((-863 (-549)) $) 145 (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) 144 (|has| |#1| (-594 (-863 (-372))))) (((-525) $) 122 (|has| |#1| (-594 (-525)))) (((-372) $) 121 (|has| |#1| (-993))) (((-219) $) 120 (|has| |#1| (-993)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 131 (-1820 (|has| $ (-143)) (|has| |#1| (-880))))) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63) (($ |#1|) 178) (($ (-1142)) 126 (|has| |#1| (-1009 (-1142))))) (-3407 (((-3 $ "failed") $) 123 (-1536 (|has| |#1| (-143)) (-1820 (|has| $ (-143)) (|has| |#1| (-880)))))) (-1723 (((-747)) 28)) (-2926 ((|#1| $) 133 (|has| |#1| (-534)))) (-4053 (((-112) $ $) 37)) (-3603 (($ $) 116 (|has| |#1| (-796)))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $) 164 (|has| |#1| (-227))) (($ $ (-747)) 162 (|has| |#1| (-227))) (($ $ (-1142)) 157 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) 156 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 155 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) 154 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2448 (((-112) $ $) 112 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 111 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 113 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 110 (|has| |#1| (-823)))) (-2512 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176)))
-(((-963 |#1|) (-138) (-541)) (T -963))
-((-2512 (*1 *1 *2 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))) (-1393 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))) (-1404 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))) (-2053 (*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))) (-4288 (*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))) (-2364 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-300)))) (-1260 (*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-300)))) (-3238 (*1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-534)) (-4 *2 (-541)))) (-2926 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-534)))) (-4060 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-534)))))
-(-13 (-356) (-38 |t#1|) (-1009 |t#1|) (-331 |t#1|) (-225 |t#1|) (-370 |t#1|) (-855 |t#1|) (-393 |t#1|) (-10 -8 (-15 -2512 ($ |t#1| |t#1|)) (-15 -1393 (|t#1| $)) (-15 -1404 (|t#1| $)) (-15 -2053 ($ $)) (-15 -4288 ($ $)) (IF (|has| |t#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |t#1| (-1009 (-549))) (PROGN (-6 (-1009 (-549))) (-6 (-1009 (-400 (-549))))) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-796)) (-6 (-796)) |%noBranch|) (IF (|has| |t#1| (-993)) (-6 (-993)) |%noBranch|) (IF (|has| |t#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1009 (-1142))) (-6 (-1009 (-1142))) |%noBranch|) (IF (|has| |t#1| (-300)) (PROGN (-15 -2364 (|t#1| $)) (-15 -1260 ($ $))) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3238 ($)) (-15 -2926 (|t#1| $)) (-15 -4060 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-880)) (-6 (-880)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) . T) ((-594 (-219)) |has| |#1| (-993)) ((-594 (-372)) |has| |#1| (-993)) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-594 (-863 (-372))) |has| |#1| (-594 (-863 (-372)))) ((-594 (-863 (-549))) |has| |#1| (-594 (-863 (-549)))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) . T) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) . T) ((-300) . T) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-444) . T) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-541) . T) ((-624 #0#) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) . T) ((-694 |#1|) . T) ((-694 $) . T) ((-703) . T) ((-767) |has| |#1| (-796)) ((-768) |has| |#1| (-796)) ((-770) |has| |#1| (-796)) ((-771) |has| |#1| (-796)) ((-796) |has| |#1| (-796)) ((-821) |has| |#1| (-796)) ((-823) -1536 (|has| |#1| (-823)) (|has| |#1| (-796))) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-857 (-372)) |has| |#1| (-857 (-372))) ((-857 (-549)) |has| |#1| (-857 (-549))) ((-855 |#1|) . T) ((-880) |has| |#1| (-880)) ((-891) . T) ((-993) |has| |#1| (-993)) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-549))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 (-1142)) |has| |#1| (-1009 (-1142))) ((-1009 |#1|) . T) ((-1024 #0#) . T) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1117) |has| |#1| (-1117)) ((-1179) . T) ((-1183) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2754 (($ (-1108 |#1| |#2|)) 11)) (-3945 (((-1108 |#1| |#2|) $) 12)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3340 ((|#2| $ (-234 |#1| |#2|)) 16)) (-3845 (((-834) $) NIL)) (-3275 (($) NIL T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL)))
-(((-964 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2754 ($ (-1108 |#1| |#2|))) (-15 -3945 ((-1108 |#1| |#2|) $)) (-15 -3340 (|#2| $ (-234 |#1| |#2|))))) (-892) (-356)) (T -964))
-((-2754 (*1 *1 *2) (-12 (-5 *2 (-1108 *3 *4)) (-14 *3 (-892)) (-4 *4 (-356)) (-5 *1 (-964 *3 *4)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1108 *3 *4)) (-5 *1 (-964 *3 *4)) (-14 *3 (-892)) (-4 *4 (-356)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-234 *4 *2)) (-14 *4 (-892)) (-4 *2 (-356)) (-5 *1 (-964 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -2754 ($ (-1108 |#1| |#2|))) (-15 -3945 ((-1108 |#1| |#2|) $)) (-15 -3340 (|#2| $ (-234 |#1| |#2|)))))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3954 (((-1101) $) 9)) (-3845 (((-834) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-965) (-13 (-1049) (-10 -8 (-15 -3954 ((-1101) $))))) (T -965))
-((-3954 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-965)))))
-(-13 (-1049) (-10 -8 (-15 -3954 ((-1101) $))))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) 8)) (-1705 (($) 7 T CONST)) (-2643 (($ $) 46)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-4209 (((-747) $) 45)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2349 ((|#1| $) 39)) (-1709 (($ |#1| $) 40)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-2032 ((|#1| $) 44)) (-2629 ((|#1| $) 41)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-4248 ((|#1| |#1| $) 48)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-1800 ((|#1| $) 47)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1765 (($ (-621 |#1|)) 42)) (-3529 ((|#1| $) 43)) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-966 |#1|) (-138) (-1179)) (T -966))
-((-4248 (*1 *2 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1179)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1179)))) (-2643 (*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1179)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-1179)) (-5 *2 (-747)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1179)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1179)))))
-(-13 (-106 |t#1|) (-10 -8 (-6 -4336) (-15 -4248 (|t#1| |t#1| $)) (-15 -1800 (|t#1| $)) (-15 -2643 ($ $)) (-15 -4209 ((-747) $)) (-15 -2032 (|t#1| $)) (-15 -3529 (|t#1| $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-3166 (((-112) $) 42)) (-2713 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2658 (((-549) $) NIL) (((-400 (-549)) $) NIL) ((|#2| $) 43)) (-3156 (((-3 (-400 (-549)) "failed") $) 78)) (-3230 (((-112) $) 72)) (-3867 (((-400 (-549)) $) 76)) (-3987 (((-112) $) 41)) (-4117 ((|#2| $) 22)) (-2796 (($ (-1 |#2| |#2|) $) 19)) (-1991 (($ $) 61)) (-3455 (($ $) NIL) (($ $ (-747)) NIL) (($ $ (-1142)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2844 (((-525) $) 67)) (-2538 (($ $) 17)) (-3845 (((-834) $) 56) (($ (-549)) 38) (($ |#2|) 36) (($ (-400 (-549))) NIL)) (-1723 (((-747)) 10)) (-3603 ((|#2| $) 71)) (-2388 (((-112) $ $) 25)) (-2411 (((-112) $ $) 69)) (-2499 (($ $) 29) (($ $ $) 28)) (-2485 (($ $ $) 26)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
-(((-967 |#1| |#2|) (-10 -8 (-15 -3845 (|#1| (-400 (-549)))) (-15 -2411 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 * (|#1| |#1| (-400 (-549)))) (-15 -1991 (|#1| |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -3156 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3867 ((-400 (-549)) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 -3603 (|#2| |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -2538 (|#1| |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -3845 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 (|#1| (-549))) (-15 -1723 ((-747))) (-15 -3987 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -2485 (|#1| |#1| |#1|)) (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|))) (-968 |#2|) (-170)) (T -967))
-((-1723 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-967 *3 *4)) (-4 *3 (-968 *4)))))
-(-10 -8 (-15 -3845 (|#1| (-400 (-549)))) (-15 -2411 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 * (|#1| |#1| (-400 (-549)))) (-15 -1991 (|#1| |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -3156 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3867 ((-400 (-549)) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 -3603 (|#2| |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -2538 (|#1| |#1|)) (-15 -2796 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -3845 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3845 (|#1| (-549))) (-15 -1723 ((-747))) (-15 -3987 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -2485 (|#1| |#1| |#1|)) (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2713 (((-3 (-549) "failed") $) 116 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 114 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 113)) (-2658 (((-549) $) 117 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 115 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 112)) (-1698 (((-665 (-549)) (-665 $)) 87 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 86 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 85) (((-665 |#1|) (-665 $)) 84)) (-3976 (((-3 $ "failed") $) 32)) (-2146 ((|#1| $) 77)) (-3156 (((-3 (-400 (-549)) "failed") $) 73 (|has| |#1| (-534)))) (-3230 (((-112) $) 75 (|has| |#1| (-534)))) (-3867 (((-400 (-549)) $) 74 (|has| |#1| (-534)))) (-1894 (($ |#1| |#1| |#1| |#1|) 78)) (-3987 (((-112) $) 30)) (-4117 ((|#1| $) 79)) (-2862 (($ $ $) 66 (|has| |#1| (-823)))) (-3574 (($ $ $) 65 (|has| |#1| (-823)))) (-2796 (($ (-1 |#1| |#1|) $) 88)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 70 (|has| |#1| (-356)))) (-3073 ((|#1| $) 80)) (-3811 ((|#1| $) 81)) (-2977 ((|#1| $) 82)) (-3988 (((-1086) $) 10)) (-2685 (($ $ (-621 |#1|) (-621 |#1|)) 94 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 92 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) 91 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1142)) (-621 |#1|)) 90 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) 89 (|has| |#1| (-505 (-1142) |#1|)))) (-3340 (($ $ |#1|) 95 (|has| |#1| (-279 |#1| |#1|)))) (-3455 (($ $) 111 (|has| |#1| (-227))) (($ $ (-747)) 109 (|has| |#1| (-227))) (($ $ (-1142)) 107 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) 106 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 105 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) 104 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-2844 (((-525) $) 71 (|has| |#1| (-594 (-525))))) (-2538 (($ $) 83)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35) (($ (-400 (-549))) 60 (-1536 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-549))))))) (-3407 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-1723 (((-747)) 28)) (-3603 ((|#1| $) 76 (|has| |#1| (-1027)))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $) 110 (|has| |#1| (-227))) (($ $ (-747)) 108 (|has| |#1| (-227))) (($ $ (-1142)) 103 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) 102 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 101 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) 100 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2448 (((-112) $ $) 63 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 62 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 64 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 61 (|has| |#1| (-823)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 69 (|has| |#1| (-356)))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-400 (-549))) 68 (|has| |#1| (-356))) (($ (-400 (-549)) $) 67 (|has| |#1| (-356)))))
-(((-968 |#1|) (-138) (-170)) (T -968))
-((-2538 (*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-1894 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-549))))) (-3156 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-549))))))
-(-13 (-38 |t#1|) (-404 |t#1|) (-225 |t#1|) (-331 |t#1|) (-370 |t#1|) (-10 -8 (-15 -2538 ($ $)) (-15 -2977 (|t#1| $)) (-15 -3811 (|t#1| $)) (-15 -3073 (|t#1| $)) (-15 -4117 (|t#1| $)) (-15 -1894 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2146 (|t#1| $)) (IF (|has| |t#1| (-283)) (-6 (-283)) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3603 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3230 ((-112) $)) (-15 -3867 ((-400 (-549)) $)) (-15 -3156 ((-3 (-400 (-549)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-356)) ((-38 |#1|) . T) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-356)) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) |has| |#1| (-356)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -1536 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-624 #0#) |has| |#1| (-356)) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) |has| |#1| (-356)) ((-694 |#1|) . T) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 #0#) |has| |#1| (-356)) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-2796 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-969 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2796 (|#3| (-1 |#4| |#2|) |#1|))) (-968 |#2|) (-170) (-968 |#4|) (-170)) (T -969))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-968 *6)) (-5 *1 (-969 *4 *5 *2 *6)) (-4 *4 (-968 *5)))))
-(-10 -7 (-15 -2796 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-2146 ((|#1| $) 12)) (-3156 (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-534)))) (-3230 (((-112) $) NIL (|has| |#1| (-534)))) (-3867 (((-400 (-549)) $) NIL (|has| |#1| (-534)))) (-1894 (($ |#1| |#1| |#1| |#1|) 16)) (-3987 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL (|has| |#1| (-356)))) (-3073 ((|#1| $) 15)) (-3811 ((|#1| $) 14)) (-2977 ((|#1| $) 13)) (-3988 (((-1086) $) NIL)) (-2685 (($ $ (-621 |#1|) (-621 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1142)) (-621 |#1|)) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|)))) (-3340 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-3455 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2844 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-2538 (($ $) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-549))))))) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-3603 ((|#1| $) NIL (|has| |#1| (-1027)))) (-3275 (($) 8 T CONST)) (-3287 (($) 10 T CONST)) (-1700 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-356))) (($ (-400 (-549)) $) NIL (|has| |#1| (-356)))))
-(((-970 |#1|) (-968 |#1|) (-170)) (T -970))
-NIL
-(-968 |#1|)
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-1323 (((-112) $ (-747)) NIL)) (-1705 (($) NIL T CONST)) (-2643 (($ $) 20)) (-2887 (($ (-621 |#1|)) 29)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-4209 (((-747) $) 22)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2349 ((|#1| $) 24)) (-1709 (($ |#1| $) 15)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2032 ((|#1| $) 23)) (-2629 ((|#1| $) 19)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-4248 ((|#1| |#1| $) 14)) (-1807 (((-112) $) 17)) (-1461 (($) NIL)) (-1800 ((|#1| $) 18)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-1765 (($ (-621 |#1|)) NIL)) (-3529 ((|#1| $) 26)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-971 |#1|) (-13 (-966 |#1|) (-10 -8 (-15 -2887 ($ (-621 |#1|))))) (-1066)) (T -971))
-((-2887 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-971 *3)))))
-(-13 (-966 |#1|) (-10 -8 (-15 -2887 ($ (-621 |#1|)))))
-((-2134 (($ $) 12)) (-3930 (($ $ (-549)) 13)))
-(((-972 |#1|) (-10 -8 (-15 -2134 (|#1| |#1|)) (-15 -3930 (|#1| |#1| (-549)))) (-973)) (T -972))
-NIL
-(-10 -8 (-15 -2134 (|#1| |#1|)) (-15 -3930 (|#1| |#1| (-549))))
-((-2134 (($ $) 6)) (-3930 (($ $ (-549)) 7)) (** (($ $ (-400 (-549))) 8)))
+((-3305 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3304 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3303 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3302 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3301 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3300 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3299 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3298 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3297 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3296 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3295 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3294 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3293 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3292 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3291 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3290 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3289 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3288 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3287 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3286 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3285 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3284 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3283 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3282 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3281 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3280 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))) (-3279 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-747)) (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(-13 (-10 -7 (-15 -3279 ((-3 |t#1| "failed") |t#1| (-747))) (-15 -3280 ((-3 |t#1| "failed") |t#1|)) (-15 -3281 ((-3 |t#1| "failed") |t#1|)) (-15 -3282 ((-3 |t#1| "failed") |t#1|)) (-15 -3283 ((-3 |t#1| "failed") |t#1|)) (-15 -3284 ((-3 |t#1| "failed") |t#1|)) (-15 -3285 ((-3 |t#1| "failed") |t#1|)) (-15 -3286 ((-3 |t#1| "failed") |t#1|)) (-15 -3287 ((-3 |t#1| "failed") |t#1|)) (-15 -3288 ((-3 |t#1| "failed") |t#1|)) (-15 -3289 ((-3 |t#1| "failed") |t#1|)) (-15 -3290 ((-3 |t#1| "failed") |t#1|)) (-15 -3291 ((-3 |t#1| "failed") |t#1|)) (-15 -3292 ((-3 |t#1| "failed") |t#1|)) (-15 -3293 ((-3 |t#1| "failed") |t#1|)) (-15 -3294 ((-3 |t#1| "failed") |t#1|)) (-15 -3295 ((-3 |t#1| "failed") |t#1|)) (-15 -3296 ((-3 |t#1| "failed") |t#1|)) (-15 -3297 ((-3 |t#1| "failed") |t#1|)) (-15 -3298 ((-3 |t#1| "failed") |t#1|)) (-15 -3299 ((-3 |t#1| "failed") |t#1|)) (-15 -3300 ((-3 |t#1| "failed") |t#1|)) (-15 -3301 ((-3 |t#1| "failed") |t#1|)) (-15 -3302 ((-3 |t#1| "failed") |t#1|)) (-15 -3303 ((-3 |t#1| "failed") |t#1|)) (-15 -3304 ((-3 |t#1| "failed") |t#1|)) (-15 -3305 ((-3 |t#1| "failed") |t#1|))))
+((-3307 ((|#4| |#4| (-618 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3306 ((|#4| |#4| (-618 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4301 ((|#4| (-1 |#4| (-917 |#1|)) |#4|) 30)))
+(((-955 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3306 (|#4| |#4| |#3|)) (-15 -3306 (|#4| |#4| (-618 |#3|))) (-15 -3307 (|#4| |#4| |#3|)) (-15 -3307 (|#4| |#4| (-618 |#3|))) (-15 -4301 (|#4| (-1 |#4| (-917 |#1|)) |#4|))) (-1018) (-769) (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142))))) (-921 (-917 |#1|) |#2| |#3|)) (T -955))
+((-4301 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-917 *4))) (-4 *4 (-1018)) (-4 *2 (-921 (-917 *4) *5 *6)) (-4 *5 (-769)) (-4 *6 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1="failed") (-1142)))))) (-5 *1 (-955 *4 *5 *6 *2)))) (-3307 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *6)) (-4 *6 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1#) (-1142)))))) (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2)) (-4 *2 (-921 (-917 *4) *5 *6)))) (-3307 (*1 *2 *2 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1#) (-1142)))))) (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-921 (-917 *4) *5 *3)))) (-3306 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *6)) (-4 *6 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1#) (-1142)))))) (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2)) (-4 *2 (-921 (-917 *4) *5 *6)))) (-3306 (*1 *2 *2 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1#) (-1142)))))) (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-921 (-917 *4) *5 *3)))))
+(-10 -7 (-15 -3306 (|#4| |#4| |#3|)) (-15 -3306 (|#4| |#4| (-618 |#3|))) (-15 -3307 (|#4| |#4| |#3|)) (-15 -3307 (|#4| |#4| (-618 |#3|))) (-15 -4301 (|#4| (-1 |#4| (-917 |#1|)) |#4|)))
+((-3308 ((|#2| |#3|) 35)) (-4262 (((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|) 73)) (-4261 (((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) 89)))
+(((-956 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4261 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -4262 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|)) (-15 -3308 (|#2| |#3|))) (-343) (-1200 |#1|) (-1200 |#2|) (-701 |#2| |#3|)) (T -956))
+((-3308 (*1 *2 *3) (-12 (-4 *3 (-1200 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-956 *4 *2 *3 *5)) (-4 *4 (-343)) (-4 *5 (-701 *2 *3)))) (-4262 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 *3)) (-5 *2 (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-956 *4 *3 *5 *6)) (-4 *6 (-701 *3 *5)))) (-4261 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| -2123 (-665 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-665 *4)))) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-701 *4 *5)))))
+(-10 -7 (-15 -4261 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -4262 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|)) (-15 -3308 (|#2| |#3|)))
+((-2887 (((-112) $ $) NIL)) (-3743 (((-3 (-112) #1="failed") $) 69)) (-3995 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3312 (($ $ (-3 (-112) #1#)) 70)) (-3313 (($ (-618 |#4|) |#4|) 25)) (-3576 (((-1124) $) NIL)) (-3309 (($ $) 67)) (-3577 (((-1086) $) NIL)) (-3745 (((-112) $) 68)) (-3911 (($) 30)) (-3310 ((|#4| $) 72)) (-3311 (((-618 |#4|) $) 71)) (-4300 (((-835) $) 66)) (-3375 (((-112) $ $) NIL)))
+(((-957 |#1| |#2| |#3| |#4|) (-13 (-1067) (-593 (-835)) (-10 -8 (-15 -3911 ($)) (-15 -3313 ($ (-618 |#4|) |#4|)) (-15 -3743 ((-3 (-112) #1="failed") $)) (-15 -3312 ($ $ (-3 (-112) #1#))) (-15 -3745 ((-112) $)) (-15 -3311 ((-618 |#4|) $)) (-15 -3310 (|#4| $)) (-15 -3309 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -3995 ($ $)) |%noBranch|) |%noBranch|))) (-444) (-823) (-769) (-921 |#1| |#3| |#2|)) (T -957))
+((-3911 (*1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-957 *2 *3 *4 *5)) (-4 *5 (-921 *2 *4 *3)))) (-3313 (*1 *1 *2 *3) (-12 (-5 *2 (-618 *3)) (-4 *3 (-921 *4 *6 *5)) (-4 *4 (-444)) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *1 (-957 *4 *5 *6 *3)))) (-3743 (*1 *2 *1) (|partial| -12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4)))) (-3312 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4)))) (-3745 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4)))) (-3311 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-618 *6)) (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4)))) (-3310 (*1 *2 *1) (-12 (-4 *2 (-921 *3 *5 *4)) (-5 *1 (-957 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)))) (-3309 (*1 *1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-957 *2 *3 *4 *5)) (-4 *5 (-921 *2 *4 *3)))) (-3995 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-957 *2 *3 *4 *5)) (-4 *5 (-921 *2 *4 *3)))))
+(-13 (-1067) (-593 (-835)) (-10 -8 (-15 -3911 ($)) (-15 -3313 ($ (-618 |#4|) |#4|)) (-15 -3743 ((-3 (-112) #1="failed") $)) (-15 -3312 ($ $ (-3 (-112) #1#))) (-15 -3745 ((-112) $)) (-15 -3311 ((-618 |#4|) $)) (-15 -3310 (|#4| $)) (-15 -3309 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -3995 ($ $)) |%noBranch|) |%noBranch|)))
+((-3314 (((-957 (-400 (-535)) (-836 |#1|) (-233 |#2| (-747)) (-241 |#1| (-400 (-535)))) (-957 (-400 (-535)) (-836 |#1|) (-233 |#2| (-747)) (-241 |#1| (-400 (-535))))) 69)))
+(((-958 |#1| |#2|) (-10 -7 (-15 -3314 ((-957 (-400 (-535)) (-836 |#1|) (-233 |#2| (-747)) (-241 |#1| (-400 (-535)))) (-957 (-400 (-535)) (-836 |#1|) (-233 |#2| (-747)) (-241 |#1| (-400 (-535))))))) (-618 (-1142)) (-747)) (T -958))
+((-3314 (*1 *2 *2) (-12 (-5 *2 (-957 (-400 (-535)) (-836 *3) (-233 *4 (-747)) (-241 *3 (-400 (-535))))) (-14 *3 (-618 (-1142))) (-14 *4 (-747)) (-5 *1 (-958 *3 *4)))))
+(-10 -7 (-15 -3314 ((-957 (-400 (-535)) (-836 |#1|) (-233 |#2| (-747)) (-241 |#1| (-400 (-535)))) (-957 (-400 (-535)) (-836 |#1|) (-233 |#2| (-747)) (-241 |#1| (-400 (-535)))))))
+((-3604 (((-112) |#5| |#5|) 38)) (-3607 (((-112) |#5| |#5|) 52)) (-3612 (((-112) |#5| (-618 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3608 (((-112) (-618 |#4|) (-618 |#4|)) 58)) (-3614 (((-112) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) 63)) (-3603 (((-1230)) 33)) (-3602 (((-1230) (-1124) (-1124) (-1124)) 29)) (-3613 (((-618 |#5|) (-618 |#5|)) 81)) (-3615 (((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) 79)) (-3616 (((-618 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|)))) (-618 |#4|) (-618 |#5|) (-112) (-112)) 101)) (-3606 (((-112) |#5| |#5|) 47)) (-3611 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3609 (((-112) (-618 |#4|) (-618 |#4|)) 57)) (-3610 (((-112) (-618 |#4|) (-618 |#4|)) 59)) (-4045 (((-112) (-618 |#4|) (-618 |#4|)) 60)) (-3617 (((-3 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|))) "failed") (-618 |#4|) |#5| (-618 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3605 (((-618 |#5|) (-618 |#5|)) 43)))
+(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3602 ((-1230) (-1124) (-1124) (-1124))) (-15 -3603 ((-1230))) (-15 -3604 ((-112) |#5| |#5|)) (-15 -3605 ((-618 |#5|) (-618 |#5|))) (-15 -3606 ((-112) |#5| |#5|)) (-15 -3607 ((-112) |#5| |#5|)) (-15 -3608 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3609 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3610 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -4045 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3611 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3612 ((-112) |#5| |#5|)) (-15 -3612 ((-112) |#5| (-618 |#5|))) (-15 -3613 ((-618 |#5|) (-618 |#5|))) (-15 -3614 ((-112) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3615 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-15 -3616 ((-618 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|)))) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3617 ((-3 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|))) "failed") (-618 |#4|) |#5| (-618 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -959))
+((-3617 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *4) (|:| |ineq| (-618 *9)))) (-5 *1 (-959 *6 *7 *8 *9 *4)) (-5 *3 (-618 *9)) (-4 *4 (-1038 *6 *7 *8 *9)))) (-3616 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-618 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-618 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *10) (|:| |ineq| (-618 *9))))) (-5 *1 (-959 *6 *7 *8 *9 *10)) (-5 *3 (-618 *9)))) (-3615 (*1 *2 *2) (-12 (-5 *2 (-618 (-2 (|:| |val| (-618 *6)) (|:| -1655 *7)))) (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) (-3614 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-959 *5 *6 *7 *8 *3)))) (-3612 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3611 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-4045 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3610 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3609 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3608 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3607 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3606 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3605 (*1 *2 *2) (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) (-3604 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3603 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-959 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3602 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3602 ((-1230) (-1124) (-1124) (-1124))) (-15 -3603 ((-1230))) (-15 -3604 ((-112) |#5| |#5|)) (-15 -3605 ((-618 |#5|) (-618 |#5|))) (-15 -3606 ((-112) |#5| |#5|)) (-15 -3607 ((-112) |#5| |#5|)) (-15 -3608 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3609 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3610 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -4045 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3611 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3612 ((-112) |#5| |#5|)) (-15 -3612 ((-112) |#5| (-618 |#5|))) (-15 -3613 ((-618 |#5|) (-618 |#5|))) (-15 -3614 ((-112) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3615 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-15 -3616 ((-618 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|)))) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3617 ((-3 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|))) "failed") (-618 |#4|) |#5| (-618 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-4174 (((-1142) $) 15)) (-3744 (((-1124) $) 16)) (-3560 (($ (-1142) (-1124)) 14)) (-4300 (((-835) $) 13)))
+(((-960) (-13 (-593 (-835)) (-10 -8 (-15 -3560 ($ (-1142) (-1124))) (-15 -4174 ((-1142) $)) (-15 -3744 ((-1124) $))))) (T -960))
+((-3560 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1124)) (-5 *1 (-960)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-960)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-960)))))
+(-13 (-593 (-835)) (-10 -8 (-15 -3560 ($ (-1142) (-1124))) (-15 -4174 ((-1142) $)) (-15 -3744 ((-1124) $))))
+((-3491 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1142) #1#) $) 65) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 (-535) #1#) $) 95)) (-3490 ((|#2| $) NIL) (((-1142) $) 60) (((-400 (-535)) $) NIL) (((-535) $) 92)) (-2353 (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) 112) (((-665 |#2|) (-665 $)) 28)) (-3315 (($) 98)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 75) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 84)) (-3317 (($ $) 10)) (-3786 (((-3 $ "failed") $) 20)) (-4301 (($ (-1 |#2| |#2|) $) 22)) (-3787 (($) 16)) (-3446 (($ $) 54)) (-4153 (($ $) NIL) (($ $ (-747)) NIL) (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3316 (($ $) 12)) (-4313 (((-861 (-535)) $) 70) (((-861 (-371)) $) 79) (((-524) $) 40) (((-371) $) 44) (((-219) $) 47)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) 90) (($ |#2|) NIL) (($ (-1142)) 57)) (-3444 (((-747)) 31)) (-3006 (((-112) $ $) 50)))
+(((-961 |#1| |#2|) (-10 -8 (-15 -3006 ((-112) |#1| |#1|)) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1="failed") |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4313 ((-219) |#1|)) (-15 -4313 ((-371) |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -3490 ((-1142) |#1|)) (-15 -3491 ((-3 (-1142) #1#) |#1|)) (-15 -4300 (|#1| (-1142))) (-15 -3315 (|#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3316 (|#1| |#1|)) (-15 -3317 (|#1| |#1|)) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -2353 ((-665 |#2|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 -4300 ((-835) |#1|))) (-962 |#2|) (-542)) (T -961))
+((-3444 (*1 *2) (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-961 *3 *4)) (-4 *3 (-962 *4)))))
+(-10 -8 (-15 -3006 ((-112) |#1| |#1|)) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1="failed") |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4313 ((-219) |#1|)) (-15 -4313 ((-371) |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -3490 ((-1142) |#1|)) (-15 -3491 ((-3 (-1142) #1#) |#1|)) (-15 -4300 (|#1| (-1142))) (-15 -3315 (|#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3316 (|#1| |#1|)) (-15 -3317 (|#1| |#1|)) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -3117 ((-859 (-535) |#1|) |#1| (-861 (-535)) (-859 (-535) |#1|))) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -2353 ((-665 |#2|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3447 ((|#1| $) 136 (|has| |#1| (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-3028 (((-398 (-1136 $)) (-1136 $)) 127 (|has| |#1| (-881)))) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 130 (|has| |#1| (-881)))) (-1700 (((-112) $ $) 57)) (-3969 (((-535) $) 117 (|has| |#1| (-796)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| #2="failed") $) 175) (((-3 (-1142) #2#) $) 125 (|has| |#1| (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) 109 (|has| |#1| (-1009 (-535)))) (((-3 (-535) #2#) $) 107 (|has| |#1| (-1009 (-535))))) (-3490 ((|#1| $) 174) (((-1142) $) 124 (|has| |#1| (-1009 (-1142)))) (((-400 (-535)) $) 108 (|has| |#1| (-1009 (-535)))) (((-535) $) 106 (|has| |#1| (-1009 (-535))))) (-2883 (($ $ $) 53)) (-2353 (((-665 (-535)) (-665 $)) 149 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 148 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 147) (((-665 |#1|) (-665 $)) 146)) (-3804 (((-3 $ "failed") $) 32)) (-3315 (($) 134 (|has| |#1| (-534)))) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4069 (((-112) $) 68)) (-3520 (((-112) $) 119 (|has| |#1| (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 143 (|has| |#1| (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 142 (|has| |#1| (-857 (-371))))) (-2493 (((-112) $) 30)) (-3317 (($ $) 138)) (-3319 ((|#1| $) 140)) (-3786 (((-3 $ "failed") $) 105 (|has| |#1| (-1117)))) (-3521 (((-112) $) 118 (|has| |#1| (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) 50)) (-3660 (($ $ $) 115 (|has| |#1| (-823)))) (-3661 (($ $ $) 114 (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) 166)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3787 (($) 104 (|has| |#1| (-1117)) CONST)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3446 (($ $) 135 (|has| |#1| (-300)))) (-3448 ((|#1| $) 132 (|has| |#1| (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 129 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 128 (|has| |#1| (-881)))) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) 172 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 170 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) 169 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 168 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) 167 (|has| |#1| (-505 (-1142) |#1|)))) (-1699 (((-747) $) 56)) (-4142 (($ $ |#1|) 173 (|has| |#1| (-279 |#1| |#1|)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-4153 (($ $) 165 (|has| |#1| (-227))) (($ $ (-747)) 163 (|has| |#1| (-227))) (($ $ (-1142)) 161 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 160 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 159 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 158 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-3316 (($ $) 137)) (-3318 ((|#1| $) 139)) (-4313 (((-861 (-535)) $) 145 (|has| |#1| (-594 (-861 (-535))))) (((-861 (-371)) $) 144 (|has| |#1| (-594 (-861 (-371))))) (((-524) $) 122 (|has| |#1| (-594 (-524)))) (((-371) $) 121 (|has| |#1| (-991))) (((-219) $) 120 (|has| |#1| (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 131 (-3179 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63) (($ |#1|) 178) (($ (-1142)) 126 (|has| |#1| (-1009 (-1142))))) (-3023 (((-3 $ "failed") $) 123 (-3874 (|has| |#1| (-143)) (-3179 (|has| $ (-143)) (|has| |#1| (-881)))))) (-3444 (((-747)) 28)) (-3449 ((|#1| $) 133 (|has| |#1| (-534)))) (-2170 (((-112) $ $) 37)) (-3725 (($ $) 116 (|has| |#1| (-796)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $) 164 (|has| |#1| (-227))) (($ $ (-747)) 162 (|has| |#1| (-227))) (($ $ (-1142)) 157 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 156 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 155 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 154 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2885 (((-112) $ $) 112 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 111 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 113 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 110 (|has| |#1| (-823)))) (-4291 (($ $ $) 62) (($ |#1| |#1|) 141)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176)))
+(((-962 |#1|) (-138) (-542)) (T -962))
+((-4291 (*1 *1 *2 *2) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))) (-3319 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))) (-3317 (*1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))) (-3316 (*1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-300)))) (-3315 (*1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-534)) (-4 *2 (-542)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-534)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-534)))))
+(-13 (-356) (-38 |t#1|) (-1009 |t#1|) (-331 |t#1|) (-225 |t#1|) (-370 |t#1|) (-855 |t#1|) (-393 |t#1|) (-10 -8 (-15 -4291 ($ |t#1| |t#1|)) (-15 -3319 (|t#1| $)) (-15 -3318 (|t#1| $)) (-15 -3317 ($ $)) (-15 -3316 ($ $)) (IF (|has| |t#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |t#1| (-1009 (-535))) (PROGN (-6 (-1009 (-535))) (-6 (-1009 (-400 (-535))))) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-796)) (-6 (-796)) |%noBranch|) (IF (|has| |t#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |t#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1009 (-1142))) (-6 (-1009 (-1142))) |%noBranch|) (IF (|has| |t#1| (-300)) (PROGN (-15 -3447 (|t#1| $)) (-15 -3446 ($ $))) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3315 ($)) (-15 -3449 (|t#1| $)) (-15 -3448 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-881)) (-6 (-881)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) . T) ((-594 (-219)) |has| |#1| (-991)) ((-594 (-371)) |has| |#1| (-991)) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-594 (-861 (-371))) |has| |#1| (-594 (-861 (-371)))) ((-594 (-861 (-535))) |has| |#1| (-594 (-861 (-535)))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) . T) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) . T) ((-300) . T) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-444) . T) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-542) . T) ((-624 #1#) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) . T) ((-694 |#1|) . T) ((-694 $) . T) ((-703) . T) ((-767) |has| |#1| (-796)) ((-768) |has| |#1| (-796)) ((-770) |has| |#1| (-796)) ((-773) |has| |#1| (-796)) ((-796) |has| |#1| (-796)) ((-821) |has| |#1| (-796)) ((-823) -3874 (|has| |#1| (-823)) (|has| |#1| (-796))) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-857 (-371)) |has| |#1| (-857 (-371))) ((-857 (-535)) |has| |#1| (-857 (-535))) ((-855 |#1|) . T) ((-881) |has| |#1| (-881)) ((-892) . T) ((-991) |has| |#1| (-991)) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-535))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 (-1142)) |has| |#1| (-1009 (-1142))) ((-1009 |#1|) . T) ((-1024 #1#) . T) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) |has| |#1| (-1117)) ((-1178) . T) ((-1183) . T))
+((-4301 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-963 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#4| (-1 |#2| |#1|) |#3|))) (-542) (-542) (-962 |#1|) (-962 |#2|)) (T -963))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-4 *2 (-962 *6)) (-5 *1 (-963 *5 *6 *4 *2)) (-4 *4 (-962 *5)))))
+(-10 -7 (-15 -4301 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3320 (($ (-1108 |#1| |#2|)) 11)) (-3442 (((-1108 |#1| |#2|) $) 12)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4142 ((|#2| $ (-233 |#1| |#2|)) 16)) (-4300 (((-835) $) NIL)) (-2979 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL)))
+(((-964 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3320 ($ (-1108 |#1| |#2|))) (-15 -3442 ((-1108 |#1| |#2|) $)) (-15 -4142 (|#2| $ (-233 |#1| |#2|))))) (-890) (-356)) (T -964))
+((-3320 (*1 *1 *2) (-12 (-5 *2 (-1108 *3 *4)) (-14 *3 (-890)) (-4 *4 (-356)) (-5 *1 (-964 *3 *4)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-1108 *3 *4)) (-5 *1 (-964 *3 *4)) (-14 *3 (-890)) (-4 *4 (-356)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-233 *4 *2)) (-14 *4 (-890)) (-4 *2 (-356)) (-5 *1 (-964 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -3320 ($ (-1108 |#1| |#2|))) (-15 -3442 ((-1108 |#1| |#2|) $)) (-15 -4142 (|#2| $ (-233 |#1| |#2|)))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3540 (((-1101) $) 9)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-965) (-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $))))) (T -965))
+((-3540 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-965)))))
+(-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $))))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-3323 (($ $) 46)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-4176 (((-747) $) 45)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-3322 ((|#1| $) 44)) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3325 ((|#1| |#1| $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-3324 ((|#1| $) 47)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-3321 ((|#1| $) 43)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-966 |#1|) (-138) (-1178)) (T -966))
+((-3325 (*1 *2 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))) (-3323 (*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))) (-4176 (*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))))
+(-13 (-106 |t#1|) (-10 -8 (-6 -4336) (-15 -3325 (|t#1| |t#1| $)) (-15 -3324 (|t#1| $)) (-15 -3323 ($ $)) (-15 -4176 ((-747) $)) (-15 -3322 (|t#1| $)) (-15 -3321 (|t#1| $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3989 ((|#1| $) 12)) (-3345 (((-3 (-400 (-535)) "failed") $) NIL (|has| |#1| (-534)))) (-3344 (((-112) $) NIL (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) NIL (|has| |#1| (-534)))) (-3326 (($ |#1| |#1| |#1| |#1|) 16)) (-2493 (((-112) $) NIL)) (-3450 ((|#1| $) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-3327 ((|#1| $) 15)) (-3328 ((|#1| $) 14)) (-3329 ((|#1| $) 13)) (-3577 (((-1086) $) NIL)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) NIL (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-505 (-1142) |#1|)))) (-4142 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-4153 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3330 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-535))))))) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-3725 ((|#1| $) NIL (|has| |#1| (-1027)))) (-2979 (($) 8 T CONST)) (-2985 (($) 10 T CONST)) (-2990 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-356))) (($ (-400 (-535)) $) NIL (|has| |#1| (-356)))))
+(((-967 |#1|) (-969 |#1|) (-170)) (T -967))
+NIL
+(-969 |#1|)
+((-3522 (((-112) $) 42)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3490 (((-535) $) NIL) (((-400 (-535)) $) NIL) ((|#2| $) 43)) (-3345 (((-3 (-400 (-535)) "failed") $) 78)) (-3344 (((-112) $) 72)) (-3343 (((-400 (-535)) $) 76)) (-2493 (((-112) $) 41)) (-3450 ((|#2| $) 22)) (-4301 (($ (-1 |#2| |#2|) $) 19)) (-2725 (($ $) 61)) (-4153 (($ $) NIL) (($ $ (-747)) NIL) (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4313 (((-524) $) 67)) (-3330 (($ $) 17)) (-4300 (((-835) $) 56) (($ (-535)) 38) (($ |#2|) 36) (($ (-400 (-535))) NIL)) (-3444 (((-747)) 10)) (-3725 ((|#2| $) 71)) (-3375 (((-112) $ $) 25)) (-3006 (((-112) $ $) 69)) (-4180 (($ $) 29) (($ $ $) 28)) (-4182 (($ $ $) 26)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL)))
+(((-968 |#1| |#2|) (-10 -8 (-15 -4300 (|#1| (-400 (-535)))) (-15 -3006 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 * (|#1| |#1| (-400 (-535)))) (-15 -2725 (|#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -3725 (|#2| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 -2493 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-969 |#2|) (-170)) (T -968))
+((-3444 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-968 *3 *4)) (-4 *3 (-969 *4)))))
+(-10 -8 (-15 -4300 (|#1| (-400 (-535)))) (-15 -3006 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-535)) |#1|)) (-15 * (|#1| |#1| (-400 (-535)))) (-15 -2725 (|#1| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)) (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -3725 (|#2| |#1|)) (-15 -3450 (|#2| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -4301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3491 ((-3 |#2| #1="failed") |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 -2493 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3491 (((-3 (-535) #1="failed") $) 116 (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 114 (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) 113)) (-3490 (((-535) $) 117 (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) 115 (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) 112)) (-2353 (((-665 (-535)) (-665 $)) 87 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 86 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 85) (((-665 |#1|) (-665 $)) 84)) (-3804 (((-3 $ "failed") $) 32)) (-3989 ((|#1| $) 77)) (-3345 (((-3 (-400 (-535)) "failed") $) 73 (|has| |#1| (-534)))) (-3344 (((-112) $) 75 (|has| |#1| (-534)))) (-3343 (((-400 (-535)) $) 74 (|has| |#1| (-534)))) (-3326 (($ |#1| |#1| |#1| |#1|) 78)) (-2493 (((-112) $) 30)) (-3450 ((|#1| $) 79)) (-3660 (($ $ $) 66 (|has| |#1| (-823)))) (-3661 (($ $ $) 65 (|has| |#1| (-823)))) (-4301 (($ (-1 |#1| |#1|) $) 88)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 70 (|has| |#1| (-356)))) (-3327 ((|#1| $) 80)) (-3328 ((|#1| $) 81)) (-3329 ((|#1| $) 82)) (-3577 (((-1086) $) 10)) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) 94 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 92 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-286 |#1|))) 91 (|has| |#1| (-302 |#1|))) (($ $ (-618 (-1142)) (-618 |#1|)) 90 (|has| |#1| (-505 (-1142) |#1|))) (($ $ (-1142) |#1|) 89 (|has| |#1| (-505 (-1142) |#1|)))) (-4142 (($ $ |#1|) 95 (|has| |#1| (-279 |#1| |#1|)))) (-4153 (($ $) 111 (|has| |#1| (-227))) (($ $ (-747)) 109 (|has| |#1| (-227))) (($ $ (-1142)) 107 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 106 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 105 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 104 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-4313 (((-524) $) 71 (|has| |#1| (-594 (-524))))) (-3330 (($ $) 83)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 35) (($ (-400 (-535))) 60 (-3874 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-535))))))) (-3023 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-3725 ((|#1| $) 76 (|has| |#1| (-1027)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $) 110 (|has| |#1| (-227))) (($ $ (-747)) 108 (|has| |#1| (-227))) (($ $ (-1142)) 103 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 102 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 101 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 100 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2885 (((-112) $ $) 63 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 62 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 64 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 61 (|has| |#1| (-823)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 69 (|has| |#1| (-356)))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-400 (-535))) 68 (|has| |#1| (-356))) (($ (-400 (-535)) $) 67 (|has| |#1| (-356)))))
+(((-969 |#1|) (-138) (-170)) (T -969))
+((-3330 (*1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3326 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-969 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-969 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))) (-3345 (*1 *2 *1) (|partial| -12 (-4 *1 (-969 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535))))))
+(-13 (-38 |t#1|) (-405 |t#1|) (-225 |t#1|) (-331 |t#1|) (-370 |t#1|) (-10 -8 (-15 -3330 ($ $)) (-15 -3329 (|t#1| $)) (-15 -3328 (|t#1| $)) (-15 -3327 (|t#1| $)) (-15 -3450 (|t#1| $)) (-15 -3326 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3989 (|t#1| $)) (IF (|has| |t#1| (-283)) (-6 (-283)) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3725 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3344 ((-112) $)) (-15 -3343 ((-400 (-535)) $)) (-15 -3345 ((-3 (-400 (-535)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-356)) ((-38 |#1|) . T) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-356)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) |has| |#1| (-356)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -3874 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-505 (-1142) |#1|) |has| |#1| (-505 (-1142) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-624 #1#) |has| |#1| (-356)) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) |has| |#1| (-356)) ((-694 |#1|) . T) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1024 #1#) |has| |#1| (-356)) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-4301 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-970 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#3| (-1 |#4| |#2|) |#1|))) (-969 |#2|) (-170) (-969 |#4|) (-170)) (T -970))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-969 *6)) (-5 *1 (-970 *4 *5 *2 *6)) (-4 *4 (-969 *5)))))
+(-10 -7 (-15 -4301 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1264 (((-112) $ (-747)) NIL)) (-3879 (($) NIL T CONST)) (-3323 (($ $) 20)) (-3331 (($ (-618 |#1|)) 29)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-4176 (((-747) $) 22)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1326 ((|#1| $) 24)) (-3953 (($ |#1| $) 15)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-3322 ((|#1| $) 23)) (-1327 ((|#1| $) 19)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3325 ((|#1| |#1| $) 14)) (-3745 (((-112) $) 17)) (-3911 (($) NIL)) (-3324 ((|#1| $) 18)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) NIL)) (-3321 ((|#1| $) 26)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-971 |#1|) (-13 (-966 |#1|) (-10 -8 (-15 -3331 ($ (-618 |#1|))))) (-1067)) (T -971))
+((-3331 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-971 *3)))))
+(-13 (-966 |#1|) (-10 -8 (-15 -3331 ($ (-618 |#1|)))))
+((-3358 (($ $) 12)) (-3332 (($ $ (-535)) 13)))
+(((-972 |#1|) (-10 -8 (-15 -3358 (|#1| |#1|)) (-15 -3332 (|#1| |#1| (-535)))) (-973)) (T -972))
+NIL
+(-10 -8 (-15 -3358 (|#1| |#1|)) (-15 -3332 (|#1| |#1| (-535))))
+((-3358 (($ $) 6)) (-3332 (($ $ (-535)) 7)) (** (($ $ (-400 (-535))) 8)))
(((-973) (-138)) (T -973))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-400 (-549))))) (-3930 (*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-549)))) (-2134 (*1 *1 *1) (-4 *1 (-973))))
-(-13 (-10 -8 (-15 -2134 ($ $)) (-15 -3930 ($ $ (-549))) (-15 ** ($ $ (-400 (-549))))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2098 (((-2 (|:| |num| (-1225 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-2408 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2477 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-3102 (((-665 (-400 |#2|)) (-1225 $)) NIL) (((-665 (-400 |#2|))) NIL)) (-2905 (((-400 |#2|) $) NIL)) (-2572 (((-1152 (-892) (-747)) (-549)) NIL (|has| (-400 |#2|) (-342)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3513 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-2647 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3615 (((-747)) NIL (|has| (-400 |#2|) (-361)))) (-2163 (((-112)) NIL)) (-2380 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (|has| (-400 |#2|) (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-400 |#2|) (-1009 (-400 (-549))))) (((-3 (-400 |#2|) "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| (-400 |#2|) (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| (-400 |#2|) (-1009 (-400 (-549))))) (((-400 |#2|) $) NIL)) (-2127 (($ (-1225 (-400 |#2|)) (-1225 $)) NIL) (($ (-1225 (-400 |#2|))) 70) (($ (-1225 |#2|) |#2|) NIL)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-342)))) (-2094 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2988 (((-665 (-400 |#2|)) $ (-1225 $)) NIL) (((-665 (-400 |#2|)) $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| (-400 |#2|) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| (-400 |#2|) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-400 |#2|))) (|:| |vec| (-1225 (-400 |#2|)))) (-665 $) (-1225 $)) NIL) (((-665 (-400 |#2|)) (-665 $)) NIL)) (-2648 (((-1225 $) (-1225 $)) NIL)) (-2558 (($ |#3|) 65) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-3976 (((-3 $ "failed") $) NIL)) (-1559 (((-621 (-621 |#1|))) NIL (|has| |#1| (-361)))) (-2479 (((-112) |#1| |#1|) NIL)) (-3122 (((-892)) NIL)) (-3238 (($) NIL (|has| (-400 |#2|) (-361)))) (-2966 (((-112)) NIL)) (-3294 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-2066 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| (-400 |#2|) (-356)))) (-4212 (($ $) NIL)) (-1327 (($) NIL (|has| (-400 |#2|) (-342)))) (-1729 (((-112) $) NIL (|has| (-400 |#2|) (-342)))) (-3225 (($ $ (-747)) NIL (|has| (-400 |#2|) (-342))) (($ $) NIL (|has| (-400 |#2|) (-342)))) (-2471 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-2078 (((-892) $) NIL (|has| (-400 |#2|) (-342))) (((-809 (-892)) $) NIL (|has| (-400 |#2|) (-342)))) (-3987 (((-112) $) NIL)) (-1730 (((-747)) NIL)) (-3823 (((-1225 $) (-1225 $)) NIL)) (-4117 (((-400 |#2|) $) NIL)) (-1272 (((-621 (-923 |#1|)) (-1142)) NIL (|has| |#1| (-356)))) (-3982 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-342)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| (-400 |#2|) (-356)))) (-4030 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-2723 (((-892) $) NIL (|has| (-400 |#2|) (-361)))) (-2546 ((|#3| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2677 (((-1124) $) NIL)) (-1568 (((-665 (-400 |#2|))) 52)) (-3652 (((-665 (-400 |#2|))) 51)) (-1991 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4242 (($ (-1225 |#2|) |#2|) 71)) (-3000 (((-665 (-400 |#2|))) 50)) (-2865 (((-665 (-400 |#2|))) 49)) (-1345 (((-2 (|:| |num| (-665 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1880 (((-2 (|:| |num| (-1225 |#2|)) (|:| |den| |#2|)) $) 77)) (-3683 (((-1225 $)) 46)) (-2581 (((-1225 $)) 45)) (-3888 (((-112) $) NIL)) (-4126 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3060 (($) NIL (|has| (-400 |#2|) (-342)) CONST)) (-3491 (($ (-892)) NIL (|has| (-400 |#2|) (-361)))) (-1787 (((-3 |#2| "failed")) 63)) (-3988 (((-1086) $) NIL)) (-2203 (((-747)) NIL)) (-4246 (($) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| (-400 |#2|) (-356)))) (-3726 (($ (-621 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL (|has| (-400 |#2|) (-342)))) (-2120 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-2038 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| (-400 |#2|) (-356)))) (-4091 (((-747) $) NIL (|has| (-400 |#2|) (-356)))) (-3340 ((|#1| $ |#1| |#1|) NIL)) (-3697 (((-3 |#2| "failed")) 62)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3086 (((-400 |#2|) (-1225 $)) NIL) (((-400 |#2|)) 42)) (-2591 (((-747) $) NIL (|has| (-400 |#2|) (-342))) (((-3 (-747) "failed") $ $) NIL (|has| (-400 |#2|) (-342)))) (-3455 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-747)) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-1369 (((-665 (-400 |#2|)) (-1225 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-2539 ((|#3|) 53)) (-3191 (($) NIL (|has| (-400 |#2|) (-342)))) (-4163 (((-1225 (-400 |#2|)) $ (-1225 $)) NIL) (((-665 (-400 |#2|)) (-1225 $) (-1225 $)) NIL) (((-1225 (-400 |#2|)) $) 72) (((-665 (-400 |#2|)) (-1225 $)) NIL)) (-2844 (((-1225 (-400 |#2|)) $) NIL) (($ (-1225 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| (-400 |#2|) (-342)))) (-2995 (((-1225 $) (-1225 $)) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-549))) NIL (-1536 (|has| (-400 |#2|) (-1009 (-400 (-549)))) (|has| (-400 |#2|) (-356)))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3407 (($ $) NIL (|has| (-400 |#2|) (-342))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-4041 ((|#3| $) NIL)) (-1723 (((-747)) NIL)) (-3291 (((-112)) 60)) (-1944 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-3420 (((-1225 $)) 121)) (-4053 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3169 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2164 (((-112)) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-747)) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-549)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-549))) NIL (|has| (-400 |#2|) (-356)))))
-(((-974 |#1| |#2| |#3| |#4| |#5|) (-335 |#1| |#2| |#3|) (-1183) (-1201 |#1|) (-1201 (-400 |#2|)) (-400 |#2|) (-747)) (T -974))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-400 (-535))))) (-3332 (*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-535)))) (-3358 (*1 *1 *1) (-4 *1 (-973))))
+(-13 (-10 -8 (-15 -3358 ($ $)) (-15 -3332 ($ $ (-535))) (-15 ** ($ $ (-400 (-535))))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1758 (((-2 (|:| |num| (-1224 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-2171 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2169 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-1896 (((-665 (-400 |#2|)) (-1224 $)) NIL) (((-665 (-400 |#2|))) NIL)) (-3672 (((-400 |#2|) $) NIL)) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| (-400 |#2|) (-343)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4312 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1700 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3454 (((-747)) NIL (|has| (-400 |#2|) (-361)))) (-1772 (((-112)) NIL)) (-1771 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| (-400 |#2|) (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| (-400 |#2|) (-1009 (-400 (-535))))) (((-3 (-400 |#2|) #1#) $) NIL)) (-3490 (((-535) $) NIL (|has| (-400 |#2|) (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| (-400 |#2|) (-1009 (-400 (-535))))) (((-400 |#2|) $) NIL)) (-1906 (($ (-1224 (-400 |#2|)) (-1224 $)) NIL) (($ (-1224 (-400 |#2|))) 70) (($ (-1224 |#2|) |#2|) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-343)))) (-2883 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1895 (((-665 (-400 |#2|)) $ (-1224 $)) NIL) (((-665 (-400 |#2|)) $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-400 |#2|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-400 |#2|) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-400 |#2|))) (|:| |vec| (-1224 (-400 |#2|)))) (-665 $) (-1224 $)) NIL) (((-665 (-400 |#2|)) (-665 $)) NIL)) (-1763 (((-1224 $) (-1224 $)) NIL)) (-4185 (($ |#3|) 65) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-3804 (((-3 $ "failed") $) NIL)) (-1750 (((-618 (-618 |#1|))) NIL (|has| |#1| (-361)))) (-1775 (((-112) |#1| |#1|) NIL)) (-3427 (((-890)) NIL)) (-3315 (($) NIL (|has| (-400 |#2|) (-361)))) (-1770 (((-112)) NIL)) (-1769 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-2882 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| (-400 |#2|) (-356)))) (-3840 (($ $) NIL)) (-3154 (($) NIL (|has| (-400 |#2|) (-343)))) (-1791 (((-112) $) NIL (|has| (-400 |#2|) (-343)))) (-1881 (($ $ (-747)) NIL (|has| (-400 |#2|) (-343))) (($ $) NIL (|has| (-400 |#2|) (-343)))) (-4069 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-4114 (((-890) $) NIL (|has| (-400 |#2|) (-343))) (((-808 (-890)) $) NIL (|has| (-400 |#2|) (-343)))) (-2493 (((-112) $) NIL)) (-3719 (((-747)) NIL)) (-1764 (((-1224 $) (-1224 $)) NIL)) (-3450 (((-400 |#2|) $) NIL)) (-1751 (((-618 (-917 |#1|)) (-1142)) NIL (|has| |#1| (-356)))) (-3786 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-343)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| (-400 |#2|) (-356)))) (-2125 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-2121 (((-890) $) NIL (|has| (-400 |#2|) (-361)))) (-3401 ((|#3| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3576 (((-1124) $) NIL)) (-1759 (((-665 (-400 |#2|))) 52)) (-1761 (((-665 (-400 |#2|))) 51)) (-2725 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-1756 (($ (-1224 |#2|) |#2|) 71)) (-1760 (((-665 (-400 |#2|))) 50)) (-1762 (((-665 (-400 |#2|))) 49)) (-1755 (((-2 (|:| |num| (-665 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1757 (((-2 (|:| |num| (-1224 |#2|)) (|:| |den| |#2|)) $) 77)) (-1768 (((-1224 $)) 46)) (-4261 (((-1224 $)) 45)) (-1767 (((-112) $) NIL)) (-1766 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3787 (($) NIL (|has| (-400 |#2|) (-343)) CONST)) (-2483 (($ (-890)) NIL (|has| (-400 |#2|) (-361)))) (-1753 (((-3 |#2| #3="failed")) 63)) (-3577 (((-1086) $) NIL)) (-1777 (((-747)) NIL)) (-2492 (($) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| (-400 |#2|) (-356)))) (-3478 (($ (-618 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| (-400 |#2|) (-343)))) (-4075 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3803 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1699 (((-747) $) NIL (|has| (-400 |#2|) (-356)))) (-4142 ((|#1| $ |#1| |#1|) NIL)) (-1754 (((-3 |#2| #3#)) 62)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-4100 (((-400 |#2|) (-1224 $)) NIL) (((-400 |#2|)) 42)) (-1882 (((-747) $) NIL (|has| (-400 |#2|) (-343))) (((-3 (-747) "failed") $ $) NIL (|has| (-400 |#2|) (-343)))) (-4153 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-618 (-1142))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-747)) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-2491 (((-665 (-400 |#2|)) (-1224 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-3519 ((|#3|) 53)) (-1785 (($) NIL (|has| (-400 |#2|) (-343)))) (-3558 (((-1224 (-400 |#2|)) $ (-1224 $)) NIL) (((-665 (-400 |#2|)) (-1224 $) (-1224 $)) NIL) (((-1224 (-400 |#2|)) $) 72) (((-665 (-400 |#2|)) (-1224 $)) NIL)) (-4313 (((-1224 (-400 |#2|)) $) NIL) (($ (-1224 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| (-400 |#2|) (-343)))) (-1765 (((-1224 $) (-1224 $)) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-535))) NIL (-3874 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1009 (-400 (-535)))))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3023 (($ $) NIL (|has| (-400 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-2689 ((|#3| $) NIL)) (-3444 (((-747)) NIL)) (-1774 (((-112)) 60)) (-1773 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-2123 (((-1224 $)) 121)) (-2170 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-1752 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1776 (((-112)) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-618 (-1142))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1142))))) (($ $ (-747)) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3874 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-535)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-535))) NIL (|has| (-400 |#2|) (-356)))))
+(((-974 |#1| |#2| |#3| |#4| |#5|) (-335 |#1| |#2| |#3|) (-1183) (-1200 |#1|) (-1200 (-400 |#2|)) (-400 |#2|) (-747)) (T -974))
NIL
(-335 |#1| |#2| |#3|)
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2497 (((-621 (-549)) $) 54)) (-1868 (($ (-621 (-549))) 62)) (-2364 (((-549) $) 40 (|has| (-549) (-300)))) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL (|has| (-549) (-796)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) 49) (((-3 (-1142) "failed") $) NIL (|has| (-549) (-1009 (-1142)))) (((-3 (-400 (-549)) "failed") $) 47 (|has| (-549) (-1009 (-549)))) (((-3 (-549) "failed") $) 49 (|has| (-549) (-1009 (-549))))) (-2658 (((-549) $) NIL) (((-1142) $) NIL (|has| (-549) (-1009 (-1142)))) (((-400 (-549)) $) NIL (|has| (-549) (-1009 (-549)))) (((-549) $) NIL (|has| (-549) (-1009 (-549))))) (-2094 (($ $ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL) (((-665 (-549)) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3238 (($) NIL (|has| (-549) (-534)))) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3267 (((-621 (-549)) $) 60)) (-3079 (((-112) $) NIL (|has| (-549) (-796)))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-549) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-549) (-857 (-372))))) (-3987 (((-112) $) NIL)) (-2053 (($ $) NIL)) (-1393 (((-549) $) 37)) (-3982 (((-3 $ "failed") $) NIL (|has| (-549) (-1117)))) (-2847 (((-112) $) NIL (|has| (-549) (-796)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2862 (($ $ $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| (-549) (-823)))) (-2796 (($ (-1 (-549) (-549)) $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL)) (-3060 (($) NIL (|has| (-549) (-1117)) CONST)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1260 (($ $) NIL (|has| (-549) (-300))) (((-400 (-549)) $) 42)) (-3126 (((-1122 (-549)) $) 59)) (-3563 (($ (-621 (-549)) (-621 (-549))) 63)) (-4060 (((-549) $) 53 (|has| (-549) (-534)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| (-549) (-880)))) (-2120 (((-411 $) $) NIL)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2685 (($ $ (-621 (-549)) (-621 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-302 (-549)))) (($ $ (-287 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-287 (-549)))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-1142)) (-621 (-549))) NIL (|has| (-549) (-505 (-1142) (-549)))) (($ $ (-1142) (-549)) NIL (|has| (-549) (-505 (-1142) (-549))))) (-4091 (((-747) $) NIL)) (-3340 (($ $ (-549)) NIL (|has| (-549) (-279 (-549) (-549))))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3455 (($ $) 11 (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1142)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-4288 (($ $) NIL)) (-1404 (((-549) $) 39)) (-3465 (((-621 (-549)) $) 61)) (-2844 (((-863 (-549)) $) NIL (|has| (-549) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-549) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-549) (-594 (-525)))) (((-372) $) NIL (|has| (-549) (-993))) (((-219) $) NIL (|has| (-549) (-993)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-549) (-880))))) (-3845 (((-834) $) 77) (($ (-549)) 43) (($ $) NIL) (($ (-400 (-549))) 20) (($ (-549)) 43) (($ (-1142)) NIL (|has| (-549) (-1009 (-1142)))) (((-400 (-549)) $) 18)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-549) (-880))) (|has| (-549) (-143))))) (-1723 (((-747)) 9)) (-2926 (((-549) $) 51 (|has| (-549) (-534)))) (-4053 (((-112) $ $) NIL)) (-3603 (($ $) NIL (|has| (-549) (-796)))) (-3275 (($) 10 T CONST)) (-3287 (($) 12 T CONST)) (-1700 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1142)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| (-549) (-871 (-1142)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2424 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2388 (((-112) $ $) 14)) (-2436 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2411 (((-112) $ $) 33 (|has| (-549) (-823)))) (-2512 (($ $ $) 29) (($ (-549) (-549)) 31)) (-2499 (($ $) 15) (($ $ $) 23)) (-2485 (($ $ $) 21)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 25) (($ $ $) 27) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-549) $) 25) (($ $ (-549)) NIL)))
-(((-975 |#1|) (-13 (-963 (-549)) (-10 -8 (-15 -3845 ((-400 (-549)) $)) (-15 -1260 ((-400 (-549)) $)) (-15 -2497 ((-621 (-549)) $)) (-15 -3126 ((-1122 (-549)) $)) (-15 -3267 ((-621 (-549)) $)) (-15 -3465 ((-621 (-549)) $)) (-15 -1868 ($ (-621 (-549)))) (-15 -3563 ($ (-621 (-549)) (-621 (-549)))))) (-549)) (T -975))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-1260 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-1122 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-3563 (*1 *1 *2 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
-(-13 (-963 (-549)) (-10 -8 (-15 -3845 ((-400 (-549)) $)) (-15 -1260 ((-400 (-549)) $)) (-15 -2497 ((-621 (-549)) $)) (-15 -3126 ((-1122 (-549)) $)) (-15 -3267 ((-621 (-549)) $)) (-15 -3465 ((-621 (-549)) $)) (-15 -1868 ($ (-621 (-549)))) (-15 -3563 ($ (-621 (-549)) (-621 (-549))))))
-((-3941 (((-52) (-400 (-549)) (-549)) 9)))
-(((-976) (-10 -7 (-15 -3941 ((-52) (-400 (-549)) (-549))))) (T -976))
-((-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-549))) (-5 *4 (-549)) (-5 *2 (-52)) (-5 *1 (-976)))))
-(-10 -7 (-15 -3941 ((-52) (-400 (-549)) (-549))))
-((-3615 (((-549)) 13)) (-2310 (((-549)) 16)) (-3622 (((-1230) (-549)) 15)) (-2834 (((-549) (-549)) 17) (((-549)) 12)))
-(((-977) (-10 -7 (-15 -2834 ((-549))) (-15 -3615 ((-549))) (-15 -2834 ((-549) (-549))) (-15 -3622 ((-1230) (-549))) (-15 -2310 ((-549))))) (T -977))
-((-2310 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-977)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977)))) (-3615 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977)))) (-2834 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977)))))
-(-10 -7 (-15 -2834 ((-549))) (-15 -3615 ((-549))) (-15 -2834 ((-549) (-549))) (-15 -3622 ((-1230) (-549))) (-15 -2310 ((-549))))
-((-1961 (((-411 |#1|) |#1|) 41)) (-2120 (((-411 |#1|) |#1|) 40)))
-(((-978 |#1|) (-10 -7 (-15 -2120 ((-411 |#1|) |#1|)) (-15 -1961 ((-411 |#1|) |#1|))) (-1201 (-400 (-549)))) (T -978))
-((-1961 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1201 (-400 (-549)))))) (-2120 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1201 (-400 (-549)))))))
-(-10 -7 (-15 -2120 ((-411 |#1|) |#1|)) (-15 -1961 ((-411 |#1|) |#1|)))
-((-3156 (((-3 (-400 (-549)) "failed") |#1|) 15)) (-3230 (((-112) |#1|) 14)) (-3867 (((-400 (-549)) |#1|) 10)))
-(((-979 |#1|) (-10 -7 (-15 -3867 ((-400 (-549)) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 -3156 ((-3 (-400 (-549)) "failed") |#1|))) (-1009 (-400 (-549)))) (T -979))
-((-3156 (*1 *2 *3) (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2)))) (-3230 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-979 *3)) (-4 *3 (-1009 (-400 (-549)))))) (-3867 (*1 *2 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2)))))
-(-10 -7 (-15 -3867 ((-400 (-549)) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 -3156 ((-3 (-400 (-549)) "failed") |#1|)))
-((-2253 ((|#2| $ "value" |#2|) 12)) (-3340 ((|#2| $ "value") 10)) (-2937 (((-112) $ $) 18)))
-(((-980 |#1| |#2|) (-10 -8 (-15 -2253 (|#2| |#1| "value" |#2|)) (-15 -2937 ((-112) |#1| |#1|)) (-15 -3340 (|#2| |#1| "value"))) (-981 |#2|) (-1179)) (T -980))
-NIL
-(-10 -8 (-15 -2253 (|#2| |#1| "value" |#2|)) (-15 -2937 ((-112) |#1| |#1|)) (-15 -3340 (|#2| |#1| "value")))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-4160 ((|#1| $) 48)) (-1323 (((-112) $ (-747)) 8)) (-3751 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) 41 (|has| $ (-6 -4337)))) (-1705 (($) 7 T CONST)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) 50)) (-1742 (((-112) $ $) 42 (|has| |#1| (-1066)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-3590 (((-621 |#1|) $) 45)) (-2456 (((-112) $) 49)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ "value") 47)) (-1953 (((-549) $ $) 44)) (-4187 (((-112) $) 46)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) 51)) (-2937 (((-112) $ $) 43 (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-981 |#1|) (-138) (-1179)) (T -981))
-((-1935 (*1 *2 *1) (-12 (-4 *3 (-1179)) (-5 *2 (-621 *1)) (-4 *1 (-981 *3)))) (-3630 (*1 *2 *1) (-12 (-4 *3 (-1179)) (-5 *2 (-621 *1)) (-4 *1 (-981 *3)))) (-2456 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1179)) (-5 *2 (-112)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1179)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-981 *2)) (-4 *2 (-1179)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1179)) (-5 *2 (-112)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1179)) (-5 *2 (-621 *3)))) (-1953 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1179)) (-5 *2 (-549)))) (-2937 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1179)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-1742 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1179)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-1900 (*1 *1 *1 *2) (-12 (-5 *2 (-621 *1)) (|has| *1 (-6 -4337)) (-4 *1 (-981 *3)) (-4 *3 (-1179)))) (-2253 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4337)) (-4 *1 (-981 *2)) (-4 *2 (-1179)))) (-3751 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-981 *2)) (-4 *2 (-1179)))))
-(-13 (-481 |t#1|) (-10 -8 (-15 -1935 ((-621 $) $)) (-15 -3630 ((-621 $) $)) (-15 -2456 ((-112) $)) (-15 -4160 (|t#1| $)) (-15 -3340 (|t#1| $ "value")) (-15 -4187 ((-112) $)) (-15 -3590 ((-621 |t#1|) $)) (-15 -1953 ((-549) $ $)) (IF (|has| |t#1| (-1066)) (PROGN (-15 -2937 ((-112) $ $)) (-15 -1742 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4337)) (PROGN (-15 -1900 ($ $ (-621 $))) (-15 -2253 (|t#1| $ "value" |t#1|)) (-15 -3751 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-2134 (($ $) 9) (($ $ (-892)) 43) (($ (-400 (-549))) 13) (($ (-549)) 15)) (-1681 (((-3 $ "failed") (-1138 $) (-892) (-834)) 23) (((-3 $ "failed") (-1138 $) (-892)) 28)) (-3930 (($ $ (-549)) 49)) (-1723 (((-747)) 17)) (-2500 (((-621 $) (-1138 $)) NIL) (((-621 $) (-1138 (-400 (-549)))) 54) (((-621 $) (-1138 (-549))) 59) (((-621 $) (-923 $)) 63) (((-621 $) (-923 (-400 (-549)))) 67) (((-621 $) (-923 (-549))) 71)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL) (($ $ (-400 (-549))) 47)))
-(((-982 |#1|) (-10 -8 (-15 -2134 (|#1| (-549))) (-15 -2134 (|#1| (-400 (-549)))) (-15 -2134 (|#1| |#1| (-892))) (-15 -2500 ((-621 |#1|) (-923 (-549)))) (-15 -2500 ((-621 |#1|) (-923 (-400 (-549))))) (-15 -2500 ((-621 |#1|) (-923 |#1|))) (-15 -2500 ((-621 |#1|) (-1138 (-549)))) (-15 -2500 ((-621 |#1|) (-1138 (-400 (-549))))) (-15 -2500 ((-621 |#1|) (-1138 |#1|))) (-15 -1681 ((-3 |#1| "failed") (-1138 |#1|) (-892))) (-15 -1681 ((-3 |#1| "failed") (-1138 |#1|) (-892) (-834))) (-15 ** (|#1| |#1| (-400 (-549)))) (-15 -3930 (|#1| |#1| (-549))) (-15 -2134 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -1723 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892)))) (-983)) (T -982))
-((-1723 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-982 *3)) (-4 *3 (-983)))))
-(-10 -8 (-15 -2134 (|#1| (-549))) (-15 -2134 (|#1| (-400 (-549)))) (-15 -2134 (|#1| |#1| (-892))) (-15 -2500 ((-621 |#1|) (-923 (-549)))) (-15 -2500 ((-621 |#1|) (-923 (-400 (-549))))) (-15 -2500 ((-621 |#1|) (-923 |#1|))) (-15 -2500 ((-621 |#1|) (-1138 (-549)))) (-15 -2500 ((-621 |#1|) (-1138 (-400 (-549))))) (-15 -2500 ((-621 |#1|) (-1138 |#1|))) (-15 -1681 ((-3 |#1| "failed") (-1138 |#1|) (-892))) (-15 -1681 ((-3 |#1| "failed") (-1138 |#1|) (-892) (-834))) (-15 ** (|#1| |#1| (-400 (-549)))) (-15 -3930 (|#1| |#1| (-549))) (-15 -2134 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -1723 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 87)) (-2408 (($ $) 88)) (-2477 (((-112) $) 90)) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 107)) (-3513 (((-411 $) $) 108)) (-2134 (($ $) 71) (($ $ (-892)) 57) (($ (-400 (-549))) 56) (($ (-549)) 55)) (-2647 (((-112) $ $) 98)) (-3902 (((-549) $) 124)) (-1705 (($) 17 T CONST)) (-1681 (((-3 $ "failed") (-1138 $) (-892) (-834)) 65) (((-3 $ "failed") (-1138 $) (-892)) 64)) (-2713 (((-3 (-549) "failed") $) 83 (|has| (-400 (-549)) (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 81 (|has| (-400 (-549)) (-1009 (-400 (-549))))) (((-3 (-400 (-549)) "failed") $) 79)) (-2658 (((-549) $) 84 (|has| (-400 (-549)) (-1009 (-549)))) (((-400 (-549)) $) 82 (|has| (-400 (-549)) (-1009 (-400 (-549))))) (((-400 (-549)) $) 78)) (-4114 (($ $ (-834)) 54)) (-2616 (($ $ (-834)) 53)) (-2094 (($ $ $) 102)) (-3976 (((-3 $ "failed") $) 32)) (-2066 (($ $ $) 101)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 96)) (-2471 (((-112) $) 109)) (-3079 (((-112) $) 122)) (-3987 (((-112) $) 30)) (-3930 (($ $ (-549)) 70)) (-2847 (((-112) $) 123)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 105)) (-2862 (($ $ $) 121)) (-3574 (($ $ $) 120)) (-2527 (((-3 (-1138 $) "failed") $) 66)) (-3912 (((-3 (-834) "failed") $) 68)) (-4158 (((-3 (-1138 $) "failed") $) 67)) (-3696 (($ (-621 $)) 94) (($ $ $) 93)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 110)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 95)) (-3726 (($ (-621 $)) 92) (($ $ $) 91)) (-2120 (((-411 $) $) 106)) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 103)) (-2038 (((-3 $ "failed") $ $) 86)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 97)) (-4091 (((-747) $) 99)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 100)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 114) (($ $) 85) (($ (-400 (-549))) 80) (($ (-549)) 77) (($ (-400 (-549))) 74)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 89)) (-2660 (((-400 (-549)) $ $) 52)) (-2500 (((-621 $) (-1138 $)) 63) (((-621 $) (-1138 (-400 (-549)))) 62) (((-621 $) (-1138 (-549))) 61) (((-621 $) (-923 $)) 60) (((-621 $) (-923 (-400 (-549)))) 59) (((-621 $) (-923 (-549))) 58)) (-3603 (($ $) 125)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 118)) (-2424 (((-112) $ $) 117)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 119)) (-2411 (((-112) $ $) 116)) (-2512 (($ $ $) 115)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 111) (($ $ (-400 (-549))) 69)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ (-400 (-549)) $) 113) (($ $ (-400 (-549))) 112) (($ (-549) $) 76) (($ $ (-549)) 75) (($ (-400 (-549)) $) 73) (($ $ (-400 (-549))) 72)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3338 (((-618 (-535)) $) 54)) (-3334 (($ (-618 (-535))) 62)) (-3447 (((-535) $) 40 (|has| (-535) (-300)))) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL (|has| (-535) (-796)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #2="failed") $) 49) (((-3 (-1142) #2#) $) NIL (|has| (-535) (-1009 (-1142)))) (((-3 (-400 (-535)) #2#) $) 47 (|has| (-535) (-1009 (-535)))) (((-3 (-535) #2#) $) 49 (|has| (-535) (-1009 (-535))))) (-3490 (((-535) $) NIL) (((-1142) $) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) NIL (|has| (-535) (-1009 (-535)))) (((-535) $) NIL (|has| (-535) (-1009 (-535))))) (-2883 (($ $ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| (-535) (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3315 (($) NIL (|has| (-535) (-534)))) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3336 (((-618 (-535)) $) 60)) (-3520 (((-112) $) NIL (|has| (-535) (-796)))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (|has| (-535) (-857 (-535)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (|has| (-535) (-857 (-371))))) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL)) (-3319 (((-535) $) 37)) (-3786 (((-3 $ "failed") $) NIL (|has| (-535) (-1117)))) (-3521 (((-112) $) NIL (|has| (-535) (-796)))) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-535) (-823)))) (-4301 (($ (-1 (-535) (-535)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL)) (-3787 (($) NIL (|has| (-535) (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3446 (($ $) NIL (|has| (-535) (-300))) (((-400 (-535)) $) 42)) (-3337 (((-1119 (-535)) $) 59)) (-3333 (($ (-618 (-535)) (-618 (-535))) 63)) (-3448 (((-535) $) 53 (|has| (-535) (-534)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| (-535) (-881)))) (-4075 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-4110 (($ $ (-618 (-535)) (-618 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-535) (-535)) NIL (|has| (-535) (-302 (-535)))) (($ $ (-286 (-535))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-286 (-535)))) NIL (|has| (-535) (-302 (-535)))) (($ $ (-618 (-1142)) (-618 (-535))) NIL (|has| (-535) (-505 (-1142) (-535)))) (($ $ (-1142) (-535)) NIL (|has| (-535) (-505 (-1142) (-535))))) (-1699 (((-747) $) NIL)) (-4142 (($ $ (-535)) NIL (|has| (-535) (-279 (-535) (-535))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $) 11 (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-3316 (($ $) NIL)) (-3318 (((-535) $) 39)) (-3335 (((-618 (-535)) $) 61)) (-4313 (((-861 (-535)) $) NIL (|has| (-535) (-594 (-861 (-535))))) (((-861 (-371)) $) NIL (|has| (-535) (-594 (-861 (-371))))) (((-524) $) NIL (|has| (-535) (-594 (-524)))) (((-371) $) NIL (|has| (-535) (-991))) (((-219) $) NIL (|has| (-535) (-991)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-535) (-881))))) (-4300 (((-835) $) 77) (($ (-535)) 43) (($ $) NIL) (($ (-400 (-535))) 20) (($ (-535)) 43) (($ (-1142)) NIL (|has| (-535) (-1009 (-1142)))) (((-400 (-535)) $) 18)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-535) (-881))) (|has| (-535) (-143))))) (-3444 (((-747)) 9)) (-3449 (((-535) $) 51 (|has| (-535) (-534)))) (-2170 (((-112) $ $) NIL)) (-3725 (($ $) NIL (|has| (-535) (-796)))) (-2979 (($) 10 T CONST)) (-2985 (($) 12 T CONST)) (-2990 (($ $) NIL (|has| (-535) (-227))) (($ $ (-747)) NIL (|has| (-535) (-227))) (($ $ (-1142)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| (-535) (-871 (-1142)))) (($ $ (-1 (-535) (-535)) (-747)) NIL) (($ $ (-1 (-535) (-535))) NIL)) (-2885 (((-112) $ $) NIL (|has| (-535) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3375 (((-112) $ $) 14)) (-3005 (((-112) $ $) NIL (|has| (-535) (-823)))) (-3006 (((-112) $ $) 33 (|has| (-535) (-823)))) (-4291 (($ $ $) 29) (($ (-535) (-535)) 31)) (-4180 (($ $) 15) (($ $ $) 23)) (-4182 (($ $ $) 21)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 25) (($ $ $) 27) (($ $ (-400 (-535))) NIL) (($ (-400 (-535)) $) NIL) (($ (-535) $) 25) (($ $ (-535)) NIL)))
+(((-975 |#1|) (-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -3338 ((-618 (-535)) $)) (-15 -3337 ((-1119 (-535)) $)) (-15 -3336 ((-618 (-535)) $)) (-15 -3335 ((-618 (-535)) $)) (-15 -3334 ($ (-618 (-535)))) (-15 -3333 ($ (-618 (-535)) (-618 (-535)))))) (-535)) (T -975))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3338 (*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-1119 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3335 (*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))) (-3333 (*1 *1 *2 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))))
+(-13 (-962 (-535)) (-10 -8 (-15 -4300 ((-400 (-535)) $)) (-15 -3446 ((-400 (-535)) $)) (-15 -3338 ((-618 (-535)) $)) (-15 -3337 ((-1119 (-535)) $)) (-15 -3336 ((-618 (-535)) $)) (-15 -3335 ((-618 (-535)) $)) (-15 -3334 ($ (-618 (-535)))) (-15 -3333 ($ (-618 (-535)) (-618 (-535))))))
+((-3339 (((-51) (-400 (-535)) (-535)) 9)))
+(((-976) (-10 -7 (-15 -3339 ((-51) (-400 (-535)) (-535))))) (T -976))
+((-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-535))) (-5 *4 (-535)) (-5 *2 (-51)) (-5 *1 (-976)))))
+(-10 -7 (-15 -3339 ((-51) (-400 (-535)) (-535))))
+((-3454 (((-535)) 13)) (-3342 (((-535)) 16)) (-3341 (((-1230) (-535)) 15)) (-3340 (((-535) (-535)) 17) (((-535)) 12)))
+(((-977) (-10 -7 (-15 -3340 ((-535))) (-15 -3454 ((-535))) (-15 -3340 ((-535) (-535))) (-15 -3341 ((-1230) (-535))) (-15 -3342 ((-535))))) (T -977))
+((-3342 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-977)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977)))) (-3454 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977)))) (-3340 (*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977)))))
+(-10 -7 (-15 -3340 ((-535))) (-15 -3454 ((-535))) (-15 -3340 ((-535) (-535))) (-15 -3341 ((-1230) (-535))) (-15 -3342 ((-535))))
+((-4076 (((-398 |#1|) |#1|) 41)) (-4075 (((-398 |#1|) |#1|) 40)))
+(((-978 |#1|) (-10 -7 (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4076 ((-398 |#1|) |#1|))) (-1200 (-400 (-535)))) (T -978))
+((-4076 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1200 (-400 (-535)))))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1200 (-400 (-535)))))))
+(-10 -7 (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4076 ((-398 |#1|) |#1|)))
+((-3345 (((-3 (-400 (-535)) "failed") |#1|) 15)) (-3344 (((-112) |#1|) 14)) (-3343 (((-400 (-535)) |#1|) 10)))
+(((-979 |#1|) (-10 -7 (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|))) (-1009 (-400 (-535)))) (T -979))
+((-3345 (*1 *2 *3) (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2)))) (-3344 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-979 *3)) (-4 *3 (-1009 (-400 (-535)))))) (-3343 (*1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2)))))
+(-10 -7 (-15 -3343 ((-400 (-535)) |#1|)) (-15 -3344 ((-112) |#1|)) (-15 -3345 ((-3 (-400 (-535)) "failed") |#1|)))
+((-4130 ((|#2| $ "value" |#2|) 12)) (-4142 ((|#2| $ "value") 10)) (-3349 (((-112) $ $) 18)))
+(((-980 |#1| |#2|) (-10 -8 (-15 -4130 (|#2| |#1| "value" |#2|)) (-15 -3349 ((-112) |#1| |#1|)) (-15 -4142 (|#2| |#1| "value"))) (-981 |#2|) (-1178)) (T -980))
+NIL
+(-10 -8 (-15 -4130 (|#2| |#1| "value" |#2|)) (-15 -3349 ((-112) |#1| |#1|)) (-15 -4142 (|#2| |#1| "value")))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-3879 (($) 7 T CONST)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ "value") 47)) (-3350 (((-535) $ $) 44)) (-3979 (((-112) $) 46)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-981 |#1|) (-138) (-1178)) (T -981))
+((-3859 (*1 *2 *1) (-12 (-4 *3 (-1178)) (-5 *2 (-618 *1)) (-4 *1 (-981 *3)))) (-3352 (*1 *2 *1) (-12 (-4 *3 (-1178)) (-5 *2 (-618 *1)) (-4 *1 (-981 *3)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1178)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-981 *2)) (-4 *2 (-1178)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-618 *3)))) (-3350 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-535)))) (-3349 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-3348 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-3347 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *1)) (|has| *1 (-6 -4337)) (-4 *1 (-981 *3)) (-4 *3 (-1178)))) (-4130 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4337)) (-4 *1 (-981 *2)) (-4 *2 (-1178)))) (-3346 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-981 *2)) (-4 *2 (-1178)))))
+(-13 (-481 |t#1|) (-10 -8 (-15 -3859 ((-618 $) $)) (-15 -3352 ((-618 $) $)) (-15 -3864 ((-112) $)) (-15 -3744 (|t#1| $)) (-15 -4142 (|t#1| $ "value")) (-15 -3979 ((-112) $)) (-15 -3351 ((-618 |t#1|) $)) (-15 -3350 ((-535) $ $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -3349 ((-112) $ $)) (-15 -3348 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4337)) (PROGN (-15 -3347 ($ $ (-618 $))) (-15 -4130 (|t#1| $ "value" |t#1|)) (-15 -3346 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-3358 (($ $) 9) (($ $ (-890)) 43) (($ (-400 (-535))) 13) (($ (-535)) 15)) (-3517 (((-3 $ "failed") (-1136 $) (-890) (-835)) 23) (((-3 $ "failed") (-1136 $) (-890)) 28)) (-3332 (($ $ (-535)) 49)) (-3444 (((-747)) 17)) (-3518 (((-618 $) (-1136 $)) NIL) (((-618 $) (-1136 (-400 (-535)))) 54) (((-618 $) (-1136 (-535))) 59) (((-618 $) (-917 $)) 63) (((-618 $) (-917 (-400 (-535)))) 67) (((-618 $) (-917 (-535))) 71)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL) (($ $ (-400 (-535))) 47)))
+(((-982 |#1|) (-10 -8 (-15 -3358 (|#1| (-535))) (-15 -3358 (|#1| (-400 (-535)))) (-15 -3358 (|#1| |#1| (-890))) (-15 -3518 ((-618 |#1|) (-917 (-535)))) (-15 -3518 ((-618 |#1|) (-917 (-400 (-535))))) (-15 -3518 ((-618 |#1|) (-917 |#1|))) (-15 -3518 ((-618 |#1|) (-1136 (-535)))) (-15 -3518 ((-618 |#1|) (-1136 (-400 (-535))))) (-15 -3518 ((-618 |#1|) (-1136 |#1|))) (-15 -3517 ((-3 |#1| "failed") (-1136 |#1|) (-890))) (-15 -3517 ((-3 |#1| "failed") (-1136 |#1|) (-890) (-835))) (-15 ** (|#1| |#1| (-400 (-535)))) (-15 -3332 (|#1| |#1| (-535))) (-15 -3358 (|#1| |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 -3444 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890)))) (-983)) (T -982))
+((-3444 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-982 *3)) (-4 *3 (-983)))))
+(-10 -8 (-15 -3358 (|#1| (-535))) (-15 -3358 (|#1| (-400 (-535)))) (-15 -3358 (|#1| |#1| (-890))) (-15 -3518 ((-618 |#1|) (-917 (-535)))) (-15 -3518 ((-618 |#1|) (-917 (-400 (-535))))) (-15 -3518 ((-618 |#1|) (-917 |#1|))) (-15 -3518 ((-618 |#1|) (-1136 (-535)))) (-15 -3518 ((-618 |#1|) (-1136 (-400 (-535))))) (-15 -3518 ((-618 |#1|) (-1136 |#1|))) (-15 -3517 ((-3 |#1| "failed") (-1136 |#1|) (-890))) (-15 -3517 ((-3 |#1| "failed") (-1136 |#1|) (-890) (-835))) (-15 ** (|#1| |#1| (-400 (-535)))) (-15 -3332 (|#1| |#1| (-535))) (-15 -3358 (|#1| |#1|)) (-15 ** (|#1| |#1| (-535))) (-15 -3444 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 87)) (-2171 (($ $) 88)) (-2169 (((-112) $) 90)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 107)) (-4312 (((-398 $) $) 108)) (-3358 (($ $) 71) (($ $ (-890)) 57) (($ (-400 (-535))) 56) (($ (-535)) 55)) (-1700 (((-112) $ $) 98)) (-3969 (((-535) $) 124)) (-3879 (($) 17 T CONST)) (-3517 (((-3 $ "failed") (-1136 $) (-890) (-835)) 65) (((-3 $ "failed") (-1136 $) (-890)) 64)) (-3491 (((-3 (-535) #1="failed") $) 83 (|has| (-400 (-535)) (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 81 (|has| (-400 (-535)) (-1009 (-400 (-535))))) (((-3 (-400 (-535)) #1#) $) 79)) (-3490 (((-535) $) 84 (|has| (-400 (-535)) (-1009 (-535)))) (((-400 (-535)) $) 82 (|has| (-400 (-535)) (-1009 (-400 (-535))))) (((-400 (-535)) $) 78)) (-3354 (($ $ (-835)) 54)) (-3353 (($ $ (-835)) 53)) (-2883 (($ $ $) 102)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 101)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 96)) (-4069 (((-112) $) 109)) (-3520 (((-112) $) 122)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 70)) (-3521 (((-112) $) 123)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 105)) (-3660 (($ $ $) 121)) (-3661 (($ $ $) 120)) (-3355 (((-3 (-1136 $) "failed") $) 66)) (-3357 (((-3 (-835) "failed") $) 68)) (-3356 (((-3 (-1136 $) "failed") $) 67)) (-2008 (($ (-618 $)) 94) (($ $ $) 93)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 110)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 95)) (-3478 (($ (-618 $)) 92) (($ $ $) 91)) (-4075 (((-398 $) $) 106)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 103)) (-3803 (((-3 $ "failed") $ $) 86)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 97)) (-1699 (((-747) $) 99)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 100)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 114) (($ $) 85) (($ (-400 (-535))) 80) (($ (-535)) 77) (($ (-400 (-535))) 74)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 89)) (-4112 (((-400 (-535)) $ $) 52)) (-3518 (((-618 $) (-1136 $)) 63) (((-618 $) (-1136 (-400 (-535)))) 62) (((-618 $) (-1136 (-535))) 61) (((-618 $) (-917 $)) 60) (((-618 $) (-917 (-400 (-535)))) 59) (((-618 $) (-917 (-535))) 58)) (-3725 (($ $) 125)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 118)) (-2886 (((-112) $ $) 117)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 119)) (-3006 (((-112) $ $) 116)) (-4291 (($ $ $) 115)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 111) (($ $ (-400 (-535))) 69)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ (-400 (-535)) $) 113) (($ $ (-400 (-535))) 112) (($ (-535) $) 76) (($ $ (-535)) 75) (($ (-400 (-535)) $) 73) (($ $ (-400 (-535))) 72)))
(((-983) (-138)) (T -983))
-((-2134 (*1 *1 *1) (-4 *1 (-983))) (-3912 (*1 *2 *1) (|partial| -12 (-4 *1 (-983)) (-5 *2 (-834)))) (-4158 (*1 *2 *1) (|partial| -12 (-5 *2 (-1138 *1)) (-4 *1 (-983)))) (-2527 (*1 *2 *1) (|partial| -12 (-5 *2 (-1138 *1)) (-4 *1 (-983)))) (-1681 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1138 *1)) (-5 *3 (-892)) (-5 *4 (-834)) (-4 *1 (-983)))) (-1681 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1138 *1)) (-5 *3 (-892)) (-4 *1 (-983)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-1138 *1)) (-4 *1 (-983)) (-5 *2 (-621 *1)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-1138 (-400 (-549)))) (-5 *2 (-621 *1)) (-4 *1 (-983)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-1138 (-549))) (-5 *2 (-621 *1)) (-4 *1 (-983)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-923 *1)) (-4 *1 (-983)) (-5 *2 (-621 *1)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-923 (-400 (-549)))) (-5 *2 (-621 *1)) (-4 *1 (-983)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-923 (-549))) (-5 *2 (-621 *1)) (-4 *1 (-983)))) (-2134 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-892)))) (-2134 (*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-4 *1 (-983)))) (-2134 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-983)))) (-4114 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-834)))) (-2616 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-834)))) (-2660 (*1 *2 *1 *1) (-12 (-4 *1 (-983)) (-5 *2 (-400 (-549))))))
-(-13 (-145) (-821) (-170) (-356) (-404 (-400 (-549))) (-38 (-549)) (-38 (-400 (-549))) (-973) (-10 -8 (-15 -3912 ((-3 (-834) "failed") $)) (-15 -4158 ((-3 (-1138 $) "failed") $)) (-15 -2527 ((-3 (-1138 $) "failed") $)) (-15 -1681 ((-3 $ "failed") (-1138 $) (-892) (-834))) (-15 -1681 ((-3 $ "failed") (-1138 $) (-892))) (-15 -2500 ((-621 $) (-1138 $))) (-15 -2500 ((-621 $) (-1138 (-400 (-549))))) (-15 -2500 ((-621 $) (-1138 (-549)))) (-15 -2500 ((-621 $) (-923 $))) (-15 -2500 ((-621 $) (-923 (-400 (-549))))) (-15 -2500 ((-621 $) (-923 (-549)))) (-15 -2134 ($ $ (-892))) (-15 -2134 ($ $)) (-15 -2134 ($ (-400 (-549)))) (-15 -2134 ($ (-549))) (-15 -4114 ($ $ (-834))) (-15 -2616 ($ $ (-834))) (-15 -2660 ((-400 (-549)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 #1=(-549)) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-834)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-404 (-400 (-549))) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-821) . T) ((-823) . T) ((-891) . T) ((-973) . T) ((-1009 (-400 (-549))) . T) ((-1009 (-549)) |has| (-400 (-549)) (-1009 (-549))) ((-1024 #0#) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1183) . T))
-((-3170 (((-2 (|:| |ans| |#2|) (|:| -3847 |#2|) (|:| |sol?| (-112))) (-549) |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|)) (-1 (-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
-(((-984 |#1| |#2|) (-10 -7 (-15 -3170 ((-2 (|:| |ans| |#2|) (|:| -3847 |#2|) (|:| |sol?| (-112))) (-549) |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|)) (-1 (-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1164) (-27) (-423 |#1|))) (T -984))
-((-3170 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1142)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-621 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2460 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1164) (-27) (-423 *8))) (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3))) (-5 *3 (-549)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3847 *4) (|:| |sol?| (-112)))) (-5 *1 (-984 *8 *4)))))
-(-10 -7 (-15 -3170 ((-2 (|:| |ans| |#2|) (|:| -3847 |#2|) (|:| |sol?| (-112))) (-549) |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|)) (-1 (-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3096 (((-3 (-621 |#2|) "failed") (-549) |#2| |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|)) (-1 (-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
-(((-985 |#1| |#2|) (-10 -7 (-15 -3096 ((-3 (-621 |#2|) "failed") (-549) |#2| |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|)) (-1 (-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1164) (-27) (-423 |#1|))) (T -985))
-((-3096 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1142)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-621 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2460 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1164) (-27) (-423 *8))) (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3))) (-5 *3 (-549)) (-5 *2 (-621 *4)) (-5 *1 (-985 *8 *4)))))
-(-10 -7 (-15 -3096 ((-3 (-621 |#2|) "failed") (-549) |#2| |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|)) (-1 (-3 (-2 (|:| -2460 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3674 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2650 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-549)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-549) (-1 |#2| |#2|)) 30)) (-2950 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -2630 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 58)) (-2921 (((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|)) 63)))
-(((-986 |#1| |#2|) (-10 -7 (-15 -2950 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -2630 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2921 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -3674 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2650 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-549)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-549) (-1 |#2| |#2|)))) (-13 (-356) (-145) (-1009 (-549))) (-1201 |#1|)) (T -986))
-((-3674 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1201 *6)) (-4 *6 (-13 (-356) (-145) (-1009 *4))) (-5 *4 (-549)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2650 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-986 *6 *3)))) (-2921 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-549)))) (-4 *5 (-1201 *4)) (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) (-5 *1 (-986 *4 *5)) (-5 *3 (-400 *5)))) (-2950 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) (|:| -2630 *6))) (-5 *1 (-986 *5 *6)) (-5 *3 (-400 *6)))))
-(-10 -7 (-15 -2950 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -2630 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2921 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -3674 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2650 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-549)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-549) (-1 |#2| |#2|))))
-((-3476 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -2630 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 22)) (-1904 (((-3 (-621 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 33)))
-(((-987 |#1| |#2|) (-10 -7 (-15 -3476 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -2630 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -1904 ((-3 (-621 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) (-13 (-356) (-145) (-1009 (-549))) (-1201 |#1|)) (T -987))
-((-1904 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-549)))) (-4 *5 (-1201 *4)) (-5 *2 (-621 (-400 *5))) (-5 *1 (-987 *4 *5)) (-5 *3 (-400 *5)))) (-3476 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) (|:| |c1| (-400 *6)) (|:| |c2| (-400 *6)) (|:| -2630 *6))) (-5 *1 (-987 *5 *6)) (-5 *3 (-400 *6)))))
-(-10 -7 (-15 -3476 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -2630 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -1904 ((-3 (-621 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))))
-((-3573 (((-1 |#1|) (-621 (-2 (|:| -4160 |#1|) (|:| -1996 (-549))))) 37)) (-3047 (((-1 |#1|) (-1068 |#1|)) 45)) (-2283 (((-1 |#1|) (-1225 |#1|) (-1225 (-549)) (-549)) 34)))
-(((-988 |#1|) (-10 -7 (-15 -3047 ((-1 |#1|) (-1068 |#1|))) (-15 -3573 ((-1 |#1|) (-621 (-2 (|:| -4160 |#1|) (|:| -1996 (-549)))))) (-15 -2283 ((-1 |#1|) (-1225 |#1|) (-1225 (-549)) (-549)))) (-1066)) (T -988))
-((-2283 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1225 *6)) (-5 *4 (-1225 (-549))) (-5 *5 (-549)) (-4 *6 (-1066)) (-5 *2 (-1 *6)) (-5 *1 (-988 *6)))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -4160 *4) (|:| -1996 (-549))))) (-4 *4 (-1066)) (-5 *2 (-1 *4)) (-5 *1 (-988 *4)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-1068 *4)) (-4 *4 (-1066)) (-5 *2 (-1 *4)) (-5 *1 (-988 *4)))))
-(-10 -7 (-15 -3047 ((-1 |#1|) (-1068 |#1|))) (-15 -3573 ((-1 |#1|) (-621 (-2 (|:| -4160 |#1|) (|:| -1996 (-549)))))) (-15 -2283 ((-1 |#1|) (-1225 |#1|) (-1225 (-549)) (-549))))
-((-2078 (((-747) (-329 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-989 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2078 ((-747) (-329 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-356) (-1201 |#1|) (-1201 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-13 (-361) (-356))) (T -989))
-((-2078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-329 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) (-4 *7 (-1201 *6)) (-4 *4 (-1201 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) (-4 *9 (-13 (-361) (-356))) (-5 *2 (-747)) (-5 *1 (-989 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -2078 ((-747) (-329 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-3833 (((-112) $ $) NIL)) (-2015 (((-1101) $) 9)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) NIL) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2493 (((-1101) $) 11)) (-2388 (((-112) $ $) NIL)))
-(((-990) (-13 (-1049) (-10 -8 (-15 -2015 ((-1101) $)) (-15 -2493 ((-1101) $))))) (T -990))
-((-2015 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-990)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-990)))))
-(-13 (-1049) (-10 -8 (-15 -2015 ((-1101) $)) (-15 -2493 ((-1101) $))))
-((-1571 (((-3 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) "failed") |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) 31) (((-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-400 (-549))) 28)) (-2201 (((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-400 (-549))) 33) (((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-400 (-549))) 29) (((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) 32) (((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1|) 27)) (-1349 (((-621 (-400 (-549))) (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) 19)) (-4013 (((-400 (-549)) (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) 16)))
-(((-991 |#1|) (-10 -7 (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1|)) (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-400 (-549)))) (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-400 (-549)))) (-15 -1571 ((-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-400 (-549)))) (-15 -1571 ((-3 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) "failed") |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-15 -4013 ((-400 (-549)) (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-15 -1349 ((-621 (-400 (-549))) (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))))) (-1201 (-549))) (T -991))
-((-1349 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-5 *2 (-621 (-400 (-549)))) (-5 *1 (-991 *4)) (-4 *4 (-1201 (-549))))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) (-5 *2 (-400 (-549))) (-5 *1 (-991 *4)) (-4 *4 (-1201 (-549))))) (-1571 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) (-5 *1 (-991 *3)) (-4 *3 (-1201 (-549))))) (-1571 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) (-5 *4 (-400 (-549))) (-5 *1 (-991 *3)) (-4 *3 (-1201 (-549))))) (-2201 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-549))) (-5 *2 (-621 (-2 (|:| -3837 *5) (|:| -3847 *5)))) (-5 *1 (-991 *3)) (-4 *3 (-1201 (-549))) (-5 *4 (-2 (|:| -3837 *5) (|:| -3847 *5))))) (-2201 (*1 *2 *3 *4) (-12 (-5 *2 (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-5 *1 (-991 *3)) (-4 *3 (-1201 (-549))) (-5 *4 (-400 (-549))))) (-2201 (*1 *2 *3 *4) (-12 (-5 *2 (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-5 *1 (-991 *3)) (-4 *3 (-1201 (-549))) (-5 *4 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))) (-2201 (*1 *2 *3) (-12 (-5 *2 (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-5 *1 (-991 *3)) (-4 *3 (-1201 (-549))))))
-(-10 -7 (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1|)) (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-400 (-549)))) (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-400 (-549)))) (-15 -1571 ((-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-400 (-549)))) (-15 -1571 ((-3 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) "failed") |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-15 -4013 ((-400 (-549)) (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-15 -1349 ((-621 (-400 (-549))) (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))))
-((-1571 (((-3 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) "failed") |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) 35) (((-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-400 (-549))) 32)) (-2201 (((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-400 (-549))) 30) (((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-400 (-549))) 26) (((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) 28) (((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1|) 24)))
-(((-992 |#1|) (-10 -7 (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1|)) (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-400 (-549)))) (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-400 (-549)))) (-15 -1571 ((-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-400 (-549)))) (-15 -1571 ((-3 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) "failed") |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))) (-1201 (-400 (-549)))) (T -992))
-((-1571 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) (-5 *1 (-992 *3)) (-4 *3 (-1201 (-400 (-549)))))) (-1571 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) (-5 *4 (-400 (-549))) (-5 *1 (-992 *3)) (-4 *3 (-1201 *4)))) (-2201 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-549))) (-5 *2 (-621 (-2 (|:| -3837 *5) (|:| -3847 *5)))) (-5 *1 (-992 *3)) (-4 *3 (-1201 *5)) (-5 *4 (-2 (|:| -3837 *5) (|:| -3847 *5))))) (-2201 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-549))) (-5 *2 (-621 (-2 (|:| -3837 *4) (|:| -3847 *4)))) (-5 *1 (-992 *3)) (-4 *3 (-1201 *4)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *2 (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-5 *1 (-992 *3)) (-4 *3 (-1201 (-400 (-549)))) (-5 *4 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))) (-2201 (*1 *2 *3) (-12 (-5 *2 (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-5 *1 (-992 *3)) (-4 *3 (-1201 (-400 (-549)))))))
-(-10 -7 (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1|)) (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))) (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-400 (-549)))) (-15 -2201 ((-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-400 (-549)))) (-15 -1571 ((-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-400 (-549)))) (-15 -1571 ((-3 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) "failed") |#1| (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))) (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))))
-((-2844 (((-219) $) 6) (((-372) $) 9)))
-(((-993) (-138)) (T -993))
-NIL
-(-13 (-594 (-219)) (-594 (-372)))
-(((-594 (-219)) . T) ((-594 (-372)) . T))
-((-2808 (((-621 (-372)) (-923 (-549)) (-372)) 28) (((-621 (-372)) (-923 (-400 (-549))) (-372)) 27)) (-1316 (((-621 (-621 (-372))) (-621 (-923 (-549))) (-621 (-1142)) (-372)) 37)))
-(((-994) (-10 -7 (-15 -2808 ((-621 (-372)) (-923 (-400 (-549))) (-372))) (-15 -2808 ((-621 (-372)) (-923 (-549)) (-372))) (-15 -1316 ((-621 (-621 (-372))) (-621 (-923 (-549))) (-621 (-1142)) (-372))))) (T -994))
-((-1316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-621 (-1142))) (-5 *2 (-621 (-621 (-372)))) (-5 *1 (-994)) (-5 *5 (-372)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-923 (-549))) (-5 *2 (-621 (-372))) (-5 *1 (-994)) (-5 *4 (-372)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-923 (-400 (-549)))) (-5 *2 (-621 (-372))) (-5 *1 (-994)) (-5 *4 (-372)))))
-(-10 -7 (-15 -2808 ((-621 (-372)) (-923 (-400 (-549))) (-372))) (-15 -2808 ((-621 (-372)) (-923 (-549)) (-372))) (-15 -1316 ((-621 (-621 (-372))) (-621 (-923 (-549))) (-621 (-1142)) (-372))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 70)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2134 (($ $) NIL) (($ $ (-892)) NIL) (($ (-400 (-549))) NIL) (($ (-549)) NIL)) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) 65)) (-1705 (($) NIL T CONST)) (-1681 (((-3 $ "failed") (-1138 $) (-892) (-834)) NIL) (((-3 $ "failed") (-1138 $) (-892)) 50)) (-2713 (((-3 (-400 (-549)) "failed") $) NIL (|has| (-400 (-549)) (-1009 (-400 (-549))))) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-549) "failed") $) NIL (-1536 (|has| (-400 (-549)) (-1009 (-549))) (|has| |#1| (-1009 (-549)))))) (-2658 (((-400 (-549)) $) 15 (|has| (-400 (-549)) (-1009 (-400 (-549))))) (((-400 (-549)) $) 15) ((|#1| $) 108) (((-549) $) NIL (-1536 (|has| (-400 (-549)) (-1009 (-549))) (|has| |#1| (-1009 (-549)))))) (-4114 (($ $ (-834)) 42)) (-2616 (($ $ (-834)) 43)) (-2094 (($ $ $) NIL)) (-3974 (((-400 (-549)) $ $) 19)) (-3976 (((-3 $ "failed") $) 83)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3079 (((-112) $) 61)) (-3987 (((-112) $) NIL)) (-3930 (($ $ (-549)) NIL)) (-2847 (((-112) $) 64)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2527 (((-3 (-1138 $) "failed") $) 78)) (-3912 (((-3 (-834) "failed") $) 77)) (-4158 (((-3 (-1138 $) "failed") $) 75)) (-1593 (((-3 (-1028 $ (-1138 $)) "failed") $) 73)) (-3696 (($ (-621 $)) NIL) (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 84)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ (-621 $)) NIL) (($ $ $) NIL)) (-2120 (((-411 $) $) NIL)) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3845 (((-834) $) 82) (($ (-549)) NIL) (($ (-400 (-549))) NIL) (($ $) 58) (($ (-400 (-549))) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL) (($ |#1|) 110)) (-1723 (((-747)) NIL)) (-4053 (((-112) $ $) NIL)) (-2660 (((-400 (-549)) $ $) 25)) (-2500 (((-621 $) (-1138 $)) 56) (((-621 $) (-1138 (-400 (-549)))) NIL) (((-621 $) (-1138 (-549))) NIL) (((-621 $) (-923 $)) NIL) (((-621 $) (-923 (-400 (-549)))) NIL) (((-621 $) (-923 (-549))) NIL)) (-1553 (($ (-1028 $ (-1138 $)) (-834)) 41)) (-3603 (($ $) 20)) (-3275 (($) 29 T CONST)) (-3287 (($) 35 T CONST)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 71)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 22)) (-2512 (($ $ $) 33)) (-2499 (($ $) 34) (($ $ $) 69)) (-2485 (($ $ $) 103)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL) (($ $ (-400 (-549))) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 91) (($ $ $) 96) (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL) (($ (-549) $) 91) (($ $ (-549)) NIL) (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-995 |#1|) (-13 (-983) (-404 |#1|) (-38 |#1|) (-10 -8 (-15 -1553 ($ (-1028 $ (-1138 $)) (-834))) (-15 -1593 ((-3 (-1028 $ (-1138 $)) "failed") $)) (-15 -3974 ((-400 (-549)) $ $)))) (-13 (-821) (-356) (-993))) (T -995))
-((-1553 (*1 *1 *2 *3) (-12 (-5 *2 (-1028 (-995 *4) (-1138 (-995 *4)))) (-5 *3 (-834)) (-5 *1 (-995 *4)) (-4 *4 (-13 (-821) (-356) (-993))))) (-1593 (*1 *2 *1) (|partial| -12 (-5 *2 (-1028 (-995 *3) (-1138 (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-13 (-821) (-356) (-993))))) (-3974 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-995 *3)) (-4 *3 (-13 (-821) (-356) (-993))))))
-(-13 (-983) (-404 |#1|) (-38 |#1|) (-10 -8 (-15 -1553 ($ (-1028 $ (-1138 $)) (-834))) (-15 -1593 ((-3 (-1028 $ (-1138 $)) "failed") $)) (-15 -3974 ((-400 (-549)) $ $))))
-((-2109 (((-2 (|:| -2650 |#2|) (|:| -2719 (-621 |#1|))) |#2| (-621 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-996 |#1| |#2|) (-10 -7 (-15 -2109 (|#2| |#2| |#1|)) (-15 -2109 ((-2 (|:| -2650 |#2|) (|:| -2719 (-621 |#1|))) |#2| (-621 |#1|)))) (-356) (-632 |#1|)) (T -996))
-((-2109 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -2650 *3) (|:| -2719 (-621 *5)))) (-5 *1 (-996 *5 *3)) (-5 *4 (-621 *5)) (-4 *3 (-632 *5)))) (-2109 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-996 *3 *2)) (-4 *2 (-632 *3)))))
-(-10 -7 (-15 -2109 (|#2| |#2| |#1|)) (-15 -2109 ((-2 (|:| -2650 |#2|) (|:| -2719 (-621 |#1|))) |#2| (-621 |#1|))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-1769 ((|#1| $ |#1|) 14)) (-2253 ((|#1| $ |#1|) 12)) (-1325 (($ |#1|) 10)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3340 ((|#1| $) 11)) (-1957 ((|#1| $) 13)) (-3845 (((-834) $) 21 (|has| |#1| (-1066)))) (-2388 (((-112) $ $) 9)))
-(((-997 |#1|) (-13 (-1179) (-10 -8 (-15 -1325 ($ |#1|)) (-15 -3340 (|#1| $)) (-15 -2253 (|#1| $ |#1|)) (-15 -1957 (|#1| $)) (-15 -1769 (|#1| $ |#1|)) (-15 -2388 ((-112) $ $)) (IF (|has| |#1| (-1066)) (-6 (-1066)) |%noBranch|))) (-1179)) (T -997))
-((-1325 (*1 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1179)))) (-3340 (*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1179)))) (-2253 (*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1179)))) (-1957 (*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1179)))) (-1769 (*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1179)))) (-2388 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-997 *3)) (-4 *3 (-1179)))))
-(-13 (-1179) (-10 -8 (-15 -1325 ($ |#1|)) (-15 -3340 (|#1| $)) (-15 -2253 (|#1| $ |#1|)) (-15 -1957 (|#1| $)) (-15 -1769 (|#1| $ |#1|)) (-15 -2388 ((-112) $ $)) (IF (|has| |#1| (-1066)) (-6 (-1066)) |%noBranch|)))
-((-3833 (((-112) $ $) NIL)) (-3684 (((-621 (-2 (|:| -2680 $) (|:| -1358 (-621 |#4|)))) (-621 |#4|)) NIL)) (-3840 (((-621 $) (-621 |#4|)) 105) (((-621 $) (-621 |#4|) (-112)) 106) (((-621 $) (-621 |#4|) (-112) (-112)) 104) (((-621 $) (-621 |#4|) (-112) (-112) (-112) (-112)) 107)) (-2271 (((-621 |#3|) $) NIL)) (-3863 (((-112) $) NIL)) (-1771 (((-112) $) NIL (|has| |#1| (-541)))) (-2344 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1305 ((|#4| |#4| $) NIL)) (-1912 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 $))) |#4| $) 99)) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |#3|) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-1488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-3 |#4| "failed") $ |#3|) 54)) (-1705 (($) NIL T CONST)) (-1717 (((-112) $) 26 (|has| |#1| (-541)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2498 (((-112) $) NIL (|has| |#1| (-541)))) (-3074 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1436 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-3001 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2713 (((-3 $ "failed") (-621 |#4|)) NIL)) (-2658 (($ (-621 |#4|)) NIL)) (-3655 (((-3 $ "failed") $) 39)) (-2514 ((|#4| |#4| $) 57)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-3812 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3249 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-541)))) (-4042 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3678 ((|#4| |#4| $) NIL)) (-2558 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2235 (((-2 (|:| -2680 (-621 |#4|)) (|:| -1358 (-621 |#4|))) $) NIL)) (-4173 (((-112) |#4| $) NIL)) (-1447 (((-112) |#4| $) NIL)) (-2561 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1574 (((-2 (|:| |val| (-621 |#4|)) (|:| |towers| (-621 $))) (-621 |#4|) (-112) (-112)) 119)) (-2990 (((-621 |#4|) $) 16 (|has| $ (-6 -4336)))) (-3929 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4170 ((|#3| $) 33)) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#4|) $) 17 (|has| $ (-6 -4336)))) (-2273 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-1865 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#4| |#4|) $) 21)) (-1670 (((-621 |#3|) $) NIL)) (-2911 (((-112) |#3| $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-4145 (((-3 |#4| (-621 $)) |#4| |#4| $) NIL)) (-2587 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 $))) |#4| |#4| $) 97)) (-3828 (((-3 |#4| "failed") $) 37)) (-2613 (((-621 $) |#4| $) 80)) (-1783 (((-3 (-112) (-621 $)) |#4| $) NIL)) (-1350 (((-621 (-2 (|:| |val| (-112)) (|:| -1980 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-1795 (((-621 $) |#4| $) 102) (((-621 $) (-621 |#4|) $) NIL) (((-621 $) (-621 |#4|) (-621 $)) 103) (((-621 $) |#4| (-621 $)) NIL)) (-3546 (((-621 $) (-621 |#4|) (-112) (-112) (-112)) 114)) (-1449 (($ |#4| $) 70) (($ (-621 |#4|) $) 71) (((-621 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-4069 (((-621 |#4|) $) NIL)) (-3130 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2741 ((|#4| |#4| $) NIL)) (-3739 (((-112) $ $) NIL)) (-2205 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-1582 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3952 ((|#4| |#4| $) NIL)) (-3988 (((-1086) $) NIL)) (-3645 (((-3 |#4| "failed") $) 35)) (-1917 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1762 (((-3 $ "failed") $ |#4|) 48)) (-2975 (($ $ |#4|) NIL) (((-621 $) |#4| $) 82) (((-621 $) |#4| (-621 $)) NIL) (((-621 $) (-621 |#4|) $) NIL) (((-621 $) (-621 |#4|) (-621 $)) 77)) (-2470 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#4|) (-621 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-621 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 15)) (-1461 (($) 13)) (-3068 (((-747) $) NIL)) (-3997 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) 12)) (-2844 (((-525) $) NIL (|has| |#4| (-594 (-525))))) (-3853 (($ (-621 |#4|)) 20)) (-1651 (($ $ |#3|) 42)) (-3183 (($ $ |#3|) 44)) (-1821 (($ $) NIL)) (-2432 (($ $ |#3|) NIL)) (-3845 (((-834) $) 31) (((-621 |#4|) $) 40)) (-1509 (((-747) $) NIL (|has| |#3| (-361)))) (-3472 (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2197 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) NIL)) (-1691 (((-621 $) |#4| $) 79) (((-621 $) |#4| (-621 $)) NIL) (((-621 $) (-621 |#4|) $) NIL) (((-621 $) (-621 |#4|) (-621 $)) NIL)) (-2150 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2691 (((-621 |#3|) $) NIL)) (-1972 (((-112) |#4| $) NIL)) (-2923 (((-112) |#3| $) 53)) (-2388 (((-112) $ $) NIL)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-998 |#1| |#2| |#3| |#4|) (-13 (-1038 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1449 ((-621 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3840 ((-621 $) (-621 |#4|) (-112) (-112))) (-15 -3840 ((-621 $) (-621 |#4|) (-112) (-112) (-112) (-112))) (-15 -3546 ((-621 $) (-621 |#4|) (-112) (-112) (-112))) (-15 -1574 ((-2 (|:| |val| (-621 |#4|)) (|:| |towers| (-621 $))) (-621 |#4|) (-112) (-112))))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -998))
-((-1449 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-998 *5 *6 *7 *3))) (-5 *1 (-998 *5 *6 *7 *3)) (-4 *3 (-1032 *5 *6 *7)))) (-3840 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8)))) (-3840 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8)))) (-3546 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8)))) (-1574 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-621 *8)) (|:| |towers| (-621 (-998 *5 *6 *7 *8))))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *3 (-621 *8)))))
-(-13 (-1038 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1449 ((-621 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3840 ((-621 $) (-621 |#4|) (-112) (-112))) (-15 -3840 ((-621 $) (-621 |#4|) (-112) (-112) (-112) (-112))) (-15 -3546 ((-621 $) (-621 |#4|) (-112) (-112) (-112))) (-15 -1574 ((-2 (|:| |val| (-621 |#4|)) (|:| |towers| (-621 $))) (-621 |#4|) (-112) (-112)))))
-((-2114 (((-621 (-665 |#1|)) (-621 (-665 |#1|))) 58) (((-665 |#1|) (-665 |#1|)) 57) (((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-621 (-665 |#1|))) 56) (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 53)) (-3807 (((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-892)) 52) (((-665 |#1|) (-665 |#1|) (-892)) 51)) (-1743 (((-621 (-665 (-549))) (-621 (-621 (-549)))) 68) (((-621 (-665 (-549))) (-621 (-876 (-549))) (-549)) 67) (((-665 (-549)) (-621 (-549))) 64) (((-665 (-549)) (-876 (-549)) (-549)) 63)) (-2759 (((-665 (-923 |#1|)) (-747)) 81)) (-2621 (((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-892)) 37 (|has| |#1| (-6 (-4338 "*")))) (((-665 |#1|) (-665 |#1|) (-892)) 35 (|has| |#1| (-6 (-4338 "*"))))))
-(((-999 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4338 "*"))) (-15 -2621 ((-665 |#1|) (-665 |#1|) (-892))) |%noBranch|) (IF (|has| |#1| (-6 (-4338 "*"))) (-15 -2621 ((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-892))) |%noBranch|) (-15 -2759 ((-665 (-923 |#1|)) (-747))) (-15 -3807 ((-665 |#1|) (-665 |#1|) (-892))) (-15 -3807 ((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-892))) (-15 -2114 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2114 ((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -2114 ((-665 |#1|) (-665 |#1|))) (-15 -2114 ((-621 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -1743 ((-665 (-549)) (-876 (-549)) (-549))) (-15 -1743 ((-665 (-549)) (-621 (-549)))) (-15 -1743 ((-621 (-665 (-549))) (-621 (-876 (-549))) (-549))) (-15 -1743 ((-621 (-665 (-549))) (-621 (-621 (-549)))))) (-1018)) (T -999))
-((-1743 (*1 *2 *3) (-12 (-5 *3 (-621 (-621 (-549)))) (-5 *2 (-621 (-665 (-549)))) (-5 *1 (-999 *4)) (-4 *4 (-1018)))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-876 (-549)))) (-5 *4 (-549)) (-5 *2 (-621 (-665 *4))) (-5 *1 (-999 *5)) (-4 *5 (-1018)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-999 *4)) (-4 *4 (-1018)))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-549))) (-5 *4 (-549)) (-5 *2 (-665 *4)) (-5 *1 (-999 *5)) (-4 *5 (-1018)))) (-2114 (*1 *2 *2) (-12 (-5 *2 (-621 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-999 *3)))) (-2114 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-999 *3)))) (-2114 (*1 *2 *2 *2) (-12 (-5 *2 (-621 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-999 *3)))) (-2114 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-999 *3)))) (-3807 (*1 *2 *2 *3) (-12 (-5 *2 (-621 (-665 *4))) (-5 *3 (-892)) (-4 *4 (-1018)) (-5 *1 (-999 *4)))) (-3807 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-892)) (-4 *4 (-1018)) (-5 *1 (-999 *4)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-665 (-923 *4))) (-5 *1 (-999 *4)) (-4 *4 (-1018)))) (-2621 (*1 *2 *2 *3) (-12 (-5 *2 (-621 (-665 *4))) (-5 *3 (-892)) (|has| *4 (-6 (-4338 "*"))) (-4 *4 (-1018)) (-5 *1 (-999 *4)))) (-2621 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-892)) (|has| *4 (-6 (-4338 "*"))) (-4 *4 (-1018)) (-5 *1 (-999 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4338 "*"))) (-15 -2621 ((-665 |#1|) (-665 |#1|) (-892))) |%noBranch|) (IF (|has| |#1| (-6 (-4338 "*"))) (-15 -2621 ((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-892))) |%noBranch|) (-15 -2759 ((-665 (-923 |#1|)) (-747))) (-15 -3807 ((-665 |#1|) (-665 |#1|) (-892))) (-15 -3807 ((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-892))) (-15 -2114 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2114 ((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -2114 ((-665 |#1|) (-665 |#1|))) (-15 -2114 ((-621 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -1743 ((-665 (-549)) (-876 (-549)) (-549))) (-15 -1743 ((-665 (-549)) (-621 (-549)))) (-15 -1743 ((-621 (-665 (-549))) (-621 (-876 (-549))) (-549))) (-15 -1743 ((-621 (-665 (-549))) (-621 (-621 (-549))))))
-((-1570 (((-665 |#1|) (-621 (-665 |#1|)) (-1225 |#1|)) 50 (|has| |#1| (-300)))) (-1445 (((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-1225 (-1225 |#1|))) 76 (|has| |#1| (-356))) (((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-1225 |#1|)) 79 (|has| |#1| (-356)))) (-2268 (((-1225 |#1|) (-621 (-1225 |#1|)) (-549)) 93 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-1503 (((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-892)) 85 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-112)) 83 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|))) 82 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-112) (-549) (-549)) 81 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-2074 (((-112) (-621 (-665 |#1|))) 71 (|has| |#1| (-356))) (((-112) (-621 (-665 |#1|)) (-549)) 73 (|has| |#1| (-356)))) (-1749 (((-1225 (-1225 |#1|)) (-621 (-665 |#1|)) (-1225 |#1|)) 48 (|has| |#1| (-300)))) (-1739 (((-665 |#1|) (-621 (-665 |#1|)) (-665 |#1|)) 34)) (-2265 (((-665 |#1|) (-1225 (-1225 |#1|))) 31)) (-1597 (((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)) (-549)) 65 (|has| |#1| (-356))) (((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|))) 64 (|has| |#1| (-356))) (((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)) (-112) (-549)) 69 (|has| |#1| (-356)))))
-(((-1000 |#1|) (-10 -7 (-15 -2265 ((-665 |#1|) (-1225 (-1225 |#1|)))) (-15 -1739 ((-665 |#1|) (-621 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -1749 ((-1225 (-1225 |#1|)) (-621 (-665 |#1|)) (-1225 |#1|))) (-15 -1570 ((-665 |#1|) (-621 (-665 |#1|)) (-1225 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -1597 ((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)) (-112) (-549))) (-15 -1597 ((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -1597 ((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)) (-549))) (-15 -2074 ((-112) (-621 (-665 |#1|)) (-549))) (-15 -2074 ((-112) (-621 (-665 |#1|)))) (-15 -1445 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-1225 |#1|))) (-15 -1445 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-1225 (-1225 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -1503 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-112) (-549) (-549))) (-15 -1503 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)))) (-15 -1503 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-112))) (-15 -1503 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-892))) (-15 -2268 ((-1225 |#1|) (-621 (-1225 |#1|)) (-549)))) |%noBranch|) |%noBranch|)) (-1018)) (T -1000))
-((-2268 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-1225 *5))) (-5 *4 (-549)) (-5 *2 (-1225 *5)) (-5 *1 (-1000 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)) (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5)) (-5 *3 (-621 (-665 *5))))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)) (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5)) (-5 *3 (-621 (-665 *5))))) (-1503 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1018)) (-5 *2 (-621 (-621 (-665 *4)))) (-5 *1 (-1000 *4)) (-5 *3 (-621 (-665 *4))))) (-1503 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-549)) (-4 *6 (-356)) (-4 *6 (-361)) (-4 *6 (-1018)) (-5 *2 (-621 (-621 (-665 *6)))) (-5 *1 (-1000 *6)) (-5 *3 (-621 (-665 *6))))) (-1445 (*1 *2 *3 *4) (-12 (-5 *4 (-1225 (-1225 *5))) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5)) (-5 *3 (-621 (-665 *5))))) (-1445 (*1 *2 *3 *4) (-12 (-5 *4 (-1225 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5)) (-5 *3 (-621 (-665 *5))))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-621 (-665 *4))) (-4 *4 (-356)) (-4 *4 (-1018)) (-5 *2 (-112)) (-5 *1 (-1000 *4)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-665 *5))) (-5 *4 (-549)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-112)) (-5 *1 (-1000 *5)))) (-1597 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-621 (-665 *5))) (-5 *4 (-549)) (-5 *2 (-665 *5)) (-5 *1 (-1000 *5)) (-4 *5 (-356)) (-4 *5 (-1018)))) (-1597 (*1 *2 *3 *3) (-12 (-5 *3 (-621 (-665 *4))) (-5 *2 (-665 *4)) (-5 *1 (-1000 *4)) (-4 *4 (-356)) (-4 *4 (-1018)))) (-1597 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-621 (-665 *6))) (-5 *4 (-112)) (-5 *5 (-549)) (-5 *2 (-665 *6)) (-5 *1 (-1000 *6)) (-4 *6 (-356)) (-4 *6 (-1018)))) (-1570 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-665 *5))) (-5 *4 (-1225 *5)) (-4 *5 (-300)) (-4 *5 (-1018)) (-5 *2 (-665 *5)) (-5 *1 (-1000 *5)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-665 *5))) (-4 *5 (-300)) (-4 *5 (-1018)) (-5 *2 (-1225 (-1225 *5))) (-5 *1 (-1000 *5)) (-5 *4 (-1225 *5)))) (-1739 (*1 *2 *3 *2) (-12 (-5 *3 (-621 (-665 *4))) (-5 *2 (-665 *4)) (-4 *4 (-1018)) (-5 *1 (-1000 *4)))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-1225 (-1225 *4))) (-4 *4 (-1018)) (-5 *2 (-665 *4)) (-5 *1 (-1000 *4)))))
-(-10 -7 (-15 -2265 ((-665 |#1|) (-1225 (-1225 |#1|)))) (-15 -1739 ((-665 |#1|) (-621 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -1749 ((-1225 (-1225 |#1|)) (-621 (-665 |#1|)) (-1225 |#1|))) (-15 -1570 ((-665 |#1|) (-621 (-665 |#1|)) (-1225 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -1597 ((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)) (-112) (-549))) (-15 -1597 ((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -1597 ((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)) (-549))) (-15 -2074 ((-112) (-621 (-665 |#1|)) (-549))) (-15 -2074 ((-112) (-621 (-665 |#1|)))) (-15 -1445 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-1225 |#1|))) (-15 -1445 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-1225 (-1225 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -1503 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-112) (-549) (-549))) (-15 -1503 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)))) (-15 -1503 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-112))) (-15 -1503 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-892))) (-15 -2268 ((-1225 |#1|) (-621 (-1225 |#1|)) (-549)))) |%noBranch|) |%noBranch|))
-((-4027 ((|#1| (-892) |#1|) 9)))
-(((-1001 |#1|) (-10 -7 (-15 -4027 (|#1| (-892) |#1|))) (-13 (-1066) (-10 -8 (-15 -2485 ($ $ $))))) (T -1001))
-((-4027 (*1 *2 *3 *2) (-12 (-5 *3 (-892)) (-5 *1 (-1001 *2)) (-4 *2 (-13 (-1066) (-10 -8 (-15 -2485 ($ $ $))))))))
-(-10 -7 (-15 -4027 (|#1| (-892) |#1|)))
-((-4309 (((-621 (-2 (|:| |radval| (-309 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-621 (-665 (-309 (-549))))))) (-665 (-400 (-923 (-549))))) 59)) (-1594 (((-621 (-665 (-309 (-549)))) (-309 (-549)) (-665 (-400 (-923 (-549))))) 48)) (-2115 (((-621 (-309 (-549))) (-665 (-400 (-923 (-549))))) 41)) (-1830 (((-621 (-665 (-309 (-549)))) (-665 (-400 (-923 (-549))))) 68)) (-2105 (((-665 (-309 (-549))) (-665 (-309 (-549)))) 34)) (-4011 (((-621 (-665 (-309 (-549)))) (-621 (-665 (-309 (-549))))) 62)) (-2484 (((-3 (-665 (-309 (-549))) "failed") (-665 (-400 (-923 (-549))))) 66)))
-(((-1002) (-10 -7 (-15 -4309 ((-621 (-2 (|:| |radval| (-309 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-621 (-665 (-309 (-549))))))) (-665 (-400 (-923 (-549)))))) (-15 -1594 ((-621 (-665 (-309 (-549)))) (-309 (-549)) (-665 (-400 (-923 (-549)))))) (-15 -2115 ((-621 (-309 (-549))) (-665 (-400 (-923 (-549)))))) (-15 -2484 ((-3 (-665 (-309 (-549))) "failed") (-665 (-400 (-923 (-549)))))) (-15 -2105 ((-665 (-309 (-549))) (-665 (-309 (-549))))) (-15 -4011 ((-621 (-665 (-309 (-549)))) (-621 (-665 (-309 (-549)))))) (-15 -1830 ((-621 (-665 (-309 (-549)))) (-665 (-400 (-923 (-549)))))))) (T -1002))
-((-1830 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-923 (-549))))) (-5 *2 (-621 (-665 (-309 (-549))))) (-5 *1 (-1002)))) (-4011 (*1 *2 *2) (-12 (-5 *2 (-621 (-665 (-309 (-549))))) (-5 *1 (-1002)))) (-2105 (*1 *2 *2) (-12 (-5 *2 (-665 (-309 (-549)))) (-5 *1 (-1002)))) (-2484 (*1 *2 *3) (|partial| -12 (-5 *3 (-665 (-400 (-923 (-549))))) (-5 *2 (-665 (-309 (-549)))) (-5 *1 (-1002)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-923 (-549))))) (-5 *2 (-621 (-309 (-549)))) (-5 *1 (-1002)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-400 (-923 (-549))))) (-5 *2 (-621 (-665 (-309 (-549))))) (-5 *1 (-1002)) (-5 *3 (-309 (-549))))) (-4309 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-923 (-549))))) (-5 *2 (-621 (-2 (|:| |radval| (-309 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-621 (-665 (-309 (-549)))))))) (-5 *1 (-1002)))))
-(-10 -7 (-15 -4309 ((-621 (-2 (|:| |radval| (-309 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-621 (-665 (-309 (-549))))))) (-665 (-400 (-923 (-549)))))) (-15 -1594 ((-621 (-665 (-309 (-549)))) (-309 (-549)) (-665 (-400 (-923 (-549)))))) (-15 -2115 ((-621 (-309 (-549))) (-665 (-400 (-923 (-549)))))) (-15 -2484 ((-3 (-665 (-309 (-549))) "failed") (-665 (-400 (-923 (-549)))))) (-15 -2105 ((-665 (-309 (-549))) (-665 (-309 (-549))))) (-15 -4011 ((-621 (-665 (-309 (-549)))) (-621 (-665 (-309 (-549)))))) (-15 -1830 ((-621 (-665 (-309 (-549)))) (-665 (-400 (-923 (-549)))))))
-((-1815 ((|#1| |#1| (-892)) 9)))
-(((-1003 |#1|) (-10 -7 (-15 -1815 (|#1| |#1| (-892)))) (-13 (-1066) (-10 -8 (-15 * ($ $ $))))) (T -1003))
-((-1815 (*1 *2 *2 *3) (-12 (-5 *3 (-892)) (-5 *1 (-1003 *2)) (-4 *2 (-13 (-1066) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -1815 (|#1| |#1| (-892))))
-((-3845 ((|#1| (-305)) 11) (((-1230) |#1|) 9)))
-(((-1004 |#1|) (-10 -7 (-15 -3845 ((-1230) |#1|)) (-15 -3845 (|#1| (-305)))) (-1179)) (T -1004))
-((-3845 (*1 *2 *3) (-12 (-5 *3 (-305)) (-5 *1 (-1004 *2)) (-4 *2 (-1179)))) (-3845 (*1 *2 *3) (-12 (-5 *2 (-1230)) (-5 *1 (-1004 *3)) (-4 *3 (-1179)))))
-(-10 -7 (-15 -3845 ((-1230) |#1|)) (-15 -3845 (|#1| (-305))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2558 (($ |#4|) 25)) (-3976 (((-3 $ "failed") $) NIL)) (-3987 (((-112) $) NIL)) (-2546 ((|#4| $) 27)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 46) (($ (-549)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1723 (((-747)) 43)) (-3275 (($) 21 T CONST)) (-3287 (($) 23 T CONST)) (-2388 (((-112) $ $) 40)) (-2499 (($ $) 31) (($ $ $) NIL)) (-2485 (($ $ $) 29)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1005 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -2558 ($ |#4|)) (-15 -3845 ($ |#4|)) (-15 -2546 (|#4| $)))) (-356) (-769) (-823) (-920 |#1| |#2| |#3|) (-621 |#4|)) (T -1005))
-((-2558 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-920 *3 *4 *5)) (-14 *6 (-621 *2)))) (-3845 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-920 *3 *4 *5)) (-14 *6 (-621 *2)))) (-2546 (*1 *2 *1) (-12 (-4 *2 (-920 *3 *4 *5)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-14 *6 (-621 *2)))))
-(-13 (-170) (-38 |#1|) (-10 -8 (-15 -2558 ($ |#4|)) (-15 -3845 ($ |#4|)) (-15 -2546 (|#4| $))))
-((-3833 (((-112) $ $) NIL (-1536 (|has| (-52) (-1066)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066))))) (-3732 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) NIL)) (-2932 (((-1230) $ (-1142) (-1142)) NIL (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) NIL)) (-2651 (((-112) (-112)) 39)) (-2523 (((-112) (-112)) 38)) (-2253 (((-52) $ (-1142) (-52)) NIL)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336)))) (-3489 (((-3 (-52) "failed") (-1142) $) NIL)) (-1705 (($) NIL T CONST)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066))))) (-4204 (($ (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-3 (-52) "failed") (-1142) $) NIL)) (-3812 (($ (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (($ (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $ (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (((-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $ (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336)))) (-1878 (((-52) $ (-1142) (-52)) NIL (|has| $ (-6 -4337)))) (-1808 (((-52) $ (-1142)) NIL)) (-2990 (((-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-621 (-52)) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-1142) $) NIL (|has| (-1142) (-823)))) (-1958 (((-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-621 (-52)) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-52) (-1066))))) (-1548 (((-1142) $) NIL (|has| (-1142) (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (-1536 (|has| (-52) (-1066)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066))))) (-3449 (((-621 (-1142)) $) 34)) (-3665 (((-112) (-1142) $) NIL)) (-2349 (((-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) NIL)) (-1709 (($ (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) NIL)) (-3927 (((-621 (-1142)) $) NIL)) (-1286 (((-112) (-1142) $) NIL)) (-3988 (((-1086) $) NIL (-1536 (|has| (-52) (-1066)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066))))) (-3645 (((-52) $) NIL (|has| (-1142) (-823)))) (-1917 (((-3 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) "failed") (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL)) (-3158 (($ $ (-52)) NIL (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) NIL)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))))) NIL (-12 (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (($ $ (-287 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) NIL (-12 (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (($ $ (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) NIL (-12 (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (($ $ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) NIL (-12 (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (($ $ (-621 (-52)) (-621 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1066)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1066)))) (($ $ (-287 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1066)))) (($ $ (-621 (-287 (-52)))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-52) (-1066))))) (-1738 (((-621 (-52)) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 (((-52) $ (-1142)) 35) (((-52) $ (-1142) (-52)) NIL)) (-4252 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) NIL)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (((-747) (-52) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-52) (-1066)))) (((-747) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) NIL)) (-3845 (((-834) $) 37 (-1536 (|has| (-52) (-593 (-834))) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-593 (-834)))))) (-1765 (($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) NIL)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (-1536 (|has| (-52) (-1066)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066))))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-1006) (-13 (-1155 (-1142) (-52)) (-10 -7 (-15 -2651 ((-112) (-112))) (-15 -2523 ((-112) (-112))) (-6 -4336)))) (T -1006))
-((-2651 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))) (-2523 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))))
-(-13 (-1155 (-1142) (-52)) (-10 -7 (-15 -2651 ((-112) (-112))) (-15 -2523 ((-112) (-112))) (-6 -4336)))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3954 (((-1101) $) 9)) (-3845 (((-834) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-1007) (-13 (-1049) (-10 -8 (-15 -3954 ((-1101) $))))) (T -1007))
-((-3954 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1007)))))
-(-13 (-1049) (-10 -8 (-15 -3954 ((-1101) $))))
-((-2658 ((|#2| $) 10)))
-(((-1008 |#1| |#2|) (-10 -8 (-15 -2658 (|#2| |#1|))) (-1009 |#2|) (-1179)) (T -1008))
-NIL
-(-10 -8 (-15 -2658 (|#2| |#1|)))
-((-2713 (((-3 |#1| "failed") $) 7)) (-2658 ((|#1| $) 8)) (-3845 (($ |#1|) 6)))
-(((-1009 |#1|) (-138) (-1179)) (T -1009))
-((-2658 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1179)))) (-2713 (*1 *2 *1) (|partial| -12 (-4 *1 (-1009 *2)) (-4 *2 (-1179)))) (-3845 (*1 *1 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1179)))))
-(-13 (-10 -8 (-15 -3845 ($ |t#1|)) (-15 -2713 ((-3 |t#1| "failed") $)) (-15 -2658 (|t#1| $))))
-((-1458 (((-621 (-621 (-287 (-400 (-923 |#2|))))) (-621 (-923 |#2|)) (-621 (-1142))) 38)))
-(((-1010 |#1| |#2|) (-10 -7 (-15 -1458 ((-621 (-621 (-287 (-400 (-923 |#2|))))) (-621 (-923 |#2|)) (-621 (-1142))))) (-541) (-13 (-541) (-1009 |#1|))) (T -1010))
-((-1458 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *6))) (-5 *4 (-621 (-1142))) (-4 *6 (-13 (-541) (-1009 *5))) (-4 *5 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *6)))))) (-5 *1 (-1010 *5 *6)))))
-(-10 -7 (-15 -1458 ((-621 (-621 (-287 (-400 (-923 |#2|))))) (-621 (-923 |#2|)) (-621 (-1142)))))
-((-3274 (((-372)) 15)) (-3047 (((-1 (-372)) (-372) (-372)) 20)) (-2630 (((-1 (-372)) (-747)) 43)) (-3426 (((-372)) 34)) (-4040 (((-1 (-372)) (-372) (-372)) 35)) (-1834 (((-372)) 26)) (-4198 (((-1 (-372)) (-372)) 27)) (-1533 (((-372) (-747)) 38)) (-3963 (((-1 (-372)) (-747)) 39)) (-1421 (((-1 (-372)) (-747) (-747)) 42)) (-1850 (((-1 (-372)) (-747) (-747)) 40)))
-(((-1011) (-10 -7 (-15 -3274 ((-372))) (-15 -3426 ((-372))) (-15 -1834 ((-372))) (-15 -1533 ((-372) (-747))) (-15 -3047 ((-1 (-372)) (-372) (-372))) (-15 -4040 ((-1 (-372)) (-372) (-372))) (-15 -4198 ((-1 (-372)) (-372))) (-15 -3963 ((-1 (-372)) (-747))) (-15 -1850 ((-1 (-372)) (-747) (-747))) (-15 -1421 ((-1 (-372)) (-747) (-747))) (-15 -2630 ((-1 (-372)) (-747))))) (T -1011))
-((-2630 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))) (-1421 (*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))) (-1850 (*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))) (-4198 (*1 *2 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1011)) (-5 *3 (-372)))) (-4040 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1011)) (-5 *3 (-372)))) (-3047 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1011)) (-5 *3 (-372)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-372)) (-5 *1 (-1011)))) (-1834 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1011)))) (-3426 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1011)))) (-3274 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1011)))))
-(-10 -7 (-15 -3274 ((-372))) (-15 -3426 ((-372))) (-15 -1834 ((-372))) (-15 -1533 ((-372) (-747))) (-15 -3047 ((-1 (-372)) (-372) (-372))) (-15 -4040 ((-1 (-372)) (-372) (-372))) (-15 -4198 ((-1 (-372)) (-372))) (-15 -3963 ((-1 (-372)) (-747))) (-15 -1850 ((-1 (-372)) (-747) (-747))) (-15 -1421 ((-1 (-372)) (-747) (-747))) (-15 -2630 ((-1 (-372)) (-747))))
-((-2120 (((-411 |#1|) |#1|) 33)))
-(((-1012 |#1|) (-10 -7 (-15 -2120 ((-411 |#1|) |#1|))) (-1201 (-400 (-923 (-549))))) (T -1012))
-((-2120 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-1012 *3)) (-4 *3 (-1201 (-400 (-923 (-549))))))))
-(-10 -7 (-15 -2120 ((-411 |#1|) |#1|)))
-((-2750 (((-400 (-411 (-923 |#1|))) (-400 (-923 |#1|))) 14)))
-(((-1013 |#1|) (-10 -7 (-15 -2750 ((-400 (-411 (-923 |#1|))) (-400 (-923 |#1|))))) (-300)) (T -1013))
-((-2750 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-300)) (-5 *2 (-400 (-411 (-923 *4)))) (-5 *1 (-1013 *4)))))
-(-10 -7 (-15 -2750 ((-400 (-411 (-923 |#1|))) (-400 (-923 |#1|)))))
-((-2271 (((-621 (-1142)) (-400 (-923 |#1|))) 17)) (-2082 (((-400 (-1138 (-400 (-923 |#1|)))) (-400 (-923 |#1|)) (-1142)) 24)) (-2258 (((-400 (-923 |#1|)) (-400 (-1138 (-400 (-923 |#1|)))) (-1142)) 26)) (-1790 (((-3 (-1142) "failed") (-400 (-923 |#1|))) 20)) (-2685 (((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-621 (-287 (-400 (-923 |#1|))))) 32) (((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|)))) 33) (((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-621 (-1142)) (-621 (-400 (-923 |#1|)))) 28) (((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-1142) (-400 (-923 |#1|))) 29)) (-3845 (((-400 (-923 |#1|)) |#1|) 11)))
-(((-1014 |#1|) (-10 -7 (-15 -2271 ((-621 (-1142)) (-400 (-923 |#1|)))) (-15 -1790 ((-3 (-1142) "failed") (-400 (-923 |#1|)))) (-15 -2082 ((-400 (-1138 (-400 (-923 |#1|)))) (-400 (-923 |#1|)) (-1142))) (-15 -2258 ((-400 (-923 |#1|)) (-400 (-1138 (-400 (-923 |#1|)))) (-1142))) (-15 -2685 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-1142) (-400 (-923 |#1|)))) (-15 -2685 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-621 (-1142)) (-621 (-400 (-923 |#1|))))) (-15 -2685 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))))) (-15 -2685 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-621 (-287 (-400 (-923 |#1|)))))) (-15 -3845 ((-400 (-923 |#1|)) |#1|))) (-541)) (T -1014))
-((-3845 (*1 *2 *3) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-1014 *3)) (-4 *3 (-541)))) (-2685 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-287 (-400 (-923 *4))))) (-5 *2 (-400 (-923 *4))) (-4 *4 (-541)) (-5 *1 (-1014 *4)))) (-2685 (*1 *2 *2 *3) (-12 (-5 *3 (-287 (-400 (-923 *4)))) (-5 *2 (-400 (-923 *4))) (-4 *4 (-541)) (-5 *1 (-1014 *4)))) (-2685 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-621 (-1142))) (-5 *4 (-621 (-400 (-923 *5)))) (-5 *2 (-400 (-923 *5))) (-4 *5 (-541)) (-5 *1 (-1014 *5)))) (-2685 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-400 (-923 *4))) (-5 *3 (-1142)) (-4 *4 (-541)) (-5 *1 (-1014 *4)))) (-2258 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1138 (-400 (-923 *5))))) (-5 *4 (-1142)) (-5 *2 (-400 (-923 *5))) (-5 *1 (-1014 *5)) (-4 *5 (-541)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-541)) (-5 *2 (-400 (-1138 (-400 (-923 *5))))) (-5 *1 (-1014 *5)) (-5 *3 (-400 (-923 *5))))) (-1790 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-5 *2 (-1142)) (-5 *1 (-1014 *4)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-5 *2 (-621 (-1142))) (-5 *1 (-1014 *4)))))
-(-10 -7 (-15 -2271 ((-621 (-1142)) (-400 (-923 |#1|)))) (-15 -1790 ((-3 (-1142) "failed") (-400 (-923 |#1|)))) (-15 -2082 ((-400 (-1138 (-400 (-923 |#1|)))) (-400 (-923 |#1|)) (-1142))) (-15 -2258 ((-400 (-923 |#1|)) (-400 (-1138 (-400 (-923 |#1|)))) (-1142))) (-15 -2685 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-1142) (-400 (-923 |#1|)))) (-15 -2685 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-621 (-1142)) (-621 (-400 (-923 |#1|))))) (-15 -2685 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))))) (-15 -2685 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-621 (-287 (-400 (-923 |#1|)))))) (-15 -3845 ((-400 (-923 |#1|)) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3684 (((-621 (-2 (|:| -2680 $) (|:| -1358 (-621 (-756 |#1| (-836 |#2|)))))) (-621 (-756 |#1| (-836 |#2|)))) NIL)) (-3840 (((-621 $) (-621 (-756 |#1| (-836 |#2|)))) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-112)) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-112) (-112)) NIL)) (-2271 (((-621 (-836 |#2|)) $) NIL)) (-3863 (((-112) $) NIL)) (-1771 (((-112) $) NIL (|has| |#1| (-541)))) (-2344 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-1305 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-1912 (((-621 (-2 (|:| |val| (-756 |#1| (-836 |#2|))) (|:| -1980 $))) (-756 |#1| (-836 |#2|)) $) NIL)) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ (-836 |#2|)) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-1488 (($ (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 (-756 |#1| (-836 |#2|)) "failed") $ (-836 |#2|)) NIL)) (-1705 (($) NIL T CONST)) (-1717 (((-112) $) NIL (|has| |#1| (-541)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2498 (((-112) $) NIL (|has| |#1| (-541)))) (-3074 (((-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|))) $ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-1436 (((-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|))) $) NIL (|has| |#1| (-541)))) (-3001 (((-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|))) $) NIL (|has| |#1| (-541)))) (-2713 (((-3 $ "failed") (-621 (-756 |#1| (-836 |#2|)))) NIL)) (-2658 (($ (-621 (-756 |#1| (-836 |#2|)))) NIL)) (-3655 (((-3 $ "failed") $) NIL)) (-2514 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1066))))) (-3812 (($ (-756 |#1| (-836 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1066)))) (($ (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3249 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-756 |#1| (-836 |#2|))) (|:| |den| |#1|)) (-756 |#1| (-836 |#2|)) $) NIL (|has| |#1| (-541)))) (-4042 (((-112) (-756 |#1| (-836 |#2|)) $ (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-3678 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-2558 (((-756 |#1| (-836 |#2|)) (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $ (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1066)))) (((-756 |#1| (-836 |#2|)) (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $ (-756 |#1| (-836 |#2|))) NIL (|has| $ (-6 -4336))) (((-756 |#1| (-836 |#2|)) (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-2235 (((-2 (|:| -2680 (-621 (-756 |#1| (-836 |#2|)))) (|:| -1358 (-621 (-756 |#1| (-836 |#2|))))) $) NIL)) (-4173 (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-1447 (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-2561 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-2990 (((-621 (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3929 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-4170 (((-836 |#2|) $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-756 |#1| (-836 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1066))))) (-1865 (($ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $) NIL)) (-1670 (((-621 (-836 |#2|)) $) NIL)) (-2911 (((-112) (-836 |#2|) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-4145 (((-3 (-756 |#1| (-836 |#2|)) (-621 $)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-2587 (((-621 (-2 (|:| |val| (-756 |#1| (-836 |#2|))) (|:| -1980 $))) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3828 (((-3 (-756 |#1| (-836 |#2|)) "failed") $) NIL)) (-2613 (((-621 $) (-756 |#1| (-836 |#2|)) $) NIL)) (-1783 (((-3 (-112) (-621 $)) (-756 |#1| (-836 |#2|)) $) NIL)) (-1350 (((-621 (-2 (|:| |val| (-112)) (|:| -1980 $))) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-1795 (((-621 $) (-756 |#1| (-836 |#2|)) $) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) $) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-621 $)) NIL) (((-621 $) (-756 |#1| (-836 |#2|)) (-621 $)) NIL)) (-1449 (($ (-756 |#1| (-836 |#2|)) $) NIL) (($ (-621 (-756 |#1| (-836 |#2|))) $) NIL)) (-4069 (((-621 (-756 |#1| (-836 |#2|))) $) NIL)) (-3130 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-2741 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3739 (((-112) $ $) NIL)) (-2205 (((-2 (|:| |num| (-756 |#1| (-836 |#2|))) (|:| |den| |#1|)) (-756 |#1| (-836 |#2|)) $) NIL (|has| |#1| (-541)))) (-1582 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-3952 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3988 (((-1086) $) NIL)) (-3645 (((-3 (-756 |#1| (-836 |#2|)) "failed") $) NIL)) (-1917 (((-3 (-756 |#1| (-836 |#2|)) "failed") (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL)) (-1762 (((-3 $ "failed") $ (-756 |#1| (-836 |#2|))) NIL)) (-2975 (($ $ (-756 |#1| (-836 |#2|))) NIL) (((-621 $) (-756 |#1| (-836 |#2|)) $) NIL) (((-621 $) (-756 |#1| (-836 |#2|)) (-621 $)) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) $) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-621 $)) NIL)) (-2470 (((-112) (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|)))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1066)))) (($ $ (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1066)))) (($ $ (-287 (-756 |#1| (-836 |#2|)))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1066)))) (($ $ (-621 (-287 (-756 |#1| (-836 |#2|))))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3068 (((-747) $) NIL)) (-3997 (((-747) (-756 |#1| (-836 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1066)))) (((-747) (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-756 |#1| (-836 |#2|)) (-594 (-525))))) (-3853 (($ (-621 (-756 |#1| (-836 |#2|)))) NIL)) (-1651 (($ $ (-836 |#2|)) NIL)) (-3183 (($ $ (-836 |#2|)) NIL)) (-1821 (($ $) NIL)) (-2432 (($ $ (-836 |#2|)) NIL)) (-3845 (((-834) $) NIL) (((-621 (-756 |#1| (-836 |#2|))) $) NIL)) (-1509 (((-747) $) NIL (|has| (-836 |#2|) (-361)))) (-3472 (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 (-756 |#1| (-836 |#2|))))) "failed") (-621 (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 (-756 |#1| (-836 |#2|))))) "failed") (-621 (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-2197 (((-112) $ (-1 (-112) (-756 |#1| (-836 |#2|)) (-621 (-756 |#1| (-836 |#2|))))) NIL)) (-1691 (((-621 $) (-756 |#1| (-836 |#2|)) $) NIL) (((-621 $) (-756 |#1| (-836 |#2|)) (-621 $)) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) $) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-621 $)) NIL)) (-2150 (((-112) (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2691 (((-621 (-836 |#2|)) $) NIL)) (-1972 (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-2923 (((-112) (-836 |#2|) $) NIL)) (-2388 (((-112) $ $) NIL)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-1015 |#1| |#2|) (-13 (-1038 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) (-10 -8 (-15 -3840 ((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-112) (-112))))) (-444) (-621 (-1142))) (T -1015))
-((-3840 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-621 (-1142))) (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-1015 *5 *6)))))
-(-13 (-1038 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) (-10 -8 (-15 -3840 ((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-112) (-112)))))
-((-3047 (((-1 (-549)) (-1060 (-549))) 33)) (-3296 (((-549) (-549) (-549) (-549) (-549)) 30)) (-2401 (((-1 (-549)) |RationalNumber|) NIL)) (-1844 (((-1 (-549)) |RationalNumber|) NIL)) (-2224 (((-1 (-549)) (-549) |RationalNumber|) NIL)))
-(((-1016) (-10 -7 (-15 -3047 ((-1 (-549)) (-1060 (-549)))) (-15 -2224 ((-1 (-549)) (-549) |RationalNumber|)) (-15 -2401 ((-1 (-549)) |RationalNumber|)) (-15 -1844 ((-1 (-549)) |RationalNumber|)) (-15 -3296 ((-549) (-549) (-549) (-549) (-549))))) (T -1016))
-((-3296 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1016)))) (-1844 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1016)))) (-2401 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1016)))) (-2224 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1016)) (-5 *3 (-549)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-1060 (-549))) (-5 *2 (-1 (-549))) (-5 *1 (-1016)))))
-(-10 -7 (-15 -3047 ((-1 (-549)) (-1060 (-549)))) (-15 -2224 ((-1 (-549)) (-549) |RationalNumber|)) (-15 -2401 ((-1 (-549)) |RationalNumber|)) (-15 -1844 ((-1 (-549)) |RationalNumber|)) (-15 -3296 ((-549) (-549) (-549) (-549) (-549))))
-((-3845 (((-834) $) NIL) (($ (-549)) 10)))
-(((-1017 |#1|) (-10 -8 (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|))) (-1018)) (T -1017))
-NIL
-(-10 -8 (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ (-549)) 27)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-3358 (*1 *1 *1) (-4 *1 (-983))) (-3357 (*1 *2 *1) (|partial| -12 (-4 *1 (-983)) (-5 *2 (-835)))) (-3356 (*1 *2 *1) (|partial| -12 (-5 *2 (-1136 *1)) (-4 *1 (-983)))) (-3355 (*1 *2 *1) (|partial| -12 (-5 *2 (-1136 *1)) (-4 *1 (-983)))) (-3517 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1136 *1)) (-5 *3 (-890)) (-5 *4 (-835)) (-4 *1 (-983)))) (-3517 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1136 *1)) (-5 *3 (-890)) (-4 *1 (-983)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-1136 *1)) (-4 *1 (-983)) (-5 *2 (-618 *1)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-1136 (-400 (-535)))) (-5 *2 (-618 *1)) (-4 *1 (-983)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-1136 (-535))) (-5 *2 (-618 *1)) (-4 *1 (-983)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-917 *1)) (-4 *1 (-983)) (-5 *2 (-618 *1)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-917 (-400 (-535)))) (-5 *2 (-618 *1)) (-4 *1 (-983)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-917 (-535))) (-5 *2 (-618 *1)) (-4 *1 (-983)))) (-3358 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-890)))) (-3358 (*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-4 *1 (-983)))) (-3358 (*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-983)))) (-3354 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-835)))) (-3353 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-835)))) (-4112 (*1 *2 *1 *1) (-12 (-4 *1 (-983)) (-5 *2 (-400 (-535))))))
+(-13 (-145) (-821) (-170) (-356) (-405 (-400 (-535))) (-38 (-535)) (-38 (-400 (-535))) (-973) (-10 -8 (-15 -3357 ((-3 (-835) "failed") $)) (-15 -3356 ((-3 (-1136 $) "failed") $)) (-15 -3355 ((-3 (-1136 $) "failed") $)) (-15 -3517 ((-3 $ "failed") (-1136 $) (-890) (-835))) (-15 -3517 ((-3 $ "failed") (-1136 $) (-890))) (-15 -3518 ((-618 $) (-1136 $))) (-15 -3518 ((-618 $) (-1136 (-400 (-535))))) (-15 -3518 ((-618 $) (-1136 (-535)))) (-15 -3518 ((-618 $) (-917 $))) (-15 -3518 ((-618 $) (-917 (-400 (-535))))) (-15 -3518 ((-618 $) (-917 (-535)))) (-15 -3358 ($ $ (-890))) (-15 -3358 ($ $)) (-15 -3358 ($ (-400 (-535)))) (-15 -3358 ($ (-535))) (-15 -3354 ($ $ (-835))) (-15 -3353 ($ $ (-835))) (-15 -4112 ((-400 (-535)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 #2=(-535)) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-835)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-405 (-400 (-535))) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 #2#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 #2#) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-821) . T) ((-823) . T) ((-892) . T) ((-973) . T) ((-1009 (-400 (-535))) . T) ((-1009 (-535)) |has| (-400 (-535)) (-1009 (-535))) ((-1024 #1#) . T) ((-1024 #2#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T))
+((-3359 (((-2 (|:| |ans| |#2|) (|:| -3455 |#2|) (|:| |sol?| (-112))) (-535) |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|)) (-1 (-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
+(((-984 |#1| |#2|) (-10 -7 (-15 -3359 ((-2 (|:| |ans| |#2|) (|:| -3455 |#2|) (|:| |sol?| (-112))) (-535) |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|)) (-1 (-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-27) (-414 |#1|))) (T -984))
+((-3359 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1142)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-618 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2242 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1164) (-27) (-414 *8))) (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3))) (-5 *3 (-535)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3455 *4) (|:| |sol?| (-112)))) (-5 *1 (-984 *8 *4)))))
+(-10 -7 (-15 -3359 ((-2 (|:| |ans| |#2|) (|:| -3455 |#2|) (|:| |sol?| (-112))) (-535) |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|)) (-1 (-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3360 (((-3 (-618 |#2|) "failed") (-535) |#2| |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|)) (-1 (-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
+(((-985 |#1| |#2|) (-10 -7 (-15 -3360 ((-3 (-618 |#2|) "failed") (-535) |#2| |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|)) (-1 (-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535))) (-13 (-1164) (-27) (-414 |#1|))) (T -985))
+((-3360 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1142)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-618 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2242 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1164) (-27) (-414 *8))) (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3))) (-5 *3 (-535)) (-5 *2 (-618 *4)) (-5 *1 (-985 *8 *4)))))
+(-10 -7 (-15 -3360 ((-3 (-618 |#2|) "failed") (-535) |#2| |#2| |#2| (-1142) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-618 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|)) (-1 (-3 (-2 (|:| -2242 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3363 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3600 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-535)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-535) (-1 |#2| |#2|)) 30)) (-3361 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -3417 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 58)) (-3362 (((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|)) 63)))
+(((-986 |#1| |#2|) (-10 -7 (-15 -3361 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -3417 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3362 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -3363 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3600 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-535)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-535) (-1 |#2| |#2|)))) (-13 (-356) (-145) (-1009 (-535))) (-1200 |#1|)) (T -986))
+((-3363 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1200 *6)) (-4 *6 (-13 (-356) (-145) (-1009 *4))) (-5 *4 (-535)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3600 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-986 *6 *3)))) (-3362 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) (-5 *1 (-986 *4 *5)) (-5 *3 (-400 *5)))) (-3361 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) (|:| -3417 *6))) (-5 *1 (-986 *5 *6)) (-5 *3 (-400 *6)))))
+(-10 -7 (-15 -3361 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -3417 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3362 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -3363 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3600 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-535)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-535) (-1 |#2| |#2|))))
+((-3364 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -3417 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 22)) (-3365 (((-3 (-618 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 33)))
+(((-987 |#1| |#2|) (-10 -7 (-15 -3364 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -3417 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3365 ((-3 (-618 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) (-13 (-356) (-145) (-1009 (-535))) (-1200 |#1|)) (T -987))
+((-3365 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4)) (-5 *2 (-618 (-400 *5))) (-5 *1 (-987 *4 *5)) (-5 *3 (-400 *5)))) (-3364 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-535)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) (|:| |c1| (-400 *6)) (|:| |c2| (-400 *6)) (|:| -3417 *6))) (-5 *1 (-987 *5 *6)) (-5 *3 (-400 *6)))))
+(-10 -7 (-15 -3364 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -3417 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3365 ((-3 (-618 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))))
+((-3366 (((-1 |#1|) (-618 (-2 (|:| -3744 |#1|) (|:| -1572 (-535))))) 37)) (-3419 (((-1 |#1|) (-1063 |#1|)) 45)) (-3367 (((-1 |#1|) (-1224 |#1|) (-1224 (-535)) (-535)) 34)))
+(((-988 |#1|) (-10 -7 (-15 -3419 ((-1 |#1|) (-1063 |#1|))) (-15 -3366 ((-1 |#1|) (-618 (-2 (|:| -3744 |#1|) (|:| -1572 (-535)))))) (-15 -3367 ((-1 |#1|) (-1224 |#1|) (-1224 (-535)) (-535)))) (-1067)) (T -988))
+((-3367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1224 *6)) (-5 *4 (-1224 (-535))) (-5 *5 (-535)) (-4 *6 (-1067)) (-5 *2 (-1 *6)) (-5 *1 (-988 *6)))) (-3366 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -3744 *4) (|:| -1572 (-535))))) (-4 *4 (-1067)) (-5 *2 (-1 *4)) (-5 *1 (-988 *4)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-1063 *4)) (-4 *4 (-1067)) (-5 *2 (-1 *4)) (-5 *1 (-988 *4)))))
+(-10 -7 (-15 -3419 ((-1 |#1|) (-1063 |#1|))) (-15 -3366 ((-1 |#1|) (-618 (-2 (|:| -3744 |#1|) (|:| -1572 (-535)))))) (-15 -3367 ((-1 |#1|) (-1224 |#1|) (-1224 (-535)) (-535))))
+((-4114 (((-747) (-326 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-989 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4114 ((-747) (-326 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-356) (-1200 |#1|) (-1200 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-13 (-361) (-356))) (T -989))
+((-4114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) (-4 *7 (-1200 *6)) (-4 *4 (-1200 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) (-4 *9 (-13 (-361) (-356))) (-5 *2 (-747)) (-5 *1 (-989 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -4114 ((-747) (-326 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2887 (((-112) $ $) NIL)) (-3368 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) NIL) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-1101) $) 11)) (-3375 (((-112) $ $) NIL)))
+(((-990) (-13 (-1049) (-10 -8 (-15 -3368 ((-1101) $)) (-15 -3567 ((-1101) $))))) (T -990))
+((-3368 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-990)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-990)))))
+(-13 (-1049) (-10 -8 (-15 -3368 ((-1101) $)) (-15 -3567 ((-1101) $))))
+((-4313 (((-219) $) 6) (((-371) $) 9)))
+(((-991) (-138)) (T -991))
+NIL
+(-13 (-594 (-219)) (-594 (-371)))
+(((-594 (-219)) . T) ((-594 (-371)) . T))
+((-3452 (((-3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) "failed") |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) 31) (((-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535))) 28)) (-3371 (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535))) 33) (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-400 (-535))) 29) (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) 32) (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1|) 27)) (-3370 (((-618 (-400 (-535))) (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) 19)) (-3369 (((-400 (-535)) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) 16)))
+(((-992 |#1|) (-10 -7 (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1|)) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-400 (-535)))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) "failed") |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3369 ((-400 (-535)) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3370 ((-618 (-400 (-535))) (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))))) (-1200 (-535))) (T -992))
+((-3370 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *2 (-618 (-400 (-535)))) (-5 *1 (-992 *4)) (-4 *4 (-1200 (-535))))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) (-5 *2 (-400 (-535))) (-5 *1 (-992 *4)) (-4 *4 (-1200 (-535))))) (-3452 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))))) (-3452 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) (-5 *4 (-400 (-535))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))))) (-3371 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-535))) (-5 *2 (-618 (-2 (|:| -3456 *5) (|:| -3455 *5)))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))) (-5 *4 (-2 (|:| -3456 *5) (|:| -3455 *5))))) (-3371 (*1 *2 *3 *4) (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))) (-5 *4 (-400 (-535))))) (-3371 (*1 *2 *3 *4) (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))) (-5 *4 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) (-3371 (*1 *2 *3) (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))))))
+(-10 -7 (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1|)) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-400 (-535)))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) "failed") |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3369 ((-400 (-535)) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3370 ((-618 (-400 (-535))) (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))))
+((-3452 (((-3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) "failed") |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) 35) (((-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535))) 32)) (-3371 (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535))) 30) (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-400 (-535))) 26) (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) 28) (((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1|) 24)))
+(((-993 |#1|) (-10 -7 (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1|)) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-400 (-535)))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) "failed") |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) (-1200 (-400 (-535)))) (T -993))
+((-3452 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) (-5 *1 (-993 *3)) (-4 *3 (-1200 (-400 (-535)))))) (-3452 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) (-5 *4 (-400 (-535))) (-5 *1 (-993 *3)) (-4 *3 (-1200 *4)))) (-3371 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-535))) (-5 *2 (-618 (-2 (|:| -3456 *5) (|:| -3455 *5)))) (-5 *1 (-993 *3)) (-4 *3 (-1200 *5)) (-5 *4 (-2 (|:| -3456 *5) (|:| -3455 *5))))) (-3371 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-535))) (-5 *2 (-618 (-2 (|:| -3456 *4) (|:| -3455 *4)))) (-5 *1 (-993 *3)) (-4 *3 (-1200 *4)))) (-3371 (*1 *2 *3 *4) (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *1 (-993 *3)) (-4 *3 (-1200 (-400 (-535)))) (-5 *4 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))) (-3371 (*1 *2 *3) (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-5 *1 (-993 *3)) (-4 *3 (-1200 (-400 (-535)))))))
+(-10 -7 (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1|)) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-400 (-535)))) (-15 -3371 ((-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-400 (-535)))) (-15 -3452 ((-3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) "failed") |#1| (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))) (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))))
+((-3919 (((-618 (-371)) (-917 (-535)) (-371)) 28) (((-618 (-371)) (-917 (-400 (-535))) (-371)) 27)) (-4310 (((-618 (-618 (-371))) (-618 (-917 (-535))) (-618 (-1142)) (-371)) 37)))
+(((-994) (-10 -7 (-15 -3919 ((-618 (-371)) (-917 (-400 (-535))) (-371))) (-15 -3919 ((-618 (-371)) (-917 (-535)) (-371))) (-15 -4310 ((-618 (-618 (-371))) (-618 (-917 (-535))) (-618 (-1142)) (-371))))) (T -994))
+((-4310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-618 (-1142))) (-5 *2 (-618 (-618 (-371)))) (-5 *1 (-994)) (-5 *5 (-371)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-917 (-535))) (-5 *2 (-618 (-371))) (-5 *1 (-994)) (-5 *4 (-371)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-917 (-400 (-535)))) (-5 *2 (-618 (-371))) (-5 *1 (-994)) (-5 *4 (-371)))))
+(-10 -7 (-15 -3919 ((-618 (-371)) (-917 (-400 (-535))) (-371))) (-15 -3919 ((-618 (-371)) (-917 (-535)) (-371))) (-15 -4310 ((-618 (-618 (-371))) (-618 (-917 (-535))) (-618 (-1142)) (-371))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 70)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-3358 (($ $) NIL) (($ $ (-890)) NIL) (($ (-400 (-535))) NIL) (($ (-535)) NIL)) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) 65)) (-3879 (($) NIL T CONST)) (-3517 (((-3 $ #1="failed") (-1136 $) (-890) (-835)) NIL) (((-3 $ #1#) (-1136 $) (-890)) 50)) (-3491 (((-3 (-400 (-535)) #2="failed") $) NIL (|has| (-400 (-535)) (-1009 (-400 (-535))))) (((-3 (-400 (-535)) #2#) $) NIL) (((-3 |#1| #2#) $) 107) (((-3 (-535) #2#) $) NIL (-3874 (|has| (-400 (-535)) (-1009 (-535))) (|has| |#1| (-1009 (-535)))))) (-3490 (((-400 (-535)) $) 15 (|has| (-400 (-535)) (-1009 (-400 (-535))))) (((-400 (-535)) $) 15) ((|#1| $) 108) (((-535) $) NIL (-3874 (|has| (-400 (-535)) (-1009 (-535))) (|has| |#1| (-1009 (-535)))))) (-3354 (($ $ (-835)) 42)) (-3353 (($ $ (-835)) 43)) (-2883 (($ $ $) NIL)) (-3516 (((-400 (-535)) $ $) 19)) (-3804 (((-3 $ "failed") $) 83)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-3520 (((-112) $) 61)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL)) (-3521 (((-112) $) 64)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3355 (((-3 (-1136 $) #1#) $) 78)) (-3357 (((-3 (-835) #1#) $) 77)) (-3356 (((-3 (-1136 $) #1#) $) 75)) (-3372 (((-3 (-1028 $ (-1136 $)) "failed") $) 73)) (-2008 (($ (-618 $)) NIL) (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 84)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ (-618 $)) NIL) (($ $ $) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4300 (((-835) $) 82) (($ (-535)) NIL) (($ (-400 (-535))) NIL) (($ $) 58) (($ (-400 (-535))) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL) (($ |#1|) 110)) (-3444 (((-747)) NIL)) (-2170 (((-112) $ $) NIL)) (-4112 (((-400 (-535)) $ $) 25)) (-3518 (((-618 $) (-1136 $)) 56) (((-618 $) (-1136 (-400 (-535)))) NIL) (((-618 $) (-1136 (-535))) NIL) (((-618 $) (-917 $)) NIL) (((-618 $) (-917 (-400 (-535)))) NIL) (((-618 $) (-917 (-535))) NIL)) (-3373 (($ (-1028 $ (-1136 $)) (-835)) 41)) (-3725 (($ $) 20)) (-2979 (($) 29 T CONST)) (-2985 (($) 35 T CONST)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 71)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 22)) (-4291 (($ $ $) 33)) (-4180 (($ $) 34) (($ $ $) 69)) (-4182 (($ $ $) 103)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL) (($ $ (-400 (-535))) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 91) (($ $ $) 96) (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL) (($ (-535) $) 91) (($ $ (-535)) NIL) (($ (-400 (-535)) $) NIL) (($ $ (-400 (-535))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
+(((-995 |#1|) (-13 (-983) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -3373 ($ (-1028 $ (-1136 $)) (-835))) (-15 -3372 ((-3 (-1028 $ (-1136 $)) "failed") $)) (-15 -3516 ((-400 (-535)) $ $)))) (-13 (-821) (-356) (-991))) (T -995))
+((-3373 (*1 *1 *2 *3) (-12 (-5 *2 (-1028 (-995 *4) (-1136 (-995 *4)))) (-5 *3 (-835)) (-5 *1 (-995 *4)) (-4 *4 (-13 (-821) (-356) (-991))))) (-3372 (*1 *2 *1) (|partial| -12 (-5 *2 (-1028 (-995 *3) (-1136 (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-13 (-821) (-356) (-991))))) (-3516 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-995 *3)) (-4 *3 (-13 (-821) (-356) (-991))))))
+(-13 (-983) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -3373 ($ (-1028 $ (-1136 $)) (-835))) (-15 -3372 ((-3 (-1028 $ (-1136 $)) "failed") $)) (-15 -3516 ((-400 (-535)) $ $))))
+((-3374 (((-2 (|:| -3600 |#2|) (|:| -2827 (-618 |#1|))) |#2| (-618 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-996 |#1| |#2|) (-10 -7 (-15 -3374 (|#2| |#2| |#1|)) (-15 -3374 ((-2 (|:| -3600 |#2|) (|:| -2827 (-618 |#1|))) |#2| (-618 |#1|)))) (-356) (-634 |#1|)) (T -996))
+((-3374 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -3600 *3) (|:| -2827 (-618 *5)))) (-5 *1 (-996 *5 *3)) (-5 *4 (-618 *5)) (-4 *3 (-634 *5)))) (-3374 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-996 *3 *2)) (-4 *2 (-634 *3)))))
+(-10 -7 (-15 -3374 (|#2| |#2| |#1|)) (-15 -3374 ((-2 (|:| -3600 |#2|) (|:| -2827 (-618 |#1|))) |#2| (-618 |#1|))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3376 ((|#1| $ |#1|) 14)) (-4130 ((|#1| $ |#1|) 12)) (-3378 (($ |#1|) 10)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4142 ((|#1| $) 11)) (-3377 ((|#1| $) 13)) (-4300 (((-835) $) 21 (|has| |#1| (-1067)))) (-3375 (((-112) $ $) 9)))
+(((-997 |#1|) (-13 (-1178) (-10 -8 (-15 -3378 ($ |#1|)) (-15 -4142 (|#1| $)) (-15 -4130 (|#1| $ |#1|)) (-15 -3377 (|#1| $)) (-15 -3376 (|#1| $ |#1|)) (-15 -3375 ((-112) $ $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|))) (-1178)) (T -997))
+((-3378 (*1 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))) (-4142 (*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))) (-4130 (*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))) (-3377 (*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))) (-3376 (*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))) (-3375 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-997 *3)) (-4 *3 (-1178)))))
+(-13 (-1178) (-10 -8 (-15 -3378 ($ |#1|)) (-15 -4142 (|#1| $)) (-15 -4130 (|#1| $ |#1|)) (-15 -3377 (|#1| $)) (-15 -3376 (|#1| $ |#1|)) (-15 -3375 ((-112) $ $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|)))
+((-2887 (((-112) $ $) NIL)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) NIL)) (-4028 (((-618 $) (-618 |#4|)) 105) (((-618 $) (-618 |#4|) (-112)) 106) (((-618 $) (-618 |#4|) (-112) (-112)) 104) (((-618 $) (-618 |#4|) (-112) (-112) (-112) (-112)) 107)) (-3405 (((-618 |#3|) $) NIL)) (-3229 (((-112) $) NIL)) (-3220 (((-112) $) NIL (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4034 ((|#4| |#4| $) NIL)) (-4117 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 99)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4056 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) 54)) (-3879 (($) NIL T CONST)) (-3225 (((-112) $) 26 (|has| |#1| (-542)))) (-3227 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3226 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3228 (((-112) $) NIL (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3221 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) NIL)) (-3490 (($ (-618 |#4|)) NIL)) (-4141 (((-3 $ #1#) $) 39)) (-4031 ((|#4| |#4| $) 57)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-3748 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4029 ((|#4| |#4| $) NIL)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) NIL)) (-3531 (((-112) |#4| $) NIL)) (-3529 (((-112) |#4| $) NIL)) (-3532 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3780 (((-2 (|:| |val| (-618 |#4|)) (|:| |towers| (-618 $))) (-618 |#4|) (-112) (-112)) 119)) (-2063 (((-618 |#4|) $) 16 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3514 ((|#3| $) 33)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#4|) $) 17 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 21)) (-3235 (((-618 |#3|) $) NIL)) (-3234 (((-112) |#3| $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3525 (((-3 |#4| (-618 $)) |#4| |#4| $) NIL)) (-3524 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 97)) (-4140 (((-3 |#4| #1#) $) 37)) (-3526 (((-618 $) |#4| $) 80)) (-3528 (((-3 (-112) (-618 $)) |#4| $) NIL)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3572 (((-618 $) |#4| $) 102) (((-618 $) (-618 |#4|) $) NIL) (((-618 $) (-618 |#4|) (-618 $)) 103) (((-618 $) |#4| (-618 $)) NIL)) (-3781 (((-618 $) (-618 |#4|) (-112) (-112) (-112)) 114)) (-3782 (($ |#4| $) 70) (($ (-618 |#4|) $) 71) (((-618 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-4043 (((-618 |#4|) $) NIL)) (-4037 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4032 ((|#4| |#4| $) NIL)) (-4045 (((-112) $ $) NIL)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4033 ((|#4| |#4| $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-3 |#4| #1#) $) 35)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4025 (((-3 $ #1#) $ |#4|) 48)) (-4111 (($ $ |#4|) NIL) (((-618 $) |#4| $) 82) (((-618 $) |#4| (-618 $)) NIL) (((-618 $) (-618 |#4|) $) NIL) (((-618 $) (-618 |#4|) (-618 $)) 77)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 15)) (-3911 (($) 13)) (-4290 (((-747) $) NIL)) (-2064 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) 12)) (-4313 (((-524) $) NIL (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 20)) (-3231 (($ $ |#3|) 42)) (-3233 (($ $ |#3|) 44)) (-4030 (($ $) NIL)) (-3232 (($ $ |#3|) NIL)) (-4300 (((-835) $) 31) (((-618 |#4|) $) 40)) (-4024 (((-747) $) NIL (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) NIL)) (-3523 (((-618 $) |#4| $) 79) (((-618 $) |#4| (-618 $)) NIL) (((-618 $) (-618 |#4|) $) NIL) (((-618 $) (-618 |#4|) (-618 $)) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) NIL)) (-3530 (((-112) |#4| $) NIL)) (-4276 (((-112) |#3| $) 53)) (-3375 (((-112) $ $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-998 |#1| |#2| |#3| |#4|) (-13 (-1038 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3782 ((-618 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112) (-112) (-112))) (-15 -3781 ((-618 $) (-618 |#4|) (-112) (-112) (-112))) (-15 -3780 ((-2 (|:| |val| (-618 |#4|)) (|:| |towers| (-618 $))) (-618 |#4|) (-112) (-112))))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -998))
+((-3782 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *3))) (-5 *1 (-998 *5 *6 *7 *3)) (-4 *3 (-1032 *5 *6 *7)))) (-4028 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8)))) (-4028 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8)))) (-3781 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8)))) (-3780 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-618 *8)) (|:| |towers| (-618 (-998 *5 *6 *7 *8))))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *3 (-618 *8)))))
+(-13 (-1038 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3782 ((-618 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112) (-112) (-112))) (-15 -3781 ((-618 $) (-618 |#4|) (-112) (-112) (-112))) (-15 -3780 ((-2 (|:| |val| (-618 |#4|)) (|:| |towers| (-618 $))) (-618 |#4|) (-112) (-112)))))
+((-3379 (((-618 (-2 (|:| |radval| (-307 (-535))) (|:| |radmult| (-535)) (|:| |radvect| (-618 (-665 (-307 (-535))))))) (-665 (-400 (-917 (-535))))) 59)) (-3380 (((-618 (-665 (-307 (-535)))) (-307 (-535)) (-665 (-400 (-917 (-535))))) 48)) (-3381 (((-618 (-307 (-535))) (-665 (-400 (-917 (-535))))) 41)) (-3385 (((-618 (-665 (-307 (-535)))) (-665 (-400 (-917 (-535))))) 68)) (-3383 (((-665 (-307 (-535))) (-665 (-307 (-535)))) 34)) (-3384 (((-618 (-665 (-307 (-535)))) (-618 (-665 (-307 (-535))))) 62)) (-3382 (((-3 (-665 (-307 (-535))) "failed") (-665 (-400 (-917 (-535))))) 66)))
+(((-999) (-10 -7 (-15 -3379 ((-618 (-2 (|:| |radval| (-307 (-535))) (|:| |radmult| (-535)) (|:| |radvect| (-618 (-665 (-307 (-535))))))) (-665 (-400 (-917 (-535)))))) (-15 -3380 ((-618 (-665 (-307 (-535)))) (-307 (-535)) (-665 (-400 (-917 (-535)))))) (-15 -3381 ((-618 (-307 (-535))) (-665 (-400 (-917 (-535)))))) (-15 -3382 ((-3 (-665 (-307 (-535))) "failed") (-665 (-400 (-917 (-535)))))) (-15 -3383 ((-665 (-307 (-535))) (-665 (-307 (-535))))) (-15 -3384 ((-618 (-665 (-307 (-535)))) (-618 (-665 (-307 (-535)))))) (-15 -3385 ((-618 (-665 (-307 (-535)))) (-665 (-400 (-917 (-535)))))))) (T -999))
+((-3385 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-665 (-307 (-535))))) (-5 *1 (-999)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-618 (-665 (-307 (-535))))) (-5 *1 (-999)))) (-3383 (*1 *2 *2) (-12 (-5 *2 (-665 (-307 (-535)))) (-5 *1 (-999)))) (-3382 (*1 *2 *3) (|partial| -12 (-5 *3 (-665 (-400 (-917 (-535))))) (-5 *2 (-665 (-307 (-535)))) (-5 *1 (-999)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-307 (-535)))) (-5 *1 (-999)))) (-3380 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-665 (-307 (-535))))) (-5 *1 (-999)) (-5 *3 (-307 (-535))))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-2 (|:| |radval| (-307 (-535))) (|:| |radmult| (-535)) (|:| |radvect| (-618 (-665 (-307 (-535)))))))) (-5 *1 (-999)))))
+(-10 -7 (-15 -3379 ((-618 (-2 (|:| |radval| (-307 (-535))) (|:| |radmult| (-535)) (|:| |radvect| (-618 (-665 (-307 (-535))))))) (-665 (-400 (-917 (-535)))))) (-15 -3380 ((-618 (-665 (-307 (-535)))) (-307 (-535)) (-665 (-400 (-917 (-535)))))) (-15 -3381 ((-618 (-307 (-535))) (-665 (-400 (-917 (-535)))))) (-15 -3382 ((-3 (-665 (-307 (-535))) "failed") (-665 (-400 (-917 (-535)))))) (-15 -3383 ((-665 (-307 (-535))) (-665 (-307 (-535))))) (-15 -3384 ((-618 (-665 (-307 (-535)))) (-618 (-665 (-307 (-535)))))) (-15 -3385 ((-618 (-665 (-307 (-535)))) (-665 (-400 (-917 (-535)))))))
+((-3389 (((-618 (-665 |#1|)) (-618 (-665 |#1|))) 58) (((-665 |#1|) (-665 |#1|)) 57) (((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-618 (-665 |#1|))) 56) (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 53)) (-3388 (((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-890)) 52) (((-665 |#1|) (-665 |#1|) (-890)) 51)) (-3390 (((-618 (-665 (-535))) (-618 (-618 (-535)))) 68) (((-618 (-665 (-535))) (-618 (-873 (-535))) (-535)) 67) (((-665 (-535)) (-618 (-535))) 64) (((-665 (-535)) (-873 (-535)) (-535)) 63)) (-3387 (((-665 (-917 |#1|)) (-747)) 81)) (-3386 (((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-890)) 37 (|has| |#1| (-6 (-4338 "*")))) (((-665 |#1|) (-665 |#1|) (-890)) 35 (|has| |#1| (-6 (-4338 "*"))))))
+(((-1000 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4338 "*"))) (-15 -3386 ((-665 |#1|) (-665 |#1|) (-890))) |%noBranch|) (IF (|has| |#1| (-6 (-4338 "*"))) (-15 -3386 ((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-890))) |%noBranch|) (-15 -3387 ((-665 (-917 |#1|)) (-747))) (-15 -3388 ((-665 |#1|) (-665 |#1|) (-890))) (-15 -3388 ((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-890))) (-15 -3389 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3389 ((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3389 ((-665 |#1|) (-665 |#1|))) (-15 -3389 ((-618 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3390 ((-665 (-535)) (-873 (-535)) (-535))) (-15 -3390 ((-665 (-535)) (-618 (-535)))) (-15 -3390 ((-618 (-665 (-535))) (-618 (-873 (-535))) (-535))) (-15 -3390 ((-618 (-665 (-535))) (-618 (-618 (-535)))))) (-1018)) (T -1000))
+((-3390 (*1 *2 *3) (-12 (-5 *3 (-618 (-618 (-535)))) (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-1000 *4)) (-4 *4 (-1018)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-873 (-535)))) (-5 *4 (-535)) (-5 *2 (-618 (-665 *4))) (-5 *1 (-1000 *5)) (-4 *5 (-1018)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-1000 *4)) (-4 *4 (-1018)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-873 (-535))) (-5 *4 (-535)) (-5 *2 (-665 *4)) (-5 *1 (-1000 *5)) (-4 *5 (-1018)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-618 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-1000 *3)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-1000 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-618 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-1000 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-1000 *3)))) (-3388 (*1 *2 *2 *3) (-12 (-5 *2 (-618 (-665 *4))) (-5 *3 (-890)) (-4 *4 (-1018)) (-5 *1 (-1000 *4)))) (-3388 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-890)) (-4 *4 (-1018)) (-5 *1 (-1000 *4)))) (-3387 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-665 (-917 *4))) (-5 *1 (-1000 *4)) (-4 *4 (-1018)))) (-3386 (*1 *2 *2 *3) (-12 (-5 *2 (-618 (-665 *4))) (-5 *3 (-890)) (|has| *4 (-6 (-4338 "*"))) (-4 *4 (-1018)) (-5 *1 (-1000 *4)))) (-3386 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-890)) (|has| *4 (-6 (-4338 "*"))) (-4 *4 (-1018)) (-5 *1 (-1000 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4338 "*"))) (-15 -3386 ((-665 |#1|) (-665 |#1|) (-890))) |%noBranch|) (IF (|has| |#1| (-6 (-4338 "*"))) (-15 -3386 ((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-890))) |%noBranch|) (-15 -3387 ((-665 (-917 |#1|)) (-747))) (-15 -3388 ((-665 |#1|) (-665 |#1|) (-890))) (-15 -3388 ((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-890))) (-15 -3389 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3389 ((-618 (-665 |#1|)) (-618 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3389 ((-665 |#1|) (-665 |#1|))) (-15 -3389 ((-618 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3390 ((-665 (-535)) (-873 (-535)) (-535))) (-15 -3390 ((-665 (-535)) (-618 (-535)))) (-15 -3390 ((-618 (-665 (-535))) (-618 (-873 (-535))) (-535))) (-15 -3390 ((-618 (-665 (-535))) (-618 (-618 (-535))))))
+((-3394 (((-665 |#1|) (-618 (-665 |#1|)) (-1224 |#1|)) 50 (|has| |#1| (-300)))) (-3760 (((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-1224 (-1224 |#1|))) 76 (|has| |#1| (-356))) (((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-1224 |#1|)) 79 (|has| |#1| (-356)))) (-3398 (((-1224 |#1|) (-618 (-1224 |#1|)) (-535)) 93 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-3397 (((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-890)) 85 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-112)) 83 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|))) 82 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-112) (-535) (-535)) 81 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-3396 (((-112) (-618 (-665 |#1|))) 71 (|has| |#1| (-356))) (((-112) (-618 (-665 |#1|)) (-535)) 73 (|has| |#1| (-356)))) (-3393 (((-1224 (-1224 |#1|)) (-618 (-665 |#1|)) (-1224 |#1|)) 48 (|has| |#1| (-300)))) (-3392 (((-665 |#1|) (-618 (-665 |#1|)) (-665 |#1|)) 34)) (-3391 (((-665 |#1|) (-1224 (-1224 |#1|))) 31)) (-3395 (((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)) (-535)) 65 (|has| |#1| (-356))) (((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|))) 64 (|has| |#1| (-356))) (((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)) (-112) (-535)) 69 (|has| |#1| (-356)))))
+(((-1001 |#1|) (-10 -7 (-15 -3391 ((-665 |#1|) (-1224 (-1224 |#1|)))) (-15 -3392 ((-665 |#1|) (-618 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -3393 ((-1224 (-1224 |#1|)) (-618 (-665 |#1|)) (-1224 |#1|))) (-15 -3394 ((-665 |#1|) (-618 (-665 |#1|)) (-1224 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3395 ((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)) (-112) (-535))) (-15 -3395 ((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3395 ((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)) (-535))) (-15 -3396 ((-112) (-618 (-665 |#1|)) (-535))) (-15 -3396 ((-112) (-618 (-665 |#1|)))) (-15 -3760 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-1224 |#1|))) (-15 -3760 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-1224 (-1224 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-112) (-535) (-535))) (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)))) (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-112))) (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-890))) (-15 -3398 ((-1224 |#1|) (-618 (-1224 |#1|)) (-535)))) |%noBranch|) |%noBranch|)) (-1018)) (T -1001))
+((-3398 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-1224 *5))) (-5 *4 (-535)) (-5 *2 (-1224 *5)) (-5 *1 (-1001 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)) (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5)) (-5 *3 (-618 (-665 *5))))) (-3397 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)) (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5)) (-5 *3 (-618 (-665 *5))))) (-3397 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1018)) (-5 *2 (-618 (-618 (-665 *4)))) (-5 *1 (-1001 *4)) (-5 *3 (-618 (-665 *4))))) (-3397 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-535)) (-4 *6 (-356)) (-4 *6 (-361)) (-4 *6 (-1018)) (-5 *2 (-618 (-618 (-665 *6)))) (-5 *1 (-1001 *6)) (-5 *3 (-618 (-665 *6))))) (-3760 (*1 *2 *3 *4) (-12 (-5 *4 (-1224 (-1224 *5))) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5)) (-5 *3 (-618 (-665 *5))))) (-3760 (*1 *2 *3 *4) (-12 (-5 *4 (-1224 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5)) (-5 *3 (-618 (-665 *5))))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-618 (-665 *4))) (-4 *4 (-356)) (-4 *4 (-1018)) (-5 *2 (-112)) (-5 *1 (-1001 *4)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-665 *5))) (-5 *4 (-535)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-112)) (-5 *1 (-1001 *5)))) (-3395 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-618 (-665 *5))) (-5 *4 (-535)) (-5 *2 (-665 *5)) (-5 *1 (-1001 *5)) (-4 *5 (-356)) (-4 *5 (-1018)))) (-3395 (*1 *2 *3 *3) (-12 (-5 *3 (-618 (-665 *4))) (-5 *2 (-665 *4)) (-5 *1 (-1001 *4)) (-4 *4 (-356)) (-4 *4 (-1018)))) (-3395 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-618 (-665 *6))) (-5 *4 (-112)) (-5 *5 (-535)) (-5 *2 (-665 *6)) (-5 *1 (-1001 *6)) (-4 *6 (-356)) (-4 *6 (-1018)))) (-3394 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-665 *5))) (-5 *4 (-1224 *5)) (-4 *5 (-300)) (-4 *5 (-1018)) (-5 *2 (-665 *5)) (-5 *1 (-1001 *5)))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-665 *5))) (-4 *5 (-300)) (-4 *5 (-1018)) (-5 *2 (-1224 (-1224 *5))) (-5 *1 (-1001 *5)) (-5 *4 (-1224 *5)))) (-3392 (*1 *2 *3 *2) (-12 (-5 *3 (-618 (-665 *4))) (-5 *2 (-665 *4)) (-4 *4 (-1018)) (-5 *1 (-1001 *4)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-1224 (-1224 *4))) (-4 *4 (-1018)) (-5 *2 (-665 *4)) (-5 *1 (-1001 *4)))))
+(-10 -7 (-15 -3391 ((-665 |#1|) (-1224 (-1224 |#1|)))) (-15 -3392 ((-665 |#1|) (-618 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -3393 ((-1224 (-1224 |#1|)) (-618 (-665 |#1|)) (-1224 |#1|))) (-15 -3394 ((-665 |#1|) (-618 (-665 |#1|)) (-1224 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3395 ((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)) (-112) (-535))) (-15 -3395 ((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3395 ((-665 |#1|) (-618 (-665 |#1|)) (-618 (-665 |#1|)) (-535))) (-15 -3396 ((-112) (-618 (-665 |#1|)) (-535))) (-15 -3396 ((-112) (-618 (-665 |#1|)))) (-15 -3760 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-1224 |#1|))) (-15 -3760 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-1224 (-1224 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-112) (-535) (-535))) (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)))) (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-112))) (-15 -3397 ((-618 (-618 (-665 |#1|))) (-618 (-665 |#1|)) (-890))) (-15 -3398 ((-1224 |#1|) (-618 (-1224 |#1|)) (-535)))) |%noBranch|) |%noBranch|))
+((-3399 ((|#1| (-890) |#1|) 9)))
+(((-1002 |#1|) (-10 -7 (-15 -3399 (|#1| (-890) |#1|))) (-13 (-1067) (-10 -8 (-15 -4182 ($ $ $))))) (T -1002))
+((-3399 (*1 *2 *3 *2) (-12 (-5 *3 (-890)) (-5 *1 (-1002 *2)) (-4 *2 (-13 (-1067) (-10 -8 (-15 -4182 ($ $ $))))))))
+(-10 -7 (-15 -3399 (|#1| (-890) |#1|)))
+((-3400 ((|#1| |#1| (-890)) 9)))
+(((-1003 |#1|) (-10 -7 (-15 -3400 (|#1| |#1| (-890)))) (-13 (-1067) (-10 -8 (-15 * ($ $ $))))) (T -1003))
+((-3400 (*1 *2 *2 *3) (-12 (-5 *3 (-890)) (-5 *1 (-1003 *2)) (-4 *2 (-13 (-1067) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -3400 (|#1| |#1| (-890))))
+((-4300 ((|#1| (-304)) 11) (((-1230) |#1|) 9)))
+(((-1004 |#1|) (-10 -7 (-15 -4300 ((-1230) |#1|)) (-15 -4300 (|#1| (-304)))) (-1178)) (T -1004))
+((-4300 (*1 *2 *3) (-12 (-5 *3 (-304)) (-5 *1 (-1004 *2)) (-4 *2 (-1178)))) (-4300 (*1 *2 *3) (-12 (-5 *2 (-1230)) (-5 *1 (-1004 *3)) (-4 *3 (-1178)))))
+(-10 -7 (-15 -4300 ((-1230) |#1|)) (-15 -4300 (|#1| (-304))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-4185 (($ |#4|) 25)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-3401 ((|#4| $) 27)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 46) (($ (-535)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3444 (((-747)) 43)) (-2979 (($) 21 T CONST)) (-2985 (($) 23 T CONST)) (-3375 (((-112) $ $) 40)) (-4180 (($ $) 31) (($ $ $) NIL)) (-4182 (($ $ $) 29)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1005 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -4185 ($ |#4|)) (-15 -4300 ($ |#4|)) (-15 -3401 (|#4| $)))) (-356) (-769) (-823) (-921 |#1| |#2| |#3|) (-618 |#4|)) (T -1005))
+((-4185 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-921 *3 *4 *5)) (-14 *6 (-618 *2)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-921 *3 *4 *5)) (-14 *6 (-618 *2)))) (-3401 (*1 *2 *1) (-12 (-4 *2 (-921 *3 *4 *5)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-14 *6 (-618 *2)))))
+(-13 (-170) (-38 |#1|) (-10 -8 (-15 -4185 ($ |#4|)) (-15 -4300 ($ |#4|)) (-15 -3401 (|#4| $))))
+((-2887 (((-112) $ $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-2296 (((-1230) $ (-1142) (-1142)) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-3403 (((-112) (-112)) 39)) (-3402 (((-112) (-112)) 38)) (-4130 (((-51) $ (-1142) (-51)) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 (-51) #1="failed") (-1142) $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-3747 (($ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-3 (-51) #1#) (-1142) $) NIL)) (-3748 (($ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-1632 (((-51) $ (-1142) (-51)) NIL (|has| $ (-6 -4337)))) (-3431 (((-51) $ (-1142)) NIL)) (-2063 (((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-618 (-51)) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-1142) $) NIL (|has| (-1142) (-823)))) (-2502 (((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-618 (-51)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067))))) (-2299 (((-1142) $) NIL (|has| (-1142) (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-2735 (((-618 (-1142)) $) 34)) (-2306 (((-112) (-1142) $) NIL)) (-1326 (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL)) (-3953 (($ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL)) (-2301 (((-618 (-1142)) $) NIL)) (-2302 (((-112) (-1142) $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-4143 (((-51) $) NIL (|has| (-1142) (-823)))) (-1395 (((-3 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) "failed") (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL)) (-2297 (($ $ (-51)) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-286 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-618 (-51)) (-618 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-286 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-618 (-286 (-51)))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067))))) (-2303 (((-618 (-51)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 (((-51) $ (-1142)) 35) (((-51) $ (-1142) (-51)) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (((-747) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067)))) (((-747) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-4300 (((-835) $) 37 (-3874 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-593 (-835))) (|has| (-51) (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-1006) (-13 (-1155 (-1142) (-51)) (-10 -7 (-15 -3403 ((-112) (-112))) (-15 -3402 ((-112) (-112))) (-6 -4336)))) (T -1006))
+((-3403 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))))
+(-13 (-1155 (-1142) (-51)) (-10 -7 (-15 -3403 ((-112) (-112))) (-15 -3402 ((-112) (-112))) (-6 -4336)))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3540 (((-1101) $) 9)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-1007) (-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $))))) (T -1007))
+((-3540 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1007)))))
+(-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $))))
+((-3490 ((|#2| $) 10)))
+(((-1008 |#1| |#2|) (-10 -8 (-15 -3490 (|#2| |#1|))) (-1009 |#2|) (-1178)) (T -1008))
+NIL
+(-10 -8 (-15 -3490 (|#2| |#1|)))
+((-3491 (((-3 |#1| "failed") $) 7)) (-3490 ((|#1| $) 8)) (-4300 (($ |#1|) 6)))
+(((-1009 |#1|) (-138) (-1178)) (T -1009))
+((-3490 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1178)))) (-3491 (*1 *2 *1) (|partial| -12 (-4 *1 (-1009 *2)) (-4 *2 (-1178)))) (-4300 (*1 *1 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1178)))))
+(-13 (-10 -8 (-15 -4300 ($ |t#1|)) (-15 -3491 ((-3 |t#1| "failed") $)) (-15 -3490 (|t#1| $))))
+((-3404 (((-618 (-618 (-286 (-400 (-917 |#2|))))) (-618 (-917 |#2|)) (-618 (-1142))) 38)))
+(((-1010 |#1| |#2|) (-10 -7 (-15 -3404 ((-618 (-618 (-286 (-400 (-917 |#2|))))) (-618 (-917 |#2|)) (-618 (-1142))))) (-542) (-13 (-542) (-1009 |#1|))) (T -1010))
+((-3404 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *6))) (-5 *4 (-618 (-1142))) (-4 *6 (-13 (-542) (-1009 *5))) (-4 *5 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *6)))))) (-5 *1 (-1010 *5 *6)))))
+(-10 -7 (-15 -3404 ((-618 (-618 (-286 (-400 (-917 |#2|))))) (-618 (-917 |#2|)) (-618 (-1142)))))
+((-3405 (((-618 (-1142)) (-400 (-917 |#1|))) 17)) (-3407 (((-400 (-1136 (-400 (-917 |#1|)))) (-400 (-917 |#1|)) (-1142)) 24)) (-3408 (((-400 (-917 |#1|)) (-400 (-1136 (-400 (-917 |#1|)))) (-1142)) 26)) (-3406 (((-3 (-1142) "failed") (-400 (-917 |#1|))) 20)) (-4110 (((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-618 (-286 (-400 (-917 |#1|))))) 32) (((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|)))) 33) (((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-618 (-1142)) (-618 (-400 (-917 |#1|)))) 28) (((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|))) 29)) (-4300 (((-400 (-917 |#1|)) |#1|) 11)))
+(((-1011 |#1|) (-10 -7 (-15 -3405 ((-618 (-1142)) (-400 (-917 |#1|)))) (-15 -3406 ((-3 (-1142) "failed") (-400 (-917 |#1|)))) (-15 -3407 ((-400 (-1136 (-400 (-917 |#1|)))) (-400 (-917 |#1|)) (-1142))) (-15 -3408 ((-400 (-917 |#1|)) (-400 (-1136 (-400 (-917 |#1|)))) (-1142))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|)))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-618 (-1142)) (-618 (-400 (-917 |#1|))))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-618 (-286 (-400 (-917 |#1|)))))) (-15 -4300 ((-400 (-917 |#1|)) |#1|))) (-542)) (T -1011))
+((-4300 (*1 *2 *3) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-1011 *3)) (-4 *3 (-542)))) (-4110 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-286 (-400 (-917 *4))))) (-5 *2 (-400 (-917 *4))) (-4 *4 (-542)) (-5 *1 (-1011 *4)))) (-4110 (*1 *2 *2 *3) (-12 (-5 *3 (-286 (-400 (-917 *4)))) (-5 *2 (-400 (-917 *4))) (-4 *4 (-542)) (-5 *1 (-1011 *4)))) (-4110 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-618 (-1142))) (-5 *4 (-618 (-400 (-917 *5)))) (-5 *2 (-400 (-917 *5))) (-4 *5 (-542)) (-5 *1 (-1011 *5)))) (-4110 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-400 (-917 *4))) (-5 *3 (-1142)) (-4 *4 (-542)) (-5 *1 (-1011 *4)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1136 (-400 (-917 *5))))) (-5 *4 (-1142)) (-5 *2 (-400 (-917 *5))) (-5 *1 (-1011 *5)) (-4 *5 (-542)))) (-3407 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-542)) (-5 *2 (-400 (-1136 (-400 (-917 *5))))) (-5 *1 (-1011 *5)) (-5 *3 (-400 (-917 *5))))) (-3406 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-5 *2 (-1142)) (-5 *1 (-1011 *4)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-5 *2 (-618 (-1142))) (-5 *1 (-1011 *4)))))
+(-10 -7 (-15 -3405 ((-618 (-1142)) (-400 (-917 |#1|)))) (-15 -3406 ((-3 (-1142) "failed") (-400 (-917 |#1|)))) (-15 -3407 ((-400 (-1136 (-400 (-917 |#1|)))) (-400 (-917 |#1|)) (-1142))) (-15 -3408 ((-400 (-917 |#1|)) (-400 (-1136 (-400 (-917 |#1|)))) (-1142))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|)))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-618 (-1142)) (-618 (-400 (-917 |#1|))))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-286 (-400 (-917 |#1|))))) (-15 -4110 ((-400 (-917 |#1|)) (-400 (-917 |#1|)) (-618 (-286 (-400 (-917 |#1|)))))) (-15 -4300 ((-400 (-917 |#1|)) |#1|)))
+((-3409 (((-371)) 15)) (-3419 (((-1 (-371)) (-371) (-371)) 20)) (-3417 (((-1 (-371)) (-747)) 43)) (-3410 (((-371)) 34)) (-3413 (((-1 (-371)) (-371) (-371)) 35)) (-3411 (((-371)) 26)) (-3414 (((-1 (-371)) (-371)) 27)) (-3412 (((-371) (-747)) 38)) (-3415 (((-1 (-371)) (-747)) 39)) (-3416 (((-1 (-371)) (-747) (-747)) 42)) (-3726 (((-1 (-371)) (-747) (-747)) 40)))
+(((-1012) (-10 -7 (-15 -3409 ((-371))) (-15 -3410 ((-371))) (-15 -3411 ((-371))) (-15 -3412 ((-371) (-747))) (-15 -3419 ((-1 (-371)) (-371) (-371))) (-15 -3413 ((-1 (-371)) (-371) (-371))) (-15 -3414 ((-1 (-371)) (-371))) (-15 -3415 ((-1 (-371)) (-747))) (-15 -3726 ((-1 (-371)) (-747) (-747))) (-15 -3416 ((-1 (-371)) (-747) (-747))) (-15 -3417 ((-1 (-371)) (-747))))) (T -1012))
+((-3417 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012)))) (-3416 (*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012)))) (-3726 (*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012)))) (-3415 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012)))) (-3414 (*1 *2 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1012)) (-5 *3 (-371)))) (-3413 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1012)) (-5 *3 (-371)))) (-3419 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1012)) (-5 *3 (-371)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-371)) (-5 *1 (-1012)))) (-3411 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1012)))) (-3410 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1012)))) (-3409 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1012)))))
+(-10 -7 (-15 -3409 ((-371))) (-15 -3410 ((-371))) (-15 -3411 ((-371))) (-15 -3412 ((-371) (-747))) (-15 -3419 ((-1 (-371)) (-371) (-371))) (-15 -3413 ((-1 (-371)) (-371) (-371))) (-15 -3414 ((-1 (-371)) (-371))) (-15 -3415 ((-1 (-371)) (-747))) (-15 -3726 ((-1 (-371)) (-747) (-747))) (-15 -3416 ((-1 (-371)) (-747) (-747))) (-15 -3417 ((-1 (-371)) (-747))))
+((-4075 (((-398 |#1|) |#1|) 33)))
+(((-1013 |#1|) (-10 -7 (-15 -4075 ((-398 |#1|) |#1|))) (-1200 (-400 (-917 (-535))))) (T -1013))
+((-4075 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1200 (-400 (-917 (-535))))))))
+(-10 -7 (-15 -4075 ((-398 |#1|) |#1|)))
+((-3418 (((-400 (-398 (-917 |#1|))) (-400 (-917 |#1|))) 14)))
+(((-1014 |#1|) (-10 -7 (-15 -3418 ((-400 (-398 (-917 |#1|))) (-400 (-917 |#1|))))) (-300)) (T -1014))
+((-3418 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-300)) (-5 *2 (-400 (-398 (-917 *4)))) (-5 *1 (-1014 *4)))))
+(-10 -7 (-15 -3418 ((-400 (-398 (-917 |#1|))) (-400 (-917 |#1|)))))
+((-2887 (((-112) $ $) NIL)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 (-756 |#1| (-836 |#2|)))))) (-618 (-756 |#1| (-836 |#2|)))) NIL)) (-4028 (((-618 $) (-618 (-756 |#1| (-836 |#2|)))) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-112)) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-112) (-112)) NIL)) (-3405 (((-618 (-836 |#2|)) $) NIL)) (-3229 (((-112) $) NIL)) (-3220 (((-112) $) NIL (|has| |#1| (-542)))) (-4039 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-4034 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-4117 (((-618 (-2 (|:| |val| (-756 |#1| (-836 |#2|))) (|:| -1655 $))) (-756 |#1| (-836 |#2|)) $) NIL)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ (-836 |#2|)) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4056 (($ (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 (-756 |#1| (-836 |#2|)) #1="failed") $ (-836 |#2|)) NIL)) (-3879 (($) NIL T CONST)) (-3225 (((-112) $) NIL (|has| |#1| (-542)))) (-3227 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3226 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3228 (((-112) $) NIL (|has| |#1| (-542)))) (-4035 (((-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|))) $ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-3221 (((-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|))) $) NIL (|has| |#1| (-542)))) (-3222 (((-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|))) $) NIL (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 (-756 |#1| (-836 |#2|)))) NIL)) (-3490 (($ (-618 (-756 |#1| (-836 |#2|)))) NIL)) (-4141 (((-3 $ #1#) $) NIL)) (-4031 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1067))))) (-3748 (($ (-756 |#1| (-836 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (($ (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-756 |#1| (-836 |#2|))) (|:| |den| |#1|)) (-756 |#1| (-836 |#2|)) $) NIL (|has| |#1| (-542)))) (-4040 (((-112) (-756 |#1| (-836 |#2|)) $ (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-4029 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-4185 (((-756 |#1| (-836 |#2|)) (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $ (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (((-756 |#1| (-836 |#2|)) (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $ (-756 |#1| (-836 |#2|))) NIL (|has| $ (-6 -4336))) (((-756 |#1| (-836 |#2|)) (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-4042 (((-2 (|:| -4204 (-618 (-756 |#1| (-836 |#2|)))) (|:| -1813 (-618 (-756 |#1| (-836 |#2|))))) $) NIL)) (-3531 (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-3529 (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-3532 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-2063 (((-618 (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4041 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-3514 (((-836 |#2|) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-756 |#1| (-836 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1067))))) (-2067 (($ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $) NIL)) (-3235 (((-618 (-836 |#2|)) $) NIL)) (-3234 (((-112) (-836 |#2|) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3525 (((-3 (-756 |#1| (-836 |#2|)) (-618 $)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3524 (((-618 (-2 (|:| |val| (-756 |#1| (-836 |#2|))) (|:| -1655 $))) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-4140 (((-3 (-756 |#1| (-836 |#2|)) #1#) $) NIL)) (-3526 (((-618 $) (-756 |#1| (-836 |#2|)) $) NIL)) (-3528 (((-3 (-112) (-618 $)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-3572 (((-618 $) (-756 |#1| (-836 |#2|)) $) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) $) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-618 $)) NIL) (((-618 $) (-756 |#1| (-836 |#2|)) (-618 $)) NIL)) (-3782 (($ (-756 |#1| (-836 |#2|)) $) NIL) (($ (-618 (-756 |#1| (-836 |#2|))) $) NIL)) (-4043 (((-618 (-756 |#1| (-836 |#2|))) $) NIL)) (-4037 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-4032 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-4045 (((-112) $ $) NIL)) (-3224 (((-2 (|:| |num| (-756 |#1| (-836 |#2|))) (|:| |den| |#1|)) (-756 |#1| (-836 |#2|)) $) NIL (|has| |#1| (-542)))) (-4038 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-4033 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-3 (-756 |#1| (-836 |#2|)) #1#) $) NIL)) (-1395 (((-3 (-756 |#1| (-836 |#2|)) "failed") (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL)) (-4025 (((-3 $ #1#) $ (-756 |#1| (-836 |#2|))) NIL)) (-4111 (($ $ (-756 |#1| (-836 |#2|))) NIL) (((-618 $) (-756 |#1| (-836 |#2|)) $) NIL) (((-618 $) (-756 |#1| (-836 |#2|)) (-618 $)) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) $) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-618 $)) NIL)) (-2065 (((-112) (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-756 |#1| (-836 |#2|))) (-618 (-756 |#1| (-836 |#2|)))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (($ $ (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (($ $ (-286 (-756 |#1| (-836 |#2|)))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (($ $ (-618 (-286 (-756 |#1| (-836 |#2|))))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4290 (((-747) $) NIL)) (-2064 (((-747) (-756 |#1| (-836 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (((-747) (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-756 |#1| (-836 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-756 |#1| (-836 |#2|)))) NIL)) (-3231 (($ $ (-836 |#2|)) NIL)) (-3233 (($ $ (-836 |#2|)) NIL)) (-4030 (($ $) NIL)) (-3232 (($ $ (-836 |#2|)) NIL)) (-4300 (((-835) $) NIL) (((-618 (-756 |#1| (-836 |#2|))) $) NIL)) (-4024 (((-747) $) NIL (|has| (-836 |#2|) (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 (-756 |#1| (-836 |#2|))))) #1#) (-618 (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 (-756 |#1| (-836 |#2|))))) #1#) (-618 (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-4036 (((-112) $ (-1 (-112) (-756 |#1| (-836 |#2|)) (-618 (-756 |#1| (-836 |#2|))))) NIL)) (-3523 (((-618 $) (-756 |#1| (-836 |#2|)) $) NIL) (((-618 $) (-756 |#1| (-836 |#2|)) (-618 $)) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) $) NIL) (((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-618 $)) NIL)) (-2066 (((-112) (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4026 (((-618 (-836 |#2|)) $) NIL)) (-3530 (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-4276 (((-112) (-836 |#2|) $) NIL)) (-3375 (((-112) $ $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-1015 |#1| |#2|) (-13 (-1038 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) (-10 -8 (-15 -4028 ((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-112) (-112))))) (-444) (-618 (-1142))) (T -1015))
+((-4028 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-1015 *5 *6)))))
+(-13 (-1038 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) (-10 -8 (-15 -4028 ((-618 $) (-618 (-756 |#1| (-836 |#2|))) (-112) (-112)))))
+((-3419 (((-1 (-535)) (-1055 (-535))) 33)) (-3423 (((-535) (-535) (-535) (-535) (-535)) 30)) (-3421 (((-1 (-535)) |RationalNumber|) NIL)) (-3422 (((-1 (-535)) |RationalNumber|) NIL)) (-3420 (((-1 (-535)) (-535) |RationalNumber|) NIL)))
+(((-1016) (-10 -7 (-15 -3419 ((-1 (-535)) (-1055 (-535)))) (-15 -3420 ((-1 (-535)) (-535) |RationalNumber|)) (-15 -3421 ((-1 (-535)) |RationalNumber|)) (-15 -3422 ((-1 (-535)) |RationalNumber|)) (-15 -3423 ((-535) (-535) (-535) (-535) (-535))))) (T -1016))
+((-3423 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1016)))) (-3422 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-535))) (-5 *1 (-1016)))) (-3421 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-535))) (-5 *1 (-1016)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-535))) (-5 *1 (-1016)) (-5 *3 (-535)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-1055 (-535))) (-5 *2 (-1 (-535))) (-5 *1 (-1016)))))
+(-10 -7 (-15 -3419 ((-1 (-535)) (-1055 (-535)))) (-15 -3420 ((-1 (-535)) (-535) |RationalNumber|)) (-15 -3421 ((-1 (-535)) |RationalNumber|)) (-15 -3422 ((-1 (-535)) |RationalNumber|)) (-15 -3423 ((-535) (-535) (-535) (-535) (-535))))
+((-4300 (((-835) $) NIL) (($ (-535)) 10)))
+(((-1017 |#1|) (-10 -8 (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-1018)) (T -1017))
+NIL
+(-10 -8 (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-1018) (-138)) (T -1018))
-((-1723 (*1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-747)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1018)))))
-(-13 (-1025) (-703) (-624 $) (-10 -8 (-15 -1723 ((-747))) (-15 -3845 ($ (-549))) (-6 -4333)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-2959 (((-400 (-923 |#2|)) (-621 |#2|) (-621 |#2|) (-747) (-747)) 46)))
-(((-1019 |#1| |#2|) (-10 -7 (-15 -2959 ((-400 (-923 |#2|)) (-621 |#2|) (-621 |#2|) (-747) (-747)))) (-1142) (-356)) (T -1019))
-((-2959 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-621 *6)) (-5 *4 (-747)) (-4 *6 (-356)) (-5 *2 (-400 (-923 *6))) (-5 *1 (-1019 *5 *6)) (-14 *5 (-1142)))))
-(-10 -7 (-15 -2959 ((-400 (-923 |#2|)) (-621 |#2|) (-621 |#2|) (-747) (-747))))
-((-1818 (((-112) $) 29)) (-3893 (((-112) $) 16)) (-2141 (((-747) $) 13)) (-2154 (((-747) $) 14)) (-2798 (((-112) $) 26)) (-2901 (((-112) $) 31)))
-(((-1020 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2154 ((-747) |#1|)) (-15 -2141 ((-747) |#1|)) (-15 -2901 ((-112) |#1|)) (-15 -1818 ((-112) |#1|)) (-15 -2798 ((-112) |#1|)) (-15 -3893 ((-112) |#1|))) (-1021 |#2| |#3| |#4| |#5| |#6|) (-747) (-747) (-1018) (-232 |#3| |#4|) (-232 |#2| |#4|)) (T -1020))
-NIL
-(-10 -8 (-15 -2154 ((-747) |#1|)) (-15 -2141 ((-747) |#1|)) (-15 -2901 ((-112) |#1|)) (-15 -1818 ((-112) |#1|)) (-15 -2798 ((-112) |#1|)) (-15 -3893 ((-112) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-1818 (((-112) $) 51)) (-2384 (((-3 $ "failed") $ $) 19)) (-3893 (((-112) $) 53)) (-1323 (((-112) $ (-747)) 61)) (-1705 (($) 17 T CONST)) (-2226 (($ $) 34 (|has| |#3| (-300)))) (-2413 ((|#4| $ (-549)) 39)) (-3122 (((-747) $) 33 (|has| |#3| (-541)))) (-1808 ((|#3| $ (-549) (-549)) 41)) (-2990 (((-621 |#3|) $) 68 (|has| $ (-6 -4336)))) (-1746 (((-747) $) 32 (|has| |#3| (-541)))) (-1701 (((-621 |#5|) $) 31 (|has| |#3| (-541)))) (-2141 (((-747) $) 45)) (-2154 (((-747) $) 44)) (-4202 (((-112) $ (-747)) 60)) (-2437 (((-549) $) 49)) (-2103 (((-549) $) 47)) (-1958 (((-621 |#3|) $) 69 (|has| $ (-6 -4336)))) (-2273 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1066)) (|has| $ (-6 -4336))))) (-2303 (((-549) $) 48)) (-2362 (((-549) $) 46)) (-3945 (($ (-621 (-621 |#3|))) 54)) (-1865 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3595 (((-621 (-621 |#3|)) $) 43)) (-4289 (((-112) $ (-747)) 59)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-2038 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-541)))) (-2470 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#3|) (-621 |#3|)) 75 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066)))) (($ $ (-287 |#3|)) 73 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066)))) (($ $ (-621 (-287 |#3|))) 72 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066))))) (-2732 (((-112) $ $) 55)) (-1807 (((-112) $) 58)) (-1461 (($) 57)) (-3340 ((|#3| $ (-549) (-549)) 42) ((|#3| $ (-549) (-549) |#3|) 40)) (-2798 (((-112) $) 52)) (-3997 (((-747) |#3| $) 70 (-12 (|has| |#3| (-1066)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4336)))) (-2281 (($ $) 56)) (-4102 ((|#5| $ (-549)) 38)) (-3845 (((-834) $) 11)) (-2150 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4336)))) (-2901 (((-112) $) 50)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#3|) 35 (|has| |#3| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3774 (((-747) $) 62 (|has| $ (-6 -4336)))))
+((-3444 (*1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-747)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1018)))))
+(-13 (-1025) (-703) (-624 $) (-10 -8 (-15 -3444 ((-747))) (-15 -4300 ($ (-535))) (-6 -4333)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 $) . T) ((-703) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-3424 (((-400 (-917 |#2|)) (-618 |#2|) (-618 |#2|) (-747) (-747)) 46)))
+(((-1019 |#1| |#2|) (-10 -7 (-15 -3424 ((-400 (-917 |#2|)) (-618 |#2|) (-618 |#2|) (-747) (-747)))) (-1142) (-356)) (T -1019))
+((-3424 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-618 *6)) (-5 *4 (-747)) (-4 *6 (-356)) (-5 *2 (-400 (-917 *6))) (-5 *1 (-1019 *5 *6)) (-14 *5 (-1142)))))
+(-10 -7 (-15 -3424 ((-400 (-917 |#2|)) (-618 |#2|) (-618 |#2|) (-747) (-747))))
+((-3439 (((-112) $) 29)) (-3441 (((-112) $) 16)) (-3433 (((-747) $) 13)) (-3432 (((-747) $) 14)) (-3440 (((-112) $) 26)) (-3438 (((-112) $) 31)))
+(((-1020 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3432 ((-747) |#1|)) (-15 -3433 ((-747) |#1|)) (-15 -3438 ((-112) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -3440 ((-112) |#1|)) (-15 -3441 ((-112) |#1|))) (-1021 |#2| |#3| |#4| |#5| |#6|) (-747) (-747) (-1018) (-232 |#3| |#4|) (-232 |#2| |#4|)) (T -1020))
+NIL
+(-10 -8 (-15 -3432 ((-747) |#1|)) (-15 -3433 ((-747) |#1|)) (-15 -3438 ((-112) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -3440 ((-112) |#1|)) (-15 -3441 ((-112) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3439 (((-112) $) 51)) (-1363 (((-3 $ "failed") $ $) 19)) (-3441 (((-112) $) 53)) (-1264 (((-112) $ (-747)) 61)) (-3879 (($) 17 T CONST)) (-3428 (($ $) 34 (|has| |#3| (-300)))) (-3430 ((|#4| $ (-535)) 39)) (-3427 (((-747) $) 33 (|has| |#3| (-542)))) (-3431 ((|#3| $ (-535) (-535)) 41)) (-2063 (((-618 |#3|) $) 68 (|has| $ (-6 -4336)))) (-3426 (((-747) $) 32 (|has| |#3| (-542)))) (-3425 (((-618 |#5|) $) 31 (|has| |#3| (-542)))) (-3433 (((-747) $) 45)) (-3432 (((-747) $) 44)) (-4065 (((-112) $ (-747)) 60)) (-3437 (((-535) $) 49)) (-3435 (((-535) $) 47)) (-2502 (((-618 |#3|) $) 69 (|has| $ (-6 -4336)))) (-3579 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1067)) (|has| $ (-6 -4336))))) (-3436 (((-535) $) 48)) (-3434 (((-535) $) 46)) (-3442 (($ (-618 (-618 |#3|))) 54)) (-2067 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3939 (((-618 (-618 |#3|)) $) 43)) (-4062 (((-112) $ (-747)) 59)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-542)))) (-2065 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#3|) (-618 |#3|)) 75 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-286 |#3|)) 73 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-618 (-286 |#3|))) 72 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))) (-1265 (((-112) $ $) 55)) (-3745 (((-112) $) 58)) (-3911 (($) 57)) (-4142 ((|#3| $ (-535) (-535)) 42) ((|#3| $ (-535) (-535) |#3|) 40)) (-3440 (((-112) $) 52)) (-2064 (((-747) |#3| $) 70 (-12 (|has| |#3| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4336)))) (-3742 (($ $) 56)) (-3429 ((|#5| $ (-535)) 38)) (-4300 (((-835) $) 11)) (-2066 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4336)))) (-3438 (((-112) $) 50)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#3|) 35 (|has| |#3| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4299 (((-747) $) 62 (|has| $ (-6 -4336)))))
(((-1021 |#1| |#2| |#3| |#4| |#5|) (-138) (-747) (-747) (-1018) (-232 |t#2| |t#3|) (-232 |t#1| |t#3|)) (T -1021))
-((-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *5))) (-4 *5 (-1018)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))) (-2303 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))) (-2362 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))) (-2154 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-621 (-621 *5))))) (-3340 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1018)))) (-1808 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1018)))) (-3340 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *2 (-1018)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) (-2413 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *6 *2 *7)) (-4 *6 (-1018)) (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6)))) (-4102 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *6 *7 *2)) (-4 *6 (-1018)) (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6)))) (-2796 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-2038 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-541)))) (-2512 (*1 *1 *1 *2) (-12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) (-2226 (*1 *1 *1) (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *2 *4)) (-4 *4 (-300)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-541)) (-5 *2 (-747)))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-541)) (-5 *2 (-747)))) (-1701 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-541)) (-5 *2 (-621 *7)))))
-(-13 (-111 |t#3| |t#3|) (-481 |t#3|) (-10 -8 (-6 -4336) (IF (|has| |t#3| (-170)) (-6 (-694 |t#3|)) |%noBranch|) (-15 -3945 ($ (-621 (-621 |t#3|)))) (-15 -3893 ((-112) $)) (-15 -2798 ((-112) $)) (-15 -1818 ((-112) $)) (-15 -2901 ((-112) $)) (-15 -2437 ((-549) $)) (-15 -2303 ((-549) $)) (-15 -2103 ((-549) $)) (-15 -2362 ((-549) $)) (-15 -2141 ((-747) $)) (-15 -2154 ((-747) $)) (-15 -3595 ((-621 (-621 |t#3|)) $)) (-15 -3340 (|t#3| $ (-549) (-549))) (-15 -1808 (|t#3| $ (-549) (-549))) (-15 -3340 (|t#3| $ (-549) (-549) |t#3|)) (-15 -2413 (|t#4| $ (-549))) (-15 -4102 (|t#5| $ (-549))) (-15 -2796 ($ (-1 |t#3| |t#3|) $)) (-15 -2796 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-541)) (-15 -2038 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-356)) (-15 -2512 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-300)) (-15 -2226 ($ $)) |%noBranch|) (IF (|has| |t#3| (-541)) (PROGN (-15 -3122 ((-747) $)) (-15 -1746 ((-747) $)) (-15 -1701 ((-621 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-593 (-834)) . T) ((-302 |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066))) ((-481 |#3|) . T) ((-505 |#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066))) ((-624 |#3|) . T) ((-694 |#3|) |has| |#3| (-170)) ((-1024 |#3|) . T) ((-1066) . T) ((-1179) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-1818 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3893 (((-112) $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-1705 (($) NIL T CONST)) (-2226 (($ $) 43 (|has| |#3| (-300)))) (-2413 (((-234 |#2| |#3|) $ (-549)) 32)) (-2634 (($ (-665 |#3|)) 41)) (-3122 (((-747) $) 45 (|has| |#3| (-541)))) (-1808 ((|#3| $ (-549) (-549)) NIL)) (-2990 (((-621 |#3|) $) NIL (|has| $ (-6 -4336)))) (-1746 (((-747) $) 47 (|has| |#3| (-541)))) (-1701 (((-621 (-234 |#1| |#3|)) $) 51 (|has| |#3| (-541)))) (-2141 (((-747) $) NIL)) (-2154 (((-747) $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-2437 (((-549) $) NIL)) (-2103 (((-549) $) NIL)) (-1958 (((-621 |#3|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1066))))) (-2303 (((-549) $) NIL)) (-2362 (((-549) $) NIL)) (-3945 (($ (-621 (-621 |#3|))) 27)) (-1865 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3595 (((-621 (-621 |#3|)) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2038 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-541)))) (-2470 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#3|) (-621 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066)))) (($ $ (-287 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066)))) (($ $ (-621 (-287 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#3| $ (-549) (-549)) NIL) ((|#3| $ (-549) (-549) |#3|) NIL)) (-3128 (((-133)) 54 (|has| |#3| (-356)))) (-2798 (((-112) $) NIL)) (-3997 (((-747) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1066)))) (((-747) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) 63 (|has| |#3| (-594 (-525))))) (-4102 (((-234 |#1| |#3|) $ (-549)) 36)) (-3845 (((-834) $) 16) (((-665 |#3|) $) 38)) (-2150 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-2901 (((-112) $) NIL)) (-3275 (($) 13 T CONST)) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-1022 |#1| |#2| |#3|) (-13 (-1021 |#1| |#2| |#3| (-234 |#2| |#3|) (-234 |#1| |#3|)) (-593 (-665 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1232 |#3|)) |%noBranch|) (IF (|has| |#3| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (-15 -2634 ($ (-665 |#3|))) (-15 -3845 ((-665 |#3|) $)))) (-747) (-747) (-1018)) (T -1022))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-665 *5)) (-5 *1 (-1022 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) (-4 *5 (-1018)))) (-2634 (*1 *1 *2) (-12 (-5 *2 (-665 *5)) (-4 *5 (-1018)) (-5 *1 (-1022 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)))))
-(-13 (-1021 |#1| |#2| |#3| (-234 |#2| |#3|) (-234 |#1| |#3|)) (-593 (-665 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1232 |#3|)) |%noBranch|) (IF (|has| |#3| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (-15 -2634 ($ (-665 |#3|))) (-15 -3845 ((-665 |#3|) $))))
-((-2558 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2796 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-1023 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2796 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2558 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-747) (-747) (-1018) (-232 |#2| |#3|) (-232 |#1| |#3|) (-1021 |#1| |#2| |#3| |#4| |#5|) (-1018) (-232 |#2| |#7|) (-232 |#1| |#7|) (-1021 |#1| |#2| |#7| |#8| |#9|)) (T -1023))
-((-2558 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1018)) (-4 *2 (-1018)) (-14 *5 (-747)) (-14 *6 (-747)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *12 (-1021 *5 *6 *2 *10 *11)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1018)) (-4 *10 (-1018)) (-14 *5 (-747)) (-14 *6 (-747)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *2 (-1021 *5 *6 *10 *11 *12)) (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) (-4 *12 (-232 *5 *10)))))
-(-10 -7 (-15 -2796 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2558 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ |#1|) 23)))
+((-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3442 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *5))) (-4 *5 (-1018)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-535)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-535)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-535)))) (-3434 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-535)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-618 (-618 *5))))) (-4142 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1018)))) (-3431 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1018)))) (-4142 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *2 (-1018)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *6 *2 *7)) (-4 *6 (-1018)) (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6)))) (-3429 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *6 *7 *2)) (-4 *6 (-1018)) (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6)))) (-4301 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3803 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-542)))) (-4291 (*1 *1 *1 *2) (-12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) (-3428 (*1 *1 *1) (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *2 *4)) (-4 *4 (-300)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-747)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-747)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-618 *7)))))
+(-13 (-111 |t#3| |t#3|) (-481 |t#3|) (-10 -8 (-6 -4336) (IF (|has| |t#3| (-170)) (-6 (-694 |t#3|)) |%noBranch|) (-15 -3442 ($ (-618 (-618 |t#3|)))) (-15 -3441 ((-112) $)) (-15 -3440 ((-112) $)) (-15 -3439 ((-112) $)) (-15 -3438 ((-112) $)) (-15 -3437 ((-535) $)) (-15 -3436 ((-535) $)) (-15 -3435 ((-535) $)) (-15 -3434 ((-535) $)) (-15 -3433 ((-747) $)) (-15 -3432 ((-747) $)) (-15 -3939 ((-618 (-618 |t#3|)) $)) (-15 -4142 (|t#3| $ (-535) (-535))) (-15 -3431 (|t#3| $ (-535) (-535))) (-15 -4142 (|t#3| $ (-535) (-535) |t#3|)) (-15 -3430 (|t#4| $ (-535))) (-15 -3429 (|t#5| $ (-535))) (-15 -4301 ($ (-1 |t#3| |t#3|) $)) (-15 -4301 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-542)) (-15 -3803 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-356)) (-15 -4291 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-300)) (-15 -3428 ($ $)) |%noBranch|) (IF (|has| |t#3| (-542)) (PROGN (-15 -3427 ((-747) $)) (-15 -3426 ((-747) $)) (-15 -3425 ((-618 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-593 (-835)) . T) ((-302 |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))) ((-481 |#3|) . T) ((-505 |#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))) ((-624 |#3|) . T) ((-694 |#3|) |has| |#3| (-170)) ((-1024 |#3|) . T) ((-1067) . T) ((-1178) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3439 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3441 (((-112) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3879 (($) NIL T CONST)) (-3428 (($ $) 43 (|has| |#3| (-300)))) (-3430 (((-233 |#2| |#3|) $ (-535)) 32)) (-3443 (($ (-665 |#3|)) 41)) (-3427 (((-747) $) 45 (|has| |#3| (-542)))) (-3431 ((|#3| $ (-535) (-535)) NIL)) (-2063 (((-618 |#3|) $) NIL (|has| $ (-6 -4336)))) (-3426 (((-747) $) 47 (|has| |#3| (-542)))) (-3425 (((-618 (-233 |#1| |#3|)) $) 51 (|has| |#3| (-542)))) (-3433 (((-747) $) NIL)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3437 (((-535) $) NIL)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#3|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-3436 (((-535) $) NIL)) (-3434 (((-535) $) NIL)) (-3442 (($ (-618 (-618 |#3|))) 27)) (-2067 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3939 (((-618 (-618 |#3|)) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-542)))) (-2065 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#3|) (-618 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-618 (-286 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#3| $ (-535) (-535)) NIL) ((|#3| $ (-535) (-535) |#3|) NIL)) (-4254 (((-133)) 54 (|has| |#3| (-356)))) (-3440 (((-112) $) NIL)) (-2064 (((-747) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067)))) (((-747) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) 63 (|has| |#3| (-594 (-524))))) (-3429 (((-233 |#1| |#3|) $ (-535)) 36)) (-4300 (((-835) $) 16) (((-665 |#3|) $) 38)) (-2066 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-3438 (((-112) $) NIL)) (-2979 (($) 13 T CONST)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-1022 |#1| |#2| |#3|) (-13 (-1021 |#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) (-593 (-665 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1232 |#3|)) |%noBranch|) (IF (|has| |#3| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (-15 -3443 ($ (-665 |#3|))) (-15 -4300 ((-665 |#3|) $)))) (-747) (-747) (-1018)) (T -1022))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-665 *5)) (-5 *1 (-1022 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) (-4 *5 (-1018)))) (-3443 (*1 *1 *2) (-12 (-5 *2 (-665 *5)) (-4 *5 (-1018)) (-5 *1 (-1022 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)))))
+(-13 (-1021 |#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) (-593 (-665 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1232 |#3|)) |%noBranch|) (IF (|has| |#3| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|) (-15 -3443 ($ (-665 |#3|))) (-15 -4300 ((-665 |#3|) $))))
+((-4185 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4301 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-1023 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4301 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4185 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-747) (-747) (-1018) (-232 |#2| |#3|) (-232 |#1| |#3|) (-1021 |#1| |#2| |#3| |#4| |#5|) (-1018) (-232 |#2| |#7|) (-232 |#1| |#7|) (-1021 |#1| |#2| |#7| |#8| |#9|)) (T -1023))
+((-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1018)) (-4 *2 (-1018)) (-14 *5 (-747)) (-14 *6 (-747)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *12 (-1021 *5 *6 *2 *10 *11)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1018)) (-4 *10 (-1018)) (-14 *5 (-747)) (-14 *6 (-747)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *2 (-1021 *5 *6 *10 *11 *12)) (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) (-4 *12 (-232 *5 *10)))))
+(-10 -7 (-15 -4301 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4185 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ |#1|) 23)))
(((-1024 |#1|) (-138) (-1025)) (T -1024))
((* (*1 *1 *1 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1025)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-1025) (-138)) (T -1025))
NIL
(-13 (-21) (-1078))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-1078) . T) ((-1066) . T))
-((-2305 (($ $) 16)) (-4016 (($ $) 22)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 49)) (-4117 (($ $) 24)) (-1260 (($ $) 11)) (-4060 (($ $) 38)) (-2844 (((-372) $) NIL) (((-219) $) NIL) (((-863 (-372)) $) 33)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) 28) (($ (-549)) NIL) (($ (-400 (-549))) 28)) (-1723 (((-747)) 8)) (-2926 (($ $) 39)))
-(((-1026 |#1|) (-10 -8 (-15 -4016 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -1260 (|#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -1289 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -2844 ((-863 (-372)) |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 (|#1| (-549))) (-15 -2844 ((-219) |#1|)) (-15 -2844 ((-372) |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 (|#1| |#1|)) (-15 -3845 (|#1| (-549))) (-15 -1723 ((-747))) (-15 -3845 ((-834) |#1|))) (-1027)) (T -1026))
-((-1723 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1026 *3)) (-4 *3 (-1027)))))
-(-10 -8 (-15 -4016 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -1260 (|#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -1289 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -2844 ((-863 (-372)) |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 (|#1| (-549))) (-15 -2844 ((-219) |#1|)) (-15 -2844 ((-372) |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 (|#1| |#1|)) (-15 -3845 (|#1| (-549))) (-15 -1723 ((-747))) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2364 (((-549) $) 86)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2305 (($ $) 84)) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 70)) (-3513 (((-411 $) $) 69)) (-2134 (($ $) 94)) (-2647 (((-112) $ $) 57)) (-3902 (((-549) $) 111)) (-1705 (($) 17 T CONST)) (-4016 (($ $) 83)) (-2713 (((-3 (-549) "failed") $) 99) (((-3 (-400 (-549)) "failed") $) 96)) (-2658 (((-549) $) 98) (((-400 (-549)) $) 95)) (-2094 (($ $ $) 53)) (-3976 (((-3 $ "failed") $) 32)) (-2066 (($ $ $) 54)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-2471 (((-112) $) 68)) (-3079 (((-112) $) 109)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 90)) (-3987 (((-112) $) 30)) (-3930 (($ $ (-549)) 93)) (-4117 (($ $) 89)) (-2847 (((-112) $) 110)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-2862 (($ $ $) 108)) (-3574 (($ $ $) 107)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 67)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-1260 (($ $) 85)) (-4060 (($ $) 87)) (-2120 (((-411 $) $) 71)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-4091 (((-747) $) 56)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55)) (-2844 (((-372) $) 102) (((-219) $) 101) (((-863 (-372)) $) 91)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63) (($ (-549)) 100) (($ (-400 (-549))) 97)) (-1723 (((-747)) 28)) (-2926 (($ $) 88)) (-4053 (((-112) $ $) 37)) (-3603 (($ $) 112)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 105)) (-2424 (((-112) $ $) 104)) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 106)) (-2411 (((-112) $ $) 103)) (-2512 (($ $ $) 62)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66) (($ $ (-400 (-549))) 92)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-835)) . T) ((-1078) . T) ((-1067) . T))
+((-4113 (($ $) 16)) (-3445 (($ $) 22)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 49)) (-3450 (($ $) 24)) (-3446 (($ $) 11)) (-3448 (($ $) 38)) (-4313 (((-371) $) NIL) (((-219) $) NIL) (((-861 (-371)) $) 33)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL) (($ (-400 (-535))) 28) (($ (-535)) NIL) (($ (-400 (-535))) 28)) (-3444 (((-747)) 8)) (-3449 (($ $) 39)))
+(((-1026 |#1|) (-10 -8 (-15 -3445 (|#1| |#1|)) (-15 -4113 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3449 (|#1| |#1|)) (-15 -3450 (|#1| |#1|)) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| (-535))) (-15 -4313 ((-219) |#1|)) (-15 -4313 ((-371) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 -4300 ((-835) |#1|))) (-1027)) (T -1026))
+((-3444 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1026 *3)) (-4 *3 (-1027)))))
+(-10 -8 (-15 -3445 (|#1| |#1|)) (-15 -4113 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3449 (|#1| |#1|)) (-15 -3450 (|#1| |#1|)) (-15 -3117 ((-859 (-371) |#1|) |#1| (-861 (-371)) (-859 (-371) |#1|))) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| (-535))) (-15 -4313 ((-219) |#1|)) (-15 -4313 ((-371) |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-535))) (-15 -3444 ((-747))) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3447 (((-535) $) 86)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-4113 (($ $) 84)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-3358 (($ $) 94)) (-1700 (((-112) $ $) 57)) (-3969 (((-535) $) 111)) (-3879 (($) 17 T CONST)) (-3445 (($ $) 83)) (-3491 (((-3 (-535) #1="failed") $) 99) (((-3 (-400 (-535)) #1#) $) 96)) (-3490 (((-535) $) 98) (((-400 (-535)) $) 95)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-4069 (((-112) $) 68)) (-3520 (((-112) $) 109)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 90)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 93)) (-3450 (($ $) 89)) (-3521 (((-112) $) 110)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) 50)) (-3660 (($ $ $) 108)) (-3661 (($ $ $) 107)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-3446 (($ $) 85)) (-3448 (($ $) 87)) (-4075 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-4313 (((-371) $) 102) (((-219) $) 101) (((-861 (-371)) $) 91)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63) (($ (-535)) 100) (($ (-400 (-535))) 97)) (-3444 (((-747)) 28)) (-3449 (($ $) 88)) (-2170 (((-112) $ $) 37)) (-3725 (($ $) 112)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2885 (((-112) $ $) 105)) (-2886 (((-112) $ $) 104)) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 106)) (-3006 (((-112) $ $) 103)) (-4291 (($ $ $) 62)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66) (($ $ (-400 (-535))) 92)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64)))
(((-1027) (-138)) (T -1027))
-((-3603 (*1 *1 *1) (-4 *1 (-1027))) (-4117 (*1 *1 *1) (-4 *1 (-1027))) (-2926 (*1 *1 *1) (-4 *1 (-1027))) (-4060 (*1 *1 *1) (-4 *1 (-1027))) (-2364 (*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-549)))) (-1260 (*1 *1 *1) (-4 *1 (-1027))) (-2305 (*1 *1 *1) (-4 *1 (-1027))) (-4016 (*1 *1 *1) (-4 *1 (-1027))))
-(-13 (-356) (-821) (-993) (-1009 (-549)) (-1009 (-400 (-549))) (-973) (-594 (-863 (-372))) (-857 (-372)) (-145) (-10 -8 (-15 -4117 ($ $)) (-15 -2926 ($ $)) (-15 -4060 ($ $)) (-15 -2364 ((-549) $)) (-15 -1260 ($ $)) (-15 -2305 ($ $)) (-15 -4016 ($ $)) (-15 -3603 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-834)) . T) ((-170) . T) ((-594 (-219)) . T) ((-594 (-372)) . T) ((-594 (-863 (-372))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-821) . T) ((-823) . T) ((-857 (-372)) . T) ((-891) . T) ((-973) . T) ((-993) . T) ((-1009 (-400 (-549))) . T) ((-1009 (-549)) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1183) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) |#2| $) 23)) (-3615 ((|#1| $) 10)) (-3902 (((-549) |#2| $) 88)) (-1681 (((-3 $ "failed") |#2| (-892)) 57)) (-3847 ((|#1| $) 28)) (-3974 ((|#1| |#2| $ |#1|) 37)) (-1571 (($ $) 25)) (-3976 (((-3 |#2| "failed") |#2| $) 87)) (-3079 (((-112) |#2| $) NIL)) (-2847 (((-112) |#2| $) NIL)) (-1657 (((-112) |#2| $) 24)) (-1952 ((|#1| $) 89)) (-3837 ((|#1| $) 27)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2539 ((|#2| $) 79)) (-3845 (((-834) $) 70)) (-2660 ((|#1| |#2| $ |#1|) 38)) (-2500 (((-621 $) |#2|) 59)) (-2388 (((-112) $ $) 74)))
-(((-1028 |#1| |#2|) (-13 (-1035 |#1| |#2|) (-10 -8 (-15 -3837 (|#1| $)) (-15 -3847 (|#1| $)) (-15 -3615 (|#1| $)) (-15 -1952 (|#1| $)) (-15 -1571 ($ $)) (-15 -1657 ((-112) |#2| $)) (-15 -3974 (|#1| |#2| $ |#1|)))) (-13 (-821) (-356)) (-1201 |#1|)) (T -1028))
-((-3974 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1201 *2)))) (-3837 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1201 *2)))) (-3847 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1201 *2)))) (-3615 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1201 *2)))) (-1952 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1201 *2)))) (-1571 (*1 *1 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1201 *2)))) (-1657 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-821) (-356))) (-5 *2 (-112)) (-5 *1 (-1028 *4 *3)) (-4 *3 (-1201 *4)))))
-(-13 (-1035 |#1| |#2|) (-10 -8 (-15 -3837 (|#1| $)) (-15 -3847 (|#1| $)) (-15 -3615 (|#1| $)) (-15 -1952 (|#1| $)) (-15 -1571 ($ $)) (-15 -1657 ((-112) |#2| $)) (-15 -3974 (|#1| |#2| $ |#1|))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-4121 (($ $ $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3673 (($ $ $ $) NIL)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL)) (-1309 (($ $ $) NIL)) (-1705 (($) NIL T CONST)) (-1478 (($ (-1142)) 10) (($ (-549)) 7)) (-2713 (((-3 (-549) "failed") $) NIL)) (-2658 (((-549) $) NIL)) (-2094 (($ $ $) NIL)) (-1698 (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL) (((-665 (-549)) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-3156 (((-3 (-400 (-549)) "failed") $) NIL)) (-3230 (((-112) $) NIL)) (-3867 (((-400 (-549)) $) NIL)) (-3238 (($) NIL) (($ $) NIL)) (-2066 (($ $ $) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3084 (($ $ $ $) NIL)) (-1278 (($ $ $) NIL)) (-3079 (((-112) $) NIL)) (-3969 (($ $ $) NIL)) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL)) (-3987 (((-112) $) NIL)) (-3061 (((-112) $) NIL)) (-3982 (((-3 $ "failed") $) NIL)) (-2847 (((-112) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2088 (($ $ $ $) NIL)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2428 (($ $) NIL)) (-4209 (($ $) NIL)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1263 (($ $ $) NIL)) (-3060 (($) NIL T CONST)) (-3780 (($ $) NIL)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1692 (($ $) NIL)) (-2120 (((-411 $) $) NIL)) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4062 (((-112) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-3455 (($ $ (-747)) NIL) (($ $) NIL)) (-1897 (($ $) NIL)) (-2281 (($ $) NIL)) (-2844 (((-549) $) 16) (((-525) $) NIL) (((-863 (-549)) $) NIL) (((-372) $) NIL) (((-219) $) NIL) (($ (-1142)) 9)) (-3845 (((-834) $) 20) (($ (-549)) 6) (($ $) NIL) (($ (-549)) 6)) (-1723 (((-747)) NIL)) (-2807 (((-112) $ $) NIL)) (-2224 (($ $ $) NIL)) (-1863 (($) NIL)) (-4053 (((-112) $ $) NIL)) (-2232 (($ $ $ $) NIL)) (-3603 (($ $) NIL)) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-747)) NIL) (($ $) NIL)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-2499 (($ $) 19) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL)))
-(((-1029) (-13 (-534) (-10 -8 (-6 -4323) (-6 -4328) (-6 -4324) (-15 -2844 ($ (-1142))) (-15 -1478 ($ (-1142))) (-15 -1478 ($ (-549)))))) (T -1029))
-((-2844 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1029)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1029)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1029)))))
-(-13 (-534) (-10 -8 (-6 -4323) (-6 -4328) (-6 -4324) (-15 -2844 ($ (-1142))) (-15 -1478 ($ (-1142))) (-15 -1478 ($ (-549)))))
-((-3833 (((-112) $ $) NIL (-1536 (|has| (-52) (-1066)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066))))) (-3732 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) NIL)) (-2932 (((-1230) $ (-1142) (-1142)) NIL (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) NIL)) (-2083 (($) 9)) (-2253 (((-52) $ (-1142) (-52)) NIL)) (-1906 (($ $) 30)) (-1638 (($ $) 28)) (-2801 (($ $) 27)) (-3227 (($ $) 29)) (-2855 (($ $) 32)) (-2213 (($ $) 33)) (-1611 (($ $) 26)) (-3712 (($ $) 31)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) 25 (|has| $ (-6 -4336)))) (-3489 (((-3 (-52) "failed") (-1142) $) 40)) (-1705 (($) NIL T CONST)) (-3435 (($) 7)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066))))) (-4204 (($ (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) 50 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-3 (-52) "failed") (-1142) $) NIL)) (-3812 (($ (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (($ (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $ (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (((-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $ (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336)))) (-3242 (((-3 (-1124) "failed") $ (-1124) (-549)) 59)) (-1878 (((-52) $ (-1142) (-52)) NIL (|has| $ (-6 -4337)))) (-1808 (((-52) $ (-1142)) NIL)) (-2990 (((-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-621 (-52)) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-1142) $) NIL (|has| (-1142) (-823)))) (-1958 (((-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) 35 (|has| $ (-6 -4336))) (((-621 (-52)) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-52) (-1066))))) (-1548 (((-1142) $) NIL (|has| (-1142) (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (-1536 (|has| (-52) (-1066)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066))))) (-3449 (((-621 (-1142)) $) NIL)) (-3665 (((-112) (-1142) $) NIL)) (-2349 (((-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) NIL)) (-1709 (($ (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) 43)) (-3927 (((-621 (-1142)) $) NIL)) (-1286 (((-112) (-1142) $) NIL)) (-3988 (((-1086) $) NIL (-1536 (|has| (-52) (-1066)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066))))) (-3421 (((-372) $ (-1142)) 49)) (-4270 (((-621 (-1124)) $ (-1124)) 60)) (-3645 (((-52) $) NIL (|has| (-1142) (-823)))) (-1917 (((-3 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) "failed") (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL)) (-3158 (($ $ (-52)) NIL (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) NIL)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))))) NIL (-12 (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (($ $ (-287 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) NIL (-12 (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (($ $ (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) NIL (-12 (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (($ $ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) NIL (-12 (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-302 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (($ $ (-621 (-52)) (-621 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1066)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1066)))) (($ $ (-287 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1066)))) (($ $ (-621 (-287 (-52)))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-52) (-1066))))) (-1738 (((-621 (-52)) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 (((-52) $ (-1142)) NIL) (((-52) $ (-1142) (-52)) NIL)) (-4252 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) NIL)) (-1793 (($ $ (-1142)) 51)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066)))) (((-747) (-52) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-52) (-1066)))) (((-747) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) 37)) (-1951 (($ $ $) 38)) (-3845 (((-834) $) NIL (-1536 (|has| (-52) (-593 (-834))) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-593 (-834)))))) (-1962 (($ $ (-1142) (-372)) 47)) (-3298 (($ $ (-1142) (-372)) 48)) (-1765 (($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))))) NIL)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 (-1142)) (|:| -1792 (-52)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (-1536 (|has| (-52) (-1066)) (|has| (-2 (|:| -3337 (-1142)) (|:| -1792 (-52))) (-1066))))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-1030) (-13 (-1155 (-1142) (-52)) (-10 -8 (-15 -1951 ($ $ $)) (-15 -3435 ($)) (-15 -1611 ($ $)) (-15 -2801 ($ $)) (-15 -1638 ($ $)) (-15 -3227 ($ $)) (-15 -3712 ($ $)) (-15 -1906 ($ $)) (-15 -2855 ($ $)) (-15 -2213 ($ $)) (-15 -1962 ($ $ (-1142) (-372))) (-15 -3298 ($ $ (-1142) (-372))) (-15 -3421 ((-372) $ (-1142))) (-15 -4270 ((-621 (-1124)) $ (-1124))) (-15 -1793 ($ $ (-1142))) (-15 -2083 ($)) (-15 -3242 ((-3 (-1124) "failed") $ (-1124) (-549))) (-6 -4336)))) (T -1030))
-((-1951 (*1 *1 *1 *1) (-5 *1 (-1030))) (-3435 (*1 *1) (-5 *1 (-1030))) (-1611 (*1 *1 *1) (-5 *1 (-1030))) (-2801 (*1 *1 *1) (-5 *1 (-1030))) (-1638 (*1 *1 *1) (-5 *1 (-1030))) (-3227 (*1 *1 *1) (-5 *1 (-1030))) (-3712 (*1 *1 *1) (-5 *1 (-1030))) (-1906 (*1 *1 *1) (-5 *1 (-1030))) (-2855 (*1 *1 *1) (-5 *1 (-1030))) (-2213 (*1 *1 *1) (-5 *1 (-1030))) (-1962 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-372)) (-5 *1 (-1030)))) (-3298 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-372)) (-5 *1 (-1030)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-372)) (-5 *1 (-1030)))) (-4270 (*1 *2 *1 *3) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1030)) (-5 *3 (-1124)))) (-1793 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1030)))) (-2083 (*1 *1) (-5 *1 (-1030))) (-3242 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1124)) (-5 *3 (-549)) (-5 *1 (-1030)))))
-(-13 (-1155 (-1142) (-52)) (-10 -8 (-15 -1951 ($ $ $)) (-15 -3435 ($)) (-15 -1611 ($ $)) (-15 -2801 ($ $)) (-15 -1638 ($ $)) (-15 -3227 ($ $)) (-15 -3712 ($ $)) (-15 -1906 ($ $)) (-15 -2855 ($ $)) (-15 -2213 ($ $)) (-15 -1962 ($ $ (-1142) (-372))) (-15 -3298 ($ $ (-1142) (-372))) (-15 -3421 ((-372) $ (-1142))) (-15 -4270 ((-621 (-1124)) $ (-1124))) (-15 -1793 ($ $ (-1142))) (-15 -2083 ($)) (-15 -3242 ((-3 (-1124) "failed") $ (-1124) (-549))) (-6 -4336)))
-((-1342 (($ $) 45)) (-1750 (((-112) $ $) 74)) (-2713 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 (-549) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-923 (-400 (-549)))) 227) (((-3 $ "failed") (-923 (-549))) 226) (((-3 $ "failed") (-923 |#2|)) 229)) (-2658 ((|#2| $) NIL) (((-400 (-549)) $) NIL) (((-549) $) NIL) ((|#4| $) NIL) (($ (-923 (-400 (-549)))) 215) (($ (-923 (-549))) 211) (($ (-923 |#2|)) 231)) (-2069 (($ $) NIL) (($ $ |#4|) 43)) (-4042 (((-112) $ $) 112) (((-112) $ (-621 $)) 113)) (-3436 (((-112) $) 56)) (-3285 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 107)) (-2022 (($ $) 138)) (-2067 (($ $) 134)) (-3394 (($ $) 133)) (-3354 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1530 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3929 (((-112) $ $) 121) (((-112) $ (-621 $)) 122)) (-4170 ((|#4| $) 33)) (-1973 (($ $ $) 110)) (-3147 (((-112) $) 55)) (-1781 (((-747) $) 35)) (-2913 (($ $) 152)) (-2624 (($ $) 149)) (-2350 (((-621 $) $) 68)) (-2547 (($ $) 57)) (-2638 (($ $) 145)) (-2266 (((-621 $) $) 65)) (-4132 (($ $) 59)) (-2042 ((|#2| $) NIL) (($ $ |#4|) 38)) (-4244 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4002 (-747))) $ $) 111)) (-2097 (((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -2112 $) (|:| -3249 $)) $ $) 108) (((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -2112 $) (|:| -3249 $)) $ $ |#4|) 109)) (-3480 (((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -3249 $)) $ $) 104) (((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -3249 $)) $ $ |#4|) 105)) (-2728 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2397 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3093 (((-621 $) $) 51)) (-3130 (((-112) $ $) 118) (((-112) $ (-621 $)) 119)) (-2741 (($ $ $) 103)) (-3060 (($ $) 37)) (-3739 (((-112) $ $) 72)) (-1582 (((-112) $ $) 114) (((-112) $ (-621 $)) 116)) (-3952 (($ $ $) 101)) (-1390 (($ $) 40)) (-3726 ((|#2| |#2| $) 142) (($ (-621 $)) NIL) (($ $ $) NIL)) (-4006 (($ $ |#2|) NIL) (($ $ $) 131)) (-4215 (($ $ |#2|) 126) (($ $ $) 129)) (-3770 (($ $) 48)) (-3163 (($ $) 52)) (-2844 (((-863 (-372)) $) NIL) (((-863 (-549)) $) NIL) (((-525) $) NIL) (($ (-923 (-400 (-549)))) 217) (($ (-923 (-549))) 213) (($ (-923 |#2|)) 228) (((-1124) $) 250) (((-923 |#2|) $) 162)) (-3845 (((-834) $) 30) (($ (-549)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-923 |#2|) $) 163) (($ (-400 (-549))) NIL) (($ $) NIL)) (-3494 (((-3 (-112) "failed") $ $) 71)))
-(((-1031 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3845 (|#1| |#1|)) (-15 -3726 (|#1| |#1| |#1|)) (-15 -3726 (|#1| (-621 |#1|))) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 ((-923 |#2|) |#1|)) (-15 -2844 ((-923 |#2|) |#1|)) (-15 -2844 ((-1124) |#1|)) (-15 -2913 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -3726 (|#2| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -4215 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -4215 (|#1| |#1| |#2|)) (-15 -2067 (|#1| |#1|)) (-15 -3394 (|#1| |#1|)) (-15 -2844 (|#1| (-923 |#2|))) (-15 -2658 (|#1| (-923 |#2|))) (-15 -2713 ((-3 |#1| "failed") (-923 |#2|))) (-15 -2844 (|#1| (-923 (-549)))) (-15 -2658 (|#1| (-923 (-549)))) (-15 -2713 ((-3 |#1| "failed") (-923 (-549)))) (-15 -2844 (|#1| (-923 (-400 (-549))))) (-15 -2658 (|#1| (-923 (-400 (-549))))) (-15 -2713 ((-3 |#1| "failed") (-923 (-400 (-549))))) (-15 -2741 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#1| |#1|)) (-15 -4244 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4002 (-747))) |#1| |#1|)) (-15 -1973 (|#1| |#1| |#1|)) (-15 -3285 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -2097 ((-2 (|:| -1569 |#1|) (|:| |gap| (-747)) (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1| |#4|)) (-15 -2097 ((-2 (|:| -1569 |#1|) (|:| |gap| (-747)) (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -3480 ((-2 (|:| -1569 |#1|) (|:| |gap| (-747)) (|:| -3249 |#1|)) |#1| |#1| |#4|)) (-15 -3480 ((-2 (|:| -1569 |#1|) (|:| |gap| (-747)) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -2397 (|#1| |#1| |#1| |#4|)) (-15 -2728 (|#1| |#1| |#1| |#4|)) (-15 -2397 (|#1| |#1| |#1|)) (-15 -2728 (|#1| |#1| |#1|)) (-15 -1530 (|#1| |#1| |#1| |#4|)) (-15 -3354 (|#1| |#1| |#1| |#4|)) (-15 -1530 (|#1| |#1| |#1|)) (-15 -3354 (|#1| |#1| |#1|)) (-15 -3929 ((-112) |#1| (-621 |#1|))) (-15 -3929 ((-112) |#1| |#1|)) (-15 -3130 ((-112) |#1| (-621 |#1|))) (-15 -3130 ((-112) |#1| |#1|)) (-15 -1582 ((-112) |#1| (-621 |#1|))) (-15 -1582 ((-112) |#1| |#1|)) (-15 -4042 ((-112) |#1| (-621 |#1|))) (-15 -4042 ((-112) |#1| |#1|)) (-15 -1750 ((-112) |#1| |#1|)) (-15 -3739 ((-112) |#1| |#1|)) (-15 -3494 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2350 ((-621 |#1|) |#1|)) (-15 -2266 ((-621 |#1|) |#1|)) (-15 -4132 (|#1| |#1|)) (-15 -2547 (|#1| |#1|)) (-15 -3436 ((-112) |#1|)) (-15 -3147 ((-112) |#1|)) (-15 -2069 (|#1| |#1| |#4|)) (-15 -2042 (|#1| |#1| |#4|)) (-15 -3163 (|#1| |#1|)) (-15 -3093 ((-621 |#1|) |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -1342 (|#1| |#1|)) (-15 -1390 (|#1| |#1|)) (-15 -3060 (|#1| |#1|)) (-15 -1781 ((-747) |#1|)) (-15 -4170 (|#4| |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -2844 ((-863 (-549)) |#1|)) (-15 -2844 ((-863 (-372)) |#1|)) (-15 -2658 (|#4| |#1|)) (-15 -2713 ((-3 |#4| "failed") |#1|)) (-15 -3845 (|#1| |#4|)) (-15 -2042 (|#2| |#1|)) (-15 -2069 (|#1| |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|))) (-1032 |#2| |#3| |#4|) (-1018) (-769) (-823)) (T -1031))
-NIL
-(-10 -8 (-15 -3845 (|#1| |#1|)) (-15 -3726 (|#1| |#1| |#1|)) (-15 -3726 (|#1| (-621 |#1|))) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 ((-923 |#2|) |#1|)) (-15 -2844 ((-923 |#2|) |#1|)) (-15 -2844 ((-1124) |#1|)) (-15 -2913 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -3726 (|#2| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -4215 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -4215 (|#1| |#1| |#2|)) (-15 -2067 (|#1| |#1|)) (-15 -3394 (|#1| |#1|)) (-15 -2844 (|#1| (-923 |#2|))) (-15 -2658 (|#1| (-923 |#2|))) (-15 -2713 ((-3 |#1| "failed") (-923 |#2|))) (-15 -2844 (|#1| (-923 (-549)))) (-15 -2658 (|#1| (-923 (-549)))) (-15 -2713 ((-3 |#1| "failed") (-923 (-549)))) (-15 -2844 (|#1| (-923 (-400 (-549))))) (-15 -2658 (|#1| (-923 (-400 (-549))))) (-15 -2713 ((-3 |#1| "failed") (-923 (-400 (-549))))) (-15 -2741 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#1| |#1|)) (-15 -4244 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4002 (-747))) |#1| |#1|)) (-15 -1973 (|#1| |#1| |#1|)) (-15 -3285 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -2097 ((-2 (|:| -1569 |#1|) (|:| |gap| (-747)) (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1| |#4|)) (-15 -2097 ((-2 (|:| -1569 |#1|) (|:| |gap| (-747)) (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -3480 ((-2 (|:| -1569 |#1|) (|:| |gap| (-747)) (|:| -3249 |#1|)) |#1| |#1| |#4|)) (-15 -3480 ((-2 (|:| -1569 |#1|) (|:| |gap| (-747)) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -2397 (|#1| |#1| |#1| |#4|)) (-15 -2728 (|#1| |#1| |#1| |#4|)) (-15 -2397 (|#1| |#1| |#1|)) (-15 -2728 (|#1| |#1| |#1|)) (-15 -1530 (|#1| |#1| |#1| |#4|)) (-15 -3354 (|#1| |#1| |#1| |#4|)) (-15 -1530 (|#1| |#1| |#1|)) (-15 -3354 (|#1| |#1| |#1|)) (-15 -3929 ((-112) |#1| (-621 |#1|))) (-15 -3929 ((-112) |#1| |#1|)) (-15 -3130 ((-112) |#1| (-621 |#1|))) (-15 -3130 ((-112) |#1| |#1|)) (-15 -1582 ((-112) |#1| (-621 |#1|))) (-15 -1582 ((-112) |#1| |#1|)) (-15 -4042 ((-112) |#1| (-621 |#1|))) (-15 -4042 ((-112) |#1| |#1|)) (-15 -1750 ((-112) |#1| |#1|)) (-15 -3739 ((-112) |#1| |#1|)) (-15 -3494 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2350 ((-621 |#1|) |#1|)) (-15 -2266 ((-621 |#1|) |#1|)) (-15 -4132 (|#1| |#1|)) (-15 -2547 (|#1| |#1|)) (-15 -3436 ((-112) |#1|)) (-15 -3147 ((-112) |#1|)) (-15 -2069 (|#1| |#1| |#4|)) (-15 -2042 (|#1| |#1| |#4|)) (-15 -3163 (|#1| |#1|)) (-15 -3093 ((-621 |#1|) |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -1342 (|#1| |#1|)) (-15 -1390 (|#1| |#1|)) (-15 -3060 (|#1| |#1|)) (-15 -1781 ((-747) |#1|)) (-15 -4170 (|#4| |#1|)) (-15 -2844 ((-525) |#1|)) (-15 -2844 ((-863 (-549)) |#1|)) (-15 -2844 ((-863 (-372)) |#1|)) (-15 -2658 (|#4| |#1|)) (-15 -2713 ((-3 |#4| "failed") |#1|)) (-15 -3845 (|#1| |#4|)) (-15 -2042 (|#2| |#1|)) (-15 -2069 (|#1| |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2271 (((-621 |#3|) $) 108)) (-2082 (((-1138 $) $ |#3|) 123) (((-1138 |#1|) $) 122)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 85 (|has| |#1| (-541)))) (-2408 (($ $) 86 (|has| |#1| (-541)))) (-2477 (((-112) $) 88 (|has| |#1| (-541)))) (-1689 (((-747) $) 110) (((-747) $ (-621 |#3|)) 109)) (-1342 (($ $) 269)) (-1750 (((-112) $ $) 255)) (-2384 (((-3 $ "failed") $ $) 19)) (-3767 (($ $ $) 214 (|has| |#1| (-541)))) (-1280 (((-621 $) $ $) 209 (|has| |#1| (-541)))) (-2461 (((-411 (-1138 $)) (-1138 $)) 98 (|has| |#1| (-880)))) (-1912 (($ $) 96 (|has| |#1| (-444)))) (-3513 (((-411 $) $) 95 (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 101 (|has| |#1| (-880)))) (-1705 (($) 17 T CONST)) (-2713 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-549)) "failed") $) 160 (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) 158 (|has| |#1| (-1009 (-549)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-923 (-400 (-549)))) 229 (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1142))))) (((-3 $ "failed") (-923 (-549))) 226 (-1536 (-12 (-4007 (|has| |#1| (-38 (-400 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-594 (-1142)))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1142)))))) (((-3 $ "failed") (-923 |#1|)) 223 (-1536 (-12 (-4007 (|has| |#1| (-38 (-400 (-549))))) (-4007 (|has| |#1| (-38 (-549)))) (|has| |#3| (-594 (-1142)))) (-12 (-4007 (|has| |#1| (-534))) (-4007 (|has| |#1| (-38 (-400 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-594 (-1142)))) (-12 (-4007 (|has| |#1| (-963 (-549)))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1142))))))) (-2658 ((|#1| $) 163) (((-400 (-549)) $) 159 (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) 157 (|has| |#1| (-1009 (-549)))) ((|#3| $) 133) (($ (-923 (-400 (-549)))) 228 (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1142))))) (($ (-923 (-549))) 225 (-1536 (-12 (-4007 (|has| |#1| (-38 (-400 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-594 (-1142)))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1142)))))) (($ (-923 |#1|)) 222 (-1536 (-12 (-4007 (|has| |#1| (-38 (-400 (-549))))) (-4007 (|has| |#1| (-38 (-549)))) (|has| |#3| (-594 (-1142)))) (-12 (-4007 (|has| |#1| (-534))) (-4007 (|has| |#1| (-38 (-400 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-594 (-1142)))) (-12 (-4007 (|has| |#1| (-963 (-549)))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1142))))))) (-2252 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 210 (|has| |#1| (-541)))) (-2069 (($ $) 152) (($ $ |#3|) 264)) (-1698 (((-665 (-549)) (-665 $)) 132 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 131 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-4042 (((-112) $ $) 254) (((-112) $ (-621 $)) 253)) (-3976 (((-3 $ "failed") $) 32)) (-3436 (((-112) $) 262)) (-3285 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 234)) (-2022 (($ $) 203 (|has| |#1| (-444)))) (-4212 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-2057 (((-621 $) $) 107)) (-2471 (((-112) $) 94 (|has| |#1| (-880)))) (-2067 (($ $) 219 (|has| |#1| (-541)))) (-3394 (($ $) 220 (|has| |#1| (-541)))) (-3354 (($ $ $) 246) (($ $ $ |#3|) 244)) (-1530 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3744 (($ $ |#1| |#2| $) 170)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 82 (-12 (|has| |#3| (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 81 (-12 (|has| |#3| (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-3987 (((-112) $) 30)) (-3454 (((-747) $) 167)) (-3929 (((-112) $ $) 248) (((-112) $ (-621 $)) 247)) (-2487 (($ $ $ $ $) 205 (|has| |#1| (-541)))) (-4170 ((|#3| $) 273)) (-2258 (($ (-1138 |#1|) |#3|) 115) (($ (-1138 $) |#3|) 114)) (-1298 (((-621 $) $) 124)) (-2427 (((-112) $) 150)) (-2244 (($ |#1| |#2|) 151) (($ $ |#3| (-747)) 117) (($ $ (-621 |#3|) (-621 (-747))) 116)) (-1973 (($ $ $) 233)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ |#3|) 118)) (-3147 (((-112) $) 263)) (-2856 ((|#2| $) 168) (((-747) $ |#3|) 120) (((-621 (-747)) $ (-621 |#3|)) 119)) (-2862 (($ $ $) 77 (|has| |#1| (-823)))) (-1781 (((-747) $) 272)) (-3574 (($ $ $) 76 (|has| |#1| (-823)))) (-4058 (($ (-1 |#2| |#2|) $) 169)) (-2796 (($ (-1 |#1| |#1|) $) 149)) (-1790 (((-3 |#3| "failed") $) 121)) (-2913 (($ $) 200 (|has| |#1| (-444)))) (-2624 (($ $) 201 (|has| |#1| (-444)))) (-2350 (((-621 $) $) 258)) (-2547 (($ $) 261)) (-2638 (($ $) 202 (|has| |#1| (-444)))) (-2266 (((-621 $) $) 259)) (-4132 (($ $) 260)) (-2027 (($ $) 147)) (-2042 ((|#1| $) 146) (($ $ |#3|) 265)) (-3696 (($ (-621 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-4244 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4002 (-747))) $ $) 232)) (-2097 (((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -2112 $) (|:| -3249 $)) $ $) 236) (((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -2112 $) (|:| -3249 $)) $ $ |#3|) 235)) (-3480 (((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -3249 $)) $ $) 238) (((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -3249 $)) $ $ |#3|) 237)) (-2728 (($ $ $) 242) (($ $ $ |#3|) 240)) (-2397 (($ $ $) 241) (($ $ $ |#3|) 239)) (-2677 (((-1124) $) 9)) (-2587 (($ $ $) 208 (|has| |#1| (-541)))) (-3093 (((-621 $) $) 267)) (-4201 (((-3 (-621 $) "failed") $) 112)) (-1462 (((-3 (-621 $) "failed") $) 113)) (-4219 (((-3 (-2 (|:| |var| |#3|) (|:| -3577 (-747))) "failed") $) 111)) (-3130 (((-112) $ $) 250) (((-112) $ (-621 $)) 249)) (-2741 (($ $ $) 230)) (-3060 (($ $) 271)) (-3739 (((-112) $ $) 256)) (-1582 (((-112) $ $) 252) (((-112) $ (-621 $)) 251)) (-3952 (($ $ $) 231)) (-1390 (($ $) 270)) (-3988 (((-1086) $) 10)) (-4227 (((-2 (|:| -3726 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-541)))) (-2337 (((-2 (|:| -3726 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-541)))) (-2002 (((-112) $) 164)) (-2012 ((|#1| $) 165)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 93 (|has| |#1| (-444)))) (-3726 ((|#1| |#1| $) 204 (|has| |#1| (-444))) (($ (-621 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) 100 (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) 99 (|has| |#1| (-880)))) (-2120 (((-411 $) $) 97 (|has| |#1| (-880)))) (-3416 (((-2 (|:| -3726 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-541)))) (-2038 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-541)))) (-4006 (($ $ |#1|) 217 (|has| |#1| (-541))) (($ $ $) 215 (|has| |#1| (-541)))) (-4215 (($ $ |#1|) 218 (|has| |#1| (-541))) (($ $ $) 216 (|has| |#1| (-541)))) (-2685 (($ $ (-621 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-621 $) (-621 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-621 |#3|) (-621 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-621 |#3|) (-621 $)) 136)) (-3086 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-3455 (($ $ |#3|) 40) (($ $ (-621 |#3|)) 39) (($ $ |#3| (-747)) 38) (($ $ (-621 |#3|) (-621 (-747))) 37)) (-3068 ((|#2| $) 148) (((-747) $ |#3|) 128) (((-621 (-747)) $ (-621 |#3|)) 127)) (-3770 (($ $) 268)) (-3163 (($ $) 266)) (-2844 (((-863 (-372)) $) 80 (-12 (|has| |#3| (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) 79 (-12 (|has| |#3| (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) 78 (-12 (|has| |#3| (-594 (-525))) (|has| |#1| (-594 (-525))))) (($ (-923 (-400 (-549)))) 227 (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1142))))) (($ (-923 (-549))) 224 (-1536 (-12 (-4007 (|has| |#1| (-38 (-400 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-594 (-1142)))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1142)))))) (($ (-923 |#1|)) 221 (|has| |#3| (-594 (-1142)))) (((-1124) $) 199 (-12 (|has| |#1| (-1009 (-549))) (|has| |#3| (-594 (-1142))))) (((-923 |#1|) $) 198 (|has| |#3| (-594 (-1142))))) (-1931 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 102 (-1820 (|has| $ (-143)) (|has| |#1| (-880))))) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-923 |#1|) $) 197 (|has| |#3| (-594 (-1142)))) (($ (-400 (-549))) 70 (-1536 (|has| |#1| (-1009 (-400 (-549)))) (|has| |#1| (-38 (-400 (-549)))))) (($ $) 83 (|has| |#1| (-541)))) (-3330 (((-621 |#1|) $) 166)) (-2944 ((|#1| $ |#2|) 153) (($ $ |#3| (-747)) 126) (($ $ (-621 |#3|) (-621 (-747))) 125)) (-3407 (((-3 $ "failed") $) 71 (-1536 (-1820 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) 28)) (-1544 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-4053 (((-112) $ $) 87 (|has| |#1| (-541)))) (-3275 (($) 18 T CONST)) (-3494 (((-3 (-112) "failed") $ $) 257)) (-3287 (($) 29 T CONST)) (-3118 (($ $ $ $ (-747)) 206 (|has| |#1| (-541)))) (-1805 (($ $ $ (-747)) 207 (|has| |#1| (-541)))) (-1700 (($ $ |#3|) 36) (($ $ (-621 |#3|)) 35) (($ $ |#3| (-747)) 34) (($ $ (-621 |#3|) (-621 (-747))) 33)) (-2448 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 73 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 75 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 72 (|has| |#1| (-823)))) (-2512 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 156 (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) 155 (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+((-3725 (*1 *1 *1) (-4 *1 (-1027))) (-3450 (*1 *1 *1) (-4 *1 (-1027))) (-3449 (*1 *1 *1) (-4 *1 (-1027))) (-3448 (*1 *1 *1) (-4 *1 (-1027))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-535)))) (-3446 (*1 *1 *1) (-4 *1 (-1027))) (-4113 (*1 *1 *1) (-4 *1 (-1027))) (-3445 (*1 *1 *1) (-4 *1 (-1027))))
+(-13 (-356) (-821) (-991) (-1009 (-535)) (-1009 (-400 (-535))) (-973) (-594 (-861 (-371))) (-857 (-371)) (-145) (-10 -8 (-15 -3450 ($ $)) (-15 -3449 ($ $)) (-15 -3448 ($ $)) (-15 -3447 ((-535) $)) (-15 -3446 ($ $)) (-15 -4113 ($ $)) (-15 -3445 ($ $)) (-15 -3725 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-835)) . T) ((-170) . T) ((-594 (-219)) . T) ((-594 (-371)) . T) ((-594 (-861 (-371))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-773) . T) ((-821) . T) ((-823) . T) ((-857 (-371)) . T) ((-892) . T) ((-973) . T) ((-991) . T) ((-1009 (-400 (-535))) . T) ((-1009 (-535)) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) |#2| $) 23)) (-3454 ((|#1| $) 10)) (-3969 (((-535) |#2| $) 88)) (-3517 (((-3 $ #1="failed") |#2| (-890)) 57)) (-3455 ((|#1| $) 28)) (-3516 ((|#1| |#2| $ |#1|) 37)) (-3452 (($ $) 25)) (-3804 (((-3 |#2| #1#) |#2| $) 87)) (-3520 (((-112) |#2| $) NIL)) (-3521 (((-112) |#2| $) NIL)) (-3451 (((-112) |#2| $) 24)) (-3453 ((|#1| $) 89)) (-3456 ((|#1| $) 27)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3519 ((|#2| $) 79)) (-4300 (((-835) $) 70)) (-4112 ((|#1| |#2| $ |#1|) 38)) (-3518 (((-618 $) |#2|) 59)) (-3375 (((-112) $ $) 74)))
+(((-1028 |#1| |#2|) (-13 (-1035 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| $)) (-15 -3455 (|#1| $)) (-15 -3454 (|#1| $)) (-15 -3453 (|#1| $)) (-15 -3452 ($ $)) (-15 -3451 ((-112) |#2| $)) (-15 -3516 (|#1| |#2| $ |#1|)))) (-13 (-821) (-356)) (-1200 |#1|)) (T -1028))
+((-3516 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) (-3456 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) (-3455 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) (-3454 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) (-3453 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) (-3452 (*1 *1 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))) (-3451 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-821) (-356))) (-5 *2 (-112)) (-5 *1 (-1028 *4 *3)) (-4 *3 (-1200 *4)))))
+(-13 (-1035 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| $)) (-15 -3455 (|#1| $)) (-15 -3454 (|#1| $)) (-15 -3453 (|#1| $)) (-15 -3452 ($ $)) (-15 -3451 ((-112) |#2| $)) (-15 -3516 (|#1| |#2| $ |#1|))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-2155 (($ $ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-2150 (($ $ $ $) NIL)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL)) (-2681 (($ $ $) NIL)) (-3879 (($) NIL T CONST)) (-3457 (($ (-1142)) 10) (($ (-535)) 7)) (-3491 (((-3 (-535) "failed") $) NIL)) (-3490 (((-535) $) NIL)) (-2883 (($ $ $) NIL)) (-2353 (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-665 (-535)) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3345 (((-3 (-400 (-535)) "failed") $) NIL)) (-3344 (((-112) $) NIL)) (-3343 (((-400 (-535)) $) NIL)) (-3315 (($) NIL) (($ $) NIL)) (-2882 (($ $ $) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2148 (($ $ $ $) NIL)) (-2156 (($ $ $) NIL)) (-3520 (((-112) $) NIL)) (-1413 (($ $ $) NIL)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL)) (-2493 (((-112) $) NIL)) (-2994 (((-112) $) NIL)) (-3786 (((-3 $ "failed") $) NIL)) (-3521 (((-112) $) NIL)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2149 (($ $ $ $) NIL)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-2152 (($ $) NIL)) (-4176 (($ $) NIL)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2147 (($ $ $) NIL)) (-3787 (($) NIL T CONST)) (-2154 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) NIL) (($ (-618 $)) NIL)) (-1411 (($ $) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2995 (((-112) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-4153 (($ $ (-747)) NIL) (($ $) NIL)) (-2153 (($ $) NIL)) (-3742 (($ $) NIL)) (-4313 (((-535) $) 16) (((-524) $) NIL) (((-861 (-535)) $) NIL) (((-371) $) NIL) (((-219) $) NIL) (($ (-1142)) 9)) (-4300 (((-835) $) 20) (($ (-535)) 6) (($ $) NIL) (($ (-535)) 6)) (-3444 (((-747)) NIL)) (-2157 (((-112) $ $) NIL)) (-3420 (($ $ $) NIL)) (-3015 (($) NIL)) (-2170 (((-112) $ $) NIL)) (-2151 (($ $ $ $) NIL)) (-3725 (($ $) NIL)) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-4180 (($ $) 19) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL)))
+(((-1029) (-13 (-534) (-10 -8 (-6 -4323) (-6 -4328) (-6 -4324) (-15 -4313 ($ (-1142))) (-15 -3457 ($ (-1142))) (-15 -3457 ($ (-535)))))) (T -1029))
+((-4313 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1029)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1029)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1029)))))
+(-13 (-534) (-10 -8 (-6 -4323) (-6 -4328) (-6 -4324) (-15 -4313 ($ (-1142))) (-15 -3457 ($ (-1142))) (-15 -3457 ($ (-535)))))
+((-2887 (((-112) $ $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-2296 (((-1230) $ (-1142) (-1142)) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-3459 (($) 9)) (-4130 (((-51) $ (-1142) (-51)) NIL)) (-3467 (($ $) 30)) (-3470 (($ $) 28)) (-3471 (($ $) 27)) (-3469 (($ $) 29)) (-3466 (($ $) 32)) (-3465 (($ $) 33)) (-3472 (($ $) 26)) (-3468 (($ $) 31)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) 25 (|has| $ (-6 -4336)))) (-2305 (((-3 (-51) #1="failed") (-1142) $) 40)) (-3879 (($) NIL T CONST)) (-3473 (($) 7)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-3747 (($ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) 50 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-3 (-51) #1#) (-1142) $) NIL)) (-3748 (($ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336)))) (-3458 (((-3 (-1124) "failed") $ (-1124) (-535)) 59)) (-1632 (((-51) $ (-1142) (-51)) NIL (|has| $ (-6 -4337)))) (-3431 (((-51) $ (-1142)) NIL)) (-2063 (((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-618 (-51)) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-1142) $) NIL (|has| (-1142) (-823)))) (-2502 (((-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) 35 (|has| $ (-6 -4336))) (((-618 (-51)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067))))) (-2299 (((-1142) $) NIL (|has| (-1142) (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-2735 (((-618 (-1142)) $) NIL)) (-2306 (((-112) (-1142) $) NIL)) (-1326 (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL)) (-3953 (($ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) 43)) (-2301 (((-618 (-1142)) $) NIL)) (-2302 (((-112) (-1142) $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-3462 (((-371) $ (-1142)) 49)) (-3461 (((-618 (-1124)) $ (-1124)) 60)) (-4143 (((-51) $) NIL (|has| (-1142) (-823)))) (-1395 (((-3 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) "failed") (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL)) (-2297 (($ $ (-51)) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-286 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL (-12 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-302 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (($ $ (-618 (-51)) (-618 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-286 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067)))) (($ $ (-618 (-286 (-51)))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067))))) (-2303 (((-618 (-51)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 (((-51) $ (-1142)) NIL) (((-51) $ (-1142) (-51)) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-3460 (($ $ (-1142)) 51)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067)))) (((-747) (-51) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-51) (-1067)))) (((-747) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) 37)) (-4144 (($ $ $) 38)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-593 (-835))) (|has| (-51) (-593 (-835)))))) (-3464 (($ $ (-1142) (-371)) 47)) (-3463 (($ $ (-1142) (-371)) 48)) (-1328 (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 (-1142)) (|:| -2184 (-51)))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-51) (-1067)) (|has| (-2 (|:| -4203 (-1142)) (|:| -2184 (-51))) (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-1030) (-13 (-1155 (-1142) (-51)) (-10 -8 (-15 -4144 ($ $ $)) (-15 -3473 ($)) (-15 -3472 ($ $)) (-15 -3471 ($ $)) (-15 -3470 ($ $)) (-15 -3469 ($ $)) (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -3466 ($ $)) (-15 -3465 ($ $)) (-15 -3464 ($ $ (-1142) (-371))) (-15 -3463 ($ $ (-1142) (-371))) (-15 -3462 ((-371) $ (-1142))) (-15 -3461 ((-618 (-1124)) $ (-1124))) (-15 -3460 ($ $ (-1142))) (-15 -3459 ($)) (-15 -3458 ((-3 (-1124) "failed") $ (-1124) (-535))) (-6 -4336)))) (T -1030))
+((-4144 (*1 *1 *1 *1) (-5 *1 (-1030))) (-3473 (*1 *1) (-5 *1 (-1030))) (-3472 (*1 *1 *1) (-5 *1 (-1030))) (-3471 (*1 *1 *1) (-5 *1 (-1030))) (-3470 (*1 *1 *1) (-5 *1 (-1030))) (-3469 (*1 *1 *1) (-5 *1 (-1030))) (-3468 (*1 *1 *1) (-5 *1 (-1030))) (-3467 (*1 *1 *1) (-5 *1 (-1030))) (-3466 (*1 *1 *1) (-5 *1 (-1030))) (-3465 (*1 *1 *1) (-5 *1 (-1030))) (-3464 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-371)) (-5 *1 (-1030)))) (-3463 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-371)) (-5 *1 (-1030)))) (-3462 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-371)) (-5 *1 (-1030)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1030)) (-5 *3 (-1124)))) (-3460 (*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1030)))) (-3459 (*1 *1) (-5 *1 (-1030))) (-3458 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1124)) (-5 *3 (-535)) (-5 *1 (-1030)))))
+(-13 (-1155 (-1142) (-51)) (-10 -8 (-15 -4144 ($ $ $)) (-15 -3473 ($)) (-15 -3472 ($ $)) (-15 -3471 ($ $)) (-15 -3470 ($ $)) (-15 -3469 ($ $)) (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -3466 ($ $)) (-15 -3465 ($ $)) (-15 -3464 ($ $ (-1142) (-371))) (-15 -3463 ($ $ (-1142) (-371))) (-15 -3462 ((-371) $ (-1142))) (-15 -3461 ((-618 (-1124)) $ (-1124))) (-15 -3460 ($ $ (-1142))) (-15 -3459 ($)) (-15 -3458 ((-3 (-1124) "failed") $ (-1124) (-535))) (-6 -4336)))
+((-4139 (($ $) 45)) (-3500 (((-112) $ $) 74)) (-3491 (((-3 |#2| #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 (-535) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-917 (-400 (-535)))) 227) (((-3 $ "failed") (-917 (-535))) 226) (((-3 $ "failed") (-917 |#2|)) 229)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) NIL) (((-535) $) NIL) ((|#4| $) NIL) (($ (-917 (-400 (-535)))) 215) (($ (-917 (-535))) 211) (($ (-917 |#2|)) 231)) (-4302 (($ $) NIL) (($ $ |#4|) 43)) (-4040 (((-112) $ $) 112) (((-112) $ (-618 $)) 113)) (-3506 (((-112) $) 56)) (-4095 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 107)) (-3477 (($ $) 138)) (-3488 (($ $) 134)) (-3489 (($ $) 133)) (-3499 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3498 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4041 (((-112) $ $) 121) (((-112) $ (-618 $)) 122)) (-3514 ((|#4| $) 33)) (-3493 (($ $ $) 110)) (-3507 (((-112) $) 55)) (-3513 (((-747) $) 35)) (-3474 (($ $) 152)) (-3475 (($ $) 149)) (-3502 (((-618 $) $) 68)) (-3505 (($ $) 57)) (-3476 (($ $) 145)) (-3503 (((-618 $) $) 65)) (-3504 (($ $) 59)) (-3508 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3492 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3818 (-747))) $ $) 111)) (-3494 (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $) 108) (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $ |#4|) 109)) (-3495 (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $) 104) (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $ |#4|) 105)) (-3497 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3496 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3510 (((-618 $) $) 51)) (-4037 (((-112) $ $) 118) (((-112) $ (-618 $)) 119)) (-4032 (($ $ $) 103)) (-3787 (($ $) 37)) (-4045 (((-112) $ $) 72)) (-4038 (((-112) $ $) 114) (((-112) $ (-618 $)) 116)) (-4033 (($ $ $) 101)) (-3512 (($ $) 40)) (-3478 ((|#2| |#2| $) 142) (($ (-618 $)) NIL) (($ $ $) NIL)) (-3486 (($ $ |#2|) NIL) (($ $ $) 131)) (-3487 (($ $ |#2|) 126) (($ $ $) 129)) (-3511 (($ $) 48)) (-3509 (($ $) 52)) (-4313 (((-861 (-371)) $) NIL) (((-861 (-535)) $) NIL) (((-524) $) NIL) (($ (-917 (-400 (-535)))) 217) (($ (-917 (-535))) 213) (($ (-917 |#2|)) 228) (((-1124) $) 250) (((-917 |#2|) $) 162)) (-4300 (((-835) $) 30) (($ (-535)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-917 |#2|) $) 163) (($ (-400 (-535))) NIL) (($ $) NIL)) (-3501 (((-3 (-112) "failed") $ $) 71)))
+(((-1031 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -3478 (|#1| |#1| |#1|)) (-15 -3478 (|#1| (-618 |#1|))) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 ((-917 |#2|) |#1|)) (-15 -4313 ((-917 |#2|) |#1|)) (-15 -4313 ((-1124) |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3478 (|#2| |#2| |#1|)) (-15 -3486 (|#1| |#1| |#1|)) (-15 -3487 (|#1| |#1| |#1|)) (-15 -3486 (|#1| |#1| |#2|)) (-15 -3487 (|#1| |#1| |#2|)) (-15 -3488 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -4313 (|#1| (-917 |#2|))) (-15 -3490 (|#1| (-917 |#2|))) (-15 -3491 ((-3 |#1| "failed") (-917 |#2|))) (-15 -4313 (|#1| (-917 (-535)))) (-15 -3490 (|#1| (-917 (-535)))) (-15 -3491 ((-3 |#1| "failed") (-917 (-535)))) (-15 -4313 (|#1| (-917 (-400 (-535))))) (-15 -3490 (|#1| (-917 (-400 (-535))))) (-15 -3491 ((-3 |#1| "failed") (-917 (-400 (-535))))) (-15 -4032 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -3492 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3818 (-747))) |#1| |#1|)) (-15 -3493 (|#1| |#1| |#1|)) (-15 -4095 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -3494 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1| |#4|)) (-15 -3494 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -3495 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -3223 |#1|)) |#1| |#1| |#4|)) (-15 -3495 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -3496 (|#1| |#1| |#1| |#4|)) (-15 -3497 (|#1| |#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#1|)) (-15 -3497 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1| |#1| |#4|)) (-15 -3499 (|#1| |#1| |#1| |#4|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1|)) (-15 -4041 ((-112) |#1| (-618 |#1|))) (-15 -4041 ((-112) |#1| |#1|)) (-15 -4037 ((-112) |#1| (-618 |#1|))) (-15 -4037 ((-112) |#1| |#1|)) (-15 -4038 ((-112) |#1| (-618 |#1|))) (-15 -4038 ((-112) |#1| |#1|)) (-15 -4040 ((-112) |#1| (-618 |#1|))) (-15 -4040 ((-112) |#1| |#1|)) (-15 -3500 ((-112) |#1| |#1|)) (-15 -4045 ((-112) |#1| |#1|)) (-15 -3501 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3502 ((-618 |#1|) |#1|)) (-15 -3503 ((-618 |#1|) |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -4302 (|#1| |#1| |#4|)) (-15 -3508 (|#1| |#1| |#4|)) (-15 -3509 (|#1| |#1|)) (-15 -3510 ((-618 |#1|) |#1|)) (-15 -3511 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -3512 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3513 ((-747) |#1|)) (-15 -3514 (|#4| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -3490 (|#4| |#1|)) (-15 -3491 ((-3 |#4| #1="failed") |#1|)) (-15 -4300 (|#1| |#4|)) (-15 -3508 (|#2| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-1032 |#2| |#3| |#4|) (-1018) (-769) (-823)) (T -1031))
+NIL
+(-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -3478 (|#1| |#1| |#1|)) (-15 -3478 (|#1| (-618 |#1|))) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 ((-917 |#2|) |#1|)) (-15 -4313 ((-917 |#2|) |#1|)) (-15 -4313 ((-1124) |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3478 (|#2| |#2| |#1|)) (-15 -3486 (|#1| |#1| |#1|)) (-15 -3487 (|#1| |#1| |#1|)) (-15 -3486 (|#1| |#1| |#2|)) (-15 -3487 (|#1| |#1| |#2|)) (-15 -3488 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -4313 (|#1| (-917 |#2|))) (-15 -3490 (|#1| (-917 |#2|))) (-15 -3491 ((-3 |#1| "failed") (-917 |#2|))) (-15 -4313 (|#1| (-917 (-535)))) (-15 -3490 (|#1| (-917 (-535)))) (-15 -3491 ((-3 |#1| "failed") (-917 (-535)))) (-15 -4313 (|#1| (-917 (-400 (-535))))) (-15 -3490 (|#1| (-917 (-400 (-535))))) (-15 -3491 ((-3 |#1| "failed") (-917 (-400 (-535))))) (-15 -4032 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -3492 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3818 (-747))) |#1| |#1|)) (-15 -3493 (|#1| |#1| |#1|)) (-15 -4095 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -3494 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1| |#4|)) (-15 -3494 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -3495 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -3223 |#1|)) |#1| |#1| |#4|)) (-15 -3495 ((-2 (|:| -4296 |#1|) (|:| |gap| (-747)) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -3496 (|#1| |#1| |#1| |#4|)) (-15 -3497 (|#1| |#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#1|)) (-15 -3497 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1| |#1| |#4|)) (-15 -3499 (|#1| |#1| |#1| |#4|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1|)) (-15 -4041 ((-112) |#1| (-618 |#1|))) (-15 -4041 ((-112) |#1| |#1|)) (-15 -4037 ((-112) |#1| (-618 |#1|))) (-15 -4037 ((-112) |#1| |#1|)) (-15 -4038 ((-112) |#1| (-618 |#1|))) (-15 -4038 ((-112) |#1| |#1|)) (-15 -4040 ((-112) |#1| (-618 |#1|))) (-15 -4040 ((-112) |#1| |#1|)) (-15 -3500 ((-112) |#1| |#1|)) (-15 -4045 ((-112) |#1| |#1|)) (-15 -3501 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3502 ((-618 |#1|) |#1|)) (-15 -3503 ((-618 |#1|) |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -4302 (|#1| |#1| |#4|)) (-15 -3508 (|#1| |#1| |#4|)) (-15 -3509 (|#1| |#1|)) (-15 -3510 ((-618 |#1|) |#1|)) (-15 -3511 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -3512 (|#1| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3513 ((-747) |#1|)) (-15 -3514 (|#4| |#1|)) (-15 -4313 ((-524) |#1|)) (-15 -4313 ((-861 (-535)) |#1|)) (-15 -4313 ((-861 (-371)) |#1|)) (-15 -3490 (|#4| |#1|)) (-15 -3491 ((-3 |#4| #1="failed") |#1|)) (-15 -4300 (|#1| |#4|)) (-15 -3508 (|#2| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 |#3|) $) 108)) (-3407 (((-1136 $) $ |#3|) 123) (((-1136 |#1|) $) 122)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-2171 (($ $) 86 (|has| |#1| (-542)))) (-2169 (((-112) $) 88 (|has| |#1| (-542)))) (-3140 (((-747) $) 110) (((-747) $ (-618 |#3|)) 109)) (-4139 (($ $) 269)) (-3500 (((-112) $ $) 255)) (-1363 (((-3 $ "failed") $ $) 19)) (-4098 (($ $ $) 214 (|has| |#1| (-542)))) (-3482 (((-618 $) $ $) 209 (|has| |#1| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) 98 (|has| |#1| (-881)))) (-4117 (($ $) 96 (|has| |#1| (-444)))) (-4312 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 101 (|has| |#1| (-881)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-535)) #2#) $) 160 (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) 158 (|has| |#1| (-1009 (-535)))) (((-3 |#3| #2#) $) 134) (((-3 $ "failed") (-917 (-400 (-535)))) 229 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142))))) (((-3 $ "failed") (-917 (-535))) 226 (-3874 (-12 (-3659 (|has| |#1| (-38 (-400 (-535))))) (|has| |#1| (-38 (-535))) (|has| |#3| (-594 (-1142)))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142)))))) (((-3 $ "failed") (-917 |#1|)) 223 (-3874 (-12 (-3659 (|has| |#1| (-38 (-400 (-535))))) (-3659 (|has| |#1| (-38 (-535)))) (|has| |#3| (-594 (-1142)))) (-12 (-3659 (|has| |#1| (-534))) (-3659 (|has| |#1| (-38 (-400 (-535))))) (|has| |#1| (-38 (-535))) (|has| |#3| (-594 (-1142)))) (-12 (-3659 (|has| |#1| (-962 (-535)))) (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142))))))) (-3490 ((|#1| $) 163) (((-400 (-535)) $) 159 (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) 157 (|has| |#1| (-1009 (-535)))) ((|#3| $) 133) (($ (-917 (-400 (-535)))) 228 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142))))) (($ (-917 (-535))) 225 (-3874 (-12 (-3659 (|has| |#1| (-38 (-400 (-535))))) (|has| |#1| (-38 (-535))) (|has| |#3| (-594 (-1142)))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142)))))) (($ (-917 |#1|)) 222 (-3874 (-12 (-3659 (|has| |#1| (-38 (-400 (-535))))) (-3659 (|has| |#1| (-38 (-535)))) (|has| |#3| (-594 (-1142)))) (-12 (-3659 (|has| |#1| (-534))) (-3659 (|has| |#1| (-38 (-400 (-535))))) (|has| |#1| (-38 (-535))) (|has| |#3| (-594 (-1142)))) (-12 (-3659 (|has| |#1| (-962 (-535)))) (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142))))))) (-4099 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 210 (|has| |#1| (-542)))) (-4302 (($ $) 152) (($ $ |#3|) 264)) (-2353 (((-665 (-535)) (-665 $)) 132 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 131 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-4040 (((-112) $ $) 254) (((-112) $ (-618 $)) 253)) (-3804 (((-3 $ "failed") $) 32)) (-3506 (((-112) $) 262)) (-4095 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 234)) (-3477 (($ $) 203 (|has| |#1| (-444)))) (-3840 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3139 (((-618 $) $) 107)) (-4069 (((-112) $) 94 (|has| |#1| (-881)))) (-3488 (($ $) 219 (|has| |#1| (-542)))) (-3489 (($ $) 220 (|has| |#1| (-542)))) (-3499 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3498 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1716 (($ $ |#1| |#2| $) 170)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 82 (-12 (|has| |#3| (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 81 (-12 (|has| |#3| (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-2493 (((-112) $) 30)) (-2501 (((-747) $) 167)) (-4041 (((-112) $ $) 248) (((-112) $ (-618 $)) 247)) (-3479 (($ $ $ $ $) 205 (|has| |#1| (-542)))) (-3514 ((|#3| $) 273)) (-3408 (($ (-1136 |#1|) |#3|) 115) (($ (-1136 $) |#3|) 114)) (-3142 (((-618 $) $) 124)) (-4280 (((-112) $) 150)) (-3214 (($ |#1| |#2|) 151) (($ $ |#3| (-747)) 117) (($ $ (-618 |#3|) (-618 (-747))) 116)) (-3493 (($ $ $) 233)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#3|) 118)) (-3507 (((-112) $) 263)) (-3141 ((|#2| $) 168) (((-747) $ |#3|) 120) (((-618 (-747)) $ (-618 |#3|)) 119)) (-3660 (($ $ $) 77 (|has| |#1| (-823)))) (-3513 (((-747) $) 272)) (-3661 (($ $ $) 76 (|has| |#1| (-823)))) (-1717 (($ (-1 |#2| |#2|) $) 169)) (-4301 (($ (-1 |#1| |#1|) $) 149)) (-3406 (((-3 |#3| #3="failed") $) 121)) (-3474 (($ $) 200 (|has| |#1| (-444)))) (-3475 (($ $) 201 (|has| |#1| (-444)))) (-3502 (((-618 $) $) 258)) (-3505 (($ $) 261)) (-3476 (($ $) 202 (|has| |#1| (-444)))) (-3503 (((-618 $) $) 259)) (-3504 (($ $) 260)) (-3215 (($ $) 147)) (-3508 ((|#1| $) 146) (($ $ |#3|) 265)) (-2008 (($ (-618 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3492 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3818 (-747))) $ $) 232)) (-3494 (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $) 236) (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $ |#3|) 235)) (-3495 (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $) 238) (((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $ |#3|) 237)) (-3497 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3496 (($ $ $) 241) (($ $ $ |#3|) 239)) (-3576 (((-1124) $) 9)) (-3524 (($ $ $) 208 (|has| |#1| (-542)))) (-3510 (((-618 $) $) 267)) (-3144 (((-3 (-618 $) #3#) $) 112)) (-3143 (((-3 (-618 $) #3#) $) 113)) (-3145 (((-3 (-2 (|:| |var| |#3|) (|:| -2484 (-747))) #3#) $) 111)) (-4037 (((-112) $ $) 250) (((-112) $ (-618 $)) 249)) (-4032 (($ $ $) 230)) (-3787 (($ $) 271)) (-4045 (((-112) $ $) 256)) (-4038 (((-112) $ $) 252) (((-112) $ (-618 $)) 251)) (-4033 (($ $ $) 231)) (-3512 (($ $) 270)) (-3577 (((-1086) $) 10)) (-3483 (((-2 (|:| -3478 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-542)))) (-3484 (((-2 (|:| -3478 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-542)))) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 93 (|has| |#1| (-444)))) (-3478 ((|#1| |#1| $) 204 (|has| |#1| (-444))) (($ (-618 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 100 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 99 (|has| |#1| (-881)))) (-4075 (((-398 $) $) 97 (|has| |#1| (-881)))) (-3485 (((-2 (|:| -3478 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-542)))) (-3803 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-3486 (($ $ |#1|) 217 (|has| |#1| (-542))) (($ $ $) 215 (|has| |#1| (-542)))) (-3487 (($ $ |#1|) 218 (|has| |#1| (-542))) (($ $ $) 216 (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-618 $) (-618 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-618 |#3|) (-618 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-618 |#3|) (-618 $)) 136)) (-4100 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4153 (($ $ |#3|) 40) (($ $ (-618 |#3|)) 39) (($ $ |#3| (-747)) 38) (($ $ (-618 |#3|) (-618 (-747))) 37)) (-4290 ((|#2| $) 148) (((-747) $ |#3|) 128) (((-618 (-747)) $ (-618 |#3|)) 127)) (-3511 (($ $) 268)) (-3509 (($ $) 266)) (-4313 (((-861 (-371)) $) 80 (-12 (|has| |#3| (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) 79 (-12 (|has| |#3| (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) 78 (-12 (|has| |#3| (-594 (-524))) (|has| |#1| (-594 (-524))))) (($ (-917 (-400 (-535)))) 227 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142))))) (($ (-917 (-535))) 224 (-3874 (-12 (-3659 (|has| |#1| (-38 (-400 (-535))))) (|has| |#1| (-38 (-535))) (|has| |#3| (-594 (-1142)))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#3| (-594 (-1142)))))) (($ (-917 |#1|)) 221 (|has| |#3| (-594 (-1142)))) (((-1124) $) 199 (-12 (|has| |#1| (-1009 (-535))) (|has| |#3| (-594 (-1142))))) (((-917 |#1|) $) 198 (|has| |#3| (-594 (-1142))))) (-3138 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 102 (-3179 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-917 |#1|) $) 197 (|has| |#3| (-594 (-1142)))) (($ (-400 (-535))) 70 (-3874 (|has| |#1| (-1009 (-400 (-535)))) (|has| |#1| (-38 (-400 (-535)))))) (($ $) 83 (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) 166)) (-4023 ((|#1| $ |#2|) 153) (($ $ |#3| (-747)) 126) (($ $ (-618 |#3|) (-618 (-747))) 125)) (-3023 (((-3 $ #1#) $) 71 (-3874 (-3179 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) 28)) (-1715 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-2170 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-3501 (((-3 (-112) "failed") $ $) 257)) (-2985 (($) 29 T CONST)) (-3480 (($ $ $ $ (-747)) 206 (|has| |#1| (-542)))) (-3481 (($ $ $ (-747)) 207 (|has| |#1| (-542)))) (-2990 (($ $ |#3|) 36) (($ $ (-618 |#3|)) 35) (($ $ |#3| (-747)) 34) (($ $ (-618 |#3|) (-618 (-747))) 33)) (-2885 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 73 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 75 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 72 (|has| |#1| (-823)))) (-4291 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 156 (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) 155 (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
(((-1032 |#1| |#2| |#3|) (-138) (-1018) (-769) (-823)) (T -1032))
-((-4170 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-747)))) (-3060 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-1390 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-1342 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3770 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3093 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-3163 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-2042 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-2069 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3147 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-2547 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-4132 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-2266 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-2350 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-3494 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3739 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-1750 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4042 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4042 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-1582 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-1582 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-3130 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3130 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-3929 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-3354 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-1530 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3354 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-1530 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-2728 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-2397 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-2728 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-2397 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3480 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -1569 *1) (|:| |gap| (-747)) (|:| -3249 *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3480 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -1569 *1) (|:| |gap| (-747)) (|:| -3249 *1))) (-4 *1 (-1032 *4 *5 *3)))) (-2097 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -1569 *1) (|:| |gap| (-747)) (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-1032 *3 *4 *5)))) (-2097 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -1569 *1) (|:| |gap| (-747)) (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-1032 *4 *5 *3)))) (-3285 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-1032 *3 *4 *5)))) (-1973 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-4244 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4002 (-747)))) (-4 *1 (-1032 *3 *4 *5)))) (-3952 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-2741 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-2713 (*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-400 (-549)))) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-923 (-400 (-549)))) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-923 (-400 (-549)))) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))) (-2713 (*1 *1 *2) (|partial| -1536 (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4007 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))))) (-2658 (*1 *1 *2) (-1536 (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4007 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))))) (-2844 (*1 *1 *2) (-1536 (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4007 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))))) (-2713 (*1 *1 *2) (|partial| -1536 (-12 (-5 *2 (-923 *3)) (-12 (-4007 (-4 *3 (-38 (-400 (-549))))) (-4007 (-4 *3 (-38 (-549)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 *3)) (-12 (-4007 (-4 *3 (-534))) (-4007 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 *3)) (-12 (-4007 (-4 *3 (-963 (-549)))) (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))))) (-2658 (*1 *1 *2) (-1536 (-12 (-5 *2 (-923 *3)) (-12 (-4007 (-4 *3 (-38 (-400 (-549))))) (-4007 (-4 *3 (-38 (-549)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 *3)) (-12 (-4007 (-4 *3 (-534))) (-4007 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 *3)) (-12 (-4007 (-4 *3 (-963 (-549)))) (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-923 *3)) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *5 (-594 (-1142))) (-4 *4 (-769)) (-4 *5 (-823)))) (-3394 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-2067 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-4215 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-4006 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-4215 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-4006 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-3767 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-3416 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -3726 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1032 *3 *4 *5)))) (-2337 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -3726 *1) (|:| |coef1| *1))) (-4 *1 (-1032 *3 *4 *5)))) (-4227 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -3726 *1) (|:| |coef2| *1))) (-4 *1 (-1032 *3 *4 *5)))) (-2252 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-1280 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-2587 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-1805 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *3 (-541)))) (-3118 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *3 (-541)))) (-2487 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-3726 (*1 *2 *2 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-2022 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-2638 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-2624 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-2913 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))))
-(-13 (-920 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4170 (|t#3| $)) (-15 -1781 ((-747) $)) (-15 -3060 ($ $)) (-15 -1390 ($ $)) (-15 -1342 ($ $)) (-15 -3770 ($ $)) (-15 -3093 ((-621 $) $)) (-15 -3163 ($ $)) (-15 -2042 ($ $ |t#3|)) (-15 -2069 ($ $ |t#3|)) (-15 -3147 ((-112) $)) (-15 -3436 ((-112) $)) (-15 -2547 ($ $)) (-15 -4132 ($ $)) (-15 -2266 ((-621 $) $)) (-15 -2350 ((-621 $) $)) (-15 -3494 ((-3 (-112) "failed") $ $)) (-15 -3739 ((-112) $ $)) (-15 -1750 ((-112) $ $)) (-15 -4042 ((-112) $ $)) (-15 -4042 ((-112) $ (-621 $))) (-15 -1582 ((-112) $ $)) (-15 -1582 ((-112) $ (-621 $))) (-15 -3130 ((-112) $ $)) (-15 -3130 ((-112) $ (-621 $))) (-15 -3929 ((-112) $ $)) (-15 -3929 ((-112) $ (-621 $))) (-15 -3354 ($ $ $)) (-15 -1530 ($ $ $)) (-15 -3354 ($ $ $ |t#3|)) (-15 -1530 ($ $ $ |t#3|)) (-15 -2728 ($ $ $)) (-15 -2397 ($ $ $)) (-15 -2728 ($ $ $ |t#3|)) (-15 -2397 ($ $ $ |t#3|)) (-15 -3480 ((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -3249 $)) $ $)) (-15 -3480 ((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -3249 $)) $ $ |t#3|)) (-15 -2097 ((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -2112 $) (|:| -3249 $)) $ $)) (-15 -2097 ((-2 (|:| -1569 $) (|:| |gap| (-747)) (|:| -2112 $) (|:| -3249 $)) $ $ |t#3|)) (-15 -3285 ((-2 (|:| -2112 $) (|:| -3249 $)) $ $)) (-15 -1973 ($ $ $)) (-15 -4244 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4002 (-747))) $ $)) (-15 -3952 ($ $ $)) (-15 -2741 ($ $ $)) (IF (|has| |t#3| (-594 (-1142))) (PROGN (-6 (-593 (-923 |t#1|))) (-6 (-594 (-923 |t#1|))) (IF (|has| |t#1| (-38 (-400 (-549)))) (PROGN (-15 -2713 ((-3 $ "failed") (-923 (-400 (-549))))) (-15 -2658 ($ (-923 (-400 (-549))))) (-15 -2844 ($ (-923 (-400 (-549))))) (-15 -2713 ((-3 $ "failed") (-923 (-549)))) (-15 -2658 ($ (-923 (-549)))) (-15 -2844 ($ (-923 (-549)))) (IF (|has| |t#1| (-963 (-549))) |%noBranch| (PROGN (-15 -2713 ((-3 $ "failed") (-923 |t#1|))) (-15 -2658 ($ (-923 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-549))) (IF (|has| |t#1| (-38 (-400 (-549)))) |%noBranch| (PROGN (-15 -2713 ((-3 $ "failed") (-923 (-549)))) (-15 -2658 ($ (-923 (-549)))) (-15 -2844 ($ (-923 (-549)))) (IF (|has| |t#1| (-534)) |%noBranch| (PROGN (-15 -2713 ((-3 $ "failed") (-923 |t#1|))) (-15 -2658 ($ (-923 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-549))) |%noBranch| (IF (|has| |t#1| (-38 (-400 (-549)))) |%noBranch| (PROGN (-15 -2713 ((-3 $ "failed") (-923 |t#1|))) (-15 -2658 ($ (-923 |t#1|)))))) (-15 -2844 ($ (-923 |t#1|))) (IF (|has| |t#1| (-1009 (-549))) (-6 (-594 (-1124))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-541)) (PROGN (-15 -3394 ($ $)) (-15 -2067 ($ $)) (-15 -4215 ($ $ |t#1|)) (-15 -4006 ($ $ |t#1|)) (-15 -4215 ($ $ $)) (-15 -4006 ($ $ $)) (-15 -3767 ($ $ $)) (-15 -3416 ((-2 (|:| -3726 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2337 ((-2 (|:| -3726 $) (|:| |coef1| $)) $ $)) (-15 -4227 ((-2 (|:| -3726 $) (|:| |coef2| $)) $ $)) (-15 -2252 ($ $ $)) (-15 -1280 ((-621 $) $ $)) (-15 -2587 ($ $ $)) (-15 -1805 ($ $ $ (-747))) (-15 -3118 ($ $ $ $ (-747))) (-15 -2487 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3726 (|t#1| |t#1| $)) (-15 -2022 ($ $)) (-15 -2638 ($ $)) (-15 -2624 ($ $)) (-15 -2913 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-593 (-923 |#1|)) |has| |#3| (-594 (-1142))) ((-170) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-594 (-525)) -12 (|has| |#1| (-594 (-525))) (|has| |#3| (-594 (-525)))) ((-594 (-863 (-372))) -12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#3| (-594 (-863 (-372))))) ((-594 (-863 (-549))) -12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#3| (-594 (-863 (-549))))) ((-594 (-923 |#1|)) |has| |#3| (-594 (-1142))) ((-594 (-1124)) -12 (|has| |#1| (-1009 (-549))) (|has| |#3| (-594 (-1142)))) ((-283) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1536 (|has| |#1| (-880)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-541) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 |#3|) . T) ((-857 (-372)) -12 (|has| |#1| (-857 (-372))) (|has| |#3| (-857 (-372)))) ((-857 (-549)) -12 (|has| |#1| (-857 (-549))) (|has| |#3| (-857 (-549)))) ((-920 |#1| |#2| |#3|) . T) ((-880) |has| |#1| (-880)) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1009 |#3|) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1183) |has| |#1| (-880)))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3021 (((-621 (-1101)) $) 13)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 24) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2493 (((-1101) $) 15)) (-2388 (((-112) $ $) NIL)))
-(((-1033) (-13 (-1049) (-10 -8 (-15 -3021 ((-621 (-1101)) $)) (-15 -2493 ((-1101) $))))) (T -1033))
-((-3021 (*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-1033)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1033)))))
-(-13 (-1049) (-10 -8 (-15 -3021 ((-621 (-1101)) $)) (-15 -2493 ((-1101) $))))
-((-3166 (((-112) |#3| $) 13)) (-1681 (((-3 $ "failed") |#3| (-892)) 23)) (-3976 (((-3 |#3| "failed") |#3| $) 38)) (-3079 (((-112) |#3| $) 16)) (-2847 (((-112) |#3| $) 14)))
-(((-1034 |#1| |#2| |#3|) (-10 -8 (-15 -1681 ((-3 |#1| "failed") |#3| (-892))) (-15 -3976 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3079 ((-112) |#3| |#1|)) (-15 -2847 ((-112) |#3| |#1|)) (-15 -3166 ((-112) |#3| |#1|))) (-1035 |#2| |#3|) (-13 (-821) (-356)) (-1201 |#2|)) (T -1034))
-NIL
-(-10 -8 (-15 -1681 ((-3 |#1| "failed") |#3| (-892))) (-15 -3976 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3079 ((-112) |#3| |#1|)) (-15 -2847 ((-112) |#3| |#1|)) (-15 -3166 ((-112) |#3| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) |#2| $) 21)) (-3902 (((-549) |#2| $) 22)) (-1681 (((-3 $ "failed") |#2| (-892)) 15)) (-3974 ((|#1| |#2| $ |#1|) 13)) (-3976 (((-3 |#2| "failed") |#2| $) 18)) (-3079 (((-112) |#2| $) 19)) (-2847 (((-112) |#2| $) 20)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-2539 ((|#2| $) 17)) (-3845 (((-834) $) 11)) (-2660 ((|#1| |#2| $ |#1|) 14)) (-2500 (((-621 $) |#2|) 16)) (-2388 (((-112) $ $) 6)))
-(((-1035 |#1| |#2|) (-138) (-13 (-821) (-356)) (-1201 |t#1|)) (T -1035))
-((-3902 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1201 *4)) (-5 *2 (-549)))) (-3166 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1201 *4)) (-5 *2 (-112)))) (-2847 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1201 *4)) (-5 *2 (-112)))) (-3079 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1201 *4)) (-5 *2 (-112)))) (-3976 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356))) (-4 *2 (-1201 *3)))) (-2539 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356))) (-4 *2 (-1201 *3)))) (-2500 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1201 *4)) (-5 *2 (-621 *1)) (-4 *1 (-1035 *4 *3)))) (-1681 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-892)) (-4 *4 (-13 (-821) (-356))) (-4 *1 (-1035 *4 *2)) (-4 *2 (-1201 *4)))) (-2660 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356))) (-4 *3 (-1201 *2)))) (-3974 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356))) (-4 *3 (-1201 *2)))))
-(-13 (-1066) (-10 -8 (-15 -3902 ((-549) |t#2| $)) (-15 -3166 ((-112) |t#2| $)) (-15 -2847 ((-112) |t#2| $)) (-15 -3079 ((-112) |t#2| $)) (-15 -3976 ((-3 |t#2| "failed") |t#2| $)) (-15 -2539 (|t#2| $)) (-15 -2500 ((-621 $) |t#2|)) (-15 -1681 ((-3 $ "failed") |t#2| (-892))) (-15 -2660 (|t#1| |t#2| $ |t#1|)) (-15 -3974 (|t#1| |t#2| $ |t#1|))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3029 (((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-621 |#4|) (-621 |#5|) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) (-747)) 96)) (-3410 (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747)) 56)) (-3761 (((-1230) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-747)) 87)) (-3587 (((-747) (-621 |#4|) (-621 |#5|)) 27)) (-3901 (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747)) 58) (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747) (-112)) 60)) (-3702 (((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112)) 79)) (-2844 (((-1124) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) 82)) (-2543 (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-112)) 55)) (-3278 (((-747) (-621 |#4|) (-621 |#5|)) 19)))
-(((-1036 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3278 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -3587 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -2543 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-112))) (-15 -3410 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747))) (-15 -3410 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|)) (-15 -3901 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -3901 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747))) (-15 -3901 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|)) (-15 -3702 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -3702 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3029 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-621 |#4|) (-621 |#5|) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) (-747))) (-15 -2844 ((-1124) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)))) (-15 -3761 ((-1230) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-747)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1036))
-((-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1980 *9)))) (-5 *4 (-747)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1230)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1980 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1124)) (-5 *1 (-1036 *4 *5 *6 *7 *8)))) (-3029 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-621 *11)) (|:| |todo| (-621 (-2 (|:| |val| *3) (|:| -1980 *11)))))) (-5 *6 (-747)) (-5 *2 (-621 (-2 (|:| |val| (-621 *10)) (|:| -1980 *11)))) (-5 *3 (-621 *10)) (-5 *4 (-621 *11)) (-4 *10 (-1032 *7 *8 *9)) (-4 *11 (-1038 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-5 *1 (-1036 *7 *8 *9 *10 *11)))) (-3702 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-3702 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-3901 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))))) (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3901 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))))) (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3901 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))))) (-5 *1 (-1036 *7 *8 *9 *3 *4)) (-4 *4 (-1038 *7 *8 *9 *3)))) (-3410 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))))) (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3410 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))))) (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-2543 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))))) (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3587 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3278 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -3587 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -2543 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-112))) (-15 -3410 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747))) (-15 -3410 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|)) (-15 -3901 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -3901 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747))) (-15 -3901 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|)) (-15 -3702 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -3702 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3029 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-621 |#4|) (-621 |#5|) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) (-747))) (-15 -2844 ((-1124) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)))) (-15 -3761 ((-1230) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-747))))
-((-4173 (((-112) |#5| $) 21)) (-1447 (((-112) |#5| $) 24)) (-2561 (((-112) |#5| $) 16) (((-112) $) 45)) (-1795 (((-621 $) |#5| $) NIL) (((-621 $) (-621 |#5|) $) 77) (((-621 $) (-621 |#5|) (-621 $)) 75) (((-621 $) |#5| (-621 $)) 78)) (-2975 (($ $ |#5|) NIL) (((-621 $) |#5| $) NIL) (((-621 $) |#5| (-621 $)) 60) (((-621 $) (-621 |#5|) $) 62) (((-621 $) (-621 |#5|) (-621 $)) 64)) (-1691 (((-621 $) |#5| $) NIL) (((-621 $) |#5| (-621 $)) 54) (((-621 $) (-621 |#5|) $) 56) (((-621 $) (-621 |#5|) (-621 $)) 58)) (-1972 (((-112) |#5| $) 27)))
-(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2975 ((-621 |#1|) (-621 |#5|) (-621 |#1|))) (-15 -2975 ((-621 |#1|) (-621 |#5|) |#1|)) (-15 -2975 ((-621 |#1|) |#5| (-621 |#1|))) (-15 -2975 ((-621 |#1|) |#5| |#1|)) (-15 -1691 ((-621 |#1|) (-621 |#5|) (-621 |#1|))) (-15 -1691 ((-621 |#1|) (-621 |#5|) |#1|)) (-15 -1691 ((-621 |#1|) |#5| (-621 |#1|))) (-15 -1691 ((-621 |#1|) |#5| |#1|)) (-15 -1795 ((-621 |#1|) |#5| (-621 |#1|))) (-15 -1795 ((-621 |#1|) (-621 |#5|) (-621 |#1|))) (-15 -1795 ((-621 |#1|) (-621 |#5|) |#1|)) (-15 -1795 ((-621 |#1|) |#5| |#1|)) (-15 -1447 ((-112) |#5| |#1|)) (-15 -2561 ((-112) |#1|)) (-15 -1972 ((-112) |#5| |#1|)) (-15 -4173 ((-112) |#5| |#1|)) (-15 -2561 ((-112) |#5| |#1|)) (-15 -2975 (|#1| |#1| |#5|))) (-1038 |#2| |#3| |#4| |#5|) (-444) (-769) (-823) (-1032 |#2| |#3| |#4|)) (T -1037))
-NIL
-(-10 -8 (-15 -2975 ((-621 |#1|) (-621 |#5|) (-621 |#1|))) (-15 -2975 ((-621 |#1|) (-621 |#5|) |#1|)) (-15 -2975 ((-621 |#1|) |#5| (-621 |#1|))) (-15 -2975 ((-621 |#1|) |#5| |#1|)) (-15 -1691 ((-621 |#1|) (-621 |#5|) (-621 |#1|))) (-15 -1691 ((-621 |#1|) (-621 |#5|) |#1|)) (-15 -1691 ((-621 |#1|) |#5| (-621 |#1|))) (-15 -1691 ((-621 |#1|) |#5| |#1|)) (-15 -1795 ((-621 |#1|) |#5| (-621 |#1|))) (-15 -1795 ((-621 |#1|) (-621 |#5|) (-621 |#1|))) (-15 -1795 ((-621 |#1|) (-621 |#5|) |#1|)) (-15 -1795 ((-621 |#1|) |#5| |#1|)) (-15 -1447 ((-112) |#5| |#1|)) (-15 -2561 ((-112) |#1|)) (-15 -1972 ((-112) |#5| |#1|)) (-15 -4173 ((-112) |#5| |#1|)) (-15 -2561 ((-112) |#5| |#1|)) (-15 -2975 (|#1| |#1| |#5|)))
-((-3833 (((-112) $ $) 7)) (-3684 (((-621 (-2 (|:| -2680 $) (|:| -1358 (-621 |#4|)))) (-621 |#4|)) 85)) (-3840 (((-621 $) (-621 |#4|)) 86) (((-621 $) (-621 |#4|) (-112)) 111)) (-2271 (((-621 |#3|) $) 33)) (-3863 (((-112) $) 26)) (-1771 (((-112) $) 17 (|has| |#1| (-541)))) (-2344 (((-112) |#4| $) 101) (((-112) $) 97)) (-1305 ((|#4| |#4| $) 92)) (-1912 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 $))) |#4| $) 126)) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |#3|) 27)) (-1323 (((-112) $ (-747)) 44)) (-1488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| "failed") $ |#3|) 79)) (-1705 (($) 45 T CONST)) (-1717 (((-112) $) 22 (|has| |#1| (-541)))) (-1766 (((-112) $ $) 24 (|has| |#1| (-541)))) (-2671 (((-112) $ $) 23 (|has| |#1| (-541)))) (-2498 (((-112) $) 25 (|has| |#1| (-541)))) (-3074 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1436 (((-621 |#4|) (-621 |#4|) $) 18 (|has| |#1| (-541)))) (-3001 (((-621 |#4|) (-621 |#4|) $) 19 (|has| |#1| (-541)))) (-2713 (((-3 $ "failed") (-621 |#4|)) 36)) (-2658 (($ (-621 |#4|)) 35)) (-3655 (((-3 $ "failed") $) 82)) (-2514 ((|#4| |#4| $) 89)) (-3675 (($ $) 68 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#4| $) 67 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3249 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-541)))) (-4042 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3678 ((|#4| |#4| $) 87)) (-2558 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2235 (((-2 (|:| -2680 (-621 |#4|)) (|:| -1358 (-621 |#4|))) $) 105)) (-4173 (((-112) |#4| $) 136)) (-1447 (((-112) |#4| $) 133)) (-2561 (((-112) |#4| $) 137) (((-112) $) 134)) (-2990 (((-621 |#4|) $) 52 (|has| $ (-6 -4336)))) (-3929 (((-112) |#4| $) 104) (((-112) $) 103)) (-4170 ((|#3| $) 34)) (-4202 (((-112) $ (-747)) 43)) (-1958 (((-621 |#4|) $) 53 (|has| $ (-6 -4336)))) (-2273 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#4| |#4|) $) 47)) (-1670 (((-621 |#3|) $) 32)) (-2911 (((-112) |#3| $) 31)) (-4289 (((-112) $ (-747)) 42)) (-2677 (((-1124) $) 9)) (-4145 (((-3 |#4| (-621 $)) |#4| |#4| $) 128)) (-2587 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 $))) |#4| |#4| $) 127)) (-3828 (((-3 |#4| "failed") $) 83)) (-2613 (((-621 $) |#4| $) 129)) (-1783 (((-3 (-112) (-621 $)) |#4| $) 132)) (-1350 (((-621 (-2 (|:| |val| (-112)) (|:| -1980 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1795 (((-621 $) |#4| $) 125) (((-621 $) (-621 |#4|) $) 124) (((-621 $) (-621 |#4|) (-621 $)) 123) (((-621 $) |#4| (-621 $)) 122)) (-1449 (($ |#4| $) 117) (($ (-621 |#4|) $) 116)) (-4069 (((-621 |#4|) $) 107)) (-3130 (((-112) |#4| $) 99) (((-112) $) 95)) (-2741 ((|#4| |#4| $) 90)) (-3739 (((-112) $ $) 110)) (-2205 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-541)))) (-1582 (((-112) |#4| $) 100) (((-112) $) 96)) (-3952 ((|#4| |#4| $) 91)) (-3988 (((-1086) $) 10)) (-3645 (((-3 |#4| "failed") $) 84)) (-1917 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1762 (((-3 $ "failed") $ |#4|) 78)) (-2975 (($ $ |#4|) 77) (((-621 $) |#4| $) 115) (((-621 $) |#4| (-621 $)) 114) (((-621 $) (-621 |#4|) $) 113) (((-621 $) (-621 |#4|) (-621 $)) 112)) (-2470 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#4|) (-621 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-621 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))) (-2732 (((-112) $ $) 38)) (-1807 (((-112) $) 41)) (-1461 (($) 40)) (-3068 (((-747) $) 106)) (-3997 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-2281 (($ $) 39)) (-2844 (((-525) $) 69 (|has| |#4| (-594 (-525))))) (-3853 (($ (-621 |#4|)) 60)) (-1651 (($ $ |#3|) 28)) (-3183 (($ $ |#3|) 30)) (-1821 (($ $) 88)) (-2432 (($ $ |#3|) 29)) (-3845 (((-834) $) 11) (((-621 |#4|) $) 37)) (-1509 (((-747) $) 76 (|has| |#3| (-361)))) (-3472 (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2197 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) 98)) (-1691 (((-621 $) |#4| $) 121) (((-621 $) |#4| (-621 $)) 120) (((-621 $) (-621 |#4|) $) 119) (((-621 $) (-621 |#4|) (-621 $)) 118)) (-2150 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-2691 (((-621 |#3|) $) 81)) (-1972 (((-112) |#4| $) 135)) (-2923 (((-112) |#3| $) 80)) (-2388 (((-112) $ $) 6)) (-3774 (((-747) $) 46 (|has| $ (-6 -4336)))))
+((-3514 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-747)))) (-3787 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3512 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-4139 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3511 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3510 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-3509 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3508 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-4302 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3505 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3503 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-3502 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-3501 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4045 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3500 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4040 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-4038 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4038 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-4037 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4037 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-4041 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-4041 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-3499 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3498 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3499 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3498 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3497 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3496 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3497 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3496 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3495 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -3223 *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3495 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -3223 *1))) (-4 *1 (-1032 *4 *5 *3)))) (-3494 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3494 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1032 *4 *5 *3)))) (-4095 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3493 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3492 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3818 (-747)))) (-4 *1 (-1032 *3 *4 *5)))) (-4033 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-4032 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3491 (*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-400 (-535)))) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-917 (-400 (-535)))) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-917 (-400 (-535)))) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))) (-3491 (*1 *1 *2) (|partial| -3874 (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))))) (-3490 (*1 *1 *2) (-3874 (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))))) (-4313 (*1 *1 *2) (-3874 (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))))) (-3491 (*1 *1 *2) (|partial| -3874 (-12 (-5 *2 (-917 *3)) (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-3659 (-4 *3 (-38 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 *3)) (-12 (-3659 (-4 *3 (-534))) (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 *3)) (-12 (-3659 (-4 *3 (-962 (-535)))) (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))))) (-3490 (*1 *1 *2) (-3874 (-12 (-5 *2 (-917 *3)) (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-3659 (-4 *3 (-38 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 *3)) (-12 (-3659 (-4 *3 (-534))) (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-917 *3)) (-12 (-3659 (-4 *3 (-962 (-535)))) (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *5 (-594 (-1142))) (-4 *4 (-769)) (-4 *5 (-823)))) (-3489 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3488 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3487 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3486 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3487 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3486 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-4098 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3485 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -3478 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3484 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -3478 *1) (|:| |coef1| *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3483 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -3478 *1) (|:| |coef2| *1))) (-4 *1 (-1032 *3 *4 *5)))) (-4099 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3482 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-3524 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3481 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *3 (-542)))) (-3480 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *3 (-542)))) (-3479 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-542)))) (-3478 (*1 *2 *2 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-3477 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-3476 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-3475 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-3474 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))))
+(-13 (-921 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3514 (|t#3| $)) (-15 -3513 ((-747) $)) (-15 -3787 ($ $)) (-15 -3512 ($ $)) (-15 -4139 ($ $)) (-15 -3511 ($ $)) (-15 -3510 ((-618 $) $)) (-15 -3509 ($ $)) (-15 -3508 ($ $ |t#3|)) (-15 -4302 ($ $ |t#3|)) (-15 -3507 ((-112) $)) (-15 -3506 ((-112) $)) (-15 -3505 ($ $)) (-15 -3504 ($ $)) (-15 -3503 ((-618 $) $)) (-15 -3502 ((-618 $) $)) (-15 -3501 ((-3 (-112) "failed") $ $)) (-15 -4045 ((-112) $ $)) (-15 -3500 ((-112) $ $)) (-15 -4040 ((-112) $ $)) (-15 -4040 ((-112) $ (-618 $))) (-15 -4038 ((-112) $ $)) (-15 -4038 ((-112) $ (-618 $))) (-15 -4037 ((-112) $ $)) (-15 -4037 ((-112) $ (-618 $))) (-15 -4041 ((-112) $ $)) (-15 -4041 ((-112) $ (-618 $))) (-15 -3499 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -3499 ($ $ $ |t#3|)) (-15 -3498 ($ $ $ |t#3|)) (-15 -3497 ($ $ $)) (-15 -3496 ($ $ $)) (-15 -3497 ($ $ $ |t#3|)) (-15 -3496 ($ $ $ |t#3|)) (-15 -3495 ((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $)) (-15 -3495 ((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -3223 $)) $ $ |t#3|)) (-15 -3494 ((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -3494 ((-2 (|:| -4296 $) (|:| |gap| (-747)) (|:| -2091 $) (|:| -3223 $)) $ $ |t#3|)) (-15 -4095 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -3493 ($ $ $)) (-15 -3492 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3818 (-747))) $ $)) (-15 -4033 ($ $ $)) (-15 -4032 ($ $ $)) (IF (|has| |t#3| (-594 (-1142))) (PROGN (-6 (-593 (-917 |t#1|))) (-6 (-594 (-917 |t#1|))) (IF (|has| |t#1| (-38 (-400 (-535)))) (PROGN (-15 -3491 ((-3 $ "failed") (-917 (-400 (-535))))) (-15 -3490 ($ (-917 (-400 (-535))))) (-15 -4313 ($ (-917 (-400 (-535))))) (-15 -3491 ((-3 $ "failed") (-917 (-535)))) (-15 -3490 ($ (-917 (-535)))) (-15 -4313 ($ (-917 (-535)))) (IF (|has| |t#1| (-962 (-535))) |%noBranch| (PROGN (-15 -3491 ((-3 $ "failed") (-917 |t#1|))) (-15 -3490 ($ (-917 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-535))) (IF (|has| |t#1| (-38 (-400 (-535)))) |%noBranch| (PROGN (-15 -3491 ((-3 $ "failed") (-917 (-535)))) (-15 -3490 ($ (-917 (-535)))) (-15 -4313 ($ (-917 (-535)))) (IF (|has| |t#1| (-534)) |%noBranch| (PROGN (-15 -3491 ((-3 $ "failed") (-917 |t#1|))) (-15 -3490 ($ (-917 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-535))) |%noBranch| (IF (|has| |t#1| (-38 (-400 (-535)))) |%noBranch| (PROGN (-15 -3491 ((-3 $ "failed") (-917 |t#1|))) (-15 -3490 ($ (-917 |t#1|)))))) (-15 -4313 ($ (-917 |t#1|))) (IF (|has| |t#1| (-1009 (-535))) (-6 (-594 (-1124))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -3489 ($ $)) (-15 -3488 ($ $)) (-15 -3487 ($ $ |t#1|)) (-15 -3486 ($ $ |t#1|)) (-15 -3487 ($ $ $)) (-15 -3486 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3485 ((-2 (|:| -3478 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3484 ((-2 (|:| -3478 $) (|:| |coef1| $)) $ $)) (-15 -3483 ((-2 (|:| -3478 $) (|:| |coef2| $)) $ $)) (-15 -4099 ($ $ $)) (-15 -3482 ((-618 $) $ $)) (-15 -3524 ($ $ $)) (-15 -3481 ($ $ $ (-747))) (-15 -3480 ($ $ $ $ (-747))) (-15 -3479 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3478 (|t#1| |t#1| $)) (-15 -3477 ($ $)) (-15 -3476 ($ $)) (-15 -3475 ($ $)) (-15 -3474 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-593 (-917 |#1|)) |has| |#3| (-594 (-1142))) ((-170) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-594 (-524)) -12 (|has| |#1| (-594 (-524))) (|has| |#3| (-594 (-524)))) ((-594 (-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#3| (-594 (-861 (-371))))) ((-594 (-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#3| (-594 (-861 (-535))))) ((-594 (-917 |#1|)) |has| |#3| (-594 (-1142))) ((-594 (-1124)) -12 (|has| |#1| (-1009 (-535))) (|has| |#3| (-594 (-1142)))) ((-283) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3874 (|has| |#1| (-881)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-542) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 |#3|) . T) ((-857 (-371)) -12 (|has| |#1| (-857 (-371))) (|has| |#3| (-857 (-371)))) ((-857 (-535)) -12 (|has| |#1| (-857 (-535))) (|has| |#3| (-857 (-535)))) ((-921 |#1| |#2| |#3|) . T) ((-881) |has| |#1| (-881)) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 |#1|) . T) ((-1009 |#3|) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) |has| |#1| (-881)))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3515 (((-618 (-1101)) $) 13)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 24) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-1101) $) 15)) (-3375 (((-112) $ $) NIL)))
+(((-1033) (-13 (-1049) (-10 -8 (-15 -3515 ((-618 (-1101)) $)) (-15 -3567 ((-1101) $))))) (T -1033))
+((-3515 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-1033)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1033)))))
+(-13 (-1049) (-10 -8 (-15 -3515 ((-618 (-1101)) $)) (-15 -3567 ((-1101) $))))
+((-3522 (((-112) |#3| $) 13)) (-3517 (((-3 $ "failed") |#3| (-890)) 23)) (-3804 (((-3 |#3| "failed") |#3| $) 38)) (-3520 (((-112) |#3| $) 16)) (-3521 (((-112) |#3| $) 14)))
+(((-1034 |#1| |#2| |#3|) (-10 -8 (-15 -3517 ((-3 |#1| "failed") |#3| (-890))) (-15 -3804 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3520 ((-112) |#3| |#1|)) (-15 -3521 ((-112) |#3| |#1|)) (-15 -3522 ((-112) |#3| |#1|))) (-1035 |#2| |#3|) (-13 (-821) (-356)) (-1200 |#2|)) (T -1034))
+NIL
+(-10 -8 (-15 -3517 ((-3 |#1| "failed") |#3| (-890))) (-15 -3804 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3520 ((-112) |#3| |#1|)) (-15 -3521 ((-112) |#3| |#1|)) (-15 -3522 ((-112) |#3| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) |#2| $) 21)) (-3969 (((-535) |#2| $) 22)) (-3517 (((-3 $ "failed") |#2| (-890)) 15)) (-3516 ((|#1| |#2| $ |#1|) 13)) (-3804 (((-3 |#2| "failed") |#2| $) 18)) (-3520 (((-112) |#2| $) 19)) (-3521 (((-112) |#2| $) 20)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3519 ((|#2| $) 17)) (-4300 (((-835) $) 11)) (-4112 ((|#1| |#2| $ |#1|) 14)) (-3518 (((-618 $) |#2|) 16)) (-3375 (((-112) $ $) 6)))
+(((-1035 |#1| |#2|) (-138) (-13 (-821) (-356)) (-1200 |t#1|)) (T -1035))
+((-3969 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) (-5 *2 (-535)))) (-3522 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) (-5 *2 (-112)))) (-3521 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) (-5 *2 (-112)))) (-3520 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) (-5 *2 (-112)))) (-3804 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356))) (-4 *2 (-1200 *3)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356))) (-4 *2 (-1200 *3)))) (-3518 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) (-5 *2 (-618 *1)) (-4 *1 (-1035 *4 *3)))) (-3517 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-890)) (-4 *4 (-13 (-821) (-356))) (-4 *1 (-1035 *4 *2)) (-4 *2 (-1200 *4)))) (-4112 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356))) (-4 *3 (-1200 *2)))) (-3516 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356))) (-4 *3 (-1200 *2)))))
+(-13 (-1067) (-10 -8 (-15 -3969 ((-535) |t#2| $)) (-15 -3522 ((-112) |t#2| $)) (-15 -3521 ((-112) |t#2| $)) (-15 -3520 ((-112) |t#2| $)) (-15 -3804 ((-3 |t#2| "failed") |t#2| $)) (-15 -3519 (|t#2| $)) (-15 -3518 ((-618 $) |t#2|)) (-15 -3517 ((-3 $ "failed") |t#2| (-890))) (-15 -4112 (|t#1| |t#2| $ |t#1|)) (-15 -3516 (|t#1| |t#2| $ |t#1|))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-3778 (((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 |#4|) (-618 |#5|) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-747)) 96)) (-3775 (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747)) 56)) (-3779 (((-1230) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-747)) 87)) (-3773 (((-747) (-618 |#4|) (-618 |#5|)) 27)) (-3776 (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747)) 58) (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747) (-112)) 60)) (-3777 (((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112)) 79)) (-4313 (((-1124) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) 82)) (-3774 (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-112)) 55)) (-3772 (((-747) (-618 |#4|) (-618 |#5|)) 19)))
+(((-1036 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3773 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3774 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-112))) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3778 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 |#4|) (-618 |#5|) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-747))) (-15 -4313 ((-1124) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3779 ((-1230) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-747)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1036))
+((-3779 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *4 (-747)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1230)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1124)) (-5 *1 (-1036 *4 *5 *6 *7 *8)))) (-3778 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-618 *11)) (|:| |todo| (-618 (-2 (|:| |val| *3) (|:| -1655 *11)))))) (-5 *6 (-747)) (-5 *2 (-618 (-2 (|:| |val| (-618 *10)) (|:| -1655 *11)))) (-5 *3 (-618 *10)) (-5 *4 (-618 *11)) (-4 *10 (-1032 *7 *8 *9)) (-4 *11 (-1038 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-5 *1 (-1036 *7 *8 *9 *10 *11)))) (-3777 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-3777 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-3776 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1036 *7 *8 *9 *3 *4)) (-4 *4 (-1038 *7 *8 *9 *3)))) (-3775 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3775 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3774 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3772 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3773 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3774 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-112))) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3778 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 |#4|) (-618 |#5|) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-747))) (-15 -4313 ((-1124) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3779 ((-1230) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-747))))
+((-3531 (((-112) |#5| $) 21)) (-3529 (((-112) |#5| $) 24)) (-3532 (((-112) |#5| $) 16) (((-112) $) 45)) (-3572 (((-618 $) |#5| $) NIL) (((-618 $) (-618 |#5|) $) 77) (((-618 $) (-618 |#5|) (-618 $)) 75) (((-618 $) |#5| (-618 $)) 78)) (-4111 (($ $ |#5|) NIL) (((-618 $) |#5| $) NIL) (((-618 $) |#5| (-618 $)) 60) (((-618 $) (-618 |#5|) $) 62) (((-618 $) (-618 |#5|) (-618 $)) 64)) (-3523 (((-618 $) |#5| $) NIL) (((-618 $) |#5| (-618 $)) 54) (((-618 $) (-618 |#5|) $) 56) (((-618 $) (-618 |#5|) (-618 $)) 58)) (-3530 (((-112) |#5| $) 27)))
+(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4111 ((-618 |#1|) (-618 |#5|) (-618 |#1|))) (-15 -4111 ((-618 |#1|) (-618 |#5|) |#1|)) (-15 -4111 ((-618 |#1|) |#5| (-618 |#1|))) (-15 -4111 ((-618 |#1|) |#5| |#1|)) (-15 -3523 ((-618 |#1|) (-618 |#5|) (-618 |#1|))) (-15 -3523 ((-618 |#1|) (-618 |#5|) |#1|)) (-15 -3523 ((-618 |#1|) |#5| (-618 |#1|))) (-15 -3523 ((-618 |#1|) |#5| |#1|)) (-15 -3572 ((-618 |#1|) |#5| (-618 |#1|))) (-15 -3572 ((-618 |#1|) (-618 |#5|) (-618 |#1|))) (-15 -3572 ((-618 |#1|) (-618 |#5|) |#1|)) (-15 -3572 ((-618 |#1|) |#5| |#1|)) (-15 -3529 ((-112) |#5| |#1|)) (-15 -3532 ((-112) |#1|)) (-15 -3530 ((-112) |#5| |#1|)) (-15 -3531 ((-112) |#5| |#1|)) (-15 -3532 ((-112) |#5| |#1|)) (-15 -4111 (|#1| |#1| |#5|))) (-1038 |#2| |#3| |#4| |#5|) (-444) (-769) (-823) (-1032 |#2| |#3| |#4|)) (T -1037))
+NIL
+(-10 -8 (-15 -4111 ((-618 |#1|) (-618 |#5|) (-618 |#1|))) (-15 -4111 ((-618 |#1|) (-618 |#5|) |#1|)) (-15 -4111 ((-618 |#1|) |#5| (-618 |#1|))) (-15 -4111 ((-618 |#1|) |#5| |#1|)) (-15 -3523 ((-618 |#1|) (-618 |#5|) (-618 |#1|))) (-15 -3523 ((-618 |#1|) (-618 |#5|) |#1|)) (-15 -3523 ((-618 |#1|) |#5| (-618 |#1|))) (-15 -3523 ((-618 |#1|) |#5| |#1|)) (-15 -3572 ((-618 |#1|) |#5| (-618 |#1|))) (-15 -3572 ((-618 |#1|) (-618 |#5|) (-618 |#1|))) (-15 -3572 ((-618 |#1|) (-618 |#5|) |#1|)) (-15 -3572 ((-618 |#1|) |#5| |#1|)) (-15 -3529 ((-112) |#5| |#1|)) (-15 -3532 ((-112) |#1|)) (-15 -3530 ((-112) |#5| |#1|)) (-15 -3531 ((-112) |#5| |#1|)) (-15 -3532 ((-112) |#5| |#1|)) (-15 -4111 (|#1| |#1| |#5|)))
+((-2887 (((-112) $ $) 7)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) 85)) (-4028 (((-618 $) (-618 |#4|)) 86) (((-618 $) (-618 |#4|) (-112)) 111)) (-3405 (((-618 |#3|) $) 33)) (-3229 (((-112) $) 26)) (-3220 (((-112) $) 17 (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) 101) (((-112) $) 97)) (-4034 ((|#4| |#4| $) 92)) (-4117 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) 27)) (-1264 (((-112) $ (-747)) 44)) (-4056 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3879 (($) 45 T CONST)) (-3225 (((-112) $) 22 (|has| |#1| (-542)))) (-3227 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3226 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3228 (((-112) $) 25 (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3221 (((-618 |#4|) (-618 |#4|) $) 18 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) 19 (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 36)) (-3490 (($ (-618 |#4|)) 35)) (-4141 (((-3 $ #1#) $) 82)) (-4031 ((|#4| |#4| $) 89)) (-1394 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4029 ((|#4| |#4| $) 87)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) 105)) (-3531 (((-112) |#4| $) 136)) (-3529 (((-112) |#4| $) 133)) (-3532 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-618 |#4|) $) 52 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) 104) (((-112) $) 103)) (-3514 ((|#3| $) 34)) (-4065 (((-112) $ (-747)) 43)) (-2502 (((-618 |#4|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 47)) (-3235 (((-618 |#3|) $) 32)) (-3234 (((-112) |#3| $) 31)) (-4062 (((-112) $ (-747)) 42)) (-3576 (((-1124) $) 9)) (-3525 (((-3 |#4| (-618 $)) |#4| |#4| $) 128)) (-3524 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4140 (((-3 |#4| #1#) $) 83)) (-3526 (((-618 $) |#4| $) 129)) (-3528 (((-3 (-112) (-618 $)) |#4| $) 132)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3572 (((-618 $) |#4| $) 125) (((-618 $) (-618 |#4|) $) 124) (((-618 $) (-618 |#4|) (-618 $)) 123) (((-618 $) |#4| (-618 $)) 122)) (-3782 (($ |#4| $) 117) (($ (-618 |#4|) $) 116)) (-4043 (((-618 |#4|) $) 107)) (-4037 (((-112) |#4| $) 99) (((-112) $) 95)) (-4032 ((|#4| |#4| $) 90)) (-4045 (((-112) $ $) 110)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) 100) (((-112) $) 96)) (-4033 ((|#4| |#4| $) 91)) (-3577 (((-1086) $) 10)) (-4143 (((-3 |#4| #1#) $) 84)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4025 (((-3 $ #1#) $ |#4|) 78)) (-4111 (($ $ |#4|) 77) (((-618 $) |#4| $) 115) (((-618 $) |#4| (-618 $)) 114) (((-618 $) (-618 |#4|) $) 113) (((-618 $) (-618 |#4|) (-618 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) 38)) (-3745 (((-112) $) 41)) (-3911 (($) 40)) (-4290 (((-747) $) 106)) (-2064 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-3742 (($ $) 39)) (-4313 (((-524) $) 69 (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-3233 (($ $ |#3|) 30)) (-4030 (($ $) 88)) (-3232 (($ $ |#3|) 29)) (-4300 (((-835) $) 11) (((-618 |#4|) $) 37)) (-4024 (((-747) $) 76 (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) 98)) (-3523 (((-618 $) |#4| $) 121) (((-618 $) |#4| (-618 $)) 120) (((-618 $) (-618 |#4|) $) 119) (((-618 $) (-618 |#4|) (-618 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) 81)) (-3530 (((-112) |#4| $) 135)) (-4276 (((-112) |#3| $) 80)) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 46 (|has| $ (-6 -4336)))))
(((-1038 |#1| |#2| |#3| |#4|) (-138) (-444) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1038))
-((-2561 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-4173 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-1972 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-1447 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-1783 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-3 (-112) (-621 *1))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-1350 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1980 *1)))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-1350 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-2613 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-4145 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-3 *3 (-621 *1))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-2587 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *1)))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-1912 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *1)))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-1795 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-1795 (*1 *2 *3 *1) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) (-1795 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *1)) (-5 *3 (-621 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) (-1795 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) (-1691 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-1691 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) (-1691 (*1 *2 *3 *1) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) (-1691 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *1)) (-5 *3 (-621 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) (-1449 (*1 *1 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-1449 (*1 *1 *2 *1) (-12 (-5 *2 (-621 *6)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)))) (-2975 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-2975 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) (-2975 (*1 *2 *3 *1) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) (-2975 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *1)) (-5 *3 (-621 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) (-3840 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *5 *6 *7 *8)))))
-(-13 (-1172 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2561 ((-112) |t#4| $)) (-15 -4173 ((-112) |t#4| $)) (-15 -1972 ((-112) |t#4| $)) (-15 -2561 ((-112) $)) (-15 -1447 ((-112) |t#4| $)) (-15 -1783 ((-3 (-112) (-621 $)) |t#4| $)) (-15 -1350 ((-621 (-2 (|:| |val| (-112)) (|:| -1980 $))) |t#4| $)) (-15 -1350 ((-112) |t#4| $)) (-15 -2613 ((-621 $) |t#4| $)) (-15 -4145 ((-3 |t#4| (-621 $)) |t#4| |t#4| $)) (-15 -2587 ((-621 (-2 (|:| |val| |t#4|) (|:| -1980 $))) |t#4| |t#4| $)) (-15 -1912 ((-621 (-2 (|:| |val| |t#4|) (|:| -1980 $))) |t#4| $)) (-15 -1795 ((-621 $) |t#4| $)) (-15 -1795 ((-621 $) (-621 |t#4|) $)) (-15 -1795 ((-621 $) (-621 |t#4|) (-621 $))) (-15 -1795 ((-621 $) |t#4| (-621 $))) (-15 -1691 ((-621 $) |t#4| $)) (-15 -1691 ((-621 $) |t#4| (-621 $))) (-15 -1691 ((-621 $) (-621 |t#4|) $)) (-15 -1691 ((-621 $) (-621 |t#4|) (-621 $))) (-15 -1449 ($ |t#4| $)) (-15 -1449 ($ (-621 |t#4|) $)) (-15 -2975 ((-621 $) |t#4| $)) (-15 -2975 ((-621 $) |t#4| (-621 $))) (-15 -2975 ((-621 $) (-621 |t#4|) $)) (-15 -2975 ((-621 $) (-621 |t#4|) (-621 $))) (-15 -3840 ((-621 $) (-621 |t#4|) (-112)))))
-(((-34) . T) ((-101) . T) ((-593 (-621 |#4|)) . T) ((-593 (-834)) . T) ((-149 |#4|) . T) ((-594 (-525)) |has| |#4| (-594 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1066) . T) ((-1172 |#1| |#2| |#3| |#4|) . T) ((-1179) . T))
-((-3621 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#5|) 81)) (-1802 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5|) 113)) (-2571 (((-621 |#5|) |#4| |#5|) 70)) (-2171 (((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2579 (((-1230)) 37)) (-3552 (((-1230)) 26)) (-1412 (((-1230) (-1124) (-1124) (-1124)) 33)) (-1299 (((-1230) (-1124) (-1124) (-1124)) 22)) (-1277 (((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) |#4| |#4| |#5|) 96)) (-3198 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) |#3| (-112)) 107) (((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-1624 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5|) 102)))
-(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1299 ((-1230) (-1124) (-1124) (-1124))) (-15 -3552 ((-1230))) (-15 -1412 ((-1230) (-1124) (-1124) (-1124))) (-15 -2579 ((-1230))) (-15 -1277 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) |#4| |#4| |#5|)) (-15 -3198 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3198 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) |#3| (-112))) (-15 -1624 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5|)) (-15 -1802 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5|)) (-15 -2171 ((-112) |#4| |#5|)) (-15 -2171 ((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|)) (-15 -2571 ((-621 |#5|) |#4| |#5|)) (-15 -3621 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#5|))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1039))
-((-3621 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2571 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4)) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2171 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1980 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2171 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-1802 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-1624 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3198 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1980 *9)))) (-5 *5 (-112)) (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *4 (-823)) (-5 *2 (-621 (-2 (|:| |val| *8) (|:| -1980 *9)))) (-5 *1 (-1039 *6 *7 *4 *8 *9)))) (-3198 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4)))) (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-1277 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2579 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-1412 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1039 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3552 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-1299 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1039 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1299 ((-1230) (-1124) (-1124) (-1124))) (-15 -3552 ((-1230))) (-15 -1412 ((-1230) (-1124) (-1124) (-1124))) (-15 -2579 ((-1230))) (-15 -1277 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) |#4| |#4| |#5|)) (-15 -3198 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3198 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) |#3| (-112))) (-15 -1624 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5|)) (-15 -1802 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5|)) (-15 -2171 ((-112) |#4| |#5|)) (-15 -2171 ((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|)) (-15 -2571 ((-621 |#5|) |#4| |#5|)) (-15 -3621 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#5|)))
-((-3833 (((-112) $ $) NIL)) (-2099 (((-1178) $) 13)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3954 (((-1101) $) 10)) (-3845 (((-834) $) 22) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-1040) (-13 (-1049) (-10 -8 (-15 -3954 ((-1101) $)) (-15 -2099 ((-1178) $))))) (T -1040))
-((-3954 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1040)))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1040)))))
-(-13 (-1049) (-10 -8 (-15 -3954 ((-1101) $)) (-15 -2099 ((-1178) $))))
-((-3833 (((-112) $ $) NIL)) (-2480 (((-1142) $) 8)) (-2677 (((-1124) $) 16)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 11)) (-2388 (((-112) $ $) 13)))
-(((-1041 |#1|) (-13 (-1066) (-10 -8 (-15 -2480 ((-1142) $)))) (-1142)) (T -1041))
-((-2480 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1041 *3)) (-14 *3 *2))))
-(-13 (-1066) (-10 -8 (-15 -2480 ((-1142) $))))
-((-3833 (((-112) $ $) NIL)) (-1862 (($ $ (-621 (-1142)) (-1 (-112) (-621 |#3|))) 33)) (-3661 (($ |#3| |#3|) 22) (($ |#3| |#3| (-621 (-1142))) 20)) (-2202 ((|#3| $) 13)) (-2713 (((-3 (-287 |#3|) "failed") $) 58)) (-2658 (((-287 |#3|) $) NIL)) (-4199 (((-621 (-1142)) $) 16)) (-3654 (((-863 |#1|) $) 11)) (-2189 ((|#3| $) 12)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3340 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-892)) 39)) (-3845 (((-834) $) 86) (($ (-287 |#3|)) 21)) (-2388 (((-112) $ $) 36)))
-(((-1042 |#1| |#2| |#3|) (-13 (-1066) (-279 |#3| |#3|) (-1009 (-287 |#3|)) (-10 -8 (-15 -3661 ($ |#3| |#3|)) (-15 -3661 ($ |#3| |#3| (-621 (-1142)))) (-15 -1862 ($ $ (-621 (-1142)) (-1 (-112) (-621 |#3|)))) (-15 -3654 ((-863 |#1|) $)) (-15 -2189 (|#3| $)) (-15 -2202 (|#3| $)) (-15 -3340 (|#3| $ |#3| (-892))) (-15 -4199 ((-621 (-1142)) $)))) (-1066) (-13 (-1018) (-857 |#1|) (-823) (-594 (-863 |#1|))) (-13 (-423 |#2|) (-857 |#1|) (-594 (-863 |#1|)))) (T -1042))
-((-3661 (*1 *1 *2 *2) (-12 (-4 *3 (-1066)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3)))) (-5 *1 (-1042 *3 *4 *2)) (-4 *2 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))))) (-3661 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-621 (-1142))) (-4 *4 (-1066)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4)))) (-5 *1 (-1042 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))))) (-1862 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-1 (-112) (-621 *6))) (-4 *6 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))) (-4 *4 (-1066)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4)))) (-5 *1 (-1042 *4 *5 *6)))) (-3654 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 *2))) (-5 *2 (-863 *3)) (-5 *1 (-1042 *3 *4 *5)) (-4 *5 (-13 (-423 *4) (-857 *3) (-594 *2))))) (-2189 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *2 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))) (-5 *1 (-1042 *3 *4 *2)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3)))))) (-2202 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *2 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))) (-5 *1 (-1042 *3 *4 *2)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3)))))) (-3340 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-892)) (-4 *4 (-1066)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4)))) (-5 *1 (-1042 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))))) (-4199 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3)))) (-5 *2 (-621 (-1142))) (-5 *1 (-1042 *3 *4 *5)) (-4 *5 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))))))
-(-13 (-1066) (-279 |#3| |#3|) (-1009 (-287 |#3|)) (-10 -8 (-15 -3661 ($ |#3| |#3|)) (-15 -3661 ($ |#3| |#3| (-621 (-1142)))) (-15 -1862 ($ $ (-621 (-1142)) (-1 (-112) (-621 |#3|)))) (-15 -3654 ((-863 |#1|) $)) (-15 -2189 (|#3| $)) (-15 -2202 (|#3| $)) (-15 -3340 (|#3| $ |#3| (-892))) (-15 -4199 ((-621 (-1142)) $))))
-((-3833 (((-112) $ $) NIL)) (-1825 (($ (-621 (-1042 |#1| |#2| |#3|))) 13)) (-3636 (((-621 (-1042 |#1| |#2| |#3|)) $) 20)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3340 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-892)) 26)) (-3845 (((-834) $) 16)) (-2388 (((-112) $ $) 19)))
-(((-1043 |#1| |#2| |#3|) (-13 (-1066) (-279 |#3| |#3|) (-10 -8 (-15 -1825 ($ (-621 (-1042 |#1| |#2| |#3|)))) (-15 -3636 ((-621 (-1042 |#1| |#2| |#3|)) $)) (-15 -3340 (|#3| $ |#3| (-892))))) (-1066) (-13 (-1018) (-857 |#1|) (-823) (-594 (-863 |#1|))) (-13 (-423 |#2|) (-857 |#1|) (-594 (-863 |#1|)))) (T -1043))
-((-1825 (*1 *1 *2) (-12 (-5 *2 (-621 (-1042 *3 *4 *5))) (-4 *3 (-1066)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3)))) (-4 *5 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))) (-5 *1 (-1043 *3 *4 *5)))) (-3636 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3)))) (-5 *2 (-621 (-1042 *3 *4 *5))) (-5 *1 (-1043 *3 *4 *5)) (-4 *5 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))))) (-3340 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-892)) (-4 *4 (-1066)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4)))) (-5 *1 (-1043 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))))))
-(-13 (-1066) (-279 |#3| |#3|) (-10 -8 (-15 -1825 ($ (-621 (-1042 |#1| |#2| |#3|)))) (-15 -3636 ((-621 (-1042 |#1| |#2| |#3|)) $)) (-15 -3340 (|#3| $ |#3| (-892)))))
-((-2979 (((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112)) 75) (((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|))) 77) (((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112)) 76)))
-(((-1044 |#1| |#2|) (-10 -7 (-15 -2979 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112))) (-15 -2979 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)))) (-15 -2979 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112)))) (-13 (-300) (-145)) (-621 (-1142))) (T -1044))
-((-2979 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-621 (-2 (|:| -2136 (-1138 *5)) (|:| -4163 (-621 (-923 *5)))))) (-5 *1 (-1044 *5 *6)) (-5 *3 (-621 (-923 *5))) (-14 *6 (-621 (-1142))))) (-2979 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-5 *2 (-621 (-2 (|:| -2136 (-1138 *4)) (|:| -4163 (-621 (-923 *4)))))) (-5 *1 (-1044 *4 *5)) (-5 *3 (-621 (-923 *4))) (-14 *5 (-621 (-1142))))) (-2979 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-621 (-2 (|:| -2136 (-1138 *5)) (|:| -4163 (-621 (-923 *5)))))) (-5 *1 (-1044 *5 *6)) (-5 *3 (-621 (-923 *5))) (-14 *6 (-621 (-1142))))))
-(-10 -7 (-15 -2979 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112))) (-15 -2979 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)))) (-15 -2979 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112))))
-((-2120 (((-411 |#3|) |#3|) 18)))
-(((-1045 |#1| |#2| |#3|) (-10 -7 (-15 -2120 ((-411 |#3|) |#3|))) (-1201 (-400 (-549))) (-13 (-356) (-145) (-701 (-400 (-549)) |#1|)) (-1201 |#2|)) (T -1045))
-((-2120 (*1 *2 *3) (-12 (-4 *4 (-1201 (-400 (-549)))) (-4 *5 (-13 (-356) (-145) (-701 (-400 (-549)) *4))) (-5 *2 (-411 *3)) (-5 *1 (-1045 *4 *5 *3)) (-4 *3 (-1201 *5)))))
-(-10 -7 (-15 -2120 ((-411 |#3|) |#3|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 126)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-356)))) (-2408 (($ $) NIL (|has| |#1| (-356)))) (-2477 (((-112) $) NIL (|has| |#1| (-356)))) (-3102 (((-665 |#1|) (-1225 $)) NIL) (((-665 |#1|)) 115)) (-2905 ((|#1| $) 119)) (-2572 (((-1152 (-892) (-747)) (-549)) NIL (|has| |#1| (-342)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL (|has| |#1| (-356)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3615 (((-747)) 40 (|has| |#1| (-361)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2127 (($ (-1225 |#1|) (-1225 $)) NIL) (($ (-1225 |#1|)) 43)) (-3203 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2988 (((-665 |#1|) $ (-1225 $)) NIL) (((-665 |#1|) $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 106) (((-665 |#1|) (-665 $)) 101)) (-2558 (($ |#2|) 61) (((-3 $ "failed") (-400 |#2|)) NIL (|has| |#1| (-356)))) (-3976 (((-3 $ "failed") $) NIL)) (-3122 (((-892)) 77)) (-3238 (($) 44 (|has| |#1| (-361)))) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-1327 (($) NIL (|has| |#1| (-342)))) (-1729 (((-112) $) NIL (|has| |#1| (-342)))) (-3225 (($ $ (-747)) NIL (|has| |#1| (-342))) (($ $) NIL (|has| |#1| (-342)))) (-2471 (((-112) $) NIL (|has| |#1| (-356)))) (-2078 (((-892) $) NIL (|has| |#1| (-342))) (((-809 (-892)) $) NIL (|has| |#1| (-342)))) (-3987 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-3982 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-4030 ((|#2| $) 84 (|has| |#1| (-356)))) (-2723 (((-892) $) 131 (|has| |#1| (-361)))) (-2546 ((|#2| $) 58)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL (|has| |#1| (-356)))) (-3060 (($) NIL (|has| |#1| (-342)) CONST)) (-3491 (($ (-892)) 125 (|has| |#1| (-361)))) (-3988 (((-1086) $) NIL)) (-4246 (($) 121)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-356)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1647 (((-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))) NIL (|has| |#1| (-342)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-4091 (((-747) $) NIL (|has| |#1| (-356)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-3086 ((|#1| (-1225 $)) NIL) ((|#1|) 109)) (-2591 (((-747) $) NIL (|has| |#1| (-342))) (((-3 (-747) "failed") $ $) NIL (|has| |#1| (-342)))) (-3455 (($ $) NIL (-1536 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-747)) NIL (-1536 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-1 |#1| |#1|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-1369 (((-665 |#1|) (-1225 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2539 ((|#2|) 73)) (-3191 (($) NIL (|has| |#1| (-342)))) (-4163 (((-1225 |#1|) $ (-1225 $)) 89) (((-665 |#1|) (-1225 $) (-1225 $)) NIL) (((-1225 |#1|) $) 71) (((-665 |#1|) (-1225 $)) 85)) (-2844 (((-1225 |#1|) $) NIL) (($ (-1225 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (|has| |#1| (-342)))) (-3845 (((-834) $) 57) (($ (-549)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-356))) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-549))))))) (-3407 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4041 ((|#2| $) 82)) (-1723 (((-747)) 75)) (-3420 (((-1225 $)) 81)) (-4053 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3275 (($) 30 T CONST)) (-3287 (($) 19 T CONST)) (-1700 (($ $) NIL (-1536 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-747)) NIL (-1536 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-1 |#1| |#1|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2388 (((-112) $ $) 63)) (-2512 (($ $ $) NIL (|has| |#1| (-356)))) (-2499 (($ $) 67) (($ $ $) NIL)) (-2485 (($ $ $) 65)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-400 (-549)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-549))) NIL (|has| |#1| (-356)))))
-(((-1046 |#1| |#2| |#3|) (-701 |#1| |#2|) (-170) (-1201 |#1|) |#2|) (T -1046))
+((-3532 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3531 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3530 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-3529 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3528 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-3 (-112) (-618 *1))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3527 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *1)))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3527 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3526 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3525 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-3 *3 (-618 *1))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3524 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *1)))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-4117 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *1)))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3572 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3572 (*1 *2 *3 *1) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) (-3572 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *1)) (-5 *3 (-618 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) (-3572 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) (-3523 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3523 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) (-3523 (*1 *2 *3 *1) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) (-3523 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *1)) (-5 *3 (-618 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) (-3782 (*1 *1 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-3782 (*1 *1 *2 *1) (-12 (-5 *2 (-618 *6)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)))) (-4111 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-4111 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) (-4111 (*1 *2 *3 *1) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) (-4111 (*1 *2 *3 *2) (-12 (-5 *2 (-618 *1)) (-5 *3 (-618 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) (-4028 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *5 *6 *7 *8)))))
+(-13 (-1173 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3532 ((-112) |t#4| $)) (-15 -3531 ((-112) |t#4| $)) (-15 -3530 ((-112) |t#4| $)) (-15 -3532 ((-112) $)) (-15 -3529 ((-112) |t#4| $)) (-15 -3528 ((-3 (-112) (-618 $)) |t#4| $)) (-15 -3527 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |t#4| $)) (-15 -3527 ((-112) |t#4| $)) (-15 -3526 ((-618 $) |t#4| $)) (-15 -3525 ((-3 |t#4| (-618 $)) |t#4| |t#4| $)) (-15 -3524 ((-618 (-2 (|:| |val| |t#4|) (|:| -1655 $))) |t#4| |t#4| $)) (-15 -4117 ((-618 (-2 (|:| |val| |t#4|) (|:| -1655 $))) |t#4| $)) (-15 -3572 ((-618 $) |t#4| $)) (-15 -3572 ((-618 $) (-618 |t#4|) $)) (-15 -3572 ((-618 $) (-618 |t#4|) (-618 $))) (-15 -3572 ((-618 $) |t#4| (-618 $))) (-15 -3523 ((-618 $) |t#4| $)) (-15 -3523 ((-618 $) |t#4| (-618 $))) (-15 -3523 ((-618 $) (-618 |t#4|) $)) (-15 -3523 ((-618 $) (-618 |t#4|) (-618 $))) (-15 -3782 ($ |t#4| $)) (-15 -3782 ($ (-618 |t#4|) $)) (-15 -4111 ((-618 $) |t#4| $)) (-15 -4111 ((-618 $) |t#4| (-618 $))) (-15 -4111 ((-618 $) (-618 |t#4|) $)) (-15 -4111 ((-618 $) (-618 |t#4|) (-618 $))) (-15 -4028 ((-618 $) (-618 |t#4|) (-112)))))
+(((-34) . T) ((-101) . T) ((-593 (-618 |#4|)) . T) ((-593 (-835)) . T) ((-149 |#4|) . T) ((-594 (-524)) |has| |#4| (-594 (-524))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1173 |#1| |#2| |#3| |#4|) . T) ((-1178) . T))
+((-3539 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|) 81)) (-3536 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 113)) (-3538 (((-618 |#5|) |#4| |#5|) 70)) (-3537 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3621 (((-1230)) 37)) (-3619 (((-1230)) 26)) (-3620 (((-1230) (-1124) (-1124) (-1124)) 33)) (-3618 (((-1230) (-1124) (-1124) (-1124)) 22)) (-3533 (((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|) 96)) (-3534 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#3| (-112)) 107) (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3535 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 102)))
+(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3618 ((-1230) (-1124) (-1124) (-1124))) (-15 -3619 ((-1230))) (-15 -3620 ((-1230) (-1124) (-1124) (-1124))) (-15 -3621 ((-1230))) (-15 -3533 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3534 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3534 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3535 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3536 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3537 ((-112) |#4| |#5|)) (-15 -3537 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3538 ((-618 |#5|) |#4| |#5|)) (-15 -3539 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1039))
+((-3539 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3538 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 *4)) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3537 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3537 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3536 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3535 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3534 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *4 (-823)) (-5 *2 (-618 (-2 (|:| |val| *8) (|:| -1655 *9)))) (-5 *1 (-1039 *6 *7 *4 *8 *9)))) (-3534 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3533 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3621 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3620 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1039 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3619 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3618 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1039 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3618 ((-1230) (-1124) (-1124) (-1124))) (-15 -3619 ((-1230))) (-15 -3620 ((-1230) (-1124) (-1124) (-1124))) (-15 -3621 ((-1230))) (-15 -3533 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3534 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3534 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3535 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3536 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3537 ((-112) |#4| |#5|)) (-15 -3537 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3538 ((-618 |#5|) |#4| |#5|)) (-15 -3539 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|)))
+((-2887 (((-112) $ $) NIL)) (-3652 (((-1179) $) 13)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3540 (((-1101) $) 10)) (-4300 (((-835) $) 22) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-1040) (-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3652 ((-1179) $))))) (T -1040))
+((-3540 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1040)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1040)))))
+(-13 (-1049) (-10 -8 (-15 -3540 ((-1101) $)) (-15 -3652 ((-1179) $))))
+((-2887 (((-112) $ $) NIL)) (-3543 (($ $ (-618 (-1142)) (-1 (-112) (-618 |#3|))) 33)) (-3544 (($ |#3| |#3|) 22) (($ |#3| |#3| (-618 (-1142))) 20)) (-3865 ((|#3| $) 13)) (-3491 (((-3 (-286 |#3|) "failed") $) 58)) (-3490 (((-286 |#3|) $) NIL)) (-3541 (((-618 (-1142)) $) 16)) (-3542 (((-861 |#1|) $) 11)) (-3866 ((|#3| $) 12)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4142 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-890)) 39)) (-4300 (((-835) $) 86) (($ (-286 |#3|)) 21)) (-3375 (((-112) $ $) 36)))
+(((-1041 |#1| |#2| |#3|) (-13 (-1067) (-279 |#3| |#3|) (-1009 (-286 |#3|)) (-10 -8 (-15 -3544 ($ |#3| |#3|)) (-15 -3544 ($ |#3| |#3| (-618 (-1142)))) (-15 -3543 ($ $ (-618 (-1142)) (-1 (-112) (-618 |#3|)))) (-15 -3542 ((-861 |#1|) $)) (-15 -3866 (|#3| $)) (-15 -3865 (|#3| $)) (-15 -4142 (|#3| $ |#3| (-890))) (-15 -3541 ((-618 (-1142)) $)))) (-1067) (-13 (-1018) (-857 |#1|) (-823) (-594 (-861 |#1|))) (-13 (-414 |#2|) (-857 |#1|) (-594 (-861 |#1|)))) (T -1041))
+((-3544 (*1 *1 *2 *2) (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))) (-5 *1 (-1041 *3 *4 *2)) (-4 *2 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))))) (-3544 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) (-5 *1 (-1041 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))))) (-3543 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-1 (-112) (-618 *6))) (-4 *6 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) (-5 *1 (-1041 *4 *5 *6)))) (-3542 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 *2))) (-5 *2 (-861 *3)) (-5 *1 (-1041 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-857 *3) (-594 *2))))) (-3866 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *2 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))) (-5 *1 (-1041 *3 *4 *2)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))))) (-3865 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *2 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))) (-5 *1 (-1041 *3 *4 *2)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))))) (-4142 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) (-5 *1 (-1041 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))))) (-3541 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))) (-5 *2 (-618 (-1142))) (-5 *1 (-1041 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))))))
+(-13 (-1067) (-279 |#3| |#3|) (-1009 (-286 |#3|)) (-10 -8 (-15 -3544 ($ |#3| |#3|)) (-15 -3544 ($ |#3| |#3| (-618 (-1142)))) (-15 -3543 ($ $ (-618 (-1142)) (-1 (-112) (-618 |#3|)))) (-15 -3542 ((-861 |#1|) $)) (-15 -3866 (|#3| $)) (-15 -3865 (|#3| $)) (-15 -4142 (|#3| $ |#3| (-890))) (-15 -3541 ((-618 (-1142)) $))))
+((-2887 (((-112) $ $) NIL)) (-3888 (((-1142) $) 8)) (-3576 (((-1124) $) 16)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 13)))
+(((-1042 |#1|) (-13 (-1067) (-10 -8 (-15 -3888 ((-1142) $)))) (-1142)) (T -1042))
+((-3888 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1042 *3)) (-14 *3 *2))))
+(-13 (-1067) (-10 -8 (-15 -3888 ((-1142) $))))
+((-2887 (((-112) $ $) NIL)) (-3546 (($ (-618 (-1041 |#1| |#2| |#3|))) 13)) (-3545 (((-618 (-1041 |#1| |#2| |#3|)) $) 20)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4142 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-890)) 26)) (-4300 (((-835) $) 16)) (-3375 (((-112) $ $) 19)))
+(((-1043 |#1| |#2| |#3|) (-13 (-1067) (-279 |#3| |#3|) (-10 -8 (-15 -3546 ($ (-618 (-1041 |#1| |#2| |#3|)))) (-15 -3545 ((-618 (-1041 |#1| |#2| |#3|)) $)) (-15 -4142 (|#3| $ |#3| (-890))))) (-1067) (-13 (-1018) (-857 |#1|) (-823) (-594 (-861 |#1|))) (-13 (-414 |#2|) (-857 |#1|) (-594 (-861 |#1|)))) (T -1043))
+((-3546 (*1 *1 *2) (-12 (-5 *2 (-618 (-1041 *3 *4 *5))) (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))) (-4 *5 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))) (-5 *1 (-1043 *3 *4 *5)))) (-3545 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3)))) (-5 *2 (-618 (-1041 *3 *4 *5))) (-5 *1 (-1043 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))))) (-4142 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4)))) (-5 *1 (-1043 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))))))
+(-13 (-1067) (-279 |#3| |#3|) (-10 -8 (-15 -3546 ($ (-618 (-1041 |#1| |#2| |#3|)))) (-15 -3545 ((-618 (-1041 |#1| |#2| |#3|)) $)) (-15 -4142 (|#3| $ |#3| (-890)))))
+((-3547 (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112)) 75) (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|))) 77) (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112)) 76)))
+(((-1044 |#1| |#2|) (-10 -7 (-15 -3547 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112))) (-15 -3547 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)))) (-15 -3547 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112)))) (-13 (-300) (-145)) (-618 (-1142))) (T -1044))
+((-3547 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) (-5 *1 (-1044 *5 *6)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))))) (-3547 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *4)) (|:| -3558 (-618 (-917 *4)))))) (-5 *1 (-1044 *4 *5)) (-5 *3 (-618 (-917 *4))) (-14 *5 (-618 (-1142))))) (-3547 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) (-5 *1 (-1044 *5 *6)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))))))
+(-10 -7 (-15 -3547 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112))) (-15 -3547 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)))) (-15 -3547 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 126)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-356)))) (-2171 (($ $) NIL (|has| |#1| (-356)))) (-2169 (((-112) $) NIL (|has| |#1| (-356)))) (-1896 (((-665 |#1|) (-1224 $)) NIL) (((-665 |#1|)) 115)) (-3672 ((|#1| $) 119)) (-1786 (((-1151 (-890) (-747)) (-535)) NIL (|has| |#1| (-343)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3454 (((-747)) 40 (|has| |#1| (-361)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-1906 (($ (-1224 |#1|) (-1224 $)) NIL) (($ (-1224 |#1|)) 43)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-1895 (((-665 |#1|) $ (-1224 $)) NIL) (((-665 |#1|) $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 106) (((-665 |#1|) (-665 $)) 101)) (-4185 (($ |#2|) 61) (((-3 $ "failed") (-400 |#2|)) NIL (|has| |#1| (-356)))) (-3804 (((-3 $ "failed") $) NIL)) (-3427 (((-890)) 77)) (-3315 (($) 44 (|has| |#1| (-361)))) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-3154 (($) NIL (|has| |#1| (-343)))) (-1791 (((-112) $) NIL (|has| |#1| (-343)))) (-1881 (($ $ (-747)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-4114 (((-890) $) NIL (|has| |#1| (-343))) (((-808 (-890)) $) NIL (|has| |#1| (-343)))) (-2493 (((-112) $) NIL)) (-3450 ((|#1| $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-2125 ((|#2| $) 84 (|has| |#1| (-356)))) (-2121 (((-890) $) 131 (|has| |#1| (-361)))) (-3401 ((|#2| $) 58)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-3787 (($) NIL (|has| |#1| (-343)) CONST)) (-2483 (($ (-890)) 125 (|has| |#1| (-361)))) (-3577 (((-1086) $) NIL)) (-2492 (($) 121)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1787 (((-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))) NIL (|has| |#1| (-343)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4100 ((|#1| (-1224 $)) NIL) ((|#1|) 109)) (-1882 (((-747) $) NIL (|has| |#1| (-343))) (((-3 (-747) "failed") $ $) NIL (|has| |#1| (-343)))) (-4153 (($ $) NIL (-3874 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-747)) NIL (-3874 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-1 |#1| |#1|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2491 (((-665 |#1|) (-1224 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3519 ((|#2|) 73)) (-1785 (($) NIL (|has| |#1| (-343)))) (-3558 (((-1224 |#1|) $ (-1224 $)) 89) (((-665 |#1|) (-1224 $) (-1224 $)) NIL) (((-1224 |#1|) $) 71) (((-665 |#1|) (-1224 $)) 85)) (-4313 (((-1224 |#1|) $) NIL) (($ (-1224 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3024 (((-3 (-1224 $) "failed") (-665 $)) NIL (|has| |#1| (-343)))) (-4300 (((-835) $) 57) (($ (-535)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-356))) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-535))))))) (-3023 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2689 ((|#2| $) 82)) (-3444 (((-747)) 75)) (-2123 (((-1224 $)) 81)) (-2170 (((-112) $ $) NIL (|has| |#1| (-356)))) (-2979 (($) 30 T CONST)) (-2985 (($) 19 T CONST)) (-2990 (($ $) NIL (-3874 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-747)) NIL (-3874 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1142))))) (($ $ (-1 |#1| |#1|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3375 (((-112) $ $) 63)) (-4291 (($ $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) 67) (($ $ $) NIL)) (-4182 (($ $ $) 65)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-400 (-535)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-535))) NIL (|has| |#1| (-356)))))
+(((-1045 |#1| |#2| |#3|) (-701 |#1| |#2|) (-170) (-1200 |#1|) |#2|) (T -1045))
NIL
(-701 |#1| |#2|)
-((-2120 (((-411 |#3|) |#3|) 19)))
-(((-1047 |#1| |#2| |#3|) (-10 -7 (-15 -2120 ((-411 |#3|) |#3|))) (-1201 (-400 (-923 (-549)))) (-13 (-356) (-145) (-701 (-400 (-923 (-549))) |#1|)) (-1201 |#2|)) (T -1047))
-((-2120 (*1 *2 *3) (-12 (-4 *4 (-1201 (-400 (-923 (-549))))) (-4 *5 (-13 (-356) (-145) (-701 (-400 (-923 (-549))) *4))) (-5 *2 (-411 *3)) (-5 *1 (-1047 *4 *5 *3)) (-4 *3 (-1201 *5)))))
-(-10 -7 (-15 -2120 ((-411 |#3|) |#3|)))
-((-3833 (((-112) $ $) NIL)) (-2862 (($ $ $) 14)) (-3574 (($ $ $) 15)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1430 (($) 6)) (-2844 (((-1142) $) 18)) (-3845 (((-834) $) 12)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 13)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 8)))
-(((-1048) (-13 (-823) (-10 -8 (-15 -1430 ($)) (-15 -2844 ((-1142) $))))) (T -1048))
-((-1430 (*1 *1) (-5 *1 (-1048))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1048)))))
-(-13 (-823) (-10 -8 (-15 -1430 ($)) (-15 -2844 ((-1142) $))))
-((-3833 (((-112) $ $) 7)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (((-1147) $) 15) (($ (-1147)) 14)) (-2388 (((-112) $ $) 6)))
+((-4075 (((-398 |#3|) |#3|) 18)))
+(((-1046 |#1| |#2| |#3|) (-10 -7 (-15 -4075 ((-398 |#3|) |#3|))) (-1200 (-400 (-535))) (-13 (-356) (-145) (-701 (-400 (-535)) |#1|)) (-1200 |#2|)) (T -1046))
+((-4075 (*1 *2 *3) (-12 (-4 *4 (-1200 (-400 (-535)))) (-4 *5 (-13 (-356) (-145) (-701 (-400 (-535)) *4))) (-5 *2 (-398 *3)) (-5 *1 (-1046 *4 *5 *3)) (-4 *3 (-1200 *5)))))
+(-10 -7 (-15 -4075 ((-398 |#3|) |#3|)))
+((-4075 (((-398 |#3|) |#3|) 19)))
+(((-1047 |#1| |#2| |#3|) (-10 -7 (-15 -4075 ((-398 |#3|) |#3|))) (-1200 (-400 (-917 (-535)))) (-13 (-356) (-145) (-701 (-400 (-917 (-535))) |#1|)) (-1200 |#2|)) (T -1047))
+((-4075 (*1 *2 *3) (-12 (-4 *4 (-1200 (-400 (-917 (-535))))) (-4 *5 (-13 (-356) (-145) (-701 (-400 (-917 (-535))) *4))) (-5 *2 (-398 *3)) (-5 *1 (-1047 *4 *5 *3)) (-4 *3 (-1200 *5)))))
+(-10 -7 (-15 -4075 ((-398 |#3|) |#3|)))
+((-2887 (((-112) $ $) NIL)) (-3660 (($ $ $) 14)) (-3661 (($ $ $) 15)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3548 (($) 6)) (-4313 (((-1142) $) 18)) (-4300 (((-835) $) 12)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 13)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 8)))
+(((-1048) (-13 (-823) (-10 -8 (-15 -3548 ($)) (-15 -4313 ((-1142) $))))) (T -1048))
+((-3548 (*1 *1) (-5 *1 (-1048))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1048)))))
+(-13 (-823) (-10 -8 (-15 -3548 ($)) (-15 -4313 ((-1142) $))))
+((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (((-1147) $) 15) (($ (-1147)) 14)) (-3375 (((-112) $ $) 6)))
(((-1049) (-138)) (T -1049))
NIL
(-13 (-92))
-(((-92) . T) ((-101) . T) ((-593 (-834)) . T) ((-593 (-1147)) . T) ((-1066) . T))
-((-2721 ((|#1| |#1| (-1 (-549) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-2631 (((-1230)) 15)) (-1283 (((-621 |#1|)) 9)))
-(((-1050 |#1|) (-10 -7 (-15 -2631 ((-1230))) (-15 -1283 ((-621 |#1|))) (-15 -2721 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2721 (|#1| |#1| (-1 (-549) |#1| |#1|)))) (-131)) (T -1050))
-((-2721 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-549) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1050 *2)))) (-2721 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1050 *2)))) (-1283 (*1 *2) (-12 (-5 *2 (-621 *3)) (-5 *1 (-1050 *3)) (-4 *3 (-131)))) (-2631 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1050 *3)) (-4 *3 (-131)))))
-(-10 -7 (-15 -2631 ((-1230))) (-15 -1283 ((-621 |#1|))) (-15 -2721 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2721 (|#1| |#1| (-1 (-549) |#1| |#1|))))
-((-4303 (($ (-108) $) 16)) (-3075 (((-3 (-108) "failed") (-1142) $) 15)) (-1461 (($) 7)) (-2291 (($) 17)) (-3334 (($) 18)) (-2084 (((-621 (-173)) $) 10)) (-3845 (((-834) $) 21)))
-(((-1051) (-13 (-593 (-834)) (-10 -8 (-15 -1461 ($)) (-15 -2084 ((-621 (-173)) $)) (-15 -3075 ((-3 (-108) "failed") (-1142) $)) (-15 -4303 ($ (-108) $)) (-15 -2291 ($)) (-15 -3334 ($))))) (T -1051))
-((-1461 (*1 *1) (-5 *1 (-1051))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-621 (-173))) (-5 *1 (-1051)))) (-3075 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-108)) (-5 *1 (-1051)))) (-4303 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1051)))) (-2291 (*1 *1) (-5 *1 (-1051))) (-3334 (*1 *1) (-5 *1 (-1051))))
-(-13 (-593 (-834)) (-10 -8 (-15 -1461 ($)) (-15 -2084 ((-621 (-173)) $)) (-15 -3075 ((-3 (-108) "failed") (-1142) $)) (-15 -4303 ($ (-108) $)) (-15 -2291 ($)) (-15 -3334 ($))))
-((-2818 (((-1225 (-665 |#1|)) (-621 (-665 |#1|))) 42) (((-1225 (-665 (-923 |#1|))) (-621 (-1142)) (-665 (-923 |#1|))) 63) (((-1225 (-665 (-400 (-923 |#1|)))) (-621 (-1142)) (-665 (-400 (-923 |#1|)))) 79)) (-4163 (((-1225 |#1|) (-665 |#1|) (-621 (-665 |#1|))) 36)))
-(((-1052 |#1|) (-10 -7 (-15 -2818 ((-1225 (-665 (-400 (-923 |#1|)))) (-621 (-1142)) (-665 (-400 (-923 |#1|))))) (-15 -2818 ((-1225 (-665 (-923 |#1|))) (-621 (-1142)) (-665 (-923 |#1|)))) (-15 -2818 ((-1225 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -4163 ((-1225 |#1|) (-665 |#1|) (-621 (-665 |#1|))))) (-356)) (T -1052))
-((-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-665 *5))) (-5 *3 (-665 *5)) (-4 *5 (-356)) (-5 *2 (-1225 *5)) (-5 *1 (-1052 *5)))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-621 (-665 *4))) (-4 *4 (-356)) (-5 *2 (-1225 (-665 *4))) (-5 *1 (-1052 *4)))) (-2818 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-1142))) (-4 *5 (-356)) (-5 *2 (-1225 (-665 (-923 *5)))) (-5 *1 (-1052 *5)) (-5 *4 (-665 (-923 *5))))) (-2818 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-1142))) (-4 *5 (-356)) (-5 *2 (-1225 (-665 (-400 (-923 *5))))) (-5 *1 (-1052 *5)) (-5 *4 (-665 (-400 (-923 *5)))))))
-(-10 -7 (-15 -2818 ((-1225 (-665 (-400 (-923 |#1|)))) (-621 (-1142)) (-665 (-400 (-923 |#1|))))) (-15 -2818 ((-1225 (-665 (-923 |#1|))) (-621 (-1142)) (-665 (-923 |#1|)))) (-15 -2818 ((-1225 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -4163 ((-1225 |#1|) (-665 |#1|) (-621 (-665 |#1|)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3830 (((-621 (-747)) $) NIL) (((-621 (-747)) $ (-1142)) NIL)) (-1996 (((-747) $) NIL) (((-747) $ (-1142)) NIL)) (-2271 (((-621 (-1054 (-1142))) $) NIL)) (-2082 (((-1138 $) $ (-1054 (-1142))) NIL) (((-1138 |#1|) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 (-1054 (-1142)))) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-1912 (($ $) NIL (|has| |#1| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-3851 (($ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-1054 (-1142)) "failed") $) NIL) (((-3 (-1142) "failed") $) NIL) (((-3 (-1091 |#1| (-1142)) "failed") $) NIL)) (-2658 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-1054 (-1142)) $) NIL) (((-1142) $) NIL) (((-1091 |#1| (-1142)) $) NIL)) (-2252 (($ $ $ (-1054 (-1142))) NIL (|has| |#1| (-170)))) (-2069 (($ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1054 (-1142))) NIL (|has| |#1| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#1| (-880)))) (-3744 (($ $ |#1| (-521 (-1054 (-1142))) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1054 (-1142)) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1054 (-1142)) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2078 (((-747) $ (-1142)) NIL) (((-747) $) NIL)) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-2258 (($ (-1138 |#1|) (-1054 (-1142))) NIL) (($ (-1138 $) (-1054 (-1142))) NIL)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-521 (-1054 (-1142)))) NIL) (($ $ (-1054 (-1142)) (-747)) NIL) (($ $ (-621 (-1054 (-1142))) (-621 (-747))) NIL)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ (-1054 (-1142))) NIL)) (-2856 (((-521 (-1054 (-1142))) $) NIL) (((-747) $ (-1054 (-1142))) NIL) (((-621 (-747)) $ (-621 (-1054 (-1142)))) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-4058 (($ (-1 (-521 (-1054 (-1142))) (-521 (-1054 (-1142)))) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-2963 (((-1 $ (-747)) (-1142)) NIL) (((-1 $ (-747)) $) NIL (|has| |#1| (-227)))) (-1790 (((-3 (-1054 (-1142)) "failed") $) NIL)) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-4051 (((-1054 (-1142)) $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2677 (((-1124) $) NIL)) (-2747 (((-112) $) NIL)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| (-1054 (-1142))) (|:| -3577 (-747))) "failed") $) NIL)) (-2257 (($ $) NIL)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) NIL)) (-2012 ((|#1| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-880)))) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1054 (-1142)) |#1|) NIL) (($ $ (-621 (-1054 (-1142))) (-621 |#1|)) NIL) (($ $ (-1054 (-1142)) $) NIL) (($ $ (-621 (-1054 (-1142))) (-621 $)) NIL) (($ $ (-1142) $) NIL (|has| |#1| (-227))) (($ $ (-621 (-1142)) (-621 $)) NIL (|has| |#1| (-227))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-227))) (($ $ (-621 (-1142)) (-621 |#1|)) NIL (|has| |#1| (-227)))) (-3086 (($ $ (-1054 (-1142))) NIL (|has| |#1| (-170)))) (-3455 (($ $ (-1054 (-1142))) NIL) (($ $ (-621 (-1054 (-1142)))) NIL) (($ $ (-1054 (-1142)) (-747)) NIL) (($ $ (-621 (-1054 (-1142))) (-621 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1727 (((-621 (-1142)) $) NIL)) (-3068 (((-521 (-1054 (-1142))) $) NIL) (((-747) $ (-1054 (-1142))) NIL) (((-621 (-747)) $ (-621 (-1054 (-1142)))) NIL) (((-747) $ (-1142)) NIL)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| (-1054 (-1142)) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-1054 (-1142)) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-1054 (-1142)) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-1931 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1054 (-1142))) NIL (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-1054 (-1142))) NIL) (($ (-1142)) NIL) (($ (-1091 |#1| (-1142))) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-521 (-1054 (-1142)))) NIL) (($ $ (-1054 (-1142)) (-747)) NIL) (($ $ (-621 (-1054 (-1142))) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-1054 (-1142))) NIL) (($ $ (-621 (-1054 (-1142)))) NIL) (($ $ (-1054 (-1142)) (-747)) NIL) (($ $ (-621 (-1054 (-1142))) (-621 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-92) . T) ((-101) . T) ((-593 (-835)) . T) ((-593 (-1147)) . T) ((-1067) . T))
+((-3551 ((|#1| |#1| (-1 (-535) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-3549 (((-1230)) 15)) (-3550 (((-618 |#1|)) 9)))
+(((-1050 |#1|) (-10 -7 (-15 -3549 ((-1230))) (-15 -3550 ((-618 |#1|))) (-15 -3551 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3551 (|#1| |#1| (-1 (-535) |#1| |#1|)))) (-131)) (T -1050))
+((-3551 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-535) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1050 *2)))) (-3551 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1050 *2)))) (-3550 (*1 *2) (-12 (-5 *2 (-618 *3)) (-5 *1 (-1050 *3)) (-4 *3 (-131)))) (-3549 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1050 *3)) (-4 *3 (-131)))))
+(-10 -7 (-15 -3549 ((-1230))) (-15 -3550 ((-618 |#1|))) (-15 -3551 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3551 (|#1| |#1| (-1 (-535) |#1| |#1|))))
+((-3554 (($ (-108) $) 16)) (-3555 (((-3 (-108) "failed") (-1142) $) 15)) (-3911 (($) 7)) (-3553 (($) 17)) (-3552 (($) 18)) (-3556 (((-618 (-173)) $) 10)) (-4300 (((-835) $) 21)))
+(((-1051) (-13 (-593 (-835)) (-10 -8 (-15 -3911 ($)) (-15 -3556 ((-618 (-173)) $)) (-15 -3555 ((-3 (-108) "failed") (-1142) $)) (-15 -3554 ($ (-108) $)) (-15 -3553 ($)) (-15 -3552 ($))))) (T -1051))
+((-3911 (*1 *1) (-5 *1 (-1051))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-618 (-173))) (-5 *1 (-1051)))) (-3555 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-108)) (-5 *1 (-1051)))) (-3554 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1051)))) (-3553 (*1 *1) (-5 *1 (-1051))) (-3552 (*1 *1) (-5 *1 (-1051))))
+(-13 (-593 (-835)) (-10 -8 (-15 -3911 ($)) (-15 -3556 ((-618 (-173)) $)) (-15 -3555 ((-3 (-108) "failed") (-1142) $)) (-15 -3554 ($ (-108) $)) (-15 -3553 ($)) (-15 -3552 ($))))
+((-3557 (((-1224 (-665 |#1|)) (-618 (-665 |#1|))) 42) (((-1224 (-665 (-917 |#1|))) (-618 (-1142)) (-665 (-917 |#1|))) 63) (((-1224 (-665 (-400 (-917 |#1|)))) (-618 (-1142)) (-665 (-400 (-917 |#1|)))) 79)) (-3558 (((-1224 |#1|) (-665 |#1|) (-618 (-665 |#1|))) 36)))
+(((-1052 |#1|) (-10 -7 (-15 -3557 ((-1224 (-665 (-400 (-917 |#1|)))) (-618 (-1142)) (-665 (-400 (-917 |#1|))))) (-15 -3557 ((-1224 (-665 (-917 |#1|))) (-618 (-1142)) (-665 (-917 |#1|)))) (-15 -3557 ((-1224 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3558 ((-1224 |#1|) (-665 |#1|) (-618 (-665 |#1|))))) (-356)) (T -1052))
+((-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-665 *5))) (-5 *3 (-665 *5)) (-4 *5 (-356)) (-5 *2 (-1224 *5)) (-5 *1 (-1052 *5)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-618 (-665 *4))) (-4 *4 (-356)) (-5 *2 (-1224 (-665 *4))) (-5 *1 (-1052 *4)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-1142))) (-4 *5 (-356)) (-5 *2 (-1224 (-665 (-917 *5)))) (-5 *1 (-1052 *5)) (-5 *4 (-665 (-917 *5))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-1142))) (-4 *5 (-356)) (-5 *2 (-1224 (-665 (-400 (-917 *5))))) (-5 *1 (-1052 *5)) (-5 *4 (-665 (-400 (-917 *5)))))))
+(-10 -7 (-15 -3557 ((-1224 (-665 (-400 (-917 |#1|)))) (-618 (-1142)) (-665 (-400 (-917 |#1|))))) (-15 -3557 ((-1224 (-665 (-917 |#1|))) (-618 (-1142)) (-665 (-917 |#1|)))) (-15 -3557 ((-1224 (-665 |#1|)) (-618 (-665 |#1|)))) (-15 -3558 ((-1224 |#1|) (-665 |#1|) (-618 (-665 |#1|)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1538 (((-618 (-747)) $) NIL) (((-618 (-747)) $ (-1142)) NIL)) (-1572 (((-747) $) NIL) (((-747) $ (-1142)) NIL)) (-3405 (((-618 (-1054 (-1142))) $) NIL)) (-3407 (((-1136 $) $ (-1054 (-1142))) NIL) (((-1136 |#1|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1054 (-1142)))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-1534 (($ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-1054 (-1142)) #2#) $) NIL) (((-3 (-1142) #2#) $) NIL) (((-3 (-1091 |#1| (-1142)) #2#) $) NIL)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-1054 (-1142)) $) NIL) (((-1142) $) NIL) (((-1091 |#1| (-1142)) $) NIL)) (-4099 (($ $ $ (-1054 (-1142))) NIL (|has| |#1| (-170)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1054 (-1142))) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-521 (-1054 (-1142))) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1054 (-1142)) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1054 (-1142)) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-4114 (((-747) $ (-1142)) NIL) (((-747) $) NIL)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3408 (($ (-1136 |#1|) (-1054 (-1142))) NIL) (($ (-1136 $) (-1054 (-1142))) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-521 (-1054 (-1142)))) NIL) (($ $ (-1054 (-1142)) (-747)) NIL) (($ $ (-618 (-1054 (-1142))) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1054 (-1142))) NIL)) (-3141 (((-521 (-1054 (-1142))) $) NIL) (((-747) $ (-1054 (-1142))) NIL) (((-618 (-747)) $ (-618 (-1054 (-1142)))) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-521 (-1054 (-1142))) (-521 (-1054 (-1142)))) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-1 $ (-747)) (-1142)) NIL) (((-1 $ (-747)) $) NIL (|has| |#1| (-227)))) (-3406 (((-3 (-1054 (-1142)) #3="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-1536 (((-1054 (-1142)) $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-1537 (((-112) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-1054 (-1142))) (|:| -2484 (-747))) #3#) $) NIL)) (-1535 (($ $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1054 (-1142)) |#1|) NIL) (($ $ (-618 (-1054 (-1142))) (-618 |#1|)) NIL) (($ $ (-1054 (-1142)) $) NIL) (($ $ (-618 (-1054 (-1142))) (-618 $)) NIL) (($ $ (-1142) $) NIL (|has| |#1| (-227))) (($ $ (-618 (-1142)) (-618 $)) NIL (|has| |#1| (-227))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-227))) (($ $ (-618 (-1142)) (-618 |#1|)) NIL (|has| |#1| (-227)))) (-4100 (($ $ (-1054 (-1142))) NIL (|has| |#1| (-170)))) (-4153 (($ $ (-1054 (-1142))) NIL) (($ $ (-618 (-1054 (-1142)))) NIL) (($ $ (-1054 (-1142)) (-747)) NIL) (($ $ (-618 (-1054 (-1142))) (-618 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-618 (-1142)) $) NIL)) (-4290 (((-521 (-1054 (-1142))) $) NIL) (((-747) $ (-1054 (-1142))) NIL) (((-618 (-747)) $ (-618 (-1054 (-1142)))) NIL) (((-747) $ (-1142)) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-1054 (-1142)) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-1054 (-1142)) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-1054 (-1142)) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1054 (-1142))) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-1054 (-1142))) NIL) (($ (-1142)) NIL) (($ (-1091 |#1| (-1142))) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-521 (-1054 (-1142)))) NIL) (($ $ (-1054 (-1142)) (-747)) NIL) (($ $ (-618 (-1054 (-1142))) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-1054 (-1142))) NIL) (($ $ (-618 (-1054 (-1142)))) NIL) (($ $ (-1054 (-1142)) (-747)) NIL) (($ $ (-618 (-1054 (-1142))) (-618 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-1053 |#1|) (-13 (-246 |#1| (-1142) (-1054 (-1142)) (-521 (-1054 (-1142)))) (-1009 (-1091 |#1| (-1142)))) (-1018)) (T -1053))
NIL
(-13 (-246 |#1| (-1142) (-1054 (-1142)) (-521 (-1054 (-1142)))) (-1009 (-1091 |#1| (-1142))))
-((-3833 (((-112) $ $) NIL)) (-1996 (((-747) $) NIL)) (-3010 ((|#1| $) 10)) (-2713 (((-3 |#1| "failed") $) NIL)) (-2658 ((|#1| $) NIL)) (-2078 (((-747) $) 11)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-2963 (($ |#1| (-747)) 9)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3455 (($ $) NIL) (($ $ (-747)) NIL)) (-3845 (((-834) $) NIL) (($ |#1|) NIL)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 15)))
+((-2887 (((-112) $ $) NIL)) (-1572 (((-747) $) NIL)) (-4174 ((|#1| $) 10)) (-3491 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-4114 (((-747) $) 11)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-1573 (($ |#1| (-747)) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4153 (($ $) NIL) (($ $ (-747)) NIL)) (-4300 (((-835) $) NIL) (($ |#1|) NIL)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 15)))
(((-1054 |#1|) (-259 |#1|) (-823)) (T -1054))
NIL
(-259 |#1|)
-((-2796 (((-621 |#2|) (-1 |#2| |#1|) (-1060 |#1|)) 24 (|has| |#1| (-821))) (((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|)) 14)))
-(((-1055 |#1| |#2|) (-10 -7 (-15 -2796 ((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) (IF (|has| |#1| (-821)) (-15 -2796 ((-621 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) |%noBranch|)) (-1179) (-1179)) (T -1055))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-821)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-621 *6)) (-5 *1 (-1055 *5 *6)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-1060 *6)) (-5 *1 (-1055 *5 *6)))))
-(-10 -7 (-15 -2796 ((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) (IF (|has| |#1| (-821)) (-15 -2796 ((-621 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) |%noBranch|))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-4206 (((-621 (-1101)) $) 9)) (-2388 (((-112) $ $) NIL)))
-(((-1056) (-13 (-1049) (-10 -8 (-15 -4206 ((-621 (-1101)) $))))) (T -1056))
-((-4206 (*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-1056)))))
-(-13 (-1049) (-10 -8 (-15 -4206 ((-621 (-1101)) $))))
-((-2796 (((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 19)))
-(((-1057 |#1| |#2|) (-10 -7 (-15 -2796 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)))) (-1179) (-1179)) (T -1057))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-1058 *6)) (-5 *1 (-1057 *5 *6)))))
-(-10 -7 (-15 -2796 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3010 (((-1142) $) 11)) (-3129 (((-1060 |#1|) $) 12)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2389 (($ (-1142) (-1060 |#1|)) 10)) (-3845 (((-834) $) 20 (|has| |#1| (-1066)))) (-2388 (((-112) $ $) 15 (|has| |#1| (-1066)))))
-(((-1058 |#1|) (-13 (-1179) (-10 -8 (-15 -2389 ($ (-1142) (-1060 |#1|))) (-15 -3010 ((-1142) $)) (-15 -3129 ((-1060 |#1|) $)) (IF (|has| |#1| (-1066)) (-6 (-1066)) |%noBranch|))) (-1179)) (T -1058))
-((-2389 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1060 *4)) (-4 *4 (-1179)) (-5 *1 (-1058 *4)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1058 *3)) (-4 *3 (-1179)))) (-3129 (*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-1179)))))
-(-13 (-1179) (-10 -8 (-15 -2389 ($ (-1142) (-1060 |#1|))) (-15 -3010 ((-1142) $)) (-15 -3129 ((-1060 |#1|) $)) (IF (|has| |#1| (-1066)) (-6 (-1066)) |%noBranch|)))
-((-3129 (($ |#1| |#1|) 7)) (-3046 ((|#1| $) 10)) (-1264 ((|#1| $) 12)) (-1275 (((-549) $) 8)) (-4109 ((|#1| $) 9)) (-1288 ((|#1| $) 11)) (-2844 (($ |#1|) 6)) (-1856 (($ |#1| |#1|) 14)) (-2122 (($ $ (-549)) 13)))
-(((-1059 |#1|) (-138) (-1179)) (T -1059))
-((-1856 (*1 *1 *2 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179)))) (-2122 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1059 *3)) (-4 *3 (-1179)))) (-1264 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179)))) (-1288 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179)))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179)))) (-1275 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1179)) (-5 *2 (-549)))) (-3129 (*1 *1 *2 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179)))) (-2844 (*1 *1 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179)))))
-(-13 (-1179) (-10 -8 (-15 -1856 ($ |t#1| |t#1|)) (-15 -2122 ($ $ (-549))) (-15 -1264 (|t#1| $)) (-15 -1288 (|t#1| $)) (-15 -3046 (|t#1| $)) (-15 -4109 (|t#1| $)) (-15 -1275 ((-549) $)) (-15 -3129 ($ |t#1| |t#1|)) (-15 -2844 ($ |t#1|))))
-(((-1179) . T))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3129 (($ |#1| |#1|) 15)) (-2796 (((-621 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-821)))) (-3046 ((|#1| $) 10)) (-1264 ((|#1| $) 9)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-1275 (((-549) $) 14)) (-4109 ((|#1| $) 12)) (-1288 ((|#1| $) 11)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-1448 (((-621 |#1|) $) 36 (|has| |#1| (-821))) (((-621 |#1|) (-621 $)) 35 (|has| |#1| (-821)))) (-2844 (($ |#1|) 26)) (-3845 (((-834) $) 25 (|has| |#1| (-1066)))) (-1856 (($ |#1| |#1|) 8)) (-2122 (($ $ (-549)) 16)) (-2388 (((-112) $ $) 19 (|has| |#1| (-1066)))))
-(((-1060 |#1|) (-13 (-1059 |#1|) (-10 -7 (IF (|has| |#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1061 |#1| (-621 |#1|))) |%noBranch|))) (-1179)) (T -1060))
-NIL
-(-13 (-1059 |#1|) (-10 -7 (IF (|has| |#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1061 |#1| (-621 |#1|))) |%noBranch|)))
-((-3129 (($ |#1| |#1|) 7)) (-2796 ((|#2| (-1 |#1| |#1|) $) 16)) (-3046 ((|#1| $) 10)) (-1264 ((|#1| $) 12)) (-1275 (((-549) $) 8)) (-4109 ((|#1| $) 9)) (-1288 ((|#1| $) 11)) (-1448 ((|#2| (-621 $)) 18) ((|#2| $) 17)) (-2844 (($ |#1|) 6)) (-1856 (($ |#1| |#1|) 14)) (-2122 (($ $ (-549)) 13)))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4079 (($ |#1| |#1|) 15)) (-4301 (((-618 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-821)))) (-3563 ((|#1| $) 10)) (-3565 ((|#1| $) 9)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3561 (((-535) $) 14)) (-3562 ((|#1| $) 12)) (-3564 ((|#1| $) 11)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4306 (((-618 |#1|) $) 36 (|has| |#1| (-821))) (((-618 |#1|) (-618 $)) 35 (|has| |#1| (-821)))) (-4313 (($ |#1|) 26)) (-4300 (((-835) $) 25 (|has| |#1| (-1067)))) (-4080 (($ |#1| |#1|) 8)) (-3566 (($ $ (-535)) 16)) (-3375 (((-112) $ $) 19 (|has| |#1| (-1067)))))
+(((-1055 |#1|) (-13 (-1060 |#1|) (-10 -7 (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1061 |#1| (-618 |#1|))) |%noBranch|))) (-1178)) (T -1055))
+NIL
+(-13 (-1060 |#1|) (-10 -7 (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1061 |#1| (-618 |#1|))) |%noBranch|)))
+((-4301 (((-618 |#2|) (-1 |#2| |#1|) (-1055 |#1|)) 24 (|has| |#1| (-821))) (((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|)) 14)))
+(((-1056 |#1| |#2|) (-10 -7 (-15 -4301 ((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) (IF (|has| |#1| (-821)) (-15 -4301 ((-618 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) |%noBranch|)) (-1178) (-1178)) (T -1056))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-821)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-618 *6)) (-5 *1 (-1056 *5 *6)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1055 *6)) (-5 *1 (-1056 *5 *6)))))
+(-10 -7 (-15 -4301 ((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) (IF (|has| |#1| (-821)) (-15 -4301 ((-618 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) |%noBranch|))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3559 (((-618 (-1101)) $) 9)) (-3375 (((-112) $ $) NIL)))
+(((-1057) (-13 (-1049) (-10 -8 (-15 -3559 ((-618 (-1101)) $))))) (T -1057))
+((-3559 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-1057)))))
+(-13 (-1049) (-10 -8 (-15 -3559 ((-618 (-1101)) $))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4174 (((-1142) $) 11)) (-4079 (((-1055 |#1|) $) 12)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-3560 (($ (-1142) (-1055 |#1|)) 10)) (-4300 (((-835) $) 20 (|has| |#1| (-1067)))) (-3375 (((-112) $ $) 15 (|has| |#1| (-1067)))))
+(((-1058 |#1|) (-13 (-1178) (-10 -8 (-15 -3560 ($ (-1142) (-1055 |#1|))) (-15 -4174 ((-1142) $)) (-15 -4079 ((-1055 |#1|) $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|))) (-1178)) (T -1058))
+((-3560 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1055 *4)) (-4 *4 (-1178)) (-5 *1 (-1058 *4)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1058 *3)) (-4 *3 (-1178)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-1178)))))
+(-13 (-1178) (-10 -8 (-15 -3560 ($ (-1142) (-1055 |#1|))) (-15 -4174 ((-1142) $)) (-15 -4079 ((-1055 |#1|) $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|)))
+((-4301 (((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 19)))
+(((-1059 |#1| |#2|) (-10 -7 (-15 -4301 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)))) (-1178) (-1178)) (T -1059))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1058 *6)) (-5 *1 (-1059 *5 *6)))))
+(-10 -7 (-15 -4301 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))))
+((-4079 (($ |#1| |#1|) 7)) (-3563 ((|#1| $) 10)) (-3565 ((|#1| $) 12)) (-3561 (((-535) $) 8)) (-3562 ((|#1| $) 9)) (-3564 ((|#1| $) 11)) (-4313 (($ |#1|) 6)) (-4080 (($ |#1| |#1|) 14)) (-3566 (($ $ (-535)) 13)))
+(((-1060 |#1|) (-138) (-1178)) (T -1060))
+((-4080 (*1 *1 *2 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) (-3566 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1060 *3)) (-4 *3 (-1178)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-1178)) (-5 *2 (-535)))) (-4079 (*1 *1 *2 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))) (-4313 (*1 *1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))))
+(-13 (-1178) (-10 -8 (-15 -4080 ($ |t#1| |t#1|)) (-15 -3566 ($ $ (-535))) (-15 -3565 (|t#1| $)) (-15 -3564 (|t#1| $)) (-15 -3563 (|t#1| $)) (-15 -3562 (|t#1| $)) (-15 -3561 ((-535) $)) (-15 -4079 ($ |t#1| |t#1|)) (-15 -4313 ($ |t#1|))))
+(((-1178) . T))
+((-4079 (($ |#1| |#1|) 7)) (-4301 ((|#2| (-1 |#1| |#1|) $) 16)) (-3563 ((|#1| $) 10)) (-3565 ((|#1| $) 12)) (-3561 (((-535) $) 8)) (-3562 ((|#1| $) 9)) (-3564 ((|#1| $) 11)) (-4306 ((|#2| (-618 $)) 18) ((|#2| $) 17)) (-4313 (($ |#1|) 6)) (-4080 (($ |#1| |#1|) 14)) (-3566 (($ $ (-535)) 13)))
(((-1061 |#1| |#2|) (-138) (-821) (-1115 |t#1|)) (T -1061))
-((-1448 (*1 *2 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-1061 *4 *2)) (-4 *4 (-821)) (-4 *2 (-1115 *4)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1115 *3)))) (-2796 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1061 *4 *2)) (-4 *4 (-821)) (-4 *2 (-1115 *4)))))
-(-13 (-1059 |t#1|) (-10 -8 (-15 -1448 (|t#2| (-621 $))) (-15 -1448 (|t#2| $)) (-15 -2796 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-1059 |#1|) . T) ((-1179) . T))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3828 (((-1101) $) 12)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 20) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2493 (((-621 (-1101)) $) 10)) (-2388 (((-112) $ $) NIL)))
-(((-1062) (-13 (-1049) (-10 -8 (-15 -2493 ((-621 (-1101)) $)) (-15 -3828 ((-1101) $))))) (T -1062))
-((-2493 (*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-1062)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1062)))))
-(-13 (-1049) (-10 -8 (-15 -2493 ((-621 (-1101)) $)) (-15 -3828 ((-1101) $))))
-((-1440 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3755 (($ $ $) 10)) (-4142 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1063 |#1| |#2|) (-10 -8 (-15 -1440 (|#1| |#2| |#1|)) (-15 -1440 (|#1| |#1| |#2|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -4142 (|#1| |#1| |#2|)) (-15 -4142 (|#1| |#1| |#1|))) (-1064 |#2|) (-1066)) (T -1063))
-NIL
-(-10 -8 (-15 -1440 (|#1| |#2| |#1|)) (-15 -1440 (|#1| |#1| |#2|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -4142 (|#1| |#1| |#2|)) (-15 -4142 (|#1| |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-1440 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3755 (($ $ $) 20)) (-4063 (((-112) $ $) 19)) (-1323 (((-112) $ (-747)) 35)) (-2787 (($) 25) (($ (-621 |#1|)) 24)) (-1488 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4336)))) (-1705 (($) 36 T CONST)) (-3675 (($ $) 59 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#1| $) 58 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4336)))) (-2990 (((-621 |#1|) $) 43 (|has| $ (-6 -4336)))) (-1353 (((-112) $ $) 28)) (-4202 (((-112) $ (-747)) 34)) (-1958 (((-621 |#1|) $) 44 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 38)) (-4289 (((-112) $ (-747)) 33)) (-2677 (((-1124) $) 9)) (-1795 (($ $ $) 23)) (-3988 (((-1086) $) 10)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2470 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#1|) (-621 |#1|)) 50 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 48 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 (-287 |#1|))) 47 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 29)) (-1807 (((-112) $) 32)) (-1461 (($) 31)) (-4142 (($ $ $) 22) (($ $ |#1|) 21)) (-3997 (((-747) |#1| $) 45 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4336)))) (-2281 (($ $) 30)) (-2844 (((-525) $) 60 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 51)) (-3845 (((-834) $) 11)) (-4118 (($) 27) (($ (-621 |#1|)) 26)) (-2150 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 6)) (-3774 (((-747) $) 37 (|has| $ (-6 -4336)))))
-(((-1064 |#1|) (-138) (-1066)) (T -1064))
-((-1353 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-4118 (*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-4 *1 (-1064 *3)))) (-2787 (*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))) (-2787 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-4 *1 (-1064 *3)))) (-1795 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))) (-4142 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))) (-4142 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))) (-3755 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))) (-4063 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-1440 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))) (-1440 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))) (-1440 (*1 *1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))))
-(-13 (-1066) (-149 |t#1|) (-10 -8 (-6 -4326) (-15 -1353 ((-112) $ $)) (-15 -4118 ($)) (-15 -4118 ($ (-621 |t#1|))) (-15 -2787 ($)) (-15 -2787 ($ (-621 |t#1|))) (-15 -1795 ($ $ $)) (-15 -4142 ($ $ $)) (-15 -4142 ($ $ |t#1|)) (-15 -3755 ($ $ $)) (-15 -4063 ((-112) $ $)) (-15 -1440 ($ $ $)) (-15 -1440 ($ $ |t#1|)) (-15 -1440 ($ |t#1| $))))
-(((-34) . T) ((-101) . T) ((-593 (-834)) . T) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) . T) ((-1179) . T))
-((-2677 (((-1124) $) 10)) (-3988 (((-1086) $) 8)))
-(((-1065 |#1|) (-10 -8 (-15 -2677 ((-1124) |#1|)) (-15 -3988 ((-1086) |#1|))) (-1066)) (T -1065))
-NIL
-(-10 -8 (-15 -2677 ((-1124) |#1|)) (-15 -3988 ((-1086) |#1|)))
-((-3833 (((-112) $ $) 7)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2388 (((-112) $ $) 6)))
-(((-1066) (-138)) (T -1066))
-((-3988 (*1 *2 *1) (-12 (-4 *1 (-1066)) (-5 *2 (-1086)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-1066)) (-5 *2 (-1124)))))
-(-13 (-101) (-593 (-834)) (-10 -8 (-15 -3988 ((-1086) $)) (-15 -2677 ((-1124) $))))
-(((-101) . T) ((-593 (-834)) . T))
-((-3833 (((-112) $ $) NIL)) (-3615 (((-747)) 30)) (-3222 (($ (-621 (-892))) 52)) (-2960 (((-3 $ "failed") $ (-892) (-892)) 58)) (-3238 (($) 32)) (-2273 (((-112) (-892) $) 35)) (-2723 (((-892) $) 50)) (-2677 (((-1124) $) NIL)) (-3491 (($ (-892)) 31)) (-1294 (((-3 $ "failed") $ (-892)) 55)) (-3988 (((-1086) $) NIL)) (-3979 (((-1225 $)) 40)) (-1684 (((-621 (-892)) $) 24)) (-2656 (((-747) $ (-892) (-892)) 56)) (-3845 (((-834) $) 29)) (-2388 (((-112) $ $) 21)))
-(((-1067 |#1| |#2|) (-13 (-361) (-10 -8 (-15 -1294 ((-3 $ "failed") $ (-892))) (-15 -2960 ((-3 $ "failed") $ (-892) (-892))) (-15 -1684 ((-621 (-892)) $)) (-15 -3222 ($ (-621 (-892)))) (-15 -3979 ((-1225 $))) (-15 -2273 ((-112) (-892) $)) (-15 -2656 ((-747) $ (-892) (-892))))) (-892) (-892)) (T -1067))
-((-1294 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-892)) (-5 *1 (-1067 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2960 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-892)) (-5 *1 (-1067 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1067 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1067 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))) (-3979 (*1 *2) (-12 (-5 *2 (-1225 (-1067 *3 *4))) (-5 *1 (-1067 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))) (-2273 (*1 *2 *3 *1) (-12 (-5 *3 (-892)) (-5 *2 (-112)) (-5 *1 (-1067 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2656 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-892)) (-5 *2 (-747)) (-5 *1 (-1067 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-361) (-10 -8 (-15 -1294 ((-3 $ "failed") $ (-892))) (-15 -2960 ((-3 $ "failed") $ (-892) (-892))) (-15 -1684 ((-621 (-892)) $)) (-15 -3222 ($ (-621 (-892)))) (-15 -3979 ((-1225 $))) (-15 -2273 ((-112) (-892) $)) (-15 -2656 ((-747) $ (-892) (-892)))))
-((-3833 (((-112) $ $) NIL)) (-3290 (($) NIL (|has| |#1| (-361)))) (-1440 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3755 (($ $ $) 72)) (-4063 (((-112) $ $) 73)) (-1323 (((-112) $ (-747)) NIL)) (-3615 (((-747)) NIL (|has| |#1| (-361)))) (-2787 (($ (-621 |#1|)) NIL) (($) 13)) (-3069 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-4204 (($ |#1| $) 67 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4336)))) (-3238 (($) NIL (|has| |#1| (-361)))) (-2990 (((-621 |#1|) $) 19 (|has| $ (-6 -4336)))) (-1353 (((-112) $ $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-2862 ((|#1| $) 57 (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-3574 ((|#1| $) 55 (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 34)) (-2723 (((-892) $) NIL (|has| |#1| (-361)))) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-1795 (($ $ $) 70)) (-2349 ((|#1| $) 25)) (-1709 (($ |#1| $) 65)) (-3491 (($ (-892)) NIL (|has| |#1| (-361)))) (-3988 (((-1086) $) NIL)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2629 ((|#1| $) 27)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 21)) (-1461 (($) 11)) (-4142 (($ $ |#1|) NIL) (($ $ $) 71)) (-4252 (($) NIL) (($ (-621 |#1|)) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) 16)) (-2844 (((-525) $) 52 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 61)) (-3532 (($ $) NIL (|has| |#1| (-361)))) (-3845 (((-834) $) NIL)) (-2343 (((-747) $) NIL)) (-4118 (($ (-621 |#1|)) NIL) (($) 12)) (-1765 (($ (-621 |#1|)) NIL)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 54)) (-3774 (((-747) $) 10 (|has| $ (-6 -4336)))))
-(((-1068 |#1|) (-418 |#1|) (-1066)) (T -1068))
-NIL
-(-418 |#1|)
-((-3833 (((-112) $ $) 7)) (-1874 (((-112) $) 32)) (-3943 ((|#2| $) 27)) (-2298 (((-112) $) 33)) (-1524 ((|#1| $) 28)) (-2425 (((-112) $) 35)) (-2043 (((-112) $) 37)) (-2250 (((-112) $) 34)) (-2677 (((-1124) $) 9)) (-3985 (((-112) $) 31)) (-3964 ((|#3| $) 26)) (-3988 (((-1086) $) 10)) (-3231 (((-112) $) 30)) (-1354 ((|#4| $) 25)) (-2976 ((|#5| $) 24)) (-2650 (((-112) $ $) 38)) (-3340 (($ $ (-549)) 14) (($ $ (-621 (-549))) 13)) (-2196 (((-621 $) $) 29)) (-2844 (($ (-621 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-3845 (((-834) $) 11)) (-3545 (($ $) 16)) (-3534 (($ $) 17)) (-2802 (((-112) $) 36)) (-2388 (((-112) $ $) 6)) (-3774 (((-549) $) 15)))
-(((-1069 |#1| |#2| |#3| |#4| |#5|) (-138) (-1066) (-1066) (-1066) (-1066) (-1066)) (T -1069))
-((-2650 (*1 *2 *1 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))) (-2802 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))) (-2298 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))) (-2196 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-621 *1)) (-4 *1 (-1069 *3 *4 *5 *6 *7)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-1069 *2 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *2 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066)))) (-3964 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *2 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *2 *6)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *2)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)))) (-2844 (*1 *1 *2) (-12 (-4 *1 (-1069 *2 *3 *4 *5 *6)) (-4 *2 (-1066)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)))) (-2844 (*1 *1 *2) (-12 (-4 *1 (-1069 *3 *2 *4 *5 *6)) (-4 *3 (-1066)) (-4 *2 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)))) (-2844 (*1 *1 *2) (-12 (-4 *1 (-1069 *3 *4 *2 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *2 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)))) (-2844 (*1 *1 *2) (-12 (-4 *1 (-1069 *3 *4 *5 *2 *6)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *2 (-1066)) (-4 *6 (-1066)))) (-2844 (*1 *1 *2) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *2)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066)))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4 *5 *6)) (-4 *2 (-1066)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)))) (-3545 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4 *5 *6)) (-4 *2 (-1066)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-549)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)))))
-(-13 (-1066) (-10 -8 (-15 -2650 ((-112) $ $)) (-15 -2043 ((-112) $)) (-15 -2802 ((-112) $)) (-15 -2425 ((-112) $)) (-15 -2250 ((-112) $)) (-15 -2298 ((-112) $)) (-15 -1874 ((-112) $)) (-15 -3985 ((-112) $)) (-15 -3231 ((-112) $)) (-15 -2196 ((-621 $) $)) (-15 -1524 (|t#1| $)) (-15 -3943 (|t#2| $)) (-15 -3964 (|t#3| $)) (-15 -1354 (|t#4| $)) (-15 -2976 (|t#5| $)) (-15 -2844 ($ (-621 $))) (-15 -2844 ($ |t#1|)) (-15 -2844 ($ |t#2|)) (-15 -2844 ($ |t#3|)) (-15 -2844 ($ |t#4|)) (-15 -2844 ($ |t#5|)) (-15 -3534 ($ $)) (-15 -3545 ($ $)) (-15 -3774 ((-549) $)) (-15 -3340 ($ $ (-549))) (-15 -3340 ($ $ (-621 (-549))))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-1874 (((-112) $) NIL)) (-3943 (((-1142) $) NIL)) (-2298 (((-112) $) NIL)) (-1524 (((-1124) $) NIL)) (-2425 (((-112) $) NIL)) (-2043 (((-112) $) NIL)) (-2250 (((-112) $) NIL)) (-2677 (((-1124) $) NIL)) (-3985 (((-112) $) NIL)) (-3964 (((-549) $) NIL)) (-3988 (((-1086) $) NIL)) (-3231 (((-112) $) NIL)) (-1354 (((-219) $) NIL)) (-2976 (((-834) $) NIL)) (-2650 (((-112) $ $) NIL)) (-3340 (($ $ (-549)) NIL) (($ $ (-621 (-549))) NIL)) (-2196 (((-621 $) $) NIL)) (-2844 (($ (-621 $)) NIL) (($ (-1124)) NIL) (($ (-1142)) NIL) (($ (-549)) NIL) (($ (-219)) NIL) (($ (-834)) NIL)) (-3845 (((-834) $) NIL)) (-3545 (($ $) NIL)) (-3534 (($ $) NIL)) (-2802 (((-112) $) NIL)) (-2388 (((-112) $ $) NIL)) (-3774 (((-549) $) NIL)))
-(((-1070) (-1069 (-1124) (-1142) (-549) (-219) (-834))) (T -1070))
-NIL
-(-1069 (-1124) (-1142) (-549) (-219) (-834))
-((-3833 (((-112) $ $) NIL)) (-1874 (((-112) $) 38)) (-3943 ((|#2| $) 42)) (-2298 (((-112) $) 37)) (-1524 ((|#1| $) 41)) (-2425 (((-112) $) 35)) (-2043 (((-112) $) 14)) (-2250 (((-112) $) 36)) (-2677 (((-1124) $) NIL)) (-3985 (((-112) $) 39)) (-3964 ((|#3| $) 44)) (-3988 (((-1086) $) NIL)) (-3231 (((-112) $) 40)) (-1354 ((|#4| $) 43)) (-2976 ((|#5| $) 45)) (-2650 (((-112) $ $) 34)) (-3340 (($ $ (-549)) 56) (($ $ (-621 (-549))) 58)) (-2196 (((-621 $) $) 22)) (-2844 (($ (-621 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-3845 (((-834) $) 23)) (-3545 (($ $) 21)) (-3534 (($ $) 52)) (-2802 (((-112) $) 18)) (-2388 (((-112) $ $) 33)) (-3774 (((-549) $) 54)))
-(((-1071 |#1| |#2| |#3| |#4| |#5|) (-1069 |#1| |#2| |#3| |#4| |#5|) (-1066) (-1066) (-1066) (-1066) (-1066)) (T -1071))
-NIL
-(-1069 |#1| |#2| |#3| |#4| |#5|)
-((-3315 (((-1230) $) 23)) (-1318 (($ (-1142) (-427) |#2|) 11)) (-3845 (((-834) $) 16)))
-(((-1072 |#1| |#2|) (-13 (-388) (-10 -8 (-15 -1318 ($ (-1142) (-427) |#2|)))) (-823) (-423 |#1|)) (T -1072))
-((-1318 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-427)) (-4 *5 (-823)) (-5 *1 (-1072 *5 *4)) (-4 *4 (-423 *5)))))
-(-13 (-388) (-10 -8 (-15 -1318 ($ (-1142) (-427) |#2|))))
-((-1259 (((-112) |#5| |#5|) 38)) (-1384 (((-112) |#5| |#5|) 52)) (-2661 (((-112) |#5| (-621 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-2010 (((-112) (-621 |#4|) (-621 |#4|)) 58)) (-1444 (((-112) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) 63)) (-3523 (((-1230)) 33)) (-3727 (((-1230) (-1124) (-1124) (-1124)) 29)) (-2789 (((-621 |#5|) (-621 |#5|)) 82)) (-1715 (((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)))) 80)) (-2599 (((-621 (-2 (|:| -2650 (-621 |#4|)) (|:| -1980 |#5|) (|:| |ineq| (-621 |#4|)))) (-621 |#4|) (-621 |#5|) (-112) (-112)) 102)) (-2211 (((-112) |#5| |#5|) 47)) (-2967 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3307 (((-112) (-621 |#4|) (-621 |#4|)) 57)) (-4088 (((-112) (-621 |#4|) (-621 |#4|)) 59)) (-3739 (((-112) (-621 |#4|) (-621 |#4|)) 60)) (-3005 (((-3 (-2 (|:| -2650 (-621 |#4|)) (|:| -1980 |#5|) (|:| |ineq| (-621 |#4|))) "failed") (-621 |#4|) |#5| (-621 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-4067 (((-621 |#5|) (-621 |#5|)) 43)))
-(((-1073 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3727 ((-1230) (-1124) (-1124) (-1124))) (-15 -3523 ((-1230))) (-15 -1259 ((-112) |#5| |#5|)) (-15 -4067 ((-621 |#5|) (-621 |#5|))) (-15 -2211 ((-112) |#5| |#5|)) (-15 -1384 ((-112) |#5| |#5|)) (-15 -2010 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3307 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -4088 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3739 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -2967 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2661 ((-112) |#5| |#5|)) (-15 -2661 ((-112) |#5| (-621 |#5|))) (-15 -2789 ((-621 |#5|) (-621 |#5|))) (-15 -1444 ((-112) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)))) (-15 -1715 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) (-15 -2599 ((-621 (-2 (|:| -2650 (-621 |#4|)) (|:| -1980 |#5|) (|:| |ineq| (-621 |#4|)))) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -3005 ((-3 (-2 (|:| -2650 (-621 |#4|)) (|:| -1980 |#5|) (|:| |ineq| (-621 |#4|))) "failed") (-621 |#4|) |#5| (-621 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1073))
-((-3005 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| -2650 (-621 *9)) (|:| -1980 *4) (|:| |ineq| (-621 *9)))) (-5 *1 (-1073 *6 *7 *8 *9 *4)) (-5 *3 (-621 *9)) (-4 *4 (-1038 *6 *7 *8 *9)))) (-2599 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-621 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-621 (-2 (|:| -2650 (-621 *9)) (|:| -1980 *10) (|:| |ineq| (-621 *9))))) (-5 *1 (-1073 *6 *7 *8 *9 *10)) (-5 *3 (-621 *9)))) (-1715 (*1 *2 *2) (-12 (-5 *2 (-621 (-2 (|:| |val| (-621 *6)) (|:| -1980 *7)))) (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1073 *3 *4 *5 *6 *7)))) (-1444 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1980 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)))) (-2789 (*1 *2 *2) (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-1073 *3 *4 *5 *6 *7)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1073 *5 *6 *7 *8 *3)))) (-2661 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-2967 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3739 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-4088 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3307 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-2010 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-1384 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-2211 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-1073 *3 *4 *5 *6 *7)))) (-1259 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3523 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3727 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3727 ((-1230) (-1124) (-1124) (-1124))) (-15 -3523 ((-1230))) (-15 -1259 ((-112) |#5| |#5|)) (-15 -4067 ((-621 |#5|) (-621 |#5|))) (-15 -2211 ((-112) |#5| |#5|)) (-15 -1384 ((-112) |#5| |#5|)) (-15 -2010 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3307 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -4088 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3739 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -2967 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2661 ((-112) |#5| |#5|)) (-15 -2661 ((-112) |#5| (-621 |#5|))) (-15 -2789 ((-621 |#5|) (-621 |#5|))) (-15 -1444 ((-112) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)))) (-15 -1715 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) (-15 -2599 ((-621 (-2 (|:| -2650 (-621 |#4|)) (|:| -1980 |#5|) (|:| |ineq| (-621 |#4|)))) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -3005 ((-3 (-2 (|:| -2650 (-621 |#4|)) (|:| -1980 |#5|) (|:| |ineq| (-621 |#4|))) "failed") (-621 |#4|) |#5| (-621 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-1829 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#5|) 96)) (-3301 (((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) |#4| |#4| |#5|) 72)) (-2381 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5|) 91)) (-4181 (((-621 |#5|) |#4| |#5|) 110)) (-3693 (((-621 |#5|) |#4| |#5|) 117)) (-4134 (((-621 |#5|) |#4| |#5|) 118)) (-1780 (((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|) 97)) (-4298 (((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|) 116)) (-3218 (((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3663 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) |#3| (-112)) 84) (((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2775 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5|) 79)) (-2579 (((-1230)) 37)) (-3552 (((-1230)) 26)) (-1412 (((-1230) (-1124) (-1124) (-1124)) 33)) (-1299 (((-1230) (-1124) (-1124) (-1124)) 22)))
-(((-1074 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1299 ((-1230) (-1124) (-1124) (-1124))) (-15 -3552 ((-1230))) (-15 -1412 ((-1230) (-1124) (-1124) (-1124))) (-15 -2579 ((-1230))) (-15 -3301 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) |#4| |#4| |#5|)) (-15 -3663 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3663 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) |#3| (-112))) (-15 -2775 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5|)) (-15 -2381 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5|)) (-15 -3218 ((-112) |#4| |#5|)) (-15 -1780 ((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|)) (-15 -4181 ((-621 |#5|) |#4| |#5|)) (-15 -4298 ((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|)) (-15 -3693 ((-621 |#5|) |#4| |#5|)) (-15 -3218 ((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|)) (-15 -4134 ((-621 |#5|) |#4| |#5|)) (-15 -1829 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#5|))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1074))
-((-1829 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-4134 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3218 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1980 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3693 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-4298 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1980 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-4181 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-1780 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1980 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3218 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2381 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2775 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1980 *9)))) (-5 *5 (-112)) (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *4 (-823)) (-5 *2 (-621 (-2 (|:| |val| *8) (|:| -1980 *9)))) (-5 *1 (-1074 *6 *7 *4 *8 *9)))) (-3663 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4)))) (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3301 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2579 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-1412 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3552 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-1299 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1299 ((-1230) (-1124) (-1124) (-1124))) (-15 -3552 ((-1230))) (-15 -1412 ((-1230) (-1124) (-1124) (-1124))) (-15 -2579 ((-1230))) (-15 -3301 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) |#4| |#4| |#5|)) (-15 -3663 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3663 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) |#3| (-112))) (-15 -2775 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5|)) (-15 -2381 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#4| |#5|)) (-15 -3218 ((-112) |#4| |#5|)) (-15 -1780 ((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|)) (-15 -4181 ((-621 |#5|) |#4| |#5|)) (-15 -4298 ((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|)) (-15 -3693 ((-621 |#5|) |#4| |#5|)) (-15 -3218 ((-621 (-2 (|:| |val| (-112)) (|:| -1980 |#5|))) |#4| |#5|)) (-15 -4134 ((-621 |#5|) |#4| |#5|)) (-15 -1829 ((-621 (-2 (|:| |val| |#4|) (|:| -1980 |#5|))) |#4| |#5|)))
-((-3833 (((-112) $ $) 7)) (-3684 (((-621 (-2 (|:| -2680 $) (|:| -1358 (-621 |#4|)))) (-621 |#4|)) 85)) (-3840 (((-621 $) (-621 |#4|)) 86) (((-621 $) (-621 |#4|) (-112)) 111)) (-2271 (((-621 |#3|) $) 33)) (-3863 (((-112) $) 26)) (-1771 (((-112) $) 17 (|has| |#1| (-541)))) (-2344 (((-112) |#4| $) 101) (((-112) $) 97)) (-1305 ((|#4| |#4| $) 92)) (-1912 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 $))) |#4| $) 126)) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |#3|) 27)) (-1323 (((-112) $ (-747)) 44)) (-1488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| "failed") $ |#3|) 79)) (-1705 (($) 45 T CONST)) (-1717 (((-112) $) 22 (|has| |#1| (-541)))) (-1766 (((-112) $ $) 24 (|has| |#1| (-541)))) (-2671 (((-112) $ $) 23 (|has| |#1| (-541)))) (-2498 (((-112) $) 25 (|has| |#1| (-541)))) (-3074 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1436 (((-621 |#4|) (-621 |#4|) $) 18 (|has| |#1| (-541)))) (-3001 (((-621 |#4|) (-621 |#4|) $) 19 (|has| |#1| (-541)))) (-2713 (((-3 $ "failed") (-621 |#4|)) 36)) (-2658 (($ (-621 |#4|)) 35)) (-3655 (((-3 $ "failed") $) 82)) (-2514 ((|#4| |#4| $) 89)) (-3675 (($ $) 68 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#4| $) 67 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3249 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-541)))) (-4042 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3678 ((|#4| |#4| $) 87)) (-2558 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2235 (((-2 (|:| -2680 (-621 |#4|)) (|:| -1358 (-621 |#4|))) $) 105)) (-4173 (((-112) |#4| $) 136)) (-1447 (((-112) |#4| $) 133)) (-2561 (((-112) |#4| $) 137) (((-112) $) 134)) (-2990 (((-621 |#4|) $) 52 (|has| $ (-6 -4336)))) (-3929 (((-112) |#4| $) 104) (((-112) $) 103)) (-4170 ((|#3| $) 34)) (-4202 (((-112) $ (-747)) 43)) (-1958 (((-621 |#4|) $) 53 (|has| $ (-6 -4336)))) (-2273 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#4| |#4|) $) 47)) (-1670 (((-621 |#3|) $) 32)) (-2911 (((-112) |#3| $) 31)) (-4289 (((-112) $ (-747)) 42)) (-2677 (((-1124) $) 9)) (-4145 (((-3 |#4| (-621 $)) |#4| |#4| $) 128)) (-2587 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 $))) |#4| |#4| $) 127)) (-3828 (((-3 |#4| "failed") $) 83)) (-2613 (((-621 $) |#4| $) 129)) (-1783 (((-3 (-112) (-621 $)) |#4| $) 132)) (-1350 (((-621 (-2 (|:| |val| (-112)) (|:| -1980 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1795 (((-621 $) |#4| $) 125) (((-621 $) (-621 |#4|) $) 124) (((-621 $) (-621 |#4|) (-621 $)) 123) (((-621 $) |#4| (-621 $)) 122)) (-1449 (($ |#4| $) 117) (($ (-621 |#4|) $) 116)) (-4069 (((-621 |#4|) $) 107)) (-3130 (((-112) |#4| $) 99) (((-112) $) 95)) (-2741 ((|#4| |#4| $) 90)) (-3739 (((-112) $ $) 110)) (-2205 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-541)))) (-1582 (((-112) |#4| $) 100) (((-112) $) 96)) (-3952 ((|#4| |#4| $) 91)) (-3988 (((-1086) $) 10)) (-3645 (((-3 |#4| "failed") $) 84)) (-1917 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1762 (((-3 $ "failed") $ |#4|) 78)) (-2975 (($ $ |#4|) 77) (((-621 $) |#4| $) 115) (((-621 $) |#4| (-621 $)) 114) (((-621 $) (-621 |#4|) $) 113) (((-621 $) (-621 |#4|) (-621 $)) 112)) (-2470 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#4|) (-621 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-621 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))) (-2732 (((-112) $ $) 38)) (-1807 (((-112) $) 41)) (-1461 (($) 40)) (-3068 (((-747) $) 106)) (-3997 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-2281 (($ $) 39)) (-2844 (((-525) $) 69 (|has| |#4| (-594 (-525))))) (-3853 (($ (-621 |#4|)) 60)) (-1651 (($ $ |#3|) 28)) (-3183 (($ $ |#3|) 30)) (-1821 (($ $) 88)) (-2432 (($ $ |#3|) 29)) (-3845 (((-834) $) 11) (((-621 |#4|) $) 37)) (-1509 (((-747) $) 76 (|has| |#3| (-361)))) (-3472 (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2197 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) 98)) (-1691 (((-621 $) |#4| $) 121) (((-621 $) |#4| (-621 $)) 120) (((-621 $) (-621 |#4|) $) 119) (((-621 $) (-621 |#4|) (-621 $)) 118)) (-2150 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-2691 (((-621 |#3|) $) 81)) (-1972 (((-112) |#4| $) 135)) (-2923 (((-112) |#3| $) 80)) (-2388 (((-112) $ $) 6)) (-3774 (((-747) $) 46 (|has| $ (-6 -4336)))))
+((-4306 (*1 *2 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-1061 *4 *2)) (-4 *4 (-821)) (-4 *2 (-1115 *4)))) (-4306 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1115 *3)))) (-4301 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1061 *4 *2)) (-4 *4 (-821)) (-4 *2 (-1115 *4)))))
+(-13 (-1060 |t#1|) (-10 -8 (-15 -4306 (|t#2| (-618 $))) (-15 -4306 (|t#2| $)) (-15 -4301 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-1060 |#1|) . T) ((-1178) . T))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-4140 (((-1101) $) 12)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3567 (((-618 (-1101)) $) 10)) (-3375 (((-112) $ $) NIL)))
+(((-1062) (-13 (-1049) (-10 -8 (-15 -3567 ((-618 (-1101)) $)) (-15 -4140 ((-1101) $))))) (T -1062))
+((-3567 (*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-1062)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1062)))))
+(-13 (-1049) (-10 -8 (-15 -3567 ((-618 (-1101)) $)) (-15 -4140 ((-1101) $))))
+((-2887 (((-112) $ $) NIL)) (-1916 (($) NIL (|has| |#1| (-361)))) (-3568 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3570 (($ $ $) 72)) (-3569 (((-112) $ $) 73)) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| |#1| (-361)))) (-3573 (($ (-618 |#1|)) NIL) (($) 13)) (-1626 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3747 (($ |#1| $) 67 (|has| $ (-6 -4336))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4336)))) (-3315 (($) NIL (|has| |#1| (-361)))) (-2063 (((-618 |#1|) $) 19 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3660 ((|#1| $) 57 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3661 ((|#1| $) 55 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 34)) (-2121 (((-890) $) NIL (|has| |#1| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3572 (($ $ $) 70)) (-1326 ((|#1| $) 25)) (-3953 (($ |#1| $) 65)) (-2483 (($ (-890)) NIL (|has| |#1| (-361)))) (-3577 (((-1086) $) NIL)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1327 ((|#1| $) 27)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 21)) (-3911 (($) 11)) (-3571 (($ $ |#1|) NIL) (($ $ $) 71)) (-1518 (($) NIL) (($ (-618 |#1|)) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 16)) (-4313 (((-524) $) 52 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 61)) (-1917 (($ $) NIL (|has| |#1| (-361)))) (-4300 (((-835) $) NIL)) (-1918 (((-747) $) NIL)) (-3574 (($ (-618 |#1|)) NIL) (($) 12)) (-1328 (($ (-618 |#1|)) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 54)) (-4299 (((-747) $) 10 (|has| $ (-6 -4336)))))
+(((-1063 |#1|) (-419 |#1|) (-1067)) (T -1063))
+NIL
+(-419 |#1|)
+((-3568 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3570 (($ $ $) 10)) (-3571 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1064 |#1| |#2|) (-10 -8 (-15 -3568 (|#1| |#2| |#1|)) (-15 -3568 (|#1| |#1| |#2|)) (-15 -3568 (|#1| |#1| |#1|)) (-15 -3570 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#2|)) (-15 -3571 (|#1| |#1| |#1|))) (-1065 |#2|) (-1067)) (T -1064))
+NIL
+(-10 -8 (-15 -3568 (|#1| |#2| |#1|)) (-15 -3568 (|#1| |#1| |#2|)) (-15 -3568 (|#1| |#1| |#1|)) (-15 -3570 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#2|)) (-15 -3571 (|#1| |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3568 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3570 (($ $ $) 20)) (-3569 (((-112) $ $) 19)) (-1264 (((-112) $ (-747)) 35)) (-3573 (($) 25) (($ (-618 |#1|)) 24)) (-4056 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4336)))) (-3879 (($) 36 T CONST)) (-1394 (($ $) 59 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4336)))) (-2063 (((-618 |#1|) $) 43 (|has| $ (-6 -4336)))) (-3575 (((-112) $ $) 28)) (-4065 (((-112) $ (-747)) 34)) (-2502 (((-618 |#1|) $) 44 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 38)) (-4062 (((-112) $ (-747)) 33)) (-3576 (((-1124) $) 9)) (-3572 (($ $ $) 23)) (-3577 (((-1086) $) 10)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2065 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#1|) (-618 |#1|)) 50 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 48 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 (-286 |#1|))) 47 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 29)) (-3745 (((-112) $) 32)) (-3911 (($) 31)) (-3571 (($ $ $) 22) (($ $ |#1|) 21)) (-2064 (((-747) |#1| $) 45 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4336)))) (-3742 (($ $) 30)) (-4313 (((-524) $) 60 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 51)) (-4300 (((-835) $) 11)) (-3574 (($) 27) (($ (-618 |#1|)) 26)) (-2066 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 37 (|has| $ (-6 -4336)))))
+(((-1065 |#1|) (-138) (-1067)) (T -1065))
+((-3575 (*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-3574 (*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-1065 *3)))) (-3573 (*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-1065 *3)))) (-3572 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3571 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3571 (*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3570 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3569 (*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-3568 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3568 (*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-3568 (*1 *1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(-13 (-1067) (-149 |t#1|) (-10 -8 (-6 -4326) (-15 -3575 ((-112) $ $)) (-15 -3574 ($)) (-15 -3574 ($ (-618 |t#1|))) (-15 -3573 ($)) (-15 -3573 ($ (-618 |t#1|))) (-15 -3572 ($ $ $)) (-15 -3571 ($ $ $)) (-15 -3571 ($ $ |t#1|)) (-15 -3570 ($ $ $)) (-15 -3569 ((-112) $ $)) (-15 -3568 ($ $ $)) (-15 -3568 ($ $ |t#1|)) (-15 -3568 ($ |t#1| $))))
+(((-34) . T) ((-101) . T) ((-593 (-835)) . T) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) . T) ((-1178) . T))
+((-3576 (((-1124) $) 10)) (-3577 (((-1086) $) 8)))
+(((-1066 |#1|) (-10 -8 (-15 -3576 ((-1124) |#1|)) (-15 -3577 ((-1086) |#1|))) (-1067)) (T -1066))
+NIL
+(-10 -8 (-15 -3576 ((-1124) |#1|)) (-15 -3577 ((-1086) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)))
+(((-1067) (-138)) (T -1067))
+((-3577 (*1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1086)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1124)))))
+(-13 (-101) (-593 (-835)) (-10 -8 (-15 -3577 ((-1086) $)) (-15 -3576 ((-1124) $))))
+(((-101) . T) ((-593 (-835)) . T))
+((-2887 (((-112) $ $) NIL)) (-3454 (((-747)) 30)) (-3581 (($ (-618 (-890))) 52)) (-3583 (((-3 $ #1="failed") $ (-890) (-890)) 58)) (-3315 (($) 32)) (-3579 (((-112) (-890) $) 35)) (-2121 (((-890) $) 50)) (-3576 (((-1124) $) NIL)) (-2483 (($ (-890)) 31)) (-3584 (((-3 $ #1#) $ (-890)) 55)) (-3577 (((-1086) $) NIL)) (-3580 (((-1224 $)) 40)) (-3582 (((-618 (-890)) $) 24)) (-3578 (((-747) $ (-890) (-890)) 56)) (-4300 (((-835) $) 29)) (-3375 (((-112) $ $) 21)))
+(((-1068 |#1| |#2|) (-13 (-361) (-10 -8 (-15 -3584 ((-3 $ #1="failed") $ (-890))) (-15 -3583 ((-3 $ #1#) $ (-890) (-890))) (-15 -3582 ((-618 (-890)) $)) (-15 -3581 ($ (-618 (-890)))) (-15 -3580 ((-1224 $))) (-15 -3579 ((-112) (-890) $)) (-15 -3578 ((-747) $ (-890) (-890))))) (-890) (-890)) (T -1068))
+((-3584 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1068 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3583 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1068 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3580 (*1 *2) (-12 (-5 *2 (-1224 (-1068 *3 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3579 (*1 *2 *3 *1) (-12 (-5 *3 (-890)) (-5 *2 (-112)) (-5 *1 (-1068 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3578 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-747)) (-5 *1 (-1068 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-361) (-10 -8 (-15 -3584 ((-3 $ #1="failed") $ (-890))) (-15 -3583 ((-3 $ #1#) $ (-890) (-890))) (-15 -3582 ((-618 (-890)) $)) (-15 -3581 ($ (-618 (-890)))) (-15 -3580 ((-1224 $))) (-15 -3579 ((-112) (-890) $)) (-15 -3578 ((-747) $ (-890) (-890)))))
+((-2887 (((-112) $ $) NIL)) (-3594 (((-112) $) NIL)) (-3590 (((-1142) $) NIL)) (-3595 (((-112) $) NIL)) (-3881 (((-1124) $) NIL)) (-3597 (((-112) $) NIL)) (-3599 (((-112) $) NIL)) (-3596 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-3593 (((-112) $) NIL)) (-3589 (((-535) $) NIL)) (-3577 (((-1086) $) NIL)) (-3592 (((-112) $) NIL)) (-3588 (((-219) $) NIL)) (-3587 (((-835) $) NIL)) (-3600 (((-112) $ $) NIL)) (-4142 (($ $ (-535)) NIL) (($ $ (-618 (-535))) NIL)) (-3591 (((-618 $) $) NIL)) (-4313 (($ (-618 $)) NIL) (($ (-1124)) NIL) (($ (-1142)) NIL) (($ (-535)) NIL) (($ (-219)) NIL) (($ (-835)) NIL)) (-4300 (((-835) $) NIL)) (-3585 (($ $) NIL)) (-3586 (($ $) NIL)) (-3598 (((-112) $) NIL)) (-3375 (((-112) $ $) NIL)) (-4299 (((-535) $) NIL)))
+(((-1069) (-1070 (-1124) (-1142) (-535) (-219) (-835))) (T -1069))
+NIL
+(-1070 (-1124) (-1142) (-535) (-219) (-835))
+((-2887 (((-112) $ $) 7)) (-3594 (((-112) $) 32)) (-3590 ((|#2| $) 27)) (-3595 (((-112) $) 33)) (-3881 ((|#1| $) 28)) (-3597 (((-112) $) 35)) (-3599 (((-112) $) 37)) (-3596 (((-112) $) 34)) (-3576 (((-1124) $) 9)) (-3593 (((-112) $) 31)) (-3589 ((|#3| $) 26)) (-3577 (((-1086) $) 10)) (-3592 (((-112) $) 30)) (-3588 ((|#4| $) 25)) (-3587 ((|#5| $) 24)) (-3600 (((-112) $ $) 38)) (-4142 (($ $ (-535)) 14) (($ $ (-618 (-535))) 13)) (-3591 (((-618 $) $) 29)) (-4313 (($ (-618 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-4300 (((-835) $) 11)) (-3585 (($ $) 16)) (-3586 (($ $) 17)) (-3598 (((-112) $) 36)) (-3375 (((-112) $ $) 6)) (-4299 (((-535) $) 15)))
+(((-1070 |#1| |#2| |#3| |#4| |#5|) (-138) (-1067) (-1067) (-1067) (-1067) (-1067)) (T -1070))
+((-3600 (*1 *2 *1 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3591 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-618 *1)) (-4 *1 (-1070 *3 *4 *5 *6 *7)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *2 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *2 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3587 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *2)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)))) (-4313 (*1 *1 *2) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-4313 (*1 *1 *2) (-12 (-4 *1 (-1070 *3 *2 *4 *5 *6)) (-4 *3 (-1067)) (-4 *2 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-4313 (*1 *1 *2) (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *2 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-4313 (*1 *1 *2) (-12 (-4 *1 (-1070 *3 *4 *5 *2 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *2 (-1067)) (-4 *6 (-1067)))) (-4313 (*1 *1 *2) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *2)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3586 (*1 *1 *1) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-3585 (*1 *1 *1) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-535)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -3600 ((-112) $ $)) (-15 -3599 ((-112) $)) (-15 -3598 ((-112) $)) (-15 -3597 ((-112) $)) (-15 -3596 ((-112) $)) (-15 -3595 ((-112) $)) (-15 -3594 ((-112) $)) (-15 -3593 ((-112) $)) (-15 -3592 ((-112) $)) (-15 -3591 ((-618 $) $)) (-15 -3881 (|t#1| $)) (-15 -3590 (|t#2| $)) (-15 -3589 (|t#3| $)) (-15 -3588 (|t#4| $)) (-15 -3587 (|t#5| $)) (-15 -4313 ($ (-618 $))) (-15 -4313 ($ |t#1|)) (-15 -4313 ($ |t#2|)) (-15 -4313 ($ |t#3|)) (-15 -4313 ($ |t#4|)) (-15 -4313 ($ |t#5|)) (-15 -3586 ($ $)) (-15 -3585 ($ $)) (-15 -4299 ((-535) $)) (-15 -4142 ($ $ (-535))) (-15 -4142 ($ $ (-618 (-535))))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3594 (((-112) $) 38)) (-3590 ((|#2| $) 42)) (-3595 (((-112) $) 37)) (-3881 ((|#1| $) 41)) (-3597 (((-112) $) 35)) (-3599 (((-112) $) 14)) (-3596 (((-112) $) 36)) (-3576 (((-1124) $) NIL)) (-3593 (((-112) $) 39)) (-3589 ((|#3| $) 44)) (-3577 (((-1086) $) NIL)) (-3592 (((-112) $) 40)) (-3588 ((|#4| $) 43)) (-3587 ((|#5| $) 45)) (-3600 (((-112) $ $) 34)) (-4142 (($ $ (-535)) 56) (($ $ (-618 (-535))) 58)) (-3591 (((-618 $) $) 22)) (-4313 (($ (-618 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-4300 (((-835) $) 23)) (-3585 (($ $) 21)) (-3586 (($ $) 52)) (-3598 (((-112) $) 18)) (-3375 (((-112) $ $) 33)) (-4299 (((-535) $) 54)))
+(((-1071 |#1| |#2| |#3| |#4| |#5|) (-1070 |#1| |#2| |#3| |#4| |#5|) (-1067) (-1067) (-1067) (-1067) (-1067)) (T -1071))
+NIL
+(-1070 |#1| |#2| |#3| |#4| |#5|)
+((-3722 (((-1230) $) 23)) (-3601 (($ (-1142) (-427) |#2|) 11)) (-4300 (((-835) $) 16)))
+(((-1072 |#1| |#2|) (-13 (-389) (-10 -8 (-15 -3601 ($ (-1142) (-427) |#2|)))) (-823) (-414 |#1|)) (T -1072))
+((-3601 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1142)) (-5 *3 (-427)) (-4 *5 (-823)) (-5 *1 (-1072 *5 *4)) (-4 *4 (-414 *5)))))
+(-13 (-389) (-10 -8 (-15 -3601 ($ (-1142) (-427) |#2|))))
+((-3604 (((-112) |#5| |#5|) 38)) (-3607 (((-112) |#5| |#5|) 52)) (-3612 (((-112) |#5| (-618 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3608 (((-112) (-618 |#4|) (-618 |#4|)) 58)) (-3614 (((-112) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) 63)) (-3603 (((-1230)) 33)) (-3602 (((-1230) (-1124) (-1124) (-1124)) 29)) (-3613 (((-618 |#5|) (-618 |#5|)) 82)) (-3615 (((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) 80)) (-3616 (((-618 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|)))) (-618 |#4|) (-618 |#5|) (-112) (-112)) 102)) (-3606 (((-112) |#5| |#5|) 47)) (-3611 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3609 (((-112) (-618 |#4|) (-618 |#4|)) 57)) (-3610 (((-112) (-618 |#4|) (-618 |#4|)) 59)) (-4045 (((-112) (-618 |#4|) (-618 |#4|)) 60)) (-3617 (((-3 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|))) "failed") (-618 |#4|) |#5| (-618 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-3605 (((-618 |#5|) (-618 |#5|)) 43)))
+(((-1073 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3602 ((-1230) (-1124) (-1124) (-1124))) (-15 -3603 ((-1230))) (-15 -3604 ((-112) |#5| |#5|)) (-15 -3605 ((-618 |#5|) (-618 |#5|))) (-15 -3606 ((-112) |#5| |#5|)) (-15 -3607 ((-112) |#5| |#5|)) (-15 -3608 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3609 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3610 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -4045 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3611 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3612 ((-112) |#5| |#5|)) (-15 -3612 ((-112) |#5| (-618 |#5|))) (-15 -3613 ((-618 |#5|) (-618 |#5|))) (-15 -3614 ((-112) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3615 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-15 -3616 ((-618 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|)))) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3617 ((-3 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|))) "failed") (-618 |#4|) |#5| (-618 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1073))
+((-3617 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *4) (|:| |ineq| (-618 *9)))) (-5 *1 (-1073 *6 *7 *8 *9 *4)) (-5 *3 (-618 *9)) (-4 *4 (-1038 *6 *7 *8 *9)))) (-3616 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-618 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-618 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *10) (|:| |ineq| (-618 *9))))) (-5 *1 (-1073 *6 *7 *8 *9 *10)) (-5 *3 (-618 *9)))) (-3615 (*1 *2 *2) (-12 (-5 *2 (-618 (-2 (|:| |val| (-618 *6)) (|:| -1655 *7)))) (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1073 *3 *4 *5 *6 *7)))) (-3614 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-1073 *3 *4 *5 *6 *7)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1073 *5 *6 *7 *8 *3)))) (-3612 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3611 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-4045 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3610 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3609 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3608 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3607 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3606 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3605 (*1 *2 *2) (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-1073 *3 *4 *5 *6 *7)))) (-3604 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3603 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3602 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3602 ((-1230) (-1124) (-1124) (-1124))) (-15 -3603 ((-1230))) (-15 -3604 ((-112) |#5| |#5|)) (-15 -3605 ((-618 |#5|) (-618 |#5|))) (-15 -3606 ((-112) |#5| |#5|)) (-15 -3607 ((-112) |#5| |#5|)) (-15 -3608 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3609 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3610 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -4045 ((-112) (-618 |#4|) (-618 |#4|))) (-15 -3611 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3612 ((-112) |#5| |#5|)) (-15 -3612 ((-112) |#5| (-618 |#5|))) (-15 -3613 ((-618 |#5|) (-618 |#5|))) (-15 -3614 ((-112) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3615 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-15 -3616 ((-618 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|)))) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3617 ((-3 (-2 (|:| -3600 (-618 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-618 |#4|))) "failed") (-618 |#4|) |#5| (-618 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-3632 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|) 96)) (-3622 (((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|) 72)) (-3625 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 91)) (-3627 (((-618 |#5|) |#4| |#5|) 110)) (-3629 (((-618 |#5|) |#4| |#5|) 117)) (-3631 (((-618 |#5|) |#4| |#5|) 118)) (-3626 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 97)) (-3628 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 116)) (-3630 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3623 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#3| (-112)) 84) (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3624 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 79)) (-3621 (((-1230)) 37)) (-3619 (((-1230)) 26)) (-3620 (((-1230) (-1124) (-1124) (-1124)) 33)) (-3618 (((-1230) (-1124) (-1124) (-1124)) 22)))
+(((-1074 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3618 ((-1230) (-1124) (-1124) (-1124))) (-15 -3619 ((-1230))) (-15 -3620 ((-1230) (-1124) (-1124) (-1124))) (-15 -3621 ((-1230))) (-15 -3622 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3623 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3623 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3624 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3625 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3630 ((-112) |#4| |#5|)) (-15 -3626 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3627 ((-618 |#5|) |#4| |#5|)) (-15 -3628 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3629 ((-618 |#5|) |#4| |#5|)) (-15 -3630 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3631 ((-618 |#5|) |#4| |#5|)) (-15 -3632 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1074))
+((-3632 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3631 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3630 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3629 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3628 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3627 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3626 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3630 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3625 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3624 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3623 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *4 (-823)) (-5 *2 (-618 (-2 (|:| |val| *8) (|:| -1655 *9)))) (-5 *1 (-1074 *6 *7 *4 *8 *9)))) (-3623 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3622 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3621 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3620 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3619 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3618 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3618 ((-1230) (-1124) (-1124) (-1124))) (-15 -3619 ((-1230))) (-15 -3620 ((-1230) (-1124) (-1124) (-1124))) (-15 -3621 ((-1230))) (-15 -3622 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3623 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3623 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3624 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3625 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3630 ((-112) |#4| |#5|)) (-15 -3626 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3627 ((-618 |#5|) |#4| |#5|)) (-15 -3628 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3629 ((-618 |#5|) |#4| |#5|)) (-15 -3630 ((-618 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3631 ((-618 |#5|) |#4| |#5|)) (-15 -3632 ((-618 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|)))
+((-2887 (((-112) $ $) 7)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) 85)) (-4028 (((-618 $) (-618 |#4|)) 86) (((-618 $) (-618 |#4|) (-112)) 111)) (-3405 (((-618 |#3|) $) 33)) (-3229 (((-112) $) 26)) (-3220 (((-112) $) 17 (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) 101) (((-112) $) 97)) (-4034 ((|#4| |#4| $) 92)) (-4117 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) 27)) (-1264 (((-112) $ (-747)) 44)) (-4056 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3879 (($) 45 T CONST)) (-3225 (((-112) $) 22 (|has| |#1| (-542)))) (-3227 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3226 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3228 (((-112) $) 25 (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3221 (((-618 |#4|) (-618 |#4|) $) 18 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) 19 (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 36)) (-3490 (($ (-618 |#4|)) 35)) (-4141 (((-3 $ #1#) $) 82)) (-4031 ((|#4| |#4| $) 89)) (-1394 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4029 ((|#4| |#4| $) 87)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) 105)) (-3531 (((-112) |#4| $) 136)) (-3529 (((-112) |#4| $) 133)) (-3532 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-618 |#4|) $) 52 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) 104) (((-112) $) 103)) (-3514 ((|#3| $) 34)) (-4065 (((-112) $ (-747)) 43)) (-2502 (((-618 |#4|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 47)) (-3235 (((-618 |#3|) $) 32)) (-3234 (((-112) |#3| $) 31)) (-4062 (((-112) $ (-747)) 42)) (-3576 (((-1124) $) 9)) (-3525 (((-3 |#4| (-618 $)) |#4| |#4| $) 128)) (-3524 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4140 (((-3 |#4| #1#) $) 83)) (-3526 (((-618 $) |#4| $) 129)) (-3528 (((-3 (-112) (-618 $)) |#4| $) 132)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3572 (((-618 $) |#4| $) 125) (((-618 $) (-618 |#4|) $) 124) (((-618 $) (-618 |#4|) (-618 $)) 123) (((-618 $) |#4| (-618 $)) 122)) (-3782 (($ |#4| $) 117) (($ (-618 |#4|) $) 116)) (-4043 (((-618 |#4|) $) 107)) (-4037 (((-112) |#4| $) 99) (((-112) $) 95)) (-4032 ((|#4| |#4| $) 90)) (-4045 (((-112) $ $) 110)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) 100) (((-112) $) 96)) (-4033 ((|#4| |#4| $) 91)) (-3577 (((-1086) $) 10)) (-4143 (((-3 |#4| #1#) $) 84)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4025 (((-3 $ #1#) $ |#4|) 78)) (-4111 (($ $ |#4|) 77) (((-618 $) |#4| $) 115) (((-618 $) |#4| (-618 $)) 114) (((-618 $) (-618 |#4|) $) 113) (((-618 $) (-618 |#4|) (-618 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) 38)) (-3745 (((-112) $) 41)) (-3911 (($) 40)) (-4290 (((-747) $) 106)) (-2064 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-3742 (($ $) 39)) (-4313 (((-524) $) 69 (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-3233 (($ $ |#3|) 30)) (-4030 (($ $) 88)) (-3232 (($ $ |#3|) 29)) (-4300 (((-835) $) 11) (((-618 |#4|) $) 37)) (-4024 (((-747) $) 76 (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) 98)) (-3523 (((-618 $) |#4| $) 121) (((-618 $) |#4| (-618 $)) 120) (((-618 $) (-618 |#4|) $) 119) (((-618 $) (-618 |#4|) (-618 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) 81)) (-3530 (((-112) |#4| $) 135)) (-4276 (((-112) |#3| $) 80)) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 46 (|has| $ (-6 -4336)))))
(((-1075 |#1| |#2| |#3| |#4|) (-138) (-444) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1075))
NIL
(-13 (-1038 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-101) . T) ((-593 (-621 |#4|)) . T) ((-593 (-834)) . T) ((-149 |#4|) . T) ((-594 (-525)) |has| |#4| (-594 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1038 |#1| |#2| |#3| |#4|) . T) ((-1066) . T) ((-1172 |#1| |#2| |#3| |#4|) . T) ((-1179) . T))
-((-3999 (((-621 (-549)) (-549) (-549) (-549)) 22)) (-1720 (((-621 (-549)) (-549) (-549) (-549)) 12)) (-1983 (((-621 (-549)) (-549) (-549) (-549)) 18)) (-3228 (((-549) (-549) (-549)) 9)) (-2526 (((-1225 (-549)) (-621 (-549)) (-1225 (-549)) (-549)) 46) (((-1225 (-549)) (-1225 (-549)) (-1225 (-549)) (-549)) 41)) (-2227 (((-621 (-549)) (-621 (-549)) (-621 (-549)) (-112)) 28)) (-3336 (((-665 (-549)) (-621 (-549)) (-621 (-549)) (-665 (-549))) 45)) (-1969 (((-665 (-549)) (-621 (-549)) (-621 (-549))) 33)) (-2113 (((-621 (-665 (-549))) (-621 (-549))) 35)) (-3889 (((-621 (-549)) (-621 (-549)) (-621 (-549)) (-665 (-549))) 49)) (-3469 (((-665 (-549)) (-621 (-549)) (-621 (-549)) (-621 (-549))) 57)))
-(((-1076) (-10 -7 (-15 -3469 ((-665 (-549)) (-621 (-549)) (-621 (-549)) (-621 (-549)))) (-15 -3889 ((-621 (-549)) (-621 (-549)) (-621 (-549)) (-665 (-549)))) (-15 -2113 ((-621 (-665 (-549))) (-621 (-549)))) (-15 -1969 ((-665 (-549)) (-621 (-549)) (-621 (-549)))) (-15 -3336 ((-665 (-549)) (-621 (-549)) (-621 (-549)) (-665 (-549)))) (-15 -2227 ((-621 (-549)) (-621 (-549)) (-621 (-549)) (-112))) (-15 -2526 ((-1225 (-549)) (-1225 (-549)) (-1225 (-549)) (-549))) (-15 -2526 ((-1225 (-549)) (-621 (-549)) (-1225 (-549)) (-549))) (-15 -3228 ((-549) (-549) (-549))) (-15 -1983 ((-621 (-549)) (-549) (-549) (-549))) (-15 -1720 ((-621 (-549)) (-549) (-549) (-549))) (-15 -3999 ((-621 (-549)) (-549) (-549) (-549))))) (T -1076))
-((-3999 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-1076)) (-5 *3 (-549)))) (-1720 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-1076)) (-5 *3 (-549)))) (-1983 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-1076)) (-5 *3 (-549)))) (-3228 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1076)))) (-2526 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1225 (-549))) (-5 *3 (-621 (-549))) (-5 *4 (-549)) (-5 *1 (-1076)))) (-2526 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1225 (-549))) (-5 *3 (-549)) (-5 *1 (-1076)))) (-2227 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 (-549))) (-5 *3 (-112)) (-5 *1 (-1076)))) (-3336 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-665 (-549))) (-5 *3 (-621 (-549))) (-5 *1 (-1076)))) (-1969 (*1 *2 *3 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-1076)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-621 (-665 (-549)))) (-5 *1 (-1076)))) (-3889 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 (-549))) (-5 *3 (-665 (-549))) (-5 *1 (-1076)))) (-3469 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-1076)))))
-(-10 -7 (-15 -3469 ((-665 (-549)) (-621 (-549)) (-621 (-549)) (-621 (-549)))) (-15 -3889 ((-621 (-549)) (-621 (-549)) (-621 (-549)) (-665 (-549)))) (-15 -2113 ((-621 (-665 (-549))) (-621 (-549)))) (-15 -1969 ((-665 (-549)) (-621 (-549)) (-621 (-549)))) (-15 -3336 ((-665 (-549)) (-621 (-549)) (-621 (-549)) (-665 (-549)))) (-15 -2227 ((-621 (-549)) (-621 (-549)) (-621 (-549)) (-112))) (-15 -2526 ((-1225 (-549)) (-1225 (-549)) (-1225 (-549)) (-549))) (-15 -2526 ((-1225 (-549)) (-621 (-549)) (-1225 (-549)) (-549))) (-15 -3228 ((-549) (-549) (-549))) (-15 -1983 ((-621 (-549)) (-549) (-549) (-549))) (-15 -1720 ((-621 (-549)) (-549) (-549) (-549))) (-15 -3999 ((-621 (-549)) (-549) (-549) (-549))))
-((** (($ $ (-892)) 10)))
-(((-1077 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-892)))) (-1078)) (T -1077))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-892))))
-((-3833 (((-112) $ $) 7)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2388 (((-112) $ $) 6)) (** (($ $ (-892)) 13)) (* (($ $ $) 14)))
+(((-34) . T) ((-101) . T) ((-593 (-618 |#4|)) . T) ((-593 (-835)) . T) ((-149 |#4|) . T) ((-594 (-524)) |has| |#4| (-594 (-524))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1038 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1173 |#1| |#2| |#3| |#4|) . T) ((-1178) . T))
+((-3643 (((-618 (-535)) (-535) (-535) (-535)) 22)) (-3642 (((-618 (-535)) (-535) (-535) (-535)) 12)) (-3641 (((-618 (-535)) (-535) (-535) (-535)) 18)) (-3640 (((-535) (-535) (-535)) 9)) (-3639 (((-1224 (-535)) (-618 (-535)) (-1224 (-535)) (-535)) 46) (((-1224 (-535)) (-1224 (-535)) (-1224 (-535)) (-535)) 41)) (-3638 (((-618 (-535)) (-618 (-535)) (-618 (-535)) (-112)) 28)) (-3637 (((-665 (-535)) (-618 (-535)) (-618 (-535)) (-665 (-535))) 45)) (-3636 (((-665 (-535)) (-618 (-535)) (-618 (-535))) 33)) (-3635 (((-618 (-665 (-535))) (-618 (-535))) 35)) (-3634 (((-618 (-535)) (-618 (-535)) (-618 (-535)) (-665 (-535))) 49)) (-3633 (((-665 (-535)) (-618 (-535)) (-618 (-535)) (-618 (-535))) 57)))
+(((-1076) (-10 -7 (-15 -3633 ((-665 (-535)) (-618 (-535)) (-618 (-535)) (-618 (-535)))) (-15 -3634 ((-618 (-535)) (-618 (-535)) (-618 (-535)) (-665 (-535)))) (-15 -3635 ((-618 (-665 (-535))) (-618 (-535)))) (-15 -3636 ((-665 (-535)) (-618 (-535)) (-618 (-535)))) (-15 -3637 ((-665 (-535)) (-618 (-535)) (-618 (-535)) (-665 (-535)))) (-15 -3638 ((-618 (-535)) (-618 (-535)) (-618 (-535)) (-112))) (-15 -3639 ((-1224 (-535)) (-1224 (-535)) (-1224 (-535)) (-535))) (-15 -3639 ((-1224 (-535)) (-618 (-535)) (-1224 (-535)) (-535))) (-15 -3640 ((-535) (-535) (-535))) (-15 -3641 ((-618 (-535)) (-535) (-535) (-535))) (-15 -3642 ((-618 (-535)) (-535) (-535) (-535))) (-15 -3643 ((-618 (-535)) (-535) (-535) (-535))))) (T -1076))
+((-3643 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-1076)) (-5 *3 (-535)))) (-3642 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-1076)) (-5 *3 (-535)))) (-3641 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-1076)) (-5 *3 (-535)))) (-3640 (*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1076)))) (-3639 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1224 (-535))) (-5 *3 (-618 (-535))) (-5 *4 (-535)) (-5 *1 (-1076)))) (-3639 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1224 (-535))) (-5 *3 (-535)) (-5 *1 (-1076)))) (-3638 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *3 (-112)) (-5 *1 (-1076)))) (-3637 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-665 (-535))) (-5 *3 (-618 (-535))) (-5 *1 (-1076)))) (-3636 (*1 *2 *3 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-1076)))) (-3635 (*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-1076)))) (-3634 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *3 (-665 (-535))) (-5 *1 (-1076)))) (-3633 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-1076)))))
+(-10 -7 (-15 -3633 ((-665 (-535)) (-618 (-535)) (-618 (-535)) (-618 (-535)))) (-15 -3634 ((-618 (-535)) (-618 (-535)) (-618 (-535)) (-665 (-535)))) (-15 -3635 ((-618 (-665 (-535))) (-618 (-535)))) (-15 -3636 ((-665 (-535)) (-618 (-535)) (-618 (-535)))) (-15 -3637 ((-665 (-535)) (-618 (-535)) (-618 (-535)) (-665 (-535)))) (-15 -3638 ((-618 (-535)) (-618 (-535)) (-618 (-535)) (-112))) (-15 -3639 ((-1224 (-535)) (-1224 (-535)) (-1224 (-535)) (-535))) (-15 -3639 ((-1224 (-535)) (-618 (-535)) (-1224 (-535)) (-535))) (-15 -3640 ((-535) (-535) (-535))) (-15 -3641 ((-618 (-535)) (-535) (-535) (-535))) (-15 -3642 ((-618 (-535)) (-535) (-535) (-535))) (-15 -3643 ((-618 (-535)) (-535) (-535) (-535))))
+((** (($ $ (-890)) 10)))
+(((-1077 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-890)))) (-1078)) (T -1077))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-890))))
+((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)) (** (($ $ (-890)) 13)) (* (($ $ $) 14)))
(((-1078) (-138)) (T -1078))
-((* (*1 *1 *1 *1) (-4 *1 (-1078))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1078)) (-5 *2 (-892)))))
-(-13 (-1066) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-892)))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL (|has| |#3| (-1066)))) (-3166 (((-112) $) NIL (|has| |#3| (-130)))) (-3195 (($ (-892)) NIL (|has| |#3| (-1018)))) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-3100 (($ $ $) NIL (|has| |#3| (-769)))) (-2384 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-1323 (((-112) $ (-747)) NIL)) (-3615 (((-747)) NIL (|has| |#3| (-361)))) (-3902 (((-549) $) NIL (|has| |#3| (-821)))) (-2253 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (-12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1066)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1066)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1066)))) (-2658 (((-549) $) NIL (-12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1066)))) (((-400 (-549)) $) NIL (-12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1066)))) ((|#3| $) NIL (|has| |#3| (-1066)))) (-1698 (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018)))) (((-2 (|:| -1859 (-665 |#3|)) (|:| |vec| (-1225 |#3|))) (-665 $) (-1225 $)) NIL (|has| |#3| (-1018))) (((-665 |#3|) (-665 $)) NIL (|has| |#3| (-1018)))) (-3976 (((-3 $ "failed") $) NIL (|has| |#3| (-703)))) (-3238 (($) NIL (|has| |#3| (-361)))) (-1878 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#3| $ (-549)) 12)) (-3079 (((-112) $) NIL (|has| |#3| (-821)))) (-2990 (((-621 |#3|) $) NIL (|has| $ (-6 -4336)))) (-3987 (((-112) $) NIL (|has| |#3| (-703)))) (-2847 (((-112) $) NIL (|has| |#3| (-821)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-1958 (((-621 |#3|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-1865 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#3| |#3|) $) NIL)) (-2723 (((-892) $) NIL (|has| |#3| (-361)))) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#3| (-1066)))) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3491 (($ (-892)) NIL (|has| |#3| (-361)))) (-3988 (((-1086) $) NIL (|has| |#3| (-1066)))) (-3645 ((|#3| $) NIL (|has| (-549) (-823)))) (-3158 (($ $ |#3|) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066)))) (($ $ (-287 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066)))) (($ $ (-621 |#3|) (-621 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1066))))) (-1738 (((-621 |#3|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#3| $ (-549) |#3|) NIL) ((|#3| $ (-549)) NIL)) (-4140 ((|#3| $ $) NIL (|has| |#3| (-1018)))) (-2168 (($ (-1225 |#3|)) NIL)) (-3128 (((-133)) NIL (|has| |#3| (-356)))) (-3455 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018)))) (-3997 (((-747) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336))) (((-747) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1066))))) (-2281 (($ $) NIL)) (-3845 (((-1225 |#3|) $) NIL) (($ (-549)) NIL (-1536 (-12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1066))) (|has| |#3| (-1018)))) (($ (-400 (-549))) NIL (-12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1066)))) (($ |#3|) NIL (|has| |#3| (-1066))) (((-834) $) NIL (|has| |#3| (-593 (-834))))) (-1723 (((-747)) NIL (|has| |#3| (-1018)))) (-2150 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-3603 (($ $) NIL (|has| |#3| (-821)))) (-3275 (($) NIL (|has| |#3| (-130)) CONST)) (-3287 (($) NIL (|has| |#3| (-703)) CONST)) (-1700 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018)))) (-2448 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2424 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2388 (((-112) $ $) NIL (|has| |#3| (-1066)))) (-2436 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2411 (((-112) $ $) 17 (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2512 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-2499 (($ $ $) NIL (|has| |#3| (-1018))) (($ $) NIL (|has| |#3| (-1018)))) (-2485 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-747)) NIL (|has| |#3| (-703))) (($ $ (-892)) NIL (|has| |#3| (-703)))) (* (($ (-549) $) NIL (|has| |#3| (-1018))) (($ $ $) NIL (|has| |#3| (-703))) (($ $ |#3|) NIL (|has| |#3| (-703))) (($ |#3| $) NIL (|has| |#3| (-703))) (($ (-747) $) NIL (|has| |#3| (-130))) (($ (-892) $) NIL (|has| |#3| (-25)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
+((* (*1 *1 *1 *1) (-4 *1 (-1078))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1078)) (-5 *2 (-890)))))
+(-13 (-1067) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-890)))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL (|has| |#3| (-1067)))) (-3522 (((-112) $) NIL (|has| |#3| (-130)))) (-4053 (($ (-890)) NIL (|has| |#3| (-1018)))) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-2724 (($ $ $) NIL (|has| |#3| (-769)))) (-1363 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-1264 (((-112) $ (-747)) NIL)) (-3454 (((-747)) NIL (|has| |#3| (-361)))) (-3969 (((-535) $) NIL (|has| |#3| (-821)))) (-4130 ((|#3| $ (-535) |#3|) NIL (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (-12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067)))) (((-3 (-400 (-535)) #1#) $) NIL (-12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1067)))) (-3490 (((-535) $) NIL (-12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067)))) (((-400 (-535)) $) NIL (-12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067)))) ((|#3| $) NIL (|has| |#3| (-1067)))) (-2353 (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#3| (-617 (-535))) (|has| |#3| (-1018)))) (((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 $) (-1224 $)) NIL (|has| |#3| (-1018))) (((-665 |#3|) (-665 $)) NIL (|has| |#3| (-1018)))) (-3804 (((-3 $ "failed") $) NIL (|has| |#3| (-703)))) (-3315 (($) NIL (|has| |#3| (-361)))) (-1632 ((|#3| $ (-535) |#3|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#3| $ (-535)) 12)) (-3520 (((-112) $) NIL (|has| |#3| (-821)))) (-2063 (((-618 |#3|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL (|has| |#3| (-703)))) (-3521 (((-112) $) NIL (|has| |#3| (-821)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2502 (((-618 |#3|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2067 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#3| |#3|) $) NIL)) (-2121 (((-890) $) NIL (|has| |#3| (-361)))) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#3| (-1067)))) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-2483 (($ (-890)) NIL (|has| |#3| (-361)))) (-3577 (((-1086) $) NIL (|has| |#3| (-1067)))) (-4143 ((|#3| $) NIL (|has| (-535) (-823)))) (-2297 (($ $ |#3|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-618 |#3|) (-618 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-2303 (((-618 |#3|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#3| $ (-535) |#3|) NIL) ((|#3| $ (-535)) NIL)) (-4179 ((|#3| $ $) NIL (|has| |#3| (-1018)))) (-1520 (($ (-1224 |#3|)) NIL)) (-4254 (((-133)) NIL (|has| |#3| (-356)))) (-4153 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018)))) (-2064 (((-747) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336))) (((-747) |#3| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#3| (-1067))))) (-3742 (($ $) NIL)) (-4300 (((-1224 |#3|) $) NIL) (($ (-535)) NIL (-3874 (-12 (|has| |#3| (-1009 (-535))) (|has| |#3| (-1067))) (|has| |#3| (-1018)))) (($ (-400 (-535))) NIL (-12 (|has| |#3| (-1009 (-400 (-535)))) (|has| |#3| (-1067)))) (($ |#3|) NIL (|has| |#3| (-1067))) (((-835) $) NIL (|has| |#3| (-593 (-835))))) (-3444 (((-747)) NIL (|has| |#3| (-1018)))) (-2066 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4336)))) (-3725 (($ $) NIL (|has| |#3| (-821)))) (-2979 (($) NIL (|has| |#3| (-130)) CONST)) (-2985 (($) NIL (|has| |#3| (-703)) CONST)) (-2990 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-1142)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#3| (-871 (-1142))) (|has| |#3| (-1018)))) (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018)))) (-2885 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2886 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-3375 (((-112) $ $) NIL (|has| |#3| (-1067)))) (-3005 (((-112) $ $) NIL (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-3006 (((-112) $ $) 17 (-3874 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-4291 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-4180 (($ $ $) NIL (|has| |#3| (-1018))) (($ $) NIL (|has| |#3| (-1018)))) (-4182 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-747)) NIL (|has| |#3| (-703))) (($ $ (-890)) NIL (|has| |#3| (-703)))) (* (($ (-535) $) NIL (|has| |#3| (-1018))) (($ $ $) NIL (|has| |#3| (-703))) (($ $ |#3|) NIL (|has| |#3| (-703))) (($ |#3| $) NIL (|has| |#3| (-703))) (($ (-747) $) NIL (|has| |#3| (-130))) (($ (-890) $) NIL (|has| |#3| (-25)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
(((-1079 |#1| |#2| |#3|) (-232 |#1| |#3|) (-747) (-747) (-769)) (T -1079))
NIL
(-232 |#1| |#3|)
-((-3916 (((-621 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 37)) (-2594 (((-549) (-1198 |#2| |#1|)) 69 (|has| |#1| (-444)))) (-2465 (((-549) (-1198 |#2| |#1|)) 54)) (-3535 (((-621 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 45)) (-1848 (((-549) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 68 (|has| |#1| (-444)))) (-2679 (((-621 |#1|) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 48)) (-1441 (((-549) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 53)))
-(((-1080 |#1| |#2|) (-10 -7 (-15 -3916 ((-621 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3535 ((-621 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -2679 ((-621 |#1|) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -1441 ((-549) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -2465 ((-549) (-1198 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -1848 ((-549) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -2594 ((-549) (-1198 |#2| |#1|)))) |%noBranch|)) (-796) (-1142)) (T -1080))
-((-2594 (*1 *2 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-549)) (-5 *1 (-1080 *4 *5)))) (-1848 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-549)) (-5 *1 (-1080 *4 *5)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-549)) (-5 *1 (-1080 *4 *5)))) (-1441 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-549)) (-5 *1 (-1080 *4 *5)))) (-2679 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-621 *4)) (-5 *1 (-1080 *4 *5)))) (-3535 (*1 *2 *3 *3) (-12 (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-621 (-1198 *5 *4))) (-5 *1 (-1080 *4 *5)) (-5 *3 (-1198 *5 *4)))) (-3916 (*1 *2 *3 *3) (-12 (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-621 (-1198 *5 *4))) (-5 *1 (-1080 *4 *5)) (-5 *3 (-1198 *5 *4)))))
-(-10 -7 (-15 -3916 ((-621 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3535 ((-621 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -2679 ((-621 |#1|) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -1441 ((-549) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -2465 ((-549) (-1198 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -1848 ((-549) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -2594 ((-549) (-1198 |#2| |#1|)))) |%noBranch|))
-((-3833 (((-112) $ $) NIL)) (-3408 (($ (-497) (-1084)) 14)) (-3984 (((-1084) $) 20)) (-2480 (((-497) $) 17)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 28) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-1081) (-13 (-1049) (-10 -8 (-15 -3408 ($ (-497) (-1084))) (-15 -2480 ((-497) $)) (-15 -3984 ((-1084) $))))) (T -1081))
-((-3408 (*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1084)) (-5 *1 (-1081)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1081)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1081)))))
-(-13 (-1049) (-10 -8 (-15 -3408 ($ (-497) (-1084))) (-15 -2480 ((-497) $)) (-15 -3984 ((-1084) $))))
-((-3902 (((-3 (-549) "failed") |#2| (-1142) |#2| (-1124)) 17) (((-3 (-549) "failed") |#2| (-1142) (-816 |#2|)) 15) (((-3 (-549) "failed") |#2|) 54)))
-(((-1082 |#1| |#2|) (-10 -7 (-15 -3902 ((-3 (-549) "failed") |#2|)) (-15 -3902 ((-3 (-549) "failed") |#2| (-1142) (-816 |#2|))) (-15 -3902 ((-3 (-549) "failed") |#2| (-1142) |#2| (-1124)))) (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)) (-444)) (-13 (-27) (-1164) (-423 |#1|))) (T -1082))
-((-3902 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-1124)) (-4 *6 (-13 (-541) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-549)) (-5 *1 (-1082 *6 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *6))))) (-3902 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-816 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *6))) (-4 *6 (-13 (-541) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-549)) (-5 *1 (-1082 *6 *3)))) (-3902 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-541) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-549)) (-5 *1 (-1082 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *4))))))
-(-10 -7 (-15 -3902 ((-3 (-549) "failed") |#2|)) (-15 -3902 ((-3 (-549) "failed") |#2| (-1142) (-816 |#2|))) (-15 -3902 ((-3 (-549) "failed") |#2| (-1142) |#2| (-1124))))
-((-3902 (((-3 (-549) "failed") (-400 (-923 |#1|)) (-1142) (-400 (-923 |#1|)) (-1124)) 35) (((-3 (-549) "failed") (-400 (-923 |#1|)) (-1142) (-816 (-400 (-923 |#1|)))) 30) (((-3 (-549) "failed") (-400 (-923 |#1|))) 13)))
-(((-1083 |#1|) (-10 -7 (-15 -3902 ((-3 (-549) "failed") (-400 (-923 |#1|)))) (-15 -3902 ((-3 (-549) "failed") (-400 (-923 |#1|)) (-1142) (-816 (-400 (-923 |#1|))))) (-15 -3902 ((-3 (-549) "failed") (-400 (-923 |#1|)) (-1142) (-400 (-923 |#1|)) (-1124)))) (-444)) (T -1083))
-((-3902 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-400 (-923 *6))) (-5 *4 (-1142)) (-5 *5 (-1124)) (-4 *6 (-444)) (-5 *2 (-549)) (-5 *1 (-1083 *6)))) (-3902 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-816 (-400 (-923 *6)))) (-5 *3 (-400 (-923 *6))) (-4 *6 (-444)) (-5 *2 (-549)) (-5 *1 (-1083 *6)))) (-3902 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-444)) (-5 *2 (-549)) (-5 *1 (-1083 *4)))))
-(-10 -7 (-15 -3902 ((-3 (-549) "failed") (-400 (-923 |#1|)))) (-15 -3902 ((-3 (-549) "failed") (-400 (-923 |#1|)) (-1142) (-816 (-400 (-923 |#1|))))) (-15 -3902 ((-3 (-549) "failed") (-400 (-923 |#1|)) (-1142) (-400 (-923 |#1|)) (-1124))))
-((-3833 (((-112) $ $) NIL)) (-2099 (((-1147) $) 10)) (-3223 (((-621 (-1147)) $) 11)) (-3984 (($ (-621 (-1147)) (-1147)) 9)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 20)) (-2388 (((-112) $ $) 14)))
-(((-1084) (-13 (-1066) (-10 -8 (-15 -3984 ($ (-621 (-1147)) (-1147))) (-15 -2099 ((-1147) $)) (-15 -3223 ((-621 (-1147)) $))))) (T -1084))
-((-3984 (*1 *1 *2 *3) (-12 (-5 *2 (-621 (-1147))) (-5 *3 (-1147)) (-5 *1 (-1084)))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1084)))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-621 (-1147))) (-5 *1 (-1084)))))
-(-13 (-1066) (-10 -8 (-15 -3984 ($ (-621 (-1147)) (-1147))) (-15 -2099 ((-1147) $)) (-15 -3223 ((-621 (-1147)) $))))
-((-2237 (((-309 (-549)) (-48)) 12)))
-(((-1085) (-10 -7 (-15 -2237 ((-309 (-549)) (-48))))) (T -1085))
-((-2237 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-309 (-549))) (-5 *1 (-1085)))))
-(-10 -7 (-15 -2237 ((-309 (-549)) (-48))))
-((-3833 (((-112) $ $) NIL)) (-1339 (($ $) 41)) (-3166 (((-112) $) 65)) (-2463 (($ $ $) 48)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 86)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-4121 (($ $ $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3673 (($ $ $ $) 75)) (-1912 (($ $) NIL)) (-3513 (((-411 $) $) NIL)) (-2647 (((-112) $ $) NIL)) (-3902 (((-549) $) NIL)) (-1309 (($ $ $) 72)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL)) (-2658 (((-549) $) NIL)) (-2094 (($ $ $) 59)) (-1698 (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 80) (((-665 (-549)) (-665 $)) 28)) (-3976 (((-3 $ "failed") $) NIL)) (-3156 (((-3 (-400 (-549)) "failed") $) NIL)) (-3230 (((-112) $) NIL)) (-3867 (((-400 (-549)) $) NIL)) (-3238 (($) 83) (($ $) 84)) (-2066 (($ $ $) 58)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL)) (-2471 (((-112) $) NIL)) (-3084 (($ $ $ $) NIL)) (-1278 (($ $ $) 81)) (-3079 (((-112) $) NIL)) (-3969 (($ $ $) NIL)) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL)) (-3987 (((-112) $) 66)) (-3061 (((-112) $) 64)) (-4007 (($ $) 42)) (-3982 (((-3 $ "failed") $) NIL)) (-2847 (((-112) $) 76)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2088 (($ $ $ $) 73)) (-2862 (($ $ $) 68) (($) 39)) (-3574 (($ $ $) 67) (($) 38)) (-2428 (($ $) NIL)) (-4209 (($ $) 71)) (-3696 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2677 (((-1124) $) NIL)) (-1263 (($ $ $) NIL)) (-3060 (($) NIL T CONST)) (-3780 (($ $) 50)) (-3988 (((-1086) $) 70)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL)) (-3726 (($ $ $) 62) (($ (-621 $)) NIL)) (-1692 (($ $) NIL)) (-2120 (((-411 $) $) NIL)) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL)) (-2038 (((-3 $ "failed") $ $) NIL)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4062 (((-112) $) NIL)) (-4091 (((-747) $) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 61)) (-3455 (($ $ (-747)) NIL) (($ $) NIL)) (-1897 (($ $) 51)) (-2281 (($ $) NIL)) (-2844 (((-549) $) 32) (((-525) $) NIL) (((-863 (-549)) $) NIL) (((-372) $) NIL) (((-219) $) NIL)) (-3845 (((-834) $) 31) (($ (-549)) 82) (($ $) NIL) (($ (-549)) 82)) (-1723 (((-747)) NIL)) (-2807 (((-112) $ $) NIL)) (-2224 (($ $ $) NIL)) (-1863 (($) 37)) (-4053 (((-112) $ $) NIL)) (-2232 (($ $ $ $) 74)) (-3603 (($ $) 63)) (-3705 (($ $ $) 44)) (-3275 (($) 35 T CONST)) (-3798 (($ $ $) 47)) (-3287 (($) 36 T CONST)) (-3135 (((-1124) $) 21) (((-1124) $ (-112)) 23) (((-1230) (-798) $) 24) (((-1230) (-798) $ (-112)) 25)) (-3808 (($ $) 45)) (-1700 (($ $ (-747)) NIL) (($ $) NIL)) (-3788 (($ $ $) 46)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 40)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 49)) (-3695 (($ $ $) 43)) (-2499 (($ $) 52) (($ $ $) 54)) (-2485 (($ $ $) 53)) (** (($ $ (-892)) NIL) (($ $ (-747)) 57)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 34) (($ $ $) 55)))
-(((-1086) (-13 (-534) (-637) (-804) (-10 -8 (-6 -4323) (-6 -4328) (-6 -4324) (-15 -3574 ($)) (-15 -2862 ($)) (-15 -4007 ($ $)) (-15 -1339 ($ $)) (-15 -3695 ($ $ $)) (-15 -3705 ($ $ $)) (-15 -2463 ($ $ $)) (-15 -3808 ($ $)) (-15 -3788 ($ $ $)) (-15 -3798 ($ $ $))))) (T -1086))
-((-3705 (*1 *1 *1 *1) (-5 *1 (-1086))) (-3695 (*1 *1 *1 *1) (-5 *1 (-1086))) (-1339 (*1 *1 *1) (-5 *1 (-1086))) (-3574 (*1 *1) (-5 *1 (-1086))) (-2862 (*1 *1) (-5 *1 (-1086))) (-4007 (*1 *1 *1) (-5 *1 (-1086))) (-2463 (*1 *1 *1 *1) (-5 *1 (-1086))) (-3808 (*1 *1 *1) (-5 *1 (-1086))) (-3788 (*1 *1 *1 *1) (-5 *1 (-1086))) (-3798 (*1 *1 *1 *1) (-5 *1 (-1086))))
-(-13 (-534) (-637) (-804) (-10 -8 (-6 -4323) (-6 -4328) (-6 -4324) (-15 -3574 ($)) (-15 -2862 ($)) (-15 -4007 ($ $)) (-15 -1339 ($ $)) (-15 -3695 ($ $ $)) (-15 -3705 ($ $ $)) (-15 -2463 ($ $ $)) (-15 -3808 ($ $)) (-15 -3788 ($ $ $)) (-15 -3798 ($ $ $))))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-2316 ((|#1| $) 44)) (-1323 (((-112) $ (-747)) 8)) (-1705 (($) 7 T CONST)) (-1913 ((|#1| |#1| $) 46)) (-2399 ((|#1| $) 45)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2349 ((|#1| $) 39)) (-1709 (($ |#1| $) 40)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-2629 ((|#1| $) 41)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-1319 (((-747) $) 43)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1765 (($ (-621 |#1|)) 42)) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-1087 |#1|) (-138) (-1179)) (T -1087))
-((-1913 (*1 *2 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1179)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1179)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1179)))) (-1319 (*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1179)) (-5 *2 (-747)))))
-(-13 (-106 |t#1|) (-10 -8 (-6 -4336) (-15 -1913 (|t#1| |t#1| $)) (-15 -2399 (|t#1| $)) (-15 -2316 (|t#1| $)) (-15 -1319 ((-747) $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-2905 ((|#3| $) 76)) (-2713 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2658 (((-549) $) NIL) (((-400 (-549)) $) NIL) ((|#3| $) 37)) (-1698 (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL) (((-2 (|:| -1859 (-665 |#3|)) (|:| |vec| (-1225 |#3|))) (-665 $) (-1225 $)) 73) (((-665 |#3|) (-665 $)) 65)) (-3455 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-4254 ((|#3| $) 78)) (-2674 ((|#4| $) 32)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL) (($ |#3|) 16)) (** (($ $ (-892)) NIL) (($ $ (-747)) 15) (($ $ (-549)) 82)))
-(((-1088 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 -4254 (|#3| |#1|)) (-15 -2905 (|#3| |#1|)) (-15 -2674 (|#4| |#1|)) (-15 -1698 ((-665 |#3|) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 |#3|)) (|:| |vec| (-1225 |#3|))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-665 (-549)) (-665 |#1|))) (-15 -2658 (|#3| |#1|)) (-15 -2713 ((-3 |#3| "failed") |#1|)) (-15 -3845 (|#1| |#3|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -3455 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -3455 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3845 (|#1| (-549))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892))) (-15 -3845 ((-834) |#1|))) (-1089 |#2| |#3| |#4| |#5|) (-747) (-1018) (-232 |#2| |#3|) (-232 |#2| |#3|)) (T -1088))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 -4254 (|#3| |#1|)) (-15 -2905 (|#3| |#1|)) (-15 -2674 (|#4| |#1|)) (-15 -1698 ((-665 |#3|) (-665 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 |#3|)) (|:| |vec| (-1225 |#3|))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 |#1|) (-1225 |#1|))) (-15 -1698 ((-665 (-549)) (-665 |#1|))) (-15 -2658 (|#3| |#1|)) (-15 -2713 ((-3 |#3| "failed") |#1|)) (-15 -3845 (|#1| |#3|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-549) |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -3455 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -3455 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3845 (|#1| (-549))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892))) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2905 ((|#2| $) 70)) (-1818 (((-112) $) 110)) (-2384 (((-3 $ "failed") $ $) 19)) (-3893 (((-112) $) 108)) (-1323 (((-112) $ (-747)) 100)) (-2005 (($ |#2|) 73)) (-1705 (($) 17 T CONST)) (-2226 (($ $) 127 (|has| |#2| (-300)))) (-2413 ((|#3| $ (-549)) 122)) (-2713 (((-3 (-549) "failed") $) 84 (|has| |#2| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 82 (|has| |#2| (-1009 (-400 (-549))))) (((-3 |#2| "failed") $) 79)) (-2658 (((-549) $) 85 (|has| |#2| (-1009 (-549)))) (((-400 (-549)) $) 83 (|has| |#2| (-1009 (-400 (-549))))) ((|#2| $) 78)) (-1698 (((-665 (-549)) (-665 $)) 77 (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 76 (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) 75) (((-665 |#2|) (-665 $)) 74)) (-3976 (((-3 $ "failed") $) 32)) (-3122 (((-747) $) 128 (|has| |#2| (-541)))) (-1808 ((|#2| $ (-549) (-549)) 120)) (-2990 (((-621 |#2|) $) 93 (|has| $ (-6 -4336)))) (-3987 (((-112) $) 30)) (-1746 (((-747) $) 129 (|has| |#2| (-541)))) (-1701 (((-621 |#4|) $) 130 (|has| |#2| (-541)))) (-2141 (((-747) $) 116)) (-2154 (((-747) $) 117)) (-4202 (((-112) $ (-747)) 101)) (-1542 ((|#2| $) 65 (|has| |#2| (-6 (-4338 "*"))))) (-2437 (((-549) $) 112)) (-2103 (((-549) $) 114)) (-1958 (((-621 |#2|) $) 92 (|has| $ (-6 -4336)))) (-2273 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1066)) (|has| $ (-6 -4336))))) (-2303 (((-549) $) 113)) (-2362 (((-549) $) 115)) (-3945 (($ (-621 (-621 |#2|))) 107)) (-1865 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3595 (((-621 (-621 |#2|)) $) 118)) (-4289 (((-112) $ (-747)) 102)) (-2677 (((-1124) $) 9)) (-3733 (((-3 $ "failed") $) 64 (|has| |#2| (-356)))) (-3988 (((-1086) $) 10)) (-2038 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-541)))) (-2470 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#2|))) 89 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) 88 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) 106)) (-1807 (((-112) $) 103)) (-1461 (($) 104)) (-3340 ((|#2| $ (-549) (-549) |#2|) 121) ((|#2| $ (-549) (-549)) 119)) (-3455 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-747)) 49) (($ $ (-621 (-1142)) (-621 (-747))) 42 (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) 41 (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142))) 40 (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) 39 (|has| |#2| (-871 (-1142)))) (($ $ (-747)) 37 (|has| |#2| (-227))) (($ $) 35 (|has| |#2| (-227)))) (-4254 ((|#2| $) 69)) (-1601 (($ (-621 |#2|)) 72)) (-2798 (((-112) $) 109)) (-2674 ((|#3| $) 71)) (-3097 ((|#2| $) 66 (|has| |#2| (-6 (-4338 "*"))))) (-3997 (((-747) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4336))) (((-747) |#2| $) 91 (-12 (|has| |#2| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 105)) (-4102 ((|#4| $ (-549)) 123)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 81 (|has| |#2| (-1009 (-400 (-549))))) (($ |#2|) 80)) (-1723 (((-747)) 28)) (-2150 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4336)))) (-2901 (((-112) $) 111)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-747)) 47) (($ $ (-621 (-1142)) (-621 (-747))) 46 (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) 45 (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142))) 44 (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) 43 (|has| |#2| (-871 (-1142)))) (($ $ (-747)) 38 (|has| |#2| (-227))) (($ $) 36 (|has| |#2| (-227)))) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#2|) 126 (|has| |#2| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 63 (|has| |#2| (-356)))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-3774 (((-747) $) 99 (|has| $ (-6 -4336)))))
+((-3644 (((-618 (-1193 |#2| |#1|)) (-1193 |#2| |#1|) (-1193 |#2| |#1|)) 37)) (-3650 (((-535) (-1193 |#2| |#1|)) 69 (|has| |#1| (-444)))) (-3648 (((-535) (-1193 |#2| |#1|)) 54)) (-3645 (((-618 (-1193 |#2| |#1|)) (-1193 |#2| |#1|) (-1193 |#2| |#1|)) 45)) (-3649 (((-535) (-1193 |#2| |#1|) (-1193 |#2| |#1|)) 68 (|has| |#1| (-444)))) (-3646 (((-618 |#1|) (-1193 |#2| |#1|) (-1193 |#2| |#1|)) 48)) (-3647 (((-535) (-1193 |#2| |#1|) (-1193 |#2| |#1|)) 53)))
+(((-1080 |#1| |#2|) (-10 -7 (-15 -3644 ((-618 (-1193 |#2| |#1|)) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3645 ((-618 (-1193 |#2| |#1|)) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3646 ((-618 |#1|) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3647 ((-535) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3648 ((-535) (-1193 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3649 ((-535) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3650 ((-535) (-1193 |#2| |#1|)))) |%noBranch|)) (-796) (-1142)) (T -1080))
+((-3650 (*1 *2 *3) (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-535)) (-5 *1 (-1080 *4 *5)))) (-3649 (*1 *2 *3 *3) (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-535)) (-5 *1 (-1080 *4 *5)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-535)) (-5 *1 (-1080 *4 *5)))) (-3647 (*1 *2 *3 *3) (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-535)) (-5 *1 (-1080 *4 *5)))) (-3646 (*1 *2 *3 *3) (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-618 *4)) (-5 *1 (-1080 *4 *5)))) (-3645 (*1 *2 *3 *3) (-12 (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-618 (-1193 *5 *4))) (-5 *1 (-1080 *4 *5)) (-5 *3 (-1193 *5 *4)))) (-3644 (*1 *2 *3 *3) (-12 (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-618 (-1193 *5 *4))) (-5 *1 (-1080 *4 *5)) (-5 *3 (-1193 *5 *4)))))
+(-10 -7 (-15 -3644 ((-618 (-1193 |#2| |#1|)) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3645 ((-618 (-1193 |#2| |#1|)) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3646 ((-618 |#1|) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3647 ((-535) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3648 ((-535) (-1193 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3649 ((-535) (-1193 |#2| |#1|) (-1193 |#2| |#1|))) (-15 -3650 ((-535) (-1193 |#2| |#1|)))) |%noBranch|))
+((-2887 (((-112) $ $) NIL)) (-3652 (((-1147) $) 10)) (-3651 (((-618 (-1147)) $) 11)) (-3653 (($ (-618 (-1147)) (-1147)) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 20)) (-3375 (((-112) $ $) 14)))
+(((-1081) (-13 (-1067) (-10 -8 (-15 -3653 ($ (-618 (-1147)) (-1147))) (-15 -3652 ((-1147) $)) (-15 -3651 ((-618 (-1147)) $))))) (T -1081))
+((-3653 (*1 *1 *2 *3) (-12 (-5 *2 (-618 (-1147))) (-5 *3 (-1147)) (-5 *1 (-1081)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1081)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-1081)))))
+(-13 (-1067) (-10 -8 (-15 -3653 ($ (-618 (-1147)) (-1147))) (-15 -3652 ((-1147) $)) (-15 -3651 ((-618 (-1147)) $))))
+((-2887 (((-112) $ $) NIL)) (-3654 (($ (-497) (-1081)) 14)) (-3653 (((-1081) $) 20)) (-3888 (((-497) $) 17)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 28) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-1082) (-13 (-1049) (-10 -8 (-15 -3654 ($ (-497) (-1081))) (-15 -3888 ((-497) $)) (-15 -3653 ((-1081) $))))) (T -1082))
+((-3654 (*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1081)) (-5 *1 (-1082)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1082)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1082)))))
+(-13 (-1049) (-10 -8 (-15 -3654 ($ (-497) (-1081))) (-15 -3888 ((-497) $)) (-15 -3653 ((-1081) $))))
+((-3969 (((-3 (-535) #1="failed") |#2| (-1142) |#2| (-1124)) 17) (((-3 (-535) #1#) |#2| (-1142) (-815 |#2|)) 15) (((-3 (-535) #1#) |#2|) 54)))
+(((-1083 |#1| |#2|) (-10 -7 (-15 -3969 ((-3 (-535) #1="failed") |#2|)) (-15 -3969 ((-3 (-535) #1#) |#2| (-1142) (-815 |#2|))) (-15 -3969 ((-3 (-535) #1#) |#2| (-1142) |#2| (-1124)))) (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)) (-444)) (-13 (-27) (-1164) (-414 |#1|))) (T -1083))
+((-3969 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-1124)) (-4 *6 (-13 (-542) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-535)) (-5 *1 (-1083 *6 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))))) (-3969 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-815 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6))) (-4 *6 (-13 (-542) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-535)) (-5 *1 (-1083 *6 *3)))) (-3969 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-542) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-535)) (-5 *1 (-1083 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))))
+(-10 -7 (-15 -3969 ((-3 (-535) #1="failed") |#2|)) (-15 -3969 ((-3 (-535) #1#) |#2| (-1142) (-815 |#2|))) (-15 -3969 ((-3 (-535) #1#) |#2| (-1142) |#2| (-1124))))
+((-3969 (((-3 (-535) #1="failed") (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|)) (-1124)) 35) (((-3 (-535) #1#) (-400 (-917 |#1|)) (-1142) (-815 (-400 (-917 |#1|)))) 30) (((-3 (-535) #1#) (-400 (-917 |#1|))) 13)))
+(((-1084 |#1|) (-10 -7 (-15 -3969 ((-3 (-535) #1="failed") (-400 (-917 |#1|)))) (-15 -3969 ((-3 (-535) #1#) (-400 (-917 |#1|)) (-1142) (-815 (-400 (-917 |#1|))))) (-15 -3969 ((-3 (-535) #1#) (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|)) (-1124)))) (-444)) (T -1084))
+((-3969 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-400 (-917 *6))) (-5 *4 (-1142)) (-5 *5 (-1124)) (-4 *6 (-444)) (-5 *2 (-535)) (-5 *1 (-1084 *6)))) (-3969 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-815 (-400 (-917 *6)))) (-5 *3 (-400 (-917 *6))) (-4 *6 (-444)) (-5 *2 (-535)) (-5 *1 (-1084 *6)))) (-3969 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-444)) (-5 *2 (-535)) (-5 *1 (-1084 *4)))))
+(-10 -7 (-15 -3969 ((-3 (-535) #1="failed") (-400 (-917 |#1|)))) (-15 -3969 ((-3 (-535) #1#) (-400 (-917 |#1|)) (-1142) (-815 (-400 (-917 |#1|))))) (-15 -3969 ((-3 (-535) #1#) (-400 (-917 |#1|)) (-1142) (-400 (-917 |#1|)) (-1124))))
+((-3995 (((-307 (-535)) (-48)) 12)))
+(((-1085) (-10 -7 (-15 -3995 ((-307 (-535)) (-48))))) (T -1085))
+((-3995 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-307 (-535))) (-5 *1 (-1085)))))
+(-10 -7 (-15 -3995 ((-307 (-535)) (-48))))
+((-2887 (((-112) $ $) NIL)) (-3662 (($ $) 41)) (-3522 (((-112) $) 65)) (-3658 (($ $ $) 48)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 86)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-2155 (($ $ $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-2150 (($ $ $ $) 75)) (-4117 (($ $) NIL)) (-4312 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3969 (((-535) $) NIL)) (-2681 (($ $ $) 72)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) "failed") $) NIL)) (-3490 (((-535) $) NIL)) (-2883 (($ $ $) 59)) (-2353 (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 80) (((-665 (-535)) (-665 $)) 28)) (-3804 (((-3 $ "failed") $) NIL)) (-3345 (((-3 (-400 (-535)) "failed") $) NIL)) (-3344 (((-112) $) NIL)) (-3343 (((-400 (-535)) $) NIL)) (-3315 (($) 83) (($ $) 84)) (-2882 (($ $ $) 58)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL)) (-4069 (((-112) $) NIL)) (-2148 (($ $ $ $) NIL)) (-2156 (($ $ $) 81)) (-3520 (((-112) $) NIL)) (-1413 (($ $ $) NIL)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL)) (-2493 (((-112) $) 66)) (-2994 (((-112) $) 64)) (-3659 (($ $) 42)) (-3786 (((-3 $ "failed") $) NIL)) (-3521 (((-112) $) 76)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL)) (-2149 (($ $ $ $) 73)) (-3660 (($ $ $) 68) (($) 39)) (-3661 (($ $ $) 67) (($) 38)) (-2152 (($ $) NIL)) (-4176 (($ $) 71)) (-2008 (($ $ $) NIL) (($ (-618 $)) NIL)) (-3576 (((-1124) $) NIL)) (-2147 (($ $ $) NIL)) (-3787 (($) NIL T CONST)) (-2154 (($ $) 50)) (-3577 (((-1086) $) 70)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL)) (-3478 (($ $ $) 62) (($ (-618 $)) NIL)) (-1411 (($ $) NIL)) (-4075 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL)) (-2995 (((-112) $) NIL)) (-1699 (((-747) $) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 61)) (-4153 (($ $ (-747)) NIL) (($ $) NIL)) (-2153 (($ $) 51)) (-3742 (($ $) NIL)) (-4313 (((-535) $) 32) (((-524) $) NIL) (((-861 (-535)) $) NIL) (((-371) $) NIL) (((-219) $) NIL)) (-4300 (((-835) $) 31) (($ (-535)) 82) (($ $) NIL) (($ (-535)) 82)) (-3444 (((-747)) NIL)) (-2157 (((-112) $ $) NIL)) (-3420 (($ $ $) NIL)) (-3015 (($) 37)) (-2170 (((-112) $ $) NIL)) (-2151 (($ $ $ $) 74)) (-3725 (($ $) 63)) (-3664 (($ $ $) 44)) (-2979 (($) 35 T CONST)) (-3655 (($ $ $) 47)) (-2985 (($) 36 T CONST)) (-2825 (((-1124) $) 21) (((-1124) $ (-112)) 23) (((-1230) (-799) $) 24) (((-1230) (-799) $ (-112)) 25)) (-3657 (($ $) 45)) (-2990 (($ $ (-747)) NIL) (($ $) NIL)) (-3656 (($ $ $) 46)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 40)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 49)) (-3663 (($ $ $) 43)) (-4180 (($ $) 52) (($ $ $) 54)) (-4182 (($ $ $) 53)) (** (($ $ (-890)) NIL) (($ $ (-747)) 57)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 34) (($ $ $) 55)))
+(((-1086) (-13 (-534) (-638) (-797) (-10 -8 (-6 -4323) (-6 -4328) (-6 -4324) (-15 -3661 ($)) (-15 -3660 ($)) (-15 -3659 ($ $)) (-15 -3662 ($ $)) (-15 -3663 ($ $ $)) (-15 -3664 ($ $ $)) (-15 -3658 ($ $ $)) (-15 -3657 ($ $)) (-15 -3656 ($ $ $)) (-15 -3655 ($ $ $))))) (T -1086))
+((-3664 (*1 *1 *1 *1) (-5 *1 (-1086))) (-3663 (*1 *1 *1 *1) (-5 *1 (-1086))) (-3662 (*1 *1 *1) (-5 *1 (-1086))) (-3661 (*1 *1) (-5 *1 (-1086))) (-3660 (*1 *1) (-5 *1 (-1086))) (-3659 (*1 *1 *1) (-5 *1 (-1086))) (-3658 (*1 *1 *1 *1) (-5 *1 (-1086))) (-3657 (*1 *1 *1) (-5 *1 (-1086))) (-3656 (*1 *1 *1 *1) (-5 *1 (-1086))) (-3655 (*1 *1 *1 *1) (-5 *1 (-1086))))
+(-13 (-534) (-638) (-797) (-10 -8 (-6 -4323) (-6 -4328) (-6 -4324) (-15 -3661 ($)) (-15 -3660 ($)) (-15 -3659 ($ $)) (-15 -3662 ($ $)) (-15 -3663 ($ $ $)) (-15 -3664 ($ $ $)) (-15 -3658 ($ $ $)) (-15 -3657 ($ $)) (-15 -3656 ($ $ $)) (-15 -3655 ($ $ $))))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3666 ((|#1| $) 44)) (-1264 (((-112) $ (-747)) 8)) (-3879 (($) 7 T CONST)) (-3668 ((|#1| |#1| $) 46)) (-3667 ((|#1| $) 45)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-1326 ((|#1| $) 39)) (-3953 (($ |#1| $) 40)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-1327 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-3665 (((-747) $) 43)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-1087 |#1|) (-138) (-1178)) (T -1087))
+((-3668 (*1 *2 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1178)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1178)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1178)))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))))
+(-13 (-106 |t#1|) (-10 -8 (-6 -4336) (-15 -3668 (|t#1| |t#1| $)) (-15 -3667 (|t#1| $)) (-15 -3666 (|t#1| $)) (-15 -3665 ((-747) $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-3672 ((|#3| $) 76)) (-3491 (((-3 (-535) #1="failed") $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 |#3| #1#) $) 40)) (-3490 (((-535) $) NIL) (((-400 (-535)) $) NIL) ((|#3| $) 37)) (-2353 (((-665 (-535)) (-665 $)) NIL) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL) (((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 $) (-1224 $)) 73) (((-665 |#3|) (-665 $)) 65)) (-4153 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-3671 ((|#3| $) 78)) (-3673 ((|#4| $) 32)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-400 (-535))) NIL) (($ |#3|) 16)) (** (($ $ (-890)) NIL) (($ $ (-747)) 15) (($ $ (-535)) 82)))
+(((-1088 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-535))) (-15 -3671 (|#3| |#1|)) (-15 -3672 (|#3| |#1|)) (-15 -3673 (|#4| |#1|)) (-15 -2353 ((-665 |#3|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -3490 (|#3| |#1|)) (-15 -3491 ((-3 |#3| #1="failed") |#1|)) (-15 -4300 (|#1| |#3|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4300 (|#1| (-535))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890))) (-15 -4300 ((-835) |#1|))) (-1089 |#2| |#3| |#4| |#5|) (-747) (-1018) (-232 |#2| |#3|) (-232 |#2| |#3|)) (T -1088))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-535))) (-15 -3671 (|#3| |#1|)) (-15 -3672 (|#3| |#1|)) (-15 -3673 (|#4| |#1|)) (-15 -2353 ((-665 |#3|) (-665 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 |#3|)) (|:| |vec| (-1224 |#3|))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 |#1|) (-1224 |#1|))) (-15 -2353 ((-665 (-535)) (-665 |#1|))) (-15 -3490 (|#3| |#1|)) (-15 -3491 ((-3 |#3| #1="failed") |#1|)) (-15 -4300 (|#1| |#3|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-535) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -4153 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4300 (|#1| (-535))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890))) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3672 ((|#2| $) 70)) (-3439 (((-112) $) 110)) (-1363 (((-3 $ "failed") $ $) 19)) (-3441 (((-112) $) 108)) (-1264 (((-112) $ (-747)) 100)) (-3675 (($ |#2|) 73)) (-3879 (($) 17 T CONST)) (-3428 (($ $) 127 (|has| |#2| (-300)))) (-3430 ((|#3| $ (-535)) 122)) (-3491 (((-3 (-535) #1="failed") $) 84 (|has| |#2| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) 82 (|has| |#2| (-1009 (-400 (-535))))) (((-3 |#2| #1#) $) 79)) (-3490 (((-535) $) 85 (|has| |#2| (-1009 (-535)))) (((-400 (-535)) $) 83 (|has| |#2| (-1009 (-400 (-535))))) ((|#2| $) 78)) (-2353 (((-665 (-535)) (-665 $)) 77 (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 76 (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) 75) (((-665 |#2|) (-665 $)) 74)) (-3804 (((-3 $ "failed") $) 32)) (-3427 (((-747) $) 128 (|has| |#2| (-542)))) (-3431 ((|#2| $ (-535) (-535)) 120)) (-2063 (((-618 |#2|) $) 93 (|has| $ (-6 -4336)))) (-2493 (((-112) $) 30)) (-3426 (((-747) $) 129 (|has| |#2| (-542)))) (-3425 (((-618 |#4|) $) 130 (|has| |#2| (-542)))) (-3433 (((-747) $) 116)) (-3432 (((-747) $) 117)) (-4065 (((-112) $ (-747)) 101)) (-3669 ((|#2| $) 65 (|has| |#2| (-6 (-4338 #2="*"))))) (-3437 (((-535) $) 112)) (-3435 (((-535) $) 114)) (-2502 (((-618 |#2|) $) 92 (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-3436 (((-535) $) 113)) (-3434 (((-535) $) 115)) (-3442 (($ (-618 (-618 |#2|))) 107)) (-2067 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3939 (((-618 (-618 |#2|)) $) 118)) (-4062 (((-112) $ (-747)) 102)) (-3576 (((-1124) $) 9)) (-3935 (((-3 $ "failed") $) 64 (|has| |#2| (-356)))) (-3577 (((-1086) $) 10)) (-3803 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-542)))) (-2065 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) 89 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) 88 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) 106)) (-3745 (((-112) $) 103)) (-3911 (($) 104)) (-4142 ((|#2| $ (-535) (-535) |#2|) 121) ((|#2| $ (-535) (-535)) 119)) (-4153 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-747)) 49) (($ $ (-618 (-1142)) (-618 (-747))) 42 (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) 41 (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) 40 (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) 39 (|has| |#2| (-871 (-1142)))) (($ $ (-747)) 37 (|has| |#2| (-227))) (($ $) 35 (|has| |#2| (-227)))) (-3671 ((|#2| $) 69)) (-3674 (($ (-618 |#2|)) 72)) (-3440 (((-112) $) 109)) (-3673 ((|#3| $) 71)) (-3670 ((|#2| $) 66 (|has| |#2| (-6 (-4338 #2#))))) (-2064 (((-747) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4336))) (((-747) |#2| $) 91 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 105)) (-3429 ((|#4| $ (-535)) 123)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 81 (|has| |#2| (-1009 (-400 (-535))))) (($ |#2|) 80)) (-3444 (((-747)) 28)) (-2066 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4336)))) (-3438 (((-112) $) 111)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-747)) 47) (($ $ (-618 (-1142)) (-618 (-747))) 46 (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) 45 (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) 44 (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) 43 (|has| |#2| (-871 (-1142)))) (($ $ (-747)) 38 (|has| |#2| (-227))) (($ $) 36 (|has| |#2| (-227)))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#2|) 126 (|has| |#2| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 63 (|has| |#2| (-356)))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-4299 (((-747) $) 99 (|has| $ (-6 -4336)))))
(((-1089 |#1| |#2| |#3| |#4|) (-138) (-747) (-1018) (-232 |t#1| |t#2|) (-232 |t#1| |t#2|)) (T -1089))
-((-2005 (*1 *1 *2) (-12 (-4 *2 (-1018)) (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)))) (-1601 (*1 *1 *2) (-12 (-5 *2 (-621 *4)) (-4 *4 (-1018)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1018)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1018)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1089 *3 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1089 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *2 (-232 *3 *4)) (-4 *5 (-232 *3 *4)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018)))) (-3733 (*1 *1 *1) (|partial| -12 (-4 *1 (-1089 *2 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356)))))
-(-13 (-225 |t#2|) (-111 |t#2| |t#2|) (-1021 |t#1| |t#1| |t#2| |t#3| |t#4|) (-404 |t#2|) (-370 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-694 |t#2|)) |%noBranch|) (-15 -2005 ($ |t#2|)) (-15 -1601 ($ (-621 |t#2|))) (-15 -2674 (|t#3| $)) (-15 -2905 (|t#2| $)) (-15 -4254 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4338 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3097 (|t#2| $)) (-15 -1542 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-356)) (PROGN (-15 -3733 ((-3 $ "failed") $)) (-15 ** ($ $ (-549)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4338 "*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-834)) . T) ((-225 |#2|) . T) ((-227) |has| |#2| (-227)) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((-370 |#2|) . T) ((-404 |#2|) . T) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((-624 |#2|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#2| (-617 (-549))) ((-617 |#2|) . T) ((-694 |#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-6 (-4338 "*")))) ((-703) . T) ((-871 (-1142)) |has| |#2| (-871 (-1142))) ((-1021 |#1| |#1| |#2| |#3| |#4|) . T) ((-1009 (-400 (-549))) |has| |#2| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#2| (-1009 (-549))) ((-1009 |#2|) . T) ((-1024 |#2|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1179) . T))
-((-2024 ((|#4| |#4|) 70)) (-3116 ((|#4| |#4|) 65)) (-3544 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3420 (-621 |#3|))) |#4| |#3|) 78)) (-1335 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3269 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
-(((-1090 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3116 (|#4| |#4|)) (-15 -3269 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2024 (|#4| |#4|)) (-15 -1335 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3544 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3420 (-621 |#3|))) |#4| |#3|))) (-300) (-366 |#1|) (-366 |#1|) (-663 |#1| |#2| |#3|)) (T -1090))
-((-3544 (*1 *2 *3 *4) (-12 (-4 *5 (-300)) (-4 *6 (-366 *5)) (-4 *4 (-366 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4)))) (-5 *1 (-1090 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4)))) (-1335 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1090 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-2024 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1090 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-3269 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1090 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-3116 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1090 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
-(-10 -7 (-15 -3116 (|#4| |#4|)) (-15 -3269 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2024 (|#4| |#4|)) (-15 -1335 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3544 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3420 (-621 |#3|))) |#4| |#3|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 17)) (-2271 (((-621 |#2|) $) 159)) (-2082 (((-1138 $) $ |#2|) 54) (((-1138 |#1|) $) 43)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 108 (|has| |#1| (-541)))) (-2408 (($ $) 110 (|has| |#1| (-541)))) (-2477 (((-112) $) 112 (|has| |#1| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 |#2|)) 192)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-1912 (($ $) NIL (|has| |#1| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) 156) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 |#2| "failed") $) NIL)) (-2658 ((|#1| $) 154) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) ((|#2| $) NIL)) (-2252 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-2069 (($ $) 196)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) 82)) (-4212 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#1| (-880)))) (-3744 (($ $ |#1| (-521 |#2|) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| |#1| (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| |#1| (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-3987 (((-112) $) 19)) (-3454 (((-747) $) 26)) (-2258 (($ (-1138 |#1|) |#2|) 48) (($ (-1138 $) |#2|) 64)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) 32)) (-2244 (($ |#1| (-521 |#2|)) 71) (($ $ |#2| (-747)) 52) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ |#2|) NIL)) (-2856 (((-521 |#2|) $) 186) (((-747) $ |#2|) 187) (((-621 (-747)) $ (-621 |#2|)) 188)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-4058 (($ (-1 (-521 |#2|) (-521 |#2|)) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) 120)) (-1790 (((-3 |#2| "failed") $) 161)) (-2027 (($ $) 195)) (-2042 ((|#1| $) 37)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2677 (((-1124) $) NIL)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| |#2|) (|:| -3577 (-747))) "failed") $) NIL)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) 33)) (-2012 ((|#1| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 138 (|has| |#1| (-444)))) (-3726 (($ (-621 $)) 143 (|has| |#1| (-444))) (($ $ $) 130 (|has| |#1| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#1| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-880)))) (-2038 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-541)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-621 |#2|) (-621 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-621 |#2|) (-621 $)) 176)) (-3086 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-3455 (($ $ |#2|) 194) (($ $ (-621 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-3068 (((-521 |#2|) $) 182) (((-747) $ |#2|) 178) (((-621 (-747)) $ (-621 |#2|)) 180)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| |#1| (-594 (-525))) (|has| |#2| (-594 (-525)))))) (-1931 ((|#1| $) 126 (|has| |#1| (-444))) (($ $ |#2|) 129 (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3845 (((-834) $) 149) (($ (-549)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-541))) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-3330 (((-621 |#1|) $) 152)) (-2944 ((|#1| $ (-521 |#2|)) 73) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) 79)) (-1544 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-4053 (((-112) $ $) 115 (|has| |#1| (-541)))) (-3275 (($) 12 T CONST)) (-3287 (($) 14 T CONST)) (-1700 (($ $ |#2|) NIL) (($ $ (-621 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) 97)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2512 (($ $ |#1|) 124 (|has| |#1| (-356)))) (-2499 (($ $) 85) (($ $ $) 95)) (-2485 (($ $ $) 49)) (** (($ $ (-892)) 102) (($ $ (-747)) 100)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 88) (($ $ $) 65) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
-(((-1091 |#1| |#2|) (-920 |#1| (-521 |#2|) |#2|) (-1018) (-823)) (T -1091))
-NIL
-(-920 |#1| (-521 |#2|) |#2|)
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2271 (((-621 |#2|) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-1663 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1639 (($ $) 137 (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) 113 (|has| |#1| (-38 (-400 (-549)))))) (-1685 (($ $) 145 (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) NIL T CONST)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-1413 (((-923 |#1|) $ (-747)) NIL) (((-923 |#1|) $ (-747) (-747)) NIL)) (-3155 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-747) $ |#2|) NIL) (((-747) $ |#2| (-747)) NIL)) (-3987 (((-112) $) NIL)) (-3930 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2427 (((-112) $) NIL)) (-2244 (($ $ (-621 |#2|) (-621 (-521 |#2|))) NIL) (($ $ |#2| (-521 |#2|)) NIL) (($ |#1| (-521 |#2|)) NIL) (($ $ |#2| (-747)) 56) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-3631 (($ $) 111 (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-1531 (($ $ |#2|) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-400 (-549)))))) (-3988 (((-1086) $) NIL)) (-1464 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-400 (-549)))))) (-2975 (($ $ (-747)) 13)) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2718 (($ $) 109 (|has| |#1| (-38 (-400 (-549)))))) (-2685 (($ $ |#2| $) 95) (($ $ (-621 |#2|) (-621 $)) 88) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL)) (-3455 (($ $ |#2|) 98) (($ $ (-621 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-3068 (((-521 |#2|) $) NIL)) (-4054 (((-1 (-1122 |#3|) |#3|) (-621 |#2|) (-621 (-1122 |#3|))) 77)) (-1697 (($ $) 147 (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) 143 (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) 139 (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) 15)) (-3845 (((-834) $) 180) (($ (-549)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-541))) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#2|) 63) (($ |#3|) 61)) (-2944 ((|#1| $ (-521 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL) ((|#3| $ (-747)) 38)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-1732 (($ $) 153 (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) 129 (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1708 (($ $) 149 (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) 157 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-1933 (($ $) 159 (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) 135 (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) 155 (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) 151 (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) 127 (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) 47 T CONST)) (-3287 (($) 55 T CONST)) (-1700 (($ $ |#2|) NIL) (($ $ (-621 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ |#1|) 182 (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 59)) (** (($ $ (-892)) NIL) (($ $ (-747)) 68) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 101 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 58) (($ $ (-400 (-549))) 106 (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) 104 (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
-(((-1092 |#1| |#2| |#3|) (-13 (-717 |#1| |#2|) (-10 -8 (-15 -2944 (|#3| $ (-747))) (-15 -3845 ($ |#2|)) (-15 -3845 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4054 ((-1 (-1122 |#3|) |#3|) (-621 |#2|) (-621 (-1122 |#3|)))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -1531 ($ $ |#2| |#1|)) (-15 -1464 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1018) (-823) (-920 |#1| (-521 |#2|) |#2|)) (T -1092))
-((-2944 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *2 (-920 *4 (-521 *5) *5)) (-5 *1 (-1092 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-823)))) (-3845 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *2 (-823)) (-5 *1 (-1092 *3 *2 *4)) (-4 *4 (-920 *3 (-521 *2) *2)))) (-3845 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1092 *3 *4 *2)) (-4 *2 (-920 *3 (-521 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1092 *3 *4 *2)) (-4 *2 (-920 *3 (-521 *4) *4)))) (-4054 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 (-1122 *7))) (-4 *6 (-823)) (-4 *7 (-920 *5 (-521 *6) *6)) (-4 *5 (-1018)) (-5 *2 (-1 (-1122 *7) *7)) (-5 *1 (-1092 *5 *6 *7)))) (-1531 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-4 *2 (-823)) (-5 *1 (-1092 *3 *2 *4)) (-4 *4 (-920 *3 (-521 *2) *2)))) (-1464 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1092 *4 *3 *5))) (-4 *4 (-38 (-400 (-549)))) (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *1 (-1092 *4 *3 *5)) (-4 *5 (-920 *4 (-521 *3) *3)))))
-(-13 (-717 |#1| |#2|) (-10 -8 (-15 -2944 (|#3| $ (-747))) (-15 -3845 ($ |#2|)) (-15 -3845 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4054 ((-1 (-1122 |#3|) |#3|) (-621 |#2|) (-621 (-1122 |#3|)))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -1531 ($ $ |#2| |#1|)) (-15 -1464 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-3833 (((-112) $ $) 7)) (-3684 (((-621 (-2 (|:| -2680 $) (|:| -1358 (-621 |#4|)))) (-621 |#4|)) 85)) (-3840 (((-621 $) (-621 |#4|)) 86) (((-621 $) (-621 |#4|) (-112)) 111)) (-2271 (((-621 |#3|) $) 33)) (-3863 (((-112) $) 26)) (-1771 (((-112) $) 17 (|has| |#1| (-541)))) (-2344 (((-112) |#4| $) 101) (((-112) $) 97)) (-1305 ((|#4| |#4| $) 92)) (-1912 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 $))) |#4| $) 126)) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |#3|) 27)) (-1323 (((-112) $ (-747)) 44)) (-1488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| "failed") $ |#3|) 79)) (-1705 (($) 45 T CONST)) (-1717 (((-112) $) 22 (|has| |#1| (-541)))) (-1766 (((-112) $ $) 24 (|has| |#1| (-541)))) (-2671 (((-112) $ $) 23 (|has| |#1| (-541)))) (-2498 (((-112) $) 25 (|has| |#1| (-541)))) (-3074 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1436 (((-621 |#4|) (-621 |#4|) $) 18 (|has| |#1| (-541)))) (-3001 (((-621 |#4|) (-621 |#4|) $) 19 (|has| |#1| (-541)))) (-2713 (((-3 $ "failed") (-621 |#4|)) 36)) (-2658 (($ (-621 |#4|)) 35)) (-3655 (((-3 $ "failed") $) 82)) (-2514 ((|#4| |#4| $) 89)) (-3675 (($ $) 68 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#4| $) 67 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3249 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-541)))) (-4042 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3678 ((|#4| |#4| $) 87)) (-2558 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2235 (((-2 (|:| -2680 (-621 |#4|)) (|:| -1358 (-621 |#4|))) $) 105)) (-4173 (((-112) |#4| $) 136)) (-1447 (((-112) |#4| $) 133)) (-2561 (((-112) |#4| $) 137) (((-112) $) 134)) (-2990 (((-621 |#4|) $) 52 (|has| $ (-6 -4336)))) (-3929 (((-112) |#4| $) 104) (((-112) $) 103)) (-4170 ((|#3| $) 34)) (-4202 (((-112) $ (-747)) 43)) (-1958 (((-621 |#4|) $) 53 (|has| $ (-6 -4336)))) (-2273 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#4| |#4|) $) 47)) (-1670 (((-621 |#3|) $) 32)) (-2911 (((-112) |#3| $) 31)) (-4289 (((-112) $ (-747)) 42)) (-2677 (((-1124) $) 9)) (-4145 (((-3 |#4| (-621 $)) |#4| |#4| $) 128)) (-2587 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 $))) |#4| |#4| $) 127)) (-3828 (((-3 |#4| "failed") $) 83)) (-2613 (((-621 $) |#4| $) 129)) (-1783 (((-3 (-112) (-621 $)) |#4| $) 132)) (-1350 (((-621 (-2 (|:| |val| (-112)) (|:| -1980 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1795 (((-621 $) |#4| $) 125) (((-621 $) (-621 |#4|) $) 124) (((-621 $) (-621 |#4|) (-621 $)) 123) (((-621 $) |#4| (-621 $)) 122)) (-1449 (($ |#4| $) 117) (($ (-621 |#4|) $) 116)) (-4069 (((-621 |#4|) $) 107)) (-3130 (((-112) |#4| $) 99) (((-112) $) 95)) (-2741 ((|#4| |#4| $) 90)) (-3739 (((-112) $ $) 110)) (-2205 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-541)))) (-1582 (((-112) |#4| $) 100) (((-112) $) 96)) (-3952 ((|#4| |#4| $) 91)) (-3988 (((-1086) $) 10)) (-3645 (((-3 |#4| "failed") $) 84)) (-1917 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1762 (((-3 $ "failed") $ |#4|) 78)) (-2975 (($ $ |#4|) 77) (((-621 $) |#4| $) 115) (((-621 $) |#4| (-621 $)) 114) (((-621 $) (-621 |#4|) $) 113) (((-621 $) (-621 |#4|) (-621 $)) 112)) (-2470 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#4|) (-621 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-621 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))) (-2732 (((-112) $ $) 38)) (-1807 (((-112) $) 41)) (-1461 (($) 40)) (-3068 (((-747) $) 106)) (-3997 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-2281 (($ $) 39)) (-2844 (((-525) $) 69 (|has| |#4| (-594 (-525))))) (-3853 (($ (-621 |#4|)) 60)) (-1651 (($ $ |#3|) 28)) (-3183 (($ $ |#3|) 30)) (-1821 (($ $) 88)) (-2432 (($ $ |#3|) 29)) (-3845 (((-834) $) 11) (((-621 |#4|) $) 37)) (-1509 (((-747) $) 76 (|has| |#3| (-361)))) (-3472 (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2197 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) 98)) (-1691 (((-621 $) |#4| $) 121) (((-621 $) |#4| (-621 $)) 120) (((-621 $) (-621 |#4|) $) 119) (((-621 $) (-621 |#4|) (-621 $)) 118)) (-2150 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-2691 (((-621 |#3|) $) 81)) (-1972 (((-112) |#4| $) 135)) (-2923 (((-112) |#3| $) 80)) (-2388 (((-112) $ $) 6)) (-3774 (((-747) $) 46 (|has| $ (-6 -4336)))))
+((-3675 (*1 *1 *2) (-12 (-4 *2 (-1018)) (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-618 *4)) (-4 *4 (-1018)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1018)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1018)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1089 *3 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1089 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *2 (-232 *3 *4)) (-4 *5 (-232 *3 *4)))) (-3670 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4338 #1="*"))) (-4 *2 (-1018)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4338 #1#))) (-4 *2 (-1018)))) (-3935 (*1 *1 *1) (|partial| -12 (-4 *1 (-1089 *2 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356)))))
+(-13 (-225 |t#2|) (-111 |t#2| |t#2|) (-1021 |t#1| |t#1| |t#2| |t#3| |t#4|) (-405 |t#2|) (-370 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-694 |t#2|)) |%noBranch|) (-15 -3675 ($ |t#2|)) (-15 -3674 ($ (-618 |t#2|))) (-15 -3673 (|t#3| $)) (-15 -3672 (|t#2| $)) (-15 -3671 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4338 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3670 (|t#2| $)) (-15 -3669 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-356)) (PROGN (-15 -3935 ((-3 $ "failed") $)) (-15 ** ($ $ (-535)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4338 #1="*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-835)) . T) ((-225 |#2|) . T) ((-227) |has| |#2| (-227)) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-370 |#2|) . T) ((-405 |#2|) . T) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-624 |#2|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#2| (-617 (-535))) ((-617 |#2|) . T) ((-694 |#2|) -3874 (|has| |#2| (-170)) (|has| |#2| (-6 (-4338 #1#)))) ((-703) . T) ((-871 (-1142)) |has| |#2| (-871 (-1142))) ((-1021 |#1| |#1| |#2| |#3| |#4|) . T) ((-1009 (-400 (-535))) |has| |#2| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#2| (-1009 (-535))) ((-1009 |#2|) . T) ((-1024 |#2|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1178) . T))
+((-3678 ((|#4| |#4|) 70)) (-3676 ((|#4| |#4|) 65)) (-3680 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2123 (-618 |#3|))) |#4| |#3|) 78)) (-3679 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3677 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
+(((-1090 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3676 (|#4| |#4|)) (-15 -3677 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3678 (|#4| |#4|)) (-15 -3679 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3680 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2123 (-618 |#3|))) |#4| |#3|))) (-300) (-365 |#1|) (-365 |#1|) (-662 |#1| |#2| |#3|)) (T -1090))
+((-3680 (*1 *2 *3 *4) (-12 (-4 *5 (-300)) (-4 *6 (-365 *5)) (-4 *4 (-365 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-618 *4)))) (-5 *1 (-1090 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4)))) (-3679 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1090 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3678 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1090 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1090 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1090 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))))
+(-10 -7 (-15 -3676 (|#4| |#4|)) (-15 -3677 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3678 (|#4| |#4|)) (-15 -3679 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3680 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2123 (-618 |#3|))) |#4| |#3|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 17)) (-3405 (((-618 |#2|) $) 159)) (-3407 (((-1136 $) $ |#2|) 54) (((-1136 |#1|) $) 43)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 108 (|has| |#1| (-542)))) (-2171 (($ $) 110 (|has| |#1| (-542)))) (-2169 (((-112) $) 112 (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 |#2|)) 192)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) 156) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 |#2| #2#) $) NIL)) (-3490 ((|#1| $) 154) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) ((|#2| $) NIL)) (-4099 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-4302 (($ $) 196)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) 82)) (-3840 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-521 |#2|) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| |#1| (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| |#1| (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-2493 (((-112) $) 19)) (-2501 (((-747) $) 26)) (-3408 (($ (-1136 |#1|) |#2|) 48) (($ (-1136 $) |#2|) 64)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) 32)) (-3214 (($ |#1| (-521 |#2|)) 71) (($ $ |#2| (-747)) 52) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ |#2|) NIL)) (-3141 (((-521 |#2|) $) 186) (((-747) $ |#2|) 187) (((-618 (-747)) $ (-618 |#2|)) 188)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-521 |#2|) (-521 |#2|)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) 120)) (-3406 (((-3 |#2| #3="failed") $) 161)) (-3215 (($ $) 195)) (-3508 ((|#1| $) 37)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-3144 (((-3 (-618 $) #3#) $) NIL)) (-3143 (((-3 (-618 $) #3#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| |#2|) (|:| -2484 (-747))) #3#) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) 33)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 138 (|has| |#1| (-444)))) (-3478 (($ (-618 $)) 143 (|has| |#1| (-444))) (($ $ $) 130 (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#1| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-881)))) (-3803 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-542)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-618 |#2|) (-618 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-618 |#2|) (-618 $)) 176)) (-4100 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-4153 (($ $ |#2|) 194) (($ $ (-618 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-4290 (((-521 |#2|) $) 182) (((-747) $ |#2|) 178) (((-618 (-747)) $ (-618 |#2|)) 180)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| |#1| (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| |#1| (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| |#1| (-594 (-524))) (|has| |#2| (-594 (-524)))))) (-3138 ((|#1| $) 126 (|has| |#1| (-444))) (($ $ |#2|) 129 (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4300 (((-835) $) 149) (($ (-535)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-542))) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-4160 (((-618 |#1|) $) 152)) (-4023 ((|#1| $ (-521 |#2|)) 73) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-3023 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) 79)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) 115 (|has| |#1| (-542)))) (-2979 (($) 12 T CONST)) (-2985 (($) 14 T CONST)) (-2990 (($ $ |#2|) NIL) (($ $ (-618 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 97)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) 124 (|has| |#1| (-356)))) (-4180 (($ $) 85) (($ $ $) 95)) (-4182 (($ $ $) 49)) (** (($ $ (-890)) 102) (($ $ (-747)) 100)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 88) (($ $ $) 65) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
+(((-1091 |#1| |#2|) (-921 |#1| (-521 |#2|) |#2|) (-1018) (-823)) (T -1091))
+NIL
+(-921 |#1| (-521 |#2|) |#2|)
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 |#2|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3829 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3827 (($ $) 137 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 113 (|has| |#1| (-38 (-400 (-535)))))) (-3831 (($ $) 145 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-4157 (((-917 |#1|) $ (-747)) NIL) (((-917 |#1|) $ (-747) (-747)) NIL)) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-747) $ |#2|) NIL) (((-747) $ |#2| (-747)) NIL)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4280 (((-112) $) NIL)) (-3214 (($ $ (-618 |#2|) (-618 (-521 |#2|))) NIL) (($ $ |#2| (-521 |#2|)) NIL) (($ |#1| (-521 |#2|)) NIL) (($ $ |#2| (-747)) 56) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4285 (($ $) 111 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-4155 (($ $ |#2|) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-4022 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-400 (-535)))))) (-4111 (($ $ (-747)) 13)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4286 (($ $) 109 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (($ $ |#2| $) 95) (($ $ (-618 |#2|) (-618 $)) 88) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL)) (-4153 (($ $ |#2|) 98) (($ $ (-618 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-4290 (((-521 |#2|) $) NIL)) (-3681 (((-1 (-1119 |#3|) |#3|) (-618 |#2|) (-618 (-1119 |#3|))) 77)) (-3832 (($ $) 147 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 143 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 139 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 15)) (-4300 (((-835) $) 180) (($ (-535)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-542))) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#2|) 63) (($ |#3|) 61)) (-4023 ((|#1| $ (-521 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL) ((|#3| $ (-747)) 38)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-3835 (($ $) 153 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 129 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) 149 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 157 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-3838 (($ $) 159 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 135 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 155 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 151 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 127 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 47 T CONST)) (-2985 (($) 55 T CONST)) (-2990 (($ $ |#2|) NIL) (($ $ (-618 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-618 |#2|) (-618 (-747))) NIL)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) 182 (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 59)) (** (($ $ (-890)) NIL) (($ $ (-747)) 68) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 101 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 58) (($ $ (-400 (-535))) 106 (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) 104 (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
+(((-1092 |#1| |#2| |#3|) (-13 (-717 |#1| |#2|) (-10 -8 (-15 -4023 (|#3| $ (-747))) (-15 -4300 ($ |#2|)) (-15 -4300 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3681 ((-1 (-1119 |#3|) |#3|) (-618 |#2|) (-618 (-1119 |#3|)))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $ |#2| |#1|)) (-15 -4022 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1018) (-823) (-921 |#1| (-521 |#2|) |#2|)) (T -1092))
+((-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *2 (-921 *4 (-521 *5) *5)) (-5 *1 (-1092 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-823)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *2 (-823)) (-5 *1 (-1092 *3 *2 *4)) (-4 *4 (-921 *3 (-521 *2) *2)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1092 *3 *4 *2)) (-4 *2 (-921 *3 (-521 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1092 *3 *4 *2)) (-4 *2 (-921 *3 (-521 *4) *4)))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 (-1119 *7))) (-4 *6 (-823)) (-4 *7 (-921 *5 (-521 *6) *6)) (-4 *5 (-1018)) (-5 *2 (-1 (-1119 *7) *7)) (-5 *1 (-1092 *5 *6 *7)))) (-4155 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-4 *2 (-823)) (-5 *1 (-1092 *3 *2 *4)) (-4 *4 (-921 *3 (-521 *2) *2)))) (-4022 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1092 *4 *3 *5))) (-4 *4 (-38 (-400 (-535)))) (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *1 (-1092 *4 *3 *5)) (-4 *5 (-921 *4 (-521 *3) *3)))))
+(-13 (-717 |#1| |#2|) (-10 -8 (-15 -4023 (|#3| $ (-747))) (-15 -4300 ($ |#2|)) (-15 -4300 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3681 ((-1 (-1119 |#3|) |#3|) (-618 |#2|) (-618 (-1119 |#3|)))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $ |#2| |#1|)) (-15 -4022 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2887 (((-112) $ $) 7)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) 85)) (-4028 (((-618 $) (-618 |#4|)) 86) (((-618 $) (-618 |#4|) (-112)) 111)) (-3405 (((-618 |#3|) $) 33)) (-3229 (((-112) $) 26)) (-3220 (((-112) $) 17 (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) 101) (((-112) $) 97)) (-4034 ((|#4| |#4| $) 92)) (-4117 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) 27)) (-1264 (((-112) $ (-747)) 44)) (-4056 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3879 (($) 45 T CONST)) (-3225 (((-112) $) 22 (|has| |#1| (-542)))) (-3227 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3226 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3228 (((-112) $) 25 (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3221 (((-618 |#4|) (-618 |#4|) $) 18 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) 19 (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 36)) (-3490 (($ (-618 |#4|)) 35)) (-4141 (((-3 $ #1#) $) 82)) (-4031 ((|#4| |#4| $) 89)) (-1394 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4029 ((|#4| |#4| $) 87)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) 105)) (-3531 (((-112) |#4| $) 136)) (-3529 (((-112) |#4| $) 133)) (-3532 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-618 |#4|) $) 52 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) 104) (((-112) $) 103)) (-3514 ((|#3| $) 34)) (-4065 (((-112) $ (-747)) 43)) (-2502 (((-618 |#4|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 47)) (-3235 (((-618 |#3|) $) 32)) (-3234 (((-112) |#3| $) 31)) (-4062 (((-112) $ (-747)) 42)) (-3576 (((-1124) $) 9)) (-3525 (((-3 |#4| (-618 $)) |#4| |#4| $) 128)) (-3524 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4140 (((-3 |#4| #1#) $) 83)) (-3526 (((-618 $) |#4| $) 129)) (-3528 (((-3 (-112) (-618 $)) |#4| $) 132)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3572 (((-618 $) |#4| $) 125) (((-618 $) (-618 |#4|) $) 124) (((-618 $) (-618 |#4|) (-618 $)) 123) (((-618 $) |#4| (-618 $)) 122)) (-3782 (($ |#4| $) 117) (($ (-618 |#4|) $) 116)) (-4043 (((-618 |#4|) $) 107)) (-4037 (((-112) |#4| $) 99) (((-112) $) 95)) (-4032 ((|#4| |#4| $) 90)) (-4045 (((-112) $ $) 110)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) 100) (((-112) $) 96)) (-4033 ((|#4| |#4| $) 91)) (-3577 (((-1086) $) 10)) (-4143 (((-3 |#4| #1#) $) 84)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4025 (((-3 $ #1#) $ |#4|) 78)) (-4111 (($ $ |#4|) 77) (((-618 $) |#4| $) 115) (((-618 $) |#4| (-618 $)) 114) (((-618 $) (-618 |#4|) $) 113) (((-618 $) (-618 |#4|) (-618 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) 38)) (-3745 (((-112) $) 41)) (-3911 (($) 40)) (-4290 (((-747) $) 106)) (-2064 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-3742 (($ $) 39)) (-4313 (((-524) $) 69 (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-3233 (($ $ |#3|) 30)) (-4030 (($ $) 88)) (-3232 (($ $ |#3|) 29)) (-4300 (((-835) $) 11) (((-618 |#4|) $) 37)) (-4024 (((-747) $) 76 (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) 98)) (-3523 (((-618 $) |#4| $) 121) (((-618 $) |#4| (-618 $)) 120) (((-618 $) (-618 |#4|) $) 119) (((-618 $) (-618 |#4|) (-618 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) 81)) (-3530 (((-112) |#4| $) 135)) (-4276 (((-112) |#3| $) 80)) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 46 (|has| $ (-6 -4336)))))
(((-1093 |#1| |#2| |#3| |#4|) (-138) (-444) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1093))
NIL
(-13 (-1075 |t#1| |t#2| |t#3| |t#4|) (-760 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-101) . T) ((-593 (-621 |#4|)) . T) ((-593 (-834)) . T) ((-149 |#4|) . T) ((-594 (-525)) |has| |#4| (-594 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))) ((-760 |#1| |#2| |#3| |#4|) . T) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1038 |#1| |#2| |#3| |#4|) . T) ((-1066) . T) ((-1075 |#1| |#2| |#3| |#4|) . T) ((-1172 |#1| |#2| |#3| |#4|) . T) ((-1179) . T))
-((-2808 (((-621 |#2|) |#1|) 12)) (-3013 (((-621 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-621 |#2|) |#1|) 52)) (-4036 (((-621 |#2|) |#2| |#2| |#2|) 39) (((-621 |#2|) |#1|) 50)) (-2216 ((|#2| |#1|) 46)) (-2705 (((-2 (|:| |solns| (-621 |#2|)) (|:| |maps| (-621 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1391 (((-621 |#2|) |#2| |#2|) 38) (((-621 |#2|) |#1|) 49)) (-1927 (((-621 |#2|) |#2| |#2| |#2| |#2|) 40) (((-621 |#2|) |#1|) 51)) (-4130 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3190 ((|#2| |#2| |#2| |#2|) 43)) (-3127 ((|#2| |#2| |#2|) 42)) (-1994 ((|#2| |#2| |#2| |#2| |#2|) 44)))
-(((-1094 |#1| |#2|) (-10 -7 (-15 -2808 ((-621 |#2|) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2705 ((-2 (|:| |solns| (-621 |#2|)) (|:| |maps| (-621 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1391 ((-621 |#2|) |#1|)) (-15 -4036 ((-621 |#2|) |#1|)) (-15 -1927 ((-621 |#2|) |#1|)) (-15 -3013 ((-621 |#2|) |#1|)) (-15 -1391 ((-621 |#2|) |#2| |#2|)) (-15 -4036 ((-621 |#2|) |#2| |#2| |#2|)) (-15 -1927 ((-621 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3013 ((-621 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3127 (|#2| |#2| |#2|)) (-15 -3190 (|#2| |#2| |#2| |#2|)) (-15 -1994 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4130 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1201 |#2|) (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (T -1094))
-((-4130 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1201 *2)))) (-1994 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1201 *2)))) (-3190 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1201 *2)))) (-3127 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1201 *2)))) (-3013 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1201 *3)))) (-1927 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1201 *3)))) (-4036 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1201 *3)))) (-1391 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1201 *3)))) (-3013 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1201 *4)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1201 *4)))) (-4036 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1201 *4)))) (-1391 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1201 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-2 (|:| |solns| (-621 *5)) (|:| |maps| (-621 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1094 *3 *5)) (-4 *3 (-1201 *5)))) (-2216 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1201 *2)))) (-2808 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1201 *4)))))
-(-10 -7 (-15 -2808 ((-621 |#2|) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2705 ((-2 (|:| |solns| (-621 |#2|)) (|:| |maps| (-621 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1391 ((-621 |#2|) |#1|)) (-15 -4036 ((-621 |#2|) |#1|)) (-15 -1927 ((-621 |#2|) |#1|)) (-15 -3013 ((-621 |#2|) |#1|)) (-15 -1391 ((-621 |#2|) |#2| |#2|)) (-15 -4036 ((-621 |#2|) |#2| |#2| |#2|)) (-15 -1927 ((-621 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3013 ((-621 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3127 (|#2| |#2| |#2|)) (-15 -3190 (|#2| |#2| |#2| |#2|)) (-15 -1994 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4130 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2644 (((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-400 (-923 |#1|))))) 95) (((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-400 (-923 |#1|)))) (-621 (-1142))) 94) (((-621 (-621 (-287 (-309 |#1|)))) (-621 (-400 (-923 |#1|)))) 92) (((-621 (-621 (-287 (-309 |#1|)))) (-621 (-400 (-923 |#1|))) (-621 (-1142))) 90) (((-621 (-287 (-309 |#1|))) (-287 (-400 (-923 |#1|)))) 75) (((-621 (-287 (-309 |#1|))) (-287 (-400 (-923 |#1|))) (-1142)) 76) (((-621 (-287 (-309 |#1|))) (-400 (-923 |#1|))) 70) (((-621 (-287 (-309 |#1|))) (-400 (-923 |#1|)) (-1142)) 59)) (-1956 (((-621 (-621 (-309 |#1|))) (-621 (-400 (-923 |#1|))) (-621 (-1142))) 88) (((-621 (-309 |#1|)) (-400 (-923 |#1|)) (-1142)) 43)) (-3266 (((-1131 (-621 (-309 |#1|)) (-621 (-287 (-309 |#1|)))) (-400 (-923 |#1|)) (-1142)) 98) (((-1131 (-621 (-309 |#1|)) (-621 (-287 (-309 |#1|)))) (-287 (-400 (-923 |#1|))) (-1142)) 97)))
-(((-1095 |#1|) (-10 -7 (-15 -2644 ((-621 (-287 (-309 |#1|))) (-400 (-923 |#1|)) (-1142))) (-15 -2644 ((-621 (-287 (-309 |#1|))) (-400 (-923 |#1|)))) (-15 -2644 ((-621 (-287 (-309 |#1|))) (-287 (-400 (-923 |#1|))) (-1142))) (-15 -2644 ((-621 (-287 (-309 |#1|))) (-287 (-400 (-923 |#1|))))) (-15 -2644 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-400 (-923 |#1|))) (-621 (-1142)))) (-15 -2644 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-400 (-923 |#1|))))) (-15 -2644 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-400 (-923 |#1|)))) (-621 (-1142)))) (-15 -2644 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-400 (-923 |#1|)))))) (-15 -1956 ((-621 (-309 |#1|)) (-400 (-923 |#1|)) (-1142))) (-15 -1956 ((-621 (-621 (-309 |#1|))) (-621 (-400 (-923 |#1|))) (-621 (-1142)))) (-15 -3266 ((-1131 (-621 (-309 |#1|)) (-621 (-287 (-309 |#1|)))) (-287 (-400 (-923 |#1|))) (-1142))) (-15 -3266 ((-1131 (-621 (-309 |#1|)) (-621 (-287 (-309 |#1|)))) (-400 (-923 |#1|)) (-1142)))) (-13 (-300) (-823) (-145))) (T -1095))
-((-3266 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-1131 (-621 (-309 *5)) (-621 (-287 (-309 *5))))) (-5 *1 (-1095 *5)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-923 *5)))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-1131 (-621 (-309 *5)) (-621 (-287 (-309 *5))))) (-5 *1 (-1095 *5)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1142))) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-621 (-309 *5)))) (-5 *1 (-1095 *5)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-309 *5))) (-5 *1 (-1095 *5)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-621 (-287 (-400 (-923 *4))))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-621 (-287 (-309 *4))))) (-5 *1 (-1095 *4)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-287 (-400 (-923 *5))))) (-5 *4 (-621 (-1142))) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-621 (-287 (-309 *5))))) (-5 *1 (-1095 *5)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-621 (-400 (-923 *4)))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-621 (-287 (-309 *4))))) (-5 *1 (-1095 *4)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1142))) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-621 (-287 (-309 *5))))) (-5 *1 (-1095 *5)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-287 (-400 (-923 *4)))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1095 *4)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-923 *5)))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *5)))) (-5 *1 (-1095 *5)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1095 *4)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *5)))) (-5 *1 (-1095 *5)))))
-(-10 -7 (-15 -2644 ((-621 (-287 (-309 |#1|))) (-400 (-923 |#1|)) (-1142))) (-15 -2644 ((-621 (-287 (-309 |#1|))) (-400 (-923 |#1|)))) (-15 -2644 ((-621 (-287 (-309 |#1|))) (-287 (-400 (-923 |#1|))) (-1142))) (-15 -2644 ((-621 (-287 (-309 |#1|))) (-287 (-400 (-923 |#1|))))) (-15 -2644 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-400 (-923 |#1|))) (-621 (-1142)))) (-15 -2644 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-400 (-923 |#1|))))) (-15 -2644 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-400 (-923 |#1|)))) (-621 (-1142)))) (-15 -2644 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-400 (-923 |#1|)))))) (-15 -1956 ((-621 (-309 |#1|)) (-400 (-923 |#1|)) (-1142))) (-15 -1956 ((-621 (-621 (-309 |#1|))) (-621 (-400 (-923 |#1|))) (-621 (-1142)))) (-15 -3266 ((-1131 (-621 (-309 |#1|)) (-621 (-287 (-309 |#1|)))) (-287 (-400 (-923 |#1|))) (-1142))) (-15 -3266 ((-1131 (-621 (-309 |#1|)) (-621 (-287 (-309 |#1|)))) (-400 (-923 |#1|)) (-1142))))
-((-3206 (((-400 (-1138 (-309 |#1|))) (-1225 (-309 |#1|)) (-400 (-1138 (-309 |#1|))) (-549)) 29)) (-4178 (((-400 (-1138 (-309 |#1|))) (-400 (-1138 (-309 |#1|))) (-400 (-1138 (-309 |#1|))) (-400 (-1138 (-309 |#1|)))) 40)))
-(((-1096 |#1|) (-10 -7 (-15 -4178 ((-400 (-1138 (-309 |#1|))) (-400 (-1138 (-309 |#1|))) (-400 (-1138 (-309 |#1|))) (-400 (-1138 (-309 |#1|))))) (-15 -3206 ((-400 (-1138 (-309 |#1|))) (-1225 (-309 |#1|)) (-400 (-1138 (-309 |#1|))) (-549)))) (-13 (-541) (-823))) (T -1096))
-((-3206 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-400 (-1138 (-309 *5)))) (-5 *3 (-1225 (-309 *5))) (-5 *4 (-549)) (-4 *5 (-13 (-541) (-823))) (-5 *1 (-1096 *5)))) (-4178 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-400 (-1138 (-309 *3)))) (-4 *3 (-13 (-541) (-823))) (-5 *1 (-1096 *3)))))
-(-10 -7 (-15 -4178 ((-400 (-1138 (-309 |#1|))) (-400 (-1138 (-309 |#1|))) (-400 (-1138 (-309 |#1|))) (-400 (-1138 (-309 |#1|))))) (-15 -3206 ((-400 (-1138 (-309 |#1|))) (-1225 (-309 |#1|)) (-400 (-1138 (-309 |#1|))) (-549))))
-((-2808 (((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-309 |#1|))) (-621 (-1142))) 224) (((-621 (-287 (-309 |#1|))) (-309 |#1|) (-1142)) 20) (((-621 (-287 (-309 |#1|))) (-287 (-309 |#1|)) (-1142)) 26) (((-621 (-287 (-309 |#1|))) (-287 (-309 |#1|))) 25) (((-621 (-287 (-309 |#1|))) (-309 |#1|)) 21)))
-(((-1097 |#1|) (-10 -7 (-15 -2808 ((-621 (-287 (-309 |#1|))) (-309 |#1|))) (-15 -2808 ((-621 (-287 (-309 |#1|))) (-287 (-309 |#1|)))) (-15 -2808 ((-621 (-287 (-309 |#1|))) (-287 (-309 |#1|)) (-1142))) (-15 -2808 ((-621 (-287 (-309 |#1|))) (-309 |#1|) (-1142))) (-15 -2808 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-309 |#1|))) (-621 (-1142))))) (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (T -1097))
-((-2808 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-1142))) (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-621 (-621 (-287 (-309 *5))))) (-5 *1 (-1097 *5)) (-5 *3 (-621 (-287 (-309 *5)))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-621 (-287 (-309 *5)))) (-5 *1 (-1097 *5)) (-5 *3 (-309 *5)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-621 (-287 (-309 *5)))) (-5 *1 (-1097 *5)) (-5 *3 (-287 (-309 *5))))) (-2808 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1097 *4)) (-5 *3 (-287 (-309 *4))))) (-2808 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1097 *4)) (-5 *3 (-309 *4)))))
-(-10 -7 (-15 -2808 ((-621 (-287 (-309 |#1|))) (-309 |#1|))) (-15 -2808 ((-621 (-287 (-309 |#1|))) (-287 (-309 |#1|)))) (-15 -2808 ((-621 (-287 (-309 |#1|))) (-287 (-309 |#1|)) (-1142))) (-15 -2808 ((-621 (-287 (-309 |#1|))) (-309 |#1|) (-1142))) (-15 -2808 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-309 |#1|))) (-621 (-1142)))))
-((-3373 ((|#2| |#2|) 20 (|has| |#1| (-823))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-2274 ((|#2| |#2|) 19 (|has| |#1| (-823))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
-(((-1098 |#1| |#2|) (-10 -7 (-15 -2274 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3373 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-823)) (PROGN (-15 -2274 (|#2| |#2|)) (-15 -3373 (|#2| |#2|))) |%noBranch|)) (-1179) (-13 (-584 (-549) |#1|) (-10 -7 (-6 -4336) (-6 -4337)))) (T -1098))
-((-3373 (*1 *2 *2) (-12 (-4 *3 (-823)) (-4 *3 (-1179)) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-584 (-549) *3) (-10 -7 (-6 -4336) (-6 -4337)))))) (-2274 (*1 *2 *2) (-12 (-4 *3 (-823)) (-4 *3 (-1179)) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-584 (-549) *3) (-10 -7 (-6 -4336) (-6 -4337)))))) (-3373 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1179)) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-584 (-549) *4) (-10 -7 (-6 -4336) (-6 -4337)))))) (-2274 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1179)) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-584 (-549) *4) (-10 -7 (-6 -4336) (-6 -4337)))))))
-(-10 -7 (-15 -2274 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3373 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-823)) (PROGN (-15 -2274 (|#2| |#2|)) (-15 -3373 (|#2| |#2|))) |%noBranch|))
-((-3833 (((-112) $ $) NIL)) (-3002 (((-1130 3 |#1|) $) 107)) (-1888 (((-112) $) 72)) (-3688 (($ $ (-621 (-914 |#1|))) 20) (($ $ (-621 (-621 |#1|))) 75) (($ (-621 (-914 |#1|))) 74) (((-621 (-914 |#1|)) $) 73)) (-4082 (((-112) $) 41)) (-2797 (($ $ (-914 |#1|)) 46) (($ $ (-621 |#1|)) 51) (($ $ (-747)) 53) (($ (-914 |#1|)) 47) (((-914 |#1|) $) 45)) (-1849 (((-2 (|:| -3215 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747))) $) 105)) (-1510 (((-747) $) 26)) (-1730 (((-747) $) 25)) (-2673 (($ $ (-747) (-914 |#1|)) 39)) (-4272 (((-112) $) 82)) (-3208 (($ $ (-621 (-621 (-914 |#1|))) (-621 (-169)) (-169)) 89) (($ $ (-621 (-621 (-621 |#1|))) (-621 (-169)) (-169)) 91) (($ $ (-621 (-621 (-914 |#1|))) (-112) (-112)) 85) (($ $ (-621 (-621 (-621 |#1|))) (-112) (-112)) 93) (($ (-621 (-621 (-914 |#1|)))) 86) (($ (-621 (-621 (-914 |#1|))) (-112) (-112)) 87) (((-621 (-621 (-914 |#1|))) $) 84)) (-1586 (($ (-621 $)) 28) (($ $ $) 29)) (-4255 (((-621 (-169)) $) 102)) (-2790 (((-621 (-914 |#1|)) $) 96)) (-1932 (((-621 (-621 (-169))) $) 101)) (-1925 (((-621 (-621 (-621 (-914 |#1|)))) $) NIL)) (-3892 (((-621 (-621 (-621 (-747)))) $) 99)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1652 (((-747) $ (-621 (-914 |#1|))) 37)) (-2204 (((-112) $) 54)) (-2953 (($ $ (-621 (-914 |#1|))) 56) (($ $ (-621 (-621 |#1|))) 62) (($ (-621 (-914 |#1|))) 57) (((-621 (-914 |#1|)) $) 55)) (-4231 (($) 23) (($ (-1130 3 |#1|)) 24)) (-2281 (($ $) 35)) (-3848 (((-621 $) $) 34)) (-3791 (($ (-621 $)) 31)) (-2533 (((-621 $) $) 33)) (-3845 (((-834) $) 111)) (-2962 (((-112) $) 64)) (-1573 (($ $ (-621 (-914 |#1|))) 66) (($ $ (-621 (-621 |#1|))) 69) (($ (-621 (-914 |#1|))) 67) (((-621 (-914 |#1|)) $) 65)) (-4009 (($ $) 106)) (-2388 (((-112) $ $) NIL)))
+(((-34) . T) ((-101) . T) ((-593 (-618 |#4|)) . T) ((-593 (-835)) . T) ((-149 |#4|) . T) ((-594 (-524)) |has| |#4| (-594 (-524))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-760 |#1| |#2| |#3| |#4|) . T) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1038 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1075 |#1| |#2| |#3| |#4|) . T) ((-1173 |#1| |#2| |#3| |#4|) . T) ((-1178) . T))
+((-3919 (((-618 |#2|) |#1|) 12)) (-3687 (((-618 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-618 |#2|) |#1|) 52)) (-3685 (((-618 |#2|) |#2| |#2| |#2|) 39) (((-618 |#2|) |#1|) 50)) (-3682 ((|#2| |#1|) 46)) (-3683 (((-2 (|:| |solns| (-618 |#2|)) (|:| |maps| (-618 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3684 (((-618 |#2|) |#2| |#2|) 38) (((-618 |#2|) |#1|) 49)) (-3686 (((-618 |#2|) |#2| |#2| |#2| |#2|) 40) (((-618 |#2|) |#1|) 51)) (-3691 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3689 ((|#2| |#2| |#2| |#2|) 43)) (-3688 ((|#2| |#2| |#2|) 42)) (-3690 ((|#2| |#2| |#2| |#2| |#2|) 44)))
+(((-1094 |#1| |#2|) (-10 -7 (-15 -3919 ((-618 |#2|) |#1|)) (-15 -3682 (|#2| |#1|)) (-15 -3683 ((-2 (|:| |solns| (-618 |#2|)) (|:| |maps| (-618 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3684 ((-618 |#2|) |#1|)) (-15 -3685 ((-618 |#2|) |#1|)) (-15 -3686 ((-618 |#2|) |#1|)) (-15 -3687 ((-618 |#2|) |#1|)) (-15 -3684 ((-618 |#2|) |#2| |#2|)) (-15 -3685 ((-618 |#2|) |#2| |#2| |#2|)) (-15 -3686 ((-618 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3687 ((-618 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3688 (|#2| |#2| |#2|)) (-15 -3689 (|#2| |#2| |#2| |#2|)) (-15 -3690 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3691 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1200 |#2|) (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (T -1094))
+((-3691 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))) (-3690 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))) (-3689 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))) (-3688 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))) (-3687 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3)))) (-3686 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3)))) (-3685 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3)))) (-3684 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3)))) (-3687 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) (-3686 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) (-3685 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) (-3684 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-2 (|:| |solns| (-618 *5)) (|:| |maps| (-618 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1094 *3 *5)) (-4 *3 (-1200 *5)))) (-3682 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535))))))) (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4)))))
+(-10 -7 (-15 -3919 ((-618 |#2|) |#1|)) (-15 -3682 (|#2| |#1|)) (-15 -3683 ((-2 (|:| |solns| (-618 |#2|)) (|:| |maps| (-618 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3684 ((-618 |#2|) |#1|)) (-15 -3685 ((-618 |#2|) |#1|)) (-15 -3686 ((-618 |#2|) |#1|)) (-15 -3687 ((-618 |#2|) |#1|)) (-15 -3684 ((-618 |#2|) |#2| |#2|)) (-15 -3685 ((-618 |#2|) |#2| |#2| |#2|)) (-15 -3686 ((-618 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3687 ((-618 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3688 (|#2| |#2| |#2|)) (-15 -3689 (|#2| |#2| |#2| |#2|)) (-15 -3690 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3691 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-3692 (((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-400 (-917 |#1|))))) 95) (((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-400 (-917 |#1|)))) (-618 (-1142))) 94) (((-618 (-618 (-286 (-307 |#1|)))) (-618 (-400 (-917 |#1|)))) 92) (((-618 (-618 (-286 (-307 |#1|)))) (-618 (-400 (-917 |#1|))) (-618 (-1142))) 90) (((-618 (-286 (-307 |#1|))) (-286 (-400 (-917 |#1|)))) 75) (((-618 (-286 (-307 |#1|))) (-286 (-400 (-917 |#1|))) (-1142)) 76) (((-618 (-286 (-307 |#1|))) (-400 (-917 |#1|))) 70) (((-618 (-286 (-307 |#1|))) (-400 (-917 |#1|)) (-1142)) 59)) (-3693 (((-618 (-618 (-307 |#1|))) (-618 (-400 (-917 |#1|))) (-618 (-1142))) 88) (((-618 (-307 |#1|)) (-400 (-917 |#1|)) (-1142)) 43)) (-3694 (((-1131 (-618 (-307 |#1|)) (-618 (-286 (-307 |#1|)))) (-400 (-917 |#1|)) (-1142)) 98) (((-1131 (-618 (-307 |#1|)) (-618 (-286 (-307 |#1|)))) (-286 (-400 (-917 |#1|))) (-1142)) 97)))
+(((-1095 |#1|) (-10 -7 (-15 -3692 ((-618 (-286 (-307 |#1|))) (-400 (-917 |#1|)) (-1142))) (-15 -3692 ((-618 (-286 (-307 |#1|))) (-400 (-917 |#1|)))) (-15 -3692 ((-618 (-286 (-307 |#1|))) (-286 (-400 (-917 |#1|))) (-1142))) (-15 -3692 ((-618 (-286 (-307 |#1|))) (-286 (-400 (-917 |#1|))))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-400 (-917 |#1|))))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-400 (-917 |#1|)))) (-618 (-1142)))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-400 (-917 |#1|)))))) (-15 -3693 ((-618 (-307 |#1|)) (-400 (-917 |#1|)) (-1142))) (-15 -3693 ((-618 (-618 (-307 |#1|))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3694 ((-1131 (-618 (-307 |#1|)) (-618 (-286 (-307 |#1|)))) (-286 (-400 (-917 |#1|))) (-1142))) (-15 -3694 ((-1131 (-618 (-307 |#1|)) (-618 (-286 (-307 |#1|)))) (-400 (-917 |#1|)) (-1142)))) (-13 (-300) (-823) (-145))) (T -1095))
+((-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-1131 (-618 (-307 *5)) (-618 (-286 (-307 *5))))) (-5 *1 (-1095 *5)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-917 *5)))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-1131 (-618 (-307 *5)) (-618 (-286 (-307 *5))))) (-5 *1 (-1095 *5)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-307 *5)))) (-5 *1 (-1095 *5)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-307 *5))) (-5 *1 (-1095 *5)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-618 (-286 (-400 (-917 *4))))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *4))))) (-5 *1 (-1095 *4)))) (-3692 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-286 (-400 (-917 *5))))) (-5 *4 (-618 (-1142))) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *5))))) (-5 *1 (-1095 *5)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-618 (-400 (-917 *4)))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *4))))) (-5 *1 (-1095 *4)))) (-3692 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *5))))) (-5 *1 (-1095 *5)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-286 (-400 (-917 *4)))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1095 *4)))) (-3692 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-917 *5)))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-286 (-307 *5)))) (-5 *1 (-1095 *5)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1095 *4)))) (-3692 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-286 (-307 *5)))) (-5 *1 (-1095 *5)))))
+(-10 -7 (-15 -3692 ((-618 (-286 (-307 |#1|))) (-400 (-917 |#1|)) (-1142))) (-15 -3692 ((-618 (-286 (-307 |#1|))) (-400 (-917 |#1|)))) (-15 -3692 ((-618 (-286 (-307 |#1|))) (-286 (-400 (-917 |#1|))) (-1142))) (-15 -3692 ((-618 (-286 (-307 |#1|))) (-286 (-400 (-917 |#1|))))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-400 (-917 |#1|))))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-400 (-917 |#1|)))) (-618 (-1142)))) (-15 -3692 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-400 (-917 |#1|)))))) (-15 -3693 ((-618 (-307 |#1|)) (-400 (-917 |#1|)) (-1142))) (-15 -3693 ((-618 (-618 (-307 |#1|))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3694 ((-1131 (-618 (-307 |#1|)) (-618 (-286 (-307 |#1|)))) (-286 (-400 (-917 |#1|))) (-1142))) (-15 -3694 ((-1131 (-618 (-307 |#1|)) (-618 (-286 (-307 |#1|)))) (-400 (-917 |#1|)) (-1142))))
+((-3696 (((-400 (-1136 (-307 |#1|))) (-1224 (-307 |#1|)) (-400 (-1136 (-307 |#1|))) (-535)) 29)) (-3695 (((-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|)))) 40)))
+(((-1096 |#1|) (-10 -7 (-15 -3695 ((-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))))) (-15 -3696 ((-400 (-1136 (-307 |#1|))) (-1224 (-307 |#1|)) (-400 (-1136 (-307 |#1|))) (-535)))) (-13 (-542) (-823))) (T -1096))
+((-3696 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-400 (-1136 (-307 *5)))) (-5 *3 (-1224 (-307 *5))) (-5 *4 (-535)) (-4 *5 (-13 (-542) (-823))) (-5 *1 (-1096 *5)))) (-3695 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-400 (-1136 (-307 *3)))) (-4 *3 (-13 (-542) (-823))) (-5 *1 (-1096 *3)))))
+(-10 -7 (-15 -3695 ((-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))) (-400 (-1136 (-307 |#1|))))) (-15 -3696 ((-400 (-1136 (-307 |#1|))) (-1224 (-307 |#1|)) (-400 (-1136 (-307 |#1|))) (-535))))
+((-3919 (((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-307 |#1|))) (-618 (-1142))) 224) (((-618 (-286 (-307 |#1|))) (-307 |#1|) (-1142)) 20) (((-618 (-286 (-307 |#1|))) (-286 (-307 |#1|)) (-1142)) 26) (((-618 (-286 (-307 |#1|))) (-286 (-307 |#1|))) 25) (((-618 (-286 (-307 |#1|))) (-307 |#1|)) 21)))
+(((-1097 |#1|) (-10 -7 (-15 -3919 ((-618 (-286 (-307 |#1|))) (-307 |#1|))) (-15 -3919 ((-618 (-286 (-307 |#1|))) (-286 (-307 |#1|)))) (-15 -3919 ((-618 (-286 (-307 |#1|))) (-286 (-307 |#1|)) (-1142))) (-15 -3919 ((-618 (-286 (-307 |#1|))) (-307 |#1|) (-1142))) (-15 -3919 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-307 |#1|))) (-618 (-1142))))) (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (T -1097))
+((-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-1142))) (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *5))))) (-5 *1 (-1097 *5)) (-5 *3 (-618 (-286 (-307 *5)))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-618 (-286 (-307 *5)))) (-5 *1 (-1097 *5)) (-5 *3 (-307 *5)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-618 (-286 (-307 *5)))) (-5 *1 (-1097 *5)) (-5 *3 (-286 (-307 *5))))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1097 *4)) (-5 *3 (-286 (-307 *4))))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145))) (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1097 *4)) (-5 *3 (-307 *4)))))
+(-10 -7 (-15 -3919 ((-618 (-286 (-307 |#1|))) (-307 |#1|))) (-15 -3919 ((-618 (-286 (-307 |#1|))) (-286 (-307 |#1|)))) (-15 -3919 ((-618 (-286 (-307 |#1|))) (-286 (-307 |#1|)) (-1142))) (-15 -3919 ((-618 (-286 (-307 |#1|))) (-307 |#1|) (-1142))) (-15 -3919 ((-618 (-618 (-286 (-307 |#1|)))) (-618 (-286 (-307 |#1|))) (-618 (-1142)))))
+((-3698 ((|#2| |#2|) 20 (|has| |#1| (-823))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-3697 ((|#2| |#2|) 19 (|has| |#1| (-823))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
+(((-1098 |#1| |#2|) (-10 -7 (-15 -3697 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3698 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-823)) (PROGN (-15 -3697 (|#2| |#2|)) (-15 -3698 (|#2| |#2|))) |%noBranch|)) (-1178) (-13 (-584 (-535) |#1|) (-10 -7 (-6 -4336) (-6 -4337)))) (T -1098))
+((-3698 (*1 *2 *2) (-12 (-4 *3 (-823)) (-4 *3 (-1178)) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-584 (-535) *3) (-10 -7 (-6 -4336) (-6 -4337)))))) (-3697 (*1 *2 *2) (-12 (-4 *3 (-823)) (-4 *3 (-1178)) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-584 (-535) *3) (-10 -7 (-6 -4336) (-6 -4337)))))) (-3698 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-584 (-535) *4) (-10 -7 (-6 -4336) (-6 -4337)))))) (-3697 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-584 (-535) *4) (-10 -7 (-6 -4336) (-6 -4337)))))))
+(-10 -7 (-15 -3697 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3698 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-823)) (PROGN (-15 -3697 (|#2| |#2|)) (-15 -3698 (|#2| |#2|))) |%noBranch|))
+((-2887 (((-112) $ $) NIL)) (-4231 (((-1130 3 |#1|) $) 107)) (-3708 (((-112) $) 72)) (-3709 (($ $ (-618 (-914 |#1|))) 20) (($ $ (-618 (-618 |#1|))) 75) (($ (-618 (-914 |#1|))) 74) (((-618 (-914 |#1|)) $) 73)) (-3714 (((-112) $) 41)) (-4052 (($ $ (-914 |#1|)) 46) (($ $ (-618 |#1|)) 51) (($ $ (-747)) 53) (($ (-914 |#1|)) 47) (((-914 |#1|) $) 45)) (-3700 (((-2 (|:| -4193 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747))) $) 105)) (-3718 (((-747) $) 26)) (-3719 (((-747) $) 25)) (-4230 (($ $ (-747) (-914 |#1|)) 39)) (-3706 (((-112) $) 82)) (-3707 (($ $ (-618 (-618 (-914 |#1|))) (-618 (-169)) (-169)) 89) (($ $ (-618 (-618 (-618 |#1|))) (-618 (-169)) (-169)) 91) (($ $ (-618 (-618 (-914 |#1|))) (-112) (-112)) 85) (($ $ (-618 (-618 (-618 |#1|))) (-112) (-112)) 93) (($ (-618 (-618 (-914 |#1|)))) 86) (($ (-618 (-618 (-914 |#1|))) (-112) (-112)) 87) (((-618 (-618 (-914 |#1|))) $) 84)) (-3855 (($ (-618 $)) 28) (($ $ $) 29)) (-3701 (((-618 (-169)) $) 102)) (-3705 (((-618 (-914 |#1|)) $) 96)) (-3702 (((-618 (-618 (-169))) $) 101)) (-3703 (((-618 (-618 (-618 (-914 |#1|)))) $) NIL)) (-3704 (((-618 (-618 (-618 (-747)))) $) 99)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3715 (((-747) $ (-618 (-914 |#1|))) 37)) (-3712 (((-112) $) 54)) (-3713 (($ $ (-618 (-914 |#1|))) 56) (($ $ (-618 (-618 |#1|))) 62) (($ (-618 (-914 |#1|))) 57) (((-618 (-914 |#1|)) $) 55)) (-3720 (($) 23) (($ (-1130 3 |#1|)) 24)) (-3742 (($ $) 35)) (-3716 (((-618 $) $) 34)) (-4097 (($ (-618 $)) 31)) (-3717 (((-618 $) $) 33)) (-4300 (((-835) $) 111)) (-3710 (((-112) $) 64)) (-3711 (($ $ (-618 (-914 |#1|))) 66) (($ $ (-618 (-618 |#1|))) 69) (($ (-618 (-914 |#1|))) 67) (((-618 (-914 |#1|)) $) 65)) (-3699 (($ $) 106)) (-3375 (((-112) $ $) NIL)))
(((-1099 |#1|) (-1100 |#1|) (-1018)) (T -1099))
NIL
(-1100 |#1|)
-((-3833 (((-112) $ $) 7)) (-3002 (((-1130 3 |#1|) $) 13)) (-1888 (((-112) $) 29)) (-3688 (($ $ (-621 (-914 |#1|))) 33) (($ $ (-621 (-621 |#1|))) 32) (($ (-621 (-914 |#1|))) 31) (((-621 (-914 |#1|)) $) 30)) (-4082 (((-112) $) 44)) (-2797 (($ $ (-914 |#1|)) 49) (($ $ (-621 |#1|)) 48) (($ $ (-747)) 47) (($ (-914 |#1|)) 46) (((-914 |#1|) $) 45)) (-1849 (((-2 (|:| -3215 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747))) $) 15)) (-1510 (((-747) $) 58)) (-1730 (((-747) $) 59)) (-2673 (($ $ (-747) (-914 |#1|)) 50)) (-4272 (((-112) $) 21)) (-3208 (($ $ (-621 (-621 (-914 |#1|))) (-621 (-169)) (-169)) 28) (($ $ (-621 (-621 (-621 |#1|))) (-621 (-169)) (-169)) 27) (($ $ (-621 (-621 (-914 |#1|))) (-112) (-112)) 26) (($ $ (-621 (-621 (-621 |#1|))) (-112) (-112)) 25) (($ (-621 (-621 (-914 |#1|)))) 24) (($ (-621 (-621 (-914 |#1|))) (-112) (-112)) 23) (((-621 (-621 (-914 |#1|))) $) 22)) (-1586 (($ (-621 $)) 57) (($ $ $) 56)) (-4255 (((-621 (-169)) $) 16)) (-2790 (((-621 (-914 |#1|)) $) 20)) (-1932 (((-621 (-621 (-169))) $) 17)) (-1925 (((-621 (-621 (-621 (-914 |#1|)))) $) 18)) (-3892 (((-621 (-621 (-621 (-747)))) $) 19)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-1652 (((-747) $ (-621 (-914 |#1|))) 51)) (-2204 (((-112) $) 39)) (-2953 (($ $ (-621 (-914 |#1|))) 43) (($ $ (-621 (-621 |#1|))) 42) (($ (-621 (-914 |#1|))) 41) (((-621 (-914 |#1|)) $) 40)) (-4231 (($) 61) (($ (-1130 3 |#1|)) 60)) (-2281 (($ $) 52)) (-3848 (((-621 $) $) 53)) (-3791 (($ (-621 $)) 55)) (-2533 (((-621 $) $) 54)) (-3845 (((-834) $) 11)) (-2962 (((-112) $) 34)) (-1573 (($ $ (-621 (-914 |#1|))) 38) (($ $ (-621 (-621 |#1|))) 37) (($ (-621 (-914 |#1|))) 36) (((-621 (-914 |#1|)) $) 35)) (-4009 (($ $) 14)) (-2388 (((-112) $ $) 6)))
+((-2887 (((-112) $ $) 7)) (-4231 (((-1130 3 |#1|) $) 13)) (-3708 (((-112) $) 29)) (-3709 (($ $ (-618 (-914 |#1|))) 33) (($ $ (-618 (-618 |#1|))) 32) (($ (-618 (-914 |#1|))) 31) (((-618 (-914 |#1|)) $) 30)) (-3714 (((-112) $) 44)) (-4052 (($ $ (-914 |#1|)) 49) (($ $ (-618 |#1|)) 48) (($ $ (-747)) 47) (($ (-914 |#1|)) 46) (((-914 |#1|) $) 45)) (-3700 (((-2 (|:| -4193 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747))) $) 15)) (-3718 (((-747) $) 58)) (-3719 (((-747) $) 59)) (-4230 (($ $ (-747) (-914 |#1|)) 50)) (-3706 (((-112) $) 21)) (-3707 (($ $ (-618 (-618 (-914 |#1|))) (-618 (-169)) (-169)) 28) (($ $ (-618 (-618 (-618 |#1|))) (-618 (-169)) (-169)) 27) (($ $ (-618 (-618 (-914 |#1|))) (-112) (-112)) 26) (($ $ (-618 (-618 (-618 |#1|))) (-112) (-112)) 25) (($ (-618 (-618 (-914 |#1|)))) 24) (($ (-618 (-618 (-914 |#1|))) (-112) (-112)) 23) (((-618 (-618 (-914 |#1|))) $) 22)) (-3855 (($ (-618 $)) 57) (($ $ $) 56)) (-3701 (((-618 (-169)) $) 16)) (-3705 (((-618 (-914 |#1|)) $) 20)) (-3702 (((-618 (-618 (-169))) $) 17)) (-3703 (((-618 (-618 (-618 (-914 |#1|)))) $) 18)) (-3704 (((-618 (-618 (-618 (-747)))) $) 19)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3715 (((-747) $ (-618 (-914 |#1|))) 51)) (-3712 (((-112) $) 39)) (-3713 (($ $ (-618 (-914 |#1|))) 43) (($ $ (-618 (-618 |#1|))) 42) (($ (-618 (-914 |#1|))) 41) (((-618 (-914 |#1|)) $) 40)) (-3720 (($) 61) (($ (-1130 3 |#1|)) 60)) (-3742 (($ $) 52)) (-3716 (((-618 $) $) 53)) (-4097 (($ (-618 $)) 55)) (-3717 (((-618 $) $) 54)) (-4300 (((-835) $) 11)) (-3710 (((-112) $) 34)) (-3711 (($ $ (-618 (-914 |#1|))) 38) (($ $ (-618 (-618 |#1|))) 37) (($ (-618 (-914 |#1|))) 36) (((-618 (-914 |#1|)) $) 35)) (-3699 (($ $) 14)) (-3375 (((-112) $ $) 6)))
(((-1100 |#1|) (-138) (-1018)) (T -1100))
-((-3845 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-834)))) (-4231 (*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-1130 3 *3)) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-1510 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-1586 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-1586 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) (-3791 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-2533 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-621 *1)) (-4 *1 (-1100 *3)))) (-3848 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-621 *1)) (-4 *1 (-1100 *3)))) (-2281 (*1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) (-1652 (*1 *2 *1 *3) (-12 (-5 *3 (-621 (-914 *4))) (-4 *1 (-1100 *4)) (-4 *4 (-1018)) (-5 *2 (-747)))) (-2673 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-914 *4)) (-4 *1 (-1100 *4)) (-4 *4 (-1018)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-2797 (*1 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-914 *3)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-2953 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-2953 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-2953 (*1 *1 *2) (-12 (-5 *2 (-621 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-2953 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3))))) (-2204 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-1573 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-1573 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-1573 (*1 *1 *2) (-12 (-5 *2 (-621 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3))))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-621 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3))))) (-1888 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3208 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-621 (-621 (-914 *5)))) (-5 *3 (-621 (-169))) (-5 *4 (-169)) (-4 *1 (-1100 *5)) (-4 *5 (-1018)))) (-3208 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-621 (-621 (-621 *5)))) (-5 *3 (-621 (-169))) (-5 *4 (-169)) (-4 *1 (-1100 *5)) (-4 *5 (-1018)))) (-3208 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-621 (-621 (-914 *4)))) (-5 *3 (-112)) (-4 *1 (-1100 *4)) (-4 *4 (-1018)))) (-3208 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-621 (-621 (-621 *4)))) (-5 *3 (-112)) (-4 *1 (-1100 *4)) (-4 *4 (-1018)))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-914 *3)))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-3208 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-621 (-621 (-914 *4)))) (-5 *3 (-112)) (-4 *4 (-1018)) (-4 *1 (-1100 *4)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-621 (-914 *3)))))) (-4272 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3))))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-621 (-621 (-747))))))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-621 (-621 (-914 *3))))))) (-1932 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-621 (-169)))))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-169))))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -3215 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747)))))) (-4009 (*1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-1130 3 *3)))))
-(-13 (-1066) (-10 -8 (-15 -4231 ($)) (-15 -4231 ($ (-1130 3 |t#1|))) (-15 -1730 ((-747) $)) (-15 -1510 ((-747) $)) (-15 -1586 ($ (-621 $))) (-15 -1586 ($ $ $)) (-15 -3791 ($ (-621 $))) (-15 -2533 ((-621 $) $)) (-15 -3848 ((-621 $) $)) (-15 -2281 ($ $)) (-15 -1652 ((-747) $ (-621 (-914 |t#1|)))) (-15 -2673 ($ $ (-747) (-914 |t#1|))) (-15 -2797 ($ $ (-914 |t#1|))) (-15 -2797 ($ $ (-621 |t#1|))) (-15 -2797 ($ $ (-747))) (-15 -2797 ($ (-914 |t#1|))) (-15 -2797 ((-914 |t#1|) $)) (-15 -4082 ((-112) $)) (-15 -2953 ($ $ (-621 (-914 |t#1|)))) (-15 -2953 ($ $ (-621 (-621 |t#1|)))) (-15 -2953 ($ (-621 (-914 |t#1|)))) (-15 -2953 ((-621 (-914 |t#1|)) $)) (-15 -2204 ((-112) $)) (-15 -1573 ($ $ (-621 (-914 |t#1|)))) (-15 -1573 ($ $ (-621 (-621 |t#1|)))) (-15 -1573 ($ (-621 (-914 |t#1|)))) (-15 -1573 ((-621 (-914 |t#1|)) $)) (-15 -2962 ((-112) $)) (-15 -3688 ($ $ (-621 (-914 |t#1|)))) (-15 -3688 ($ $ (-621 (-621 |t#1|)))) (-15 -3688 ($ (-621 (-914 |t#1|)))) (-15 -3688 ((-621 (-914 |t#1|)) $)) (-15 -1888 ((-112) $)) (-15 -3208 ($ $ (-621 (-621 (-914 |t#1|))) (-621 (-169)) (-169))) (-15 -3208 ($ $ (-621 (-621 (-621 |t#1|))) (-621 (-169)) (-169))) (-15 -3208 ($ $ (-621 (-621 (-914 |t#1|))) (-112) (-112))) (-15 -3208 ($ $ (-621 (-621 (-621 |t#1|))) (-112) (-112))) (-15 -3208 ($ (-621 (-621 (-914 |t#1|))))) (-15 -3208 ($ (-621 (-621 (-914 |t#1|))) (-112) (-112))) (-15 -3208 ((-621 (-621 (-914 |t#1|))) $)) (-15 -4272 ((-112) $)) (-15 -2790 ((-621 (-914 |t#1|)) $)) (-15 -3892 ((-621 (-621 (-621 (-747)))) $)) (-15 -1925 ((-621 (-621 (-621 (-914 |t#1|)))) $)) (-15 -1932 ((-621 (-621 (-169))) $)) (-15 -4255 ((-621 (-169)) $)) (-15 -1849 ((-2 (|:| -3215 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747))) $)) (-15 -4009 ($ $)) (-15 -3002 ((-1130 3 |t#1|) $)) (-15 -3845 ((-834) $))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 176) (((-1147) $) 7) (($ (-1147)) NIL)) (-3264 (((-112) $ (|[\|\|]| (-515))) 17) (((-112) $ (|[\|\|]| (-212))) 21) (((-112) $ (|[\|\|]| (-652))) 25) (((-112) $ (|[\|\|]| (-1235))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1081))) 41) (((-112) $ (|[\|\|]| (-95))) 45) (((-112) $ (|[\|\|]| (-657))) 49) (((-112) $ (|[\|\|]| (-508))) 53) (((-112) $ (|[\|\|]| (-1033))) 57) (((-112) $ (|[\|\|]| (-1236))) 61) (((-112) $ (|[\|\|]| (-516))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-647))) 73) (((-112) $ (|[\|\|]| (-304))) 77) (((-112) $ (|[\|\|]| (-1007))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-941))) 89) (((-112) $ (|[\|\|]| (-1040))) 93) (((-112) $ (|[\|\|]| (-1056))) 97) (((-112) $ (|[\|\|]| (-1062))) 101) (((-112) $ (|[\|\|]| (-604))) 105) (((-112) $ (|[\|\|]| (-1132))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-470))) 121) (((-112) $ (|[\|\|]| (-573))) 125) (((-112) $ (|[\|\|]| (-497))) 131) (((-112) $ (|[\|\|]| (-1124))) 135) (((-112) $ (|[\|\|]| (-549))) 139)) (-2320 (((-515) $) 18) (((-212) $) 22) (((-652) $) 26) (((-1235) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1081) $) 42) (((-95) $) 46) (((-657) $) 50) (((-508) $) 54) (((-1033) $) 58) (((-1236) $) 62) (((-516) $) 66) (((-152) $) 70) (((-647) $) 74) (((-304) $) 78) (((-1007) $) 82) (((-178) $) 86) (((-941) $) 90) (((-1040) $) 94) (((-1056) $) 98) (((-1062) $) 102) (((-604) $) 106) (((-1132) $) 110) (((-154) $) 114) (((-136) $) 118) (((-470) $) 122) (((-573) $) 126) (((-497) $) 132) (((-1124) $) 136) (((-549) $) 140)) (-2388 (((-112) $ $) NIL)))
+((-4300 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-835)))) (-3720 (*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) (-3720 (*1 *1 *2) (-12 (-5 *2 (-1130 3 *3)) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3855 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) (-4097 (*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3717 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)))) (-3716 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)))) (-3742 (*1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) (-3715 (*1 *2 *1 *3) (-12 (-5 *3 (-618 (-914 *4))) (-4 *1 (-1100 *4)) (-4 *4 (-1018)) (-5 *2 (-747)))) (-4230 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-914 *4)) (-4 *1 (-1100 *4)) (-4 *4 (-1018)))) (-4052 (*1 *1 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-4052 (*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-4052 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-4052 (*1 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-914 *3)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3713 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3713 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3713 (*1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3))))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3711 (*1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3))))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3))))) (-3708 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3707 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-618 (-618 (-914 *5)))) (-5 *3 (-618 (-169))) (-5 *4 (-169)) (-4 *1 (-1100 *5)) (-4 *5 (-1018)))) (-3707 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-618 (-618 (-618 *5)))) (-5 *3 (-618 (-169))) (-5 *4 (-169)) (-4 *1 (-1100 *5)) (-4 *5 (-1018)))) (-3707 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-618 (-618 (-914 *4)))) (-5 *3 (-112)) (-4 *1 (-1100 *4)) (-4 *4 (-1018)))) (-3707 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-618 (-618 (-618 *4)))) (-5 *3 (-112)) (-4 *1 (-1100 *4)) (-4 *4 (-1018)))) (-3707 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-914 *3)))) (-4 *3 (-1018)) (-4 *1 (-1100 *3)))) (-3707 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-618 (-618 (-914 *4)))) (-5 *3 (-112)) (-4 *4 (-1018)) (-4 *1 (-1100 *4)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-914 *3)))))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3))))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-618 (-747))))))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-618 (-914 *3))))))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-169)))))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-169))))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -4193 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747)))))) (-3699 (*1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-1130 3 *3)))))
+(-13 (-1067) (-10 -8 (-15 -3720 ($)) (-15 -3720 ($ (-1130 3 |t#1|))) (-15 -3719 ((-747) $)) (-15 -3718 ((-747) $)) (-15 -3855 ($ (-618 $))) (-15 -3855 ($ $ $)) (-15 -4097 ($ (-618 $))) (-15 -3717 ((-618 $) $)) (-15 -3716 ((-618 $) $)) (-15 -3742 ($ $)) (-15 -3715 ((-747) $ (-618 (-914 |t#1|)))) (-15 -4230 ($ $ (-747) (-914 |t#1|))) (-15 -4052 ($ $ (-914 |t#1|))) (-15 -4052 ($ $ (-618 |t#1|))) (-15 -4052 ($ $ (-747))) (-15 -4052 ($ (-914 |t#1|))) (-15 -4052 ((-914 |t#1|) $)) (-15 -3714 ((-112) $)) (-15 -3713 ($ $ (-618 (-914 |t#1|)))) (-15 -3713 ($ $ (-618 (-618 |t#1|)))) (-15 -3713 ($ (-618 (-914 |t#1|)))) (-15 -3713 ((-618 (-914 |t#1|)) $)) (-15 -3712 ((-112) $)) (-15 -3711 ($ $ (-618 (-914 |t#1|)))) (-15 -3711 ($ $ (-618 (-618 |t#1|)))) (-15 -3711 ($ (-618 (-914 |t#1|)))) (-15 -3711 ((-618 (-914 |t#1|)) $)) (-15 -3710 ((-112) $)) (-15 -3709 ($ $ (-618 (-914 |t#1|)))) (-15 -3709 ($ $ (-618 (-618 |t#1|)))) (-15 -3709 ($ (-618 (-914 |t#1|)))) (-15 -3709 ((-618 (-914 |t#1|)) $)) (-15 -3708 ((-112) $)) (-15 -3707 ($ $ (-618 (-618 (-914 |t#1|))) (-618 (-169)) (-169))) (-15 -3707 ($ $ (-618 (-618 (-618 |t#1|))) (-618 (-169)) (-169))) (-15 -3707 ($ $ (-618 (-618 (-914 |t#1|))) (-112) (-112))) (-15 -3707 ($ $ (-618 (-618 (-618 |t#1|))) (-112) (-112))) (-15 -3707 ($ (-618 (-618 (-914 |t#1|))))) (-15 -3707 ($ (-618 (-618 (-914 |t#1|))) (-112) (-112))) (-15 -3707 ((-618 (-618 (-914 |t#1|))) $)) (-15 -3706 ((-112) $)) (-15 -3705 ((-618 (-914 |t#1|)) $)) (-15 -3704 ((-618 (-618 (-618 (-747)))) $)) (-15 -3703 ((-618 (-618 (-618 (-914 |t#1|)))) $)) (-15 -3702 ((-618 (-618 (-169))) $)) (-15 -3701 ((-618 (-169)) $)) (-15 -3700 ((-2 (|:| -4193 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747))) $)) (-15 -3699 ($ $)) (-15 -4231 ((-1130 3 |t#1|) $)) (-15 -4300 ((-835) $))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 176) (((-1147) $) 7) (($ (-1147)) NIL)) (-3912 (((-112) $ (|[\|\|]| (-515))) 17) (((-112) $ (|[\|\|]| (-212))) 21) (((-112) $ (|[\|\|]| (-652))) 25) (((-112) $ (|[\|\|]| (-1235))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1082))) 41) (((-112) $ (|[\|\|]| (-95))) 45) (((-112) $ (|[\|\|]| (-657))) 49) (((-112) $ (|[\|\|]| (-508))) 53) (((-112) $ (|[\|\|]| (-1033))) 57) (((-112) $ (|[\|\|]| (-1236))) 61) (((-112) $ (|[\|\|]| (-516))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-647))) 73) (((-112) $ (|[\|\|]| (-305))) 77) (((-112) $ (|[\|\|]| (-1007))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-941))) 89) (((-112) $ (|[\|\|]| (-1040))) 93) (((-112) $ (|[\|\|]| (-1057))) 97) (((-112) $ (|[\|\|]| (-1062))) 101) (((-112) $ (|[\|\|]| (-604))) 105) (((-112) $ (|[\|\|]| (-1132))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-470))) 121) (((-112) $ (|[\|\|]| (-573))) 125) (((-112) $ (|[\|\|]| (-497))) 131) (((-112) $ (|[\|\|]| (-1124))) 135) (((-112) $ (|[\|\|]| (-535))) 139)) (-3918 (((-515) $) 18) (((-212) $) 22) (((-652) $) 26) (((-1235) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1082) $) 42) (((-95) $) 46) (((-657) $) 50) (((-508) $) 54) (((-1033) $) 58) (((-1236) $) 62) (((-516) $) 66) (((-152) $) 70) (((-647) $) 74) (((-305) $) 78) (((-1007) $) 82) (((-178) $) 86) (((-941) $) 90) (((-1040) $) 94) (((-1057) $) 98) (((-1062) $) 102) (((-604) $) 106) (((-1132) $) 110) (((-154) $) 114) (((-136) $) 118) (((-470) $) 122) (((-573) $) 126) (((-497) $) 132) (((-1124) $) 136) (((-535) $) 140)) (-3375 (((-112) $ $) NIL)))
(((-1101) (-1103)) (T -1101))
NIL
(-1103)
-((-3382 (((-621 (-1147)) (-1124)) 9)))
-(((-1102) (-10 -7 (-15 -3382 ((-621 (-1147)) (-1124))))) (T -1102))
-((-3382 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-621 (-1147))) (-5 *1 (-1102)))))
-(-10 -7 (-15 -3382 ((-621 (-1147)) (-1124))))
-((-3833 (((-112) $ $) 7)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (((-1147) $) 15) (($ (-1147)) 14)) (-3264 (((-112) $ (|[\|\|]| (-515))) 80) (((-112) $ (|[\|\|]| (-212))) 78) (((-112) $ (|[\|\|]| (-652))) 76) (((-112) $ (|[\|\|]| (-1235))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1081))) 68) (((-112) $ (|[\|\|]| (-95))) 66) (((-112) $ (|[\|\|]| (-657))) 64) (((-112) $ (|[\|\|]| (-508))) 62) (((-112) $ (|[\|\|]| (-1033))) 60) (((-112) $ (|[\|\|]| (-1236))) 58) (((-112) $ (|[\|\|]| (-516))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-647))) 52) (((-112) $ (|[\|\|]| (-304))) 50) (((-112) $ (|[\|\|]| (-1007))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-941))) 44) (((-112) $ (|[\|\|]| (-1040))) 42) (((-112) $ (|[\|\|]| (-1056))) 40) (((-112) $ (|[\|\|]| (-1062))) 38) (((-112) $ (|[\|\|]| (-604))) 36) (((-112) $ (|[\|\|]| (-1132))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-470))) 28) (((-112) $ (|[\|\|]| (-573))) 26) (((-112) $ (|[\|\|]| (-497))) 24) (((-112) $ (|[\|\|]| (-1124))) 22) (((-112) $ (|[\|\|]| (-549))) 20)) (-2320 (((-515) $) 79) (((-212) $) 77) (((-652) $) 75) (((-1235) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1081) $) 67) (((-95) $) 65) (((-657) $) 63) (((-508) $) 61) (((-1033) $) 59) (((-1236) $) 57) (((-516) $) 55) (((-152) $) 53) (((-647) $) 51) (((-304) $) 49) (((-1007) $) 47) (((-178) $) 45) (((-941) $) 43) (((-1040) $) 41) (((-1056) $) 39) (((-1062) $) 37) (((-604) $) 35) (((-1132) $) 33) (((-154) $) 31) (((-136) $) 29) (((-470) $) 27) (((-573) $) 25) (((-497) $) 23) (((-1124) $) 21) (((-549) $) 19)) (-2388 (((-112) $ $) 6)))
+((-3721 (((-618 (-1147)) (-1124)) 9)))
+(((-1102) (-10 -7 (-15 -3721 ((-618 (-1147)) (-1124))))) (T -1102))
+((-3721 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-618 (-1147))) (-5 *1 (-1102)))))
+(-10 -7 (-15 -3721 ((-618 (-1147)) (-1124))))
+((-2887 (((-112) $ $) 7)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (((-1147) $) 15) (($ (-1147)) 14)) (-3912 (((-112) $ (|[\|\|]| (-515))) 80) (((-112) $ (|[\|\|]| (-212))) 78) (((-112) $ (|[\|\|]| (-652))) 76) (((-112) $ (|[\|\|]| (-1235))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1082))) 68) (((-112) $ (|[\|\|]| (-95))) 66) (((-112) $ (|[\|\|]| (-657))) 64) (((-112) $ (|[\|\|]| (-508))) 62) (((-112) $ (|[\|\|]| (-1033))) 60) (((-112) $ (|[\|\|]| (-1236))) 58) (((-112) $ (|[\|\|]| (-516))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-647))) 52) (((-112) $ (|[\|\|]| (-305))) 50) (((-112) $ (|[\|\|]| (-1007))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-941))) 44) (((-112) $ (|[\|\|]| (-1040))) 42) (((-112) $ (|[\|\|]| (-1057))) 40) (((-112) $ (|[\|\|]| (-1062))) 38) (((-112) $ (|[\|\|]| (-604))) 36) (((-112) $ (|[\|\|]| (-1132))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-470))) 28) (((-112) $ (|[\|\|]| (-573))) 26) (((-112) $ (|[\|\|]| (-497))) 24) (((-112) $ (|[\|\|]| (-1124))) 22) (((-112) $ (|[\|\|]| (-535))) 20)) (-3918 (((-515) $) 79) (((-212) $) 77) (((-652) $) 75) (((-1235) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1082) $) 67) (((-95) $) 65) (((-657) $) 63) (((-508) $) 61) (((-1033) $) 59) (((-1236) $) 57) (((-516) $) 55) (((-152) $) 53) (((-647) $) 51) (((-305) $) 49) (((-1007) $) 47) (((-178) $) 45) (((-941) $) 43) (((-1040) $) 41) (((-1057) $) 39) (((-1062) $) 37) (((-604) $) 35) (((-1132) $) 33) (((-154) $) 31) (((-136) $) 29) (((-470) $) 27) (((-573) $) 25) (((-497) $) 23) (((-1124) $) 21) (((-535) $) 19)) (-3375 (((-112) $ $) 6)))
(((-1103) (-138)) (T -1103))
-((-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-515)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-212)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-652))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-652)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1235))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1235)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-137)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-132)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1081)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-95)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-657))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-657)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-508)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1033)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1236))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1236)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-516)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-152)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-647))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-647)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-304))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-304)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1007)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-178)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-941))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-941)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1040)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1056)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1062)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-604)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1132))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1132)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-154)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-136)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-470)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-573)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-497)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1124)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-549)))))
-(-13 (-1049) (-1220) (-10 -8 (-15 -3264 ((-112) $ (|[\|\|]| (-515)))) (-15 -2320 ((-515) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-212)))) (-15 -2320 ((-212) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-652)))) (-15 -2320 ((-652) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1235)))) (-15 -2320 ((-1235) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-137)))) (-15 -2320 ((-137) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-132)))) (-15 -2320 ((-132) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1081)))) (-15 -2320 ((-1081) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-95)))) (-15 -2320 ((-95) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-657)))) (-15 -2320 ((-657) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-508)))) (-15 -2320 ((-508) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1033)))) (-15 -2320 ((-1033) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1236)))) (-15 -2320 ((-1236) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-516)))) (-15 -2320 ((-516) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-152)))) (-15 -2320 ((-152) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-647)))) (-15 -2320 ((-647) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-304)))) (-15 -2320 ((-304) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1007)))) (-15 -2320 ((-1007) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-178)))) (-15 -2320 ((-178) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-941)))) (-15 -2320 ((-941) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1040)))) (-15 -2320 ((-1040) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1056)))) (-15 -2320 ((-1056) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1062)))) (-15 -2320 ((-1062) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-604)))) (-15 -2320 ((-604) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1132)))) (-15 -2320 ((-1132) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-154)))) (-15 -2320 ((-154) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-136)))) (-15 -2320 ((-136) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-470)))) (-15 -2320 ((-470) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-573)))) (-15 -2320 ((-573) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-497)))) (-15 -2320 ((-497) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1124)))) (-15 -2320 ((-1124) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-549)))) (-15 -2320 ((-549) $))))
-(((-92) . T) ((-101) . T) ((-593 (-834)) . T) ((-593 (-1147)) . T) ((-1066) . T) ((-1049) . T) ((-1220) . T))
-((-4313 (((-1230) (-621 (-834))) 23) (((-1230) (-834)) 22)) (-2293 (((-1230) (-621 (-834))) 21) (((-1230) (-834)) 20)) (-3315 (((-1230) (-621 (-834))) 19) (((-1230) (-834)) 11) (((-1230) (-1124) (-834)) 17)))
-(((-1104) (-10 -7 (-15 -3315 ((-1230) (-1124) (-834))) (-15 -3315 ((-1230) (-834))) (-15 -2293 ((-1230) (-834))) (-15 -4313 ((-1230) (-834))) (-15 -3315 ((-1230) (-621 (-834)))) (-15 -2293 ((-1230) (-621 (-834)))) (-15 -4313 ((-1230) (-621 (-834)))))) (T -1104))
-((-4313 (*1 *2 *3) (-12 (-5 *3 (-621 (-834))) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-2293 (*1 *2 *3) (-12 (-5 *3 (-621 (-834))) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-621 (-834))) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-2293 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3315 (*1 *2 *3 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-834)) (-5 *2 (-1230)) (-5 *1 (-1104)))))
-(-10 -7 (-15 -3315 ((-1230) (-1124) (-834))) (-15 -3315 ((-1230) (-834))) (-15 -2293 ((-1230) (-834))) (-15 -4313 ((-1230) (-834))) (-15 -3315 ((-1230) (-621 (-834)))) (-15 -2293 ((-1230) (-621 (-834)))) (-15 -4313 ((-1230) (-621 (-834)))))
-((-3752 (($ $ $) 10)) (-3272 (($ $) 9)) (-2047 (($ $ $) 13)) (-2730 (($ $ $) 15)) (-3232 (($ $ $) 12)) (-1940 (($ $ $) 14)) (-3173 (($ $) 17)) (-4195 (($ $) 16)) (-3603 (($ $) 6)) (-1756 (($ $ $) 11) (($ $) 7)) (-1850 (($ $ $) 8)))
+((-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-515)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-212)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-652))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-652)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1235))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1235)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-137)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-132)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1082)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-95)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-657))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-657)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-508)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1033)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1236))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1236)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-516)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-152)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-647))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-647)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-305)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1007)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-178)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-941))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-941)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1040)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1057)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1062)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-604)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1132))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1132)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-154)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-136)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-470)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-573)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-497)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1124)))) (-3912 (*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-535)))))
+(-13 (-1049) (-1220) (-10 -8 (-15 -3912 ((-112) $ (|[\|\|]| (-515)))) (-15 -3918 ((-515) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-212)))) (-15 -3918 ((-212) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-652)))) (-15 -3918 ((-652) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1235)))) (-15 -3918 ((-1235) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-137)))) (-15 -3918 ((-137) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-132)))) (-15 -3918 ((-132) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1082)))) (-15 -3918 ((-1082) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-95)))) (-15 -3918 ((-95) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-657)))) (-15 -3918 ((-657) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-508)))) (-15 -3918 ((-508) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1033)))) (-15 -3918 ((-1033) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1236)))) (-15 -3918 ((-1236) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-516)))) (-15 -3918 ((-516) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-152)))) (-15 -3918 ((-152) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-647)))) (-15 -3918 ((-647) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-305)))) (-15 -3918 ((-305) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1007)))) (-15 -3918 ((-1007) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-178)))) (-15 -3918 ((-178) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-941)))) (-15 -3918 ((-941) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1040)))) (-15 -3918 ((-1040) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1057)))) (-15 -3918 ((-1057) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1062)))) (-15 -3918 ((-1062) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-604)))) (-15 -3918 ((-604) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1132)))) (-15 -3918 ((-1132) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-154)))) (-15 -3918 ((-154) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-136)))) (-15 -3918 ((-136) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-470)))) (-15 -3918 ((-470) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-573)))) (-15 -3918 ((-573) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-497)))) (-15 -3918 ((-497) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-1124)))) (-15 -3918 ((-1124) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-535)))) (-15 -3918 ((-535) $))))
+(((-92) . T) ((-101) . T) ((-593 (-835)) . T) ((-593 (-1147)) . T) ((-1067) . T) ((-1049) . T) ((-1220) . T))
+((-3724 (((-1230) (-618 (-835))) 23) (((-1230) (-835)) 22)) (-3723 (((-1230) (-618 (-835))) 21) (((-1230) (-835)) 20)) (-3722 (((-1230) (-618 (-835))) 19) (((-1230) (-835)) 11) (((-1230) (-1124) (-835)) 17)))
+(((-1104) (-10 -7 (-15 -3722 ((-1230) (-1124) (-835))) (-15 -3722 ((-1230) (-835))) (-15 -3723 ((-1230) (-835))) (-15 -3724 ((-1230) (-835))) (-15 -3722 ((-1230) (-618 (-835)))) (-15 -3723 ((-1230) (-618 (-835)))) (-15 -3724 ((-1230) (-618 (-835)))))) (T -1104))
+((-3724 (*1 *2 *3) (-12 (-5 *3 (-618 (-835))) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-618 (-835))) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-618 (-835))) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104)))) (-3722 (*1 *2 *3 *4) (-12 (-5 *3 (-1124)) (-5 *4 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104)))))
+(-10 -7 (-15 -3722 ((-1230) (-1124) (-835))) (-15 -3722 ((-1230) (-835))) (-15 -3723 ((-1230) (-835))) (-15 -3724 ((-1230) (-835))) (-15 -3722 ((-1230) (-618 (-835)))) (-15 -3723 ((-1230) (-618 (-835)))) (-15 -3724 ((-1230) (-618 (-835)))))
+((-3728 (($ $ $) 10)) (-3727 (($ $) 9)) (-3731 (($ $ $) 13)) (-3733 (($ $ $) 15)) (-3730 (($ $ $) 12)) (-3732 (($ $ $) 14)) (-3735 (($ $) 17)) (-3734 (($ $) 16)) (-3725 (($ $) 6)) (-3729 (($ $ $) 11) (($ $) 7)) (-3726 (($ $ $) 8)))
(((-1105) (-138)) (T -1105))
-((-3173 (*1 *1 *1) (-4 *1 (-1105))) (-4195 (*1 *1 *1) (-4 *1 (-1105))) (-2730 (*1 *1 *1 *1) (-4 *1 (-1105))) (-1940 (*1 *1 *1 *1) (-4 *1 (-1105))) (-2047 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3232 (*1 *1 *1 *1) (-4 *1 (-1105))) (-1756 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3752 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3272 (*1 *1 *1) (-4 *1 (-1105))) (-1850 (*1 *1 *1 *1) (-4 *1 (-1105))) (-1756 (*1 *1 *1) (-4 *1 (-1105))) (-3603 (*1 *1 *1) (-4 *1 (-1105))))
-(-13 (-10 -8 (-15 -3603 ($ $)) (-15 -1756 ($ $)) (-15 -1850 ($ $ $)) (-15 -3272 ($ $)) (-15 -3752 ($ $ $)) (-15 -1756 ($ $ $)) (-15 -3232 ($ $ $)) (-15 -2047 ($ $ $)) (-15 -1940 ($ $ $)) (-15 -2730 ($ $ $)) (-15 -4195 ($ $)) (-15 -3173 ($ $))))
-((-3833 (((-112) $ $) 41)) (-4160 ((|#1| $) 15)) (-3925 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-1463 (((-112) $) 17)) (-1565 (($ $ |#1|) 28)) (-2021 (($ $ (-112)) 30)) (-3548 (($ $) 31)) (-3502 (($ $ |#2|) 29)) (-2677 (((-1124) $) NIL)) (-2028 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3988 (((-1086) $) NIL)) (-1807 (((-112) $) 14)) (-1461 (($) 10)) (-2281 (($ $) 27)) (-3853 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1980 |#2|))) 21) (((-621 $) (-621 (-2 (|:| |val| |#1|) (|:| -1980 |#2|)))) 24) (((-621 $) |#1| (-621 |#2|)) 26)) (-1926 ((|#2| $) 16)) (-3845 (((-834) $) 50)) (-2388 (((-112) $ $) 39)))
-(((-1106 |#1| |#2|) (-13 (-1066) (-10 -8 (-15 -1461 ($)) (-15 -1807 ((-112) $)) (-15 -4160 (|#1| $)) (-15 -1926 (|#2| $)) (-15 -1463 ((-112) $)) (-15 -3853 ($ |#1| |#2| (-112))) (-15 -3853 ($ |#1| |#2|)) (-15 -3853 ($ (-2 (|:| |val| |#1|) (|:| -1980 |#2|)))) (-15 -3853 ((-621 $) (-621 (-2 (|:| |val| |#1|) (|:| -1980 |#2|))))) (-15 -3853 ((-621 $) |#1| (-621 |#2|))) (-15 -2281 ($ $)) (-15 -1565 ($ $ |#1|)) (-15 -3502 ($ $ |#2|)) (-15 -2021 ($ $ (-112))) (-15 -3548 ($ $)) (-15 -2028 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3925 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1066) (-34)) (-13 (-1066) (-34))) (T -1106))
-((-1461 (*1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1066) (-34))) (-4 *3 (-13 (-1066) (-34))))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1066) (-34))) (-4 *4 (-13 (-1066) (-34))))) (-4160 (*1 *2 *1) (-12 (-4 *2 (-13 (-1066) (-34))) (-5 *1 (-1106 *2 *3)) (-4 *3 (-13 (-1066) (-34))))) (-1926 (*1 *2 *1) (-12 (-4 *2 (-13 (-1066) (-34))) (-5 *1 (-1106 *3 *2)) (-4 *3 (-13 (-1066) (-34))))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1066) (-34))) (-4 *4 (-13 (-1066) (-34))))) (-3853 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1066) (-34))) (-4 *3 (-13 (-1066) (-34))))) (-3853 (*1 *1 *2 *3) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1066) (-34))) (-4 *3 (-13 (-1066) (-34))))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1980 *4))) (-4 *3 (-13 (-1066) (-34))) (-4 *4 (-13 (-1066) (-34))) (-5 *1 (-1106 *3 *4)))) (-3853 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| |val| *4) (|:| -1980 *5)))) (-4 *4 (-13 (-1066) (-34))) (-4 *5 (-13 (-1066) (-34))) (-5 *2 (-621 (-1106 *4 *5))) (-5 *1 (-1106 *4 *5)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *5)) (-4 *5 (-13 (-1066) (-34))) (-5 *2 (-621 (-1106 *3 *5))) (-5 *1 (-1106 *3 *5)) (-4 *3 (-13 (-1066) (-34))))) (-2281 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1066) (-34))) (-4 *3 (-13 (-1066) (-34))))) (-1565 (*1 *1 *1 *2) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1066) (-34))) (-4 *3 (-13 (-1066) (-34))))) (-3502 (*1 *1 *1 *2) (-12 (-5 *1 (-1106 *3 *2)) (-4 *3 (-13 (-1066) (-34))) (-4 *2 (-13 (-1066) (-34))))) (-2021 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1066) (-34))) (-4 *4 (-13 (-1066) (-34))))) (-3548 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1066) (-34))) (-4 *3 (-13 (-1066) (-34))))) (-2028 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1066) (-34))) (-4 *6 (-13 (-1066) (-34))) (-5 *2 (-112)) (-5 *1 (-1106 *5 *6)))) (-3925 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1066) (-34))) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-13 (-1066) (-34))))))
-(-13 (-1066) (-10 -8 (-15 -1461 ($)) (-15 -1807 ((-112) $)) (-15 -4160 (|#1| $)) (-15 -1926 (|#2| $)) (-15 -1463 ((-112) $)) (-15 -3853 ($ |#1| |#2| (-112))) (-15 -3853 ($ |#1| |#2|)) (-15 -3853 ($ (-2 (|:| |val| |#1|) (|:| -1980 |#2|)))) (-15 -3853 ((-621 $) (-621 (-2 (|:| |val| |#1|) (|:| -1980 |#2|))))) (-15 -3853 ((-621 $) |#1| (-621 |#2|))) (-15 -2281 ($ $)) (-15 -1565 ($ $ |#1|)) (-15 -3502 ($ $ |#2|)) (-15 -2021 ($ $ (-112))) (-15 -3548 ($ $)) (-15 -2028 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3925 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-3833 (((-112) $ $) NIL (|has| (-1106 |#1| |#2|) (-1066)))) (-4160 (((-1106 |#1| |#2|) $) 25)) (-3885 (($ $) 76)) (-2569 (((-112) (-1106 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-2928 (($ $ $ (-621 (-1106 |#1| |#2|))) 90) (($ $ $ (-621 (-1106 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-1323 (((-112) $ (-747)) NIL)) (-3751 (((-1106 |#1| |#2|) $ (-1106 |#1| |#2|)) 43 (|has| $ (-6 -4337)))) (-2253 (((-1106 |#1| |#2|) $ "value" (-1106 |#1| |#2|)) NIL (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) 41 (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-1498 (((-621 (-2 (|:| |val| |#1|) (|:| -1980 |#2|))) $) 80)) (-4204 (($ (-1106 |#1| |#2|) $) 39)) (-3812 (($ (-1106 |#1| |#2|) $) 31)) (-2990 (((-621 (-1106 |#1| |#2|)) $) NIL (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) 51)) (-2987 (((-112) (-1106 |#1| |#2|) $) 82)) (-1742 (((-112) $ $) NIL (|has| (-1106 |#1| |#2|) (-1066)))) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 (-1106 |#1| |#2|)) $) 55 (|has| $ (-6 -4336)))) (-2273 (((-112) (-1106 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-1106 |#1| |#2|) (-1066))))) (-1865 (($ (-1 (-1106 |#1| |#2|) (-1106 |#1| |#2|)) $) 47 (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-1106 |#1| |#2|) (-1106 |#1| |#2|)) $) 46)) (-4289 (((-112) $ (-747)) NIL)) (-3590 (((-621 (-1106 |#1| |#2|)) $) 53)) (-2456 (((-112) $) 42)) (-2677 (((-1124) $) NIL (|has| (-1106 |#1| |#2|) (-1066)))) (-3988 (((-1086) $) NIL (|has| (-1106 |#1| |#2|) (-1066)))) (-3747 (((-3 $ "failed") $) 75)) (-2470 (((-112) (-1 (-112) (-1106 |#1| |#2|)) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-1106 |#1| |#2|)))) NIL (-12 (|has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))) (|has| (-1106 |#1| |#2|) (-1066)))) (($ $ (-287 (-1106 |#1| |#2|))) NIL (-12 (|has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))) (|has| (-1106 |#1| |#2|) (-1066)))) (($ $ (-1106 |#1| |#2|) (-1106 |#1| |#2|)) NIL (-12 (|has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))) (|has| (-1106 |#1| |#2|) (-1066)))) (($ $ (-621 (-1106 |#1| |#2|)) (-621 (-1106 |#1| |#2|))) NIL (-12 (|has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))) (|has| (-1106 |#1| |#2|) (-1066))))) (-2732 (((-112) $ $) 50)) (-1807 (((-112) $) 22)) (-1461 (($) 24)) (-3340 (((-1106 |#1| |#2|) $ "value") NIL)) (-1953 (((-549) $ $) NIL)) (-4187 (((-112) $) 44)) (-3997 (((-747) (-1 (-112) (-1106 |#1| |#2|)) $) NIL (|has| $ (-6 -4336))) (((-747) (-1106 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-1106 |#1| |#2|) (-1066))))) (-2281 (($ $) 49)) (-3853 (($ (-1106 |#1| |#2|)) 9) (($ |#1| |#2| (-621 $)) 12) (($ |#1| |#2| (-621 (-1106 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-621 |#2|)) 17)) (-3591 (((-621 |#2|) $) 81)) (-3845 (((-834) $) 73 (|has| (-1106 |#1| |#2|) (-593 (-834))))) (-1935 (((-621 $) $) 28)) (-2937 (((-112) $ $) NIL (|has| (-1106 |#1| |#2|) (-1066)))) (-2150 (((-112) (-1 (-112) (-1106 |#1| |#2|)) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 64 (|has| (-1106 |#1| |#2|) (-1066)))) (-3774 (((-747) $) 58 (|has| $ (-6 -4336)))))
-(((-1107 |#1| |#2|) (-13 (-981 (-1106 |#1| |#2|)) (-10 -8 (-6 -4337) (-6 -4336) (-15 -3747 ((-3 $ "failed") $)) (-15 -3885 ($ $)) (-15 -3853 ($ (-1106 |#1| |#2|))) (-15 -3853 ($ |#1| |#2| (-621 $))) (-15 -3853 ($ |#1| |#2| (-621 (-1106 |#1| |#2|)))) (-15 -3853 ($ |#1| |#2| |#1| (-621 |#2|))) (-15 -3591 ((-621 |#2|) $)) (-15 -1498 ((-621 (-2 (|:| |val| |#1|) (|:| -1980 |#2|))) $)) (-15 -2987 ((-112) (-1106 |#1| |#2|) $)) (-15 -2569 ((-112) (-1106 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3812 ($ (-1106 |#1| |#2|) $)) (-15 -4204 ($ (-1106 |#1| |#2|) $)) (-15 -2928 ($ $ $ (-621 (-1106 |#1| |#2|)))) (-15 -2928 ($ $ $ (-621 (-1106 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1066) (-34)) (-13 (-1066) (-34))) (T -1107))
-((-3747 (*1 *1 *1) (|partial| -12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1066) (-34))) (-4 *3 (-13 (-1066) (-34))))) (-3885 (*1 *1 *1) (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1066) (-34))) (-4 *3 (-13 (-1066) (-34))))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1066) (-34))) (-4 *4 (-13 (-1066) (-34))) (-5 *1 (-1107 *3 *4)))) (-3853 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-621 (-1107 *2 *3))) (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1066) (-34))) (-4 *3 (-13 (-1066) (-34))))) (-3853 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-621 (-1106 *2 *3))) (-4 *2 (-13 (-1066) (-34))) (-4 *3 (-13 (-1066) (-34))) (-5 *1 (-1107 *2 *3)))) (-3853 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-1066) (-34))) (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1066) (-34))))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-621 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1066) (-34))) (-4 *4 (-13 (-1066) (-34))))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4)))) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1066) (-34))) (-4 *4 (-13 (-1066) (-34))))) (-2987 (*1 *2 *3 *1) (-12 (-5 *3 (-1106 *4 *5)) (-4 *4 (-13 (-1066) (-34))) (-4 *5 (-13 (-1066) (-34))) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5)))) (-2569 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1106 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1066) (-34))) (-4 *6 (-13 (-1066) (-34))) (-5 *2 (-112)) (-5 *1 (-1107 *5 *6)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1066) (-34))) (-4 *4 (-13 (-1066) (-34))) (-5 *1 (-1107 *3 *4)))) (-4204 (*1 *1 *2 *1) (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1066) (-34))) (-4 *4 (-13 (-1066) (-34))) (-5 *1 (-1107 *3 *4)))) (-2928 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-621 (-1106 *3 *4))) (-4 *3 (-13 (-1066) (-34))) (-4 *4 (-13 (-1066) (-34))) (-5 *1 (-1107 *3 *4)))) (-2928 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-1106 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1066) (-34))) (-4 *5 (-13 (-1066) (-34))) (-5 *1 (-1107 *4 *5)))))
-(-13 (-981 (-1106 |#1| |#2|)) (-10 -8 (-6 -4337) (-6 -4336) (-15 -3747 ((-3 $ "failed") $)) (-15 -3885 ($ $)) (-15 -3853 ($ (-1106 |#1| |#2|))) (-15 -3853 ($ |#1| |#2| (-621 $))) (-15 -3853 ($ |#1| |#2| (-621 (-1106 |#1| |#2|)))) (-15 -3853 ($ |#1| |#2| |#1| (-621 |#2|))) (-15 -3591 ((-621 |#2|) $)) (-15 -1498 ((-621 (-2 (|:| |val| |#1|) (|:| -1980 |#2|))) $)) (-15 -2987 ((-112) (-1106 |#1| |#2|) $)) (-15 -2569 ((-112) (-1106 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3812 ($ (-1106 |#1| |#2|) $)) (-15 -4204 ($ (-1106 |#1| |#2|) $)) (-15 -2928 ($ $ $ (-621 (-1106 |#1| |#2|)))) (-15 -2928 ($ $ $ (-621 (-1106 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2429 (($ $) NIL)) (-2905 ((|#2| $) NIL)) (-1818 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3709 (($ (-665 |#2|)) 47)) (-3893 (((-112) $) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-2005 (($ |#2|) 9)) (-1705 (($) NIL T CONST)) (-2226 (($ $) 60 (|has| |#2| (-300)))) (-2413 (((-234 |#1| |#2|) $ (-549)) 34)) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 |#2| "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) ((|#2| $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) 74)) (-3122 (((-747) $) 62 (|has| |#2| (-541)))) (-1808 ((|#2| $ (-549) (-549)) NIL)) (-2990 (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3987 (((-112) $) NIL)) (-1746 (((-747) $) 64 (|has| |#2| (-541)))) (-1701 (((-621 (-234 |#1| |#2|)) $) 68 (|has| |#2| (-541)))) (-2141 (((-747) $) NIL)) (-2154 (((-747) $) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-1542 ((|#2| $) 58 (|has| |#2| (-6 (-4338 "*"))))) (-2437 (((-549) $) NIL)) (-2103 (((-549) $) NIL)) (-1958 (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-2303 (((-549) $) NIL)) (-2362 (((-549) $) NIL)) (-3945 (($ (-621 (-621 |#2|))) 29)) (-1865 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3595 (((-621 (-621 |#2|)) $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-3733 (((-3 $ "failed") $) 71 (|has| |#2| (-356)))) (-3988 (((-1086) $) NIL)) (-2038 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541)))) (-2470 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#2| $ (-549) (-549) |#2|) NIL) ((|#2| $ (-549) (-549)) NIL)) (-3455 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-4254 ((|#2| $) NIL)) (-1601 (($ (-621 |#2|)) 42)) (-2798 (((-112) $) NIL)) (-2674 (((-234 |#1| |#2|) $) NIL)) (-3097 ((|#2| $) 56 (|has| |#2| (-6 (-4338 "*"))))) (-3997 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-2281 (($ $) NIL)) (-2844 (((-525) $) 83 (|has| |#2| (-594 (-525))))) (-4102 (((-234 |#1| |#2|) $ (-549)) 36)) (-3845 (((-834) $) 39) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#2| (-1009 (-400 (-549))))) (($ |#2|) NIL) (((-665 |#2|) $) 44)) (-1723 (((-747)) 17)) (-2150 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2901 (((-112) $) NIL)) (-3275 (($) 11 T CONST)) (-3287 (($) 14 T CONST)) (-1700 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) 54) (($ $ (-549)) 73 (|has| |#2| (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-234 |#1| |#2|) $ (-234 |#1| |#2|)) 50) (((-234 |#1| |#2|) (-234 |#1| |#2|) $) 52)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-1108 |#1| |#2|) (-13 (-1089 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-593 (-665 |#2|)) (-10 -8 (-15 -2429 ($ $)) (-15 -3709 ($ (-665 |#2|))) (-15 -3845 ((-665 |#2|) $)) (IF (|has| |#2| (-6 (-4338 "*"))) (-6 -4325) |%noBranch|) (IF (|has| |#2| (-6 (-4338 "*"))) (IF (|has| |#2| (-6 -4333)) (-6 -4333) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|))) (-747) (-1018)) (T -1108))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-665 *4)) (-5 *1 (-1108 *3 *4)) (-14 *3 (-747)) (-4 *4 (-1018)))) (-2429 (*1 *1 *1) (-12 (-5 *1 (-1108 *2 *3)) (-14 *2 (-747)) (-4 *3 (-1018)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-665 *4)) (-4 *4 (-1018)) (-5 *1 (-1108 *3 *4)) (-14 *3 (-747)))))
-(-13 (-1089 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-593 (-665 |#2|)) (-10 -8 (-15 -2429 ($ $)) (-15 -3709 ($ (-665 |#2|))) (-15 -3845 ((-665 |#2|) $)) (IF (|has| |#2| (-6 (-4338 "*"))) (-6 -4325) |%noBranch|) (IF (|has| |#2| (-6 (-4338 "*"))) (IF (|has| |#2| (-6 -4333)) (-6 -4333) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|)))
-((-1966 (($ $) 19)) (-2089 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-2348 (((-112) $ $) 24)) (-2495 (($ $) 17)) (-3340 (((-142) $ (-549) (-142)) NIL) (((-142) $ (-549)) NIL) (($ $ (-1192 (-549))) NIL) (($ $ $) 29)) (-3845 (($ (-142)) 27) (((-834) $) NIL)))
-(((-1109 |#1|) (-10 -8 (-15 -3845 ((-834) |#1|)) (-15 -3340 (|#1| |#1| |#1|)) (-15 -2089 (|#1| |#1| (-139))) (-15 -2089 (|#1| |#1| (-142))) (-15 -3845 (|#1| (-142))) (-15 -2348 ((-112) |#1| |#1|)) (-15 -1966 (|#1| |#1|)) (-15 -2495 (|#1| |#1|)) (-15 -3340 (|#1| |#1| (-1192 (-549)))) (-15 -3340 ((-142) |#1| (-549))) (-15 -3340 ((-142) |#1| (-549) (-142)))) (-1110)) (T -1109))
-NIL
-(-10 -8 (-15 -3845 ((-834) |#1|)) (-15 -3340 (|#1| |#1| |#1|)) (-15 -2089 (|#1| |#1| (-139))) (-15 -2089 (|#1| |#1| (-142))) (-15 -3845 (|#1| (-142))) (-15 -2348 ((-112) |#1| |#1|)) (-15 -1966 (|#1| |#1|)) (-15 -2495 (|#1| |#1|)) (-15 -3340 (|#1| |#1| (-1192 (-549)))) (-15 -3340 ((-142) |#1| (-549))) (-15 -3340 ((-142) |#1| (-549) (-142))))
-((-3833 (((-112) $ $) 19 (|has| (-142) (-1066)))) (-2359 (($ $) 120)) (-1966 (($ $) 121)) (-2089 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2932 (((-1230) $ (-549) (-549)) 40 (|has| $ (-6 -4337)))) (-2319 (((-112) $ $) 118)) (-2292 (((-112) $ $ (-549)) 117)) (-1445 (((-621 $) $ (-142)) 110) (((-621 $) $ (-139)) 109)) (-1993 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-823)))) (-4106 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| (-142) (-823)) (|has| $ (-6 -4337))))) (-3193 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-823)))) (-1323 (((-112) $ (-747)) 8)) (-2253 (((-142) $ (-549) (-142)) 52 (|has| $ (-6 -4337))) (((-142) $ (-1192 (-549)) (-142)) 58 (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-3589 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-4273 (($ $) 90 (|has| $ (-6 -4337)))) (-3063 (($ $) 100)) (-4125 (($ $ (-1192 (-549)) $) 114)) (-3675 (($ $) 78 (-12 (|has| (-142) (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ (-142) $) 77 (-12 (|has| (-142) (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4336)))) (-2558 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1066)) (|has| $ (-6 -4336)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4336)))) (-1878 (((-142) $ (-549) (-142)) 53 (|has| $ (-6 -4337)))) (-1808 (((-142) $ (-549)) 51)) (-2348 (((-112) $ $) 119)) (-2882 (((-549) (-1 (-112) (-142)) $) 97) (((-549) (-142) $) 96 (|has| (-142) (-1066))) (((-549) (-142) $ (-549)) 95 (|has| (-142) (-1066))) (((-549) $ $ (-549)) 113) (((-549) (-139) $ (-549)) 112)) (-2990 (((-621 (-142)) $) 30 (|has| $ (-6 -4336)))) (-3743 (($ (-747) (-142)) 69)) (-4202 (((-112) $ (-747)) 9)) (-3485 (((-549) $) 43 (|has| (-549) (-823)))) (-2862 (($ $ $) 87 (|has| (-142) (-823)))) (-1586 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-823)))) (-1958 (((-621 (-142)) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 44 (|has| (-549) (-823)))) (-3574 (($ $ $) 86 (|has| (-142) (-823)))) (-2311 (((-112) $ $ (-142)) 115)) (-2474 (((-747) $ $ (-142)) 116)) (-1865 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3484 (($ $) 122)) (-2495 (($ $) 123)) (-4289 (((-112) $ (-747)) 10)) (-3602 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-2677 (((-1124) $) 22 (|has| (-142) (-1066)))) (-2614 (($ (-142) $ (-549)) 60) (($ $ $ (-549)) 59)) (-3927 (((-621 (-549)) $) 46)) (-1286 (((-112) (-549) $) 47)) (-3988 (((-1086) $) 21 (|has| (-142) (-1066)))) (-3645 (((-142) $) 42 (|has| (-549) (-823)))) (-1917 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-3158 (($ $ (-142)) 41 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-287 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-621 (-142)) (-621 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-1738 (((-621 (-142)) $) 48)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 (((-142) $ (-549) (-142)) 50) (((-142) $ (-549)) 49) (($ $ (-1192 (-549))) 63) (($ $ $) 102)) (-2166 (($ $ (-549)) 62) (($ $ (-1192 (-549))) 61)) (-3997 (((-747) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4336))) (((-747) (-142) $) 28 (-12 (|has| (-142) (-1066)) (|has| $ (-6 -4336))))) (-1665 (($ $ $ (-549)) 91 (|has| $ (-6 -4337)))) (-2281 (($ $) 13)) (-2844 (((-525) $) 79 (|has| (-142) (-594 (-525))))) (-3853 (($ (-621 (-142))) 70)) (-1951 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3845 (($ (-142)) 111) (((-834) $) 18 (|has| (-142) (-593 (-834))))) (-2150 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) 84 (|has| (-142) (-823)))) (-2424 (((-112) $ $) 83 (|has| (-142) (-823)))) (-2388 (((-112) $ $) 20 (|has| (-142) (-1066)))) (-2436 (((-112) $ $) 85 (|has| (-142) (-823)))) (-2411 (((-112) $ $) 82 (|has| (-142) (-823)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
+((-3735 (*1 *1 *1) (-4 *1 (-1105))) (-3734 (*1 *1 *1) (-4 *1 (-1105))) (-3733 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3732 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3731 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3730 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3729 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3728 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3727 (*1 *1 *1) (-4 *1 (-1105))) (-3726 (*1 *1 *1 *1) (-4 *1 (-1105))) (-3729 (*1 *1 *1) (-4 *1 (-1105))) (-3725 (*1 *1 *1) (-4 *1 (-1105))))
+(-13 (-10 -8 (-15 -3725 ($ $)) (-15 -3729 ($ $)) (-15 -3726 ($ $ $)) (-15 -3727 ($ $)) (-15 -3728 ($ $ $)) (-15 -3729 ($ $ $)) (-15 -3730 ($ $ $)) (-15 -3731 ($ $ $)) (-15 -3732 ($ $ $)) (-15 -3733 ($ $ $)) (-15 -3734 ($ $)) (-15 -3735 ($ $))))
+((-2887 (((-112) $ $) 41)) (-3744 ((|#1| $) 15)) (-3736 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-3743 (((-112) $) 17)) (-3741 (($ $ |#1|) 28)) (-3739 (($ $ (-112)) 30)) (-3738 (($ $) 31)) (-3740 (($ $ |#2|) 29)) (-3576 (((-1124) $) NIL)) (-3737 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3577 (((-1086) $) NIL)) (-3745 (((-112) $) 14)) (-3911 (($) 10)) (-3742 (($ $) 27)) (-3867 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) 21) (((-618 $) (-618 (-2 (|:| |val| |#1|) (|:| -1655 |#2|)))) 24) (((-618 $) |#1| (-618 |#2|)) 26)) (-4265 ((|#2| $) 16)) (-4300 (((-835) $) 50)) (-3375 (((-112) $ $) 39)))
+(((-1106 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -3911 ($)) (-15 -3745 ((-112) $)) (-15 -3744 (|#1| $)) (-15 -4265 (|#2| $)) (-15 -3743 ((-112) $)) (-15 -3867 ($ |#1| |#2| (-112))) (-15 -3867 ($ |#1| |#2|)) (-15 -3867 ($ (-2 (|:| |val| |#1|) (|:| -1655 |#2|)))) (-15 -3867 ((-618 $) (-618 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))))) (-15 -3867 ((-618 $) |#1| (-618 |#2|))) (-15 -3742 ($ $)) (-15 -3741 ($ $ |#1|)) (-15 -3740 ($ $ |#2|)) (-15 -3739 ($ $ (-112))) (-15 -3738 ($ $)) (-15 -3737 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3736 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1067) (-34)) (-13 (-1067) (-34))) (T -1106))
+((-3911 (*1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-3744 (*1 *2 *1) (-12 (-4 *2 (-13 (-1067) (-34))) (-5 *1 (-1106 *2 *3)) (-4 *3 (-13 (-1067) (-34))))) (-4265 (*1 *2 *1) (-12 (-4 *2 (-13 (-1067) (-34))) (-5 *1 (-1106 *3 *2)) (-4 *3 (-13 (-1067) (-34))))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-3867 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3867 (*1 *1 *2 *3) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1655 *4))) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1106 *3 *4)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-618 (-2 (|:| |val| *4) (|:| -1655 *5)))) (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-618 (-1106 *4 *5))) (-5 *1 (-1106 *4 *5)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *5)) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-618 (-1106 *3 *5))) (-5 *1 (-1106 *3 *5)) (-4 *3 (-13 (-1067) (-34))))) (-3742 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3741 (*1 *1 *1 *2) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3740 (*1 *1 *1 *2) (-12 (-5 *1 (-1106 *3 *2)) (-4 *3 (-13 (-1067) (-34))) (-4 *2 (-13 (-1067) (-34))))) (-3739 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-3738 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3737 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1067) (-34))) (-4 *6 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1106 *5 *6)))) (-3736 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-13 (-1067) (-34))))))
+(-13 (-1067) (-10 -8 (-15 -3911 ($)) (-15 -3745 ((-112) $)) (-15 -3744 (|#1| $)) (-15 -4265 (|#2| $)) (-15 -3743 ((-112) $)) (-15 -3867 ($ |#1| |#2| (-112))) (-15 -3867 ($ |#1| |#2|)) (-15 -3867 ($ (-2 (|:| |val| |#1|) (|:| -1655 |#2|)))) (-15 -3867 ((-618 $) (-618 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))))) (-15 -3867 ((-618 $) |#1| (-618 |#2|))) (-15 -3742 ($ $)) (-15 -3741 ($ $ |#1|)) (-15 -3740 ($ $ |#2|)) (-15 -3739 ($ $ (-112))) (-15 -3738 ($ $)) (-15 -3737 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3736 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-2887 (((-112) $ $) NIL (|has| (-1106 |#1| |#2|) (-1067)))) (-3744 (((-1106 |#1| |#2|) $) 25)) (-3753 (($ $) 76)) (-3749 (((-112) (-1106 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3746 (($ $ $ (-618 (-1106 |#1| |#2|))) 90) (($ $ $ (-618 (-1106 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-1264 (((-112) $ (-747)) NIL)) (-3346 (((-1106 |#1| |#2|) $ (-1106 |#1| |#2|)) 43 (|has| $ (-6 -4337)))) (-4130 (((-1106 |#1| |#2|) $ #1="value" (-1106 |#1| |#2|)) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-3751 (((-618 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) $) 80)) (-3747 (($ (-1106 |#1| |#2|) $) 39)) (-3748 (($ (-1106 |#1| |#2|) $) 31)) (-2063 (((-618 (-1106 |#1| |#2|)) $) NIL (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 51)) (-3750 (((-112) (-1106 |#1| |#2|) $) 82)) (-3348 (((-112) $ $) NIL (|has| (-1106 |#1| |#2|) (-1067)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 (-1106 |#1| |#2|)) $) 55 (|has| $ (-6 -4336)))) (-3579 (((-112) (-1106 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-1106 |#1| |#2|) (-1067))))) (-2067 (($ (-1 (-1106 |#1| |#2|) (-1106 |#1| |#2|)) $) 47 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-1106 |#1| |#2|) (-1106 |#1| |#2|)) $) 46)) (-4062 (((-112) $ (-747)) NIL)) (-3351 (((-618 (-1106 |#1| |#2|)) $) 53)) (-3864 (((-112) $) 42)) (-3576 (((-1124) $) NIL (|has| (-1106 |#1| |#2|) (-1067)))) (-3577 (((-1086) $) NIL (|has| (-1106 |#1| |#2|) (-1067)))) (-3754 (((-3 $ "failed") $) 75)) (-2065 (((-112) (-1 (-112) (-1106 |#1| |#2|)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-1106 |#1| |#2|)))) NIL (-12 (|has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))) (|has| (-1106 |#1| |#2|) (-1067)))) (($ $ (-286 (-1106 |#1| |#2|))) NIL (-12 (|has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))) (|has| (-1106 |#1| |#2|) (-1067)))) (($ $ (-1106 |#1| |#2|) (-1106 |#1| |#2|)) NIL (-12 (|has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))) (|has| (-1106 |#1| |#2|) (-1067)))) (($ $ (-618 (-1106 |#1| |#2|)) (-618 (-1106 |#1| |#2|))) NIL (-12 (|has| (-1106 |#1| |#2|) (-302 (-1106 |#1| |#2|))) (|has| (-1106 |#1| |#2|) (-1067))))) (-1265 (((-112) $ $) 50)) (-3745 (((-112) $) 22)) (-3911 (($) 24)) (-4142 (((-1106 |#1| |#2|) $ #1#) NIL)) (-3350 (((-535) $ $) NIL)) (-3979 (((-112) $) 44)) (-2064 (((-747) (-1 (-112) (-1106 |#1| |#2|)) $) NIL (|has| $ (-6 -4336))) (((-747) (-1106 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-1106 |#1| |#2|) (-1067))))) (-3742 (($ $) 49)) (-3867 (($ (-1106 |#1| |#2|)) 9) (($ |#1| |#2| (-618 $)) 12) (($ |#1| |#2| (-618 (-1106 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-618 |#2|)) 17)) (-3752 (((-618 |#2|) $) 81)) (-4300 (((-835) $) 73 (|has| (-1106 |#1| |#2|) (-593 (-835))))) (-3859 (((-618 $) $) 28)) (-3349 (((-112) $ $) NIL (|has| (-1106 |#1| |#2|) (-1067)))) (-2066 (((-112) (-1 (-112) (-1106 |#1| |#2|)) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 64 (|has| (-1106 |#1| |#2|) (-1067)))) (-4299 (((-747) $) 58 (|has| $ (-6 -4336)))))
+(((-1107 |#1| |#2|) (-13 (-981 (-1106 |#1| |#2|)) (-10 -8 (-6 -4337) (-6 -4336) (-15 -3754 ((-3 $ "failed") $)) (-15 -3753 ($ $)) (-15 -3867 ($ (-1106 |#1| |#2|))) (-15 -3867 ($ |#1| |#2| (-618 $))) (-15 -3867 ($ |#1| |#2| (-618 (-1106 |#1| |#2|)))) (-15 -3867 ($ |#1| |#2| |#1| (-618 |#2|))) (-15 -3752 ((-618 |#2|) $)) (-15 -3751 ((-618 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) $)) (-15 -3750 ((-112) (-1106 |#1| |#2|) $)) (-15 -3749 ((-112) (-1106 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3748 ($ (-1106 |#1| |#2|) $)) (-15 -3747 ($ (-1106 |#1| |#2|) $)) (-15 -3746 ($ $ $ (-618 (-1106 |#1| |#2|)))) (-15 -3746 ($ $ $ (-618 (-1106 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1067) (-34)) (-13 (-1067) (-34))) (T -1107))
+((-3754 (*1 *1 *1) (|partial| -12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3753 (*1 *1 *1) (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))) (-3867 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-618 (-1107 *2 *3))) (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3867 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-618 (-1106 *2 *3))) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))) (-5 *1 (-1107 *2 *3)))) (-3867 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-1067) (-34))) (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-618 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-3751 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-3750 (*1 *2 *3 *1) (-12 (-5 *3 (-1106 *4 *5)) (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5)))) (-3749 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1106 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1067) (-34))) (-4 *6 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1107 *5 *6)))) (-3748 (*1 *1 *2 *1) (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))) (-3747 (*1 *1 *2 *1) (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))) (-3746 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-618 (-1106 *3 *4))) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))) (-3746 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1106 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34))) (-5 *1 (-1107 *4 *5)))))
+(-13 (-981 (-1106 |#1| |#2|)) (-10 -8 (-6 -4337) (-6 -4336) (-15 -3754 ((-3 $ "failed") $)) (-15 -3753 ($ $)) (-15 -3867 ($ (-1106 |#1| |#2|))) (-15 -3867 ($ |#1| |#2| (-618 $))) (-15 -3867 ($ |#1| |#2| (-618 (-1106 |#1| |#2|)))) (-15 -3867 ($ |#1| |#2| |#1| (-618 |#2|))) (-15 -3752 ((-618 |#2|) $)) (-15 -3751 ((-618 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) $)) (-15 -3750 ((-112) (-1106 |#1| |#2|) $)) (-15 -3749 ((-112) (-1106 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3748 ($ (-1106 |#1| |#2|) $)) (-15 -3747 ($ (-1106 |#1| |#2|) $)) (-15 -3746 ($ $ $ (-618 (-1106 |#1| |#2|)))) (-15 -3746 ($ $ $ (-618 (-1106 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3756 (($ $) NIL)) (-3672 ((|#2| $) NIL)) (-3439 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3755 (($ (-665 |#2|)) 50)) (-3441 (((-112) $) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-3675 (($ |#2|) 10)) (-3879 (($) NIL T CONST)) (-3428 (($ $) 63 (|has| |#2| (-300)))) (-3430 (((-233 |#1| |#2|) $ (-535)) 36)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 |#2| #1#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) ((|#2| $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) 77)) (-3427 (((-747) $) 65 (|has| |#2| (-542)))) (-3431 ((|#2| $ (-535) (-535)) NIL)) (-2063 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2493 (((-112) $) NIL)) (-3426 (((-747) $) 67 (|has| |#2| (-542)))) (-3425 (((-618 (-233 |#1| |#2|)) $) 71 (|has| |#2| (-542)))) (-3433 (((-747) $) NIL)) (-3960 (($ |#2|) 20)) (-3432 (((-747) $) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-3669 ((|#2| $) 61 (|has| |#2| (-6 (-4338 #2="*"))))) (-3437 (((-535) $) NIL)) (-3435 (((-535) $) NIL)) (-2502 (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3436 (((-535) $) NIL)) (-3434 (((-535) $) NIL)) (-3442 (($ (-618 (-618 |#2|))) 31)) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3939 (((-618 (-618 |#2|)) $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3935 (((-3 $ "failed") $) 74 (|has| |#2| (-356)))) (-3577 (((-1086) $) NIL)) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ (-535) (-535) |#2|) NIL) ((|#2| $ (-535) (-535)) NIL)) (-4153 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3671 ((|#2| $) NIL)) (-3674 (($ (-618 |#2|)) 44)) (-3440 (((-112) $) NIL)) (-3673 (((-233 |#1| |#2|) $) NIL)) (-3670 ((|#2| $) 59 (|has| |#2| (-6 (-4338 #2#))))) (-2064 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-3742 (($ $) NIL)) (-4313 (((-524) $) 86 (|has| |#2| (-594 (-524))))) (-3429 (((-233 |#1| |#2|) $ (-535)) 38)) (-4300 (((-835) $) 41) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#2| (-1009 (-400 (-535))))) (($ |#2|) NIL) (((-665 |#2|) $) 46)) (-3444 (((-747)) 18)) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3438 (((-112) $) NIL)) (-2979 (($) 12 T CONST)) (-2985 (($) 15 T CONST)) (-2990 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) 57) (($ $ (-535)) 76 (|has| |#2| (-356)))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-233 |#1| |#2|) $ (-233 |#1| |#2|)) 53) (((-233 |#1| |#2|) (-233 |#1| |#2|) $) 55)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-1108 |#1| |#2|) (-13 (-1089 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-593 (-665 |#2|)) (-10 -8 (-15 -3960 ($ |#2|)) (-15 -3756 ($ $)) (-15 -3755 ($ (-665 |#2|))) (IF (|has| |#2| (-6 (-4338 "*"))) (-6 -4325) |%noBranch|) (IF (|has| |#2| (-6 (-4338 "*"))) (IF (|has| |#2| (-6 -4333)) (-6 -4333) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|))) (-747) (-1018)) (T -1108))
+((-3960 (*1 *1 *2) (-12 (-5 *1 (-1108 *3 *2)) (-14 *3 (-747)) (-4 *2 (-1018)))) (-3756 (*1 *1 *1) (-12 (-5 *1 (-1108 *2 *3)) (-14 *2 (-747)) (-4 *3 (-1018)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-665 *4)) (-4 *4 (-1018)) (-5 *1 (-1108 *3 *4)) (-14 *3 (-747)))))
+(-13 (-1089 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-593 (-665 |#2|)) (-10 -8 (-15 -3960 ($ |#2|)) (-15 -3756 ($ $)) (-15 -3755 ($ (-665 |#2|))) (IF (|has| |#2| (-6 (-4338 "*"))) (-6 -4325) |%noBranch|) (IF (|has| |#2| (-6 (-4338 "*"))) (IF (|has| |#2| (-6 -4333)) (-6 -4333) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-594 (-524))) (-6 (-594 (-524))) |%noBranch|)))
+((-3769 (($ $) 19)) (-3759 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-3767 (((-112) $ $) 24)) (-3771 (($ $) 17)) (-4142 (((-142) $ (-535) (-142)) NIL) (((-142) $ (-535)) NIL) (($ $ (-1191 (-535))) NIL) (($ $ $) 29)) (-4300 (($ (-142)) 27) (((-835) $) NIL)))
+(((-1109 |#1|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -3759 (|#1| |#1| (-139))) (-15 -3759 (|#1| |#1| (-142))) (-15 -4300 (|#1| (-142))) (-15 -3767 ((-112) |#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -4142 ((-142) |#1| (-535))) (-15 -4142 ((-142) |#1| (-535) (-142)))) (-1110)) (T -1109))
+NIL
+(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -3759 (|#1| |#1| (-139))) (-15 -3759 (|#1| |#1| (-142))) (-15 -4300 (|#1| (-142))) (-15 -3767 ((-112) |#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -4142 ((-142) |#1| (-535))) (-15 -4142 ((-142) |#1| (-535) (-142))))
+((-2887 (((-112) $ $) 19 (|has| (-142) (-1067)))) (-3768 (($ $) 120)) (-3769 (($ $) 121)) (-3759 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-3766 (((-112) $ $) 118)) (-3765 (((-112) $ $ (-535)) 117)) (-3760 (((-618 $) $ (-142)) 110) (((-618 $) $ (-139)) 109)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-823)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| (-142) (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-823)))) (-1264 (((-112) $ (-747)) 8)) (-4130 (((-142) $ (-535) (-142)) 52 (|has| $ (-6 -4337))) (((-142) $ (-1191 (-535)) (-142)) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-3757 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2368 (($ $) 90 (|has| $ (-6 -4337)))) (-2369 (($ $) 100)) (-3762 (($ $ (-1191 (-535)) $) 114)) (-1394 (($ $) 78 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ (-142) $) 77 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4336)))) (-4185 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4336)))) (-1632 (((-142) $ (-535) (-142)) 53 (|has| $ (-6 -4337)))) (-3431 (((-142) $ (-535)) 51)) (-3767 (((-112) $ $) 119)) (-3761 (((-535) (-1 (-112) (-142)) $) 97) (((-535) (-142) $) 96 (|has| (-142) (-1067))) (((-535) (-142) $ (-535)) 95 (|has| (-142) (-1067))) (((-535) $ $ (-535)) 113) (((-535) (-139) $ (-535)) 112)) (-2063 (((-618 (-142)) $) 30 (|has| $ (-6 -4336)))) (-3960 (($ (-747) (-142)) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 87 (|has| (-142) (-823)))) (-3855 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-823)))) (-2502 (((-618 (-142)) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 86 (|has| (-142) (-823)))) (-3763 (((-112) $ $ (-142)) 115)) (-3764 (((-747) $ $ (-142)) 116)) (-2067 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3770 (($ $) 122)) (-3771 (($ $) 123)) (-4062 (((-112) $ (-747)) 10)) (-3758 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3576 (((-1124) $) 22 (|has| (-142) (-1067)))) (-2373 (($ (-142) $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| (-142) (-1067)))) (-4143 (((-142) $) 42 (|has| (-535) (-823)))) (-1395 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2297 (($ $ (-142)) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-286 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-618 (-142)) (-618 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-2303 (((-618 (-142)) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 (((-142) $ (-535) (-142)) 50) (((-142) $ (-535)) 49) (($ $ (-1191 (-535))) 63) (($ $ $) 102)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-2064 (((-747) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4336))) (((-747) (-142) $) 28 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 91 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| (-142) (-594 (-524))))) (-3867 (($ (-618 (-142))) 70)) (-4144 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (($ (-142)) 111) (((-835) $) 18 (|has| (-142) (-593 (-835))))) (-2066 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 84 (|has| (-142) (-823)))) (-2886 (((-112) $ $) 83 (|has| (-142) (-823)))) (-3375 (((-112) $ $) 20 (|has| (-142) (-1067)))) (-3005 (((-112) $ $) 85 (|has| (-142) (-823)))) (-3006 (((-112) $ $) 82 (|has| (-142) (-823)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
(((-1110) (-138)) (T -1110))
-((-2495 (*1 *1 *1) (-4 *1 (-1110))) (-3484 (*1 *1 *1) (-4 *1 (-1110))) (-1966 (*1 *1 *1) (-4 *1 (-1110))) (-2359 (*1 *1 *1) (-4 *1 (-1110))) (-2348 (*1 *2 *1 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-112)))) (-2319 (*1 *2 *1 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-112)))) (-2292 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-549)) (-5 *2 (-112)))) (-2474 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-142)) (-5 *2 (-747)))) (-2311 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-142)) (-5 *2 (-112)))) (-4125 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1192 (-549))))) (-2882 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-549)))) (-2882 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-549)) (-5 *3 (-139)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1110)))) (-1445 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-621 *1)) (-4 *1 (-1110)))) (-1445 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-621 *1)) (-4 *1 (-1110)))) (-2089 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))) (-2089 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139)))) (-3602 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))) (-3602 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139)))) (-3589 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))) (-3589 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139)))) (-3340 (*1 *1 *1 *1) (-4 *1 (-1110))))
-(-13 (-19 (-142)) (-10 -8 (-15 -2495 ($ $)) (-15 -3484 ($ $)) (-15 -1966 ($ $)) (-15 -2359 ($ $)) (-15 -2348 ((-112) $ $)) (-15 -2319 ((-112) $ $)) (-15 -2292 ((-112) $ $ (-549))) (-15 -2474 ((-747) $ $ (-142))) (-15 -2311 ((-112) $ $ (-142))) (-15 -4125 ($ $ (-1192 (-549)) $)) (-15 -2882 ((-549) $ $ (-549))) (-15 -2882 ((-549) (-139) $ (-549))) (-15 -3845 ($ (-142))) (-15 -1445 ((-621 $) $ (-142))) (-15 -1445 ((-621 $) $ (-139))) (-15 -2089 ($ $ (-142))) (-15 -2089 ($ $ (-139))) (-15 -3602 ($ $ (-142))) (-15 -3602 ($ $ (-139))) (-15 -3589 ($ $ (-142))) (-15 -3589 ($ $ (-139))) (-15 -3340 ($ $ $))))
-(((-34) . T) ((-101) -1536 (|has| (-142) (-1066)) (|has| (-142) (-823))) ((-593 (-834)) -1536 (|has| (-142) (-1066)) (|has| (-142) (-823)) (|has| (-142) (-593 (-834)))) ((-149 #0=(-142)) . T) ((-594 (-525)) |has| (-142) (-594 (-525))) ((-279 #1=(-549) #0#) . T) ((-281 #1# #0#) . T) ((-302 #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066))) ((-366 #0#) . T) ((-481 #0#) . T) ((-584 #1# #0#) . T) ((-505 #0# #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066))) ((-627 #0#) . T) ((-19 #0#) . T) ((-823) |has| (-142) (-823)) ((-1066) -1536 (|has| (-142) (-1066)) (|has| (-142) (-823))) ((-1179) . T))
-((-3029 (((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-621 |#4|) (-621 |#5|) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) (-747)) 94)) (-3410 (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747)) 54)) (-3761 (((-1230) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-747)) 85)) (-3587 (((-747) (-621 |#4|) (-621 |#5|)) 27)) (-3901 (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747)) 56) (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747) (-112)) 58)) (-3702 (((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112)) 77)) (-2844 (((-1124) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) 80)) (-2543 (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|) 53)) (-3278 (((-747) (-621 |#4|) (-621 |#5|)) 19)))
-(((-1111 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3278 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -3587 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -2543 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|)) (-15 -3410 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747))) (-15 -3410 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|)) (-15 -3901 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -3901 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747))) (-15 -3901 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|)) (-15 -3702 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -3702 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3029 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-621 |#4|) (-621 |#5|) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) (-747))) (-15 -2844 ((-1124) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)))) (-15 -3761 ((-1230) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-747)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|)) (T -1111))
-((-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1980 *9)))) (-5 *4 (-747)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1230)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1980 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1075 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1124)) (-5 *1 (-1111 *4 *5 *6 *7 *8)))) (-3029 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-621 *11)) (|:| |todo| (-621 (-2 (|:| |val| *3) (|:| -1980 *11)))))) (-5 *6 (-747)) (-5 *2 (-621 (-2 (|:| |val| (-621 *10)) (|:| -1980 *11)))) (-5 *3 (-621 *10)) (-5 *4 (-621 *11)) (-4 *10 (-1032 *7 *8 *9)) (-4 *11 (-1075 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-5 *1 (-1111 *7 *8 *9 *10 *11)))) (-3702 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) (-3702 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) (-3901 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3901 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))))) (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) (-3901 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))))) (-5 *1 (-1111 *7 *8 *9 *3 *4)) (-4 *4 (-1075 *7 *8 *9 *3)))) (-3410 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3410 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))))) (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) (-2543 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4)))))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3587 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3278 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -3587 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -2543 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|)) (-15 -3410 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747))) (-15 -3410 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|)) (-15 -3901 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -3901 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5| (-747))) (-15 -3901 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) |#4| |#5|)) (-15 -3702 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -3702 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3029 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-621 |#4|) (-621 |#5|) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))))) (-747))) (-15 -2844 ((-1124) (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|)))) (-15 -3761 ((-1230) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1980 |#5|))) (-747))))
-((-3833 (((-112) $ $) NIL)) (-3684 (((-621 (-2 (|:| -2680 $) (|:| -1358 (-621 |#4|)))) (-621 |#4|)) NIL)) (-3840 (((-621 $) (-621 |#4|)) 110) (((-621 $) (-621 |#4|) (-112)) 111) (((-621 $) (-621 |#4|) (-112) (-112)) 109) (((-621 $) (-621 |#4|) (-112) (-112) (-112) (-112)) 112)) (-2271 (((-621 |#3|) $) NIL)) (-3863 (((-112) $) NIL)) (-1771 (((-112) $) NIL (|has| |#1| (-541)))) (-2344 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1305 ((|#4| |#4| $) NIL)) (-1912 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 $))) |#4| $) 84)) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |#3|) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-1488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-3 |#4| "failed") $ |#3|) 62)) (-1705 (($) NIL T CONST)) (-1717 (((-112) $) 26 (|has| |#1| (-541)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2498 (((-112) $) NIL (|has| |#1| (-541)))) (-3074 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1436 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-3001 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2713 (((-3 $ "failed") (-621 |#4|)) NIL)) (-2658 (($ (-621 |#4|)) NIL)) (-3655 (((-3 $ "failed") $) 39)) (-2514 ((|#4| |#4| $) 65)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-3812 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3249 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-541)))) (-4042 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3678 ((|#4| |#4| $) NIL)) (-2558 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2235 (((-2 (|:| -2680 (-621 |#4|)) (|:| -1358 (-621 |#4|))) $) NIL)) (-4173 (((-112) |#4| $) NIL)) (-1447 (((-112) |#4| $) NIL)) (-2561 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1574 (((-2 (|:| |val| (-621 |#4|)) (|:| |towers| (-621 $))) (-621 |#4|) (-112) (-112)) 124)) (-2990 (((-621 |#4|) $) 16 (|has| $ (-6 -4336)))) (-3929 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4170 ((|#3| $) 33)) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#4|) $) 17 (|has| $ (-6 -4336)))) (-2273 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-1865 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#4| |#4|) $) 21)) (-1670 (((-621 |#3|) $) NIL)) (-2911 (((-112) |#3| $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-4145 (((-3 |#4| (-621 $)) |#4| |#4| $) NIL)) (-2587 (((-621 (-2 (|:| |val| |#4|) (|:| -1980 $))) |#4| |#4| $) 103)) (-3828 (((-3 |#4| "failed") $) 37)) (-2613 (((-621 $) |#4| $) 88)) (-1783 (((-3 (-112) (-621 $)) |#4| $) NIL)) (-1350 (((-621 (-2 (|:| |val| (-112)) (|:| -1980 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-1795 (((-621 $) |#4| $) 107) (((-621 $) (-621 |#4|) $) NIL) (((-621 $) (-621 |#4|) (-621 $)) 108) (((-621 $) |#4| (-621 $)) NIL)) (-3546 (((-621 $) (-621 |#4|) (-112) (-112) (-112)) 119)) (-1449 (($ |#4| $) 75) (($ (-621 |#4|) $) 76) (((-621 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-4069 (((-621 |#4|) $) NIL)) (-3130 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2741 ((|#4| |#4| $) NIL)) (-3739 (((-112) $ $) NIL)) (-2205 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-1582 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3952 ((|#4| |#4| $) NIL)) (-3988 (((-1086) $) NIL)) (-3645 (((-3 |#4| "failed") $) 35)) (-1917 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1762 (((-3 $ "failed") $ |#4|) 48)) (-2975 (($ $ |#4|) NIL) (((-621 $) |#4| $) 90) (((-621 $) |#4| (-621 $)) NIL) (((-621 $) (-621 |#4|) $) NIL) (((-621 $) (-621 |#4|) (-621 $)) 86)) (-2470 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#4|) (-621 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-621 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 15)) (-1461 (($) 13)) (-3068 (((-747) $) NIL)) (-3997 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) 12)) (-2844 (((-525) $) NIL (|has| |#4| (-594 (-525))))) (-3853 (($ (-621 |#4|)) 20)) (-1651 (($ $ |#3|) 42)) (-3183 (($ $ |#3|) 44)) (-1821 (($ $) NIL)) (-2432 (($ $ |#3|) NIL)) (-3845 (((-834) $) 31) (((-621 |#4|) $) 40)) (-1509 (((-747) $) NIL (|has| |#3| (-361)))) (-3472 (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2197 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) NIL)) (-1691 (((-621 $) |#4| $) 54) (((-621 $) |#4| (-621 $)) NIL) (((-621 $) (-621 |#4|) $) NIL) (((-621 $) (-621 |#4|) (-621 $)) NIL)) (-2150 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2691 (((-621 |#3|) $) NIL)) (-1972 (((-112) |#4| $) NIL)) (-2923 (((-112) |#3| $) 61)) (-2388 (((-112) $ $) NIL)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-1112 |#1| |#2| |#3| |#4|) (-13 (-1075 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1449 ((-621 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3840 ((-621 $) (-621 |#4|) (-112) (-112))) (-15 -3840 ((-621 $) (-621 |#4|) (-112) (-112) (-112) (-112))) (-15 -3546 ((-621 $) (-621 |#4|) (-112) (-112) (-112))) (-15 -1574 ((-2 (|:| |val| (-621 |#4|)) (|:| |towers| (-621 $))) (-621 |#4|) (-112) (-112))))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -1112))
-((-1449 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-1112 *5 *6 *7 *3))) (-5 *1 (-1112 *5 *6 *7 *3)) (-4 *3 (-1032 *5 *6 *7)))) (-3840 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-1112 *5 *6 *7 *8))) (-5 *1 (-1112 *5 *6 *7 *8)))) (-3840 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-1112 *5 *6 *7 *8))) (-5 *1 (-1112 *5 *6 *7 *8)))) (-3546 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-1112 *5 *6 *7 *8))) (-5 *1 (-1112 *5 *6 *7 *8)))) (-1574 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-621 *8)) (|:| |towers| (-621 (-1112 *5 *6 *7 *8))))) (-5 *1 (-1112 *5 *6 *7 *8)) (-5 *3 (-621 *8)))))
-(-13 (-1075 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1449 ((-621 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3840 ((-621 $) (-621 |#4|) (-112) (-112))) (-15 -3840 ((-621 $) (-621 |#4|) (-112) (-112) (-112) (-112))) (-15 -3546 ((-621 $) (-621 |#4|) (-112) (-112) (-112))) (-15 -1574 ((-2 (|:| |val| (-621 |#4|)) (|:| |towers| (-621 $))) (-621 |#4|) (-112) (-112)))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2316 ((|#1| $) 34)) (-3813 (($ (-621 |#1|)) 39)) (-1323 (((-112) $ (-747)) NIL)) (-1705 (($) NIL T CONST)) (-1913 ((|#1| |#1| $) 36)) (-2399 ((|#1| $) 32)) (-2990 (((-621 |#1|) $) 18 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1865 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 22)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2349 ((|#1| $) 35)) (-1709 (($ |#1| $) 37)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2629 ((|#1| $) 33)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 31)) (-1461 (($) 38)) (-1319 (((-747) $) 29)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) 27)) (-3845 (((-834) $) 14 (|has| |#1| (-593 (-834))))) (-1765 (($ (-621 |#1|)) NIL)) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 17 (|has| |#1| (-1066)))) (-3774 (((-747) $) 30 (|has| $ (-6 -4336)))))
-(((-1113 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -3813 ($ (-621 |#1|))))) (-1179)) (T -1113))
-((-3813 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-1113 *3)))))
-(-13 (-1087 |#1|) (-10 -8 (-15 -3813 ($ (-621 |#1|)))))
-((-2253 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1192 (-549)) |#2|) 44) ((|#2| $ (-549) |#2|) 41)) (-3149 (((-112) $) 12)) (-1865 (($ (-1 |#2| |#2|) $) 39)) (-3645 ((|#2| $) NIL) (($ $ (-747)) 17)) (-3158 (($ $ |#2|) 40)) (-3342 (((-112) $) 11)) (-3340 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1192 (-549))) 31) ((|#2| $ (-549)) 23) ((|#2| $ (-549) |#2|) NIL)) (-3091 (($ $ $) 47) (($ $ |#2|) NIL)) (-1951 (($ $ $) 33) (($ |#2| $) NIL) (($ (-621 $)) 36) (($ $ |#2|) NIL)))
-(((-1114 |#1| |#2|) (-10 -8 (-15 -3149 ((-112) |#1|)) (-15 -3342 ((-112) |#1|)) (-15 -2253 (|#2| |#1| (-549) |#2|)) (-15 -3340 (|#2| |#1| (-549) |#2|)) (-15 -3340 (|#2| |#1| (-549))) (-15 -3158 (|#1| |#1| |#2|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -1951 (|#1| (-621 |#1|))) (-15 -3340 (|#1| |#1| (-1192 (-549)))) (-15 -2253 (|#2| |#1| (-1192 (-549)) |#2|)) (-15 -2253 (|#2| |#1| "last" |#2|)) (-15 -2253 (|#1| |#1| "rest" |#1|)) (-15 -2253 (|#2| |#1| "first" |#2|)) (-15 -3091 (|#1| |#1| |#2|)) (-15 -3091 (|#1| |#1| |#1|)) (-15 -3340 (|#2| |#1| "last")) (-15 -3340 (|#1| |#1| "rest")) (-15 -3645 (|#1| |#1| (-747))) (-15 -3340 (|#2| |#1| "first")) (-15 -3645 (|#2| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#1|)) (-15 -2253 (|#2| |#1| "value" |#2|)) (-15 -3340 (|#2| |#1| "value")) (-15 -1865 (|#1| (-1 |#2| |#2|) |#1|))) (-1115 |#2|) (-1179)) (T -1114))
-NIL
-(-10 -8 (-15 -3149 ((-112) |#1|)) (-15 -3342 ((-112) |#1|)) (-15 -2253 (|#2| |#1| (-549) |#2|)) (-15 -3340 (|#2| |#1| (-549) |#2|)) (-15 -3340 (|#2| |#1| (-549))) (-15 -3158 (|#1| |#1| |#2|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -1951 (|#1| (-621 |#1|))) (-15 -3340 (|#1| |#1| (-1192 (-549)))) (-15 -2253 (|#2| |#1| (-1192 (-549)) |#2|)) (-15 -2253 (|#2| |#1| "last" |#2|)) (-15 -2253 (|#1| |#1| "rest" |#1|)) (-15 -2253 (|#2| |#1| "first" |#2|)) (-15 -3091 (|#1| |#1| |#2|)) (-15 -3091 (|#1| |#1| |#1|)) (-15 -3340 (|#2| |#1| "last")) (-15 -3340 (|#1| |#1| "rest")) (-15 -3645 (|#1| |#1| (-747))) (-15 -3340 (|#2| |#1| "first")) (-15 -3645 (|#2| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#1|)) (-15 -2253 (|#2| |#1| "value" |#2|)) (-15 -3340 (|#2| |#1| "value")) (-15 -1865 (|#1| (-1 |#2| |#2|) |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-4160 ((|#1| $) 48)) (-2838 ((|#1| $) 65)) (-1342 (($ $) 67)) (-2932 (((-1230) $ (-549) (-549)) 97 (|has| $ (-6 -4337)))) (-3637 (($ $ (-549)) 52 (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) 8)) (-3751 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-1362 (($ $ $) 56 (|has| $ (-6 -4337)))) (-4277 ((|#1| $ |#1|) 54 (|has| $ (-6 -4337)))) (-2627 ((|#1| $ |#1|) 58 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4337))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4337))) (($ $ "rest" $) 55 (|has| $ (-6 -4337))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) 117 (|has| $ (-6 -4337))) ((|#1| $ (-549) |#1|) 86 (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) 41 (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4336)))) (-2828 ((|#1| $) 66)) (-1705 (($) 7 T CONST)) (-3655 (($ $) 73) (($ $ (-747)) 71)) (-3675 (($ $) 99 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4336))) (($ |#1| $) 100 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1878 ((|#1| $ (-549) |#1|) 85 (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) 87)) (-3149 (((-112) $) 83)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) 50)) (-1742 (((-112) $ $) 42 (|has| |#1| (-1066)))) (-3743 (($ (-747) |#1|) 108)) (-4202 (((-112) $ (-747)) 9)) (-3485 (((-549) $) 95 (|has| (-549) (-823)))) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 94 (|has| (-549) (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4289 (((-112) $ (-747)) 10)) (-3590 (((-621 |#1|) $) 45)) (-2456 (((-112) $) 49)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-3828 ((|#1| $) 70) (($ $ (-747)) 68)) (-2614 (($ $ $ (-549)) 116) (($ |#1| $ (-549)) 115)) (-3927 (((-621 (-549)) $) 92)) (-1286 (((-112) (-549) $) 91)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-3645 ((|#1| $) 76) (($ $ (-747)) 74)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3158 (($ $ |#1|) 96 (|has| $ (-6 -4337)))) (-3342 (((-112) $) 84)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) 90)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1192 (-549))) 112) ((|#1| $ (-549)) 89) ((|#1| $ (-549) |#1|) 88)) (-1953 (((-549) $ $) 44)) (-2166 (($ $ (-1192 (-549))) 114) (($ $ (-549)) 113)) (-4187 (((-112) $) 46)) (-1811 (($ $) 62)) (-1679 (($ $) 59 (|has| $ (-6 -4337)))) (-2041 (((-747) $) 63)) (-2277 (($ $) 64)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-2844 (((-525) $) 98 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 107)) (-3091 (($ $ $) 61 (|has| $ (-6 -4337))) (($ $ |#1|) 60 (|has| $ (-6 -4337)))) (-1951 (($ $ $) 78) (($ |#1| $) 77) (($ (-621 $)) 110) (($ $ |#1|) 109)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) 51)) (-2937 (((-112) $ $) 43 (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-1115 |#1|) (-138) (-1179)) (T -1115))
-((-3342 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1179)) (-5 *2 (-112)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1179)) (-5 *2 (-112)))))
-(-13 (-1213 |t#1|) (-627 |t#1|) (-10 -8 (-15 -3342 ((-112) $)) (-15 -3149 ((-112) $))))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-627 |#1|) . T) ((-981 |#1|) . T) ((-1066) |has| |#1| (-1066)) ((-1179) . T) ((-1213 |#1|) . T))
-((-3833 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3732 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2932 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#2| $ |#1| |#2|) NIL)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3489 (((-3 |#2| "failed") |#1| $) NIL)) (-1705 (($) NIL T CONST)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-4204 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| "failed") |#1| $) NIL)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#2| $ |#1|) NIL)) (-2990 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 ((|#1| $) NIL (|has| |#1| (-823)))) (-1958 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1548 ((|#1| $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3449 (((-621 |#1|) $) NIL)) (-3665 (((-112) |#1| $) NIL)) (-2349 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-3927 (((-621 |#1|) $) NIL)) (-1286 (((-112) |#1| $) NIL)) (-3988 (((-1086) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3645 ((|#2| $) NIL (|has| |#1| (-823)))) (-1917 (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL)) (-3158 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1738 (((-621 |#2|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4252 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3845 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-1765 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-1116 |#1| |#2| |#3|) (-1155 |#1| |#2|) (-1066) (-1066) |#2|) (T -1116))
+((-3771 (*1 *1 *1) (-4 *1 (-1110))) (-3770 (*1 *1 *1) (-4 *1 (-1110))) (-3769 (*1 *1 *1) (-4 *1 (-1110))) (-3768 (*1 *1 *1) (-4 *1 (-1110))) (-3767 (*1 *2 *1 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-112)))) (-3766 (*1 *2 *1 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-112)))) (-3765 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-535)) (-5 *2 (-112)))) (-3764 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-142)) (-5 *2 (-747)))) (-3763 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-142)) (-5 *2 (-112)))) (-3762 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1191 (-535))))) (-3761 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-535)))) (-3761 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-535)) (-5 *3 (-139)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1110)))) (-3760 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-618 *1)) (-4 *1 (-1110)))) (-3760 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-618 *1)) (-4 *1 (-1110)))) (-3759 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))) (-3759 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139)))) (-3758 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))) (-3758 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139)))) (-3757 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))) (-3757 (*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139)))) (-4142 (*1 *1 *1 *1) (-4 *1 (-1110))))
+(-13 (-19 (-142)) (-10 -8 (-15 -3771 ($ $)) (-15 -3770 ($ $)) (-15 -3769 ($ $)) (-15 -3768 ($ $)) (-15 -3767 ((-112) $ $)) (-15 -3766 ((-112) $ $)) (-15 -3765 ((-112) $ $ (-535))) (-15 -3764 ((-747) $ $ (-142))) (-15 -3763 ((-112) $ $ (-142))) (-15 -3762 ($ $ (-1191 (-535)) $)) (-15 -3761 ((-535) $ $ (-535))) (-15 -3761 ((-535) (-139) $ (-535))) (-15 -4300 ($ (-142))) (-15 -3760 ((-618 $) $ (-142))) (-15 -3760 ((-618 $) $ (-139))) (-15 -3759 ($ $ (-142))) (-15 -3759 ($ $ (-139))) (-15 -3758 ($ $ (-142))) (-15 -3758 ($ $ (-139))) (-15 -3757 ($ $ (-142))) (-15 -3757 ($ $ (-139))) (-15 -4142 ($ $ $))))
+(((-34) . T) ((-101) -3874 (|has| (-142) (-1067)) (|has| (-142) (-823))) ((-593 (-835)) -3874 (|has| (-142) (-1067)) (|has| (-142) (-823)) (|has| (-142) (-593 (-835)))) ((-149 #1=(-142)) . T) ((-594 (-524)) |has| (-142) (-594 (-524))) ((-279 #2=(-535) #1#) . T) ((-281 #2# #1#) . T) ((-302 #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))) ((-365 #1#) . T) ((-481 #1#) . T) ((-584 #2# #1#) . T) ((-505 #1# #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))) ((-627 #1#) . T) ((-19 #1#) . T) ((-823) |has| (-142) (-823)) ((-1067) -3874 (|has| (-142) (-1067)) (|has| (-142) (-823))) ((-1178) . T))
+((-3778 (((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 |#4|) (-618 |#5|) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-747)) 94)) (-3775 (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747)) 54)) (-3779 (((-1230) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-747)) 85)) (-3773 (((-747) (-618 |#4|) (-618 |#5|)) 27)) (-3776 (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747)) 56) (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747) (-112)) 58)) (-3777 (((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112)) 77)) (-4313 (((-1124) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) 80)) (-3774 (((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 53)) (-3772 (((-747) (-618 |#4|) (-618 |#5|)) 19)))
+(((-1111 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3773 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3774 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3778 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 |#4|) (-618 |#5|) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-747))) (-15 -4313 ((-1124) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3779 ((-1230) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-747)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3| |#4|)) (T -1111))
+((-3779 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *4 (-747)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1230)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1075 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1124)) (-5 *1 (-1111 *4 *5 *6 *7 *8)))) (-3778 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-618 *11)) (|:| |todo| (-618 (-2 (|:| |val| *3) (|:| -1655 *11)))))) (-5 *6 (-747)) (-5 *2 (-618 (-2 (|:| |val| (-618 *10)) (|:| -1655 *11)))) (-5 *3 (-618 *10)) (-5 *4 (-618 *11)) (-4 *10 (-1032 *7 *8 *9)) (-4 *11 (-1075 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-5 *1 (-1111 *7 *8 *9 *10 *11)))) (-3777 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) (-3777 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) (-3776 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) (-3776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1111 *7 *8 *9 *3 *4)) (-4 *4 (-1075 *7 *8 *9 *3)))) (-3775 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3775 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3)))) (-3774 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-618 *4)) (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4)))))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3772 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3773 ((-747) (-618 |#4|) (-618 |#5|))) (-15 -3774 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3775 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-747))) (-15 -3776 ((-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112))) (-15 -3777 ((-618 |#5|) (-618 |#4|) (-618 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3778 ((-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-618 |#4|) (-618 |#5|) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-618 |#5|)) (|:| |todo| (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))))) (-747))) (-15 -4313 ((-1124) (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|)))) (-15 -3779 ((-1230) (-618 (-2 (|:| |val| (-618 |#4|)) (|:| -1655 |#5|))) (-747))))
+((-2887 (((-112) $ $) NIL)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) NIL)) (-4028 (((-618 $) (-618 |#4|)) 110) (((-618 $) (-618 |#4|) (-112)) 111) (((-618 $) (-618 |#4|) (-112) (-112)) 109) (((-618 $) (-618 |#4|) (-112) (-112) (-112) (-112)) 112)) (-3405 (((-618 |#3|) $) NIL)) (-3229 (((-112) $) NIL)) (-3220 (((-112) $) NIL (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4034 ((|#4| |#4| $) NIL)) (-4117 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 84)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4056 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) 62)) (-3879 (($) NIL T CONST)) (-3225 (((-112) $) 26 (|has| |#1| (-542)))) (-3227 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3226 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3228 (((-112) $) NIL (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3221 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) NIL)) (-3490 (($ (-618 |#4|)) NIL)) (-4141 (((-3 $ #1#) $) 39)) (-4031 ((|#4| |#4| $) 65)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-3748 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4029 ((|#4| |#4| $) NIL)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) NIL)) (-3531 (((-112) |#4| $) NIL)) (-3529 (((-112) |#4| $) NIL)) (-3532 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3780 (((-2 (|:| |val| (-618 |#4|)) (|:| |towers| (-618 $))) (-618 |#4|) (-112) (-112)) 124)) (-2063 (((-618 |#4|) $) 16 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3514 ((|#3| $) 33)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#4|) $) 17 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 21)) (-3235 (((-618 |#3|) $) NIL)) (-3234 (((-112) |#3| $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-3525 (((-3 |#4| (-618 $)) |#4| |#4| $) NIL)) (-3524 (((-618 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 103)) (-4140 (((-3 |#4| #1#) $) 37)) (-3526 (((-618 $) |#4| $) 88)) (-3528 (((-3 (-112) (-618 $)) |#4| $) NIL)) (-3527 (((-618 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3572 (((-618 $) |#4| $) 107) (((-618 $) (-618 |#4|) $) NIL) (((-618 $) (-618 |#4|) (-618 $)) 108) (((-618 $) |#4| (-618 $)) NIL)) (-3781 (((-618 $) (-618 |#4|) (-112) (-112) (-112)) 119)) (-3782 (($ |#4| $) 75) (($ (-618 |#4|) $) 76) (((-618 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-4043 (((-618 |#4|) $) NIL)) (-4037 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4032 ((|#4| |#4| $) NIL)) (-4045 (((-112) $ $) NIL)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4033 ((|#4| |#4| $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-3 |#4| #1#) $) 35)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4025 (((-3 $ #1#) $ |#4|) 48)) (-4111 (($ $ |#4|) NIL) (((-618 $) |#4| $) 90) (((-618 $) |#4| (-618 $)) NIL) (((-618 $) (-618 |#4|) $) NIL) (((-618 $) (-618 |#4|) (-618 $)) 86)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 15)) (-3911 (($) 13)) (-4290 (((-747) $) NIL)) (-2064 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) 12)) (-4313 (((-524) $) NIL (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 20)) (-3231 (($ $ |#3|) 42)) (-3233 (($ $ |#3|) 44)) (-4030 (($ $) NIL)) (-3232 (($ $ |#3|) NIL)) (-4300 (((-835) $) 31) (((-618 |#4|) $) 40)) (-4024 (((-747) $) NIL (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) NIL)) (-3523 (((-618 $) |#4| $) 54) (((-618 $) |#4| (-618 $)) NIL) (((-618 $) (-618 |#4|) $) NIL) (((-618 $) (-618 |#4|) (-618 $)) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) NIL)) (-3530 (((-112) |#4| $) NIL)) (-4276 (((-112) |#3| $) 61)) (-3375 (((-112) $ $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-1112 |#1| |#2| |#3| |#4|) (-13 (-1075 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3782 ((-618 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112) (-112) (-112))) (-15 -3781 ((-618 $) (-618 |#4|) (-112) (-112) (-112))) (-15 -3780 ((-2 (|:| |val| (-618 |#4|)) (|:| |towers| (-618 $))) (-618 |#4|) (-112) (-112))))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -1112))
+((-3782 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *3))) (-5 *1 (-1112 *5 *6 *7 *3)) (-4 *3 (-1032 *5 *6 *7)))) (-4028 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *8))) (-5 *1 (-1112 *5 *6 *7 *8)))) (-4028 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *8))) (-5 *1 (-1112 *5 *6 *7 *8)))) (-3781 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *8))) (-5 *1 (-1112 *5 *6 *7 *8)))) (-3780 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-618 *8)) (|:| |towers| (-618 (-1112 *5 *6 *7 *8))))) (-5 *1 (-1112 *5 *6 *7 *8)) (-5 *3 (-618 *8)))))
+(-13 (-1075 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3782 ((-618 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112))) (-15 -4028 ((-618 $) (-618 |#4|) (-112) (-112) (-112) (-112))) (-15 -3781 ((-618 $) (-618 |#4|) (-112) (-112) (-112))) (-15 -3780 ((-2 (|:| |val| (-618 |#4|)) (|:| |towers| (-618 $))) (-618 |#4|) (-112) (-112)))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3666 ((|#1| $) 34)) (-3783 (($ (-618 |#1|)) 39)) (-1264 (((-112) $ (-747)) NIL)) (-3879 (($) NIL T CONST)) (-3668 ((|#1| |#1| $) 36)) (-3667 ((|#1| $) 32)) (-2063 (((-618 |#1|) $) 18 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 22)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-1326 ((|#1| $) 35)) (-3953 (($ |#1| $) 37)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-1327 ((|#1| $) 33)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 31)) (-3911 (($) 38)) (-3665 (((-747) $) 29)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 27)) (-4300 (((-835) $) 14 (|has| |#1| (-593 (-835))))) (-1328 (($ (-618 |#1|)) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 17 (|has| |#1| (-1067)))) (-4299 (((-747) $) 30 (|has| $ (-6 -4336)))))
+(((-1113 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -3783 ($ (-618 |#1|))))) (-1178)) (T -1113))
+((-3783 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1113 *3)))))
+(-13 (-1087 |#1|) (-10 -8 (-15 -3783 ($ (-618 |#1|)))))
+((-4130 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1191 (-535)) |#2|) 44) ((|#2| $ (-535) |#2|) 41)) (-3784 (((-112) $) 12)) (-2067 (($ (-1 |#2| |#2|) $) 39)) (-4143 ((|#2| $) NIL) (($ $ (-747)) 17)) (-2297 (($ $ |#2|) 40)) (-3785 (((-112) $) 11)) (-4142 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1191 (-535))) 31) ((|#2| $ (-535)) 23) ((|#2| $ (-535) |#2|) NIL)) (-4133 (($ $ $) 47) (($ $ |#2|) NIL)) (-4144 (($ $ $) 33) (($ |#2| $) NIL) (($ (-618 $)) 36) (($ $ |#2|) NIL)))
+(((-1114 |#1| |#2|) (-10 -8 (-15 -3784 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -4130 (|#2| |#1| (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535))) (-15 -2297 (|#1| |#1| |#2|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -4130 (|#2| |#1| (-1191 (-535)) |#2|)) (-15 -4130 (|#2| |#1| #1="last" |#2|)) (-15 -4130 (|#1| |#1| #2="rest" |#1|)) (-15 -4130 (|#2| |#1| #3="first" |#2|)) (-15 -4133 (|#1| |#1| |#2|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -4142 (|#2| |#1| #1#)) (-15 -4142 (|#1| |#1| #2#)) (-15 -4143 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| #3#)) (-15 -4143 (|#2| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4130 (|#2| |#1| #4="value" |#2|)) (-15 -4142 (|#2| |#1| #4#)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|))) (-1115 |#2|) (-1178)) (T -1114))
+NIL
+(-10 -8 (-15 -3784 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -4130 (|#2| |#1| (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535) |#2|)) (-15 -4142 (|#2| |#1| (-535))) (-15 -2297 (|#1| |#1| |#2|)) (-15 -4144 (|#1| |#1| |#2|)) (-15 -4144 (|#1| (-618 |#1|))) (-15 -4142 (|#1| |#1| (-1191 (-535)))) (-15 -4130 (|#2| |#1| (-1191 (-535)) |#2|)) (-15 -4130 (|#2| |#1| #1="last" |#2|)) (-15 -4130 (|#1| |#1| #2="rest" |#1|)) (-15 -4130 (|#2| |#1| #3="first" |#2|)) (-15 -4133 (|#1| |#1| |#2|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -4142 (|#2| |#1| #1#)) (-15 -4142 (|#1| |#1| #2#)) (-15 -4143 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| #3#)) (-15 -4143 (|#2| |#1|)) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#1|)) (-15 -4130 (|#2| |#1| #4="value" |#2|)) (-15 -4142 (|#2| |#1| #4#)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-4137 ((|#1| $) 65)) (-4139 (($ $) 67)) (-2296 (((-1230) $ (-535) (-535)) 97 (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) 52 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-4129 (($ $ $) 56 (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) 54 (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) 58 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4337))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 117 (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) 86 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4336)))) (-4138 ((|#1| $) 66)) (-3879 (($) 7 T CONST)) (-4141 (($ $) 73) (($ $ (-747)) 71)) (-1394 (($ $) 99 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4336))) (($ |#1| $) 100 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1632 ((|#1| $ (-535) |#1|) 85 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 87)) (-3784 (((-112) $) 83)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3960 (($ (-747) |#1|) 108)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 95 (|has| (-535) (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 94 (|has| (-535) (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-4140 ((|#1| $) 70) (($ $ (-747)) 68)) (-2373 (($ $ $ (-535)) 116) (($ |#1| $ (-535)) 115)) (-2301 (((-618 (-535)) $) 92)) (-2302 (((-112) (-535) $) 91)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 76) (($ $ (-747)) 74)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2297 (($ $ |#1|) 96 (|has| $ (-6 -4337)))) (-3785 (((-112) $) 84)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 90)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1191 (-535))) 112) ((|#1| $ (-535)) 89) ((|#1| $ (-535) |#1|) 88)) (-3350 (((-535) $ $) 44)) (-2374 (($ $ (-1191 (-535))) 114) (($ $ (-535)) 113)) (-3979 (((-112) $) 46)) (-4134 (($ $) 62)) (-4132 (($ $) 59 (|has| $ (-6 -4337)))) (-4135 (((-747) $) 63)) (-4136 (($ $) 64)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4313 (((-524) $) 98 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 107)) (-4133 (($ $ $) 61 (|has| $ (-6 -4337))) (($ $ |#1|) 60 (|has| $ (-6 -4337)))) (-4144 (($ $ $) 78) (($ |#1| $) 77) (($ (-618 $)) 110) (($ $ |#1|) 109)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-1115 |#1|) (-138) (-1178)) (T -1115))
+((-3785 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))))
+(-13 (-1213 |t#1|) (-627 |t#1|) (-10 -8 (-15 -3785 ((-112) $)) (-15 -3784 ((-112) $))))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1178) . T) ((-1213 |#1|) . T))
+((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) NIL)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2735 (((-618 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2301 (((-618 |#1|) $) NIL)) (-2302 (((-112) |#1| $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-1116 |#1| |#2| |#3|) (-1155 |#1| |#2|) (-1067) (-1067) |#2|) (T -1116))
NIL
(-1155 |#1| |#2|)
-((-3833 (((-112) $ $) 7)) (-3982 (((-3 $ "failed") $) 13)) (-2677 (((-1124) $) 9)) (-3060 (($) 14 T CONST)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11)) (-2388 (((-112) $ $) 6)))
+((-2887 (((-112) $ $) 7)) (-3786 (((-3 $ "failed") $) 13)) (-3576 (((-1124) $) 9)) (-3787 (($) 14 T CONST)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11)) (-3375 (((-112) $ $) 6)))
(((-1117) (-138)) (T -1117))
-((-3060 (*1 *1) (-4 *1 (-1117))) (-3982 (*1 *1 *1) (|partial| -4 *1 (-1117))))
-(-13 (-1066) (-10 -8 (-15 -3060 ($) -2588) (-15 -3982 ((-3 $ "failed") $))))
-(((-101) . T) ((-593 (-834)) . T) ((-1066) . T))
-((-2733 (((-1122 |#1|) (-1122 |#1|)) 17)) (-2880 (((-1122 |#1|) (-1122 |#1|)) 13)) (-2007 (((-1122 |#1|) (-1122 |#1|) (-549) (-549)) 20)) (-1614 (((-1122 |#1|) (-1122 |#1|)) 15)))
-(((-1118 |#1|) (-10 -7 (-15 -2880 ((-1122 |#1|) (-1122 |#1|))) (-15 -1614 ((-1122 |#1|) (-1122 |#1|))) (-15 -2733 ((-1122 |#1|) (-1122 |#1|))) (-15 -2007 ((-1122 |#1|) (-1122 |#1|) (-549) (-549)))) (-13 (-541) (-145))) (T -1118))
-((-2007 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1122 *4)) (-5 *3 (-549)) (-4 *4 (-13 (-541) (-145))) (-5 *1 (-1118 *4)))) (-2733 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-13 (-541) (-145))) (-5 *1 (-1118 *3)))) (-1614 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-13 (-541) (-145))) (-5 *1 (-1118 *3)))) (-2880 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-13 (-541) (-145))) (-5 *1 (-1118 *3)))))
-(-10 -7 (-15 -2880 ((-1122 |#1|) (-1122 |#1|))) (-15 -1614 ((-1122 |#1|) (-1122 |#1|))) (-15 -2733 ((-1122 |#1|) (-1122 |#1|))) (-15 -2007 ((-1122 |#1|) (-1122 |#1|) (-549) (-549))))
-((-1951 (((-1122 |#1|) (-1122 (-1122 |#1|))) 15)))
-(((-1119 |#1|) (-10 -7 (-15 -1951 ((-1122 |#1|) (-1122 (-1122 |#1|))))) (-1179)) (T -1119))
-((-1951 (*1 *2 *3) (-12 (-5 *3 (-1122 (-1122 *4))) (-5 *2 (-1122 *4)) (-5 *1 (-1119 *4)) (-4 *4 (-1179)))))
-(-10 -7 (-15 -1951 ((-1122 |#1|) (-1122 (-1122 |#1|)))))
-((-3076 (((-1122 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1122 |#1|)) 25)) (-2558 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1122 |#1|)) 26)) (-2796 (((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|)) 16)))
-(((-1120 |#1| |#2|) (-10 -7 (-15 -2796 ((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|))) (-15 -3076 ((-1122 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1122 |#1|))) (-15 -2558 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1122 |#1|)))) (-1179) (-1179)) (T -1120))
-((-2558 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1122 *5)) (-4 *5 (-1179)) (-4 *2 (-1179)) (-5 *1 (-1120 *5 *2)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1122 *6)) (-4 *6 (-1179)) (-4 *3 (-1179)) (-5 *2 (-1122 *3)) (-5 *1 (-1120 *6 *3)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-1122 *6)) (-5 *1 (-1120 *5 *6)))))
-(-10 -7 (-15 -2796 ((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|))) (-15 -3076 ((-1122 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1122 |#1|))) (-15 -2558 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1122 |#1|))))
-((-2796 (((-1122 |#3|) (-1 |#3| |#1| |#2|) (-1122 |#1|) (-1122 |#2|)) 21)))
-(((-1121 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-1122 |#3|) (-1 |#3| |#1| |#2|) (-1122 |#1|) (-1122 |#2|)))) (-1179) (-1179) (-1179)) (T -1121))
-((-2796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1122 *6)) (-5 *5 (-1122 *7)) (-4 *6 (-1179)) (-4 *7 (-1179)) (-4 *8 (-1179)) (-5 *2 (-1122 *8)) (-5 *1 (-1121 *6 *7 *8)))))
-(-10 -7 (-15 -2796 ((-1122 |#3|) (-1 |#3| |#1| |#2|) (-1122 |#1|) (-1122 |#2|))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-4160 ((|#1| $) NIL)) (-2838 ((|#1| $) NIL)) (-1342 (($ $) 52)) (-2932 (((-1230) $ (-549) (-549)) 77 (|has| $ (-6 -4337)))) (-3637 (($ $ (-549)) 111 (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) NIL)) (-3715 (((-834) $) 41 (|has| |#1| (-1066)))) (-2894 (((-112)) 40 (|has| |#1| (-1066)))) (-3751 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-1362 (($ $ $) 99 (|has| $ (-6 -4337))) (($ $ (-549) $) 123)) (-4277 ((|#1| $ |#1|) 108 (|has| $ (-6 -4337)))) (-2627 ((|#1| $ |#1|) 103 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4337))) (($ $ "rest" $) 107 (|has| $ (-6 -4337))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) 90 (|has| $ (-6 -4337))) ((|#1| $ (-549) |#1|) 56 (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) NIL (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) 59)) (-2828 ((|#1| $) NIL)) (-1705 (($) NIL T CONST)) (-2323 (($ $) 14)) (-3655 (($ $) 29) (($ $ (-747)) 89)) (-4093 (((-112) (-621 |#1|) $) 117 (|has| |#1| (-1066)))) (-3101 (($ (-621 |#1|)) 113)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (($ (-1 (-112) |#1|) $) 58)) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1878 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) NIL)) (-3149 (((-112) $) NIL)) (-2990 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2075 (((-1230) (-549) $) 122 (|has| |#1| (-1066)))) (-3352 (((-747) $) 119)) (-3630 (((-621 $) $) NIL)) (-1742 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3743 (($ (-747) |#1|) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-4289 (((-112) $ (-747)) NIL)) (-3590 (((-621 |#1|) $) NIL)) (-2456 (((-112) $) NIL)) (-1872 (($ $) 91)) (-3174 (((-112) $) 13)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3828 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-2614 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) 75)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-1411 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-2195 ((|#1| $) 10)) (-3645 ((|#1| $) 28) (($ $ (-747)) 50)) (-3131 (((-2 (|:| |cycle?| (-112)) (|:| -1887 (-747)) (|:| |period| (-747))) (-747) $) 25)) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1459 (($ (-1 (-112) |#1|) $) 127)) (-1473 (($ (-1 (-112) |#1|) $) 128)) (-3158 (($ $ |#1|) 69 (|has| $ (-6 -4337)))) (-2975 (($ $ (-549)) 32)) (-3342 (((-112) $) 73)) (-4240 (((-112) $) 12)) (-3633 (((-112) $) 118)) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 20)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) 15)) (-1461 (($) 45)) (-3340 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1192 (-549))) NIL) ((|#1| $ (-549)) 55) ((|#1| $ (-549) |#1|) NIL)) (-1953 (((-549) $ $) 49)) (-2166 (($ $ (-1192 (-549))) NIL) (($ $ (-549)) NIL)) (-4262 (($ (-1 $)) 48)) (-4187 (((-112) $) 70)) (-1811 (($ $) 71)) (-1679 (($ $) 100 (|has| $ (-6 -4337)))) (-2041 (((-747) $) NIL)) (-2277 (($ $) NIL)) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) 44)) (-2844 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 54)) (-3172 (($ |#1| $) 98)) (-3091 (($ $ $) 101 (|has| $ (-6 -4337))) (($ $ |#1|) 102 (|has| $ (-6 -4337)))) (-1951 (($ $ $) 79) (($ |#1| $) 46) (($ (-621 $)) 84) (($ $ |#1|) 78)) (-1814 (($ $) 51)) (-3845 (($ (-621 |#1|)) 112) (((-834) $) 42 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) NIL)) (-2937 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 115 (|has| |#1| (-1066)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-1122 |#1|) (-13 (-650 |#1|) (-10 -8 (-6 -4337) (-15 -3845 ($ (-621 |#1|))) (-15 -3101 ($ (-621 |#1|))) (IF (|has| |#1| (-1066)) (-15 -4093 ((-112) (-621 |#1|) $)) |%noBranch|) (-15 -3131 ((-2 (|:| |cycle?| (-112)) (|:| -1887 (-747)) (|:| |period| (-747))) (-747) $)) (-15 -4262 ($ (-1 $))) (-15 -3172 ($ |#1| $)) (IF (|has| |#1| (-1066)) (PROGN (-15 -2075 ((-1230) (-549) $)) (-15 -3715 ((-834) $)) (-15 -2894 ((-112)))) |%noBranch|) (-15 -1362 ($ $ (-549) $)) (-15 -1411 ($ (-1 |#1|))) (-15 -1411 ($ (-1 |#1| |#1|) |#1|)) (-15 -1459 ($ (-1 (-112) |#1|) $)) (-15 -1473 ($ (-1 (-112) |#1|) $)))) (-1179)) (T -1122))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-1122 *3)))) (-3101 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-1122 *3)))) (-4093 (*1 *2 *3 *1) (-12 (-5 *3 (-621 *4)) (-4 *4 (-1066)) (-4 *4 (-1179)) (-5 *2 (-112)) (-5 *1 (-1122 *4)))) (-3131 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1887 (-747)) (|:| |period| (-747)))) (-5 *1 (-1122 *4)) (-4 *4 (-1179)) (-5 *3 (-747)))) (-4262 (*1 *1 *2) (-12 (-5 *2 (-1 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1179)))) (-3172 (*1 *1 *2 *1) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1179)))) (-2075 (*1 *2 *3 *1) (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-1122 *4)) (-4 *4 (-1066)) (-4 *4 (-1179)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1122 *3)) (-4 *3 (-1066)) (-4 *3 (-1179)))) (-2894 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3)) (-4 *3 (-1066)) (-4 *3 (-1179)))) (-1362 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1122 *3)) (-4 *3 (-1179)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1179)) (-5 *1 (-1122 *3)))) (-1411 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1179)) (-5 *1 (-1122 *3)))) (-1459 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1179)) (-5 *1 (-1122 *3)))) (-1473 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1179)) (-5 *1 (-1122 *3)))))
-(-13 (-650 |#1|) (-10 -8 (-6 -4337) (-15 -3845 ($ (-621 |#1|))) (-15 -3101 ($ (-621 |#1|))) (IF (|has| |#1| (-1066)) (-15 -4093 ((-112) (-621 |#1|) $)) |%noBranch|) (-15 -3131 ((-2 (|:| |cycle?| (-112)) (|:| -1887 (-747)) (|:| |period| (-747))) (-747) $)) (-15 -4262 ($ (-1 $))) (-15 -3172 ($ |#1| $)) (IF (|has| |#1| (-1066)) (PROGN (-15 -2075 ((-1230) (-549) $)) (-15 -3715 ((-834) $)) (-15 -2894 ((-112)))) |%noBranch|) (-15 -1362 ($ $ (-549) $)) (-15 -1411 ($ (-1 |#1|))) (-15 -1411 ($ (-1 |#1| |#1|) |#1|)) (-15 -1459 ($ (-1 (-112) |#1|) $)) (-15 -1473 ($ (-1 (-112) |#1|) $))))
-((-3833 (((-112) $ $) 19)) (-2359 (($ $) 120)) (-1966 (($ $) 121)) (-2089 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2932 (((-1230) $ (-549) (-549)) 40 (|has| $ (-6 -4337)))) (-2319 (((-112) $ $) 118)) (-2292 (((-112) $ $ (-549)) 117)) (-1524 (($ (-549)) 127)) (-1445 (((-621 $) $ (-142)) 110) (((-621 $) $ (-139)) 109)) (-1993 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-823)))) (-4106 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| (-142) (-823)) (|has| $ (-6 -4337))))) (-3193 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-823)))) (-1323 (((-112) $ (-747)) 8)) (-2253 (((-142) $ (-549) (-142)) 52 (|has| $ (-6 -4337))) (((-142) $ (-1192 (-549)) (-142)) 58 (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-3589 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-4273 (($ $) 90 (|has| $ (-6 -4337)))) (-3063 (($ $) 100)) (-4125 (($ $ (-1192 (-549)) $) 114)) (-3675 (($ $) 78 (-12 (|has| (-142) (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ (-142) $) 77 (-12 (|has| (-142) (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4336)))) (-2558 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1066)) (|has| $ (-6 -4336)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4336)))) (-1878 (((-142) $ (-549) (-142)) 53 (|has| $ (-6 -4337)))) (-1808 (((-142) $ (-549)) 51)) (-2348 (((-112) $ $) 119)) (-2882 (((-549) (-1 (-112) (-142)) $) 97) (((-549) (-142) $) 96 (|has| (-142) (-1066))) (((-549) (-142) $ (-549)) 95 (|has| (-142) (-1066))) (((-549) $ $ (-549)) 113) (((-549) (-139) $ (-549)) 112)) (-2990 (((-621 (-142)) $) 30 (|has| $ (-6 -4336)))) (-3743 (($ (-747) (-142)) 69)) (-4202 (((-112) $ (-747)) 9)) (-3485 (((-549) $) 43 (|has| (-549) (-823)))) (-2862 (($ $ $) 87 (|has| (-142) (-823)))) (-1586 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-823)))) (-1958 (((-621 (-142)) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 44 (|has| (-549) (-823)))) (-3574 (($ $ $) 86 (|has| (-142) (-823)))) (-2311 (((-112) $ $ (-142)) 115)) (-2474 (((-747) $ $ (-142)) 116)) (-1865 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3484 (($ $) 122)) (-2495 (($ $) 123)) (-4289 (((-112) $ (-747)) 10)) (-3602 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-2677 (((-1124) $) 22)) (-2614 (($ (-142) $ (-549)) 60) (($ $ $ (-549)) 59)) (-3927 (((-621 (-549)) $) 46)) (-1286 (((-112) (-549) $) 47)) (-3988 (((-1086) $) 21)) (-3645 (((-142) $) 42 (|has| (-549) (-823)))) (-1917 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-3158 (($ $ (-142)) 41 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-287 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-621 (-142)) (-621 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-1738 (((-621 (-142)) $) 48)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 (((-142) $ (-549) (-142)) 50) (((-142) $ (-549)) 49) (($ $ (-1192 (-549))) 63) (($ $ $) 102)) (-2166 (($ $ (-549)) 62) (($ $ (-1192 (-549))) 61)) (-3997 (((-747) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4336))) (((-747) (-142) $) 28 (-12 (|has| (-142) (-1066)) (|has| $ (-6 -4336))))) (-1665 (($ $ $ (-549)) 91 (|has| $ (-6 -4337)))) (-2281 (($ $) 13)) (-2844 (((-525) $) 79 (|has| (-142) (-594 (-525))))) (-3853 (($ (-621 (-142))) 70)) (-1951 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3845 (($ (-142)) 111) (((-834) $) 18)) (-2150 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4336)))) (-3135 (((-1124) $) 131) (((-1124) $ (-112)) 130) (((-1230) (-798) $) 129) (((-1230) (-798) $ (-112)) 128)) (-2448 (((-112) $ $) 84 (|has| (-142) (-823)))) (-2424 (((-112) $ $) 83 (|has| (-142) (-823)))) (-2388 (((-112) $ $) 20)) (-2436 (((-112) $ $) 85 (|has| (-142) (-823)))) (-2411 (((-112) $ $) 82 (|has| (-142) (-823)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
+((-3787 (*1 *1) (-4 *1 (-1117))) (-3786 (*1 *1 *1) (|partial| -4 *1 (-1117))))
+(-13 (-1067) (-10 -8 (-15 -3787 ($) -4294) (-15 -3786 ((-3 $ "failed") $))))
+(((-101) . T) ((-593 (-835)) . T) ((-1067) . T))
+((-3790 (((-1119 |#1|) (-1119 |#1|)) 17)) (-3788 (((-1119 |#1|) (-1119 |#1|)) 13)) (-3791 (((-1119 |#1|) (-1119 |#1|) (-535) (-535)) 20)) (-3789 (((-1119 |#1|) (-1119 |#1|)) 15)))
+(((-1118 |#1|) (-10 -7 (-15 -3788 ((-1119 |#1|) (-1119 |#1|))) (-15 -3789 ((-1119 |#1|) (-1119 |#1|))) (-15 -3790 ((-1119 |#1|) (-1119 |#1|))) (-15 -3791 ((-1119 |#1|) (-1119 |#1|) (-535) (-535)))) (-13 (-542) (-145))) (T -1118))
+((-3791 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-1118 *4)))) (-3790 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1118 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1118 *3)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1118 *3)))))
+(-10 -7 (-15 -3788 ((-1119 |#1|) (-1119 |#1|))) (-15 -3789 ((-1119 |#1|) (-1119 |#1|))) (-15 -3790 ((-1119 |#1|) (-1119 |#1|))) (-15 -3791 ((-1119 |#1|) (-1119 |#1|) (-535) (-535))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) NIL)) (-4137 ((|#1| $) NIL)) (-4139 (($ $) 52)) (-2296 (((-1230) $ (-535) (-535)) 77 (|has| $ (-6 -4337)))) (-4127 (($ $ (-535)) 111 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-3796 (((-835) $) 41 (|has| |#1| (-1067)))) (-3795 (((-112)) 40 (|has| |#1| (-1067)))) (-3346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4337)))) (-4129 (($ $ $) 99 (|has| $ (-6 -4337))) (($ $ (-535) $) 123)) (-4128 ((|#1| $ |#1|) 108 (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) 103 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ #2="first" |#1|) 105 (|has| $ (-6 -4337))) (($ $ #3="rest" $) 107 (|has| $ (-6 -4337))) ((|#1| $ #4="last" |#1|) 110 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 90 (|has| $ (-6 -4337))) ((|#1| $ (-535) |#1|) 56 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 59)) (-4138 ((|#1| $) NIL)) (-3879 (($) NIL T CONST)) (-2389 (($ $) 14)) (-4141 (($ $) 29) (($ $ (-747)) 89)) (-3801 (((-112) (-618 |#1|) $) 117 (|has| |#1| (-1067)))) (-3802 (($ (-618 |#1|)) 113)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) 58)) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3784 (((-112) $) NIL)) (-2063 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3797 (((-1230) (-535) $) 122 (|has| |#1| (-1067)))) (-2388 (((-747) $) 119)) (-3352 (((-618 $) $) NIL)) (-3348 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-4062 (((-112) $ (-747)) NIL)) (-3351 (((-618 |#1|) $) NIL)) (-3864 (((-112) $) NIL)) (-2391 (($ $) 91)) (-2392 (((-112) $) 13)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-4140 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-2373 (($ $ $ (-535)) NIL) (($ |#1| $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) 75)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-3794 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-2390 ((|#1| $) 10)) (-4143 ((|#1| $) 28) (($ $ (-747)) 50)) (-3800 (((-2 (|:| |cycle?| (-112)) (|:| -2914 (-747)) (|:| |period| (-747))) (-747) $) 25)) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3793 (($ (-1 (-112) |#1|) $) 127)) (-3792 (($ (-1 (-112) |#1|) $) 128)) (-2297 (($ $ |#1|) 69 (|has| $ (-6 -4337)))) (-4111 (($ $ (-535)) 32)) (-3785 (((-112) $) 73)) (-2393 (((-112) $) 12)) (-2394 (((-112) $) 118)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 20)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) 15)) (-3911 (($) 45)) (-4142 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1191 (-535))) NIL) ((|#1| $ (-535)) 55) ((|#1| $ (-535) |#1|) NIL)) (-3350 (((-535) $ $) 49)) (-2374 (($ $ (-1191 (-535))) NIL) (($ $ (-535)) NIL)) (-3799 (($ (-1 $)) 48)) (-3979 (((-112) $) 70)) (-4134 (($ $) 71)) (-4132 (($ $) 100 (|has| $ (-6 -4337)))) (-4135 (((-747) $) NIL)) (-4136 (($ $) NIL)) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 44)) (-4313 (((-524) $) NIL (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 54)) (-3798 (($ |#1| $) 98)) (-4133 (($ $ $) 101 (|has| $ (-6 -4337))) (($ $ |#1|) 102 (|has| $ (-6 -4337)))) (-4144 (($ $ $) 79) (($ |#1| $) 46) (($ (-618 $)) 84) (($ $ |#1|) 78)) (-3212 (($ $) 51)) (-4300 (($ (-618 |#1|)) 112) (((-835) $) 42 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) NIL)) (-3349 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 115 (|has| |#1| (-1067)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-1119 |#1|) (-13 (-650 |#1|) (-10 -8 (-6 -4337) (-15 -4300 ($ (-618 |#1|))) (-15 -3802 ($ (-618 |#1|))) (IF (|has| |#1| (-1067)) (-15 -3801 ((-112) (-618 |#1|) $)) |%noBranch|) (-15 -3800 ((-2 (|:| |cycle?| (-112)) (|:| -2914 (-747)) (|:| |period| (-747))) (-747) $)) (-15 -3799 ($ (-1 $))) (-15 -3798 ($ |#1| $)) (IF (|has| |#1| (-1067)) (PROGN (-15 -3797 ((-1230) (-535) $)) (-15 -3796 ((-835) $)) (-15 -3795 ((-112)))) |%noBranch|) (-15 -4129 ($ $ (-535) $)) (-15 -3794 ($ (-1 |#1|))) (-15 -3794 ($ (-1 |#1| |#1|) |#1|)) (-15 -3793 ($ (-1 (-112) |#1|) $)) (-15 -3792 ($ (-1 (-112) |#1|) $)))) (-1178)) (T -1119))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))) (-3801 (*1 *2 *3 *1) (-12 (-5 *3 (-618 *4)) (-4 *4 (-1067)) (-4 *4 (-1178)) (-5 *2 (-112)) (-5 *1 (-1119 *4)))) (-3800 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2914 (-747)) (|:| |period| (-747)))) (-5 *1 (-1119 *4)) (-4 *4 (-1178)) (-5 *3 (-747)))) (-3799 (*1 *1 *2) (-12 (-5 *2 (-1 (-1119 *3))) (-5 *1 (-1119 *3)) (-4 *3 (-1178)))) (-3798 (*1 *1 *2 *1) (-12 (-5 *1 (-1119 *2)) (-4 *2 (-1178)))) (-3797 (*1 *2 *3 *1) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-1119 *4)) (-4 *4 (-1067)) (-4 *4 (-1178)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1119 *3)) (-4 *3 (-1067)) (-4 *3 (-1178)))) (-3795 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1119 *3)) (-4 *3 (-1067)) (-4 *3 (-1178)))) (-4129 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1119 *3)) (-4 *3 (-1178)))) (-3794 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))) (-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))) (-3793 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))) (-3792 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))))
+(-13 (-650 |#1|) (-10 -8 (-6 -4337) (-15 -4300 ($ (-618 |#1|))) (-15 -3802 ($ (-618 |#1|))) (IF (|has| |#1| (-1067)) (-15 -3801 ((-112) (-618 |#1|) $)) |%noBranch|) (-15 -3800 ((-2 (|:| |cycle?| (-112)) (|:| -2914 (-747)) (|:| |period| (-747))) (-747) $)) (-15 -3799 ($ (-1 $))) (-15 -3798 ($ |#1| $)) (IF (|has| |#1| (-1067)) (PROGN (-15 -3797 ((-1230) (-535) $)) (-15 -3796 ((-835) $)) (-15 -3795 ((-112)))) |%noBranch|) (-15 -4129 ($ $ (-535) $)) (-15 -3794 ($ (-1 |#1|))) (-15 -3794 ($ (-1 |#1| |#1|) |#1|)) (-15 -3793 ($ (-1 (-112) |#1|) $)) (-15 -3792 ($ (-1 (-112) |#1|) $))))
+((-4144 (((-1119 |#1|) (-1119 (-1119 |#1|))) 15)))
+(((-1120 |#1|) (-10 -7 (-15 -4144 ((-1119 |#1|) (-1119 (-1119 |#1|))))) (-1178)) (T -1120))
+((-4144 (*1 *2 *3) (-12 (-5 *3 (-1119 (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-1178)))))
+(-10 -7 (-15 -4144 ((-1119 |#1|) (-1119 (-1119 |#1|)))))
+((-4184 (((-1119 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1119 |#1|)) 25)) (-4185 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1119 |#1|)) 26)) (-4301 (((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|)) 16)))
+(((-1121 |#1| |#2|) (-10 -7 (-15 -4301 ((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) (-15 -4184 ((-1119 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1119 |#1|))) (-15 -4185 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1119 |#1|)))) (-1178) (-1178)) (T -1121))
+((-4185 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1119 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) (-5 *1 (-1121 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1119 *6)) (-4 *6 (-1178)) (-4 *3 (-1178)) (-5 *2 (-1119 *3)) (-5 *1 (-1121 *6 *3)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1119 *6)) (-5 *1 (-1121 *5 *6)))))
+(-10 -7 (-15 -4301 ((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) (-15 -4184 ((-1119 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1119 |#1|))) (-15 -4185 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1119 |#1|))))
+((-4301 (((-1119 |#3|) (-1 |#3| |#1| |#2|) (-1119 |#1|) (-1119 |#2|)) 21)))
+(((-1122 |#1| |#2| |#3|) (-10 -7 (-15 -4301 ((-1119 |#3|) (-1 |#3| |#1| |#2|) (-1119 |#1|) (-1119 |#2|)))) (-1178) (-1178) (-1178)) (T -1122))
+((-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1119 *6)) (-5 *5 (-1119 *7)) (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-1119 *8)) (-5 *1 (-1122 *6 *7 *8)))))
+(-10 -7 (-15 -4301 ((-1119 |#3|) (-1 |#3| |#1| |#2|) (-1119 |#1|) (-1119 |#2|))))
+((-2887 (((-112) $ $) 19)) (-3768 (($ $) 120)) (-3769 (($ $) 121)) (-3759 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-3766 (((-112) $ $) 118)) (-3765 (((-112) $ $ (-535)) 117)) (-3881 (($ (-535)) 127)) (-3760 (((-618 $) $ (-142)) 110) (((-618 $) $ (-139)) 109)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-823)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| (-142) (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-823)))) (-1264 (((-112) $ (-747)) 8)) (-4130 (((-142) $ (-535) (-142)) 52 (|has| $ (-6 -4337))) (((-142) $ (-1191 (-535)) (-142)) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-3757 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2368 (($ $) 90 (|has| $ (-6 -4337)))) (-2369 (($ $) 100)) (-3762 (($ $ (-1191 (-535)) $) 114)) (-1394 (($ $) 78 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ (-142) $) 77 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4336)))) (-4185 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4336)))) (-1632 (((-142) $ (-535) (-142)) 53 (|has| $ (-6 -4337)))) (-3431 (((-142) $ (-535)) 51)) (-3767 (((-112) $ $) 119)) (-3761 (((-535) (-1 (-112) (-142)) $) 97) (((-535) (-142) $) 96 (|has| (-142) (-1067))) (((-535) (-142) $ (-535)) 95 (|has| (-142) (-1067))) (((-535) $ $ (-535)) 113) (((-535) (-139) $ (-535)) 112)) (-2063 (((-618 (-142)) $) 30 (|has| $ (-6 -4336)))) (-3960 (($ (-747) (-142)) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 87 (|has| (-142) (-823)))) (-3855 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-823)))) (-2502 (((-618 (-142)) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 86 (|has| (-142) (-823)))) (-3763 (((-112) $ $ (-142)) 115)) (-3764 (((-747) $ $ (-142)) 116)) (-2067 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3770 (($ $) 122)) (-3771 (($ $) 123)) (-4062 (((-112) $ (-747)) 10)) (-3758 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3576 (((-1124) $) 22)) (-2373 (($ (-142) $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21)) (-4143 (((-142) $) 42 (|has| (-535) (-823)))) (-1395 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2297 (($ $ (-142)) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-286 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-618 (-142)) (-618 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-2303 (((-618 (-142)) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 (((-142) $ (-535) (-142)) 50) (((-142) $ (-535)) 49) (($ $ (-1191 (-535))) 63) (($ $ $) 102)) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-2064 (((-747) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4336))) (((-747) (-142) $) 28 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 91 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| (-142) (-594 (-524))))) (-3867 (($ (-618 (-142))) 70)) (-4144 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (($ (-142)) 111) (((-835) $) 18)) (-2066 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4336)))) (-2825 (((-1124) $) 131) (((-1124) $ (-112)) 130) (((-1230) (-799) $) 129) (((-1230) (-799) $ (-112)) 128)) (-2885 (((-112) $ $) 84 (|has| (-142) (-823)))) (-2886 (((-112) $ $) 83 (|has| (-142) (-823)))) (-3375 (((-112) $ $) 20)) (-3005 (((-112) $ $) 85 (|has| (-142) (-823)))) (-3006 (((-112) $ $) 82 (|has| (-142) (-823)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
(((-1123) (-138)) (T -1123))
-((-1524 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1123)))))
-(-13 (-1110) (-1066) (-804) (-10 -8 (-15 -1524 ($ (-549)))))
-(((-34) . T) ((-101) . T) ((-593 (-834)) . T) ((-149 #0=(-142)) . T) ((-594 (-525)) |has| (-142) (-594 (-525))) ((-279 #1=(-549) #0#) . T) ((-281 #1# #0#) . T) ((-302 #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066))) ((-366 #0#) . T) ((-481 #0#) . T) ((-584 #1# #0#) . T) ((-505 #0# #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066))) ((-627 #0#) . T) ((-19 #0#) . T) ((-804) . T) ((-823) |has| (-142) (-823)) ((-1066) . T) ((-1110) . T) ((-1179) . T))
-((-3833 (((-112) $ $) NIL)) (-2359 (($ $) NIL)) (-1966 (($ $) NIL)) (-2089 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-2319 (((-112) $ $) NIL)) (-2292 (((-112) $ $ (-549)) NIL)) (-1524 (($ (-549)) 7)) (-1445 (((-621 $) $ (-142)) NIL) (((-621 $) $ (-139)) NIL)) (-1993 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-823)))) (-4106 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-823))))) (-3193 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-823)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 (((-142) $ (-549) (-142)) NIL (|has| $ (-6 -4337))) (((-142) $ (-1192 (-549)) (-142)) NIL (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-3589 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-4125 (($ $ (-1192 (-549)) $) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-3812 (($ (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4336)))) (-1878 (((-142) $ (-549) (-142)) NIL (|has| $ (-6 -4337)))) (-1808 (((-142) $ (-549)) NIL)) (-2348 (((-112) $ $) NIL)) (-2882 (((-549) (-1 (-112) (-142)) $) NIL) (((-549) (-142) $) NIL (|has| (-142) (-1066))) (((-549) (-142) $ (-549)) NIL (|has| (-142) (-1066))) (((-549) $ $ (-549)) NIL) (((-549) (-139) $ (-549)) NIL)) (-2990 (((-621 (-142)) $) NIL (|has| $ (-6 -4336)))) (-3743 (($ (-747) (-142)) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| (-142) (-823)))) (-1586 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-823)))) (-1958 (((-621 (-142)) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| (-142) (-823)))) (-2311 (((-112) $ $ (-142)) NIL)) (-2474 (((-747) $ $ (-142)) NIL)) (-1865 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3484 (($ $) NIL)) (-2495 (($ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-3602 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2677 (((-1124) $) NIL)) (-2614 (($ (-142) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL)) (-3645 (((-142) $) NIL (|has| (-549) (-823)))) (-1917 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-3158 (($ $ (-142)) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-287 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066)))) (($ $ (-621 (-142)) (-621 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-1738 (((-621 (-142)) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 (((-142) $ (-549) (-142)) NIL) (((-142) $ (-549)) NIL) (($ $ (-1192 (-549))) NIL) (($ $ $) NIL)) (-2166 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-3997 (((-747) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336))) (((-747) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1066))))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-142) (-594 (-525))))) (-3853 (($ (-621 (-142))) NIL)) (-1951 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3845 (($ (-142)) NIL) (((-834) $) NIL)) (-2150 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-3135 (((-1124) $) 18) (((-1124) $ (-112)) 20) (((-1230) (-798) $) 21) (((-1230) (-798) $ (-112)) 22)) (-2448 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2424 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2411 (((-112) $ $) NIL (|has| (-142) (-823)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
+((-3881 (*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1123)))))
+(-13 (-1110) (-1067) (-797) (-10 -8 (-15 -3881 ($ (-535)))))
+(((-34) . T) ((-101) . T) ((-593 (-835)) . T) ((-149 #1=(-142)) . T) ((-594 (-524)) |has| (-142) (-594 (-524))) ((-279 #2=(-535) #1#) . T) ((-281 #2# #1#) . T) ((-302 #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))) ((-365 #1#) . T) ((-481 #1#) . T) ((-584 #2# #1#) . T) ((-505 #1# #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))) ((-627 #1#) . T) ((-19 #1#) . T) ((-797) . T) ((-823) |has| (-142) (-823)) ((-1067) . T) ((-1110) . T) ((-1178) . T))
+((-2887 (((-112) $ $) NIL)) (-3768 (($ $) NIL)) (-3769 (($ $) NIL)) (-3759 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-3766 (((-112) $ $) NIL)) (-3765 (((-112) $ $ (-535)) NIL)) (-3881 (($ (-535)) 7)) (-3760 (((-618 $) $ (-142)) NIL) (((-618 $) $ (-139)) NIL)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-823)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-823))))) (-3230 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 (((-142) $ (-535) (-142)) NIL (|has| $ (-6 -4337))) (((-142) $ (-1191 (-535)) (-142)) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-3757 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-3762 (($ $ (-1191 (-535)) $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-3748 (($ (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4336))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4336)))) (-1632 (((-142) $ (-535) (-142)) NIL (|has| $ (-6 -4337)))) (-3431 (((-142) $ (-535)) NIL)) (-3767 (((-112) $ $) NIL)) (-3761 (((-535) (-1 (-112) (-142)) $) NIL) (((-535) (-142) $) NIL (|has| (-142) (-1067))) (((-535) (-142) $ (-535)) NIL (|has| (-142) (-1067))) (((-535) $ $ (-535)) NIL) (((-535) (-139) $ (-535)) NIL)) (-2063 (((-618 (-142)) $) NIL (|has| $ (-6 -4336)))) (-3960 (($ (-747) (-142)) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| (-142) (-823)))) (-3855 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-823)))) (-2502 (((-618 (-142)) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| (-142) (-823)))) (-3763 (((-112) $ $ (-142)) NIL)) (-3764 (((-747) $ $ (-142)) NIL)) (-2067 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3770 (($ $) NIL)) (-3771 (($ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3758 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3576 (((-1124) $) NIL)) (-2373 (($ (-142) $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-142) $) NIL (|has| (-535) (-823)))) (-1395 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2297 (($ $ (-142)) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-618 (-142)) (-618 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-2303 (((-618 (-142)) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 (((-142) $ (-535) (-142)) NIL) (((-142) $ (-535)) NIL) (($ $ (-1191 (-535))) NIL) (($ $ $) NIL)) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-2064 (((-747) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336))) (((-747) (-142) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-142) (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-142) (-594 (-524))))) (-3867 (($ (-618 (-142))) NIL)) (-4144 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (($ (-142)) NIL) (((-835) $) NIL)) (-2066 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4336)))) (-2825 (((-1124) $) 18) (((-1124) $ (-112)) 20) (((-1230) (-799) $) 21) (((-1230) (-799) $ (-112)) 22)) (-2885 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2886 (((-112) $ $) NIL (|has| (-142) (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| (-142) (-823)))) (-3006 (((-112) $ $) NIL (|has| (-142) (-823)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
(((-1124) (-1123)) (T -1124))
NIL
(-1123)
-((-3833 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)) (|has| |#1| (-1066))))) (-3732 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) NIL)) (-2932 (((-1230) $ (-1124) (-1124)) NIL (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#1| $ (-1124) |#1|) NIL)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-3489 (((-3 |#1| "failed") (-1124) $) NIL)) (-1705 (($) NIL T CONST)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066))))) (-4204 (($ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#1| "failed") (-1124) $) NIL)) (-3812 (($ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)))) (($ (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)))) (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-1124) |#1|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-1124)) NIL)) (-2990 (((-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-1124) $) NIL (|has| (-1124) (-823)))) (-1958 (((-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-1124) $) NIL (|has| (-1124) (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (-1536 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)) (|has| |#1| (-1066))))) (-3449 (((-621 (-1124)) $) NIL)) (-3665 (((-112) (-1124) $) NIL)) (-2349 (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL)) (-1709 (($ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL)) (-3927 (((-621 (-1124)) $) NIL)) (-1286 (((-112) (-1124) $) NIL)) (-3988 (((-1086) $) NIL (-1536 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)) (|has| |#1| (-1066))))) (-3645 ((|#1| $) NIL (|has| (-1124) (-823)))) (-1917 (((-3 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) "failed") (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL)) (-3158 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))))) NIL (-12 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) NIL (-12 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)))) (($ $ (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) NIL (-12 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)))) (($ $ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) NIL (-12 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-302 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ (-1124)) NIL) ((|#1| $ (-1124) |#1|) NIL)) (-4252 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) NIL)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) NIL)) (-3845 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-593 (-834))) (|has| |#1| (-593 (-834)))))) (-1765 (($ (-621 (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)))) NIL)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 (-1124)) (|:| -1792 |#1|)) (-1066)) (|has| |#1| (-1066))))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-1125 |#1|) (-13 (-1155 (-1124) |#1|) (-10 -7 (-6 -4336))) (-1066)) (T -1125))
+((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)) (|has| |#1| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL)) (-2296 (((-1230) $ (-1124) (-1124)) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-1124) |#1|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#1| #1="failed") (-1124) $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#1| #1#) (-1124) $) NIL)) (-3748 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-1124) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-1124)) NIL)) (-2063 (((-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-1124) $) NIL (|has| (-1124) (-823)))) (-2502 (((-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-1124) $) NIL (|has| (-1124) (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)) (|has| |#1| (-1067))))) (-2735 (((-618 (-1124)) $) NIL)) (-2306 (((-112) (-1124) $) NIL)) (-1326 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL)) (-2301 (((-618 (-1124)) $) NIL)) (-2302 (((-112) (-1124) $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)) (|has| |#1| (-1067))))) (-4143 ((|#1| $) NIL (|has| (-1124) (-823)))) (-1395 (((-3 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) "failed") (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL (-12 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-302 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-1124)) NIL) ((|#1| $ (-1124) |#1|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-593 (-835))) (|has| |#1| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 (-1124)) (|:| -2184 |#1|)) (-1067)) (|has| |#1| (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-1125 |#1|) (-13 (-1155 (-1124) |#1|) (-10 -7 (-6 -4336))) (-1067)) (T -1125))
NIL
(-13 (-1155 (-1124) |#1|) (-10 -7 (-6 -4336)))
-((-2870 (((-1122 |#1|) (-1122 |#1|)) 77)) (-3976 (((-3 (-1122 |#1|) "failed") (-1122 |#1|)) 37)) (-2687 (((-1122 |#1|) (-400 (-549)) (-1122 |#1|)) 121 (|has| |#1| (-38 (-400 (-549)))))) (-4002 (((-1122 |#1|) |#1| (-1122 |#1|)) 127 (|has| |#1| (-356)))) (-3189 (((-1122 |#1|) (-1122 |#1|)) 90)) (-3037 (((-1122 (-549)) (-549)) 57)) (-3187 (((-1122 |#1|) (-1122 (-1122 |#1|))) 109 (|has| |#1| (-38 (-400 (-549)))))) (-3816 (((-1122 |#1|) (-549) (-549) (-1122 |#1|)) 95)) (-3525 (((-1122 |#1|) |#1| (-549)) 45)) (-1637 (((-1122 |#1|) (-1122 |#1|) (-1122 |#1|)) 60)) (-1907 (((-1122 |#1|) (-1122 |#1|) (-1122 |#1|)) 124 (|has| |#1| (-356)))) (-3802 (((-1122 |#1|) |#1| (-1 (-1122 |#1|))) 108 (|has| |#1| (-38 (-400 (-549)))))) (-2628 (((-1122 |#1|) (-1 |#1| (-549)) |#1| (-1 (-1122 |#1|))) 125 (|has| |#1| (-356)))) (-3316 (((-1122 |#1|) (-1122 |#1|)) 89)) (-1513 (((-1122 |#1|) (-1122 |#1|)) 76)) (-3495 (((-1122 |#1|) (-549) (-549) (-1122 |#1|)) 96)) (-1531 (((-1122 |#1|) |#1| (-1122 |#1|)) 105 (|has| |#1| (-38 (-400 (-549)))))) (-3132 (((-1122 (-549)) (-549)) 56)) (-1964 (((-1122 |#1|) |#1|) 59)) (-3214 (((-1122 |#1|) (-1122 |#1|) (-549) (-549)) 92)) (-1726 (((-1122 |#1|) (-1 |#1| (-549)) (-1122 |#1|)) 66)) (-2038 (((-3 (-1122 |#1|) "failed") (-1122 |#1|) (-1122 |#1|)) 35)) (-2868 (((-1122 |#1|) (-1122 |#1|)) 91)) (-2685 (((-1122 |#1|) (-1122 |#1|) |#1|) 71)) (-2706 (((-1122 |#1|) (-1122 |#1|)) 62)) (-3994 (((-1122 |#1|) (-1122 |#1|) (-1122 |#1|)) 72)) (-3845 (((-1122 |#1|) |#1|) 67)) (-2734 (((-1122 |#1|) (-1122 (-1122 |#1|))) 82)) (-2512 (((-1122 |#1|) (-1122 |#1|) (-1122 |#1|)) 36)) (-2499 (((-1122 |#1|) (-1122 |#1|)) 21) (((-1122 |#1|) (-1122 |#1|) (-1122 |#1|)) 23)) (-2485 (((-1122 |#1|) (-1122 |#1|) (-1122 |#1|)) 17)) (* (((-1122 |#1|) (-1122 |#1|) |#1|) 29) (((-1122 |#1|) |#1| (-1122 |#1|)) 26) (((-1122 |#1|) (-1122 |#1|) (-1122 |#1|)) 27)))
-(((-1126 |#1|) (-10 -7 (-15 -2485 ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -2499 ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -2499 ((-1122 |#1|) (-1122 |#1|))) (-15 * ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 * ((-1122 |#1|) |#1| (-1122 |#1|))) (-15 * ((-1122 |#1|) (-1122 |#1|) |#1|)) (-15 -2038 ((-3 (-1122 |#1|) "failed") (-1122 |#1|) (-1122 |#1|))) (-15 -2512 ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -3976 ((-3 (-1122 |#1|) "failed") (-1122 |#1|))) (-15 -3525 ((-1122 |#1|) |#1| (-549))) (-15 -3132 ((-1122 (-549)) (-549))) (-15 -3037 ((-1122 (-549)) (-549))) (-15 -1964 ((-1122 |#1|) |#1|)) (-15 -1637 ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -2706 ((-1122 |#1|) (-1122 |#1|))) (-15 -1726 ((-1122 |#1|) (-1 |#1| (-549)) (-1122 |#1|))) (-15 -3845 ((-1122 |#1|) |#1|)) (-15 -2685 ((-1122 |#1|) (-1122 |#1|) |#1|)) (-15 -3994 ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -1513 ((-1122 |#1|) (-1122 |#1|))) (-15 -2870 ((-1122 |#1|) (-1122 |#1|))) (-15 -2734 ((-1122 |#1|) (-1122 (-1122 |#1|)))) (-15 -3316 ((-1122 |#1|) (-1122 |#1|))) (-15 -3189 ((-1122 |#1|) (-1122 |#1|))) (-15 -2868 ((-1122 |#1|) (-1122 |#1|))) (-15 -3214 ((-1122 |#1|) (-1122 |#1|) (-549) (-549))) (-15 -3816 ((-1122 |#1|) (-549) (-549) (-1122 |#1|))) (-15 -3495 ((-1122 |#1|) (-549) (-549) (-1122 |#1|))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -1531 ((-1122 |#1|) |#1| (-1122 |#1|))) (-15 -3802 ((-1122 |#1|) |#1| (-1 (-1122 |#1|)))) (-15 -3187 ((-1122 |#1|) (-1122 (-1122 |#1|)))) (-15 -2687 ((-1122 |#1|) (-400 (-549)) (-1122 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -1907 ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -2628 ((-1122 |#1|) (-1 |#1| (-549)) |#1| (-1 (-1122 |#1|)))) (-15 -4002 ((-1122 |#1|) |#1| (-1122 |#1|)))) |%noBranch|)) (-1018)) (T -1126))
-((-4002 (*1 *2 *3 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-2628 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-549))) (-5 *5 (-1 (-1122 *4))) (-4 *4 (-356)) (-4 *4 (-1018)) (-5 *2 (-1122 *4)) (-5 *1 (-1126 *4)))) (-1907 (*1 *2 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-2687 (*1 *2 *3 *2) (-12 (-5 *2 (-1122 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1018)) (-5 *3 (-400 (-549))) (-5 *1 (-1126 *4)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-1122 (-1122 *4))) (-5 *2 (-1122 *4)) (-5 *1 (-1126 *4)) (-4 *4 (-38 (-400 (-549)))) (-4 *4 (-1018)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1122 *3))) (-5 *2 (-1122 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)))) (-1531 (*1 *2 *3 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3495 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1122 *4)) (-5 *3 (-549)) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) (-3816 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1122 *4)) (-5 *3 (-549)) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) (-3214 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1122 *4)) (-5 *3 (-549)) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) (-2868 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3189 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-1122 (-1122 *4))) (-5 *2 (-1122 *4)) (-5 *1 (-1126 *4)) (-4 *4 (-1018)))) (-2870 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3994 (*1 *2 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-2685 (*1 *2 *2 *3) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3845 (*1 *2 *3) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) (-1726 (*1 *2 *3 *2) (-12 (-5 *2 (-1122 *4)) (-5 *3 (-1 *4 (-549))) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) (-2706 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-1637 (*1 *2 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-1964 (*1 *2 *3) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) (-3037 (*1 *2 *3) (-12 (-5 *2 (-1122 (-549))) (-5 *1 (-1126 *4)) (-4 *4 (-1018)) (-5 *3 (-549)))) (-3132 (*1 *2 *3) (-12 (-5 *2 (-1122 (-549))) (-5 *1 (-1126 *4)) (-4 *4 (-1018)) (-5 *3 (-549)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-5 *2 (-1122 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) (-3976 (*1 *2 *2) (|partial| -12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-2512 (*1 *2 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-2038 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-2499 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-2499 (*1 *2 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-2485 (*1 *2 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
-(-10 -7 (-15 -2485 ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -2499 ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -2499 ((-1122 |#1|) (-1122 |#1|))) (-15 * ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 * ((-1122 |#1|) |#1| (-1122 |#1|))) (-15 * ((-1122 |#1|) (-1122 |#1|) |#1|)) (-15 -2038 ((-3 (-1122 |#1|) "failed") (-1122 |#1|) (-1122 |#1|))) (-15 -2512 ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -3976 ((-3 (-1122 |#1|) "failed") (-1122 |#1|))) (-15 -3525 ((-1122 |#1|) |#1| (-549))) (-15 -3132 ((-1122 (-549)) (-549))) (-15 -3037 ((-1122 (-549)) (-549))) (-15 -1964 ((-1122 |#1|) |#1|)) (-15 -1637 ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -2706 ((-1122 |#1|) (-1122 |#1|))) (-15 -1726 ((-1122 |#1|) (-1 |#1| (-549)) (-1122 |#1|))) (-15 -3845 ((-1122 |#1|) |#1|)) (-15 -2685 ((-1122 |#1|) (-1122 |#1|) |#1|)) (-15 -3994 ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -1513 ((-1122 |#1|) (-1122 |#1|))) (-15 -2870 ((-1122 |#1|) (-1122 |#1|))) (-15 -2734 ((-1122 |#1|) (-1122 (-1122 |#1|)))) (-15 -3316 ((-1122 |#1|) (-1122 |#1|))) (-15 -3189 ((-1122 |#1|) (-1122 |#1|))) (-15 -2868 ((-1122 |#1|) (-1122 |#1|))) (-15 -3214 ((-1122 |#1|) (-1122 |#1|) (-549) (-549))) (-15 -3816 ((-1122 |#1|) (-549) (-549) (-1122 |#1|))) (-15 -3495 ((-1122 |#1|) (-549) (-549) (-1122 |#1|))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -1531 ((-1122 |#1|) |#1| (-1122 |#1|))) (-15 -3802 ((-1122 |#1|) |#1| (-1 (-1122 |#1|)))) (-15 -3187 ((-1122 |#1|) (-1122 (-1122 |#1|)))) (-15 -2687 ((-1122 |#1|) (-400 (-549)) (-1122 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -1907 ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -2628 ((-1122 |#1|) (-1 |#1| (-549)) |#1| (-1 (-1122 |#1|)))) (-15 -4002 ((-1122 |#1|) |#1| (-1122 |#1|)))) |%noBranch|))
-((-1663 (((-1122 |#1|) (-1122 |#1|)) 57)) (-1511 (((-1122 |#1|) (-1122 |#1|)) 39)) (-1639 (((-1122 |#1|) (-1122 |#1|)) 53)) (-1485 (((-1122 |#1|) (-1122 |#1|)) 35)) (-1685 (((-1122 |#1|) (-1122 |#1|)) 60)) (-1538 (((-1122 |#1|) (-1122 |#1|)) 42)) (-3631 (((-1122 |#1|) (-1122 |#1|)) 31)) (-2718 (((-1122 |#1|) (-1122 |#1|)) 27)) (-1697 (((-1122 |#1|) (-1122 |#1|)) 61)) (-1551 (((-1122 |#1|) (-1122 |#1|)) 43)) (-1674 (((-1122 |#1|) (-1122 |#1|)) 58)) (-1525 (((-1122 |#1|) (-1122 |#1|)) 40)) (-1649 (((-1122 |#1|) (-1122 |#1|)) 55)) (-1500 (((-1122 |#1|) (-1122 |#1|)) 37)) (-1732 (((-1122 |#1|) (-1122 |#1|)) 65)) (-1585 (((-1122 |#1|) (-1122 |#1|)) 47)) (-1708 (((-1122 |#1|) (-1122 |#1|)) 63)) (-1562 (((-1122 |#1|) (-1122 |#1|)) 45)) (-1757 (((-1122 |#1|) (-1122 |#1|)) 68)) (-1612 (((-1122 |#1|) (-1122 |#1|)) 50)) (-1933 (((-1122 |#1|) (-1122 |#1|)) 69)) (-1625 (((-1122 |#1|) (-1122 |#1|)) 51)) (-1744 (((-1122 |#1|) (-1122 |#1|)) 67)) (-1599 (((-1122 |#1|) (-1122 |#1|)) 49)) (-1721 (((-1122 |#1|) (-1122 |#1|)) 66)) (-1575 (((-1122 |#1|) (-1122 |#1|)) 48)) (** (((-1122 |#1|) (-1122 |#1|) (-1122 |#1|)) 33)))
-(((-1127 |#1|) (-10 -7 (-15 -2718 ((-1122 |#1|) (-1122 |#1|))) (-15 -3631 ((-1122 |#1|) (-1122 |#1|))) (-15 ** ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -1485 ((-1122 |#1|) (-1122 |#1|))) (-15 -1500 ((-1122 |#1|) (-1122 |#1|))) (-15 -1511 ((-1122 |#1|) (-1122 |#1|))) (-15 -1525 ((-1122 |#1|) (-1122 |#1|))) (-15 -1538 ((-1122 |#1|) (-1122 |#1|))) (-15 -1551 ((-1122 |#1|) (-1122 |#1|))) (-15 -1562 ((-1122 |#1|) (-1122 |#1|))) (-15 -1575 ((-1122 |#1|) (-1122 |#1|))) (-15 -1585 ((-1122 |#1|) (-1122 |#1|))) (-15 -1599 ((-1122 |#1|) (-1122 |#1|))) (-15 -1612 ((-1122 |#1|) (-1122 |#1|))) (-15 -1625 ((-1122 |#1|) (-1122 |#1|))) (-15 -1639 ((-1122 |#1|) (-1122 |#1|))) (-15 -1649 ((-1122 |#1|) (-1122 |#1|))) (-15 -1663 ((-1122 |#1|) (-1122 |#1|))) (-15 -1674 ((-1122 |#1|) (-1122 |#1|))) (-15 -1685 ((-1122 |#1|) (-1122 |#1|))) (-15 -1697 ((-1122 |#1|) (-1122 |#1|))) (-15 -1708 ((-1122 |#1|) (-1122 |#1|))) (-15 -1721 ((-1122 |#1|) (-1122 |#1|))) (-15 -1732 ((-1122 |#1|) (-1122 |#1|))) (-15 -1744 ((-1122 |#1|) (-1122 |#1|))) (-15 -1757 ((-1122 |#1|) (-1122 |#1|))) (-15 -1933 ((-1122 |#1|) (-1122 |#1|)))) (-38 (-400 (-549)))) (T -1127))
-((-1933 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1721 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1697 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1674 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1663 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1649 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1625 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1585 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1538 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1525 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))) (-2718 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1127 *3)))))
-(-10 -7 (-15 -2718 ((-1122 |#1|) (-1122 |#1|))) (-15 -3631 ((-1122 |#1|) (-1122 |#1|))) (-15 ** ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -1485 ((-1122 |#1|) (-1122 |#1|))) (-15 -1500 ((-1122 |#1|) (-1122 |#1|))) (-15 -1511 ((-1122 |#1|) (-1122 |#1|))) (-15 -1525 ((-1122 |#1|) (-1122 |#1|))) (-15 -1538 ((-1122 |#1|) (-1122 |#1|))) (-15 -1551 ((-1122 |#1|) (-1122 |#1|))) (-15 -1562 ((-1122 |#1|) (-1122 |#1|))) (-15 -1575 ((-1122 |#1|) (-1122 |#1|))) (-15 -1585 ((-1122 |#1|) (-1122 |#1|))) (-15 -1599 ((-1122 |#1|) (-1122 |#1|))) (-15 -1612 ((-1122 |#1|) (-1122 |#1|))) (-15 -1625 ((-1122 |#1|) (-1122 |#1|))) (-15 -1639 ((-1122 |#1|) (-1122 |#1|))) (-15 -1649 ((-1122 |#1|) (-1122 |#1|))) (-15 -1663 ((-1122 |#1|) (-1122 |#1|))) (-15 -1674 ((-1122 |#1|) (-1122 |#1|))) (-15 -1685 ((-1122 |#1|) (-1122 |#1|))) (-15 -1697 ((-1122 |#1|) (-1122 |#1|))) (-15 -1708 ((-1122 |#1|) (-1122 |#1|))) (-15 -1721 ((-1122 |#1|) (-1122 |#1|))) (-15 -1732 ((-1122 |#1|) (-1122 |#1|))) (-15 -1744 ((-1122 |#1|) (-1122 |#1|))) (-15 -1757 ((-1122 |#1|) (-1122 |#1|))) (-15 -1933 ((-1122 |#1|) (-1122 |#1|))))
-((-1663 (((-1122 |#1|) (-1122 |#1|)) 100)) (-1511 (((-1122 |#1|) (-1122 |#1|)) 64)) (-1884 (((-2 (|:| -1639 (-1122 |#1|)) (|:| -1649 (-1122 |#1|))) (-1122 |#1|)) 96)) (-1639 (((-1122 |#1|) (-1122 |#1|)) 97)) (-3427 (((-2 (|:| -1485 (-1122 |#1|)) (|:| -1500 (-1122 |#1|))) (-1122 |#1|)) 53)) (-1485 (((-1122 |#1|) (-1122 |#1|)) 54)) (-1685 (((-1122 |#1|) (-1122 |#1|)) 102)) (-1538 (((-1122 |#1|) (-1122 |#1|)) 71)) (-3631 (((-1122 |#1|) (-1122 |#1|)) 39)) (-2718 (((-1122 |#1|) (-1122 |#1|)) 36)) (-1697 (((-1122 |#1|) (-1122 |#1|)) 103)) (-1551 (((-1122 |#1|) (-1122 |#1|)) 72)) (-1674 (((-1122 |#1|) (-1122 |#1|)) 101)) (-1525 (((-1122 |#1|) (-1122 |#1|)) 67)) (-1649 (((-1122 |#1|) (-1122 |#1|)) 98)) (-1500 (((-1122 |#1|) (-1122 |#1|)) 55)) (-1732 (((-1122 |#1|) (-1122 |#1|)) 111)) (-1585 (((-1122 |#1|) (-1122 |#1|)) 86)) (-1708 (((-1122 |#1|) (-1122 |#1|)) 105)) (-1562 (((-1122 |#1|) (-1122 |#1|)) 82)) (-1757 (((-1122 |#1|) (-1122 |#1|)) 115)) (-1612 (((-1122 |#1|) (-1122 |#1|)) 90)) (-1933 (((-1122 |#1|) (-1122 |#1|)) 117)) (-1625 (((-1122 |#1|) (-1122 |#1|)) 92)) (-1744 (((-1122 |#1|) (-1122 |#1|)) 113)) (-1599 (((-1122 |#1|) (-1122 |#1|)) 88)) (-1721 (((-1122 |#1|) (-1122 |#1|)) 107)) (-1575 (((-1122 |#1|) (-1122 |#1|)) 84)) (** (((-1122 |#1|) (-1122 |#1|) (-1122 |#1|)) 40)))
-(((-1128 |#1|) (-10 -7 (-15 -2718 ((-1122 |#1|) (-1122 |#1|))) (-15 -3631 ((-1122 |#1|) (-1122 |#1|))) (-15 ** ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -3427 ((-2 (|:| -1485 (-1122 |#1|)) (|:| -1500 (-1122 |#1|))) (-1122 |#1|))) (-15 -1485 ((-1122 |#1|) (-1122 |#1|))) (-15 -1500 ((-1122 |#1|) (-1122 |#1|))) (-15 -1511 ((-1122 |#1|) (-1122 |#1|))) (-15 -1525 ((-1122 |#1|) (-1122 |#1|))) (-15 -1538 ((-1122 |#1|) (-1122 |#1|))) (-15 -1551 ((-1122 |#1|) (-1122 |#1|))) (-15 -1562 ((-1122 |#1|) (-1122 |#1|))) (-15 -1575 ((-1122 |#1|) (-1122 |#1|))) (-15 -1585 ((-1122 |#1|) (-1122 |#1|))) (-15 -1599 ((-1122 |#1|) (-1122 |#1|))) (-15 -1612 ((-1122 |#1|) (-1122 |#1|))) (-15 -1625 ((-1122 |#1|) (-1122 |#1|))) (-15 -1884 ((-2 (|:| -1639 (-1122 |#1|)) (|:| -1649 (-1122 |#1|))) (-1122 |#1|))) (-15 -1639 ((-1122 |#1|) (-1122 |#1|))) (-15 -1649 ((-1122 |#1|) (-1122 |#1|))) (-15 -1663 ((-1122 |#1|) (-1122 |#1|))) (-15 -1674 ((-1122 |#1|) (-1122 |#1|))) (-15 -1685 ((-1122 |#1|) (-1122 |#1|))) (-15 -1697 ((-1122 |#1|) (-1122 |#1|))) (-15 -1708 ((-1122 |#1|) (-1122 |#1|))) (-15 -1721 ((-1122 |#1|) (-1122 |#1|))) (-15 -1732 ((-1122 |#1|) (-1122 |#1|))) (-15 -1744 ((-1122 |#1|) (-1122 |#1|))) (-15 -1757 ((-1122 |#1|) (-1122 |#1|))) (-15 -1933 ((-1122 |#1|) (-1122 |#1|)))) (-38 (-400 (-549)))) (T -1128))
-((-1933 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1721 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1697 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1674 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1663 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1649 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1884 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-549)))) (-5 *2 (-2 (|:| -1639 (-1122 *4)) (|:| -1649 (-1122 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-1122 *4)))) (-1625 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1585 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1538 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1525 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-3427 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-549)))) (-5 *2 (-2 (|:| -1485 (-1122 *4)) (|:| -1500 (-1122 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-1122 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-2718 (*1 *2 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))))
-(-10 -7 (-15 -2718 ((-1122 |#1|) (-1122 |#1|))) (-15 -3631 ((-1122 |#1|) (-1122 |#1|))) (-15 ** ((-1122 |#1|) (-1122 |#1|) (-1122 |#1|))) (-15 -3427 ((-2 (|:| -1485 (-1122 |#1|)) (|:| -1500 (-1122 |#1|))) (-1122 |#1|))) (-15 -1485 ((-1122 |#1|) (-1122 |#1|))) (-15 -1500 ((-1122 |#1|) (-1122 |#1|))) (-15 -1511 ((-1122 |#1|) (-1122 |#1|))) (-15 -1525 ((-1122 |#1|) (-1122 |#1|))) (-15 -1538 ((-1122 |#1|) (-1122 |#1|))) (-15 -1551 ((-1122 |#1|) (-1122 |#1|))) (-15 -1562 ((-1122 |#1|) (-1122 |#1|))) (-15 -1575 ((-1122 |#1|) (-1122 |#1|))) (-15 -1585 ((-1122 |#1|) (-1122 |#1|))) (-15 -1599 ((-1122 |#1|) (-1122 |#1|))) (-15 -1612 ((-1122 |#1|) (-1122 |#1|))) (-15 -1625 ((-1122 |#1|) (-1122 |#1|))) (-15 -1884 ((-2 (|:| -1639 (-1122 |#1|)) (|:| -1649 (-1122 |#1|))) (-1122 |#1|))) (-15 -1639 ((-1122 |#1|) (-1122 |#1|))) (-15 -1649 ((-1122 |#1|) (-1122 |#1|))) (-15 -1663 ((-1122 |#1|) (-1122 |#1|))) (-15 -1674 ((-1122 |#1|) (-1122 |#1|))) (-15 -1685 ((-1122 |#1|) (-1122 |#1|))) (-15 -1697 ((-1122 |#1|) (-1122 |#1|))) (-15 -1708 ((-1122 |#1|) (-1122 |#1|))) (-15 -1721 ((-1122 |#1|) (-1122 |#1|))) (-15 -1732 ((-1122 |#1|) (-1122 |#1|))) (-15 -1744 ((-1122 |#1|) (-1122 |#1|))) (-15 -1757 ((-1122 |#1|) (-1122 |#1|))) (-15 -1933 ((-1122 |#1|) (-1122 |#1|))))
-((-3367 (((-929 |#2|) |#2| |#2|) 35)) (-4212 ((|#2| |#2| |#1|) 19 (|has| |#1| (-300)))))
-(((-1129 |#1| |#2|) (-10 -7 (-15 -3367 ((-929 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -4212 (|#2| |#2| |#1|)) |%noBranch|)) (-541) (-1201 |#1|)) (T -1129))
-((-4212 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-4 *3 (-541)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-1201 *3)))) (-3367 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-929 *3)) (-5 *1 (-1129 *4 *3)) (-4 *3 (-1201 *4)))))
-(-10 -7 (-15 -3367 ((-929 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -4212 (|#2| |#2| |#1|)) |%noBranch|))
-((-3833 (((-112) $ $) NIL)) (-2218 (($ $ (-621 (-747))) 67)) (-3002 (($) 26)) (-3549 (($ $) 42)) (-2806 (((-621 $) $) 51)) (-3799 (((-112) $) 16)) (-2659 (((-621 (-914 |#2|)) $) 74)) (-3273 (($ $) 68)) (-2251 (((-747) $) 37)) (-3743 (($) 25)) (-3027 (($ $ (-621 (-747)) (-914 |#2|)) 60) (($ $ (-621 (-747)) (-747)) 61) (($ $ (-747) (-914 |#2|)) 63)) (-1586 (($ $ $) 48) (($ (-621 $)) 50)) (-1493 (((-747) $) 75)) (-2456 (((-112) $) 15)) (-2677 (((-1124) $) NIL)) (-1457 (((-112) $) 18)) (-3988 (((-1086) $) NIL)) (-2220 (((-169) $) 73)) (-3594 (((-914 |#2|) $) 69)) (-3626 (((-747) $) 70)) (-4000 (((-112) $) 72)) (-1767 (($ $ (-621 (-747)) (-169)) 66)) (-3040 (($ $) 43)) (-3845 (((-834) $) 86)) (-3392 (($ $ (-621 (-747)) (-112)) 65)) (-1935 (((-621 $) $) 11)) (-1785 (($ $ (-747)) 36)) (-3433 (($ $) 32)) (-3801 (($ $ $ (-914 |#2|) (-747)) 56)) (-1755 (($ $ (-914 |#2|)) 55)) (-3499 (($ $ (-621 (-747)) (-914 |#2|)) 54) (($ $ (-621 (-747)) (-747)) 58) (((-747) $ (-914 |#2|)) 59)) (-2388 (((-112) $ $) 80)))
-(((-1130 |#1| |#2|) (-13 (-1066) (-10 -8 (-15 -2456 ((-112) $)) (-15 -3799 ((-112) $)) (-15 -1457 ((-112) $)) (-15 -3743 ($)) (-15 -3002 ($)) (-15 -3433 ($ $)) (-15 -1785 ($ $ (-747))) (-15 -1935 ((-621 $) $)) (-15 -2251 ((-747) $)) (-15 -3549 ($ $)) (-15 -3040 ($ $)) (-15 -1586 ($ $ $)) (-15 -1586 ($ (-621 $))) (-15 -2806 ((-621 $) $)) (-15 -3499 ($ $ (-621 (-747)) (-914 |#2|))) (-15 -1755 ($ $ (-914 |#2|))) (-15 -3801 ($ $ $ (-914 |#2|) (-747))) (-15 -3027 ($ $ (-621 (-747)) (-914 |#2|))) (-15 -3499 ($ $ (-621 (-747)) (-747))) (-15 -3027 ($ $ (-621 (-747)) (-747))) (-15 -3499 ((-747) $ (-914 |#2|))) (-15 -3027 ($ $ (-747) (-914 |#2|))) (-15 -3392 ($ $ (-621 (-747)) (-112))) (-15 -1767 ($ $ (-621 (-747)) (-169))) (-15 -2218 ($ $ (-621 (-747)))) (-15 -3594 ((-914 |#2|) $)) (-15 -3626 ((-747) $)) (-15 -4000 ((-112) $)) (-15 -2220 ((-169) $)) (-15 -1493 ((-747) $)) (-15 -3273 ($ $)) (-15 -2659 ((-621 (-914 |#2|)) $)))) (-892) (-1018)) (T -1130))
-((-2456 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-3743 (*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-3002 (*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-3433 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-621 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-3549 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-3040 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-1586 (*1 *1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-1586 (*1 *1 *2) (-12 (-5 *2 (-621 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-621 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-3499 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-892)))) (-1755 (*1 *1 *1 *2) (-12 (-5 *2 (-914 *4)) (-4 *4 (-1018)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)))) (-3801 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-914 *5)) (-5 *3 (-747)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-892)))) (-3027 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-892)))) (-3499 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-747))) (-5 *3 (-747)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-892)) (-4 *5 (-1018)))) (-3027 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-747))) (-5 *3 (-747)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-892)) (-4 *5 (-1018)))) (-3499 (*1 *2 *1 *3) (-12 (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *2 (-747)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-892)))) (-3027 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-892)))) (-3392 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-747))) (-5 *3 (-112)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-892)) (-4 *5 (-1018)))) (-1767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-747))) (-5 *3 (-169)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-892)) (-4 *5 (-1018)))) (-2218 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-747))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-914 *4)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-2220 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-1493 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-3273 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-621 (-914 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))))
-(-13 (-1066) (-10 -8 (-15 -2456 ((-112) $)) (-15 -3799 ((-112) $)) (-15 -1457 ((-112) $)) (-15 -3743 ($)) (-15 -3002 ($)) (-15 -3433 ($ $)) (-15 -1785 ($ $ (-747))) (-15 -1935 ((-621 $) $)) (-15 -2251 ((-747) $)) (-15 -3549 ($ $)) (-15 -3040 ($ $)) (-15 -1586 ($ $ $)) (-15 -1586 ($ (-621 $))) (-15 -2806 ((-621 $) $)) (-15 -3499 ($ $ (-621 (-747)) (-914 |#2|))) (-15 -1755 ($ $ (-914 |#2|))) (-15 -3801 ($ $ $ (-914 |#2|) (-747))) (-15 -3027 ($ $ (-621 (-747)) (-914 |#2|))) (-15 -3499 ($ $ (-621 (-747)) (-747))) (-15 -3027 ($ $ (-621 (-747)) (-747))) (-15 -3499 ((-747) $ (-914 |#2|))) (-15 -3027 ($ $ (-747) (-914 |#2|))) (-15 -3392 ($ $ (-621 (-747)) (-112))) (-15 -1767 ($ $ (-621 (-747)) (-169))) (-15 -2218 ($ $ (-621 (-747)))) (-15 -3594 ((-914 |#2|) $)) (-15 -3626 ((-747) $)) (-15 -4000 ((-112) $)) (-15 -2220 ((-169) $)) (-15 -1493 ((-747) $)) (-15 -3273 ($ $)) (-15 -2659 ((-621 (-914 |#2|)) $))))
-((-3833 (((-112) $ $) NIL)) (-2202 ((|#2| $) 11)) (-2189 ((|#1| $) 10)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3853 (($ |#1| |#2|) 9)) (-3845 (((-834) $) 16)) (-2388 (((-112) $ $) NIL)))
-(((-1131 |#1| |#2|) (-13 (-1066) (-10 -8 (-15 -3853 ($ |#1| |#2|)) (-15 -2189 (|#1| $)) (-15 -2202 (|#2| $)))) (-1066) (-1066)) (T -1131))
-((-3853 (*1 *1 *2 *3) (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))) (-2189 (*1 *2 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-1131 *2 *3)) (-4 *3 (-1066)))) (-2202 (*1 *2 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1066)))))
-(-13 (-1066) (-10 -8 (-15 -3853 ($ |#1| |#2|)) (-15 -2189 (|#1| $)) (-15 -2202 (|#2| $))))
-((-3833 (((-112) $ $) NIL)) (-2823 (((-1101) $) 9)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-1132) (-13 (-1049) (-10 -8 (-15 -2823 ((-1101) $))))) (T -1132))
-((-2823 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1132)))))
-(-13 (-1049) (-10 -8 (-15 -2823 ((-1101) $))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2364 (((-1140 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-2271 (((-621 (-1048)) $) NIL)) (-3010 (((-1142) $) 11)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-2408 (($ $) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-2477 (((-112) $) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-2305 (($ $ (-549)) NIL) (($ $ (-549) (-549)) 66)) (-1480 (((-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) NIL)) (-3292 (((-1140 |#1| |#2| |#3|) $) 36)) (-1905 (((-3 (-1140 |#1| |#2| |#3|) "failed") $) 29)) (-2339 (((-1140 |#1| |#2| |#3|) $) 30)) (-1663 (($ $) 107 (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) 83 (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-1912 (($ $) NIL (|has| |#1| (-356)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1639 (($ $) 103 (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) 79 (|has| |#1| (-38 (-400 (-549)))))) (-3902 (((-549) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2825 (($ (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) NIL)) (-1685 (($ $) 111 (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) 87 (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-1140 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1142) "failed") $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356)))) (((-3 (-549) "failed") $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356))))) (-2658 (((-1140 |#1| |#2| |#3|) $) 131) (((-1142) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (((-400 (-549)) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356)))) (((-549) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356))))) (-3817 (($ $) 34) (($ (-549) $) 35)) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2069 (($ $) NIL)) (-1698 (((-665 (-1140 |#1| |#2| |#3|)) (-665 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1859 (-665 (-1140 |#1| |#2| |#3|))) (|:| |vec| (-1225 (-1140 |#1| |#2| |#3|)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-617 (-549))) (|has| |#1| (-356)))) (((-665 (-549)) (-665 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-617 (-549))) (|has| |#1| (-356))))) (-3976 (((-3 $ "failed") $) 48)) (-2390 (((-400 (-923 |#1|)) $ (-549)) 65 (|has| |#1| (-541))) (((-400 (-923 |#1|)) $ (-549) (-549)) 67 (|has| |#1| (-541)))) (-3238 (($) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-2471 (((-112) $) NIL (|has| |#1| (-356)))) (-3079 (((-112) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-3155 (((-112) $) 25)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-857 (-549))) (|has| |#1| (-356)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-857 (-372))) (|has| |#1| (-356))))) (-2078 (((-549) $) NIL) (((-549) $ (-549)) 24)) (-3987 (((-112) $) NIL)) (-2053 (($ $) NIL (|has| |#1| (-356)))) (-1393 (((-1140 |#1| |#2| |#3|) $) 38 (|has| |#1| (-356)))) (-3930 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3982 (((-3 $ "failed") $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1117)) (|has| |#1| (-356))))) (-2847 (((-112) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2769 (($ $ (-892)) NIL)) (-4299 (($ (-1 |#1| (-549)) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-549)) 18) (($ $ (-1048) (-549)) NIL) (($ $ (-621 (-1048)) (-621 (-549))) NIL)) (-2862 (($ $ $) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3574 (($ $ $) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-3631 (($ $) 72 (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2354 (($ (-549) (-1140 |#1| |#2| |#3|)) 33)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL (|has| |#1| (-356)))) (-1531 (($ $) 70 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) NIL (-1536 (-12 (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1164))))) (($ $ (-1221 |#2|)) 71 (|has| |#1| (-38 (-400 (-549)))))) (-3060 (($) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1117)) (|has| |#1| (-356))) CONST)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-356)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1260 (($ $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-4060 (((-1140 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-2120 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2975 (($ $ (-549)) 145)) (-2038 (((-3 $ "failed") $ $) 49 (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2718 (($ $) 73 (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1142) (-1140 |#1| |#2| |#3|)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-505 (-1142) (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-621 (-1142)) (-621 (-1140 |#1| |#2| |#3|))) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-505 (-1142) (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-621 (-287 (-1140 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-287 (-1140 |#1| |#2| |#3|))) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-621 (-1140 |#1| |#2| |#3|)) (-621 (-1140 |#1| |#2| |#3|))) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-4091 (((-747) $) NIL (|has| |#1| (-356)))) (-3340 ((|#1| $ (-549)) NIL) (($ $ $) 54 (|has| (-549) (-1078))) (($ $ (-1140 |#1| |#2| |#3|)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-279 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-3455 (($ $ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1221 |#2|)) 51) (($ $ (-747)) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 50 (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-1142) (-747)) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-621 (-1142))) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-1142)) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))))) (-4288 (($ $) NIL (|has| |#1| (-356)))) (-1404 (((-1140 |#1| |#2| |#3|) $) 41 (|has| |#1| (-356)))) (-3068 (((-549) $) 37)) (-1697 (($ $) 113 (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) 89 (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) 109 (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) 85 (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) 105 (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) 81 (|has| |#1| (-38 (-400 (-549)))))) (-2844 (((-525) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-594 (-525))) (|has| |#1| (-356)))) (((-372) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-993)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-993)) (|has| |#1| (-356)))) (((-863 (-372)) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-594 (-863 (-372)))) (|has| |#1| (-356)))) (((-863 (-549)) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-594 (-863 (-549)))) (|has| |#1| (-356))))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-1140 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-1814 (($ $) NIL)) (-3845 (((-834) $) 149) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1140 |#1| |#2| |#3|)) 27) (($ (-1221 |#2|)) 23) (($ (-1142)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (($ $) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541)))) (($ (-400 (-549))) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-549))))))) (-2944 ((|#1| $ (-549)) 68)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-1140 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-1723 (((-747)) NIL)) (-2597 ((|#1| $) 12)) (-2926 (((-1140 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-1732 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) 95 (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-1708 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) 91 (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 99 (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-549)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) 101 (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) 97 (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) 93 (|has| |#1| (-38 (-400 (-549)))))) (-3603 (($ $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-3275 (($) 20 T CONST)) (-3287 (($) 16 T CONST)) (-1700 (($ $ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-1142) (-747)) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-621 (-1142))) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-1142)) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))))) (-2448 (((-112) $ $) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2424 (((-112) $ $) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2411 (((-112) $ $) NIL (-1536 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 44 (|has| |#1| (-356))) (($ (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) 45 (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 21)) (** (($ $ (-892)) NIL) (($ $ (-747)) 53) (($ $ (-549)) NIL (|has| |#1| (-356))) (($ $ $) 74 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 128 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1140 |#1| |#2| |#3|)) 43 (|has| |#1| (-356))) (($ (-1140 |#1| |#2| |#3|) $) 42 (|has| |#1| (-356))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-1133 |#1| |#2| |#3|) (-13 (-1187 |#1| (-1140 |#1| |#2| |#3|)) (-10 -8 (-15 -3845 ($ (-1221 |#2|))) (-15 -3455 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1133))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-1531 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
-(-13 (-1187 |#1| (-1140 |#1| |#2| |#3|)) (-10 -8 (-15 -3845 ($ (-1221 |#2|))) (-15 -3455 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|)))
-((-2820 ((|#2| |#2| (-1058 |#2|)) 26) ((|#2| |#2| (-1142)) 28)))
-(((-1134 |#1| |#2|) (-10 -7 (-15 -2820 (|#2| |#2| (-1142))) (-15 -2820 (|#2| |#2| (-1058 |#2|)))) (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-423 |#1|) (-158) (-27) (-1164))) (T -1134))
-((-2820 (*1 *2 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1164))) (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1134 *4 *2)))) (-2820 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1164))))))
-(-10 -7 (-15 -2820 (|#2| |#2| (-1142))) (-15 -2820 (|#2| |#2| (-1058 |#2|))))
-((-2820 (((-3 (-400 (-923 |#1|)) (-309 |#1|)) (-400 (-923 |#1|)) (-1058 (-400 (-923 |#1|)))) 31) (((-400 (-923 |#1|)) (-923 |#1|) (-1058 (-923 |#1|))) 44) (((-3 (-400 (-923 |#1|)) (-309 |#1|)) (-400 (-923 |#1|)) (-1142)) 33) (((-400 (-923 |#1|)) (-923 |#1|) (-1142)) 36)))
-(((-1135 |#1|) (-10 -7 (-15 -2820 ((-400 (-923 |#1|)) (-923 |#1|) (-1142))) (-15 -2820 ((-3 (-400 (-923 |#1|)) (-309 |#1|)) (-400 (-923 |#1|)) (-1142))) (-15 -2820 ((-400 (-923 |#1|)) (-923 |#1|) (-1058 (-923 |#1|)))) (-15 -2820 ((-3 (-400 (-923 |#1|)) (-309 |#1|)) (-400 (-923 |#1|)) (-1058 (-400 (-923 |#1|)))))) (-13 (-541) (-823) (-1009 (-549)))) (T -1135))
-((-2820 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-400 (-923 *5)))) (-5 *3 (-400 (-923 *5))) (-4 *5 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-3 *3 (-309 *5))) (-5 *1 (-1135 *5)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-923 *5))) (-5 *3 (-923 *5)) (-4 *5 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-400 *3)) (-5 *1 (-1135 *5)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-3 (-400 (-923 *5)) (-309 *5))) (-5 *1 (-1135 *5)) (-5 *3 (-400 (-923 *5))))) (-2820 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-400 (-923 *5))) (-5 *1 (-1135 *5)) (-5 *3 (-923 *5)))))
-(-10 -7 (-15 -2820 ((-400 (-923 |#1|)) (-923 |#1|) (-1142))) (-15 -2820 ((-3 (-400 (-923 |#1|)) (-309 |#1|)) (-400 (-923 |#1|)) (-1142))) (-15 -2820 ((-400 (-923 |#1|)) (-923 |#1|) (-1058 (-923 |#1|)))) (-15 -2820 ((-3 (-400 (-923 |#1|)) (-309 |#1|)) (-400 (-923 |#1|)) (-1058 (-400 (-923 |#1|))))))
-((-2796 (((-1138 |#2|) (-1 |#2| |#1|) (-1138 |#1|)) 13)))
-(((-1136 |#1| |#2|) (-10 -7 (-15 -2796 ((-1138 |#2|) (-1 |#2| |#1|) (-1138 |#1|)))) (-1018) (-1018)) (T -1136))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-1138 *6)) (-5 *1 (-1136 *5 *6)))))
-(-10 -7 (-15 -2796 ((-1138 |#2|) (-1 |#2| |#1|) (-1138 |#1|))))
-((-3513 (((-411 (-1138 (-400 |#4|))) (-1138 (-400 |#4|))) 51)) (-2120 (((-411 (-1138 (-400 |#4|))) (-1138 (-400 |#4|))) 52)))
-(((-1137 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2120 ((-411 (-1138 (-400 |#4|))) (-1138 (-400 |#4|)))) (-15 -3513 ((-411 (-1138 (-400 |#4|))) (-1138 (-400 |#4|))))) (-769) (-823) (-444) (-920 |#3| |#1| |#2|)) (T -1137))
-((-3513 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-411 (-1138 (-400 *7)))) (-5 *1 (-1137 *4 *5 *6 *7)) (-5 *3 (-1138 (-400 *7))))) (-2120 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-411 (-1138 (-400 *7)))) (-5 *1 (-1137 *4 *5 *6 *7)) (-5 *3 (-1138 (-400 *7))))))
-(-10 -7 (-15 -2120 ((-411 (-1138 (-400 |#4|))) (-1138 (-400 |#4|)))) (-15 -3513 ((-411 (-1138 (-400 |#4|))) (-1138 (-400 |#4|)))))
-((-3833 (((-112) $ $) 137)) (-3166 (((-112) $) 27)) (-4186 (((-1225 |#1|) $ (-747)) NIL)) (-2271 (((-621 (-1048)) $) NIL)) (-1916 (($ (-1138 |#1|)) NIL)) (-2082 (((-1138 $) $ (-1048)) 58) (((-1138 |#1|) $) 47)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) 132 (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 (-1048))) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3767 (($ $ $) 126 (|has| |#1| (-541)))) (-2461 (((-411 (-1138 $)) (-1138 $)) 71 (|has| |#1| (-880)))) (-1912 (($ $) NIL (|has| |#1| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 91 (|has| |#1| (-880)))) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3831 (($ $ (-747)) 39)) (-2912 (($ $ (-747)) 40)) (-2806 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-1048) "failed") $) NIL)) (-2658 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-1048) $) NIL)) (-2252 (($ $ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2069 (($ $) 56)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-3856 (($ $ $) 104)) (-3593 (($ $ $) NIL (|has| |#1| (-541)))) (-3285 (((-2 (|:| -1569 |#1|) (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-541)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-4212 (($ $) 133 (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#1| (-880)))) (-3744 (($ $ |#1| (-747) $) 45)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1048) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1048) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-3895 (((-834) $ (-834)) 117)) (-2078 (((-747) $ $) NIL (|has| |#1| (-541)))) (-3987 (((-112) $) 30)) (-3454 (((-747) $) NIL)) (-3982 (((-3 $ "failed") $) NIL (|has| |#1| (-1117)))) (-2258 (($ (-1138 |#1|) (-1048)) 49) (($ (-1138 $) (-1048)) 65)) (-2769 (($ $ (-747)) 32)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-747)) 63) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ (-1048)) NIL) (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 121)) (-2856 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-4058 (($ (-1 (-747) (-747)) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-2605 (((-1138 |#1|) $) NIL)) (-1790 (((-3 (-1048) "failed") $) NIL)) (-2027 (($ $) NIL)) (-2042 ((|#1| $) 52)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2677 (((-1124) $) NIL)) (-4175 (((-2 (|:| -2112 $) (|:| -3249 $)) $ (-747)) 38)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| (-1048)) (|:| -3577 (-747))) "failed") $) NIL)) (-1531 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3060 (($) NIL (|has| |#1| (-1117)) CONST)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) 31)) (-2012 ((|#1| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 79 (|has| |#1| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) 135 (|has| |#1| (-444)))) (-3314 (($ $ (-747) |#1| $) 99)) (-1873 (((-411 (-1138 $)) (-1138 $)) 77 (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) 76 (|has| |#1| (-880)))) (-2120 (((-411 $) $) 84 (|has| |#1| (-880)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2038 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1048) |#1|) NIL) (($ $ (-621 (-1048)) (-621 |#1|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-621 (-1048)) (-621 $)) NIL)) (-4091 (((-747) $) NIL (|has| |#1| (-356)))) (-3340 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-541))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-541)))) (-2646 (((-3 $ "failed") $ (-747)) 35)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 138 (|has| |#1| (-356)))) (-3086 (($ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-3455 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3068 (((-747) $) 54) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-1048) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-1931 ((|#1| $) 130 (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3791 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#1| (-541)))) (-3845 (((-834) $) 118) (($ (-549)) NIL) (($ |#1|) 53) (($ (-1048)) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) 25 (|has| |#1| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3275 (($) 15 T CONST)) (-3287 (($) 16 T CONST)) (-1700 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) 96)) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2512 (($ $ |#1|) 139 (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 66)) (** (($ $ (-892)) 14) (($ $ (-747)) 12)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 24) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1138 |#1|) (-13 (-1201 |#1|) (-10 -8 (-15 -3895 ((-834) $ (-834))) (-15 -3314 ($ $ (-747) |#1| $)))) (-1018)) (T -1138))
-((-3895 (*1 *2 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1138 *3)) (-4 *3 (-1018)))) (-3314 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1138 *3)) (-4 *3 (-1018)))))
-(-13 (-1201 |#1|) (-10 -8 (-15 -3895 ((-834) $ (-834))) (-15 -3314 ($ $ (-747) |#1| $))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2271 (((-621 (-1048)) $) NIL)) (-3010 (((-1142) $) 11)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-2305 (($ $ (-400 (-549))) NIL) (($ $ (-400 (-549)) (-400 (-549))) NIL)) (-1480 (((-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) NIL)) (-1663 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL (|has| |#1| (-356)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1639 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2825 (($ (-747) (-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) NIL)) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-1133 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1140 |#1| |#2| |#3|) "failed") $) 36)) (-2658 (((-1133 |#1| |#2| |#3|) $) NIL) (((-1140 |#1| |#2| |#3|) $) NIL)) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-1668 (((-400 (-549)) $) 55)) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-2366 (($ (-400 (-549)) (-1133 |#1| |#2| |#3|)) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-2471 (((-112) $) NIL (|has| |#1| (-356)))) (-3155 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-400 (-549)) $) NIL) (((-400 (-549)) $ (-400 (-549))) NIL)) (-3987 (((-112) $) NIL)) (-3930 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2769 (($ $ (-892)) NIL) (($ $ (-400 (-549))) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-400 (-549))) 20) (($ $ (-1048) (-400 (-549))) NIL) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-3631 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4220 (((-1133 |#1| |#2| |#3|) $) 41)) (-2338 (((-3 (-1133 |#1| |#2| |#3|) "failed") $) NIL)) (-2354 (((-1133 |#1| |#2| |#3|) $) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL (|has| |#1| (-356)))) (-1531 (($ $) 39 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) NIL (-1536 (-12 (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1164))))) (($ $ (-1221 |#2|)) 40 (|has| |#1| (-38 (-400 (-549)))))) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-356)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2975 (($ $ (-400 (-549))) NIL)) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2718 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-4091 (((-747) $) NIL (|has| |#1| (-356)))) (-3340 ((|#1| $ (-400 (-549))) NIL) (($ $ $) NIL (|has| (-400 (-549)) (-1078)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $ (-1221 |#2|)) 38)) (-3068 (((-400 (-549)) $) NIL)) (-1697 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) NIL)) (-3845 (((-834) $) 58) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1133 |#1| |#2| |#3|)) 30) (($ (-1140 |#1| |#2| |#3|)) 31) (($ (-1221 |#2|)) 26) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541)))) (-2944 ((|#1| $ (-400 (-549))) NIL)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-2597 ((|#1| $) 12)) (-1732 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1708 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-400 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) 22 T CONST)) (-3287 (($) 16 T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 24)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-1139 |#1| |#2| |#3|) (-13 (-1208 |#1| (-1133 |#1| |#2| |#3|)) (-1009 (-1140 |#1| |#2| |#3|)) (-10 -8 (-15 -3845 ($ (-1221 |#2|))) (-15 -3455 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1139))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-1531 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
-(-13 (-1208 |#1| (-1133 |#1| |#2| |#3|)) (-1009 (-1140 |#1| |#2| |#3|)) (-10 -8 (-15 -3845 ($ (-1221 |#2|))) (-15 -3455 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 125)) (-2271 (((-621 (-1048)) $) NIL)) (-3010 (((-1142) $) 116)) (-2984 (((-1198 |#2| |#1|) $ (-747)) 63)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-2305 (($ $ (-747)) 79) (($ $ (-747) (-747)) 76)) (-1480 (((-1122 (-2 (|:| |k| (-747)) (|:| |c| |#1|))) $) 102)) (-1663 (($ $) 169 (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) 145 (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1639 (($ $) 165 (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-2825 (($ (-1122 (-2 (|:| |k| (-747)) (|:| |c| |#1|)))) 115) (($ (-1122 |#1|)) 110)) (-1685 (($ $) 173 (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) 149 (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) NIL T CONST)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) 23)) (-1471 (($ $) 26)) (-1413 (((-923 |#1|) $ (-747)) 75) (((-923 |#1|) $ (-747) (-747)) 77)) (-3155 (((-112) $) 120)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-747) $) 122) (((-747) $ (-747)) 124)) (-3987 (((-112) $) NIL)) (-3930 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2769 (($ $ (-892)) NIL)) (-4299 (($ (-1 |#1| (-549)) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-747)) 13) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-3631 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-1531 (($ $) 129 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) NIL (-1536 (-12 (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1164))))) (($ $ (-1221 |#2|)) 130 (|has| |#1| (-38 (-400 (-549)))))) (-3988 (((-1086) $) NIL)) (-2975 (($ $ (-747)) 15)) (-2038 (((-3 $ "failed") $ $) 24 (|has| |#1| (-541)))) (-2718 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-747)))))) (-3340 ((|#1| $ (-747)) 119) (($ $ $) 128 (|has| (-747) (-1078)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $ (-1221 |#2|)) 29)) (-3068 (((-747) $) NIL)) (-1697 (($ $) 175 (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) 151 (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) 171 (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) 147 (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) 167 (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) 143 (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) NIL)) (-3845 (((-834) $) 201) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1198 |#2| |#1|)) 51) (($ (-1221 |#2|)) 32)) (-3330 (((-1122 |#1|) $) 98)) (-2944 ((|#1| $ (-747)) 118)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-2597 ((|#1| $) 54)) (-1732 (($ $) 181 (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) 157 (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1708 (($ $) 177 (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) 153 (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) 185 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 161 (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-747)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-747)))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) 187 (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) 163 (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) 183 (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) 159 (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) 179 (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) 155 (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) 17 T CONST)) (-3287 (($) 19 T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) 194)) (-2485 (($ $ $) 31)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ |#1|) 198 (|has| |#1| (-356))) (($ $ $) 134 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 137 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-1140 |#1| |#2| |#3|) (-13 (-1216 |#1|) (-10 -8 (-15 -3845 ($ (-1198 |#2| |#1|))) (-15 -2984 ((-1198 |#2| |#1|) $ (-747))) (-15 -3845 ($ (-1221 |#2|))) (-15 -3455 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1140))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1198 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-1140 *3 *4 *5)))) (-2984 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1198 *5 *4)) (-5 *1 (-1140 *4 *5 *6)) (-4 *4 (-1018)) (-14 *5 (-1142)) (-14 *6 *4))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-1531 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
-(-13 (-1216 |#1|) (-10 -8 (-15 -3845 ($ (-1198 |#2| |#1|))) (-15 -2984 ((-1198 |#2| |#1|) $ (-747))) (-15 -3845 ($ (-1221 |#2|))) (-15 -3455 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|)))
-((-3845 (((-834) $) 27) (($ (-1142)) 29)) (-1536 (($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 40)) (-1522 (($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 33) (($ $) 34)) (-3397 (($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 35)) (-3387 (($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 37)) (-3374 (($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 36)) (-3363 (($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 38)) (-3907 (($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 39)))
-(((-1141) (-13 (-593 (-834)) (-10 -8 (-15 -3845 ($ (-1142))) (-15 -3397 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3374 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3387 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3363 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1536 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3907 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1522 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1522 ($ $))))) (T -1141))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1141)))) (-3397 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3374 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3387 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3363 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-1536 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3907 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-1522 (*1 *1 *1) (-5 *1 (-1141))))
-(-13 (-593 (-834)) (-10 -8 (-15 -3845 ($ (-1142))) (-15 -3397 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3374 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3387 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3363 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1536 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3907 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1522 ($ (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1522 ($ $))))
-((-3833 (((-112) $ $) NIL)) (-3348 (($ $ (-621 (-834))) 59)) (-3516 (($ $ (-621 (-834))) 57)) (-1524 (((-1124) $) 84)) (-4218 (((-2 (|:| -3161 (-621 (-834))) (|:| -3100 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -4229 (-621 (-834))) (|:| |args| (-621 (-834)))) $) 87)) (-1341 (((-112) $) 22)) (-1446 (($ $ (-621 (-621 (-834)))) 56) (($ $ (-2 (|:| -3161 (-621 (-834))) (|:| -3100 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -4229 (-621 (-834))) (|:| |args| (-621 (-834))))) 82)) (-1705 (($) 124 T CONST)) (-3710 (((-1230)) 106)) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 66) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 73)) (-3743 (($) 95) (($ $) 101)) (-2480 (($ $) 83)) (-2862 (($ $ $) NIL)) (-3574 (($ $ $) NIL)) (-3524 (((-621 $) $) 107)) (-2677 (((-1124) $) 90)) (-3988 (((-1086) $) NIL)) (-3340 (($ $ (-621 (-834))) 58)) (-2844 (((-525) $) 46) (((-1142) $) 47) (((-863 (-549)) $) 77) (((-863 (-372)) $) 75)) (-3845 (((-834) $) 53) (($ (-1124)) 48)) (-3488 (($ $ (-621 (-834))) 60)) (-3135 (((-1124) $) 33) (((-1124) $ (-112)) 34) (((-1230) (-798) $) 35) (((-1230) (-798) $ (-112)) 36)) (-2448 (((-112) $ $) NIL)) (-2424 (((-112) $ $) NIL)) (-2388 (((-112) $ $) 49)) (-2436 (((-112) $ $) NIL)) (-2411 (((-112) $ $) 50)))
-(((-1142) (-13 (-823) (-594 (-525)) (-804) (-594 (-1142)) (-594 (-863 (-549))) (-594 (-863 (-372))) (-857 (-549)) (-857 (-372)) (-10 -8 (-15 -3743 ($)) (-15 -3743 ($ $)) (-15 -3710 ((-1230))) (-15 -3845 ($ (-1124))) (-15 -2480 ($ $)) (-15 -1341 ((-112) $)) (-15 -4218 ((-2 (|:| -3161 (-621 (-834))) (|:| -3100 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -4229 (-621 (-834))) (|:| |args| (-621 (-834)))) $)) (-15 -1446 ($ $ (-621 (-621 (-834))))) (-15 -1446 ($ $ (-2 (|:| -3161 (-621 (-834))) (|:| -3100 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -4229 (-621 (-834))) (|:| |args| (-621 (-834)))))) (-15 -3516 ($ $ (-621 (-834)))) (-15 -3348 ($ $ (-621 (-834)))) (-15 -3488 ($ $ (-621 (-834)))) (-15 -3340 ($ $ (-621 (-834)))) (-15 -1524 ((-1124) $)) (-15 -3524 ((-621 $) $)) (-15 -1705 ($) -2588)))) (T -1142))
-((-3743 (*1 *1) (-5 *1 (-1142))) (-3743 (*1 *1 *1) (-5 *1 (-1142))) (-3710 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1142)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1142)))) (-2480 (*1 *1 *1) (-5 *1 (-1142))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142)))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3161 (-621 (-834))) (|:| -3100 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -4229 (-621 (-834))) (|:| |args| (-621 (-834))))) (-5 *1 (-1142)))) (-1446 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-621 (-834)))) (-5 *1 (-1142)))) (-1446 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3161 (-621 (-834))) (|:| -3100 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -4229 (-621 (-834))) (|:| |args| (-621 (-834))))) (-5 *1 (-1142)))) (-3516 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1142)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1142)))) (-3488 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1142)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1142)))) (-1524 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1142)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-1142)))) (-1705 (*1 *1) (-5 *1 (-1142))))
-(-13 (-823) (-594 (-525)) (-804) (-594 (-1142)) (-594 (-863 (-549))) (-594 (-863 (-372))) (-857 (-549)) (-857 (-372)) (-10 -8 (-15 -3743 ($)) (-15 -3743 ($ $)) (-15 -3710 ((-1230))) (-15 -3845 ($ (-1124))) (-15 -2480 ($ $)) (-15 -1341 ((-112) $)) (-15 -4218 ((-2 (|:| -3161 (-621 (-834))) (|:| -3100 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -4229 (-621 (-834))) (|:| |args| (-621 (-834)))) $)) (-15 -1446 ($ $ (-621 (-621 (-834))))) (-15 -1446 ($ $ (-2 (|:| -3161 (-621 (-834))) (|:| -3100 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -4229 (-621 (-834))) (|:| |args| (-621 (-834)))))) (-15 -3516 ($ $ (-621 (-834)))) (-15 -3348 ($ $ (-621 (-834)))) (-15 -3488 ($ $ (-621 (-834)))) (-15 -3340 ($ $ (-621 (-834)))) (-15 -1524 ((-1124) $)) (-15 -3524 ((-621 $) $)) (-15 -1705 ($) -2588)))
-((-3512 (((-1225 |#1|) |#1| (-892)) 16) (((-1225 |#1|) (-621 |#1|)) 20)))
-(((-1143 |#1|) (-10 -7 (-15 -3512 ((-1225 |#1|) (-621 |#1|))) (-15 -3512 ((-1225 |#1|) |#1| (-892)))) (-1018)) (T -1143))
-((-3512 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-5 *2 (-1225 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1018)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-1018)) (-5 *2 (-1225 *4)) (-5 *1 (-1143 *4)))))
-(-10 -7 (-15 -3512 ((-1225 |#1|) (-621 |#1|))) (-15 -3512 ((-1225 |#1|) |#1| (-892))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2658 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-444)))) (-3744 (($ $ |#1| (-942) $) NIL)) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-942)) NIL)) (-2856 (((-942) $) NIL)) (-4058 (($ (-1 (-942) (-942)) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) NIL)) (-2012 ((|#1| $) NIL)) (-3314 (($ $ (-942) |#1| $) NIL (-12 (|has| (-942) (-130)) (|has| |#1| (-541))))) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-3068 (((-942) $) NIL)) (-1931 ((|#1| $) NIL (|has| |#1| (-444)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL (|has| |#1| (-541))) (($ |#1|) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ (-942)) NIL)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3275 (($) 9 T CONST)) (-3287 (($) 14 T CONST)) (-2388 (((-112) $ $) 16)) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 19)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-1144 |#1|) (-13 (-319 |#1| (-942)) (-10 -8 (IF (|has| |#1| (-541)) (IF (|has| (-942) (-130)) (-15 -3314 ($ $ (-942) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|))) (-1018)) (T -1144))
-((-3314 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-942)) (-4 *2 (-130)) (-5 *1 (-1144 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))))
-(-13 (-319 |#1| (-942)) (-10 -8 (IF (|has| |#1| (-541)) (IF (|has| (-942) (-130)) (-15 -3314 ($ $ (-942) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|)))
-((-2422 (((-1146) (-1142) $) 25)) (-3729 (($) 29)) (-3437 (((-3 (|:| |fst| (-427)) (|:| -2902 "void")) (-1142) $) 22)) (-2991 (((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -2902 "void")) $) 41) (((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) 42) (((-1230) (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) 43)) (-3934 (((-1230) (-1142)) 58)) (-2889 (((-1230) (-1142) $) 55) (((-1230) (-1142)) 56) (((-1230)) 57)) (-4017 (((-1230) (-1142)) 37)) (-3088 (((-1142)) 36)) (-1461 (($) 34)) (-4099 (((-430) (-1142) (-430) (-1142) $) 45) (((-430) (-621 (-1142)) (-430) (-1142) $) 49) (((-430) (-1142) (-430)) 46) (((-430) (-1142) (-430) (-1142)) 50)) (-2473 (((-1142)) 35)) (-3845 (((-834) $) 28)) (-1791 (((-1230)) 30) (((-1230) (-1142)) 33)) (-4265 (((-621 (-1142)) (-1142) $) 24)) (-1295 (((-1230) (-1142) (-621 (-1142)) $) 38) (((-1230) (-1142) (-621 (-1142))) 39) (((-1230) (-621 (-1142))) 40)))
-(((-1145) (-13 (-593 (-834)) (-10 -8 (-15 -3729 ($)) (-15 -1791 ((-1230))) (-15 -1791 ((-1230) (-1142))) (-15 -4099 ((-430) (-1142) (-430) (-1142) $)) (-15 -4099 ((-430) (-621 (-1142)) (-430) (-1142) $)) (-15 -4099 ((-430) (-1142) (-430))) (-15 -4099 ((-430) (-1142) (-430) (-1142))) (-15 -4017 ((-1230) (-1142))) (-15 -2473 ((-1142))) (-15 -3088 ((-1142))) (-15 -1295 ((-1230) (-1142) (-621 (-1142)) $)) (-15 -1295 ((-1230) (-1142) (-621 (-1142)))) (-15 -1295 ((-1230) (-621 (-1142)))) (-15 -2991 ((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -2902 "void")) $)) (-15 -2991 ((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -2902 "void")))) (-15 -2991 ((-1230) (-3 (|:| |fst| (-427)) (|:| -2902 "void")))) (-15 -2889 ((-1230) (-1142) $)) (-15 -2889 ((-1230) (-1142))) (-15 -2889 ((-1230))) (-15 -3934 ((-1230) (-1142))) (-15 -1461 ($)) (-15 -3437 ((-3 (|:| |fst| (-427)) (|:| -2902 "void")) (-1142) $)) (-15 -4265 ((-621 (-1142)) (-1142) $)) (-15 -2422 ((-1146) (-1142) $))))) (T -1145))
-((-3729 (*1 *1) (-5 *1 (-1145))) (-1791 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1145)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-4099 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-430)) (-5 *3 (-1142)) (-5 *1 (-1145)))) (-4099 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-430)) (-5 *3 (-621 (-1142))) (-5 *4 (-1142)) (-5 *1 (-1145)))) (-4099 (*1 *2 *3 *2) (-12 (-5 *2 (-430)) (-5 *3 (-1142)) (-5 *1 (-1145)))) (-4099 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-430)) (-5 *3 (-1142)) (-5 *1 (-1145)))) (-4017 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-2473 (*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1145)))) (-3088 (*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1145)))) (-1295 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-621 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-1295 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-1295 (*1 *2 *3) (-12 (-5 *3 (-621 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-2991 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1142)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-2991 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-2991 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-2889 (*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-2889 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-1461 (*1 *1) (-5 *1 (-1145))) (-3437 (*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-5 *1 (-1145)))) (-4265 (*1 *2 *3 *1) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-1145)) (-5 *3 (-1142)))) (-2422 (*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-1146)) (-5 *1 (-1145)))))
-(-13 (-593 (-834)) (-10 -8 (-15 -3729 ($)) (-15 -1791 ((-1230))) (-15 -1791 ((-1230) (-1142))) (-15 -4099 ((-430) (-1142) (-430) (-1142) $)) (-15 -4099 ((-430) (-621 (-1142)) (-430) (-1142) $)) (-15 -4099 ((-430) (-1142) (-430))) (-15 -4099 ((-430) (-1142) (-430) (-1142))) (-15 -4017 ((-1230) (-1142))) (-15 -2473 ((-1142))) (-15 -3088 ((-1142))) (-15 -1295 ((-1230) (-1142) (-621 (-1142)) $)) (-15 -1295 ((-1230) (-1142) (-621 (-1142)))) (-15 -1295 ((-1230) (-621 (-1142)))) (-15 -2991 ((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -2902 "void")) $)) (-15 -2991 ((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -2902 "void")))) (-15 -2991 ((-1230) (-3 (|:| |fst| (-427)) (|:| -2902 "void")))) (-15 -2889 ((-1230) (-1142) $)) (-15 -2889 ((-1230) (-1142))) (-15 -2889 ((-1230))) (-15 -3934 ((-1230) (-1142))) (-15 -1461 ($)) (-15 -3437 ((-3 (|:| |fst| (-427)) (|:| -2902 "void")) (-1142) $)) (-15 -4265 ((-621 (-1142)) (-1142) $)) (-15 -2422 ((-1146) (-1142) $))))
-((-2165 (((-621 (-621 (-3 (|:| -2480 (-1142)) (|:| -4206 (-621 (-3 (|:| S (-1142)) (|:| P (-923 (-549))))))))) $) 59)) (-3991 (((-621 (-3 (|:| -2480 (-1142)) (|:| -4206 (-621 (-3 (|:| S (-1142)) (|:| P (-923 (-549)))))))) (-427) $) 43)) (-3271 (($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-430))))) 17)) (-3934 (((-1230) $) 67)) (-3209 (((-621 (-1142)) $) 22)) (-1977 (((-1070) $) 55)) (-2296 (((-430) (-1142) $) 27)) (-3948 (((-621 (-1142)) $) 30)) (-1461 (($) 19)) (-4099 (((-430) (-621 (-1142)) (-430) $) 25) (((-430) (-1142) (-430) $) 24)) (-3845 (((-834) $) 9) (((-1152 (-1142) (-430)) $) 13)))
-(((-1146) (-13 (-593 (-834)) (-10 -8 (-15 -3845 ((-1152 (-1142) (-430)) $)) (-15 -1461 ($)) (-15 -4099 ((-430) (-621 (-1142)) (-430) $)) (-15 -4099 ((-430) (-1142) (-430) $)) (-15 -2296 ((-430) (-1142) $)) (-15 -3209 ((-621 (-1142)) $)) (-15 -3991 ((-621 (-3 (|:| -2480 (-1142)) (|:| -4206 (-621 (-3 (|:| S (-1142)) (|:| P (-923 (-549)))))))) (-427) $)) (-15 -3948 ((-621 (-1142)) $)) (-15 -2165 ((-621 (-621 (-3 (|:| -2480 (-1142)) (|:| -4206 (-621 (-3 (|:| S (-1142)) (|:| P (-923 (-549))))))))) $)) (-15 -1977 ((-1070) $)) (-15 -3934 ((-1230) $)) (-15 -3271 ($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-430))))))))) (T -1146))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-1152 (-1142) (-430))) (-5 *1 (-1146)))) (-1461 (*1 *1) (-5 *1 (-1146))) (-4099 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-430)) (-5 *3 (-621 (-1142))) (-5 *1 (-1146)))) (-4099 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-430)) (-5 *3 (-1142)) (-5 *1 (-1146)))) (-2296 (*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-430)) (-5 *1 (-1146)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-1146)))) (-3991 (*1 *2 *3 *1) (-12 (-5 *3 (-427)) (-5 *2 (-621 (-3 (|:| -2480 (-1142)) (|:| -4206 (-621 (-3 (|:| S (-1142)) (|:| P (-923 (-549))))))))) (-5 *1 (-1146)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-1146)))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-3 (|:| -2480 (-1142)) (|:| -4206 (-621 (-3 (|:| S (-1142)) (|:| P (-923 (-549)))))))))) (-5 *1 (-1146)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1146)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1146)))) (-3271 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-430))))) (-5 *1 (-1146)))))
-(-13 (-593 (-834)) (-10 -8 (-15 -3845 ((-1152 (-1142) (-430)) $)) (-15 -1461 ($)) (-15 -4099 ((-430) (-621 (-1142)) (-430) $)) (-15 -4099 ((-430) (-1142) (-430) $)) (-15 -2296 ((-430) (-1142) $)) (-15 -3209 ((-621 (-1142)) $)) (-15 -3991 ((-621 (-3 (|:| -2480 (-1142)) (|:| -4206 (-621 (-3 (|:| S (-1142)) (|:| P (-923 (-549)))))))) (-427) $)) (-15 -3948 ((-621 (-1142)) $)) (-15 -2165 ((-621 (-621 (-3 (|:| -2480 (-1142)) (|:| -4206 (-621 (-3 (|:| S (-1142)) (|:| P (-923 (-549))))))))) $)) (-15 -1977 ((-1070) $)) (-15 -3934 ((-1230) $)) (-15 -3271 ($ (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-430))))))))
-((-3833 (((-112) $ $) NIL)) (-1361 (((-112) $) 48)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3226 (((-3 (-549) (-219) (-1142) (-1124) $) $) 56)) (-1854 (((-621 $) $) 61)) (-2844 (((-1070) $) 30) (($ (-1070)) 31)) (-3977 (((-112) $) 58)) (-3845 (((-834) $) 29) (($ (-549)) 32) (((-549) $) 34) (($ (-219)) 35) (((-219) $) 37) (($ (-1142)) 38) (((-1142) $) 40) (($ (-1124)) 41) (((-1124) $) 43)) (-3264 (((-112) $ (|[\|\|]| (-549))) 13) (((-112) $ (|[\|\|]| (-219))) 17) (((-112) $ (|[\|\|]| (-1142))) 25) (((-112) $ (|[\|\|]| (-1124))) 21)) (-2001 (($ (-1142) (-621 $)) 45) (($ $ (-621 $)) 46)) (-2320 (((-549) $) 33) (((-219) $) 36) (((-1142) $) 39) (((-1124) $) 42)) (-2388 (((-112) $ $) 8)))
-(((-1147) (-13 (-1220) (-1066) (-10 -8 (-15 -2844 ((-1070) $)) (-15 -2844 ($ (-1070))) (-15 -3845 ($ (-549))) (-15 -3845 ((-549) $)) (-15 -2320 ((-549) $)) (-15 -3845 ($ (-219))) (-15 -3845 ((-219) $)) (-15 -2320 ((-219) $)) (-15 -3845 ($ (-1142))) (-15 -3845 ((-1142) $)) (-15 -2320 ((-1142) $)) (-15 -3845 ($ (-1124))) (-15 -3845 ((-1124) $)) (-15 -2320 ((-1124) $)) (-15 -2001 ($ (-1142) (-621 $))) (-15 -2001 ($ $ (-621 $))) (-15 -1361 ((-112) $)) (-15 -3226 ((-3 (-549) (-219) (-1142) (-1124) $) $)) (-15 -1854 ((-621 $) $)) (-15 -3977 ((-112) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-549)))) (-15 -3264 ((-112) $ (|[\|\|]| (-219)))) (-15 -3264 ((-112) $ (|[\|\|]| (-1142)))) (-15 -3264 ((-112) $ (|[\|\|]| (-1124))))))) (T -1147))
-((-2844 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1147)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1147)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1147)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1147)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1147)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1147)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1147)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1147)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1147)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1147)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1147)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1147)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1147)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1147)))) (-2001 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-1147))) (-5 *1 (-1147)))) (-2001 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-1147))) (-5 *1 (-1147)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-3 (-549) (-219) (-1142) (-1124) (-1147))) (-5 *1 (-1147)))) (-1854 (*1 *2 *1) (-12 (-5 *2 (-621 (-1147))) (-5 *1 (-1147)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)) (-5 *1 (-1147)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1147)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1142))) (-5 *2 (-112)) (-5 *1 (-1147)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)) (-5 *1 (-1147)))))
-(-13 (-1220) (-1066) (-10 -8 (-15 -2844 ((-1070) $)) (-15 -2844 ($ (-1070))) (-15 -3845 ($ (-549))) (-15 -3845 ((-549) $)) (-15 -2320 ((-549) $)) (-15 -3845 ($ (-219))) (-15 -3845 ((-219) $)) (-15 -2320 ((-219) $)) (-15 -3845 ($ (-1142))) (-15 -3845 ((-1142) $)) (-15 -2320 ((-1142) $)) (-15 -3845 ($ (-1124))) (-15 -3845 ((-1124) $)) (-15 -2320 ((-1124) $)) (-15 -2001 ($ (-1142) (-621 $))) (-15 -2001 ($ $ (-621 $))) (-15 -1361 ((-112) $)) (-15 -3226 ((-3 (-549) (-219) (-1142) (-1124) $) $)) (-15 -1854 ((-621 $) $)) (-15 -3977 ((-112) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-549)))) (-15 -3264 ((-112) $ (|[\|\|]| (-219)))) (-15 -3264 ((-112) $ (|[\|\|]| (-1142)))) (-15 -3264 ((-112) $ (|[\|\|]| (-1124))))))
-((-1646 (((-621 (-621 (-923 |#1|))) (-621 (-400 (-923 |#1|))) (-621 (-1142))) 57)) (-2808 (((-621 (-287 (-400 (-923 |#1|)))) (-287 (-400 (-923 |#1|)))) 69) (((-621 (-287 (-400 (-923 |#1|)))) (-400 (-923 |#1|))) 65) (((-621 (-287 (-400 (-923 |#1|)))) (-287 (-400 (-923 |#1|))) (-1142)) 70) (((-621 (-287 (-400 (-923 |#1|)))) (-400 (-923 |#1|)) (-1142)) 64) (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-287 (-400 (-923 |#1|))))) 93) (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-400 (-923 |#1|)))) 92) (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-287 (-400 (-923 |#1|)))) (-621 (-1142))) 94) (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-400 (-923 |#1|))) (-621 (-1142))) 91)))
-(((-1148 |#1|) (-10 -7 (-15 -2808 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-400 (-923 |#1|))) (-621 (-1142)))) (-15 -2808 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-287 (-400 (-923 |#1|)))) (-621 (-1142)))) (-15 -2808 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-400 (-923 |#1|))))) (-15 -2808 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-287 (-400 (-923 |#1|)))))) (-15 -2808 ((-621 (-287 (-400 (-923 |#1|)))) (-400 (-923 |#1|)) (-1142))) (-15 -2808 ((-621 (-287 (-400 (-923 |#1|)))) (-287 (-400 (-923 |#1|))) (-1142))) (-15 -2808 ((-621 (-287 (-400 (-923 |#1|)))) (-400 (-923 |#1|)))) (-15 -2808 ((-621 (-287 (-400 (-923 |#1|)))) (-287 (-400 (-923 |#1|))))) (-15 -1646 ((-621 (-621 (-923 |#1|))) (-621 (-400 (-923 |#1|))) (-621 (-1142))))) (-541)) (T -1148))
-((-1646 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1142))) (-4 *5 (-541)) (-5 *2 (-621 (-621 (-923 *5)))) (-5 *1 (-1148 *5)))) (-2808 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 (-287 (-400 (-923 *4))))) (-5 *1 (-1148 *4)) (-5 *3 (-287 (-400 (-923 *4)))))) (-2808 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 (-287 (-400 (-923 *4))))) (-5 *1 (-1148 *4)) (-5 *3 (-400 (-923 *4))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-541)) (-5 *2 (-621 (-287 (-400 (-923 *5))))) (-5 *1 (-1148 *5)) (-5 *3 (-287 (-400 (-923 *5)))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-541)) (-5 *2 (-621 (-287 (-400 (-923 *5))))) (-5 *1 (-1148 *5)) (-5 *3 (-400 (-923 *5))))) (-2808 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-1148 *4)) (-5 *3 (-621 (-287 (-400 (-923 *4))))))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-621 (-400 (-923 *4)))) (-4 *4 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-1148 *4)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-1142))) (-4 *5 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-1148 *5)) (-5 *3 (-621 (-287 (-400 (-923 *5))))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1142))) (-4 *5 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-1148 *5)))))
-(-10 -7 (-15 -2808 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-400 (-923 |#1|))) (-621 (-1142)))) (-15 -2808 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-287 (-400 (-923 |#1|)))) (-621 (-1142)))) (-15 -2808 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-400 (-923 |#1|))))) (-15 -2808 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-287 (-400 (-923 |#1|)))))) (-15 -2808 ((-621 (-287 (-400 (-923 |#1|)))) (-400 (-923 |#1|)) (-1142))) (-15 -2808 ((-621 (-287 (-400 (-923 |#1|)))) (-287 (-400 (-923 |#1|))) (-1142))) (-15 -2808 ((-621 (-287 (-400 (-923 |#1|)))) (-400 (-923 |#1|)))) (-15 -2808 ((-621 (-287 (-400 (-923 |#1|)))) (-287 (-400 (-923 |#1|))))) (-15 -1646 ((-621 (-621 (-923 |#1|))) (-621 (-400 (-923 |#1|))) (-621 (-1142)))))
-((-4217 (((-1124)) 7)) (-2709 (((-1124)) 9)) (-3020 (((-1230) (-1124)) 11)) (-2034 (((-1124)) 8)))
-(((-1149) (-10 -7 (-15 -4217 ((-1124))) (-15 -2034 ((-1124))) (-15 -2709 ((-1124))) (-15 -3020 ((-1230) (-1124))))) (T -1149))
-((-3020 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1149)))) (-2709 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))) (-2034 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))) (-4217 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))))
-(-10 -7 (-15 -4217 ((-1124))) (-15 -2034 ((-1124))) (-15 -2709 ((-1124))) (-15 -3020 ((-1230) (-1124))))
-((-3578 (((-621 (-621 |#1|)) (-621 (-621 |#1|)) (-621 (-621 (-621 |#1|)))) 38)) (-2743 (((-621 (-621 (-621 |#1|))) (-621 (-621 |#1|))) 24)) (-3562 (((-1151 (-621 |#1|)) (-621 |#1|)) 34)) (-3857 (((-621 (-621 |#1|)) (-621 |#1|)) 30)) (-3243 (((-2 (|:| |f1| (-621 |#1|)) (|:| |f2| (-621 (-621 (-621 |#1|)))) (|:| |f3| (-621 (-621 |#1|))) (|:| |f4| (-621 (-621 (-621 |#1|))))) (-621 (-621 (-621 |#1|)))) 37)) (-2668 (((-2 (|:| |f1| (-621 |#1|)) (|:| |f2| (-621 (-621 (-621 |#1|)))) (|:| |f3| (-621 (-621 |#1|))) (|:| |f4| (-621 (-621 (-621 |#1|))))) (-621 |#1|) (-621 (-621 (-621 |#1|))) (-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))) (-621 (-621 (-621 |#1|))) (-621 (-621 (-621 |#1|)))) 36)) (-1687 (((-621 (-621 |#1|)) (-621 (-621 |#1|))) 28)) (-3733 (((-621 |#1|) (-621 |#1|)) 31)) (-2896 (((-621 (-621 (-621 |#1|))) (-621 |#1|) (-621 (-621 (-621 |#1|)))) 18)) (-4038 (((-621 (-621 (-621 |#1|))) (-1 (-112) |#1| |#1|) (-621 |#1|) (-621 (-621 (-621 |#1|)))) 16)) (-1954 (((-2 (|:| |fs| (-112)) (|:| |sd| (-621 |#1|)) (|:| |td| (-621 (-621 |#1|)))) (-1 (-112) |#1| |#1|) (-621 |#1|) (-621 (-621 |#1|))) 14)) (-3600 (((-621 (-621 |#1|)) (-621 (-621 (-621 |#1|)))) 39)) (-4316 (((-621 (-621 |#1|)) (-1151 (-621 |#1|))) 41)))
-(((-1150 |#1|) (-10 -7 (-15 -1954 ((-2 (|:| |fs| (-112)) (|:| |sd| (-621 |#1|)) (|:| |td| (-621 (-621 |#1|)))) (-1 (-112) |#1| |#1|) (-621 |#1|) (-621 (-621 |#1|)))) (-15 -4038 ((-621 (-621 (-621 |#1|))) (-1 (-112) |#1| |#1|) (-621 |#1|) (-621 (-621 (-621 |#1|))))) (-15 -2896 ((-621 (-621 (-621 |#1|))) (-621 |#1|) (-621 (-621 (-621 |#1|))))) (-15 -3578 ((-621 (-621 |#1|)) (-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))))) (-15 -3600 ((-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))))) (-15 -4316 ((-621 (-621 |#1|)) (-1151 (-621 |#1|)))) (-15 -2743 ((-621 (-621 (-621 |#1|))) (-621 (-621 |#1|)))) (-15 -3562 ((-1151 (-621 |#1|)) (-621 |#1|))) (-15 -1687 ((-621 (-621 |#1|)) (-621 (-621 |#1|)))) (-15 -3857 ((-621 (-621 |#1|)) (-621 |#1|))) (-15 -3733 ((-621 |#1|) (-621 |#1|))) (-15 -2668 ((-2 (|:| |f1| (-621 |#1|)) (|:| |f2| (-621 (-621 (-621 |#1|)))) (|:| |f3| (-621 (-621 |#1|))) (|:| |f4| (-621 (-621 (-621 |#1|))))) (-621 |#1|) (-621 (-621 (-621 |#1|))) (-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))) (-621 (-621 (-621 |#1|))) (-621 (-621 (-621 |#1|))))) (-15 -3243 ((-2 (|:| |f1| (-621 |#1|)) (|:| |f2| (-621 (-621 (-621 |#1|)))) (|:| |f3| (-621 (-621 |#1|))) (|:| |f4| (-621 (-621 (-621 |#1|))))) (-621 (-621 (-621 |#1|)))))) (-823)) (T -1150))
-((-3243 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-2 (|:| |f1| (-621 *4)) (|:| |f2| (-621 (-621 (-621 *4)))) (|:| |f3| (-621 (-621 *4))) (|:| |f4| (-621 (-621 (-621 *4)))))) (-5 *1 (-1150 *4)) (-5 *3 (-621 (-621 (-621 *4)))))) (-2668 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-823)) (-5 *3 (-621 *6)) (-5 *5 (-621 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-621 *5)) (|:| |f3| *5) (|:| |f4| (-621 *5)))) (-5 *1 (-1150 *6)) (-5 *4 (-621 *5)))) (-3733 (*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-1150 *3)))) (-3857 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-621 (-621 *4))) (-5 *1 (-1150 *4)) (-5 *3 (-621 *4)))) (-1687 (*1 *2 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-823)) (-5 *1 (-1150 *3)))) (-3562 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-1151 (-621 *4))) (-5 *1 (-1150 *4)) (-5 *3 (-621 *4)))) (-2743 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-621 (-621 (-621 *4)))) (-5 *1 (-1150 *4)) (-5 *3 (-621 (-621 *4))))) (-4316 (*1 *2 *3) (-12 (-5 *3 (-1151 (-621 *4))) (-4 *4 (-823)) (-5 *2 (-621 (-621 *4))) (-5 *1 (-1150 *4)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-621 (-621 (-621 *4)))) (-5 *2 (-621 (-621 *4))) (-5 *1 (-1150 *4)) (-4 *4 (-823)))) (-3578 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-621 (-621 *4)))) (-5 *2 (-621 (-621 *4))) (-4 *4 (-823)) (-5 *1 (-1150 *4)))) (-2896 (*1 *2 *3 *2) (-12 (-5 *2 (-621 (-621 (-621 *4)))) (-5 *3 (-621 *4)) (-4 *4 (-823)) (-5 *1 (-1150 *4)))) (-4038 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-621 (-621 (-621 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-621 *5)) (-4 *5 (-823)) (-5 *1 (-1150 *5)))) (-1954 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-823)) (-5 *4 (-621 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-621 *4)))) (-5 *1 (-1150 *6)) (-5 *5 (-621 *4)))))
-(-10 -7 (-15 -1954 ((-2 (|:| |fs| (-112)) (|:| |sd| (-621 |#1|)) (|:| |td| (-621 (-621 |#1|)))) (-1 (-112) |#1| |#1|) (-621 |#1|) (-621 (-621 |#1|)))) (-15 -4038 ((-621 (-621 (-621 |#1|))) (-1 (-112) |#1| |#1|) (-621 |#1|) (-621 (-621 (-621 |#1|))))) (-15 -2896 ((-621 (-621 (-621 |#1|))) (-621 |#1|) (-621 (-621 (-621 |#1|))))) (-15 -3578 ((-621 (-621 |#1|)) (-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))))) (-15 -3600 ((-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))))) (-15 -4316 ((-621 (-621 |#1|)) (-1151 (-621 |#1|)))) (-15 -2743 ((-621 (-621 (-621 |#1|))) (-621 (-621 |#1|)))) (-15 -3562 ((-1151 (-621 |#1|)) (-621 |#1|))) (-15 -1687 ((-621 (-621 |#1|)) (-621 (-621 |#1|)))) (-15 -3857 ((-621 (-621 |#1|)) (-621 |#1|))) (-15 -3733 ((-621 |#1|) (-621 |#1|))) (-15 -2668 ((-2 (|:| |f1| (-621 |#1|)) (|:| |f2| (-621 (-621 (-621 |#1|)))) (|:| |f3| (-621 (-621 |#1|))) (|:| |f4| (-621 (-621 (-621 |#1|))))) (-621 |#1|) (-621 (-621 (-621 |#1|))) (-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))) (-621 (-621 (-621 |#1|))) (-621 (-621 (-621 |#1|))))) (-15 -3243 ((-2 (|:| |f1| (-621 |#1|)) (|:| |f2| (-621 (-621 (-621 |#1|)))) (|:| |f3| (-621 (-621 |#1|))) (|:| |f4| (-621 (-621 (-621 |#1|))))) (-621 (-621 (-621 |#1|))))))
-((-3176 (($ (-621 (-621 |#1|))) 10)) (-3595 (((-621 (-621 |#1|)) $) 11)) (-3845 (((-834) $) 26)))
-(((-1151 |#1|) (-10 -8 (-15 -3176 ($ (-621 (-621 |#1|)))) (-15 -3595 ((-621 (-621 |#1|)) $)) (-15 -3845 ((-834) $))) (-1066)) (T -1151))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1151 *3)) (-4 *3 (-1066)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-621 (-621 *3))) (-5 *1 (-1151 *3)) (-4 *3 (-1066)))) (-3176 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1066)) (-5 *1 (-1151 *3)))))
-(-10 -8 (-15 -3176 ($ (-621 (-621 |#1|)))) (-15 -3595 ((-621 (-621 |#1|)) $)) (-15 -3845 ((-834) $)))
-((-3833 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3732 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2932 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#2| $ |#1| |#2|) NIL)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-3489 (((-3 |#2| "failed") |#1| $) NIL)) (-1705 (($) NIL T CONST)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-4204 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| "failed") |#1| $) NIL)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#2| $ |#1|) NIL)) (-2990 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) NIL)) (-3485 ((|#1| $) NIL (|has| |#1| (-823)))) (-1958 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-621 |#2|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1548 ((|#1| $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3449 (((-621 |#1|) $) NIL)) (-3665 (((-112) |#1| $) NIL)) (-2349 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-1709 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-3927 (((-621 |#1|) $) NIL)) (-1286 (((-112) |#1| $) NIL)) (-3988 (((-1086) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3645 ((|#2| $) NIL (|has| |#1| (-823)))) (-1917 (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL)) (-3158 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1738 (((-621 |#2|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4252 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-3845 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-1765 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) NIL)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| |#2| (-1066))))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-1152 |#1| |#2|) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) (-1066) (-1066)) (T -1152))
+((-4147 (((-1119 |#1|) (-1119 |#1|)) 77)) (-3804 (((-3 (-1119 |#1|) "failed") (-1119 |#1|)) 37)) (-3815 (((-1119 |#1|) (-400 (-535)) (-1119 |#1|)) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3818 (((-1119 |#1|) |#1| (-1119 |#1|)) 127 (|has| |#1| (-356)))) (-4150 (((-1119 |#1|) (-1119 |#1|)) 90)) (-3806 (((-1119 (-535)) (-535)) 57)) (-3814 (((-1119 |#1|) (-1119 (-1119 |#1|))) 109 (|has| |#1| (-38 (-400 (-535)))))) (-4146 (((-1119 |#1|) (-535) (-535) (-1119 |#1|)) 95)) (-4281 (((-1119 |#1|) |#1| (-535)) 45)) (-3808 (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 60)) (-3816 (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 124 (|has| |#1| (-356)))) (-3813 (((-1119 |#1|) |#1| (-1 (-1119 |#1|))) 108 (|has| |#1| (-38 (-400 (-535)))))) (-3817 (((-1119 |#1|) (-1 |#1| (-535)) |#1| (-1 (-1119 |#1|))) 125 (|has| |#1| (-356)))) (-4151 (((-1119 |#1|) (-1119 |#1|)) 89)) (-4152 (((-1119 |#1|) (-1119 |#1|)) 76)) (-4145 (((-1119 |#1|) (-535) (-535) (-1119 |#1|)) 96)) (-4155 (((-1119 |#1|) |#1| (-1119 |#1|)) 105 (|has| |#1| (-38 (-400 (-535)))))) (-3805 (((-1119 (-535)) (-535)) 56)) (-3807 (((-1119 |#1|) |#1|) 59)) (-4148 (((-1119 |#1|) (-1119 |#1|) (-535) (-535)) 92)) (-3810 (((-1119 |#1|) (-1 |#1| (-535)) (-1119 |#1|)) 66)) (-3803 (((-3 (-1119 |#1|) "failed") (-1119 |#1|) (-1119 |#1|)) 35)) (-4149 (((-1119 |#1|) (-1119 |#1|)) 91)) (-4110 (((-1119 |#1|) (-1119 |#1|) |#1|) 71)) (-3809 (((-1119 |#1|) (-1119 |#1|)) 62)) (-3811 (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 72)) (-4300 (((-1119 |#1|) |#1|) 67)) (-3812 (((-1119 |#1|) (-1119 (-1119 |#1|))) 82)) (-4291 (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 36)) (-4180 (((-1119 |#1|) (-1119 |#1|)) 21) (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 23)) (-4182 (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 17)) (* (((-1119 |#1|) (-1119 |#1|) |#1|) 29) (((-1119 |#1|) |#1| (-1119 |#1|)) 26) (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 27)))
+(((-1126 |#1|) (-10 -7 (-15 -4182 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -4180 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -4180 ((-1119 |#1|) (-1119 |#1|))) (-15 * ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 * ((-1119 |#1|) |#1| (-1119 |#1|))) (-15 * ((-1119 |#1|) (-1119 |#1|) |#1|)) (-15 -3803 ((-3 (-1119 |#1|) "failed") (-1119 |#1|) (-1119 |#1|))) (-15 -4291 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3804 ((-3 (-1119 |#1|) "failed") (-1119 |#1|))) (-15 -4281 ((-1119 |#1|) |#1| (-535))) (-15 -3805 ((-1119 (-535)) (-535))) (-15 -3806 ((-1119 (-535)) (-535))) (-15 -3807 ((-1119 |#1|) |#1|)) (-15 -3808 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3809 ((-1119 |#1|) (-1119 |#1|))) (-15 -3810 ((-1119 |#1|) (-1 |#1| (-535)) (-1119 |#1|))) (-15 -4300 ((-1119 |#1|) |#1|)) (-15 -4110 ((-1119 |#1|) (-1119 |#1|) |#1|)) (-15 -3811 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -4152 ((-1119 |#1|) (-1119 |#1|))) (-15 -4147 ((-1119 |#1|) (-1119 |#1|))) (-15 -3812 ((-1119 |#1|) (-1119 (-1119 |#1|)))) (-15 -4151 ((-1119 |#1|) (-1119 |#1|))) (-15 -4150 ((-1119 |#1|) (-1119 |#1|))) (-15 -4149 ((-1119 |#1|) (-1119 |#1|))) (-15 -4148 ((-1119 |#1|) (-1119 |#1|) (-535) (-535))) (-15 -4146 ((-1119 |#1|) (-535) (-535) (-1119 |#1|))) (-15 -4145 ((-1119 |#1|) (-535) (-535) (-1119 |#1|))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ((-1119 |#1|) |#1| (-1119 |#1|))) (-15 -3813 ((-1119 |#1|) |#1| (-1 (-1119 |#1|)))) (-15 -3814 ((-1119 |#1|) (-1119 (-1119 |#1|)))) (-15 -3815 ((-1119 |#1|) (-400 (-535)) (-1119 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3816 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3817 ((-1119 |#1|) (-1 |#1| (-535)) |#1| (-1 (-1119 |#1|)))) (-15 -3818 ((-1119 |#1|) |#1| (-1119 |#1|)))) |%noBranch|)) (-1018)) (T -1126))
+((-3818 (*1 *2 *3 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-535))) (-5 *5 (-1 (-1119 *4))) (-4 *4 (-356)) (-4 *4 (-1018)) (-5 *2 (-1119 *4)) (-5 *1 (-1126 *4)))) (-3816 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3815 (*1 *2 *3 *2) (-12 (-5 *2 (-1119 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1018)) (-5 *3 (-400 (-535))) (-5 *1 (-1126 *4)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1119 (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1126 *4)) (-4 *4 (-38 (-400 (-535)))) (-4 *4 (-1018)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1119 *3))) (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)))) (-4155 (*1 *2 *3 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4145 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) (-4146 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) (-4148 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-1119 (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1126 *4)) (-4 *4 (-1018)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4152 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3811 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4110 (*1 *2 *2 *3) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4300 (*1 *2 *3) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) (-3810 (*1 *2 *3 *2) (-12 (-5 *2 (-1119 *4)) (-5 *3 (-1 *4 (-535))) (-4 *4 (-1018)) (-5 *1 (-1126 *4)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3807 (*1 *2 *3) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) (-3806 (*1 *2 *3) (-12 (-5 *2 (-1119 (-535))) (-5 *1 (-1126 *4)) (-4 *4 (-1018)) (-5 *3 (-535)))) (-3805 (*1 *2 *3) (-12 (-5 *2 (-1119 (-535))) (-5 *1 (-1126 *4)) (-4 *4 (-1018)) (-5 *3 (-535)))) (-4281 (*1 *2 *3 *4) (-12 (-5 *4 (-535)) (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) (-3804 (*1 *2 *2) (|partial| -12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4291 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-3803 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4180 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4180 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))) (-4182 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
+(-10 -7 (-15 -4182 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -4180 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -4180 ((-1119 |#1|) (-1119 |#1|))) (-15 * ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 * ((-1119 |#1|) |#1| (-1119 |#1|))) (-15 * ((-1119 |#1|) (-1119 |#1|) |#1|)) (-15 -3803 ((-3 (-1119 |#1|) "failed") (-1119 |#1|) (-1119 |#1|))) (-15 -4291 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3804 ((-3 (-1119 |#1|) "failed") (-1119 |#1|))) (-15 -4281 ((-1119 |#1|) |#1| (-535))) (-15 -3805 ((-1119 (-535)) (-535))) (-15 -3806 ((-1119 (-535)) (-535))) (-15 -3807 ((-1119 |#1|) |#1|)) (-15 -3808 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3809 ((-1119 |#1|) (-1119 |#1|))) (-15 -3810 ((-1119 |#1|) (-1 |#1| (-535)) (-1119 |#1|))) (-15 -4300 ((-1119 |#1|) |#1|)) (-15 -4110 ((-1119 |#1|) (-1119 |#1|) |#1|)) (-15 -3811 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -4152 ((-1119 |#1|) (-1119 |#1|))) (-15 -4147 ((-1119 |#1|) (-1119 |#1|))) (-15 -3812 ((-1119 |#1|) (-1119 (-1119 |#1|)))) (-15 -4151 ((-1119 |#1|) (-1119 |#1|))) (-15 -4150 ((-1119 |#1|) (-1119 |#1|))) (-15 -4149 ((-1119 |#1|) (-1119 |#1|))) (-15 -4148 ((-1119 |#1|) (-1119 |#1|) (-535) (-535))) (-15 -4146 ((-1119 |#1|) (-535) (-535) (-1119 |#1|))) (-15 -4145 ((-1119 |#1|) (-535) (-535) (-1119 |#1|))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ((-1119 |#1|) |#1| (-1119 |#1|))) (-15 -3813 ((-1119 |#1|) |#1| (-1 (-1119 |#1|)))) (-15 -3814 ((-1119 |#1|) (-1119 (-1119 |#1|)))) (-15 -3815 ((-1119 |#1|) (-400 (-535)) (-1119 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3816 ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3817 ((-1119 |#1|) (-1 |#1| (-535)) |#1| (-1 (-1119 |#1|)))) (-15 -3818 ((-1119 |#1|) |#1| (-1119 |#1|)))) |%noBranch|))
+((-3829 (((-1119 |#1|) (-1119 |#1|)) 100)) (-3985 (((-1119 |#1|) (-1119 |#1|)) 64)) (-3820 (((-2 (|:| -3827 (-1119 |#1|)) (|:| -3828 (-1119 |#1|))) (-1119 |#1|)) 96)) (-3827 (((-1119 |#1|) (-1119 |#1|)) 97)) (-3819 (((-2 (|:| -3984 (-1119 |#1|)) (|:| -3980 (-1119 |#1|))) (-1119 |#1|)) 53)) (-3984 (((-1119 |#1|) (-1119 |#1|)) 54)) (-3831 (((-1119 |#1|) (-1119 |#1|)) 102)) (-3983 (((-1119 |#1|) (-1119 |#1|)) 71)) (-4285 (((-1119 |#1|) (-1119 |#1|)) 39)) (-4286 (((-1119 |#1|) (-1119 |#1|)) 36)) (-3832 (((-1119 |#1|) (-1119 |#1|)) 103)) (-3982 (((-1119 |#1|) (-1119 |#1|)) 72)) (-3830 (((-1119 |#1|) (-1119 |#1|)) 101)) (-3981 (((-1119 |#1|) (-1119 |#1|)) 67)) (-3828 (((-1119 |#1|) (-1119 |#1|)) 98)) (-3980 (((-1119 |#1|) (-1119 |#1|)) 55)) (-3835 (((-1119 |#1|) (-1119 |#1|)) 111)) (-3823 (((-1119 |#1|) (-1119 |#1|)) 86)) (-3833 (((-1119 |#1|) (-1119 |#1|)) 105)) (-3821 (((-1119 |#1|) (-1119 |#1|)) 82)) (-3837 (((-1119 |#1|) (-1119 |#1|)) 115)) (-3825 (((-1119 |#1|) (-1119 |#1|)) 90)) (-3838 (((-1119 |#1|) (-1119 |#1|)) 117)) (-3826 (((-1119 |#1|) (-1119 |#1|)) 92)) (-3836 (((-1119 |#1|) (-1119 |#1|)) 113)) (-3824 (((-1119 |#1|) (-1119 |#1|)) 88)) (-3834 (((-1119 |#1|) (-1119 |#1|)) 107)) (-3822 (((-1119 |#1|) (-1119 |#1|)) 84)) (** (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 40)))
+(((-1127 |#1|) (-10 -7 (-15 -4286 ((-1119 |#1|) (-1119 |#1|))) (-15 -4285 ((-1119 |#1|) (-1119 |#1|))) (-15 ** ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3819 ((-2 (|:| -3984 (-1119 |#1|)) (|:| -3980 (-1119 |#1|))) (-1119 |#1|))) (-15 -3984 ((-1119 |#1|) (-1119 |#1|))) (-15 -3980 ((-1119 |#1|) (-1119 |#1|))) (-15 -3985 ((-1119 |#1|) (-1119 |#1|))) (-15 -3981 ((-1119 |#1|) (-1119 |#1|))) (-15 -3983 ((-1119 |#1|) (-1119 |#1|))) (-15 -3982 ((-1119 |#1|) (-1119 |#1|))) (-15 -3821 ((-1119 |#1|) (-1119 |#1|))) (-15 -3822 ((-1119 |#1|) (-1119 |#1|))) (-15 -3823 ((-1119 |#1|) (-1119 |#1|))) (-15 -3824 ((-1119 |#1|) (-1119 |#1|))) (-15 -3825 ((-1119 |#1|) (-1119 |#1|))) (-15 -3826 ((-1119 |#1|) (-1119 |#1|))) (-15 -3820 ((-2 (|:| -3827 (-1119 |#1|)) (|:| -3828 (-1119 |#1|))) (-1119 |#1|))) (-15 -3827 ((-1119 |#1|) (-1119 |#1|))) (-15 -3828 ((-1119 |#1|) (-1119 |#1|))) (-15 -3829 ((-1119 |#1|) (-1119 |#1|))) (-15 -3830 ((-1119 |#1|) (-1119 |#1|))) (-15 -3831 ((-1119 |#1|) (-1119 |#1|))) (-15 -3832 ((-1119 |#1|) (-1119 |#1|))) (-15 -3833 ((-1119 |#1|) (-1119 |#1|))) (-15 -3834 ((-1119 |#1|) (-1119 |#1|))) (-15 -3835 ((-1119 |#1|) (-1119 |#1|))) (-15 -3836 ((-1119 |#1|) (-1119 |#1|))) (-15 -3837 ((-1119 |#1|) (-1119 |#1|))) (-15 -3838 ((-1119 |#1|) (-1119 |#1|)))) (-38 (-400 (-535)))) (T -1127))
+((-3838 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3832 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3831 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3830 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3820 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-535)))) (-5 *2 (-2 (|:| -3827 (-1119 *4)) (|:| -3828 (-1119 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1119 *4)))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3824 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3983 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3985 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3980 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3984 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-3819 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-535)))) (-5 *2 (-2 (|:| -3984 (-1119 *4)) (|:| -3980 (-1119 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1119 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-4285 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))) (-4286 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3)))))
+(-10 -7 (-15 -4286 ((-1119 |#1|) (-1119 |#1|))) (-15 -4285 ((-1119 |#1|) (-1119 |#1|))) (-15 ** ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3819 ((-2 (|:| -3984 (-1119 |#1|)) (|:| -3980 (-1119 |#1|))) (-1119 |#1|))) (-15 -3984 ((-1119 |#1|) (-1119 |#1|))) (-15 -3980 ((-1119 |#1|) (-1119 |#1|))) (-15 -3985 ((-1119 |#1|) (-1119 |#1|))) (-15 -3981 ((-1119 |#1|) (-1119 |#1|))) (-15 -3983 ((-1119 |#1|) (-1119 |#1|))) (-15 -3982 ((-1119 |#1|) (-1119 |#1|))) (-15 -3821 ((-1119 |#1|) (-1119 |#1|))) (-15 -3822 ((-1119 |#1|) (-1119 |#1|))) (-15 -3823 ((-1119 |#1|) (-1119 |#1|))) (-15 -3824 ((-1119 |#1|) (-1119 |#1|))) (-15 -3825 ((-1119 |#1|) (-1119 |#1|))) (-15 -3826 ((-1119 |#1|) (-1119 |#1|))) (-15 -3820 ((-2 (|:| -3827 (-1119 |#1|)) (|:| -3828 (-1119 |#1|))) (-1119 |#1|))) (-15 -3827 ((-1119 |#1|) (-1119 |#1|))) (-15 -3828 ((-1119 |#1|) (-1119 |#1|))) (-15 -3829 ((-1119 |#1|) (-1119 |#1|))) (-15 -3830 ((-1119 |#1|) (-1119 |#1|))) (-15 -3831 ((-1119 |#1|) (-1119 |#1|))) (-15 -3832 ((-1119 |#1|) (-1119 |#1|))) (-15 -3833 ((-1119 |#1|) (-1119 |#1|))) (-15 -3834 ((-1119 |#1|) (-1119 |#1|))) (-15 -3835 ((-1119 |#1|) (-1119 |#1|))) (-15 -3836 ((-1119 |#1|) (-1119 |#1|))) (-15 -3837 ((-1119 |#1|) (-1119 |#1|))) (-15 -3838 ((-1119 |#1|) (-1119 |#1|))))
+((-3829 (((-1119 |#1|) (-1119 |#1|)) 57)) (-3985 (((-1119 |#1|) (-1119 |#1|)) 39)) (-3827 (((-1119 |#1|) (-1119 |#1|)) 53)) (-3984 (((-1119 |#1|) (-1119 |#1|)) 35)) (-3831 (((-1119 |#1|) (-1119 |#1|)) 60)) (-3983 (((-1119 |#1|) (-1119 |#1|)) 42)) (-4285 (((-1119 |#1|) (-1119 |#1|)) 31)) (-4286 (((-1119 |#1|) (-1119 |#1|)) 27)) (-3832 (((-1119 |#1|) (-1119 |#1|)) 61)) (-3982 (((-1119 |#1|) (-1119 |#1|)) 43)) (-3830 (((-1119 |#1|) (-1119 |#1|)) 58)) (-3981 (((-1119 |#1|) (-1119 |#1|)) 40)) (-3828 (((-1119 |#1|) (-1119 |#1|)) 55)) (-3980 (((-1119 |#1|) (-1119 |#1|)) 37)) (-3835 (((-1119 |#1|) (-1119 |#1|)) 65)) (-3823 (((-1119 |#1|) (-1119 |#1|)) 47)) (-3833 (((-1119 |#1|) (-1119 |#1|)) 63)) (-3821 (((-1119 |#1|) (-1119 |#1|)) 45)) (-3837 (((-1119 |#1|) (-1119 |#1|)) 68)) (-3825 (((-1119 |#1|) (-1119 |#1|)) 50)) (-3838 (((-1119 |#1|) (-1119 |#1|)) 69)) (-3826 (((-1119 |#1|) (-1119 |#1|)) 51)) (-3836 (((-1119 |#1|) (-1119 |#1|)) 67)) (-3824 (((-1119 |#1|) (-1119 |#1|)) 49)) (-3834 (((-1119 |#1|) (-1119 |#1|)) 66)) (-3822 (((-1119 |#1|) (-1119 |#1|)) 48)) (** (((-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) 33)))
+(((-1128 |#1|) (-10 -7 (-15 -4286 ((-1119 |#1|) (-1119 |#1|))) (-15 -4285 ((-1119 |#1|) (-1119 |#1|))) (-15 ** ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3984 ((-1119 |#1|) (-1119 |#1|))) (-15 -3980 ((-1119 |#1|) (-1119 |#1|))) (-15 -3985 ((-1119 |#1|) (-1119 |#1|))) (-15 -3981 ((-1119 |#1|) (-1119 |#1|))) (-15 -3983 ((-1119 |#1|) (-1119 |#1|))) (-15 -3982 ((-1119 |#1|) (-1119 |#1|))) (-15 -3821 ((-1119 |#1|) (-1119 |#1|))) (-15 -3822 ((-1119 |#1|) (-1119 |#1|))) (-15 -3823 ((-1119 |#1|) (-1119 |#1|))) (-15 -3824 ((-1119 |#1|) (-1119 |#1|))) (-15 -3825 ((-1119 |#1|) (-1119 |#1|))) (-15 -3826 ((-1119 |#1|) (-1119 |#1|))) (-15 -3827 ((-1119 |#1|) (-1119 |#1|))) (-15 -3828 ((-1119 |#1|) (-1119 |#1|))) (-15 -3829 ((-1119 |#1|) (-1119 |#1|))) (-15 -3830 ((-1119 |#1|) (-1119 |#1|))) (-15 -3831 ((-1119 |#1|) (-1119 |#1|))) (-15 -3832 ((-1119 |#1|) (-1119 |#1|))) (-15 -3833 ((-1119 |#1|) (-1119 |#1|))) (-15 -3834 ((-1119 |#1|) (-1119 |#1|))) (-15 -3835 ((-1119 |#1|) (-1119 |#1|))) (-15 -3836 ((-1119 |#1|) (-1119 |#1|))) (-15 -3837 ((-1119 |#1|) (-1119 |#1|))) (-15 -3838 ((-1119 |#1|) (-1119 |#1|)))) (-38 (-400 (-535)))) (T -1128))
+((-3838 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3832 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3831 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3830 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3824 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3983 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3985 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3980 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-3984 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-4285 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))) (-4286 (*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(-10 -7 (-15 -4286 ((-1119 |#1|) (-1119 |#1|))) (-15 -4285 ((-1119 |#1|) (-1119 |#1|))) (-15 ** ((-1119 |#1|) (-1119 |#1|) (-1119 |#1|))) (-15 -3984 ((-1119 |#1|) (-1119 |#1|))) (-15 -3980 ((-1119 |#1|) (-1119 |#1|))) (-15 -3985 ((-1119 |#1|) (-1119 |#1|))) (-15 -3981 ((-1119 |#1|) (-1119 |#1|))) (-15 -3983 ((-1119 |#1|) (-1119 |#1|))) (-15 -3982 ((-1119 |#1|) (-1119 |#1|))) (-15 -3821 ((-1119 |#1|) (-1119 |#1|))) (-15 -3822 ((-1119 |#1|) (-1119 |#1|))) (-15 -3823 ((-1119 |#1|) (-1119 |#1|))) (-15 -3824 ((-1119 |#1|) (-1119 |#1|))) (-15 -3825 ((-1119 |#1|) (-1119 |#1|))) (-15 -3826 ((-1119 |#1|) (-1119 |#1|))) (-15 -3827 ((-1119 |#1|) (-1119 |#1|))) (-15 -3828 ((-1119 |#1|) (-1119 |#1|))) (-15 -3829 ((-1119 |#1|) (-1119 |#1|))) (-15 -3830 ((-1119 |#1|) (-1119 |#1|))) (-15 -3831 ((-1119 |#1|) (-1119 |#1|))) (-15 -3832 ((-1119 |#1|) (-1119 |#1|))) (-15 -3833 ((-1119 |#1|) (-1119 |#1|))) (-15 -3834 ((-1119 |#1|) (-1119 |#1|))) (-15 -3835 ((-1119 |#1|) (-1119 |#1|))) (-15 -3836 ((-1119 |#1|) (-1119 |#1|))) (-15 -3837 ((-1119 |#1|) (-1119 |#1|))) (-15 -3838 ((-1119 |#1|) (-1119 |#1|))))
+((-3839 (((-929 |#2|) |#2| |#2|) 35)) (-3840 ((|#2| |#2| |#1|) 19 (|has| |#1| (-300)))))
+(((-1129 |#1| |#2|) (-10 -7 (-15 -3839 ((-929 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -3840 (|#2| |#2| |#1|)) |%noBranch|)) (-542) (-1200 |#1|)) (T -1129))
+((-3840 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-4 *3 (-542)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-1200 *3)))) (-3839 (*1 *2 *3 *3) (-12 (-4 *4 (-542)) (-5 *2 (-929 *3)) (-5 *1 (-1129 *4 *3)) (-4 *3 (-1200 *4)))))
+(-10 -7 (-15 -3839 ((-929 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -3840 (|#2| |#2| |#1|)) |%noBranch|))
+((-2887 (((-112) $ $) NIL)) (-3848 (($ $ (-618 (-747))) 67)) (-4231 (($) 26)) (-3857 (($ $) 42)) (-4094 (((-618 $) $) 51)) (-3863 (((-112) $) 16)) (-3841 (((-618 (-914 |#2|)) $) 74)) (-3842 (($ $) 68)) (-3858 (((-747) $) 37)) (-3960 (($) 25)) (-3851 (($ $ (-618 (-747)) (-914 |#2|)) 60) (($ $ (-618 (-747)) (-747)) 61) (($ $ (-747) (-914 |#2|)) 63)) (-3855 (($ $ $) 48) (($ (-618 $)) 50)) (-3843 (((-747) $) 75)) (-3864 (((-112) $) 15)) (-3576 (((-1124) $) NIL)) (-3862 (((-112) $) 18)) (-3577 (((-1086) $) NIL)) (-3844 (((-169) $) 73)) (-3847 (((-914 |#2|) $) 69)) (-3846 (((-747) $) 70)) (-3845 (((-112) $) 72)) (-3849 (($ $ (-618 (-747)) (-169)) 66)) (-3856 (($ $) 43)) (-4300 (((-835) $) 86)) (-3850 (($ $ (-618 (-747)) (-112)) 65)) (-3859 (((-618 $) $) 11)) (-3860 (($ $ (-747)) 36)) (-3861 (($ $) 32)) (-3852 (($ $ $ (-914 |#2|) (-747)) 56)) (-3853 (($ $ (-914 |#2|)) 55)) (-3854 (($ $ (-618 (-747)) (-914 |#2|)) 54) (($ $ (-618 (-747)) (-747)) 58) (((-747) $ (-914 |#2|)) 59)) (-3375 (((-112) $ $) 80)))
+(((-1130 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -3864 ((-112) $)) (-15 -3863 ((-112) $)) (-15 -3862 ((-112) $)) (-15 -3960 ($)) (-15 -4231 ($)) (-15 -3861 ($ $)) (-15 -3860 ($ $ (-747))) (-15 -3859 ((-618 $) $)) (-15 -3858 ((-747) $)) (-15 -3857 ($ $)) (-15 -3856 ($ $)) (-15 -3855 ($ $ $)) (-15 -3855 ($ (-618 $))) (-15 -4094 ((-618 $) $)) (-15 -3854 ($ $ (-618 (-747)) (-914 |#2|))) (-15 -3853 ($ $ (-914 |#2|))) (-15 -3852 ($ $ $ (-914 |#2|) (-747))) (-15 -3851 ($ $ (-618 (-747)) (-914 |#2|))) (-15 -3854 ($ $ (-618 (-747)) (-747))) (-15 -3851 ($ $ (-618 (-747)) (-747))) (-15 -3854 ((-747) $ (-914 |#2|))) (-15 -3851 ($ $ (-747) (-914 |#2|))) (-15 -3850 ($ $ (-618 (-747)) (-112))) (-15 -3849 ($ $ (-618 (-747)) (-169))) (-15 -3848 ($ $ (-618 (-747)))) (-15 -3847 ((-914 |#2|) $)) (-15 -3846 ((-747) $)) (-15 -3845 ((-112) $)) (-15 -3844 ((-169) $)) (-15 -3843 ((-747) $)) (-15 -3842 ($ $)) (-15 -3841 ((-618 (-914 |#2|)) $)))) (-890) (-1018)) (T -1130))
+((-3864 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3960 (*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-4231 (*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-3861 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-3860 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-618 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3857 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-3856 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-3855 (*1 *1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-618 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-618 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3854 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)))) (-3853 (*1 *1 *1 *2) (-12 (-5 *2 (-914 *4)) (-4 *4 (-1018)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)))) (-3852 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-914 *5)) (-5 *3 (-747)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)))) (-3851 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)))) (-3854 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-747))) (-5 *3 (-747)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1018)))) (-3851 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-747))) (-5 *3 (-747)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1018)))) (-3854 (*1 *2 *1 *3) (-12 (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *2 (-747)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)))) (-3851 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)))) (-3850 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-747))) (-5 *3 (-112)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1018)))) (-3849 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-747))) (-5 *3 (-169)) (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1018)))) (-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-747))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-914 *4)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))) (-3842 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-618 (-914 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))))
+(-13 (-1067) (-10 -8 (-15 -3864 ((-112) $)) (-15 -3863 ((-112) $)) (-15 -3862 ((-112) $)) (-15 -3960 ($)) (-15 -4231 ($)) (-15 -3861 ($ $)) (-15 -3860 ($ $ (-747))) (-15 -3859 ((-618 $) $)) (-15 -3858 ((-747) $)) (-15 -3857 ($ $)) (-15 -3856 ($ $)) (-15 -3855 ($ $ $)) (-15 -3855 ($ (-618 $))) (-15 -4094 ((-618 $) $)) (-15 -3854 ($ $ (-618 (-747)) (-914 |#2|))) (-15 -3853 ($ $ (-914 |#2|))) (-15 -3852 ($ $ $ (-914 |#2|) (-747))) (-15 -3851 ($ $ (-618 (-747)) (-914 |#2|))) (-15 -3854 ($ $ (-618 (-747)) (-747))) (-15 -3851 ($ $ (-618 (-747)) (-747))) (-15 -3854 ((-747) $ (-914 |#2|))) (-15 -3851 ($ $ (-747) (-914 |#2|))) (-15 -3850 ($ $ (-618 (-747)) (-112))) (-15 -3849 ($ $ (-618 (-747)) (-169))) (-15 -3848 ($ $ (-618 (-747)))) (-15 -3847 ((-914 |#2|) $)) (-15 -3846 ((-747) $)) (-15 -3845 ((-112) $)) (-15 -3844 ((-169) $)) (-15 -3843 ((-747) $)) (-15 -3842 ($ $)) (-15 -3841 ((-618 (-914 |#2|)) $))))
+((-2887 (((-112) $ $) NIL)) (-3865 ((|#2| $) 11)) (-3866 ((|#1| $) 10)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3867 (($ |#1| |#2|) 9)) (-4300 (((-835) $) 16)) (-3375 (((-112) $ $) NIL)))
+(((-1131 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -3867 ($ |#1| |#2|)) (-15 -3866 (|#1| $)) (-15 -3865 (|#2| $)))) (-1067) (-1067)) (T -1131))
+((-3867 (*1 *1 *2 *3) (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3866 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-1131 *2 *3)) (-4 *3 (-1067)))) (-3865 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -3867 ($ |#1| |#2|)) (-15 -3866 (|#1| $)) (-15 -3865 (|#2| $))))
+((-2887 (((-112) $ $) NIL)) (-3868 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-1132) (-13 (-1049) (-10 -8 (-15 -3868 ((-1101) $))))) (T -1132))
+((-3868 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1132)))))
+(-13 (-1049) (-10 -8 (-15 -3868 ((-1101) $))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-1140 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 11)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-2171 (($ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-2169 (((-112) $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-4113 (($ $ (-535)) NIL) (($ $ (-535) (-535)) 66)) (-4116 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) NIL)) (-4074 (((-1140 |#1| |#2| |#3|) $) 36)) (-4071 (((-3 (-1140 |#1| |#2| |#3|) "failed") $) 29)) (-4072 (((-1140 |#1| |#2| |#3|) $) 30)) (-3829 (($ $) 107 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 83 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) 103 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 79 (|has| |#1| (-38 (-400 (-535)))))) (-3969 (((-535) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-4161 (($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) NIL)) (-3831 (($ $) 111 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 87 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-1140 |#1| |#2| |#3|) #2="failed") $) 31) (((-3 (-1142) #2#) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (((-3 (-400 (-535)) #2#) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356)))) (((-3 (-535) #2#) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356))))) (-3490 (((-1140 |#1| |#2| |#3|) $) 131) (((-1142) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (((-400 (-535)) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356)))) (((-535) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356))))) (-4073 (($ $) 34) (($ (-535) $) 35)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-1140 |#1| |#2| |#3|)) (-665 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 (-1140 |#1| |#2| |#3|))) (|:| |vec| (-1224 (-1140 |#1| |#2| |#3|)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-617 (-535))) (|has| |#1| (-356)))) (((-665 (-535)) (-665 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-617 (-535))) (|has| |#1| (-356))))) (-3804 (((-3 $ "failed") $) 48)) (-4070 (((-400 (-917 |#1|)) $ (-535)) 65 (|has| |#1| (-542))) (((-400 (-917 |#1|)) $ (-535) (-535)) 67 (|has| |#1| (-542)))) (-3315 (($) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3520 (((-112) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-3213 (((-112) $) 25)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-857 (-535))) (|has| |#1| (-356)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-857 (-371))) (|has| |#1| (-356))))) (-4114 (((-535) $) NIL) (((-535) $ (-535)) 24)) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL (|has| |#1| (-356)))) (-3319 (((-1140 |#1| |#2| |#3|) $) 38 (|has| |#1| (-356)))) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3786 (((-3 $ "failed") $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1117)) (|has| |#1| (-356))))) (-3521 (((-112) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-4119 (($ $ (-890)) NIL)) (-4158 (($ (-1 |#1| (-535)) $) NIL)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-535)) 18) (($ $ (-1048) (-535)) NIL) (($ $ (-618 (-1048)) (-618 (-535))) NIL)) (-3660 (($ $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3661 (($ $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-4285 (($ $) 72 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4121 (($ (-535) (-1140 |#1| |#2| |#3|)) 33)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-4155 (($ $) 70 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 71 (|has| |#1| (-38 (-400 (-535)))))) (-3787 (($) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1117)) (|has| |#1| (-356))) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3446 (($ $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3448 (((-1140 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-535)) 145)) (-3803 (((-3 $ "failed") $ $) 49 (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) 73 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-535))))) (($ $ (-1142) (-1140 |#1| |#2| |#3|)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-505 (-1142) (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-618 (-1142)) (-618 (-1140 |#1| |#2| |#3|))) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-505 (-1142) (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-618 (-286 (-1140 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-286 (-1140 |#1| |#2| |#3|))) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-618 (-1140 |#1| |#2| |#3|)) (-618 (-1140 |#1| |#2| |#3|))) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-302 (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-535)) NIL) (($ $ $) 54 (|has| (-535) (-1078))) (($ $ (-1140 |#1| |#2| |#3|)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-279 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1221 |#2|)) 51) (($ $ (-747)) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) 50 (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142) (-747)) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-618 (-1142))) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))) (-3316 (($ $) NIL (|has| |#1| (-356)))) (-3318 (((-1140 |#1| |#2| |#3|) $) 41 (|has| |#1| (-356)))) (-4290 (((-535) $) 37)) (-3832 (($ $) 113 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 89 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 109 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 85 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 105 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 81 (|has| |#1| (-38 (-400 (-535)))))) (-4313 (((-524) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-594 (-524))) (|has| |#1| (-356)))) (((-371) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-991)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-991)) (|has| |#1| (-356)))) (((-861 (-371)) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-594 (-861 (-371)))) (|has| |#1| (-356)))) (((-861 (-535)) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-594 (-861 (-535)))) (|has| |#1| (-356))))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) 149) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1140 |#1| |#2| |#3|)) 27) (($ (-1221 |#2|)) 23) (($ (-1142)) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (($ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (|has| |#1| (-542)))) (($ (-400 (-535))) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-535))))))) (-4023 ((|#1| $ (-535)) 68)) (-3023 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 12)) (-3449 (((-1140 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-3835 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 95 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3833 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 91 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 99 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-535)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-535)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 101 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 97 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 93 (|has| |#1| (-38 (-400 (-535)))))) (-3725 (($ $) NIL (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2979 (($) 20 T CONST)) (-2985 (($) 16 T CONST)) (-2990 (($ $ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142) (-747)) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-618 (-1142))) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))) (-2885 (((-112) $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2886 (((-112) $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3006 (((-112) $ $) NIL (-3874 (-12 (|has| (-1140 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1140 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 44 (|has| |#1| (-356))) (($ (-1140 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3|)) 45 (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 21)) (** (($ $ (-890)) NIL) (($ $ (-747)) 53) (($ $ (-535)) NIL (|has| |#1| (-356))) (($ $ $) 74 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 128 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1140 |#1| |#2| |#3|)) 43 (|has| |#1| (-356))) (($ (-1140 |#1| |#2| |#3|) $) 42 (|has| |#1| (-356))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-1133 |#1| |#2| |#3|) (-13 (-1188 |#1| (-1140 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1133))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1188 |#1| (-1140 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|)))
+((-3869 ((|#2| |#2| (-1058 |#2|)) 26) ((|#2| |#2| (-1142)) 28)))
+(((-1134 |#1| |#2|) (-10 -7 (-15 -3869 (|#2| |#2| (-1142))) (-15 -3869 (|#2| |#2| (-1058 |#2|)))) (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-414 |#1|) (-158) (-27) (-1164))) (T -1134))
+((-3869 (*1 *2 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1164))) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1134 *4 *2)))) (-3869 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1164))))))
+(-10 -7 (-15 -3869 (|#2| |#2| (-1142))) (-15 -3869 (|#2| |#2| (-1058 |#2|))))
+((-3869 (((-3 (-400 (-917 |#1|)) (-307 |#1|)) (-400 (-917 |#1|)) (-1058 (-400 (-917 |#1|)))) 31) (((-400 (-917 |#1|)) (-917 |#1|) (-1058 (-917 |#1|))) 44) (((-3 (-400 (-917 |#1|)) (-307 |#1|)) (-400 (-917 |#1|)) (-1142)) 33) (((-400 (-917 |#1|)) (-917 |#1|) (-1142)) 36)))
+(((-1135 |#1|) (-10 -7 (-15 -3869 ((-400 (-917 |#1|)) (-917 |#1|) (-1142))) (-15 -3869 ((-3 (-400 (-917 |#1|)) (-307 |#1|)) (-400 (-917 |#1|)) (-1142))) (-15 -3869 ((-400 (-917 |#1|)) (-917 |#1|) (-1058 (-917 |#1|)))) (-15 -3869 ((-3 (-400 (-917 |#1|)) (-307 |#1|)) (-400 (-917 |#1|)) (-1058 (-400 (-917 |#1|)))))) (-13 (-542) (-823) (-1009 (-535)))) (T -1135))
+((-3869 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-400 (-917 *5)))) (-5 *3 (-400 (-917 *5))) (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-3 *3 (-307 *5))) (-5 *1 (-1135 *5)))) (-3869 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-917 *5))) (-5 *3 (-917 *5)) (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-400 *3)) (-5 *1 (-1135 *5)))) (-3869 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-3 (-400 (-917 *5)) (-307 *5))) (-5 *1 (-1135 *5)) (-5 *3 (-400 (-917 *5))))) (-3869 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-400 (-917 *5))) (-5 *1 (-1135 *5)) (-5 *3 (-917 *5)))))
+(-10 -7 (-15 -3869 ((-400 (-917 |#1|)) (-917 |#1|) (-1142))) (-15 -3869 ((-3 (-400 (-917 |#1|)) (-307 |#1|)) (-400 (-917 |#1|)) (-1142))) (-15 -3869 ((-400 (-917 |#1|)) (-917 |#1|) (-1058 (-917 |#1|)))) (-15 -3869 ((-3 (-400 (-917 |#1|)) (-307 |#1|)) (-400 (-917 |#1|)) (-1058 (-400 (-917 |#1|))))))
+((-2887 (((-112) $ $) 137)) (-3522 (((-112) $) 27)) (-4109 (((-1224 |#1|) $ (-747)) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4107 (($ (-1136 |#1|)) NIL)) (-3407 (((-1136 $) $ (-1048)) 58) (((-1136 |#1|) $) 47)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) 132 (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1048))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4098 (($ $ $) 126 (|has| |#1| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) 71 (|has| |#1| (-881)))) (-4117 (($ $) NIL (|has| |#1| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 91 (|has| |#1| (-881)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4103 (($ $ (-747)) 39)) (-4102 (($ $ (-747)) 40)) (-4094 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-1048) #2#) $) NIL)) (-3490 ((|#1| $) NIL) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-1048) $) NIL)) (-4099 (($ $ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) 56)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-4101 (($ $ $) 104)) (-4096 (($ $ $) NIL (|has| |#1| (-542)))) (-4095 (((-2 (|:| -4296 |#1|) (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-3840 (($ $) 133 (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-747) $) 45)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1048) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1048) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-3870 (((-835) $ (-835)) 117)) (-4114 (((-747) $ $) NIL (|has| |#1| (-542)))) (-2493 (((-112) $) 30)) (-2501 (((-747) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| |#1| (-1117)))) (-3408 (($ (-1136 |#1|) (-1048)) 49) (($ (-1136 $) (-1048)) 65)) (-4119 (($ $ (-747)) 32)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) 63) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1048)) NIL) (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 121)) (-3141 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-1717 (($ (-1 (-747) (-747)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4108 (((-1136 |#1|) $) NIL)) (-3406 (((-3 (-1048) #4="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) 52)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3576 (((-1124) $) NIL)) (-4104 (((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747)) 38)) (-3144 (((-3 (-618 $) #4#) $) NIL)) (-3143 (((-3 (-618 $) #4#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-1048)) (|:| -2484 (-747))) #4#) $) NIL)) (-4155 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3787 (($) NIL (|has| |#1| (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) 31)) (-1910 ((|#1| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 79 (|has| |#1| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-444))) (($ $ $) 135 (|has| |#1| (-444)))) (-4081 (($ $ (-747) |#1| $) 99)) (-3026 (((-398 (-1136 $)) (-1136 $)) 77 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 76 (|has| |#1| (-881)))) (-4075 (((-398 $) $) 84 (|has| |#1| (-881)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1048) |#1|) NIL) (($ $ (-618 (-1048)) (-618 |#1|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-618 (-1048)) (-618 $)) NIL)) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-542)))) (-4106 (((-3 $ #5="failed") $ (-747)) 35)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 138 (|has| |#1| (-356)))) (-4100 (($ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-4153 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4290 (((-747) $) 54) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-1048) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) 130 (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-881))))) (-4097 (((-3 $ #5#) $ $) NIL (|has| |#1| (-542))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#1| (-542)))) (-4300 (((-835) $) 118) (($ (-535)) NIL) (($ |#1|) 53) (($ (-1048)) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) 25 (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) 15 T CONST)) (-2985 (($) 16 T CONST)) (-2990 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) 96)) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4291 (($ $ |#1|) 139 (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 66)) (** (($ $ (-890)) 14) (($ $ (-747)) 12)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 24) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1136 |#1|) (-13 (-1200 |#1|) (-10 -8 (-15 -3870 ((-835) $ (-835))) (-15 -4081 ($ $ (-747) |#1| $)))) (-1018)) (T -1136))
+((-3870 (*1 *2 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-1136 *3)) (-4 *3 (-1018)))) (-4081 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1136 *3)) (-4 *3 (-1018)))))
+(-13 (-1200 |#1|) (-10 -8 (-15 -3870 ((-835) $ (-835))) (-15 -4081 ($ $ (-747) |#1| $))))
+((-4301 (((-1136 |#2|) (-1 |#2| |#1|) (-1136 |#1|)) 13)))
+(((-1137 |#1| |#2|) (-10 -7 (-15 -4301 ((-1136 |#2|) (-1 |#2| |#1|) (-1136 |#1|)))) (-1018) (-1018)) (T -1137))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-1136 *6)) (-5 *1 (-1137 *5 *6)))))
+(-10 -7 (-15 -4301 ((-1136 |#2|) (-1 |#2| |#1|) (-1136 |#1|))))
+((-4312 (((-398 (-1136 (-400 |#4|))) (-1136 (-400 |#4|))) 51)) (-4075 (((-398 (-1136 (-400 |#4|))) (-1136 (-400 |#4|))) 52)))
+(((-1138 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4075 ((-398 (-1136 (-400 |#4|))) (-1136 (-400 |#4|)))) (-15 -4312 ((-398 (-1136 (-400 |#4|))) (-1136 (-400 |#4|))))) (-769) (-823) (-444) (-921 |#3| |#1| |#2|)) (T -1138))
+((-4312 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-398 (-1136 (-400 *7)))) (-5 *1 (-1138 *4 *5 *6 *7)) (-5 *3 (-1136 (-400 *7))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444)) (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-398 (-1136 (-400 *7)))) (-5 *1 (-1138 *4 *5 *6 *7)) (-5 *3 (-1136 (-400 *7))))))
+(-10 -7 (-15 -4075 ((-398 (-1136 (-400 |#4|))) (-1136 (-400 |#4|)))) (-15 -4312 ((-398 (-1136 (-400 |#4|))) (-1136 (-400 |#4|)))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 11)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) NIL) (($ $ (-400 (-535)) (-400 (-535))) NIL)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) NIL)) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-1133 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1140 |#1| |#2| |#3|) #1#) $) 36)) (-3490 (((-1133 |#1| |#2| |#3|) $) NIL) (((-1140 |#1| |#2| |#3|) $) NIL)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-4123 (((-400 (-535)) $) 55)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-4124 (($ (-400 (-535)) (-1133 |#1| |#2| |#3|)) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) NIL) (((-400 (-535)) $ (-400 (-535))) NIL)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) NIL) (($ $ (-400 (-535))) NIL)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-400 (-535))) 20) (($ $ (-1048) (-400 (-535))) NIL) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4122 (((-1133 |#1| |#2| |#3|) $) 41)) (-4120 (((-3 (-1133 |#1| |#2| |#3|) "failed") $) NIL)) (-4121 (((-1133 |#1| |#2| |#3|) $) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-4155 (($ $) 39 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 40 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) NIL) (($ $ $) NIL (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $ (-1221 |#2|)) 38)) (-4290 (((-400 (-535)) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) 58) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1133 |#1| |#2| |#3|)) 30) (($ (-1140 |#1| |#2| |#3|)) 31) (($ (-1221 |#2|)) 26) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 12)) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 22 T CONST)) (-2985 (($) 16 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 24)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-1139 |#1| |#2| |#3|) (-13 (-1209 |#1| (-1133 |#1| |#2| |#3|)) (-1009 (-1140 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1139))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1209 |#1| (-1133 |#1| |#2| |#3|)) (-1009 (-1140 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 125)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 116)) (-4154 (((-1193 |#2| |#1|) $ (-747)) 63)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-747)) 79) (($ $ (-747) (-747)) 76)) (-4116 (((-1119 (-2 (|:| |k| (-747)) (|:| |c| |#1|))) $) 102)) (-3829 (($ $) 169 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 145 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3827 (($ $) 165 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-1119 (-2 (|:| |k| (-747)) (|:| |c| |#1|)))) 115) (($ (-1119 |#1|)) 110)) (-3831 (($ $) 173 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 149 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) 23)) (-4159 (($ $) 26)) (-4157 (((-917 |#1|) $ (-747)) 75) (((-917 |#1|) $ (-747) (-747)) 77)) (-3213 (((-112) $) 120)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-747) $) 122) (((-747) $ (-747)) 124)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) NIL)) (-4158 (($ (-1 |#1| (-535)) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) 13) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4285 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-4155 (($ $) 129 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 130 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-4111 (($ $ (-747)) 15)) (-3803 (((-3 $ "failed") $ $) 24 (|has| |#1| (-542)))) (-4286 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-747)))))) (-4142 ((|#1| $ (-747)) 119) (($ $ $) 128 (|has| (-747) (-1078)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $ (-1221 |#2|)) 29)) (-4290 (((-747) $) NIL)) (-3832 (($ $) 175 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 151 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 171 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 147 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 167 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 143 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) 201) (($ (-535)) NIL) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1193 |#2| |#1|)) 51) (($ (-1221 |#2|)) 32)) (-4160 (((-1119 |#1|) $) 98)) (-4023 ((|#1| $ (-747)) 118)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 54)) (-3835 (($ $) 181 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 157 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) 177 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 153 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 185 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 161 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-747)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-747)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 187 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 163 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 183 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 159 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 179 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 155 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 17 T CONST)) (-2985 (($) 19 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) 194)) (-4182 (($ $ $) 31)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ |#1|) 198 (|has| |#1| (-356))) (($ $ $) 134 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 137 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-1140 |#1| |#2| |#3|) (-13 (-1217 |#1|) (-10 -8 (-15 -4300 ($ (-1193 |#2| |#1|))) (-15 -4154 ((-1193 |#2| |#1|) $ (-747))) (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1140))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1193 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-1140 *3 *4 *5)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1193 *5 *4)) (-5 *1 (-1140 *4 *5 *6)) (-4 *4 (-1018)) (-14 *5 (-1142)) (-14 *6 *4))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1217 |#1|) (-10 -8 (-15 -4300 ($ (-1193 |#2| |#1|))) (-15 -4154 ((-1193 |#2| |#1|) $ (-747))) (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|)))
+((-4300 (((-835) $) 27) (($ (-1142)) 29)) (-3874 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 40)) (-3871 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 33) (($ $) 34)) (-3878 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 35)) (-3876 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 37)) (-3877 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 36)) (-3875 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 38)) (-3873 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 39)))
+(((-1141) (-13 (-593 (-835)) (-10 -8 (-15 -4300 ($ (-1142))) (-15 -3878 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3877 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3876 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3875 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3874 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3873 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3871 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3871 ($ $))))) (T -1141))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1141)))) (-3878 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3877 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3876 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3875 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3874 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3873 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3871 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141)))) (-5 *1 (-1141)))) (-3871 (*1 *1 *1) (-5 *1 (-1141))))
+(-13 (-593 (-835)) (-10 -8 (-15 -4300 ($ (-1142))) (-15 -3878 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3877 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3876 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3875 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3874 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3873 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3871 ($ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3871 ($ $))))
+((-2887 (((-112) $ $) NIL)) (-3883 (($ $ (-618 (-835))) 59)) (-3884 (($ $ (-618 (-835))) 57)) (-3881 (((-1124) $) 84)) (-3886 (((-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835)))) $) 87)) (-3887 (((-112) $) 22)) (-3885 (($ $ (-618 (-618 (-835)))) 56) (($ $ (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835))))) 82)) (-3879 (($) 124 T CONST)) (-3889 (((-1230)) 106)) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 66) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 73)) (-3960 (($) 95) (($ $) 101)) (-3888 (($ $) 83)) (-3660 (($ $ $) NIL)) (-3661 (($ $ $) NIL)) (-3880 (((-618 $) $) 107)) (-3576 (((-1124) $) 90)) (-3577 (((-1086) $) NIL)) (-4142 (($ $ (-618 (-835))) 58)) (-4313 (((-524) $) 46) (((-1142) $) 47) (((-861 (-535)) $) 77) (((-861 (-371)) $) 75)) (-4300 (((-835) $) 53) (($ (-1124)) 48)) (-3882 (($ $ (-618 (-835))) 60)) (-2825 (((-1124) $) 33) (((-1124) $ (-112)) 34) (((-1230) (-799) $) 35) (((-1230) (-799) $ (-112)) 36)) (-2885 (((-112) $ $) NIL)) (-2886 (((-112) $ $) NIL)) (-3375 (((-112) $ $) 49)) (-3005 (((-112) $ $) NIL)) (-3006 (((-112) $ $) 50)))
+(((-1142) (-13 (-823) (-594 (-524)) (-797) (-594 (-1142)) (-594 (-861 (-535))) (-594 (-861 (-371))) (-857 (-535)) (-857 (-371)) (-10 -8 (-15 -3960 ($)) (-15 -3960 ($ $)) (-15 -3889 ((-1230))) (-15 -4300 ($ (-1124))) (-15 -3888 ($ $)) (-15 -3887 ((-112) $)) (-15 -3886 ((-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835)))) $)) (-15 -3885 ($ $ (-618 (-618 (-835))))) (-15 -3885 ($ $ (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835)))))) (-15 -3884 ($ $ (-618 (-835)))) (-15 -3883 ($ $ (-618 (-835)))) (-15 -3882 ($ $ (-618 (-835)))) (-15 -4142 ($ $ (-618 (-835)))) (-15 -3881 ((-1124) $)) (-15 -3880 ((-618 $) $)) (-15 -3879 ($) -4294)))) (T -1142))
+((-3960 (*1 *1) (-5 *1 (-1142))) (-3960 (*1 *1 *1) (-5 *1 (-1142))) (-3889 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1142)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1142)))) (-3888 (*1 *1 *1) (-5 *1 (-1142))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835))))) (-5 *1 (-1142)))) (-3885 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-618 (-835)))) (-5 *1 (-1142)))) (-3885 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835))))) (-5 *1 (-1142)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142)))) (-3883 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142)))) (-3882 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1142)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1142)))) (-3879 (*1 *1) (-5 *1 (-1142))))
+(-13 (-823) (-594 (-524)) (-797) (-594 (-1142)) (-594 (-861 (-535))) (-594 (-861 (-371))) (-857 (-535)) (-857 (-371)) (-10 -8 (-15 -3960 ($)) (-15 -3960 ($ $)) (-15 -3889 ((-1230))) (-15 -4300 ($ (-1124))) (-15 -3888 ($ $)) (-15 -3887 ((-112) $)) (-15 -3886 ((-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835)))) $)) (-15 -3885 ($ $ (-618 (-618 (-835))))) (-15 -3885 ($ $ (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835))) (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835))) (|:| |args| (-618 (-835)))))) (-15 -3884 ($ $ (-618 (-835)))) (-15 -3883 ($ $ (-618 (-835)))) (-15 -3882 ($ $ (-618 (-835)))) (-15 -4142 ($ $ (-618 (-835)))) (-15 -3881 ((-1124) $)) (-15 -3880 ((-618 $) $)) (-15 -3879 ($) -4294)))
+((-3890 (((-1224 |#1|) |#1| (-890)) 16) (((-1224 |#1|) (-618 |#1|)) 20)))
+(((-1143 |#1|) (-10 -7 (-15 -3890 ((-1224 |#1|) (-618 |#1|))) (-15 -3890 ((-1224 |#1|) |#1| (-890)))) (-1018)) (T -1143))
+((-3890 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-1224 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1018)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-1018)) (-5 *2 (-1224 *4)) (-5 *1 (-1143 *4)))))
+(-10 -7 (-15 -3890 ((-1224 |#1|) (-618 |#1|))) (-15 -3890 ((-1224 |#1|) |#1| (-890))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| |#1| (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| |#1| (-1009 (-400 (-535))))) (((-3 |#1| #1#) $) NIL)) (-3490 (((-535) $) NIL (|has| |#1| (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| |#1| (-1009 (-400 (-535))))) ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-3840 (($ $) NIL (|has| |#1| (-444)))) (-1716 (($ $ |#1| (-942) $) NIL)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-942)) NIL)) (-3141 (((-942) $) NIL)) (-1717 (($ (-1 (-942) (-942)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-4081 (($ $ (-942) |#1| $) NIL (-12 (|has| (-942) (-130)) (|has| |#1| (-542))))) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-542)))) (-4290 (((-942) $) NIL)) (-3138 ((|#1| $) NIL (|has| |#1| (-444)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) NIL) (($ (-400 (-535))) NIL (-3874 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-1009 (-400 (-535))))))) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ (-942)) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-2979 (($) 9 T CONST)) (-2985 (($) 14 T CONST)) (-3375 (((-112) $ $) 16)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 19)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-1144 |#1|) (-13 (-319 |#1| (-942)) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| (-942) (-130)) (-15 -4081 ($ $ (-942) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|))) (-1018)) (T -1144))
+((-4081 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-942)) (-4 *2 (-130)) (-5 *1 (-1144 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))))
+(-13 (-319 |#1| #1=(-942)) (-10 -8 (IF (|has| |#1| (-542)) (IF (|has| #1# (-130)) (-15 -4081 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|)))
+((-3891 (((-1146) (-1142) $) 25)) (-3901 (($) 29)) (-3893 (((-3 (|:| |fst| (-427)) (|:| -4253 #1="void")) (-1142) $) 22)) (-3895 (((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 #1#)) $) 41) (((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) 42) (((-1230) (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) 43)) (-3903 (((-1230) (-1142)) 58)) (-3894 (((-1230) (-1142) $) 55) (((-1230) (-1142)) 56) (((-1230)) 57)) (-3899 (((-1230) (-1142)) 37)) (-3897 (((-1142)) 36)) (-3911 (($) 34)) (-3910 (((-429) (-1142) (-429) (-1142) $) 45) (((-429) (-618 (-1142)) (-429) (-1142) $) 49) (((-429) (-1142) (-429)) 46) (((-429) (-1142) (-429) (-1142)) 50)) (-3898 (((-1142)) 35)) (-4300 (((-835) $) 28)) (-3900 (((-1230)) 30) (((-1230) (-1142)) 33)) (-3892 (((-618 (-1142)) (-1142) $) 24)) (-3896 (((-1230) (-1142) (-618 (-1142)) $) 38) (((-1230) (-1142) (-618 (-1142))) 39) (((-1230) (-618 (-1142))) 40)))
+(((-1145) (-13 (-593 (-835)) (-10 -8 (-15 -3901 ($)) (-15 -3900 ((-1230))) (-15 -3900 ((-1230) (-1142))) (-15 -3910 ((-429) (-1142) (-429) (-1142) $)) (-15 -3910 ((-429) (-618 (-1142)) (-429) (-1142) $)) (-15 -3910 ((-429) (-1142) (-429))) (-15 -3910 ((-429) (-1142) (-429) (-1142))) (-15 -3899 ((-1230) (-1142))) (-15 -3898 ((-1142))) (-15 -3897 ((-1142))) (-15 -3896 ((-1230) (-1142) (-618 (-1142)) $)) (-15 -3896 ((-1230) (-1142) (-618 (-1142)))) (-15 -3896 ((-1230) (-618 (-1142)))) (-15 -3895 ((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 #1="void")) $)) (-15 -3895 ((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 #1#)))) (-15 -3895 ((-1230) (-3 (|:| |fst| (-427)) (|:| -4253 #1#)))) (-15 -3894 ((-1230) (-1142) $)) (-15 -3894 ((-1230) (-1142))) (-15 -3894 ((-1230))) (-15 -3903 ((-1230) (-1142))) (-15 -3911 ($)) (-15 -3893 ((-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-1142) $)) (-15 -3892 ((-618 (-1142)) (-1142) $)) (-15 -3891 ((-1146) (-1142) $))))) (T -1145))
+((-3901 (*1 *1) (-5 *1 (-1145))) (-3900 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3910 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1145)))) (-3910 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-429)) (-5 *3 (-618 (-1142))) (-5 *4 (-1142)) (-5 *1 (-1145)))) (-3910 (*1 *2 *3 *2) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1145)))) (-3910 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1145)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3898 (*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1145)))) (-3897 (*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1145)))) (-3896 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3895 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1142)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1="void"))) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3894 (*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3894 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))) (-3911 (*1 *1) (-5 *1 (-1145))) (-3893 (*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-5 *1 (-1145)))) (-3892 (*1 *2 *3 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1145)) (-5 *3 (-1142)))) (-3891 (*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-1146)) (-5 *1 (-1145)))))
+(-13 (-593 (-835)) (-10 -8 (-15 -3901 ($)) (-15 -3900 ((-1230))) (-15 -3900 ((-1230) (-1142))) (-15 -3910 ((-429) (-1142) (-429) (-1142) $)) (-15 -3910 ((-429) (-618 (-1142)) (-429) (-1142) $)) (-15 -3910 ((-429) (-1142) (-429))) (-15 -3910 ((-429) (-1142) (-429) (-1142))) (-15 -3899 ((-1230) (-1142))) (-15 -3898 ((-1142))) (-15 -3897 ((-1142))) (-15 -3896 ((-1230) (-1142) (-618 (-1142)) $)) (-15 -3896 ((-1230) (-1142) (-618 (-1142)))) (-15 -3896 ((-1230) (-618 (-1142)))) (-15 -3895 ((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 #1="void")) $)) (-15 -3895 ((-1230) (-1142) (-3 (|:| |fst| (-427)) (|:| -4253 #1#)))) (-15 -3895 ((-1230) (-3 (|:| |fst| (-427)) (|:| -4253 #1#)))) (-15 -3894 ((-1230) (-1142) $)) (-15 -3894 ((-1230) (-1142))) (-15 -3894 ((-1230))) (-15 -3903 ((-1230) (-1142))) (-15 -3911 ($)) (-15 -3893 ((-3 (|:| |fst| (-427)) (|:| -4253 #1#)) (-1142) $)) (-15 -3892 ((-618 (-1142)) (-1142) $)) (-15 -3891 ((-1146) (-1142) $))))
+((-3905 (((-618 (-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535))))))))) $) 59)) (-3907 (((-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535)))))))) (-427) $) 43)) (-3902 (($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-429))))) 17)) (-3903 (((-1230) $) 67)) (-3908 (((-618 (-1142)) $) 22)) (-3904 (((-1069) $) 55)) (-3909 (((-429) (-1142) $) 27)) (-3906 (((-618 (-1142)) $) 30)) (-3911 (($) 19)) (-3910 (((-429) (-618 (-1142)) (-429) $) 25) (((-429) (-1142) (-429) $) 24)) (-4300 (((-835) $) 9) (((-1151 (-1142) (-429)) $) 13)))
+(((-1146) (-13 (-593 (-835)) (-10 -8 (-15 -4300 ((-1151 (-1142) (-429)) $)) (-15 -3911 ($)) (-15 -3910 ((-429) (-618 (-1142)) (-429) $)) (-15 -3910 ((-429) (-1142) (-429) $)) (-15 -3909 ((-429) (-1142) $)) (-15 -3908 ((-618 (-1142)) $)) (-15 -3907 ((-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535)))))))) (-427) $)) (-15 -3906 ((-618 (-1142)) $)) (-15 -3905 ((-618 (-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535))))))))) $)) (-15 -3904 ((-1069) $)) (-15 -3903 ((-1230) $)) (-15 -3902 ($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-429))))))))) (T -1146))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-1151 (-1142) (-429))) (-5 *1 (-1146)))) (-3911 (*1 *1) (-5 *1 (-1146))) (-3910 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-618 (-1142))) (-5 *1 (-1146)))) (-3910 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1146)))) (-3909 (*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-429)) (-5 *1 (-1146)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1146)))) (-3907 (*1 *2 *3 *1) (-12 (-5 *3 (-427)) (-5 *2 (-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535))))))))) (-5 *1 (-1146)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1146)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535)))))))))) (-5 *1 (-1146)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-1146)))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1146)))) (-3902 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-429))))) (-5 *1 (-1146)))))
+(-13 (-593 (-835)) (-10 -8 (-15 -4300 ((-1151 (-1142) (-429)) $)) (-15 -3911 ($)) (-15 -3910 ((-429) (-618 (-1142)) (-429) $)) (-15 -3910 ((-429) (-1142) (-429) $)) (-15 -3909 ((-429) (-1142) $)) (-15 -3908 ((-618 (-1142)) $)) (-15 -3907 ((-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535)))))))) (-427) $)) (-15 -3906 ((-618 (-1142)) $)) (-15 -3905 ((-618 (-618 (-3 (|:| -3888 (-1142)) (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535))))))))) $)) (-15 -3904 ((-1069) $)) (-15 -3903 ((-1230) $)) (-15 -3902 ($ (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-429))))))))
+((-2887 (((-112) $ $) NIL)) (-3916 (((-112) $) 48)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3915 (((-3 (-535) (-219) (-1142) (-1124) $) $) 56)) (-3914 (((-618 $) $) 61)) (-4313 (((-1069) $) 30) (($ (-1069)) 31)) (-3913 (((-112) $) 58)) (-4300 (((-835) $) 29) (($ (-535)) 32) (((-535) $) 34) (($ (-219)) 35) (((-219) $) 37) (($ (-1142)) 38) (((-1142) $) 40) (($ (-1124)) 41) (((-1124) $) 43)) (-3912 (((-112) $ (|[\|\|]| (-535))) 13) (((-112) $ (|[\|\|]| (-219))) 17) (((-112) $ (|[\|\|]| (-1142))) 25) (((-112) $ (|[\|\|]| (-1124))) 21)) (-3917 (($ (-1142) (-618 $)) 45) (($ $ (-618 $)) 46)) (-3918 (((-535) $) 33) (((-219) $) 36) (((-1142) $) 39) (((-1124) $) 42)) (-3375 (((-112) $ $) 8)))
+(((-1147) (-13 (-1220) (-1067) (-10 -8 (-15 -4313 ((-1069) $)) (-15 -4313 ($ (-1069))) (-15 -4300 ($ (-535))) (-15 -4300 ((-535) $)) (-15 -3918 ((-535) $)) (-15 -4300 ($ (-219))) (-15 -4300 ((-219) $)) (-15 -3918 ((-219) $)) (-15 -4300 ($ (-1142))) (-15 -4300 ((-1142) $)) (-15 -3918 ((-1142) $)) (-15 -4300 ($ (-1124))) (-15 -4300 ((-1124) $)) (-15 -3918 ((-1124) $)) (-15 -3917 ($ (-1142) (-618 $))) (-15 -3917 ($ $ (-618 $))) (-15 -3916 ((-112) $)) (-15 -3915 ((-3 (-535) (-219) (-1142) (-1124) $) $)) (-15 -3914 ((-618 $) $)) (-15 -3913 ((-112) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-535)))) (-15 -3912 ((-112) $ (|[\|\|]| (-219)))) (-15 -3912 ((-112) $ (|[\|\|]| (-1142)))) (-15 -3912 ((-112) $ (|[\|\|]| (-1124))))))) (T -1147))
+((-4313 (*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-1147)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-1069)) (-5 *1 (-1147)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1147)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1147)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1147)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1147)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1147)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1147)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1147)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1147)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1147)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1147)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1147)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1147)))) (-3917 (*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-1147))) (-5 *1 (-1147)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-1147)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-3 (-535) (-219) (-1142) (-1124) (-1147))) (-5 *1 (-1147)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-1147)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)) (-5 *1 (-1147)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1147)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1142))) (-5 *2 (-112)) (-5 *1 (-1147)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)) (-5 *1 (-1147)))))
+(-13 (-1220) (-1067) (-10 -8 (-15 -4313 ((-1069) $)) (-15 -4313 ($ (-1069))) (-15 -4300 ($ (-535))) (-15 -4300 ((-535) $)) (-15 -3918 ((-535) $)) (-15 -4300 ($ (-219))) (-15 -4300 ((-219) $)) (-15 -3918 ((-219) $)) (-15 -4300 ($ (-1142))) (-15 -4300 ((-1142) $)) (-15 -3918 ((-1142) $)) (-15 -4300 ($ (-1124))) (-15 -4300 ((-1124) $)) (-15 -3918 ((-1124) $)) (-15 -3917 ($ (-1142) (-618 $))) (-15 -3917 ($ $ (-618 $))) (-15 -3916 ((-112) $)) (-15 -3915 ((-3 (-535) (-219) (-1142) (-1124) $) $)) (-15 -3914 ((-618 $) $)) (-15 -3913 ((-112) $)) (-15 -3912 ((-112) $ (|[\|\|]| (-535)))) (-15 -3912 ((-112) $ (|[\|\|]| (-219)))) (-15 -3912 ((-112) $ (|[\|\|]| (-1142)))) (-15 -3912 ((-112) $ (|[\|\|]| (-1124))))))
+((-3920 (((-618 (-618 (-917 |#1|))) (-618 (-400 (-917 |#1|))) (-618 (-1142))) 57)) (-3919 (((-618 (-286 (-400 (-917 |#1|)))) (-286 (-400 (-917 |#1|)))) 69) (((-618 (-286 (-400 (-917 |#1|)))) (-400 (-917 |#1|))) 65) (((-618 (-286 (-400 (-917 |#1|)))) (-286 (-400 (-917 |#1|))) (-1142)) 70) (((-618 (-286 (-400 (-917 |#1|)))) (-400 (-917 |#1|)) (-1142)) 64) (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-286 (-400 (-917 |#1|))))) 93) (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-400 (-917 |#1|)))) 92) (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-286 (-400 (-917 |#1|)))) (-618 (-1142))) 94) (((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-400 (-917 |#1|))) (-618 (-1142))) 91)))
+(((-1148 |#1|) (-10 -7 (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-286 (-400 (-917 |#1|)))) (-618 (-1142)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-400 (-917 |#1|))))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-286 (-400 (-917 |#1|)))))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-400 (-917 |#1|)) (-1142))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-286 (-400 (-917 |#1|))) (-1142))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-400 (-917 |#1|)))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-286 (-400 (-917 |#1|))))) (-15 -3920 ((-618 (-618 (-917 |#1|))) (-618 (-400 (-917 |#1|))) (-618 (-1142))))) (-542)) (T -1148))
+((-3920 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) (-4 *5 (-542)) (-5 *2 (-618 (-618 (-917 *5)))) (-5 *1 (-1148 *5)))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *4))))) (-5 *1 (-1148 *4)) (-5 *3 (-286 (-400 (-917 *4)))))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *4))))) (-5 *1 (-1148 *4)) (-5 *3 (-400 (-917 *4))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *5))))) (-5 *1 (-1148 *5)) (-5 *3 (-286 (-400 (-917 *5)))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-1142)) (-4 *5 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *5))))) (-5 *1 (-1148 *5)) (-5 *3 (-400 (-917 *5))))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-1148 *4)) (-5 *3 (-618 (-286 (-400 (-917 *4))))))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-618 (-400 (-917 *4)))) (-4 *4 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-1148 *4)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-618 (-1142))) (-4 *5 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-1148 *5)) (-5 *3 (-618 (-286 (-400 (-917 *5))))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) (-4 *5 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-1148 *5)))))
+(-10 -7 (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-286 (-400 (-917 |#1|)))) (-618 (-1142)))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-400 (-917 |#1|))))) (-15 -3919 ((-618 (-618 (-286 (-400 (-917 |#1|))))) (-618 (-286 (-400 (-917 |#1|)))))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-400 (-917 |#1|)) (-1142))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-286 (-400 (-917 |#1|))) (-1142))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-400 (-917 |#1|)))) (-15 -3919 ((-618 (-286 (-400 (-917 |#1|)))) (-286 (-400 (-917 |#1|))))) (-15 -3920 ((-618 (-618 (-917 |#1|))) (-618 (-400 (-917 |#1|))) (-618 (-1142)))))
+((-3921 (((-1124)) 7)) (-3923 (((-1124)) 9)) (-3924 (((-1230) (-1124)) 11)) (-3922 (((-1124)) 8)))
+(((-1149) (-10 -7 (-15 -3921 ((-1124))) (-15 -3922 ((-1124))) (-15 -3923 ((-1124))) (-15 -3924 ((-1230) (-1124))))) (T -1149))
+((-3924 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1149)))) (-3923 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))) (-3922 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))) (-3921 (*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))))
+(-10 -7 (-15 -3921 ((-1124))) (-15 -3922 ((-1124))) (-15 -3923 ((-1124))) (-15 -3924 ((-1230) (-1124))))
+((-3928 (((-618 (-618 |#1|)) (-618 (-618 |#1|)) (-618 (-618 (-618 |#1|)))) 38)) (-3931 (((-618 (-618 (-618 |#1|))) (-618 (-618 |#1|))) 24)) (-3932 (((-1152 (-618 |#1|)) (-618 |#1|)) 34)) (-3934 (((-618 (-618 |#1|)) (-618 |#1|)) 30)) (-3937 (((-2 (|:| |f1| (-618 |#1|)) (|:| |f2| (-618 (-618 (-618 |#1|)))) (|:| |f3| (-618 (-618 |#1|))) (|:| |f4| (-618 (-618 (-618 |#1|))))) (-618 (-618 (-618 |#1|)))) 37)) (-3936 (((-2 (|:| |f1| (-618 |#1|)) (|:| |f2| (-618 (-618 (-618 |#1|)))) (|:| |f3| (-618 (-618 |#1|))) (|:| |f4| (-618 (-618 (-618 |#1|))))) (-618 |#1|) (-618 (-618 (-618 |#1|))) (-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))) (-618 (-618 (-618 |#1|))) (-618 (-618 (-618 |#1|)))) 36)) (-3933 (((-618 (-618 |#1|)) (-618 (-618 |#1|))) 28)) (-3935 (((-618 |#1|) (-618 |#1|)) 31)) (-3927 (((-618 (-618 (-618 |#1|))) (-618 |#1|) (-618 (-618 (-618 |#1|)))) 18)) (-3926 (((-618 (-618 (-618 |#1|))) (-1 (-112) |#1| |#1|) (-618 |#1|) (-618 (-618 (-618 |#1|)))) 16)) (-3925 (((-2 (|:| |fs| (-112)) (|:| |sd| (-618 |#1|)) (|:| |td| (-618 (-618 |#1|)))) (-1 (-112) |#1| |#1|) (-618 |#1|) (-618 (-618 |#1|))) 14)) (-3929 (((-618 (-618 |#1|)) (-618 (-618 (-618 |#1|)))) 39)) (-3930 (((-618 (-618 |#1|)) (-1152 (-618 |#1|))) 41)))
+(((-1150 |#1|) (-10 -7 (-15 -3925 ((-2 (|:| |fs| (-112)) (|:| |sd| (-618 |#1|)) (|:| |td| (-618 (-618 |#1|)))) (-1 (-112) |#1| |#1|) (-618 |#1|) (-618 (-618 |#1|)))) (-15 -3926 ((-618 (-618 (-618 |#1|))) (-1 (-112) |#1| |#1|) (-618 |#1|) (-618 (-618 (-618 |#1|))))) (-15 -3927 ((-618 (-618 (-618 |#1|))) (-618 |#1|) (-618 (-618 (-618 |#1|))))) (-15 -3928 ((-618 (-618 |#1|)) (-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))))) (-15 -3929 ((-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))))) (-15 -3930 ((-618 (-618 |#1|)) (-1152 (-618 |#1|)))) (-15 -3931 ((-618 (-618 (-618 |#1|))) (-618 (-618 |#1|)))) (-15 -3932 ((-1152 (-618 |#1|)) (-618 |#1|))) (-15 -3933 ((-618 (-618 |#1|)) (-618 (-618 |#1|)))) (-15 -3934 ((-618 (-618 |#1|)) (-618 |#1|))) (-15 -3935 ((-618 |#1|) (-618 |#1|))) (-15 -3936 ((-2 (|:| |f1| (-618 |#1|)) (|:| |f2| (-618 (-618 (-618 |#1|)))) (|:| |f3| (-618 (-618 |#1|))) (|:| |f4| (-618 (-618 (-618 |#1|))))) (-618 |#1|) (-618 (-618 (-618 |#1|))) (-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))) (-618 (-618 (-618 |#1|))) (-618 (-618 (-618 |#1|))))) (-15 -3937 ((-2 (|:| |f1| (-618 |#1|)) (|:| |f2| (-618 (-618 (-618 |#1|)))) (|:| |f3| (-618 (-618 |#1|))) (|:| |f4| (-618 (-618 (-618 |#1|))))) (-618 (-618 (-618 |#1|)))))) (-823)) (T -1150))
+((-3937 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-2 (|:| |f1| (-618 *4)) (|:| |f2| (-618 (-618 (-618 *4)))) (|:| |f3| (-618 (-618 *4))) (|:| |f4| (-618 (-618 (-618 *4)))))) (-5 *1 (-1150 *4)) (-5 *3 (-618 (-618 (-618 *4)))))) (-3936 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-823)) (-5 *3 (-618 *6)) (-5 *5 (-618 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-618 *5)) (|:| |f3| *5) (|:| |f4| (-618 *5)))) (-5 *1 (-1150 *6)) (-5 *4 (-618 *5)))) (-3935 (*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-1150 *3)))) (-3934 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-618 (-618 *4))) (-5 *1 (-1150 *4)) (-5 *3 (-618 *4)))) (-3933 (*1 *2 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-823)) (-5 *1 (-1150 *3)))) (-3932 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-1152 (-618 *4))) (-5 *1 (-1150 *4)) (-5 *3 (-618 *4)))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-618 (-618 (-618 *4)))) (-5 *1 (-1150 *4)) (-5 *3 (-618 (-618 *4))))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-1152 (-618 *4))) (-4 *4 (-823)) (-5 *2 (-618 (-618 *4))) (-5 *1 (-1150 *4)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-618 (-618 (-618 *4)))) (-5 *2 (-618 (-618 *4))) (-5 *1 (-1150 *4)) (-4 *4 (-823)))) (-3928 (*1 *2 *2 *3) (-12 (-5 *3 (-618 (-618 (-618 *4)))) (-5 *2 (-618 (-618 *4))) (-4 *4 (-823)) (-5 *1 (-1150 *4)))) (-3927 (*1 *2 *3 *2) (-12 (-5 *2 (-618 (-618 (-618 *4)))) (-5 *3 (-618 *4)) (-4 *4 (-823)) (-5 *1 (-1150 *4)))) (-3926 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-618 (-618 (-618 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-618 *5)) (-4 *5 (-823)) (-5 *1 (-1150 *5)))) (-3925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-823)) (-5 *4 (-618 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-618 *4)))) (-5 *1 (-1150 *6)) (-5 *5 (-618 *4)))))
+(-10 -7 (-15 -3925 ((-2 (|:| |fs| (-112)) (|:| |sd| (-618 |#1|)) (|:| |td| (-618 (-618 |#1|)))) (-1 (-112) |#1| |#1|) (-618 |#1|) (-618 (-618 |#1|)))) (-15 -3926 ((-618 (-618 (-618 |#1|))) (-1 (-112) |#1| |#1|) (-618 |#1|) (-618 (-618 (-618 |#1|))))) (-15 -3927 ((-618 (-618 (-618 |#1|))) (-618 |#1|) (-618 (-618 (-618 |#1|))))) (-15 -3928 ((-618 (-618 |#1|)) (-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))))) (-15 -3929 ((-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))))) (-15 -3930 ((-618 (-618 |#1|)) (-1152 (-618 |#1|)))) (-15 -3931 ((-618 (-618 (-618 |#1|))) (-618 (-618 |#1|)))) (-15 -3932 ((-1152 (-618 |#1|)) (-618 |#1|))) (-15 -3933 ((-618 (-618 |#1|)) (-618 (-618 |#1|)))) (-15 -3934 ((-618 (-618 |#1|)) (-618 |#1|))) (-15 -3935 ((-618 |#1|) (-618 |#1|))) (-15 -3936 ((-2 (|:| |f1| (-618 |#1|)) (|:| |f2| (-618 (-618 (-618 |#1|)))) (|:| |f3| (-618 (-618 |#1|))) (|:| |f4| (-618 (-618 (-618 |#1|))))) (-618 |#1|) (-618 (-618 (-618 |#1|))) (-618 (-618 |#1|)) (-618 (-618 (-618 |#1|))) (-618 (-618 (-618 |#1|))) (-618 (-618 (-618 |#1|))))) (-15 -3937 ((-2 (|:| |f1| (-618 |#1|)) (|:| |f2| (-618 (-618 (-618 |#1|)))) (|:| |f3| (-618 (-618 |#1|))) (|:| |f4| (-618 (-618 (-618 |#1|))))) (-618 (-618 (-618 |#1|))))))
+((-2887 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3943 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2296 (((-1230) $ |#1| |#1|) NIL (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3879 (($) NIL T CONST)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) NIL)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) NIL)) (-2298 ((|#1| $) NIL (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-618 |#2|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2299 ((|#1| $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2735 (((-618 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2301 (((-618 |#1|) $) NIL)) (-2302 (((-112) |#1| $) NIL)) (-3577 (((-1086) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4143 ((|#2| $) NIL (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL)) (-2297 (($ $ |#2|) NIL (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) NIL (-12 (|has| $ (-6 -4336)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-4300 (((-835) $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) NIL (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) NIL (-3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-1151 |#1| |#2|) (-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336))) (-1067) (-1067)) (T -1151))
NIL
(-13 (-1155 |#1| |#2|) (-10 -7 (-6 -4336)))
-((-3281 ((|#1| (-621 |#1|)) 32)) (-3199 ((|#1| |#1| (-549)) 18)) (-1833 (((-1138 |#1|) |#1| (-892)) 15)))
-(((-1153 |#1|) (-10 -7 (-15 -3281 (|#1| (-621 |#1|))) (-15 -1833 ((-1138 |#1|) |#1| (-892))) (-15 -3199 (|#1| |#1| (-549)))) (-356)) (T -1153))
-((-3199 (*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-1153 *2)) (-4 *2 (-356)))) (-1833 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-5 *2 (-1138 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-356)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-5 *1 (-1153 *2)) (-4 *2 (-356)))))
-(-10 -7 (-15 -3281 (|#1| (-621 |#1|))) (-15 -1833 ((-1138 |#1|) |#1| (-892))) (-15 -3199 (|#1| |#1| (-549))))
-((-3732 (($) 10) (($ (-621 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)))) 14)) (-4204 (($ (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2990 (((-621 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) $) 39) (((-621 |#3|) $) 41)) (-1865 (($ (-1 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2796 (($ (-1 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2349 (((-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) $) 54)) (-1709 (($ (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) $) 16)) (-3927 (((-621 |#2|) $) 19)) (-1286 (((-112) |#2| $) 59)) (-1917 (((-3 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) "failed") (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) $) 58)) (-2629 (((-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) $) 63)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-1738 (((-621 |#3|) $) 43)) (-3340 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) $) NIL) (((-747) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) $) NIL) (((-747) |#3| $) NIL) (((-747) (-1 (-112) |#3|) $) 68)) (-3845 (((-834) $) 27)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-2388 (((-112) $ $) 49)))
-(((-1154 |#1| |#2| |#3|) (-10 -8 (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -2796 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3732 (|#1| (-621 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))))) (-15 -3732 (|#1|)) (-15 -2796 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1865 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2150 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2470 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3997 ((-747) (-1 (-112) |#3|) |#1|)) (-15 -2990 ((-621 |#3|) |#1|)) (-15 -3997 ((-747) |#3| |#1|)) (-15 -3340 (|#3| |#1| |#2| |#3|)) (-15 -3340 (|#3| |#1| |#2|)) (-15 -1738 ((-621 |#3|) |#1|)) (-15 -1286 ((-112) |#2| |#1|)) (-15 -3927 ((-621 |#2|) |#1|)) (-15 -4204 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4204 (|#1| (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -4204 (|#1| (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) |#1|)) (-15 -1917 ((-3 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) "failed") (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -2349 ((-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) |#1|)) (-15 -1709 (|#1| (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) |#1|)) (-15 -2629 ((-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) |#1|)) (-15 -3997 ((-747) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) |#1|)) (-15 -2990 ((-621 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -3997 ((-747) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -2470 ((-112) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -2150 ((-112) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -1865 (|#1| (-1 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -2796 (|#1| (-1 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|))) (-1155 |#2| |#3|) (-1066) (-1066)) (T -1154))
-NIL
-(-10 -8 (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -2796 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3732 (|#1| (-621 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))))) (-15 -3732 (|#1|)) (-15 -2796 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1865 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2150 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2470 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3997 ((-747) (-1 (-112) |#3|) |#1|)) (-15 -2990 ((-621 |#3|) |#1|)) (-15 -3997 ((-747) |#3| |#1|)) (-15 -3340 (|#3| |#1| |#2| |#3|)) (-15 -3340 (|#3| |#1| |#2|)) (-15 -1738 ((-621 |#3|) |#1|)) (-15 -1286 ((-112) |#2| |#1|)) (-15 -3927 ((-621 |#2|) |#1|)) (-15 -4204 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4204 (|#1| (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -4204 (|#1| (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) |#1|)) (-15 -1917 ((-3 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) "failed") (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -2349 ((-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) |#1|)) (-15 -1709 (|#1| (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) |#1|)) (-15 -2629 ((-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) |#1|)) (-15 -3997 ((-747) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) |#1|)) (-15 -2990 ((-621 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -3997 ((-747) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -2470 ((-112) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -2150 ((-112) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -1865 (|#1| (-1 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)) (-15 -2796 (|#1| (-1 (-2 (|:| -3337 |#2|) (|:| -1792 |#3|)) (-2 (|:| -3337 |#2|) (|:| -1792 |#3|))) |#1|)))
-((-3833 (((-112) $ $) 19 (-1536 (|has| |#2| (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-3732 (($) 72) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 71)) (-2932 (((-1230) $ |#1| |#1|) 99 (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) 8)) (-2253 ((|#2| $ |#1| |#2|) 73)) (-3069 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 45 (|has| $ (-6 -4336)))) (-1488 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 55 (|has| $ (-6 -4336)))) (-3489 (((-3 |#2| "failed") |#1| $) 61)) (-1705 (($) 7 T CONST)) (-3675 (($ $) 58 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336))))) (-4204 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 46 (|has| $ (-6 -4336))) (((-3 |#2| "failed") |#1| $) 62)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 54 (|has| $ (-6 -4336)))) (-2558 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 56 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 53 (|has| $ (-6 -4336))) (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 52 (|has| $ (-6 -4336)))) (-1878 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4337)))) (-1808 ((|#2| $ |#1|) 88)) (-2990 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 30 (|has| $ (-6 -4336))) (((-621 |#2|) $) 79 (|has| $ (-6 -4336)))) (-4202 (((-112) $ (-747)) 9)) (-3485 ((|#1| $) 96 (|has| |#1| (-823)))) (-1958 (((-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 29 (|has| $ (-6 -4336))) (((-621 |#2|) $) 80 (|has| $ (-6 -4336)))) (-2273 (((-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1066)) (|has| $ (-6 -4336))))) (-1548 ((|#1| $) 95 (|has| |#1| (-823)))) (-1865 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 34 (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4337)))) (-2796 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4289 (((-112) $ (-747)) 10)) (-2677 (((-1124) $) 22 (-1536 (|has| |#2| (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-3449 (((-621 |#1|) $) 63)) (-3665 (((-112) |#1| $) 64)) (-2349 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 39)) (-1709 (($ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 40)) (-3927 (((-621 |#1|) $) 93)) (-1286 (((-112) |#1| $) 92)) (-3988 (((-1086) $) 21 (-1536 (|has| |#2| (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-3645 ((|#2| $) 97 (|has| |#1| (-823)))) (-1917 (((-3 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 51)) (-3158 (($ $ |#2|) 98 (|has| $ (-6 -4337)))) (-2629 (((-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 41)) (-2470 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 32 (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))))) 26 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 25 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) 24 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 23 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)))) (($ $ (-621 |#2|) (-621 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-287 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066)))) (($ $ (-621 (-287 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1066))))) (-1738 (((-621 |#2|) $) 91)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-4252 (($) 49) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 48)) (-3997 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 31 (|has| $ (-6 -4336))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| $ (-6 -4336)))) (((-747) |#2| $) 81 (-12 (|has| |#2| (-1066)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4336)))) (-2281 (($ $) 13)) (-2844 (((-525) $) 59 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))))) (-3853 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 50)) (-3845 (((-834) $) 18 (-1536 (|has| |#2| (-593 (-834))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834)))))) (-1765 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) 42)) (-2150 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) $) 33 (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (-1536 (|has| |#2| (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-1155 |#1| |#2|) (-138) (-1066) (-1066)) (T -1155))
-((-2253 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1066)))) (-3732 (*1 *1) (-12 (-4 *1 (-1155 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))) (-3732 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -3337 *3) (|:| -1792 *4)))) (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *1 (-1155 *3 *4)))) (-2796 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1155 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)))))
-(-13 (-590 |t#1| |t#2|) (-584 |t#1| |t#2|) (-10 -8 (-15 -2253 (|t#2| $ |t#1| |t#2|)) (-15 -3732 ($)) (-15 -3732 ($ (-621 (-2 (|:| -3337 |t#1|) (|:| -1792 |t#2|))))) (-15 -2796 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-106 #0=(-2 (|:| -3337 |#1|) (|:| -1792 |#2|))) . T) ((-101) -1536 (|has| |#2| (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))) ((-593 (-834)) -1536 (|has| |#2| (-1066)) (|has| |#2| (-593 (-834))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-593 (-834)))) ((-149 #0#) . T) ((-594 (-525)) |has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-594 (-525))) ((-223 #0#) . T) ((-229 #0#) . T) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 #0#) -12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((-481 #0#) . T) ((-481 |#2|) . T) ((-584 |#1| |#2|) . T) ((-505 #0# #0#) -12 (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1066))) ((-590 |#1| |#2|) . T) ((-1066) -1536 (|has| |#2| (-1066)) (|has| (-2 (|:| -3337 |#1|) (|:| -1792 |#2|)) (-1066))) ((-1179) . T))
-((-1291 (((-112)) 24)) (-2068 (((-1230) (-1124)) 26)) (-1352 (((-112)) 36)) (-2031 (((-1230)) 34)) (-2011 (((-1230) (-1124) (-1124)) 25)) (-3312 (((-112)) 37)) (-1709 (((-1230) |#1| |#2|) 44)) (-2392 (((-1230)) 20)) (-3133 (((-3 |#2| "failed") |#1|) 42)) (-2936 (((-1230)) 35)))
-(((-1156 |#1| |#2|) (-10 -7 (-15 -2392 ((-1230))) (-15 -2011 ((-1230) (-1124) (-1124))) (-15 -2068 ((-1230) (-1124))) (-15 -2031 ((-1230))) (-15 -2936 ((-1230))) (-15 -1291 ((-112))) (-15 -1352 ((-112))) (-15 -3312 ((-112))) (-15 -3133 ((-3 |#2| "failed") |#1|)) (-15 -1709 ((-1230) |#1| |#2|))) (-1066) (-1066)) (T -1156))
-((-1709 (*1 *2 *3 *4) (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)))) (-3133 (*1 *2 *3) (|partial| -12 (-4 *2 (-1066)) (-5 *1 (-1156 *3 *2)) (-4 *3 (-1066)))) (-3312 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)))) (-1352 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)))) (-1291 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)))) (-2936 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)))) (-2031 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-1066)))) (-2011 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-1066)))) (-2392 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066)))))
-(-10 -7 (-15 -2392 ((-1230))) (-15 -2011 ((-1230) (-1124) (-1124))) (-15 -2068 ((-1230) (-1124))) (-15 -2031 ((-1230))) (-15 -2936 ((-1230))) (-15 -1291 ((-112))) (-15 -1352 ((-112))) (-15 -3312 ((-112))) (-15 -3133 ((-3 |#2| "failed") |#1|)) (-15 -1709 ((-1230) |#1| |#2|)))
-((-3682 (((-1124) (-1124)) 18)) (-2234 (((-52) (-1124)) 21)))
-(((-1157) (-10 -7 (-15 -2234 ((-52) (-1124))) (-15 -3682 ((-1124) (-1124))))) (T -1157))
-((-3682 (*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1157)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-52)) (-5 *1 (-1157)))))
-(-10 -7 (-15 -2234 ((-52) (-1124))) (-15 -3682 ((-1124) (-1124))))
-((-3845 (((-1159) |#1|) 11)))
-(((-1158 |#1|) (-10 -7 (-15 -3845 ((-1159) |#1|))) (-1066)) (T -1158))
-((-3845 (*1 *2 *3) (-12 (-5 *2 (-1159)) (-5 *1 (-1158 *3)) (-4 *3 (-1066)))))
-(-10 -7 (-15 -3845 ((-1159) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-1484 (((-621 (-1124)) $) 34)) (-2652 (((-621 (-1124)) $ (-621 (-1124))) 37)) (-3670 (((-621 (-1124)) $ (-621 (-1124))) 36)) (-2528 (((-621 (-1124)) $ (-621 (-1124))) 38)) (-1978 (((-621 (-1124)) $) 33)) (-3743 (($) 22)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3153 (((-621 (-1124)) $) 35)) (-2697 (((-1230) $ (-549)) 29) (((-1230) $) 30)) (-2844 (($ (-834) (-549)) 26) (($ (-834) (-549) (-834)) NIL)) (-3845 (((-834) $) 40) (($ (-834)) 24)) (-2388 (((-112) $ $) NIL)))
-(((-1159) (-13 (-1066) (-10 -8 (-15 -3845 ($ (-834))) (-15 -2844 ($ (-834) (-549))) (-15 -2844 ($ (-834) (-549) (-834))) (-15 -2697 ((-1230) $ (-549))) (-15 -2697 ((-1230) $)) (-15 -3153 ((-621 (-1124)) $)) (-15 -1484 ((-621 (-1124)) $)) (-15 -3743 ($)) (-15 -1978 ((-621 (-1124)) $)) (-15 -2528 ((-621 (-1124)) $ (-621 (-1124)))) (-15 -2652 ((-621 (-1124)) $ (-621 (-1124)))) (-15 -3670 ((-621 (-1124)) $ (-621 (-1124))))))) (T -1159))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1159)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-549)) (-5 *1 (-1159)))) (-2844 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-834)) (-5 *3 (-549)) (-5 *1 (-1159)))) (-2697 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-1159)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1159)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1159)))) (-1484 (*1 *2 *1) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1159)))) (-3743 (*1 *1) (-5 *1 (-1159))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1159)))) (-2528 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1159)))) (-2652 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1159)))) (-3670 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1159)))))
-(-13 (-1066) (-10 -8 (-15 -3845 ($ (-834))) (-15 -2844 ($ (-834) (-549))) (-15 -2844 ($ (-834) (-549) (-834))) (-15 -2697 ((-1230) $ (-549))) (-15 -2697 ((-1230) $)) (-15 -3153 ((-621 (-1124)) $)) (-15 -1484 ((-621 (-1124)) $)) (-15 -3743 ($)) (-15 -1978 ((-621 (-1124)) $)) (-15 -2528 ((-621 (-1124)) $ (-621 (-1124)))) (-15 -2652 ((-621 (-1124)) $ (-621 (-1124)))) (-15 -3670 ((-621 (-1124)) $ (-621 (-1124))))))
-((-3833 (((-112) $ $) NIL)) (-2128 (((-1124) $ (-1124)) 17) (((-1124) $) 16)) (-1450 (((-1124) $ (-1124)) 15)) (-3955 (($ $ (-1124)) NIL)) (-2375 (((-3 (-1124) "failed") $) 11)) (-3936 (((-1124) $) 8)) (-3323 (((-3 (-1124) "failed") $) 12)) (-3887 (((-1124) $) 9)) (-1358 (($ (-381)) NIL) (($ (-381) (-1124)) NIL)) (-2480 (((-381) $) NIL)) (-2677 (((-1124) $) NIL)) (-4085 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3785 (((-112) $) 18)) (-3845 (((-834) $) NIL)) (-3559 (($ $) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-1160) (-13 (-357 (-381) (-1124)) (-10 -8 (-15 -2128 ((-1124) $ (-1124))) (-15 -2128 ((-1124) $)) (-15 -3936 ((-1124) $)) (-15 -2375 ((-3 (-1124) "failed") $)) (-15 -3323 ((-3 (-1124) "failed") $)) (-15 -3785 ((-112) $))))) (T -1160))
-((-2128 (*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-2375 (*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3323 (*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1160)))))
-(-13 (-357 (-381) (-1124)) (-10 -8 (-15 -2128 ((-1124) $ (-1124))) (-15 -2128 ((-1124) $)) (-15 -3936 ((-1124) $)) (-15 -2375 ((-3 (-1124) "failed") $)) (-15 -3323 ((-3 (-1124) "failed") $)) (-15 -3785 ((-112) $))))
-((-3902 (((-3 (-549) "failed") |#1|) 19)) (-1402 (((-3 (-549) "failed") |#1|) 14)) (-3796 (((-549) (-1124)) 28)))
-(((-1161 |#1|) (-10 -7 (-15 -3902 ((-3 (-549) "failed") |#1|)) (-15 -1402 ((-3 (-549) "failed") |#1|)) (-15 -3796 ((-549) (-1124)))) (-1018)) (T -1161))
-((-3796 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-549)) (-5 *1 (-1161 *4)) (-4 *4 (-1018)))) (-1402 (*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1161 *3)) (-4 *3 (-1018)))) (-3902 (*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1161 *3)) (-4 *3 (-1018)))))
-(-10 -7 (-15 -3902 ((-3 (-549) "failed") |#1|)) (-15 -1402 ((-3 (-549) "failed") |#1|)) (-15 -3796 ((-549) (-1124))))
-((-3787 (((-1099 (-219))) 9)))
-(((-1162) (-10 -7 (-15 -3787 ((-1099 (-219)))))) (T -1162))
-((-3787 (*1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1162)))))
-(-10 -7 (-15 -3787 ((-1099 (-219)))))
-((-1425 (($) 11)) (-1732 (($ $) 35)) (-1708 (($ $) 33)) (-1562 (($ $) 25)) (-1757 (($ $) 17)) (-1933 (($ $) 15)) (-1744 (($ $) 19)) (-1599 (($ $) 30)) (-1721 (($ $) 34)) (-1575 (($ $) 29)))
-(((-1163 |#1|) (-10 -8 (-15 -1425 (|#1|)) (-15 -1732 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1933 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -1575 (|#1| |#1|))) (-1164)) (T -1163))
-NIL
-(-10 -8 (-15 -1425 (|#1|)) (-15 -1732 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1933 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)))
-((-1663 (($ $) 26)) (-1511 (($ $) 11)) (-1639 (($ $) 27)) (-1485 (($ $) 10)) (-1685 (($ $) 28)) (-1538 (($ $) 9)) (-1425 (($) 16)) (-3631 (($ $) 19)) (-2718 (($ $) 18)) (-1697 (($ $) 29)) (-1551 (($ $) 8)) (-1674 (($ $) 30)) (-1525 (($ $) 7)) (-1649 (($ $) 31)) (-1500 (($ $) 6)) (-1732 (($ $) 20)) (-1585 (($ $) 32)) (-1708 (($ $) 21)) (-1562 (($ $) 33)) (-1757 (($ $) 22)) (-1612 (($ $) 34)) (-1933 (($ $) 23)) (-1625 (($ $) 35)) (-1744 (($ $) 24)) (-1599 (($ $) 36)) (-1721 (($ $) 25)) (-1575 (($ $) 37)) (** (($ $ $) 17)))
+((-3938 (($ (-618 (-618 |#1|))) 10)) (-3939 (((-618 (-618 |#1|)) $) 11)) (-4300 (((-835) $) 26)))
+(((-1152 |#1|) (-10 -8 (-15 -3938 ($ (-618 (-618 |#1|)))) (-15 -3939 ((-618 (-618 |#1|)) $)) (-15 -4300 ((-835) $))) (-1067)) (T -1152))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1152 *3)) (-4 *3 (-1067)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-618 (-618 *3))) (-5 *1 (-1152 *3)) (-4 *3 (-1067)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-1152 *3)))))
+(-10 -8 (-15 -3938 ($ (-618 (-618 |#1|)))) (-15 -3939 ((-618 (-618 |#1|)) $)) (-15 -4300 ((-835) $)))
+((-3940 ((|#1| (-618 |#1|)) 32)) (-3942 ((|#1| |#1| (-535)) 18)) (-3941 (((-1136 |#1|) |#1| (-890)) 15)))
+(((-1153 |#1|) (-10 -7 (-15 -3940 (|#1| (-618 |#1|))) (-15 -3941 ((-1136 |#1|) |#1| (-890))) (-15 -3942 (|#1| |#1| (-535)))) (-356)) (T -1153))
+((-3942 (*1 *2 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-1153 *2)) (-4 *2 (-356)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-1136 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-356)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-1153 *2)) (-4 *2 (-356)))))
+(-10 -7 (-15 -3940 (|#1| (-618 |#1|))) (-15 -3941 ((-1136 |#1|) |#1| (-890))) (-15 -3942 (|#1| |#1| (-535))))
+((-3943 (($) 10) (($ (-618 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)))) 14)) (-3747 (($ (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2063 (((-618 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) 39) (((-618 |#3|) $) 41)) (-2067 (($ (-1 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4301 (($ (-1 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1326 (((-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) $) 54)) (-3953 (($ (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) $) 16)) (-2301 (((-618 |#2|) $) 19)) (-2302 (((-112) |#2| $) 59)) (-1395 (((-3 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) "failed") (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) 58)) (-1327 (((-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) $) 63)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-2303 (((-618 |#3|) $) 43)) (-4142 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) NIL) (((-747) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) $) NIL) (((-747) |#3| $) NIL) (((-747) (-1 (-112) |#3|) $) 68)) (-4300 (((-835) $) 27)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-3375 (((-112) $ $) 49)))
+(((-1154 |#1| |#2| |#3|) (-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4301 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3943 (|#1| (-618 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))))) (-15 -3943 (|#1|)) (-15 -4301 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2064 ((-747) (-1 (-112) |#3|) |#1|)) (-15 -2063 ((-618 |#3|) |#1|)) (-15 -2064 ((-747) |#3| |#1|)) (-15 -4142 (|#3| |#1| |#2| |#3|)) (-15 -4142 (|#3| |#1| |#2|)) (-15 -2303 ((-618 |#3|) |#1|)) (-15 -2302 ((-112) |#2| |#1|)) (-15 -2301 ((-618 |#2|) |#1|)) (-15 -3747 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3747 (|#1| (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -3747 (|#1| (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -1395 ((-3 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) "failed") (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -1326 ((-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -3953 (|#1| (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -1327 ((-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -2064 ((-747) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -2063 ((-618 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2064 ((-747) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2065 ((-112) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2066 ((-112) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2067 (|#1| (-1 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -4301 (|#1| (-1 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|))) (-1155 |#2| |#3|) (-1067) (-1067)) (T -1154))
+NIL
+(-10 -8 (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4301 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3943 (|#1| (-618 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))))) (-15 -3943 (|#1|)) (-15 -4301 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2064 ((-747) (-1 (-112) |#3|) |#1|)) (-15 -2063 ((-618 |#3|) |#1|)) (-15 -2064 ((-747) |#3| |#1|)) (-15 -4142 (|#3| |#1| |#2| |#3|)) (-15 -4142 (|#3| |#1| |#2|)) (-15 -2303 ((-618 |#3|) |#1|)) (-15 -2302 ((-112) |#2| |#1|)) (-15 -2301 ((-618 |#2|) |#1|)) (-15 -3747 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3747 (|#1| (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -3747 (|#1| (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -1395 ((-3 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) "failed") (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -1326 ((-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -3953 (|#1| (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -1327 ((-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -2064 ((-747) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) |#1|)) (-15 -2063 ((-618 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2064 ((-747) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2065 ((-112) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2066 ((-112) (-1 (-112) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -2067 (|#1| (-1 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)) (-15 -4301 (|#1| (-1 (-2 (|:| -4203 |#2|) (|:| -2184 |#3|)) (-2 (|:| -4203 |#2|) (|:| -2184 |#3|))) |#1|)))
+((-2887 (((-112) $ $) 19 (-3874 (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-3943 (($) 72) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 71)) (-2296 (((-1230) $ |#1| |#1|) 99 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#2| $ |#1| |#2|) 73)) (-1626 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 45 (|has| $ (-6 -4336)))) (-4056 (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 55 (|has| $ (-6 -4336)))) (-2305 (((-3 |#2| #1="failed") |#1| $) 61)) (-3879 (($) 7 T CONST)) (-1394 (($ $) 58 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336))))) (-3747 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 47 (|has| $ (-6 -4336))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 46 (|has| $ (-6 -4336))) (((-3 |#2| #1#) |#1| $) 62)) (-3748 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 54 (|has| $ (-6 -4336)))) (-4185 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 56 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 53 (|has| $ (-6 -4336))) (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 52 (|has| $ (-6 -4336)))) (-1632 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4337)))) (-3431 ((|#2| $ |#1|) 88)) (-2063 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 30 (|has| $ (-6 -4336))) (((-618 |#2|) $) 79 (|has| $ (-6 -4336)))) (-4065 (((-112) $ (-747)) 9)) (-2298 ((|#1| $) 96 (|has| |#1| (-823)))) (-2502 (((-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 29 (|has| $ (-6 -4336))) (((-618 |#2|) $) 80 (|has| $ (-6 -4336)))) (-3579 (((-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336))))) (-2299 ((|#1| $) 95 (|has| |#1| (-823)))) (-2067 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 34 (|has| $ (-6 -4337))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4337)))) (-4301 (($ (-1 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4062 (((-112) $ (-747)) 10)) (-3576 (((-1124) $) 22 (-3874 (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-2735 (((-618 |#1|) $) 63)) (-2306 (((-112) |#1| $) 64)) (-1326 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 39)) (-3953 (($ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 40)) (-2301 (((-618 |#1|) $) 93)) (-2302 (((-112) |#1| $) 92)) (-3577 (((-1086) $) 21 (-3874 (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-4143 ((|#2| $) 97 (|has| |#1| (-823)))) (-1395 (((-3 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) "failed") (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 51)) (-2297 (($ $ |#2|) 98 (|has| $ (-6 -4337)))) (-1327 (((-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 41)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 32 (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))))) 26 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-286 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 25 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) 24 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 23 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)))) (($ $ (-618 |#2|) (-618 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-286 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-618 (-286 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4336)) (|has| |#2| (-1067))))) (-2303 (((-618 |#2|) $) 91)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1518 (($) 49) (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 48)) (-2064 (((-747) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 31 (|has| $ (-6 -4336))) (((-747) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| $ (-6 -4336)))) (((-747) |#2| $) 81 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4336)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 59 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))))) (-3867 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 50)) (-4300 (((-835) $) 18 (-3874 (|has| |#2| (-593 (-835))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835)))))) (-1328 (($ (-618 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) 42)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) $) 33 (|has| $ (-6 -4336))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (-3874 (|has| |#2| (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-1155 |#1| |#2|) (-138) (-1067) (-1067)) (T -1155))
+((-4130 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-3943 (*1 *1) (-12 (-4 *1 (-1155 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-618 (-2 (|:| -4203 *3) (|:| -2184 *4)))) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *1 (-1155 *3 *4)))) (-4301 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1155 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
+(-13 (-590 |t#1| |t#2|) (-584 |t#1| |t#2|) (-10 -8 (-15 -4130 (|t#2| $ |t#1| |t#2|)) (-15 -3943 ($)) (-15 -3943 ($ (-618 (-2 (|:| -4203 |t#1|) (|:| -2184 |t#2|))))) (-15 -4301 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-106 #1=(-2 (|:| -4203 |#1|) (|:| -2184 |#2|))) . T) ((-101) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))) ((-593 (-835)) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-593 (-835))) (|has| |#2| (-1067)) (|has| |#2| (-593 (-835)))) ((-149 #1#) . T) ((-594 (-524)) |has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-594 (-524))) ((-223 #1#) . T) ((-229 #1#) . T) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 #1#) -12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-481 #1#) . T) ((-481 |#2|) . T) ((-584 |#1| |#2|) . T) ((-505 #1# #1#) -12 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-302 (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)))) (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-590 |#1| |#2|) . T) ((-1067) -3874 (|has| (-2 (|:| -4203 |#1|) (|:| -2184 |#2|)) (-1067)) (|has| |#2| (-1067))) ((-1178) . T))
+((-3949 (((-112)) 24)) (-3946 (((-1230) (-1124)) 26)) (-3950 (((-112)) 36)) (-3947 (((-1230)) 34)) (-3945 (((-1230) (-1124) (-1124)) 25)) (-3951 (((-112)) 37)) (-3953 (((-1230) |#1| |#2|) 44)) (-3944 (((-1230)) 20)) (-3952 (((-3 |#2| "failed") |#1|) 42)) (-3948 (((-1230)) 35)))
+(((-1156 |#1| |#2|) (-10 -7 (-15 -3944 ((-1230))) (-15 -3945 ((-1230) (-1124) (-1124))) (-15 -3946 ((-1230) (-1124))) (-15 -3947 ((-1230))) (-15 -3948 ((-1230))) (-15 -3949 ((-112))) (-15 -3950 ((-112))) (-15 -3951 ((-112))) (-15 -3952 ((-3 |#2| "failed") |#1|)) (-15 -3953 ((-1230) |#1| |#2|))) (-1067) (-1067)) (T -1156))
+((-3953 (*1 *2 *3 *4) (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3952 (*1 *2 *3) (|partial| -12 (-4 *2 (-1067)) (-5 *1 (-1156 *3 *2)) (-4 *3 (-1067)))) (-3951 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3950 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3949 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3948 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3947 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)))) (-3945 (*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)))) (-3944 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
+(-10 -7 (-15 -3944 ((-1230))) (-15 -3945 ((-1230) (-1124) (-1124))) (-15 -3946 ((-1230) (-1124))) (-15 -3947 ((-1230))) (-15 -3948 ((-1230))) (-15 -3949 ((-112))) (-15 -3950 ((-112))) (-15 -3951 ((-112))) (-15 -3952 ((-3 |#2| "failed") |#1|)) (-15 -3953 ((-1230) |#1| |#2|)))
+((-3955 (((-1124) (-1124)) 18)) (-3954 (((-51) (-1124)) 21)))
+(((-1157) (-10 -7 (-15 -3954 ((-51) (-1124))) (-15 -3955 ((-1124) (-1124))))) (T -1157))
+((-3955 (*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1157)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-51)) (-5 *1 (-1157)))))
+(-10 -7 (-15 -3954 ((-51) (-1124))) (-15 -3955 ((-1124) (-1124))))
+((-2887 (((-112) $ $) NIL)) (-3961 (((-618 (-1124)) $) 34)) (-3957 (((-618 (-1124)) $ (-618 (-1124))) 37)) (-3956 (((-618 (-1124)) $ (-618 (-1124))) 36)) (-3958 (((-618 (-1124)) $ (-618 (-1124))) 38)) (-3959 (((-618 (-1124)) $) 33)) (-3960 (($) 22)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3962 (((-618 (-1124)) $) 35)) (-3963 (((-1230) $ (-535)) 29) (((-1230) $) 30)) (-4313 (($ (-835) (-535)) 26) (($ (-835) (-535) (-835)) NIL)) (-4300 (((-835) $) 40) (($ (-835)) 24)) (-3375 (((-112) $ $) NIL)))
+(((-1158) (-13 (-1067) (-10 -8 (-15 -4300 ($ (-835))) (-15 -4313 ($ (-835) (-535))) (-15 -4313 ($ (-835) (-535) (-835))) (-15 -3963 ((-1230) $ (-535))) (-15 -3963 ((-1230) $)) (-15 -3962 ((-618 (-1124)) $)) (-15 -3961 ((-618 (-1124)) $)) (-15 -3960 ($)) (-15 -3959 ((-618 (-1124)) $)) (-15 -3958 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -3957 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -3956 ((-618 (-1124)) $ (-618 (-1124))))))) (T -1158))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-1158)))) (-4313 (*1 *1 *2 *3) (-12 (-5 *2 (-835)) (-5 *3 (-535)) (-5 *1 (-1158)))) (-4313 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-835)) (-5 *3 (-535)) (-5 *1 (-1158)))) (-3963 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-1158)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1158)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))) (-3960 (*1 *1) (-5 *1 (-1158))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))) (-3958 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))) (-3957 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))) (-3956 (*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))))
+(-13 (-1067) (-10 -8 (-15 -4300 ($ (-835))) (-15 -4313 ($ (-835) (-535))) (-15 -4313 ($ (-835) (-535) (-835))) (-15 -3963 ((-1230) $ (-535))) (-15 -3963 ((-1230) $)) (-15 -3962 ((-618 (-1124)) $)) (-15 -3961 ((-618 (-1124)) $)) (-15 -3960 ($)) (-15 -3959 ((-618 (-1124)) $)) (-15 -3958 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -3957 ((-618 (-1124)) $ (-618 (-1124)))) (-15 -3956 ((-618 (-1124)) $ (-618 (-1124))))))
+((-4300 (((-1158) |#1|) 11)))
+(((-1159 |#1|) (-10 -7 (-15 -4300 ((-1158) |#1|))) (-1067)) (T -1159))
+((-4300 (*1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *1 (-1159 *3)) (-4 *3 (-1067)))))
+(-10 -7 (-15 -4300 ((-1158) |#1|)))
+((-2887 (((-112) $ $) NIL)) (-3968 (((-1124) $ (-1124)) 17) (((-1124) $) 16)) (-1808 (((-1124) $ (-1124)) 15)) (-1812 (($ $ (-1124)) NIL)) (-3966 (((-3 (-1124) "failed") $) 11)) (-3967 (((-1124) $) 8)) (-3965 (((-3 (-1124) "failed") $) 12)) (-1809 (((-1124) $) 9)) (-1813 (($ (-381)) NIL) (($ (-381) (-1124)) NIL)) (-3888 (((-381) $) NIL)) (-3576 (((-1124) $) NIL)) (-1810 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-3964 (((-112) $) 18)) (-4300 (((-835) $) NIL)) (-1811 (($ $) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-1160) (-13 (-358 (-381) (-1124)) (-10 -8 (-15 -3968 ((-1124) $ (-1124))) (-15 -3968 ((-1124) $)) (-15 -3967 ((-1124) $)) (-15 -3966 ((-3 (-1124) "failed") $)) (-15 -3965 ((-3 (-1124) "failed") $)) (-15 -3964 ((-112) $))))) (T -1160))
+((-3968 (*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3966 (*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3965 (*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-1160)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1160)))))
+(-13 (-358 (-381) (-1124)) (-10 -8 (-15 -3968 ((-1124) $ (-1124))) (-15 -3968 ((-1124) $)) (-15 -3967 ((-1124) $)) (-15 -3966 ((-3 (-1124) "failed") $)) (-15 -3965 ((-3 (-1124) "failed") $)) (-15 -3964 ((-112) $))))
+((-3969 (((-3 (-535) "failed") |#1|) 19)) (-3970 (((-3 (-535) "failed") |#1|) 14)) (-3971 (((-535) (-1124)) 28)))
+(((-1161 |#1|) (-10 -7 (-15 -3969 ((-3 (-535) "failed") |#1|)) (-15 -3970 ((-3 (-535) "failed") |#1|)) (-15 -3971 ((-535) (-1124)))) (-1018)) (T -1161))
+((-3971 (*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-535)) (-5 *1 (-1161 *4)) (-4 *4 (-1018)))) (-3970 (*1 *2 *3) (|partial| -12 (-5 *2 (-535)) (-5 *1 (-1161 *3)) (-4 *3 (-1018)))) (-3969 (*1 *2 *3) (|partial| -12 (-5 *2 (-535)) (-5 *1 (-1161 *3)) (-4 *3 (-1018)))))
+(-10 -7 (-15 -3969 ((-3 (-535) "failed") |#1|)) (-15 -3970 ((-3 (-535) "failed") |#1|)) (-15 -3971 ((-535) (-1124))))
+((-3972 (((-1099 (-219))) 9)))
+(((-1162) (-10 -7 (-15 -3972 ((-1099 (-219)))))) (T -1162))
+((-3972 (*1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1162)))))
+(-10 -7 (-15 -3972 ((-1099 (-219)))))
+((-3973 (($) 11)) (-3835 (($ $) 35)) (-3833 (($ $) 33)) (-3821 (($ $) 25)) (-3837 (($ $) 17)) (-3838 (($ $) 15)) (-3836 (($ $) 19)) (-3824 (($ $) 30)) (-3834 (($ $) 34)) (-3822 (($ $) 29)))
+(((-1163 |#1|) (-10 -8 (-15 -3973 (|#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3824 (|#1| |#1|)) (-15 -3822 (|#1| |#1|))) (-1164)) (T -1163))
+NIL
+(-10 -8 (-15 -3973 (|#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3824 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)))
+((-3829 (($ $) 26)) (-3985 (($ $) 11)) (-3827 (($ $) 27)) (-3984 (($ $) 10)) (-3831 (($ $) 28)) (-3983 (($ $) 9)) (-3973 (($) 16)) (-4285 (($ $) 19)) (-4286 (($ $) 18)) (-3832 (($ $) 29)) (-3982 (($ $) 8)) (-3830 (($ $) 30)) (-3981 (($ $) 7)) (-3828 (($ $) 31)) (-3980 (($ $) 6)) (-3835 (($ $) 20)) (-3823 (($ $) 32)) (-3833 (($ $) 21)) (-3821 (($ $) 33)) (-3837 (($ $) 22)) (-3825 (($ $) 34)) (-3838 (($ $) 23)) (-3826 (($ $) 35)) (-3836 (($ $) 24)) (-3824 (($ $) 36)) (-3834 (($ $) 25)) (-3822 (($ $) 37)) (** (($ $ $) 17)))
(((-1164) (-138)) (T -1164))
-((-1425 (*1 *1) (-4 *1 (-1164))))
-(-13 (-1167) (-94) (-484) (-35) (-277) (-10 -8 (-15 -1425 ($))))
+((-3973 (*1 *1) (-4 *1 (-1164))))
+(-13 (-1167) (-94) (-484) (-35) (-277) (-10 -8 (-15 -3973 ($))))
(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-1167) . T))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-4160 ((|#1| $) 17)) (-1660 (($ |#1| (-621 $)) 23) (($ (-621 |#1|)) 27) (($ |#1|) 25)) (-1323 (((-112) $ (-747)) 48)) (-3751 ((|#1| $ |#1|) 14 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) 13 (|has| $ (-6 -4337)))) (-1705 (($) NIL T CONST)) (-2990 (((-621 |#1|) $) 52 (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) 43)) (-1742 (((-112) $ $) 33 (|has| |#1| (-1066)))) (-4202 (((-112) $ (-747)) 41)) (-1958 (((-621 |#1|) $) 53 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1865 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 22)) (-4289 (((-112) $ (-747)) 40)) (-3590 (((-621 |#1|) $) 37)) (-2456 (((-112) $) 36)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-2470 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 74)) (-1807 (((-112) $) 9)) (-1461 (($) 10)) (-3340 ((|#1| $ "value") NIL)) (-1953 (((-549) $ $) 32)) (-4137 (((-621 $) $) 59)) (-4021 (((-112) $ $) 77)) (-1827 (((-621 $) $) 72)) (-1322 (($ $) 73)) (-4187 (((-112) $) 56)) (-3997 (((-747) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4336))) (((-747) |#1| $) 16 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-2281 (($ $) 58)) (-3845 (((-834) $) 61 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) 12)) (-2937 (((-112) $ $) 29 (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 28 (|has| |#1| (-1066)))) (-3774 (((-747) $) 39 (|has| $ (-6 -4336)))))
-(((-1165 |#1|) (-13 (-981 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -1660 ($ |#1| (-621 $))) (-15 -1660 ($ (-621 |#1|))) (-15 -1660 ($ |#1|)) (-15 -4187 ((-112) $)) (-15 -1322 ($ $)) (-15 -1827 ((-621 $) $)) (-15 -4021 ((-112) $ $)) (-15 -4137 ((-621 $) $)))) (-1066)) (T -1165))
-((-4187 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1066)))) (-1660 (*1 *1 *2 *3) (-12 (-5 *3 (-621 (-1165 *2))) (-5 *1 (-1165 *2)) (-4 *2 (-1066)))) (-1660 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-1165 *3)))) (-1660 (*1 *1 *2) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1066)))) (-1322 (*1 *1 *1) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1066)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-621 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1066)))) (-4021 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1066)))) (-4137 (*1 *2 *1) (-12 (-5 *2 (-621 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1066)))))
-(-13 (-981 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -1660 ($ |#1| (-621 $))) (-15 -1660 ($ (-621 |#1|))) (-15 -1660 ($ |#1|)) (-15 -4187 ((-112) $)) (-15 -1322 ($ $)) (-15 -1827 ((-621 $) $)) (-15 -4021 ((-112) $ $)) (-15 -4137 ((-621 $) $))))
-((-1511 (($ $) 15)) (-1538 (($ $) 12)) (-1551 (($ $) 10)) (-1525 (($ $) 17)))
-(((-1166 |#1|) (-10 -8 (-15 -1525 (|#1| |#1|)) (-15 -1551 (|#1| |#1|)) (-15 -1538 (|#1| |#1|)) (-15 -1511 (|#1| |#1|))) (-1167)) (T -1166))
-NIL
-(-10 -8 (-15 -1525 (|#1| |#1|)) (-15 -1551 (|#1| |#1|)) (-15 -1538 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)))
-((-1511 (($ $) 11)) (-1485 (($ $) 10)) (-1538 (($ $) 9)) (-1551 (($ $) 8)) (-1525 (($ $) 7)) (-1500 (($ $) 6)))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3744 ((|#1| $) 17)) (-3978 (($ |#1| (-618 $)) 23) (($ (-618 |#1|)) 27) (($ |#1|) 25)) (-1264 (((-112) $ (-747)) 48)) (-3346 ((|#1| $ |#1|) 14 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 13 (|has| $ (-6 -4337)))) (-3879 (($) NIL T CONST)) (-2063 (((-618 |#1|) $) 52 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 43)) (-3348 (((-112) $ $) 33 (|has| |#1| (-1067)))) (-4065 (((-112) $ (-747)) 41)) (-2502 (((-618 |#1|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2067 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 22)) (-4062 (((-112) $ (-747)) 40)) (-3351 (((-618 |#1|) $) 37)) (-3864 (((-112) $) 36)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-2065 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 74)) (-3745 (((-112) $) 9)) (-3911 (($) 10)) (-4142 ((|#1| $ #1#) NIL)) (-3350 (((-535) $ $) 32)) (-3974 (((-618 $) $) 59)) (-3975 (((-112) $ $) 77)) (-3976 (((-618 $) $) 72)) (-3977 (($ $) 73)) (-3979 (((-112) $) 56)) (-2064 (((-747) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4336))) (((-747) |#1| $) 16 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3742 (($ $) 58)) (-4300 (((-835) $) 61 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 12)) (-3349 (((-112) $ $) 29 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 28 (|has| |#1| (-1067)))) (-4299 (((-747) $) 39 (|has| $ (-6 -4336)))))
+(((-1165 |#1|) (-13 (-981 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -3978 ($ |#1| (-618 $))) (-15 -3978 ($ (-618 |#1|))) (-15 -3978 ($ |#1|)) (-15 -3979 ((-112) $)) (-15 -3977 ($ $)) (-15 -3976 ((-618 $) $)) (-15 -3975 ((-112) $ $)) (-15 -3974 ((-618 $) $)))) (-1067)) (T -1165))
+((-3979 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1067)))) (-3978 (*1 *1 *2 *3) (-12 (-5 *3 (-618 (-1165 *2))) (-5 *1 (-1165 *2)) (-4 *2 (-1067)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-1165 *3)))) (-3978 (*1 *1 *2) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1067)))) (-3977 (*1 *1 *1) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1067)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-618 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1067)))) (-3975 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1067)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-618 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1067)))))
+(-13 (-981 |#1|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -3978 ($ |#1| (-618 $))) (-15 -3978 ($ (-618 |#1|))) (-15 -3978 ($ |#1|)) (-15 -3979 ((-112) $)) (-15 -3977 ($ $)) (-15 -3976 ((-618 $) $)) (-15 -3975 ((-112) $ $)) (-15 -3974 ((-618 $) $))))
+((-3985 (($ $) 15)) (-3983 (($ $) 12)) (-3982 (($ $) 10)) (-3981 (($ $) 17)))
+(((-1166 |#1|) (-10 -8 (-15 -3981 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3983 (|#1| |#1|)) (-15 -3985 (|#1| |#1|))) (-1167)) (T -1166))
+NIL
+(-10 -8 (-15 -3981 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3983 (|#1| |#1|)) (-15 -3985 (|#1| |#1|)))
+((-3985 (($ $) 11)) (-3984 (($ $) 10)) (-3983 (($ $) 9)) (-3982 (($ $) 8)) (-3981 (($ $) 7)) (-3980 (($ $) 6)))
(((-1167) (-138)) (T -1167))
-((-1511 (*1 *1 *1) (-4 *1 (-1167))) (-1485 (*1 *1 *1) (-4 *1 (-1167))) (-1538 (*1 *1 *1) (-4 *1 (-1167))) (-1551 (*1 *1 *1) (-4 *1 (-1167))) (-1525 (*1 *1 *1) (-4 *1 (-1167))) (-1500 (*1 *1 *1) (-4 *1 (-1167))))
-(-13 (-10 -8 (-15 -1500 ($ $)) (-15 -1525 ($ $)) (-15 -1551 ($ $)) (-15 -1538 ($ $)) (-15 -1485 ($ $)) (-15 -1511 ($ $))))
-((-3722 ((|#2| |#2|) 88)) (-3113 (((-112) |#2|) 26)) (-2146 ((|#2| |#2|) 30)) (-2160 ((|#2| |#2|) 32)) (-1451 ((|#2| |#2| (-1142)) 83) ((|#2| |#2|) 84)) (-4193 (((-167 |#2|) |#2|) 28)) (-4032 ((|#2| |#2| (-1142)) 85) ((|#2| |#2|) 86)))
-(((-1168 |#1| |#2|) (-10 -7 (-15 -1451 (|#2| |#2|)) (-15 -1451 (|#2| |#2| (-1142))) (-15 -4032 (|#2| |#2|)) (-15 -4032 (|#2| |#2| (-1142))) (-15 -3722 (|#2| |#2|)) (-15 -2146 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -3113 ((-112) |#2|)) (-15 -4193 ((-167 |#2|) |#2|))) (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1164) (-423 |#1|))) (T -1168))
-((-4193 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-167 *3)) (-5 *1 (-1168 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *4))))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-112)) (-5 *1 (-1168 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *4))))) (-2160 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3))))) (-2146 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3))))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3))))) (-4032 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4))))) (-4032 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3))))) (-1451 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4))))) (-1451 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3))))))
-(-10 -7 (-15 -1451 (|#2| |#2|)) (-15 -1451 (|#2| |#2| (-1142))) (-15 -4032 (|#2| |#2|)) (-15 -4032 (|#2| |#2| (-1142))) (-15 -3722 (|#2| |#2|)) (-15 -2146 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -3113 ((-112) |#2|)) (-15 -4193 ((-167 |#2|) |#2|)))
-((-1338 ((|#4| |#4| |#1|) 27)) (-2039 ((|#4| |#4| |#1|) 28)))
-(((-1169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1338 (|#4| |#4| |#1|)) (-15 -2039 (|#4| |#4| |#1|))) (-541) (-366 |#1|) (-366 |#1|) (-663 |#1| |#2| |#3|)) (T -1169))
-((-2039 (*1 *2 *2 *3) (-12 (-4 *3 (-541)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1169 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-1338 (*1 *2 *2 *3) (-12 (-4 *3 (-541)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1169 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
-(-10 -7 (-15 -1338 (|#4| |#4| |#1|)) (-15 -2039 (|#4| |#4| |#1|)))
-((-1813 ((|#2| |#2|) 133)) (-1950 ((|#2| |#2|) 130)) (-2104 ((|#2| |#2|) 121)) (-2191 ((|#2| |#2|) 118)) (-4308 ((|#2| |#2|) 126)) (-1650 ((|#2| |#2|) 114)) (-3507 ((|#2| |#2|) 43)) (-1578 ((|#2| |#2|) 94)) (-2237 ((|#2| |#2|) 74)) (-4196 ((|#2| |#2|) 128)) (-4139 ((|#2| |#2|) 116)) (-3140 ((|#2| |#2|) 138)) (-2554 ((|#2| |#2|) 136)) (-1666 ((|#2| |#2|) 137)) (-1875 ((|#2| |#2|) 135)) (-2121 ((|#2| |#2|) 148)) (-2948 ((|#2| |#2|) 30 (-12 (|has| |#2| (-594 (-863 |#1|))) (|has| |#2| (-857 |#1|)) (|has| |#1| (-594 (-863 |#1|))) (|has| |#1| (-857 |#1|))))) (-3240 ((|#2| |#2|) 75)) (-3639 ((|#2| |#2|) 139)) (-1448 ((|#2| |#2|) 140)) (-2049 ((|#2| |#2|) 127)) (-3846 ((|#2| |#2|) 115)) (-1410 ((|#2| |#2|) 134)) (-4068 ((|#2| |#2|) 132)) (-1563 ((|#2| |#2|) 122)) (-2183 ((|#2| |#2|) 120)) (-4236 ((|#2| |#2|) 124)) (-1975 ((|#2| |#2|) 112)))
-(((-1170 |#1| |#2|) (-10 -7 (-15 -1448 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2121 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -3507 (|#2| |#2|)) (-15 -3240 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -1975 (|#2| |#2|)) (-15 -4236 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -1410 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -2049 (|#2| |#2|)) (-15 -4139 (|#2| |#2|)) (-15 -4196 (|#2| |#2|)) (-15 -1650 (|#2| |#2|)) (-15 -4308 (|#2| |#2|)) (-15 -2104 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -2191 (|#2| |#2|)) (-15 -1950 (|#2| |#2|)) (-15 -2183 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -1875 (|#2| |#2|)) (-15 -2554 (|#2| |#2|)) (-15 -1666 (|#2| |#2|)) (-15 -3140 (|#2| |#2|)) (IF (|has| |#1| (-857 |#1|)) (IF (|has| |#1| (-594 (-863 |#1|))) (IF (|has| |#2| (-594 (-863 |#1|))) (IF (|has| |#2| (-857 |#1|)) (-15 -2948 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-823) (-444)) (-13 (-423 |#1|) (-1164))) (T -1170))
-((-2948 (*1 *2 *2) (-12 (-4 *3 (-594 (-863 *3))) (-4 *3 (-857 *3)) (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-594 (-863 *3))) (-4 *2 (-857 *3)) (-4 *2 (-13 (-423 *3) (-1164))))) (-3140 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-1666 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-2554 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-1875 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-2183 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-1950 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-2191 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-1813 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-2104 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-4308 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-1650 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-4196 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-4139 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-2049 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-1410 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-1563 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-4236 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-1975 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-3240 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-3507 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-2121 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))) (-1448 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-423 *3) (-1164))))))
-(-10 -7 (-15 -1448 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2121 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -3507 (|#2| |#2|)) (-15 -3240 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -1975 (|#2| |#2|)) (-15 -4236 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -1410 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -2049 (|#2| |#2|)) (-15 -4139 (|#2| |#2|)) (-15 -4196 (|#2| |#2|)) (-15 -1650 (|#2| |#2|)) (-15 -4308 (|#2| |#2|)) (-15 -2104 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -2191 (|#2| |#2|)) (-15 -1950 (|#2| |#2|)) (-15 -2183 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -1875 (|#2| |#2|)) (-15 -2554 (|#2| |#2|)) (-15 -1666 (|#2| |#2|)) (-15 -3140 (|#2| |#2|)) (IF (|has| |#1| (-857 |#1|)) (IF (|has| |#1| (-594 (-863 |#1|))) (IF (|has| |#2| (-594 (-863 |#1|))) (IF (|has| |#2| (-857 |#1|)) (-15 -2948 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2344 (((-112) |#5| $) 60) (((-112) $) 102)) (-1305 ((|#5| |#5| $) 75)) (-1488 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3074 (((-621 |#5|) (-621 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-2713 (((-3 $ "failed") (-621 |#5|)) 126)) (-3655 (((-3 $ "failed") $) 112)) (-2514 ((|#5| |#5| $) 94)) (-4042 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-3678 ((|#5| |#5| $) 98)) (-2558 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-2235 (((-2 (|:| -2680 (-621 |#5|)) (|:| -1358 (-621 |#5|))) $) 55)) (-3929 (((-112) |#5| $) 58) (((-112) $) 103)) (-4170 ((|#4| $) 108)) (-3828 (((-3 |#5| "failed") $) 110)) (-4069 (((-621 |#5|) $) 49)) (-3130 (((-112) |#5| $) 67) (((-112) $) 107)) (-2741 ((|#5| |#5| $) 81)) (-3739 (((-112) $ $) 27)) (-1582 (((-112) |#5| $) 63) (((-112) $) 105)) (-3952 ((|#5| |#5| $) 78)) (-3645 (((-3 |#5| "failed") $) 109)) (-2975 (($ $ |#5|) 127)) (-3068 (((-747) $) 52)) (-3853 (($ (-621 |#5|)) 124)) (-1651 (($ $ |#4|) 122)) (-3183 (($ $ |#4|) 121)) (-1821 (($ $) 120)) (-3845 (((-834) $) NIL) (((-621 |#5|) $) 113)) (-1509 (((-747) $) 130)) (-3472 (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#5|))) "failed") (-621 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#5|))) "failed") (-621 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-2197 (((-112) $ (-1 (-112) |#5| (-621 |#5|))) 100)) (-2691 (((-621 |#4|) $) 115)) (-2923 (((-112) |#4| $) 118)) (-2388 (((-112) $ $) 19)))
-(((-1171 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1509 ((-747) |#1|)) (-15 -2975 (|#1| |#1| |#5|)) (-15 -1488 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2923 ((-112) |#4| |#1|)) (-15 -2691 ((-621 |#4|) |#1|)) (-15 -3655 ((-3 |#1| "failed") |#1|)) (-15 -3828 ((-3 |#5| "failed") |#1|)) (-15 -3645 ((-3 |#5| "failed") |#1|)) (-15 -3678 (|#5| |#5| |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -2514 (|#5| |#5| |#1|)) (-15 -2741 (|#5| |#5| |#1|)) (-15 -3952 (|#5| |#5| |#1|)) (-15 -1305 (|#5| |#5| |#1|)) (-15 -3074 ((-621 |#5|) (-621 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2558 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3130 ((-112) |#1|)) (-15 -1582 ((-112) |#1|)) (-15 -2344 ((-112) |#1|)) (-15 -2197 ((-112) |#1| (-1 (-112) |#5| (-621 |#5|)))) (-15 -3130 ((-112) |#5| |#1|)) (-15 -1582 ((-112) |#5| |#1|)) (-15 -2344 ((-112) |#5| |#1|)) (-15 -4042 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3929 ((-112) |#1|)) (-15 -3929 ((-112) |#5| |#1|)) (-15 -2235 ((-2 (|:| -2680 (-621 |#5|)) (|:| -1358 (-621 |#5|))) |#1|)) (-15 -3068 ((-747) |#1|)) (-15 -4069 ((-621 |#5|) |#1|)) (-15 -3472 ((-3 (-2 (|:| |bas| |#1|) (|:| -2316 (-621 |#5|))) "failed") (-621 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3472 ((-3 (-2 (|:| |bas| |#1|) (|:| -2316 (-621 |#5|))) "failed") (-621 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3739 ((-112) |#1| |#1|)) (-15 -1651 (|#1| |#1| |#4|)) (-15 -3183 (|#1| |#1| |#4|)) (-15 -4170 (|#4| |#1|)) (-15 -2713 ((-3 |#1| "failed") (-621 |#5|))) (-15 -3845 ((-621 |#5|) |#1|)) (-15 -3853 (|#1| (-621 |#5|))) (-15 -2558 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2558 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1488 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2558 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|))) (-1172 |#2| |#3| |#4| |#5|) (-541) (-769) (-823) (-1032 |#2| |#3| |#4|)) (T -1171))
-NIL
-(-10 -8 (-15 -1509 ((-747) |#1|)) (-15 -2975 (|#1| |#1| |#5|)) (-15 -1488 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2923 ((-112) |#4| |#1|)) (-15 -2691 ((-621 |#4|) |#1|)) (-15 -3655 ((-3 |#1| "failed") |#1|)) (-15 -3828 ((-3 |#5| "failed") |#1|)) (-15 -3645 ((-3 |#5| "failed") |#1|)) (-15 -3678 (|#5| |#5| |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -2514 (|#5| |#5| |#1|)) (-15 -2741 (|#5| |#5| |#1|)) (-15 -3952 (|#5| |#5| |#1|)) (-15 -1305 (|#5| |#5| |#1|)) (-15 -3074 ((-621 |#5|) (-621 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2558 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3130 ((-112) |#1|)) (-15 -1582 ((-112) |#1|)) (-15 -2344 ((-112) |#1|)) (-15 -2197 ((-112) |#1| (-1 (-112) |#5| (-621 |#5|)))) (-15 -3130 ((-112) |#5| |#1|)) (-15 -1582 ((-112) |#5| |#1|)) (-15 -2344 ((-112) |#5| |#1|)) (-15 -4042 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3929 ((-112) |#1|)) (-15 -3929 ((-112) |#5| |#1|)) (-15 -2235 ((-2 (|:| -2680 (-621 |#5|)) (|:| -1358 (-621 |#5|))) |#1|)) (-15 -3068 ((-747) |#1|)) (-15 -4069 ((-621 |#5|) |#1|)) (-15 -3472 ((-3 (-2 (|:| |bas| |#1|) (|:| -2316 (-621 |#5|))) "failed") (-621 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3472 ((-3 (-2 (|:| |bas| |#1|) (|:| -2316 (-621 |#5|))) "failed") (-621 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3739 ((-112) |#1| |#1|)) (-15 -1651 (|#1| |#1| |#4|)) (-15 -3183 (|#1| |#1| |#4|)) (-15 -4170 (|#4| |#1|)) (-15 -2713 ((-3 |#1| "failed") (-621 |#5|))) (-15 -3845 ((-621 |#5|) |#1|)) (-15 -3853 (|#1| (-621 |#5|))) (-15 -2558 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2558 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1488 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2558 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3845 ((-834) |#1|)) (-15 -2388 ((-112) |#1| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3684 (((-621 (-2 (|:| -2680 $) (|:| -1358 (-621 |#4|)))) (-621 |#4|)) 85)) (-3840 (((-621 $) (-621 |#4|)) 86)) (-2271 (((-621 |#3|) $) 33)) (-3863 (((-112) $) 26)) (-1771 (((-112) $) 17 (|has| |#1| (-541)))) (-2344 (((-112) |#4| $) 101) (((-112) $) 97)) (-1305 ((|#4| |#4| $) 92)) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |#3|) 27)) (-1323 (((-112) $ (-747)) 44)) (-1488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| "failed") $ |#3|) 79)) (-1705 (($) 45 T CONST)) (-1717 (((-112) $) 22 (|has| |#1| (-541)))) (-1766 (((-112) $ $) 24 (|has| |#1| (-541)))) (-2671 (((-112) $ $) 23 (|has| |#1| (-541)))) (-2498 (((-112) $) 25 (|has| |#1| (-541)))) (-3074 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1436 (((-621 |#4|) (-621 |#4|) $) 18 (|has| |#1| (-541)))) (-3001 (((-621 |#4|) (-621 |#4|) $) 19 (|has| |#1| (-541)))) (-2713 (((-3 $ "failed") (-621 |#4|)) 36)) (-2658 (($ (-621 |#4|)) 35)) (-3655 (((-3 $ "failed") $) 82)) (-2514 ((|#4| |#4| $) 89)) (-3675 (($ $) 68 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#4| $) 67 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3249 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-541)))) (-4042 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3678 ((|#4| |#4| $) 87)) (-2558 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2235 (((-2 (|:| -2680 (-621 |#4|)) (|:| -1358 (-621 |#4|))) $) 105)) (-2990 (((-621 |#4|) $) 52 (|has| $ (-6 -4336)))) (-3929 (((-112) |#4| $) 104) (((-112) $) 103)) (-4170 ((|#3| $) 34)) (-4202 (((-112) $ (-747)) 43)) (-1958 (((-621 |#4|) $) 53 (|has| $ (-6 -4336)))) (-2273 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#4| |#4|) $) 47)) (-1670 (((-621 |#3|) $) 32)) (-2911 (((-112) |#3| $) 31)) (-4289 (((-112) $ (-747)) 42)) (-2677 (((-1124) $) 9)) (-3828 (((-3 |#4| "failed") $) 83)) (-4069 (((-621 |#4|) $) 107)) (-3130 (((-112) |#4| $) 99) (((-112) $) 95)) (-2741 ((|#4| |#4| $) 90)) (-3739 (((-112) $ $) 110)) (-2205 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-541)))) (-1582 (((-112) |#4| $) 100) (((-112) $) 96)) (-3952 ((|#4| |#4| $) 91)) (-3988 (((-1086) $) 10)) (-3645 (((-3 |#4| "failed") $) 84)) (-1917 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1762 (((-3 $ "failed") $ |#4|) 78)) (-2975 (($ $ |#4|) 77)) (-2470 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#4|) (-621 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-621 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))) (-2732 (((-112) $ $) 38)) (-1807 (((-112) $) 41)) (-1461 (($) 40)) (-3068 (((-747) $) 106)) (-3997 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1066)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-2281 (($ $) 39)) (-2844 (((-525) $) 69 (|has| |#4| (-594 (-525))))) (-3853 (($ (-621 |#4|)) 60)) (-1651 (($ $ |#3|) 28)) (-3183 (($ $ |#3|) 30)) (-1821 (($ $) 88)) (-2432 (($ $ |#3|) 29)) (-3845 (((-834) $) 11) (((-621 |#4|) $) 37)) (-1509 (((-747) $) 76 (|has| |#3| (-361)))) (-3472 (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2197 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) 98)) (-2150 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-2691 (((-621 |#3|) $) 81)) (-2923 (((-112) |#3| $) 80)) (-2388 (((-112) $ $) 6)) (-3774 (((-747) $) 46 (|has| $ (-6 -4336)))))
-(((-1172 |#1| |#2| |#3| |#4|) (-138) (-541) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1172))
-((-3739 (*1 *2 *1 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-3472 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2316 (-621 *8)))) (-5 *3 (-621 *8)) (-4 *1 (-1172 *5 *6 *7 *8)))) (-3472 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-541)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2316 (-621 *9)))) (-5 *3 (-621 *9)) (-4 *1 (-1172 *6 *7 *8 *9)))) (-4069 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *6)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-747)))) (-2235 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-2 (|:| -2680 (-621 *6)) (|:| -1358 (-621 *6)))))) (-3929 (*1 *2 *3 *1) (-12 (-4 *1 (-1172 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3929 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-4042 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1172 *5 *6 *7 *3)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)))) (-2344 (*1 *2 *3 *1) (-12 (-4 *1 (-1172 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-1582 (*1 *2 *3 *1) (-12 (-4 *1 (-1172 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3130 (*1 *2 *3 *1) (-12 (-4 *1 (-1172 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-2197 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-621 *7))) (-4 *1 (-1172 *4 *5 *6 *7)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-2344 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-1582 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-2558 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1172 *5 *6 *7 *2)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *2 (-1032 *5 *6 *7)))) (-3074 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-621 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1172 *5 *6 *7 *8)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)))) (-1305 (*1 *2 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-3952 (*1 *2 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-2741 (*1 *2 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-2514 (*1 *2 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-1821 (*1 *1 *1) (-12 (-4 *1 (-1172 *2 *3 *4 *5)) (-4 *2 (-541)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4)))) (-3678 (*1 *2 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1172 *4 *5 *6 *7)))) (-3684 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-621 (-2 (|:| -2680 *1) (|:| -1358 (-621 *7))))) (-5 *3 (-621 *7)) (-4 *1 (-1172 *4 *5 *6 *7)))) (-3645 (*1 *2 *1) (|partial| -12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-3828 (*1 *2 *1) (|partial| -12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-3655 (*1 *1 *1) (|partial| -12 (-4 *1 (-1172 *2 *3 *4 *5)) (-4 *2 (-541)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *5)))) (-2923 (*1 *2 *3 *1) (-12 (-4 *1 (-1172 *4 *5 *3 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112)))) (-1488 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1172 *4 *5 *3 *2)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *2 (-1032 *4 *5 *3)))) (-1762 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-2975 (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *5 (-361)) (-5 *2 (-747)))))
-(-13 (-947 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -3739 ((-112) $ $)) (-15 -3472 ((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |t#4|))) "failed") (-621 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3472 ((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |t#4|))) "failed") (-621 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4069 ((-621 |t#4|) $)) (-15 -3068 ((-747) $)) (-15 -2235 ((-2 (|:| -2680 (-621 |t#4|)) (|:| -1358 (-621 |t#4|))) $)) (-15 -3929 ((-112) |t#4| $)) (-15 -3929 ((-112) $)) (-15 -4042 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2344 ((-112) |t#4| $)) (-15 -1582 ((-112) |t#4| $)) (-15 -3130 ((-112) |t#4| $)) (-15 -2197 ((-112) $ (-1 (-112) |t#4| (-621 |t#4|)))) (-15 -2344 ((-112) $)) (-15 -1582 ((-112) $)) (-15 -3130 ((-112) $)) (-15 -2558 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3074 ((-621 |t#4|) (-621 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1305 (|t#4| |t#4| $)) (-15 -3952 (|t#4| |t#4| $)) (-15 -2741 (|t#4| |t#4| $)) (-15 -2514 (|t#4| |t#4| $)) (-15 -1821 ($ $)) (-15 -3678 (|t#4| |t#4| $)) (-15 -3840 ((-621 $) (-621 |t#4|))) (-15 -3684 ((-621 (-2 (|:| -2680 $) (|:| -1358 (-621 |t#4|)))) (-621 |t#4|))) (-15 -3645 ((-3 |t#4| "failed") $)) (-15 -3828 ((-3 |t#4| "failed") $)) (-15 -3655 ((-3 $ "failed") $)) (-15 -2691 ((-621 |t#3|) $)) (-15 -2923 ((-112) |t#3| $)) (-15 -1488 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1762 ((-3 $ "failed") $ |t#4|)) (-15 -2975 ($ $ |t#4|)) (IF (|has| |t#3| (-361)) (-15 -1509 ((-747) $)) |%noBranch|)))
-(((-34) . T) ((-101) . T) ((-593 (-621 |#4|)) . T) ((-593 (-834)) . T) ((-149 |#4|) . T) ((-594 (-525)) |has| |#4| (-594 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1066) . T) ((-1179) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2271 (((-621 (-1142)) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-1663 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1639 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) NIL T CONST)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-1413 (((-923 |#1|) $ (-747)) 17) (((-923 |#1|) $ (-747) (-747)) NIL)) (-3155 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-747) $ (-1142)) NIL) (((-747) $ (-1142) (-747)) NIL)) (-3987 (((-112) $) NIL)) (-3930 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2427 (((-112) $) NIL)) (-2244 (($ $ (-621 (-1142)) (-621 (-521 (-1142)))) NIL) (($ $ (-1142) (-521 (-1142))) NIL) (($ |#1| (-521 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-3631 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-1531 (($ $ (-1142)) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3988 (((-1086) $) NIL)) (-1464 (($ (-1 $) (-1142) |#1|) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2975 (($ $ (-747)) NIL)) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2718 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2685 (($ $ (-1142) $) NIL) (($ $ (-621 (-1142)) (-621 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL)) (-3455 (($ $ (-1142)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL)) (-3068 (((-521 (-1142)) $) NIL)) (-1697 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-541))) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-1142)) NIL) (($ (-923 |#1|)) NIL)) (-2944 ((|#1| $ (-521 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL) (((-923 |#1|) $ (-747)) NIL)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-1732 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1708 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1933 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1700 (($ $ (-1142)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL)) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1173 |#1|) (-13 (-717 |#1| (-1142)) (-10 -8 (-15 -2944 ((-923 |#1|) $ (-747))) (-15 -3845 ($ (-1142))) (-15 -3845 ($ (-923 |#1|))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -1531 ($ $ (-1142) |#1|)) (-15 -1464 ($ (-1 $) (-1142) |#1|))) |%noBranch|))) (-1018)) (T -1173))
-((-2944 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-923 *4)) (-5 *1 (-1173 *4)) (-4 *4 (-1018)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1173 *3)) (-4 *3 (-1018)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-923 *3)) (-4 *3 (-1018)) (-5 *1 (-1173 *3)))) (-1531 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *1 (-1173 *3)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)))) (-1464 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1173 *4))) (-5 *3 (-1142)) (-5 *1 (-1173 *4)) (-4 *4 (-38 (-400 (-549)))) (-4 *4 (-1018)))))
-(-13 (-717 |#1| (-1142)) (-10 -8 (-15 -2944 ((-923 |#1|) $ (-747))) (-15 -3845 ($ (-1142))) (-15 -3845 ($ (-923 |#1|))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -1531 ($ $ (-1142) |#1|)) (-15 -1464 ($ (-1 $) (-1142) |#1|))) |%noBranch|)))
-((-2917 (($ |#1| (-621 (-621 (-914 (-219)))) (-112)) 19)) (-1853 (((-112) $ (-112)) 18)) (-3797 (((-112) $) 17)) (-1724 (((-621 (-621 (-914 (-219)))) $) 13)) (-3350 ((|#1| $) 8)) (-4241 (((-112) $) 15)))
-(((-1174 |#1|) (-10 -8 (-15 -3350 (|#1| $)) (-15 -1724 ((-621 (-621 (-914 (-219)))) $)) (-15 -4241 ((-112) $)) (-15 -3797 ((-112) $)) (-15 -1853 ((-112) $ (-112))) (-15 -2917 ($ |#1| (-621 (-621 (-914 (-219)))) (-112)))) (-945)) (T -1174))
-((-2917 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-112)) (-5 *1 (-1174 *2)) (-4 *2 (-945)))) (-1853 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-1174 *3)) (-4 *3 (-945)))) (-3350 (*1 *2 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-945)))))
-(-10 -8 (-15 -3350 (|#1| $)) (-15 -1724 ((-621 (-621 (-914 (-219)))) $)) (-15 -4241 ((-112) $)) (-15 -3797 ((-112) $)) (-15 -1853 ((-112) $ (-112))) (-15 -2917 ($ |#1| (-621 (-621 (-914 (-219)))) (-112))))
-((-3195 (((-914 (-219)) (-914 (-219))) 25)) (-2797 (((-914 (-219)) (-219) (-219) (-219) (-219)) 10)) (-1838 (((-621 (-914 (-219))) (-914 (-219)) (-914 (-219)) (-914 (-219)) (-219) (-621 (-621 (-219)))) 37)) (-4140 (((-219) (-914 (-219)) (-914 (-219))) 21)) (-1420 (((-914 (-219)) (-914 (-219)) (-914 (-219))) 22)) (-1311 (((-621 (-621 (-219))) (-549)) 31)) (-2499 (((-914 (-219)) (-914 (-219)) (-914 (-219))) 20)) (-2485 (((-914 (-219)) (-914 (-219)) (-914 (-219))) 19)) (* (((-914 (-219)) (-219) (-914 (-219))) 18)))
-(((-1175) (-10 -7 (-15 -2797 ((-914 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-914 (-219)) (-219) (-914 (-219)))) (-15 -2485 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -2499 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4140 ((-219) (-914 (-219)) (-914 (-219)))) (-15 -1420 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -3195 ((-914 (-219)) (-914 (-219)))) (-15 -1311 ((-621 (-621 (-219))) (-549))) (-15 -1838 ((-621 (-914 (-219))) (-914 (-219)) (-914 (-219)) (-914 (-219)) (-219) (-621 (-621 (-219))))))) (T -1175))
-((-1838 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-621 (-621 (-219)))) (-5 *4 (-219)) (-5 *2 (-621 (-914 *4))) (-5 *1 (-1175)) (-5 *3 (-914 *4)))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-621 (-621 (-219)))) (-5 *1 (-1175)))) (-3195 (*1 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) (-1420 (*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) (-4140 (*1 *2 *3 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-219)) (-5 *1 (-1175)))) (-2499 (*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) (-2485 (*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-914 (-219))) (-5 *3 (-219)) (-5 *1 (-1175)))) (-2797 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)) (-5 *3 (-219)))))
-(-10 -7 (-15 -2797 ((-914 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-914 (-219)) (-219) (-914 (-219)))) (-15 -2485 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -2499 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4140 ((-219) (-914 (-219)) (-914 (-219)))) (-15 -1420 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -3195 ((-914 (-219)) (-914 (-219)))) (-15 -1311 ((-621 (-621 (-219))) (-549))) (-15 -1838 ((-621 (-914 (-219))) (-914 (-219)) (-914 (-219)) (-914 (-219)) (-219) (-621 (-621 (-219))))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-1488 ((|#1| $ (-747)) 13)) (-4209 (((-747) $) 12)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3845 (((-929 |#1|) $) 10) (($ (-929 |#1|)) 9) (((-834) $) 23 (|has| |#1| (-593 (-834))))) (-2388 (((-112) $ $) 16 (|has| |#1| (-1066)))))
-(((-1176 |#1|) (-13 (-593 (-929 |#1|)) (-10 -8 (-15 -3845 ($ (-929 |#1|))) (-15 -1488 (|#1| $ (-747))) (-15 -4209 ((-747) $)) (IF (|has| |#1| (-593 (-834))) (-6 (-593 (-834))) |%noBranch|) (IF (|has| |#1| (-1066)) (-6 (-1066)) |%noBranch|))) (-1179)) (T -1176))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-929 *3)) (-4 *3 (-1179)) (-5 *1 (-1176 *3)))) (-1488 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-1176 *2)) (-4 *2 (-1179)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1176 *3)) (-4 *3 (-1179)))))
-(-13 (-593 (-929 |#1|)) (-10 -8 (-15 -3845 ($ (-929 |#1|))) (-15 -1488 (|#1| $ (-747))) (-15 -4209 ((-747) $)) (IF (|has| |#1| (-593 (-834))) (-6 (-593 (-834))) |%noBranch|) (IF (|has| |#1| (-1066)) (-6 (-1066)) |%noBranch|)))
-((-3402 (((-411 (-1138 (-1138 |#1|))) (-1138 (-1138 |#1|)) (-549)) 80)) (-1588 (((-411 (-1138 (-1138 |#1|))) (-1138 (-1138 |#1|))) 74)) (-2795 (((-411 (-1138 (-1138 |#1|))) (-1138 (-1138 |#1|))) 59)))
-(((-1177 |#1|) (-10 -7 (-15 -1588 ((-411 (-1138 (-1138 |#1|))) (-1138 (-1138 |#1|)))) (-15 -2795 ((-411 (-1138 (-1138 |#1|))) (-1138 (-1138 |#1|)))) (-15 -3402 ((-411 (-1138 (-1138 |#1|))) (-1138 (-1138 |#1|)) (-549)))) (-342)) (T -1177))
-((-3402 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-4 *5 (-342)) (-5 *2 (-411 (-1138 (-1138 *5)))) (-5 *1 (-1177 *5)) (-5 *3 (-1138 (-1138 *5))))) (-2795 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1138 (-1138 *4)))) (-5 *1 (-1177 *4)) (-5 *3 (-1138 (-1138 *4))))) (-1588 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1138 (-1138 *4)))) (-5 *1 (-1177 *4)) (-5 *3 (-1138 (-1138 *4))))))
-(-10 -7 (-15 -1588 ((-411 (-1138 (-1138 |#1|))) (-1138 (-1138 |#1|)))) (-15 -2795 ((-411 (-1138 (-1138 |#1|))) (-1138 (-1138 |#1|)))) (-15 -3402 ((-411 (-1138 (-1138 |#1|))) (-1138 (-1138 |#1|)) (-549))))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 9) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-1178) (-1049)) (T -1178))
+((-3985 (*1 *1 *1) (-4 *1 (-1167))) (-3984 (*1 *1 *1) (-4 *1 (-1167))) (-3983 (*1 *1 *1) (-4 *1 (-1167))) (-3982 (*1 *1 *1) (-4 *1 (-1167))) (-3981 (*1 *1 *1) (-4 *1 (-1167))) (-3980 (*1 *1 *1) (-4 *1 (-1167))))
+(-13 (-10 -8 (-15 -3980 ($ $)) (-15 -3981 ($ $)) (-15 -3982 ($ $)) (-15 -3983 ($ $)) (-15 -3984 ($ $)) (-15 -3985 ($ $))))
+((-3988 ((|#2| |#2|) 88)) (-3991 (((-112) |#2|) 26)) (-3989 ((|#2| |#2|) 30)) (-3990 ((|#2| |#2|) 32)) (-3986 ((|#2| |#2| (-1142)) 83) ((|#2| |#2|) 84)) (-3992 (((-166 |#2|) |#2|) 28)) (-3987 ((|#2| |#2| (-1142)) 85) ((|#2| |#2|) 86)))
+(((-1168 |#1| |#2|) (-10 -7 (-15 -3986 (|#2| |#2|)) (-15 -3986 (|#2| |#2| (-1142))) (-15 -3987 (|#2| |#2|)) (-15 -3987 (|#2| |#2| (-1142))) (-15 -3988 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3991 ((-112) |#2|)) (-15 -3992 ((-166 |#2|) |#2|))) (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))) (-13 (-27) (-1164) (-414 |#1|))) (T -1168))
+((-3992 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-166 *3)) (-5 *1 (-1168 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) (-3991 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-112)) (-5 *1 (-1168 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) (-3988 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) (-3987 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) (-3987 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))) (-3986 (*1 *2 *2 *3) (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))))
+(-10 -7 (-15 -3986 (|#2| |#2|)) (-15 -3986 (|#2| |#2| (-1142))) (-15 -3987 (|#2| |#2|)) (-15 -3987 (|#2| |#2| (-1142))) (-15 -3988 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3991 ((-112) |#2|)) (-15 -3992 ((-166 |#2|) |#2|)))
+((-3993 ((|#4| |#4| |#1|) 27)) (-3994 ((|#4| |#4| |#1|) 28)))
+(((-1169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3993 (|#4| |#4| |#1|)) (-15 -3994 (|#4| |#4| |#1|))) (-542) (-365 |#1|) (-365 |#1|) (-662 |#1| |#2| |#3|)) (T -1169))
+((-3994 (*1 *2 *2 *3) (-12 (-4 *3 (-542)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1169 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))) (-3993 (*1 *2 *2 *3) (-12 (-4 *3 (-542)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1169 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))))
+(-10 -7 (-15 -3993 (|#4| |#4| |#1|)) (-15 -3994 (|#4| |#4| |#1|)))
+((-4012 ((|#2| |#2|) 133)) (-4014 ((|#2| |#2|) 130)) (-4011 ((|#2| |#2|) 121)) (-4013 ((|#2| |#2|) 118)) (-4010 ((|#2| |#2|) 126)) (-4009 ((|#2| |#2|) 114)) (-3998 ((|#2| |#2|) 43)) (-3997 ((|#2| |#2|) 94)) (-3995 ((|#2| |#2|) 74)) (-4008 ((|#2| |#2|) 128)) (-4007 ((|#2| |#2|) 116)) (-4020 ((|#2| |#2|) 138)) (-4018 ((|#2| |#2|) 136)) (-4019 ((|#2| |#2|) 137)) (-4017 ((|#2| |#2|) 135)) (-3996 ((|#2| |#2|) 148)) (-4021 ((|#2| |#2|) 30 (-12 (|has| |#2| (-594 (-861 |#1|))) (|has| |#2| (-857 |#1|)) (|has| |#1| (-594 (-861 |#1|))) (|has| |#1| (-857 |#1|))))) (-3999 ((|#2| |#2|) 75)) (-4000 ((|#2| |#2|) 139)) (-4306 ((|#2| |#2|) 140)) (-4006 ((|#2| |#2|) 127)) (-4005 ((|#2| |#2|) 115)) (-4004 ((|#2| |#2|) 134)) (-4016 ((|#2| |#2|) 132)) (-4003 ((|#2| |#2|) 122)) (-4015 ((|#2| |#2|) 120)) (-4002 ((|#2| |#2|) 124)) (-4001 ((|#2| |#2|) 112)))
+(((-1170 |#1| |#2|) (-10 -7 (-15 -4306 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -4010 (|#2| |#2|)) (-15 -4011 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4019 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (IF (|has| |#1| (-857 |#1|)) (IF (|has| |#1| (-594 (-861 |#1|))) (IF (|has| |#2| (-594 (-861 |#1|))) (IF (|has| |#2| (-857 |#1|)) (-15 -4021 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-823) (-444)) (-13 (-414 |#1|) (-1164))) (T -1170))
+((-4021 (*1 *2 *2) (-12 (-4 *3 (-594 (-861 *3))) (-4 *3 (-857 *3)) (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-594 (-861 *3))) (-4 *2 (-857 *3)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4019 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4017 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4016 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4015 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4012 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4011 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4010 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4009 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))) (-4306 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-13 (-414 *3) (-1164))))))
+(-10 -7 (-15 -4306 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -4010 (|#2| |#2|)) (-15 -4011 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4019 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (IF (|has| |#1| (-857 |#1|)) (IF (|has| |#1| (-594 (-861 |#1|))) (IF (|has| |#2| (-594 (-861 |#1|))) (IF (|has| |#2| (-857 |#1|)) (-15 -4021 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1142)) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-4157 (((-917 |#1|) $ (-747)) 17) (((-917 |#1|) $ (-747) (-747)) NIL)) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-747) $ (-1142)) NIL) (((-747) $ (-1142) (-747)) NIL)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4280 (((-112) $) NIL)) (-3214 (($ $ (-618 (-1142)) (-618 (-521 (-1142)))) NIL) (($ $ (-1142) (-521 (-1142))) NIL) (($ |#1| (-521 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-4155 (($ $ (-1142)) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142) |#1|) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-4022 (($ (-1 $) (-1142) |#1|) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4111 (($ $ (-747)) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4110 (($ $ (-1142) $) NIL) (($ $ (-618 (-1142)) (-618 $)) NIL) (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL)) (-4153 (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-4290 (((-521 (-1142)) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-542))) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-1142)) NIL) (($ (-917 |#1|)) NIL)) (-4023 ((|#1| $ (-521 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (((-917 |#1|) $ (-747)) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) NIL T CONST)) (-2985 (($) NIL T CONST)) (-2990 (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1171 |#1|) (-13 (-717 |#1| (-1142)) (-10 -8 (-15 -4023 ((-917 |#1|) $ (-747))) (-15 -4300 ($ (-1142))) (-15 -4300 ($ (-917 |#1|))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $ (-1142) |#1|)) (-15 -4022 ($ (-1 $) (-1142) |#1|))) |%noBranch|))) (-1018)) (T -1171))
+((-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-917 *4)) (-5 *1 (-1171 *4)) (-4 *4 (-1018)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1171 *3)) (-4 *3 (-1018)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1018)) (-5 *1 (-1171 *3)))) (-4155 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *1 (-1171 *3)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)))) (-4022 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1171 *4))) (-5 *3 (-1142)) (-5 *1 (-1171 *4)) (-4 *4 (-38 (-400 (-535)))) (-4 *4 (-1018)))))
+(-13 (-717 |#1| (-1142)) (-10 -8 (-15 -4023 ((-917 |#1|) $ (-747))) (-15 -4300 ($ (-1142))) (-15 -4300 ($ (-917 |#1|))) (IF (|has| |#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $ (-1142) |#1|)) (-15 -4022 ($ (-1 $) (-1142) |#1|))) |%noBranch|)))
+((-4039 (((-112) |#5| $) 60) (((-112) $) 102)) (-4034 ((|#5| |#5| $) 75)) (-4056 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4035 (((-618 |#5|) (-618 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-3491 (((-3 $ "failed") (-618 |#5|)) 126)) (-4141 (((-3 $ "failed") $) 112)) (-4031 ((|#5| |#5| $) 94)) (-4040 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-4029 ((|#5| |#5| $) 98)) (-4185 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-4042 (((-2 (|:| -4204 (-618 |#5|)) (|:| -1813 (-618 |#5|))) $) 55)) (-4041 (((-112) |#5| $) 58) (((-112) $) 103)) (-3514 ((|#4| $) 108)) (-4140 (((-3 |#5| "failed") $) 110)) (-4043 (((-618 |#5|) $) 49)) (-4037 (((-112) |#5| $) 67) (((-112) $) 107)) (-4032 ((|#5| |#5| $) 81)) (-4045 (((-112) $ $) 27)) (-4038 (((-112) |#5| $) 63) (((-112) $) 105)) (-4033 ((|#5| |#5| $) 78)) (-4143 (((-3 |#5| "failed") $) 109)) (-4111 (($ $ |#5|) 127)) (-4290 (((-747) $) 52)) (-3867 (($ (-618 |#5|)) 124)) (-3231 (($ $ |#4|) 122)) (-3233 (($ $ |#4|) 121)) (-4030 (($ $) 120)) (-4300 (((-835) $) NIL) (((-618 |#5|) $) 113)) (-4024 (((-747) $) 130)) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#5|))) "failed") (-618 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#5|))) "failed") (-618 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-4036 (((-112) $ (-1 (-112) |#5| (-618 |#5|))) 100)) (-4026 (((-618 |#4|) $) 115)) (-4276 (((-112) |#4| $) 118)) (-3375 (((-112) $ $) 19)))
+(((-1172 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4024 ((-747) |#1|)) (-15 -4111 (|#1| |#1| |#5|)) (-15 -4056 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4276 ((-112) |#4| |#1|)) (-15 -4026 ((-618 |#4|) |#1|)) (-15 -4141 ((-3 |#1| "failed") |#1|)) (-15 -4140 ((-3 |#5| "failed") |#1|)) (-15 -4143 ((-3 |#5| "failed") |#1|)) (-15 -4029 (|#5| |#5| |#1|)) (-15 -4030 (|#1| |#1|)) (-15 -4031 (|#5| |#5| |#1|)) (-15 -4032 (|#5| |#5| |#1|)) (-15 -4033 (|#5| |#5| |#1|)) (-15 -4034 (|#5| |#5| |#1|)) (-15 -4035 ((-618 |#5|) (-618 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4185 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4037 ((-112) |#1|)) (-15 -4038 ((-112) |#1|)) (-15 -4039 ((-112) |#1|)) (-15 -4036 ((-112) |#1| (-1 (-112) |#5| (-618 |#5|)))) (-15 -4037 ((-112) |#5| |#1|)) (-15 -4038 ((-112) |#5| |#1|)) (-15 -4039 ((-112) |#5| |#1|)) (-15 -4040 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4041 ((-112) |#1|)) (-15 -4041 ((-112) |#5| |#1|)) (-15 -4042 ((-2 (|:| -4204 (-618 |#5|)) (|:| -1813 (-618 |#5|))) |#1|)) (-15 -4290 ((-747) |#1|)) (-15 -4043 ((-618 |#5|) |#1|)) (-15 -4044 ((-3 (-2 (|:| |bas| |#1|) (|:| -3666 (-618 |#5|))) "failed") (-618 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4044 ((-3 (-2 (|:| |bas| |#1|) (|:| -3666 (-618 |#5|))) "failed") (-618 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4045 ((-112) |#1| |#1|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -3233 (|#1| |#1| |#4|)) (-15 -3514 (|#4| |#1|)) (-15 -3491 ((-3 |#1| "failed") (-618 |#5|))) (-15 -4300 ((-618 |#5|) |#1|)) (-15 -3867 (|#1| (-618 |#5|))) (-15 -4185 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4185 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4056 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4185 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|))) (-1173 |#2| |#3| |#4| |#5|) (-542) (-769) (-823) (-1032 |#2| |#3| |#4|)) (T -1172))
+NIL
+(-10 -8 (-15 -4024 ((-747) |#1|)) (-15 -4111 (|#1| |#1| |#5|)) (-15 -4056 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4276 ((-112) |#4| |#1|)) (-15 -4026 ((-618 |#4|) |#1|)) (-15 -4141 ((-3 |#1| "failed") |#1|)) (-15 -4140 ((-3 |#5| "failed") |#1|)) (-15 -4143 ((-3 |#5| "failed") |#1|)) (-15 -4029 (|#5| |#5| |#1|)) (-15 -4030 (|#1| |#1|)) (-15 -4031 (|#5| |#5| |#1|)) (-15 -4032 (|#5| |#5| |#1|)) (-15 -4033 (|#5| |#5| |#1|)) (-15 -4034 (|#5| |#5| |#1|)) (-15 -4035 ((-618 |#5|) (-618 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4185 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4037 ((-112) |#1|)) (-15 -4038 ((-112) |#1|)) (-15 -4039 ((-112) |#1|)) (-15 -4036 ((-112) |#1| (-1 (-112) |#5| (-618 |#5|)))) (-15 -4037 ((-112) |#5| |#1|)) (-15 -4038 ((-112) |#5| |#1|)) (-15 -4039 ((-112) |#5| |#1|)) (-15 -4040 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4041 ((-112) |#1|)) (-15 -4041 ((-112) |#5| |#1|)) (-15 -4042 ((-2 (|:| -4204 (-618 |#5|)) (|:| -1813 (-618 |#5|))) |#1|)) (-15 -4290 ((-747) |#1|)) (-15 -4043 ((-618 |#5|) |#1|)) (-15 -4044 ((-3 (-2 (|:| |bas| |#1|) (|:| -3666 (-618 |#5|))) "failed") (-618 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4044 ((-3 (-2 (|:| |bas| |#1|) (|:| -3666 (-618 |#5|))) "failed") (-618 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4045 ((-112) |#1| |#1|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -3233 (|#1| |#1| |#4|)) (-15 -3514 (|#4| |#1|)) (-15 -3491 ((-3 |#1| "failed") (-618 |#5|))) (-15 -4300 ((-618 |#5|) |#1|)) (-15 -3867 (|#1| (-618 |#5|))) (-15 -4185 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4185 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4056 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4185 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4300 ((-835) |#1|)) (-15 -3375 ((-112) |#1| |#1|)))
+((-2887 (((-112) $ $) 7)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) 85)) (-4028 (((-618 $) (-618 |#4|)) 86)) (-3405 (((-618 |#3|) $) 33)) (-3229 (((-112) $) 26)) (-3220 (((-112) $) 17 (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) 101) (((-112) $) 97)) (-4034 ((|#4| |#4| $) 92)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) 27)) (-1264 (((-112) $ (-747)) 44)) (-4056 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4336))) (((-3 |#4| "failed") $ |#3|) 79)) (-3879 (($) 45 T CONST)) (-3225 (((-112) $) 22 (|has| |#1| (-542)))) (-3227 (((-112) $ $) 24 (|has| |#1| (-542)))) (-3226 (((-112) $ $) 23 (|has| |#1| (-542)))) (-3228 (((-112) $) 25 (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3221 (((-618 |#4|) (-618 |#4|) $) 18 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) 19 (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) 36)) (-3490 (($ (-618 |#4|)) 35)) (-4141 (((-3 $ "failed") $) 82)) (-4031 ((|#4| |#4| $) 89)) (-1394 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4029 ((|#4| |#4| $) 87)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) 105)) (-2063 (((-618 |#4|) $) 52 (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) 104) (((-112) $) 103)) (-3514 ((|#3| $) 34)) (-4065 (((-112) $ (-747)) 43)) (-2502 (((-618 |#4|) $) 53 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) 47)) (-3235 (((-618 |#3|) $) 32)) (-3234 (((-112) |#3| $) 31)) (-4062 (((-112) $ (-747)) 42)) (-3576 (((-1124) $) 9)) (-4140 (((-3 |#4| "failed") $) 83)) (-4043 (((-618 |#4|) $) 107)) (-4037 (((-112) |#4| $) 99) (((-112) $) 95)) (-4032 ((|#4| |#4| $) 90)) (-4045 (((-112) $ $) 110)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) 100) (((-112) $) 96)) (-4033 ((|#4| |#4| $) 91)) (-3577 (((-1086) $) 10)) (-4143 (((-3 |#4| "failed") $) 84)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4025 (((-3 $ "failed") $ |#4|) 78)) (-4111 (($ $ |#4|) 77)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) 38)) (-3745 (((-112) $) 41)) (-3911 (($) 40)) (-4290 (((-747) $) 106)) (-2064 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4336)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4336)))) (-3742 (($ $) 39)) (-4313 (((-524) $) 69 (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-3233 (($ $ |#3|) 30)) (-4030 (($ $) 88)) (-3232 (($ $ |#3|) 29)) (-4300 (((-835) $) 11) (((-618 |#4|) $) 37)) (-4024 (((-747) $) 76 (|has| |#3| (-361)))) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) "failed") (-618 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) "failed") (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) 98)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) 81)) (-4276 (((-112) |#3| $) 80)) (-3375 (((-112) $ $) 6)) (-4299 (((-747) $) 46 (|has| $ (-6 -4336)))))
+(((-1173 |#1| |#2| |#3| |#4|) (-138) (-542) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1173))
+((-4045 (*1 *2 *1 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-4044 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3666 (-618 *8)))) (-5 *3 (-618 *8)) (-4 *1 (-1173 *5 *6 *7 *8)))) (-4044 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3666 (-618 *9)))) (-5 *3 (-618 *9)) (-4 *1 (-1173 *6 *7 *8 *9)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *6)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-747)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-2 (|:| -4204 (-618 *6)) (|:| -1813 (-618 *6)))))) (-4041 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-4040 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1173 *5 *6 *7 *3)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)))) (-4039 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-4038 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-4037 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-4036 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-618 *7))) (-4 *1 (-1173 *4 *5 *6 *7)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-4039 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-4037 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-4185 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1173 *5 *6 *7 *2)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *2 (-1032 *5 *6 *7)))) (-4035 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-618 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1173 *5 *6 *7 *8)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)))) (-4034 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4033 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4032 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4031 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4030 (*1 *1 *1) (-12 (-4 *1 (-1173 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4)))) (-4029 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1173 *4 *5 *6 *7)))) (-4027 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-618 (-2 (|:| -4204 *1) (|:| -1813 (-618 *7))))) (-5 *3 (-618 *7)) (-4 *1 (-1173 *4 *5 *6 *7)))) (-4143 (*1 *2 *1) (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4140 (*1 *2 *1) (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4141 (*1 *1 *1) (|partial| -12 (-4 *1 (-1173 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4)))) (-4026 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *5)))) (-4276 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *3 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112)))) (-4056 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1173 *4 *5 *3 *2)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *2 (-1032 *4 *5 *3)))) (-4025 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4111 (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *5 (-361)) (-5 *2 (-747)))))
+(-13 (-947 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4336) (-6 -4337) (-15 -4045 ((-112) $ $)) (-15 -4044 ((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |t#4|))) "failed") (-618 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4044 ((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |t#4|))) "failed") (-618 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4043 ((-618 |t#4|) $)) (-15 -4290 ((-747) $)) (-15 -4042 ((-2 (|:| -4204 (-618 |t#4|)) (|:| -1813 (-618 |t#4|))) $)) (-15 -4041 ((-112) |t#4| $)) (-15 -4041 ((-112) $)) (-15 -4040 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4039 ((-112) |t#4| $)) (-15 -4038 ((-112) |t#4| $)) (-15 -4037 ((-112) |t#4| $)) (-15 -4036 ((-112) $ (-1 (-112) |t#4| (-618 |t#4|)))) (-15 -4039 ((-112) $)) (-15 -4038 ((-112) $)) (-15 -4037 ((-112) $)) (-15 -4185 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4035 ((-618 |t#4|) (-618 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4034 (|t#4| |t#4| $)) (-15 -4033 (|t#4| |t#4| $)) (-15 -4032 (|t#4| |t#4| $)) (-15 -4031 (|t#4| |t#4| $)) (-15 -4030 ($ $)) (-15 -4029 (|t#4| |t#4| $)) (-15 -4028 ((-618 $) (-618 |t#4|))) (-15 -4027 ((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |t#4|)))) (-618 |t#4|))) (-15 -4143 ((-3 |t#4| "failed") $)) (-15 -4140 ((-3 |t#4| "failed") $)) (-15 -4141 ((-3 $ "failed") $)) (-15 -4026 ((-618 |t#3|) $)) (-15 -4276 ((-112) |t#3| $)) (-15 -4056 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4025 ((-3 $ "failed") $ |t#4|)) (-15 -4111 ($ $ |t#4|)) (IF (|has| |t#3| (-361)) (-15 -4024 ((-747) $)) |%noBranch|)))
+(((-34) . T) ((-101) . T) ((-593 (-618 |#4|)) . T) ((-593 (-835)) . T) ((-149 |#4|) . T) ((-594 (-524)) |has| |#4| (-594 (-524))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1178) . T))
+((-4051 (($ |#1| (-618 (-618 (-914 (-219)))) (-112)) 19)) (-4050 (((-112) $ (-112)) 18)) (-4049 (((-112) $) 17)) (-4047 (((-618 (-618 (-914 (-219)))) $) 13)) (-4046 ((|#1| $) 8)) (-4048 (((-112) $) 15)))
+(((-1174 |#1|) (-10 -8 (-15 -4046 (|#1| $)) (-15 -4047 ((-618 (-618 (-914 (-219)))) $)) (-15 -4048 ((-112) $)) (-15 -4049 ((-112) $)) (-15 -4050 ((-112) $ (-112))) (-15 -4051 ($ |#1| (-618 (-618 (-914 (-219)))) (-112)))) (-945)) (T -1174))
+((-4051 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-112)) (-5 *1 (-1174 *2)) (-4 *2 (-945)))) (-4050 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-1174 *3)) (-4 *3 (-945)))) (-4046 (*1 *2 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-945)))))
+(-10 -8 (-15 -4046 (|#1| $)) (-15 -4047 ((-618 (-618 (-914 (-219)))) $)) (-15 -4048 ((-112) $)) (-15 -4049 ((-112) $)) (-15 -4050 ((-112) $ (-112))) (-15 -4051 ($ |#1| (-618 (-618 (-914 (-219)))) (-112))))
+((-4053 (((-914 (-219)) (-914 (-219))) 25)) (-4052 (((-914 (-219)) (-219) (-219) (-219) (-219)) 10)) (-4055 (((-618 (-914 (-219))) (-914 (-219)) (-914 (-219)) (-914 (-219)) (-219) (-618 (-618 (-219)))) 37)) (-4179 (((-219) (-914 (-219)) (-914 (-219))) 21)) (-4177 (((-914 (-219)) (-914 (-219)) (-914 (-219))) 22)) (-4054 (((-618 (-618 (-219))) (-535)) 31)) (-4180 (((-914 (-219)) (-914 (-219)) (-914 (-219))) 20)) (-4182 (((-914 (-219)) (-914 (-219)) (-914 (-219))) 19)) (* (((-914 (-219)) (-219) (-914 (-219))) 18)))
+(((-1175) (-10 -7 (-15 -4052 ((-914 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-914 (-219)) (-219) (-914 (-219)))) (-15 -4182 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4180 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4179 ((-219) (-914 (-219)) (-914 (-219)))) (-15 -4177 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4053 ((-914 (-219)) (-914 (-219)))) (-15 -4054 ((-618 (-618 (-219))) (-535))) (-15 -4055 ((-618 (-914 (-219))) (-914 (-219)) (-914 (-219)) (-914 (-219)) (-219) (-618 (-618 (-219))))))) (T -1175))
+((-4055 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-618 (-618 (-219)))) (-5 *4 (-219)) (-5 *2 (-618 (-914 *4))) (-5 *1 (-1175)) (-5 *3 (-914 *4)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *2 (-618 (-618 (-219)))) (-5 *1 (-1175)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) (-4177 (*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) (-4179 (*1 *2 *3 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-219)) (-5 *1 (-1175)))) (-4180 (*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) (-4182 (*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-914 (-219))) (-5 *3 (-219)) (-5 *1 (-1175)))) (-4052 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)) (-5 *3 (-219)))))
+(-10 -7 (-15 -4052 ((-914 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-914 (-219)) (-219) (-914 (-219)))) (-15 -4182 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4180 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4179 ((-219) (-914 (-219)) (-914 (-219)))) (-15 -4177 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -4053 ((-914 (-219)) (-914 (-219)))) (-15 -4054 ((-618 (-618 (-219))) (-535))) (-15 -4055 ((-618 (-914 (-219))) (-914 (-219)) (-914 (-219)) (-914 (-219)) (-219) (-618 (-618 (-219))))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4056 ((|#1| $ (-747)) 13)) (-4176 (((-747) $) 12)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4300 (((-929 |#1|) $) 10) (($ (-929 |#1|)) 9) (((-835) $) 23 (|has| |#1| (-593 (-835))))) (-3375 (((-112) $ $) 16 (|has| |#1| (-1067)))))
+(((-1176 |#1|) (-13 (-593 (-929 |#1|)) (-10 -8 (-15 -4300 ($ (-929 |#1|))) (-15 -4056 (|#1| $ (-747))) (-15 -4176 ((-747) $)) (IF (|has| |#1| (-593 (-835))) (-6 (-593 (-835))) |%noBranch|) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|))) (-1178)) (T -1176))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-929 *3)) (-4 *3 (-1178)) (-5 *1 (-1176 *3)))) (-4056 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-1176 *2)) (-4 *2 (-1178)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1176 *3)) (-4 *3 (-1178)))))
+(-13 (-593 (-929 |#1|)) (-10 -8 (-15 -4300 ($ (-929 |#1|))) (-15 -4056 (|#1| $ (-747))) (-15 -4176 ((-747) $)) (IF (|has| |#1| (-593 (-835))) (-6 (-593 (-835))) |%noBranch|) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|)))
+((-4059 (((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)) (-535)) 80)) (-4057 (((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|))) 74)) (-4058 (((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|))) 59)))
+(((-1177 |#1|) (-10 -7 (-15 -4057 ((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)))) (-15 -4058 ((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)))) (-15 -4059 ((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)) (-535)))) (-343)) (T -1177))
+((-4059 (*1 *2 *3 *4) (-12 (-5 *4 (-535)) (-4 *5 (-343)) (-5 *2 (-398 (-1136 (-1136 *5)))) (-5 *1 (-1177 *5)) (-5 *3 (-1136 (-1136 *5))))) (-4058 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1136 (-1136 *4)))) (-5 *1 (-1177 *4)) (-5 *3 (-1136 (-1136 *4))))) (-4057 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1136 (-1136 *4)))) (-5 *1 (-1177 *4)) (-5 *3 (-1136 (-1136 *4))))))
+(-10 -7 (-15 -4057 ((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)))) (-15 -4058 ((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)))) (-15 -4059 ((-398 (-1136 (-1136 |#1|))) (-1136 (-1136 |#1|)) (-535))))
+NIL
+(((-1178) (-138)) (T -1178))
+NIL
+(-13 (-10 -7 (-6 -2359)))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 9) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-1179) (-1049)) (T -1179))
NIL
(-1049)
-NIL
-(((-1179) (-138)) (T -1179))
-NIL
-(-13 (-10 -7 (-6 -2623)))
-((-3159 (((-112)) 15)) (-3569 (((-1230) (-621 |#1|) (-621 |#1|)) 19) (((-1230) (-621 |#1|)) 20)) (-4202 (((-112) |#1| |#1|) 32 (|has| |#1| (-823)))) (-4289 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-1819 ((|#1| (-621 |#1|)) 33 (|has| |#1| (-823))) ((|#1| (-621 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-1556 (((-2 (|:| -3046 (-621 |#1|)) (|:| -4109 (-621 |#1|)))) 17)))
-(((-1180 |#1|) (-10 -7 (-15 -3569 ((-1230) (-621 |#1|))) (-15 -3569 ((-1230) (-621 |#1|) (-621 |#1|))) (-15 -1556 ((-2 (|:| -3046 (-621 |#1|)) (|:| -4109 (-621 |#1|))))) (-15 -4289 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4289 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1819 (|#1| (-621 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3159 ((-112))) (IF (|has| |#1| (-823)) (PROGN (-15 -1819 (|#1| (-621 |#1|))) (-15 -4202 ((-112) |#1| |#1|))) |%noBranch|)) (-1066)) (T -1180))
-((-4202 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-823)) (-4 *3 (-1066)))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-1066)) (-4 *2 (-823)) (-5 *1 (-1180 *2)))) (-3159 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-1066)))) (-1819 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1180 *2)) (-4 *2 (-1066)))) (-4289 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1066)) (-5 *2 (-112)) (-5 *1 (-1180 *3)))) (-4289 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-1066)))) (-1556 (*1 *2) (-12 (-5 *2 (-2 (|:| -3046 (-621 *3)) (|:| -4109 (-621 *3)))) (-5 *1 (-1180 *3)) (-4 *3 (-1066)))) (-3569 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-1066)) (-5 *2 (-1230)) (-5 *1 (-1180 *4)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-1066)) (-5 *2 (-1230)) (-5 *1 (-1180 *4)))))
-(-10 -7 (-15 -3569 ((-1230) (-621 |#1|))) (-15 -3569 ((-1230) (-621 |#1|) (-621 |#1|))) (-15 -1556 ((-2 (|:| -3046 (-621 |#1|)) (|:| -4109 (-621 |#1|))))) (-15 -4289 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4289 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1819 (|#1| (-621 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3159 ((-112))) (IF (|has| |#1| (-823)) (PROGN (-15 -1819 (|#1| (-621 |#1|))) (-15 -4202 ((-112) |#1| |#1|))) |%noBranch|))
-((-2688 (((-1230) (-621 (-1142)) (-621 (-1142))) 13) (((-1230) (-621 (-1142))) 11)) (-2739 (((-1230)) 14)) (-2785 (((-2 (|:| -4109 (-621 (-1142))) (|:| -3046 (-621 (-1142))))) 18)))
-(((-1181) (-10 -7 (-15 -2688 ((-1230) (-621 (-1142)))) (-15 -2688 ((-1230) (-621 (-1142)) (-621 (-1142)))) (-15 -2785 ((-2 (|:| -4109 (-621 (-1142))) (|:| -3046 (-621 (-1142)))))) (-15 -2739 ((-1230))))) (T -1181))
-((-2739 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1181)))) (-2785 (*1 *2) (-12 (-5 *2 (-2 (|:| -4109 (-621 (-1142))) (|:| -3046 (-621 (-1142))))) (-5 *1 (-1181)))) (-2688 (*1 *2 *3 *3) (-12 (-5 *3 (-621 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1181)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-621 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1181)))))
-(-10 -7 (-15 -2688 ((-1230) (-621 (-1142)))) (-15 -2688 ((-1230) (-621 (-1142)) (-621 (-1142)))) (-15 -2785 ((-2 (|:| -4109 (-621 (-1142))) (|:| -3046 (-621 (-1142)))))) (-15 -2739 ((-1230))))
-((-1912 (($ $) 17)) (-2471 (((-112) $) 24)))
-(((-1182 |#1|) (-10 -8 (-15 -1912 (|#1| |#1|)) (-15 -2471 ((-112) |#1|))) (-1183)) (T -1182))
-NIL
-(-10 -8 (-15 -1912 (|#1| |#1|)) (-15 -2471 ((-112) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 49)) (-3513 (((-411 $) $) 50)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-2471 (((-112) $) 51)) (-3987 (((-112) $) 30)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-2120 (((-411 $) $) 48)) (-2038 (((-3 $ "failed") $ $) 40)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+((-4063 (((-112)) 15)) (-4060 (((-1230) (-618 |#1|) (-618 |#1|)) 19) (((-1230) (-618 |#1|)) 20)) (-4065 (((-112) |#1| |#1|) 32 (|has| |#1| (-823)))) (-4062 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-4064 ((|#1| (-618 |#1|)) 33 (|has| |#1| (-823))) ((|#1| (-618 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-4061 (((-2 (|:| -3563 (-618 |#1|)) (|:| -3562 (-618 |#1|)))) 17)))
+(((-1180 |#1|) (-10 -7 (-15 -4060 ((-1230) (-618 |#1|))) (-15 -4060 ((-1230) (-618 |#1|) (-618 |#1|))) (-15 -4061 ((-2 (|:| -3563 (-618 |#1|)) (|:| -3562 (-618 |#1|))))) (-15 -4062 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4062 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4064 (|#1| (-618 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4063 ((-112))) (IF (|has| |#1| (-823)) (PROGN (-15 -4064 (|#1| (-618 |#1|))) (-15 -4065 ((-112) |#1| |#1|))) |%noBranch|)) (-1067)) (T -1180))
+((-4065 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-823)) (-4 *3 (-1067)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-823)) (-5 *1 (-1180 *2)))) (-4063 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-1067)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1180 *2)) (-4 *2 (-1067)))) (-4062 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1067)) (-5 *2 (-112)) (-5 *1 (-1180 *3)))) (-4062 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-1067)))) (-4061 (*1 *2) (-12 (-5 *2 (-2 (|:| -3563 (-618 *3)) (|:| -3562 (-618 *3)))) (-5 *1 (-1180 *3)) (-4 *3 (-1067)))) (-4060 (*1 *2 *3 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-1067)) (-5 *2 (-1230)) (-5 *1 (-1180 *4)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-618 *4)) (-4 *4 (-1067)) (-5 *2 (-1230)) (-5 *1 (-1180 *4)))))
+(-10 -7 (-15 -4060 ((-1230) (-618 |#1|))) (-15 -4060 ((-1230) (-618 |#1|) (-618 |#1|))) (-15 -4061 ((-2 (|:| -3563 (-618 |#1|)) (|:| -3562 (-618 |#1|))))) (-15 -4062 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4062 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4064 (|#1| (-618 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4063 ((-112))) (IF (|has| |#1| (-823)) (PROGN (-15 -4064 (|#1| (-618 |#1|))) (-15 -4065 ((-112) |#1| |#1|))) |%noBranch|))
+((-4066 (((-1230) (-618 (-1142)) (-618 (-1142))) 13) (((-1230) (-618 (-1142))) 11)) (-4068 (((-1230)) 14)) (-4067 (((-2 (|:| -3562 (-618 (-1142))) (|:| -3563 (-618 (-1142))))) 18)))
+(((-1181) (-10 -7 (-15 -4066 ((-1230) (-618 (-1142)))) (-15 -4066 ((-1230) (-618 (-1142)) (-618 (-1142)))) (-15 -4067 ((-2 (|:| -3562 (-618 (-1142))) (|:| -3563 (-618 (-1142)))))) (-15 -4068 ((-1230))))) (T -1181))
+((-4068 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1181)))) (-4067 (*1 *2) (-12 (-5 *2 (-2 (|:| -3562 (-618 (-1142))) (|:| -3563 (-618 (-1142))))) (-5 *1 (-1181)))) (-4066 (*1 *2 *3 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1181)))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1181)))))
+(-10 -7 (-15 -4066 ((-1230) (-618 (-1142)))) (-15 -4066 ((-1230) (-618 (-1142)) (-618 (-1142)))) (-15 -4067 ((-2 (|:| -3562 (-618 (-1142))) (|:| -3563 (-618 (-1142)))))) (-15 -4068 ((-1230))))
+((-4117 (($ $) 17)) (-4069 (((-112) $) 24)))
+(((-1182 |#1|) (-10 -8 (-15 -4117 (|#1| |#1|)) (-15 -4069 ((-112) |#1|))) (-1183)) (T -1182))
+NIL
+(-10 -8 (-15 -4117 (|#1| |#1|)) (-15 -4069 ((-112) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 49)) (-4312 (((-398 $) $) 50)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-4069 (((-112) $) 51)) (-2493 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-4075 (((-398 $) $) 48)) (-3803 (((-3 $ "failed") $ $) 40)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41)) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24)))
(((-1183) (-138)) (T -1183))
-((-2471 (*1 *2 *1) (-12 (-4 *1 (-1183)) (-5 *2 (-112)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1183)))) (-1912 (*1 *1 *1) (-4 *1 (-1183))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1183)))))
-(-13 (-444) (-10 -8 (-15 -2471 ((-112) $)) (-15 -3513 ((-411 $) $)) (-15 -1912 ($ $)) (-15 -2120 ((-411 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-2796 (((-1189 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1189 |#1| |#3| |#5|)) 23)))
-(((-1184 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2796 ((-1189 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1189 |#1| |#3| |#5|)))) (-1018) (-1018) (-1142) (-1142) |#1| |#2|) (T -1184))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1189 *5 *7 *9)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-14 *7 (-1142)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1189 *6 *8 *10)) (-5 *1 (-1184 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1142)))))
-(-10 -7 (-15 -2796 ((-1189 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1189 |#1| |#3| |#5|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2271 (((-621 (-1048)) $) 72)) (-3010 (((-1142) $) 101)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2408 (($ $) 50 (|has| |#1| (-541)))) (-2477 (((-112) $) 52 (|has| |#1| (-541)))) (-2305 (($ $ (-549)) 96) (($ $ (-549) (-549)) 95)) (-1480 (((-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 103)) (-1663 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) 116 (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 160 (|has| |#1| (-356)))) (-3513 (((-411 $) $) 161 (|has| |#1| (-356)))) (-2134 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-2647 (((-112) $ $) 151 (|has| |#1| (-356)))) (-1639 (($ $) 132 (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-2825 (($ (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 171)) (-1685 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) 118 (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) 17 T CONST)) (-2094 (($ $ $) 155 (|has| |#1| (-356)))) (-2069 (($ $) 58)) (-3976 (((-3 $ "failed") $) 32)) (-2390 (((-400 (-923 |#1|)) $ (-549)) 169 (|has| |#1| (-541))) (((-400 (-923 |#1|)) $ (-549) (-549)) 168 (|has| |#1| (-541)))) (-2066 (($ $ $) 154 (|has| |#1| (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 149 (|has| |#1| (-356)))) (-2471 (((-112) $) 162 (|has| |#1| (-356)))) (-3155 (((-112) $) 71)) (-1425 (($) 143 (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-549) $) 98) (((-549) $ (-549)) 97)) (-3987 (((-112) $) 30)) (-3930 (($ $ (-549)) 114 (|has| |#1| (-38 (-400 (-549)))))) (-2769 (($ $ (-892)) 99)) (-4299 (($ (-1 |#1| (-549)) $) 170)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 158 (|has| |#1| (-356)))) (-2427 (((-112) $) 60)) (-2244 (($ |#1| (-549)) 59) (($ $ (-1048) (-549)) 74) (($ $ (-621 (-1048)) (-621 (-549))) 73)) (-2796 (($ (-1 |#1| |#1|) $) 61)) (-3631 (($ $) 140 (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) 63)) (-2042 ((|#1| $) 64)) (-3696 (($ (-621 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-2677 (((-1124) $) 9)) (-1991 (($ $) 163 (|has| |#1| (-356)))) (-1531 (($ $) 167 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) 166 (-1536 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-930)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-549)))))))) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 148 (|has| |#1| (-356)))) (-3726 (($ (-621 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-2120 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 156 (|has| |#1| (-356)))) (-2975 (($ $ (-549)) 93)) (-2038 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 150 (|has| |#1| (-356)))) (-2718 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-549)))))) (-4091 (((-747) $) 152 (|has| |#1| (-356)))) (-3340 ((|#1| $ (-549)) 102) (($ $ $) 79 (|has| (-549) (-1078)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 153 (|has| |#1| (-356)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-3068 (((-549) $) 62)) (-1697 (($ $) 130 (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) 129 (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) 120 (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) 128 (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) 70)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541)))) (-2944 ((|#1| $ (-549)) 57)) (-3407 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-1723 (((-747)) 28)) (-2597 ((|#1| $) 100)) (-1732 (($ $) 139 (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) 127 (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) 51 (|has| |#1| (-541)))) (-1708 (($ $) 138 (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) 126 (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) 137 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-549)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) 136 (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) 124 (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) 135 (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) 134 (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) 122 (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 113 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
-(((-1185 |#1|) (-138) (-1018)) (T -1185))
-((-2825 (*1 *1 *2) (-12 (-5 *2 (-1122 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-4 *3 (-1018)) (-4 *1 (-1185 *3)))) (-4299 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1185 *3)) (-4 *3 (-1018)))) (-2390 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1185 *4)) (-4 *4 (-1018)) (-4 *4 (-541)) (-5 *2 (-400 (-923 *4))))) (-2390 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1185 *4)) (-4 *4 (-1018)) (-4 *4 (-541)) (-5 *2 (-400 (-923 *4))))) (-1531 (*1 *1 *1) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549)))))) (-1531 (*1 *1 *1 *2) (-1536 (-12 (-5 *2 (-1142)) (-4 *1 (-1185 *3)) (-4 *3 (-1018)) (-12 (-4 *3 (-29 (-549))) (-4 *3 (-930)) (-4 *3 (-1164)) (-4 *3 (-38 (-400 (-549)))))) (-12 (-5 *2 (-1142)) (-4 *1 (-1185 *3)) (-4 *3 (-1018)) (-12 (|has| *3 (-15 -2271 ((-621 *2) *3))) (|has| *3 (-15 -1531 (*3 *3 *2))) (-4 *3 (-38 (-400 (-549)))))))))
-(-13 (-1203 |t#1| (-549)) (-10 -8 (-15 -2825 ($ (-1122 (-2 (|:| |k| (-549)) (|:| |c| |t#1|))))) (-15 -4299 ($ (-1 |t#1| (-549)) $)) (IF (|has| |t#1| (-541)) (PROGN (-15 -2390 ((-400 (-923 |t#1|)) $ (-549))) (-15 -2390 ((-400 (-923 |t#1|)) $ (-549) (-549)))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-549)))) (PROGN (-15 -1531 ($ $)) (IF (|has| |t#1| (-15 -1531 (|t#1| |t#1| (-1142)))) (IF (|has| |t#1| (-15 -2271 ((-621 (-1142)) |t#1|))) (-15 -1531 ($ $ (-1142))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1164)) (IF (|has| |t#1| (-930)) (IF (|has| |t#1| (-29 (-549))) (-15 -1531 ($ $ (-1142))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-973)) (-6 (-1164))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-549)) . T) ((-25) . T) ((-38 #1=(-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-549)))) ((-94) |has| |#1| (-38 (-400 (-549)))) ((-101) . T) ((-111 #1# #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-549) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-549)))) ((-279 $ $) |has| (-549) (-1078)) ((-283) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-549)))) ((-541) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-624 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))) ((-944 |#1| #0# (-1048)) . T) ((-891) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-549)))) ((-1024 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1164) |has| |#1| (-38 (-400 (-549)))) ((-1167) |has| |#1| (-38 (-400 (-549)))) ((-1183) |has| |#1| (-356)) ((-1203 |#1| #0#) . T))
-((-3166 (((-112) $) 12)) (-2713 (((-3 |#3| "failed") $) 17) (((-3 (-1142) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 (-549) "failed") $) NIL)) (-2658 ((|#3| $) 14) (((-1142) $) NIL) (((-400 (-549)) $) NIL) (((-549) $) NIL)))
-(((-1186 |#1| |#2| |#3|) (-10 -8 (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2658 ((-1142) |#1|)) (-15 -2713 ((-3 (-1142) "failed") |#1|)) (-15 -2658 (|#3| |#1|)) (-15 -2713 ((-3 |#3| "failed") |#1|)) (-15 -3166 ((-112) |#1|))) (-1187 |#2| |#3|) (-1018) (-1216 |#2|)) (T -1186))
-NIL
-(-10 -8 (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2658 ((-1142) |#1|)) (-15 -2713 ((-3 (-1142) "failed") |#1|)) (-15 -2658 (|#3| |#1|)) (-15 -2713 ((-3 |#3| "failed") |#1|)) (-15 -3166 ((-112) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2364 ((|#2| $) 228 (-1820 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-2271 (((-621 (-1048)) $) 72)) (-3010 (((-1142) $) 101)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2408 (($ $) 50 (|has| |#1| (-541)))) (-2477 (((-112) $) 52 (|has| |#1| (-541)))) (-2305 (($ $ (-549)) 96) (($ $ (-549) (-549)) 95)) (-1480 (((-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 103)) (-3292 ((|#2| $) 264)) (-1905 (((-3 |#2| "failed") $) 260)) (-2339 ((|#2| $) 261)) (-1663 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) 116 (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) 19)) (-2461 (((-411 (-1138 $)) (-1138 $)) 237 (-1820 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-1912 (($ $) 160 (|has| |#1| (-356)))) (-3513 (((-411 $) $) 161 (|has| |#1| (-356)))) (-2134 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 234 (-1820 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-2647 (((-112) $ $) 151 (|has| |#1| (-356)))) (-1639 (($ $) 132 (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-3902 (((-549) $) 246 (-1820 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-2825 (($ (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 171)) (-1685 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) 118 (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) 17 T CONST)) (-2713 (((-3 |#2| "failed") $) 267) (((-3 (-549) "failed") $) 256 (-1820 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-3 (-400 (-549)) "failed") $) 254 (-1820 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-3 (-1142) "failed") $) 239 (-1820 (|has| |#2| (-1009 (-1142))) (|has| |#1| (-356))))) (-2658 ((|#2| $) 266) (((-549) $) 257 (-1820 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-400 (-549)) $) 255 (-1820 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-1142) $) 240 (-1820 (|has| |#2| (-1009 (-1142))) (|has| |#1| (-356))))) (-3817 (($ $) 263) (($ (-549) $) 262)) (-2094 (($ $ $) 155 (|has| |#1| (-356)))) (-2069 (($ $) 58)) (-1698 (((-665 |#2|) (-665 $)) 218 (|has| |#1| (-356))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) 217 (|has| |#1| (-356))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 216 (-1820 (|has| |#2| (-617 (-549))) (|has| |#1| (-356)))) (((-665 (-549)) (-665 $)) 215 (-1820 (|has| |#2| (-617 (-549))) (|has| |#1| (-356))))) (-3976 (((-3 $ "failed") $) 32)) (-2390 (((-400 (-923 |#1|)) $ (-549)) 169 (|has| |#1| (-541))) (((-400 (-923 |#1|)) $ (-549) (-549)) 168 (|has| |#1| (-541)))) (-3238 (($) 230 (-1820 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-2066 (($ $ $) 154 (|has| |#1| (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 149 (|has| |#1| (-356)))) (-2471 (((-112) $) 162 (|has| |#1| (-356)))) (-3079 (((-112) $) 244 (-1820 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-3155 (((-112) $) 71)) (-1425 (($) 143 (|has| |#1| (-38 (-400 (-549)))))) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 222 (-1820 (|has| |#2| (-857 (-372))) (|has| |#1| (-356)))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 221 (-1820 (|has| |#2| (-857 (-549))) (|has| |#1| (-356))))) (-2078 (((-549) $) 98) (((-549) $ (-549)) 97)) (-3987 (((-112) $) 30)) (-2053 (($ $) 226 (|has| |#1| (-356)))) (-1393 ((|#2| $) 224 (|has| |#1| (-356)))) (-3930 (($ $ (-549)) 114 (|has| |#1| (-38 (-400 (-549)))))) (-3982 (((-3 $ "failed") $) 258 (-1820 (|has| |#2| (-1117)) (|has| |#1| (-356))))) (-2847 (((-112) $) 245 (-1820 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-2769 (($ $ (-892)) 99)) (-4299 (($ (-1 |#1| (-549)) $) 170)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 158 (|has| |#1| (-356)))) (-2427 (((-112) $) 60)) (-2244 (($ |#1| (-549)) 59) (($ $ (-1048) (-549)) 74) (($ $ (-621 (-1048)) (-621 (-549))) 73)) (-2862 (($ $ $) 248 (-1820 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-3574 (($ $ $) 249 (-1820 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2796 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-356)))) (-3631 (($ $) 140 (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) 63)) (-2042 ((|#1| $) 64)) (-3696 (($ (-621 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-2354 (($ (-549) |#2|) 265)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 163 (|has| |#1| (-356)))) (-1531 (($ $) 167 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) 166 (-1536 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-930)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-549)))))))) (-3060 (($) 259 (-1820 (|has| |#2| (-1117)) (|has| |#1| (-356))) CONST)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 148 (|has| |#1| (-356)))) (-3726 (($ (-621 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-1260 (($ $) 229 (-1820 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-4060 ((|#2| $) 232 (-1820 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-1873 (((-411 (-1138 $)) (-1138 $)) 235 (-1820 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-4120 (((-411 (-1138 $)) (-1138 $)) 236 (-1820 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-2120 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 156 (|has| |#1| (-356)))) (-2975 (($ $ (-549)) 93)) (-2038 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 150 (|has| |#1| (-356)))) (-2718 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1142) |#2|) 209 (-1820 (|has| |#2| (-505 (-1142) |#2|)) (|has| |#1| (-356)))) (($ $ (-621 (-1142)) (-621 |#2|)) 208 (-1820 (|has| |#2| (-505 (-1142) |#2|)) (|has| |#1| (-356)))) (($ $ (-621 (-287 |#2|))) 207 (-1820 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-287 |#2|)) 206 (-1820 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ |#2| |#2|) 205 (-1820 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-621 |#2|) (-621 |#2|)) 204 (-1820 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356))))) (-4091 (((-747) $) 152 (|has| |#1| (-356)))) (-3340 ((|#1| $ (-549)) 102) (($ $ $) 79 (|has| (-549) (-1078))) (($ $ |#2|) 203 (-1820 (|has| |#2| (-279 |#2| |#2|)) (|has| |#1| (-356))))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 153 (|has| |#1| (-356)))) (-3455 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) 213 (|has| |#1| (-356))) (($ $ (-747)) 82 (-1536 (-1820 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 80 (-1536 (-1820 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1142)) (-621 (-747))) 87 (-1536 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1142) (-747)) 86 (-1536 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-621 (-1142))) 85 (-1536 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1142)) 84 (-1536 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-4288 (($ $) 227 (|has| |#1| (-356)))) (-1404 ((|#2| $) 225 (|has| |#1| (-356)))) (-3068 (((-549) $) 62)) (-1697 (($ $) 130 (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) 129 (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) 120 (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) 128 (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-2844 (((-219) $) 243 (-1820 (|has| |#2| (-993)) (|has| |#1| (-356)))) (((-372) $) 242 (-1820 (|has| |#2| (-993)) (|has| |#1| (-356)))) (((-525) $) 241 (-1820 (|has| |#2| (-594 (-525))) (|has| |#1| (-356)))) (((-863 (-372)) $) 220 (-1820 (|has| |#2| (-594 (-863 (-372)))) (|has| |#1| (-356)))) (((-863 (-549)) $) 219 (-1820 (|has| |#2| (-594 (-863 (-549)))) (|has| |#1| (-356))))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 233 (-1820 (-1820 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#1| (-356))))) (-1814 (($ $) 70)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 268) (($ (-1142)) 238 (-1820 (|has| |#2| (-1009 (-1142))) (|has| |#1| (-356)))) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541)))) (-2944 ((|#1| $ (-549)) 57)) (-3407 (((-3 $ "failed") $) 46 (-1536 (-1820 (-1536 (|has| |#2| (-143)) (-1820 (|has| $ (-143)) (|has| |#2| (-880)))) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-1723 (((-747)) 28)) (-2597 ((|#1| $) 100)) (-2926 ((|#2| $) 231 (-1820 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-1732 (($ $) 139 (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) 127 (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) 51 (|has| |#1| (-541)))) (-1708 (($ $) 138 (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) 126 (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) 137 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-549)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) 136 (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) 124 (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) 135 (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) 134 (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) 122 (|has| |#1| (-38 (-400 (-549)))))) (-3603 (($ $) 247 (-1820 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) 211 (|has| |#1| (-356))) (($ $ (-747)) 83 (-1536 (-1820 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 81 (-1536 (-1820 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1142)) (-621 (-747))) 91 (-1536 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1142) (-747)) 90 (-1536 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-621 (-1142))) 89 (-1536 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1142)) 88 (-1536 (-1820 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-2448 (((-112) $ $) 251 (-1820 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2424 (((-112) $ $) 252 (-1820 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 250 (-1820 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2411 (((-112) $ $) 253 (-1820 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2512 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356))) (($ |#2| |#2|) 223 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 113 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-356))) (($ |#2| $) 201 (|has| |#1| (-356))) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
-(((-1187 |#1| |#2|) (-138) (-1018) (-1216 |t#1|)) (T -1187))
-((-3068 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1216 *3)) (-5 *2 (-549)))) (-3845 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-1187 *3 *2)) (-4 *2 (-1216 *3)))) (-2354 (*1 *1 *2 *3) (-12 (-5 *2 (-549)) (-4 *4 (-1018)) (-4 *1 (-1187 *4 *3)) (-4 *3 (-1216 *4)))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1216 *3)))) (-3817 (*1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1216 *2)))) (-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1216 *3)))) (-2339 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1216 *3)))) (-1905 (*1 *2 *1) (|partial| -12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1216 *3)))))
-(-13 (-1185 |t#1|) (-1009 |t#2|) (-10 -8 (-15 -2354 ($ (-549) |t#2|)) (-15 -3068 ((-549) $)) (-15 -3292 (|t#2| $)) (-15 -3817 ($ $)) (-15 -3817 ($ (-549) $)) (-15 -3845 ($ |t#2|)) (-15 -2339 (|t#2| $)) (-15 -1905 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-356)) (-6 (-963 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-549)) . T) ((-25) . T) ((-38 #1=(-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-356)) ((-38 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-549)))) ((-94) |has| |#1| (-38 (-400 (-549)))) ((-101) . T) ((-111 #1# #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-356)) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) -1536 (-12 (|has| |#1| (-356)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -1536 (-12 (|has| |#1| (-356)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-594 (-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-993))) ((-594 (-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-993))) ((-594 (-525)) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-525)))) ((-594 (-863 (-372))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-863 (-372))))) ((-594 (-863 (-549))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-863 (-549))))) ((-225 |#2|) |has| |#1| (-356)) ((-227) -1536 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-549)))) ((-279 |#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) ((-279 $ $) |has| (-549) (-1078)) ((-283) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-356) |has| |#1| (-356)) ((-331 |#2|) |has| |#1| (-356)) ((-370 |#2|) |has| |#1| (-356)) ((-393 |#2|) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-549)))) ((-505 (-1142) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1142) |#2|))) ((-505 |#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-541) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-624 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-624 |#1|) . T) ((-624 |#2|) |has| |#1| (-356)) ((-624 $) . T) ((-617 (-549)) -12 (|has| |#1| (-356)) (|has| |#2| (-617 (-549)))) ((-617 |#2|) |has| |#1| (-356)) ((-694 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 |#2|) |has| |#1| (-356)) ((-694 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-703) . T) ((-767) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-768) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-770) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-771) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-796) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-821) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-823) -1536 (-12 (|has| |#1| (-356)) (|has| |#2| (-823))) (-12 (|has| |#1| (-356)) (|has| |#2| (-796)))) ((-871 (-1142)) -1536 (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))) ((-857 (-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-372)))) ((-857 (-549)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-549)))) ((-855 |#2|) |has| |#1| (-356)) ((-880) -12 (|has| |#1| (-356)) (|has| |#2| (-880))) ((-944 |#1| #0# (-1048)) . T) ((-891) |has| |#1| (-356)) ((-963 |#2|) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-549)))) ((-993) -12 (|has| |#1| (-356)) (|has| |#2| (-993))) ((-1009 (-400 (-549))) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-549)))) ((-1009 (-549)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-549)))) ((-1009 (-1142)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1142)))) ((-1009 |#2|) . T) ((-1024 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-1024 |#1|) . T) ((-1024 |#2|) |has| |#1| (-356)) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1117) -12 (|has| |#1| (-356)) (|has| |#2| (-1117))) ((-1164) |has| |#1| (-38 (-400 (-549)))) ((-1167) |has| |#1| (-38 (-400 (-549)))) ((-1179) |has| |#1| (-356)) ((-1183) |has| |#1| (-356)) ((-1185 |#1|) . T) ((-1203 |#1| #0#) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 70)) (-2364 ((|#2| $) NIL (-12 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-2271 (((-621 (-1048)) $) NIL)) (-3010 (((-1142) $) 88)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-2305 (($ $ (-549)) 97) (($ $ (-549) (-549)) 99)) (-1480 (((-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 47)) (-3292 ((|#2| $) 11)) (-1905 (((-3 |#2| "failed") $) 30)) (-2339 ((|#2| $) 31)) (-1663 (($ $) 192 (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) 168 (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-1912 (($ $) NIL (|has| |#1| (-356)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (-12 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1639 (($ $) 188 (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) 164 (|has| |#1| (-38 (-400 (-549)))))) (-3902 (((-549) $) NIL (-12 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-2825 (($ (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 57)) (-1685 (($ $) 196 (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) 172 (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#2| "failed") $) 144) (((-3 (-549) "failed") $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-3 (-1142) "failed") $) NIL (-12 (|has| |#2| (-1009 (-1142))) (|has| |#1| (-356))))) (-2658 ((|#2| $) 143) (((-549) $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-400 (-549)) $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-1142) $) NIL (-12 (|has| |#2| (-1009 (-1142))) (|has| |#1| (-356))))) (-3817 (($ $) 61) (($ (-549) $) 24)) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2069 (($ $) NIL)) (-1698 (((-665 |#2|) (-665 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#1| (-356)))) (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#1| (-356))))) (-3976 (((-3 $ "failed") $) 77)) (-2390 (((-400 (-923 |#1|)) $ (-549)) 112 (|has| |#1| (-541))) (((-400 (-923 |#1|)) $ (-549) (-549)) 114 (|has| |#1| (-541)))) (-3238 (($) NIL (-12 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-2471 (((-112) $) NIL (|has| |#1| (-356)))) (-3079 (((-112) $) NIL (-12 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-3155 (((-112) $) 64)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| |#2| (-857 (-372))) (|has| |#1| (-356)))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| |#2| (-857 (-549))) (|has| |#1| (-356))))) (-2078 (((-549) $) 93) (((-549) $ (-549)) 95)) (-3987 (((-112) $) NIL)) (-2053 (($ $) NIL (|has| |#1| (-356)))) (-1393 ((|#2| $) 151 (|has| |#1| (-356)))) (-3930 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3982 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1117)) (|has| |#1| (-356))))) (-2847 (((-112) $) NIL (-12 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-2769 (($ $ (-892)) 136)) (-4299 (($ (-1 |#1| (-549)) $) 132)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-549)) 19) (($ $ (-1048) (-549)) NIL) (($ $ (-621 (-1048)) (-621 (-549))) NIL)) (-2862 (($ $ $) NIL (-12 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-3574 (($ $ $) NIL (-12 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2796 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-356)))) (-3631 (($ $) 162 (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2354 (($ (-549) |#2|) 10)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 145 (|has| |#1| (-356)))) (-1531 (($ $) 214 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) 219 (-1536 (-12 (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1164)))))) (-3060 (($) NIL (-12 (|has| |#2| (-1117)) (|has| |#1| (-356))) CONST)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-356)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1260 (($ $) NIL (-12 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-4060 ((|#2| $) NIL (-12 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-2120 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2975 (($ $ (-549)) 126)) (-2038 (((-3 $ "failed") $ $) 116 (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2718 (($ $) 160 (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1142) |#2|) NIL (-12 (|has| |#2| (-505 (-1142) |#2|)) (|has| |#1| (-356)))) (($ $ (-621 (-1142)) (-621 |#2|)) NIL (-12 (|has| |#2| (-505 (-1142) |#2|)) (|has| |#1| (-356)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356))))) (-4091 (((-747) $) NIL (|has| |#1| (-356)))) (-3340 ((|#1| $ (-549)) 91) (($ $ $) 79 (|has| (-549) (-1078))) (($ $ |#2|) NIL (-12 (|has| |#2| (-279 |#2| |#2|)) (|has| |#1| (-356))))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-3455 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-1536 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 137 (-1536 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-1536 (-12 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-1142) (-747)) NIL (-1536 (-12 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-621 (-1142))) NIL (-1536 (-12 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-1142)) 140 (-1536 (-12 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))))) (-4288 (($ $) NIL (|has| |#1| (-356)))) (-1404 ((|#2| $) 152 (|has| |#1| (-356)))) (-3068 (((-549) $) 12)) (-1697 (($ $) 198 (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) 174 (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) 194 (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) 170 (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) 190 (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) 166 (|has| |#1| (-38 (-400 (-549)))))) (-2844 (((-219) $) NIL (-12 (|has| |#2| (-993)) (|has| |#1| (-356)))) (((-372) $) NIL (-12 (|has| |#2| (-993)) (|has| |#1| (-356)))) (((-525) $) NIL (-12 (|has| |#2| (-594 (-525))) (|has| |#1| (-356)))) (((-863 (-372)) $) NIL (-12 (|has| |#2| (-594 (-863 (-372)))) (|has| |#1| (-356)))) (((-863 (-549)) $) NIL (-12 (|has| |#2| (-594 (-863 (-549)))) (|has| |#1| (-356))))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880)) (|has| |#1| (-356))))) (-1814 (($ $) 124)) (-3845 (((-834) $) 245) (($ (-549)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1142)) NIL (-12 (|has| |#2| (-1009 (-1142))) (|has| |#1| (-356)))) (($ (-400 (-549))) 155 (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541)))) (-2944 ((|#1| $ (-549)) 74)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880)) (|has| |#1| (-356))) (-12 (|has| |#2| (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-1723 (((-747)) 142)) (-2597 ((|#1| $) 90)) (-2926 ((|#2| $) NIL (-12 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-1732 (($ $) 204 (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) 180 (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1708 (($ $) 200 (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) 176 (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) 208 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 184 (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-549)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) 210 (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) 186 (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) 206 (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) 182 (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) 202 (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) 178 (|has| |#1| (-38 (-400 (-549)))))) (-3603 (($ $) NIL (-12 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-3275 (($) 13 T CONST)) (-3287 (($) 17 T CONST)) (-1700 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-1536 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) NIL (-1536 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-1536 (-12 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-1142) (-747)) NIL (-1536 (-12 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-621 (-1142))) NIL (-1536 (-12 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-1142)) NIL (-1536 (-12 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))))) (-2448 (((-112) $ $) NIL (-12 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2424 (((-112) $ $) NIL (-12 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2388 (((-112) $ $) 63)) (-2436 (((-112) $ $) NIL (-12 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2411 (((-112) $ $) NIL (-12 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 149 (|has| |#1| (-356))) (($ |#2| |#2|) 150 (|has| |#1| (-356)))) (-2499 (($ $) 213) (($ $ $) 68)) (-2485 (($ $ $) 66)) (** (($ $ (-892)) NIL) (($ $ (-747)) 73) (($ $ (-549)) 146 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 158 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-356))) (($ |#2| $) 147 (|has| |#1| (-356))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-1188 |#1| |#2|) (-1187 |#1| |#2|) (-1018) (-1216 |#1|)) (T -1188))
-NIL
-(-1187 |#1| |#2|)
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2364 (((-1217 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-2271 (((-621 (-1048)) $) NIL)) (-3010 (((-1142) $) 10)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-2408 (($ $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-2477 (((-112) $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-2305 (($ $ (-549)) NIL) (($ $ (-549) (-549)) NIL)) (-1480 (((-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) NIL)) (-3292 (((-1217 |#1| |#2| |#3|) $) NIL)) (-1905 (((-3 (-1217 |#1| |#2| |#3|) "failed") $) NIL)) (-2339 (((-1217 |#1| |#2| |#3|) $) NIL)) (-1663 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-1912 (($ $) NIL (|has| |#1| (-356)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1639 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3902 (((-549) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2825 (($ (-1122 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) NIL)) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-1217 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1142) "failed") $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356)))) (((-3 (-549) "failed") $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356))))) (-2658 (((-1217 |#1| |#2| |#3|) $) NIL) (((-1142) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (((-400 (-549)) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356)))) (((-549) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356))))) (-3817 (($ $) NIL) (($ (-549) $) NIL)) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2069 (($ $) NIL)) (-1698 (((-665 (-1217 |#1| |#2| |#3|)) (-665 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1859 (-665 (-1217 |#1| |#2| |#3|))) (|:| |vec| (-1225 (-1217 |#1| |#2| |#3|)))) (-665 $) (-1225 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-617 (-549))) (|has| |#1| (-356)))) (((-665 (-549)) (-665 $)) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-617 (-549))) (|has| |#1| (-356))))) (-3976 (((-3 $ "failed") $) NIL)) (-2390 (((-400 (-923 |#1|)) $ (-549)) NIL (|has| |#1| (-541))) (((-400 (-923 |#1|)) $ (-549) (-549)) NIL (|has| |#1| (-541)))) (-3238 (($) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-2471 (((-112) $) NIL (|has| |#1| (-356)))) (-3079 (((-112) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-3155 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1289 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-857 (-549))) (|has| |#1| (-356)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-857 (-372))) (|has| |#1| (-356))))) (-2078 (((-549) $) NIL) (((-549) $ (-549)) NIL)) (-3987 (((-112) $) NIL)) (-2053 (($ $) NIL (|has| |#1| (-356)))) (-1393 (((-1217 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-3930 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3982 (((-3 $ "failed") $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-1117)) (|has| |#1| (-356))))) (-2847 (((-112) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2769 (($ $ (-892)) NIL)) (-4299 (($ (-1 |#1| (-549)) $) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-549)) 17) (($ $ (-1048) (-549)) NIL) (($ $ (-621 (-1048)) (-621 (-549))) NIL)) (-2862 (($ $ $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3574 (($ $ $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1217 |#1| |#2| |#3|) (-1217 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-3631 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2354 (($ (-549) (-1217 |#1| |#2| |#3|)) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL (|has| |#1| (-356)))) (-1531 (($ $) 25 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) NIL (-1536 (-12 (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1164))))) (($ $ (-1221 |#2|)) 26 (|has| |#1| (-38 (-400 (-549)))))) (-3060 (($) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-1117)) (|has| |#1| (-356))) CONST)) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-356)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1260 (($ $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-4060 (((-1217 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-2120 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2975 (($ $ (-549)) NIL)) (-2038 (((-3 $ "failed") $ $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2718 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1142) (-1217 |#1| |#2| |#3|)) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-505 (-1142) (-1217 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-621 (-1142)) (-621 (-1217 |#1| |#2| |#3|))) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-505 (-1142) (-1217 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-621 (-287 (-1217 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-302 (-1217 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-287 (-1217 |#1| |#2| |#3|))) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-302 (-1217 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1217 |#1| |#2| |#3|) (-1217 |#1| |#2| |#3|)) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-302 (-1217 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-621 (-1217 |#1| |#2| |#3|)) (-621 (-1217 |#1| |#2| |#3|))) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-302 (-1217 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-4091 (((-747) $) NIL (|has| |#1| (-356)))) (-3340 ((|#1| $ (-549)) NIL) (($ $ $) NIL (|has| (-549) (-1078))) (($ $ (-1217 |#1| |#2| |#3|)) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-279 (-1217 |#1| |#2| |#3|) (-1217 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-3455 (($ $ (-1 (-1217 |#1| |#2| |#3|) (-1217 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1217 |#1| |#2| |#3|) (-1217 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1221 |#2|)) 24) (($ $ (-747)) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 23 (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-1142) (-747)) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-621 (-1142))) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-1142)) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))))) (-4288 (($ $) NIL (|has| |#1| (-356)))) (-1404 (((-1217 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-3068 (((-549) $) NIL)) (-1697 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2844 (((-525) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-594 (-525))) (|has| |#1| (-356)))) (((-372) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-993)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-993)) (|has| |#1| (-356)))) (((-863 (-372)) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-594 (-863 (-372)))) (|has| |#1| (-356)))) (((-863 (-549)) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-594 (-863 (-549)))) (|has| |#1| (-356))))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-1217 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-1814 (($ $) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1217 |#1| |#2| |#3|)) NIL) (($ (-1221 |#2|)) 22) (($ (-1142)) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (($ $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541)))) (($ (-400 (-549))) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-549))))))) (-2944 ((|#1| $ (-549)) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-1217 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-1723 (((-747)) NIL)) (-2597 ((|#1| $) 11)) (-2926 (((-1217 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-1732 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-1708 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-549)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3603 (($ $) NIL (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-3275 (($) 19 T CONST)) (-3287 (($) 15 T CONST)) (-1700 (($ $ (-1 (-1217 |#1| |#2| |#3|) (-1217 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1217 |#1| |#2| |#3|) (-1217 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-1142) (-747)) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-621 (-1142))) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142)))))) (($ $ (-1142)) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1142))))))) (-2448 (((-112) $ $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2424 (((-112) $ $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2411 (((-112) $ $) NIL (-1536 (-12 (|has| (-1217 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1217 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356))) (($ (-1217 |#1| |#2| |#3|) (-1217 |#1| |#2| |#3|)) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 20)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1217 |#1| |#2| |#3|)) NIL (|has| |#1| (-356))) (($ (-1217 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-1189 |#1| |#2| |#3|) (-13 (-1187 |#1| (-1217 |#1| |#2| |#3|)) (-10 -8 (-15 -3845 ($ (-1221 |#2|))) (-15 -3455 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1189))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-1531 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
-(-13 (-1187 |#1| (-1217 |#1| |#2| |#3|)) (-10 -8 (-15 -3845 ($ (-1221 |#2|))) (-15 -3455 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|)))
-((-2231 (((-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| |#1|) (|:| -3533 (-549)))))) |#1| (-112)) 12)) (-1961 (((-411 |#1|) |#1|) 22)) (-2120 (((-411 |#1|) |#1|) 21)))
-(((-1190 |#1|) (-10 -7 (-15 -2120 ((-411 |#1|) |#1|)) (-15 -1961 ((-411 |#1|) |#1|)) (-15 -2231 ((-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| |#1|) (|:| -3533 (-549)))))) |#1| (-112)))) (-1201 (-549))) (T -1190))
-((-2231 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| *3) (|:| -3533 (-549))))))) (-5 *1 (-1190 *3)) (-4 *3 (-1201 (-549))))) (-1961 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1201 (-549))))) (-2120 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1201 (-549))))))
-(-10 -7 (-15 -2120 ((-411 |#1|) |#1|)) (-15 -1961 ((-411 |#1|) |#1|)) (-15 -2231 ((-2 (|:| |contp| (-549)) (|:| -2886 (-621 (-2 (|:| |irr| |#1|) (|:| -3533 (-549)))))) |#1| (-112))))
-((-2796 (((-1122 |#2|) (-1 |#2| |#1|) (-1192 |#1|)) 23 (|has| |#1| (-821))) (((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|)) 17)))
-(((-1191 |#1| |#2|) (-10 -7 (-15 -2796 ((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|))) (IF (|has| |#1| (-821)) (-15 -2796 ((-1122 |#2|) (-1 |#2| |#1|) (-1192 |#1|))) |%noBranch|)) (-1179) (-1179)) (T -1191))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5)) (-4 *5 (-821)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-1122 *6)) (-5 *1 (-1191 *5 *6)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-1192 *6)) (-5 *1 (-1191 *5 *6)))))
-(-10 -7 (-15 -2796 ((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|))) (IF (|has| |#1| (-821)) (-15 -2796 ((-1122 |#2|) (-1 |#2| |#1|) (-1192 |#1|))) |%noBranch|))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3129 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2796 (((-1122 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-821)))) (-3046 ((|#1| $) 14)) (-1264 ((|#1| $) 10)) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-1275 (((-549) $) 18)) (-4109 ((|#1| $) 17)) (-1288 ((|#1| $) 11)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3676 (((-112) $) 16)) (-1448 (((-1122 |#1|) $) 38 (|has| |#1| (-821))) (((-1122 |#1|) (-621 $)) 37 (|has| |#1| (-821)))) (-2844 (($ |#1|) 25)) (-3845 (($ (-1060 |#1|)) 24) (((-834) $) 34 (|has| |#1| (-1066)))) (-1856 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2122 (($ $ (-549)) 13)) (-2388 (((-112) $ $) 27 (|has| |#1| (-1066)))))
-(((-1192 |#1|) (-13 (-1059 |#1|) (-10 -8 (-15 -1856 ($ |#1|)) (-15 -3129 ($ |#1|)) (-15 -3845 ($ (-1060 |#1|))) (-15 -3676 ((-112) $)) (IF (|has| |#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1061 |#1| (-1122 |#1|))) |%noBranch|))) (-1179)) (T -1192))
-((-1856 (*1 *1 *2) (-12 (-5 *1 (-1192 *2)) (-4 *2 (-1179)))) (-3129 (*1 *1 *2) (-12 (-5 *1 (-1192 *2)) (-4 *2 (-1179)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-1179)) (-5 *1 (-1192 *3)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1192 *3)) (-4 *3 (-1179)))))
-(-13 (-1059 |#1|) (-10 -8 (-15 -1856 ($ |#1|)) (-15 -3129 ($ |#1|)) (-15 -3845 ($ (-1060 |#1|))) (-15 -3676 ((-112) $)) (IF (|has| |#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1061 |#1| (-1122 |#1|))) |%noBranch|)))
-((-2796 (((-1198 |#3| |#4|) (-1 |#4| |#2|) (-1198 |#1| |#2|)) 15)))
-(((-1193 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2796 ((-1198 |#3| |#4|) (-1 |#4| |#2|) (-1198 |#1| |#2|)))) (-1142) (-1018) (-1142) (-1018)) (T -1193))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1198 *5 *6)) (-14 *5 (-1142)) (-4 *6 (-1018)) (-4 *8 (-1018)) (-5 *2 (-1198 *7 *8)) (-5 *1 (-1193 *5 *6 *7 *8)) (-14 *7 (-1142)))))
-(-10 -7 (-15 -2796 ((-1198 |#3| |#4|) (-1 |#4| |#2|) (-1198 |#1| |#2|))))
-((-2840 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2632 ((|#1| |#3|) 13)) (-2715 ((|#3| |#3|) 19)))
-(((-1194 |#1| |#2| |#3|) (-10 -7 (-15 -2632 (|#1| |#3|)) (-15 -2715 (|#3| |#3|)) (-15 -2840 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-541) (-963 |#1|) (-1201 |#2|)) (T -1194))
-((-2840 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-963 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1194 *4 *5 *3)) (-4 *3 (-1201 *5)))) (-2715 (*1 *2 *2) (-12 (-4 *3 (-541)) (-4 *4 (-963 *3)) (-5 *1 (-1194 *3 *4 *2)) (-4 *2 (-1201 *4)))) (-2632 (*1 *2 *3) (-12 (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-1194 *2 *4 *3)) (-4 *3 (-1201 *4)))))
-(-10 -7 (-15 -2632 (|#1| |#3|)) (-15 -2715 (|#3| |#3|)) (-15 -2840 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3872 (((-3 |#2| "failed") |#2| (-747) |#1|) 29)) (-2586 (((-3 |#2| "failed") |#2| (-747)) 30)) (-2637 (((-3 (-2 (|:| -3837 |#2|) (|:| -3847 |#2|)) "failed") |#2|) 43)) (-2431 (((-621 |#2|) |#2|) 45)) (-2439 (((-3 |#2| "failed") |#2| |#2|) 40)))
-(((-1195 |#1| |#2|) (-10 -7 (-15 -2586 ((-3 |#2| "failed") |#2| (-747))) (-15 -3872 ((-3 |#2| "failed") |#2| (-747) |#1|)) (-15 -2439 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2637 ((-3 (-2 (|:| -3837 |#2|) (|:| -3847 |#2|)) "failed") |#2|)) (-15 -2431 ((-621 |#2|) |#2|))) (-13 (-541) (-145)) (-1201 |#1|)) (T -1195))
-((-2431 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-145))) (-5 *2 (-621 *3)) (-5 *1 (-1195 *4 *3)) (-4 *3 (-1201 *4)))) (-2637 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-541) (-145))) (-5 *2 (-2 (|:| -3837 *3) (|:| -3847 *3))) (-5 *1 (-1195 *4 *3)) (-4 *3 (-1201 *4)))) (-2439 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-1195 *3 *2)) (-4 *2 (-1201 *3)))) (-3872 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-541) (-145))) (-5 *1 (-1195 *4 *2)) (-4 *2 (-1201 *4)))) (-2586 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-541) (-145))) (-5 *1 (-1195 *4 *2)) (-4 *2 (-1201 *4)))))
-(-10 -7 (-15 -2586 ((-3 |#2| "failed") |#2| (-747))) (-15 -3872 ((-3 |#2| "failed") |#2| (-747) |#1|)) (-15 -2439 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2637 ((-3 (-2 (|:| -3837 |#2|) (|:| -3847 |#2|)) "failed") |#2|)) (-15 -2431 ((-621 |#2|) |#2|)))
-((-2511 (((-3 (-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) "failed") |#2| |#2|) 32)))
-(((-1196 |#1| |#2|) (-10 -7 (-15 -2511 ((-3 (-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) "failed") |#2| |#2|))) (-541) (-1201 |#1|)) (T -1196))
-((-2511 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-541)) (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-1196 *4 *3)) (-4 *3 (-1201 *4)))))
-(-10 -7 (-15 -2511 ((-3 (-2 (|:| -2112 |#2|) (|:| -3249 |#2|)) "failed") |#2| |#2|)))
-((-3144 ((|#2| |#2| |#2|) 19)) (-2107 ((|#2| |#2| |#2|) 30)) (-4119 ((|#2| |#2| |#2| (-747) (-747)) 36)))
-(((-1197 |#1| |#2|) (-10 -7 (-15 -3144 (|#2| |#2| |#2|)) (-15 -2107 (|#2| |#2| |#2|)) (-15 -4119 (|#2| |#2| |#2| (-747) (-747)))) (-1018) (-1201 |#1|)) (T -1197))
-((-4119 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-1197 *4 *2)) (-4 *2 (-1201 *4)))) (-2107 (*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-1197 *3 *2)) (-4 *2 (-1201 *3)))) (-3144 (*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-1197 *3 *2)) (-4 *2 (-1201 *3)))))
-(-10 -7 (-15 -3144 (|#2| |#2| |#2|)) (-15 -2107 (|#2| |#2| |#2|)) (-15 -4119 (|#2| |#2| |#2| (-747) (-747))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-4186 (((-1225 |#2|) $ (-747)) NIL)) (-2271 (((-621 (-1048)) $) NIL)) (-1916 (($ (-1138 |#2|)) NIL)) (-2082 (((-1138 $) $ (-1048)) NIL) (((-1138 |#2|) $) NIL)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-541)))) (-2408 (($ $) NIL (|has| |#2| (-541)))) (-2477 (((-112) $) NIL (|has| |#2| (-541)))) (-1689 (((-747) $) NIL) (((-747) $ (-621 (-1048))) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3767 (($ $ $) NIL (|has| |#2| (-541)))) (-2461 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-1912 (($ $) NIL (|has| |#2| (-444)))) (-3513 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-2647 (((-112) $ $) NIL (|has| |#2| (-356)))) (-3831 (($ $ (-747)) NIL)) (-2912 (($ $ (-747)) NIL)) (-2806 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-444)))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-1048) "failed") $) NIL)) (-2658 ((|#2| $) NIL) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-1048) $) NIL)) (-2252 (($ $ $ (-1048)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-2094 (($ $ $) NIL (|has| |#2| (-356)))) (-2069 (($ $) NIL)) (-1698 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#2|)) (|:| |vec| (-1225 |#2|))) (-665 $) (-1225 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-2066 (($ $ $) NIL (|has| |#2| (-356)))) (-3856 (($ $ $) NIL)) (-3593 (($ $ $) NIL (|has| |#2| (-541)))) (-3285 (((-2 (|:| -1569 |#2|) (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#2| (-541)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#2| (-356)))) (-4212 (($ $) NIL (|has| |#2| (-444))) (($ $ (-1048)) NIL (|has| |#2| (-444)))) (-2057 (((-621 $) $) NIL)) (-2471 (((-112) $) NIL (|has| |#2| (-880)))) (-3744 (($ $ |#2| (-747) $) NIL)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1048) (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1048) (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-2078 (((-747) $ $) NIL (|has| |#2| (-541)))) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-3982 (((-3 $ "failed") $) NIL (|has| |#2| (-1117)))) (-2258 (($ (-1138 |#2|) (-1048)) NIL) (($ (-1138 $) (-1048)) NIL)) (-2769 (($ $ (-747)) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#2| (-356)))) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-2244 (($ |#2| (-747)) 17) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ (-1048)) NIL) (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL)) (-2856 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2862 (($ $ $) NIL (|has| |#2| (-823)))) (-3574 (($ $ $) NIL (|has| |#2| (-823)))) (-4058 (($ (-1 (-747) (-747)) $) NIL)) (-2796 (($ (-1 |#2| |#2|) $) NIL)) (-2605 (((-1138 |#2|) $) NIL)) (-1790 (((-3 (-1048) "failed") $) NIL)) (-2027 (($ $) NIL)) (-2042 ((|#2| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2677 (((-1124) $) NIL)) (-4175 (((-2 (|:| -2112 $) (|:| -3249 $)) $ (-747)) NIL)) (-4201 (((-3 (-621 $) "failed") $) NIL)) (-1462 (((-3 (-621 $) "failed") $) NIL)) (-4219 (((-3 (-2 (|:| |var| (-1048)) (|:| -3577 (-747))) "failed") $) NIL)) (-1531 (($ $) NIL (|has| |#2| (-38 (-400 (-549)))))) (-3060 (($) NIL (|has| |#2| (-1117)) CONST)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) NIL)) (-2012 ((|#2| $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#2| (-444)))) (-3726 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3314 (($ $ (-747) |#2| $) NIL)) (-1873 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) NIL (|has| |#2| (-880)))) (-2120 (((-411 $) $) NIL (|has| |#2| (-880)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#2| (-356)))) (-2038 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#2| (-356)))) (-2685 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1048) |#2|) NIL) (($ $ (-621 (-1048)) (-621 |#2|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-621 (-1048)) (-621 $)) NIL)) (-4091 (((-747) $) NIL (|has| |#2| (-356)))) (-3340 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#2| (-541))) ((|#2| (-400 $) |#2|) NIL (|has| |#2| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#2| (-541)))) (-2646 (((-3 $ "failed") $ (-747)) NIL)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#2| (-356)))) (-3086 (($ $ (-1048)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-3455 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3068 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2844 (((-863 (-372)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-1048) (-594 (-525))) (|has| |#2| (-594 (-525)))))) (-1931 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-1048)) NIL (|has| |#2| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880))))) (-3791 (((-3 $ "failed") $ $) NIL (|has| |#2| (-541))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#2| (-541)))) (-3845 (((-834) $) 13) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-1048)) NIL) (($ (-1221 |#1|)) 19) (($ (-400 (-549))) NIL (-1536 (|has| |#2| (-38 (-400 (-549)))) (|has| |#2| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#2| (-541)))) (-3330 (((-621 |#2|) $) NIL)) (-2944 ((|#2| $ (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-3407 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#2| (-143))))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-4053 (((-112) $ $) NIL (|has| |#2| (-541)))) (-3275 (($) NIL T CONST)) (-3287 (($) 14 T CONST)) (-1700 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2388 (((-112) $ $) NIL)) (-2436 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2512 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#2| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#2| (-38 (-400 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1198 |#1| |#2|) (-13 (-1201 |#2|) (-10 -8 (-15 -3845 ($ (-1221 |#1|))) (-15 -3314 ($ $ (-747) |#2| $)))) (-1142) (-1018)) (T -1198))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1221 *3)) (-14 *3 (-1142)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-1018)))) (-3314 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1198 *4 *3)) (-14 *4 (-1142)) (-4 *3 (-1018)))))
-(-13 (-1201 |#2|) (-10 -8 (-15 -3845 ($ (-1221 |#1|))) (-15 -3314 ($ $ (-747) |#2| $))))
-((-2796 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2796 (|#4| (-1 |#3| |#1|) |#2|))) (-1018) (-1201 |#1|) (-1018) (-1201 |#3|)) (T -1199))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1201 *6)) (-5 *1 (-1199 *5 *4 *6 *2)) (-4 *4 (-1201 *5)))))
-(-10 -7 (-15 -2796 (|#4| (-1 |#3| |#1|) |#2|)))
-((-4186 (((-1225 |#2|) $ (-747)) 114)) (-2271 (((-621 (-1048)) $) 15)) (-1916 (($ (-1138 |#2|)) 67)) (-1689 (((-747) $) NIL) (((-747) $ (-621 (-1048))) 18)) (-2461 (((-411 (-1138 $)) (-1138 $)) 185)) (-1912 (($ $) 175)) (-3513 (((-411 $) $) 173)) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 82)) (-3831 (($ $ (-747)) 71)) (-2912 (($ $ (-747)) 73)) (-2806 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2713 (((-3 |#2| "failed") $) 117) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 (-549) "failed") $) NIL) (((-3 (-1048) "failed") $) NIL)) (-2658 ((|#2| $) 115) (((-400 (-549)) $) NIL) (((-549) $) NIL) (((-1048) $) NIL)) (-3593 (($ $ $) 151)) (-3285 (((-2 (|:| -1569 |#2|) (|:| -2112 $) (|:| -3249 $)) $ $) 153)) (-2078 (((-747) $ $) 170)) (-3982 (((-3 $ "failed") $) 123)) (-2244 (($ |#2| (-747)) NIL) (($ $ (-1048) (-747)) 47) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-2856 (((-747) $) NIL) (((-747) $ (-1048)) 42) (((-621 (-747)) $ (-621 (-1048))) 43)) (-2605 (((-1138 |#2|) $) 59)) (-1790 (((-3 (-1048) "failed") $) 40)) (-4175 (((-2 (|:| -2112 $) (|:| -3249 $)) $ (-747)) 70)) (-1531 (($ $) 197)) (-3060 (($) 119)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 182)) (-1873 (((-411 (-1138 $)) (-1138 $)) 88)) (-4120 (((-411 (-1138 $)) (-1138 $)) 86)) (-2120 (((-411 $) $) 107)) (-2685 (($ $ (-621 (-287 $))) 39) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1048) |#2|) 31) (($ $ (-621 (-1048)) (-621 |#2|)) 28) (($ $ (-1048) $) 25) (($ $ (-621 (-1048)) (-621 $)) 23)) (-4091 (((-747) $) 188)) (-3340 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) 147) ((|#2| (-400 $) |#2|) 187) (((-400 $) $ (-400 $)) 169)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 191)) (-3455 (($ $ (-1048)) 140) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) 138) (($ $ (-1142)) NIL) (($ $ (-621 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-621 (-1142)) (-621 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3068 (((-747) $) NIL) (((-747) $ (-1048)) 16) (((-621 (-747)) $ (-621 (-1048))) 20)) (-1931 ((|#2| $) NIL) (($ $ (-1048)) 125)) (-3791 (((-3 $ "failed") $ $) 161) (((-3 (-400 $) "failed") (-400 $) $) 157)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-1048)) 51) (($ (-400 (-549))) NIL) (($ $) NIL)))
-(((-1200 |#1| |#2|) (-10 -8 (-15 -3845 (|#1| |#1|)) (-15 -1443 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -3513 ((-411 |#1|) |#1|)) (-15 -1912 (|#1| |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3060 (|#1|)) (-15 -3982 ((-3 |#1| "failed") |#1|)) (-15 -3340 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -4091 ((-747) |#1|)) (-15 -1346 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -1531 (|#1| |#1|)) (-15 -3340 (|#2| (-400 |#1|) |#2|)) (-15 -2806 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3285 ((-2 (|:| -1569 |#2|) (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -3593 (|#1| |#1| |#1|)) (-15 -3791 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -3791 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2078 ((-747) |#1| |#1|)) (-15 -3340 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2912 (|#1| |#1| (-747))) (-15 -3831 (|#1| |#1| (-747))) (-15 -4175 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| (-747))) (-15 -1916 (|#1| (-1138 |#2|))) (-15 -2605 ((-1138 |#2|) |#1|)) (-15 -4186 ((-1225 |#2|) |#1| (-747))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3340 (|#1| |#1| |#1|)) (-15 -3340 (|#2| |#1| |#2|)) (-15 -2120 ((-411 |#1|) |#1|)) (-15 -2461 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -4120 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -1873 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -1512 ((-3 (-621 (-1138 |#1|)) "failed") (-621 (-1138 |#1|)) (-1138 |#1|))) (-15 -1931 (|#1| |#1| (-1048))) (-15 -2271 ((-621 (-1048)) |#1|)) (-15 -1689 ((-747) |#1| (-621 (-1048)))) (-15 -1689 ((-747) |#1|)) (-15 -2244 (|#1| |#1| (-621 (-1048)) (-621 (-747)))) (-15 -2244 (|#1| |#1| (-1048) (-747))) (-15 -2856 ((-621 (-747)) |#1| (-621 (-1048)))) (-15 -2856 ((-747) |#1| (-1048))) (-15 -1790 ((-3 (-1048) "failed") |#1|)) (-15 -3068 ((-621 (-747)) |#1| (-621 (-1048)))) (-15 -3068 ((-747) |#1| (-1048))) (-15 -2658 ((-1048) |#1|)) (-15 -2713 ((-3 (-1048) "failed") |#1|)) (-15 -3845 (|#1| (-1048))) (-15 -2685 (|#1| |#1| (-621 (-1048)) (-621 |#1|))) (-15 -2685 (|#1| |#1| (-1048) |#1|)) (-15 -2685 (|#1| |#1| (-621 (-1048)) (-621 |#2|))) (-15 -2685 (|#1| |#1| (-1048) |#2|)) (-15 -2685 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#1| |#1|)) (-15 -2685 (|#1| |#1| (-287 |#1|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3068 ((-747) |#1|)) (-15 -2244 (|#1| |#2| (-747))) (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2856 ((-747) |#1|)) (-15 -1931 (|#2| |#1|)) (-15 -3455 (|#1| |#1| (-621 (-1048)) (-621 (-747)))) (-15 -3455 (|#1| |#1| (-1048) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1048)))) (-15 -3455 (|#1| |#1| (-1048))) (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|))) (-1201 |#2|) (-1018)) (T -1200))
-NIL
-(-10 -8 (-15 -3845 (|#1| |#1|)) (-15 -1443 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -3513 ((-411 |#1|) |#1|)) (-15 -1912 (|#1| |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3060 (|#1|)) (-15 -3982 ((-3 |#1| "failed") |#1|)) (-15 -3340 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -4091 ((-747) |#1|)) (-15 -1346 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -1531 (|#1| |#1|)) (-15 -3340 (|#2| (-400 |#1|) |#2|)) (-15 -2806 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3285 ((-2 (|:| -1569 |#2|) (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| |#1|)) (-15 -3593 (|#1| |#1| |#1|)) (-15 -3791 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -3791 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2078 ((-747) |#1| |#1|)) (-15 -3340 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2912 (|#1| |#1| (-747))) (-15 -3831 (|#1| |#1| (-747))) (-15 -4175 ((-2 (|:| -2112 |#1|) (|:| -3249 |#1|)) |#1| (-747))) (-15 -1916 (|#1| (-1138 |#2|))) (-15 -2605 ((-1138 |#2|) |#1|)) (-15 -4186 ((-1225 |#2|) |#1| (-747))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3455 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)) (-621 (-747)))) (-15 -3455 (|#1| |#1| (-1142) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1142)))) (-15 -3455 (|#1| |#1| (-1142))) (-15 -3455 (|#1| |#1|)) (-15 -3455 (|#1| |#1| (-747))) (-15 -3340 (|#1| |#1| |#1|)) (-15 -3340 (|#2| |#1| |#2|)) (-15 -2120 ((-411 |#1|) |#1|)) (-15 -2461 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -4120 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -1873 ((-411 (-1138 |#1|)) (-1138 |#1|))) (-15 -1512 ((-3 (-621 (-1138 |#1|)) "failed") (-621 (-1138 |#1|)) (-1138 |#1|))) (-15 -1931 (|#1| |#1| (-1048))) (-15 -2271 ((-621 (-1048)) |#1|)) (-15 -1689 ((-747) |#1| (-621 (-1048)))) (-15 -1689 ((-747) |#1|)) (-15 -2244 (|#1| |#1| (-621 (-1048)) (-621 (-747)))) (-15 -2244 (|#1| |#1| (-1048) (-747))) (-15 -2856 ((-621 (-747)) |#1| (-621 (-1048)))) (-15 -2856 ((-747) |#1| (-1048))) (-15 -1790 ((-3 (-1048) "failed") |#1|)) (-15 -3068 ((-621 (-747)) |#1| (-621 (-1048)))) (-15 -3068 ((-747) |#1| (-1048))) (-15 -2658 ((-1048) |#1|)) (-15 -2713 ((-3 (-1048) "failed") |#1|)) (-15 -3845 (|#1| (-1048))) (-15 -2685 (|#1| |#1| (-621 (-1048)) (-621 |#1|))) (-15 -2685 (|#1| |#1| (-1048) |#1|)) (-15 -2685 (|#1| |#1| (-621 (-1048)) (-621 |#2|))) (-15 -2685 (|#1| |#1| (-1048) |#2|)) (-15 -2685 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2685 (|#1| |#1| |#1| |#1|)) (-15 -2685 (|#1| |#1| (-287 |#1|))) (-15 -2685 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3068 ((-747) |#1|)) (-15 -2244 (|#1| |#2| (-747))) (-15 -2658 ((-549) |#1|)) (-15 -2713 ((-3 (-549) "failed") |#1|)) (-15 -2658 ((-400 (-549)) |#1|)) (-15 -2713 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3845 (|#1| |#2|)) (-15 -2713 ((-3 |#2| "failed") |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -2856 ((-747) |#1|)) (-15 -1931 (|#2| |#1|)) (-15 -3455 (|#1| |#1| (-621 (-1048)) (-621 (-747)))) (-15 -3455 (|#1| |#1| (-1048) (-747))) (-15 -3455 (|#1| |#1| (-621 (-1048)))) (-15 -3455 (|#1| |#1| (-1048))) (-15 -3845 (|#1| (-549))) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-4186 (((-1225 |#1|) $ (-747)) 236)) (-2271 (((-621 (-1048)) $) 108)) (-1916 (($ (-1138 |#1|)) 234)) (-2082 (((-1138 $) $ (-1048)) 123) (((-1138 |#1|) $) 122)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 85 (|has| |#1| (-541)))) (-2408 (($ $) 86 (|has| |#1| (-541)))) (-2477 (((-112) $) 88 (|has| |#1| (-541)))) (-1689 (((-747) $) 110) (((-747) $ (-621 (-1048))) 109)) (-2384 (((-3 $ "failed") $ $) 19)) (-3767 (($ $ $) 221 (|has| |#1| (-541)))) (-2461 (((-411 (-1138 $)) (-1138 $)) 98 (|has| |#1| (-880)))) (-1912 (($ $) 96 (|has| |#1| (-444)))) (-3513 (((-411 $) $) 95 (|has| |#1| (-444)))) (-1512 (((-3 (-621 (-1138 $)) "failed") (-621 (-1138 $)) (-1138 $)) 101 (|has| |#1| (-880)))) (-2647 (((-112) $ $) 206 (|has| |#1| (-356)))) (-3831 (($ $ (-747)) 229)) (-2912 (($ $ (-747)) 228)) (-2806 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-444)))) (-1705 (($) 17 T CONST)) (-2713 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-549)) "failed") $) 160 (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) 158 (|has| |#1| (-1009 (-549)))) (((-3 (-1048) "failed") $) 134)) (-2658 ((|#1| $) 163) (((-400 (-549)) $) 159 (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) 157 (|has| |#1| (-1009 (-549)))) (((-1048) $) 133)) (-2252 (($ $ $ (-1048)) 106 (|has| |#1| (-170))) ((|#1| $ $) 224 (|has| |#1| (-170)))) (-2094 (($ $ $) 210 (|has| |#1| (-356)))) (-2069 (($ $) 152)) (-1698 (((-665 (-549)) (-665 $)) 132 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 (-549))) (|:| |vec| (-1225 (-549)))) (-665 $) (-1225 $)) 131 (|has| |#1| (-617 (-549)))) (((-2 (|:| -1859 (-665 |#1|)) (|:| |vec| (-1225 |#1|))) (-665 $) (-1225 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-3976 (((-3 $ "failed") $) 32)) (-2066 (($ $ $) 209 (|has| |#1| (-356)))) (-3856 (($ $ $) 227)) (-3593 (($ $ $) 218 (|has| |#1| (-541)))) (-3285 (((-2 (|:| -1569 |#1|) (|:| -2112 $) (|:| -3249 $)) $ $) 217 (|has| |#1| (-541)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 204 (|has| |#1| (-356)))) (-4212 (($ $) 174 (|has| |#1| (-444))) (($ $ (-1048)) 103 (|has| |#1| (-444)))) (-2057 (((-621 $) $) 107)) (-2471 (((-112) $) 94 (|has| |#1| (-880)))) (-3744 (($ $ |#1| (-747) $) 170)) (-1289 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 82 (-12 (|has| (-1048) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 81 (-12 (|has| (-1048) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2078 (((-747) $ $) 222 (|has| |#1| (-541)))) (-3987 (((-112) $) 30)) (-3454 (((-747) $) 167)) (-3982 (((-3 $ "failed") $) 202 (|has| |#1| (-1117)))) (-2258 (($ (-1138 |#1|) (-1048)) 115) (($ (-1138 $) (-1048)) 114)) (-2769 (($ $ (-747)) 233)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 213 (|has| |#1| (-356)))) (-1298 (((-621 $) $) 124)) (-2427 (((-112) $) 150)) (-2244 (($ |#1| (-747)) 151) (($ $ (-1048) (-747)) 117) (($ $ (-621 (-1048)) (-621 (-747))) 116)) (-4188 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $ (-1048)) 118) (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 231)) (-2856 (((-747) $) 168) (((-747) $ (-1048)) 120) (((-621 (-747)) $ (-621 (-1048))) 119)) (-2862 (($ $ $) 77 (|has| |#1| (-823)))) (-3574 (($ $ $) 76 (|has| |#1| (-823)))) (-4058 (($ (-1 (-747) (-747)) $) 169)) (-2796 (($ (-1 |#1| |#1|) $) 149)) (-2605 (((-1138 |#1|) $) 235)) (-1790 (((-3 (-1048) "failed") $) 121)) (-2027 (($ $) 147)) (-2042 ((|#1| $) 146)) (-3696 (($ (-621 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-2677 (((-1124) $) 9)) (-4175 (((-2 (|:| -2112 $) (|:| -3249 $)) $ (-747)) 230)) (-4201 (((-3 (-621 $) "failed") $) 112)) (-1462 (((-3 (-621 $) "failed") $) 113)) (-4219 (((-3 (-2 (|:| |var| (-1048)) (|:| -3577 (-747))) "failed") $) 111)) (-1531 (($ $) 214 (|has| |#1| (-38 (-400 (-549)))))) (-3060 (($) 201 (|has| |#1| (-1117)) CONST)) (-3988 (((-1086) $) 10)) (-2002 (((-112) $) 164)) (-2012 ((|#1| $) 165)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 93 (|has| |#1| (-444)))) (-3726 (($ (-621 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-1873 (((-411 (-1138 $)) (-1138 $)) 100 (|has| |#1| (-880)))) (-4120 (((-411 (-1138 $)) (-1138 $)) 99 (|has| |#1| (-880)))) (-2120 (((-411 $) $) 97 (|has| |#1| (-880)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 211 (|has| |#1| (-356)))) (-2038 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 205 (|has| |#1| (-356)))) (-2685 (($ $ (-621 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-621 $) (-621 $)) 140) (($ $ (-1048) |#1|) 139) (($ $ (-621 (-1048)) (-621 |#1|)) 138) (($ $ (-1048) $) 137) (($ $ (-621 (-1048)) (-621 $)) 136)) (-4091 (((-747) $) 207 (|has| |#1| (-356)))) (-3340 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-400 $) (-400 $) (-400 $)) 223 (|has| |#1| (-541))) ((|#1| (-400 $) |#1|) 215 (|has| |#1| (-356))) (((-400 $) $ (-400 $)) 203 (|has| |#1| (-541)))) (-2646 (((-3 $ "failed") $ (-747)) 232)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 208 (|has| |#1| (-356)))) (-3086 (($ $ (-1048)) 105 (|has| |#1| (-170))) ((|#1| $) 225 (|has| |#1| (-170)))) (-3455 (($ $ (-1048)) 40) (($ $ (-621 (-1048))) 39) (($ $ (-1048) (-747)) 38) (($ $ (-621 (-1048)) (-621 (-747))) 37) (($ $ (-747)) 251) (($ $) 249) (($ $ (-1142)) 248 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) 247 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 246 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) 245 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-3068 (((-747) $) 148) (((-747) $ (-1048)) 128) (((-621 (-747)) $ (-621 (-1048))) 127)) (-2844 (((-863 (-372)) $) 80 (-12 (|has| (-1048) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) 79 (-12 (|has| (-1048) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) 78 (-12 (|has| (-1048) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-1931 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ (-1048)) 104 (|has| |#1| (-444)))) (-3119 (((-3 (-1225 $) "failed") (-665 $)) 102 (-1820 (|has| $ (-143)) (|has| |#1| (-880))))) (-3791 (((-3 $ "failed") $ $) 220 (|has| |#1| (-541))) (((-3 (-400 $) "failed") (-400 $) $) 219 (|has| |#1| (-541)))) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 161) (($ (-1048)) 135) (($ (-400 (-549))) 70 (-1536 (|has| |#1| (-1009 (-400 (-549)))) (|has| |#1| (-38 (-400 (-549)))))) (($ $) 83 (|has| |#1| (-541)))) (-3330 (((-621 |#1|) $) 166)) (-2944 ((|#1| $ (-747)) 153) (($ $ (-1048) (-747)) 126) (($ $ (-621 (-1048)) (-621 (-747))) 125)) (-3407 (((-3 $ "failed") $) 71 (-1536 (-1820 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-1723 (((-747)) 28)) (-1544 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-4053 (((-112) $ $) 87 (|has| |#1| (-541)))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-1048)) 36) (($ $ (-621 (-1048))) 35) (($ $ (-1048) (-747)) 34) (($ $ (-621 (-1048)) (-621 (-747))) 33) (($ $ (-747)) 252) (($ $) 250) (($ $ (-1142)) 244 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142))) 243 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 242 (|has| |#1| (-871 (-1142)))) (($ $ (-621 (-1142)) (-621 (-747))) 241 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2448 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 73 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 6)) (-2436 (((-112) $ $) 75 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 72 (|has| |#1| (-823)))) (-2512 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 156 (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) 155 (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
-(((-1201 |#1|) (-138) (-1018)) (T -1201))
-((-4186 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-1201 *4)) (-4 *4 (-1018)) (-5 *2 (-1225 *4)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-1018)) (-5 *2 (-1138 *3)))) (-1916 (*1 *1 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1018)) (-4 *1 (-1201 *3)))) (-2769 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1201 *3)) (-4 *3 (-1018)))) (-2646 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-747)) (-4 *1 (-1201 *3)) (-4 *3 (-1018)))) (-4188 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-1201 *3)))) (-4175 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-1201 *4)))) (-3831 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1201 *3)) (-4 *3 (-1018)))) (-2912 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1201 *3)) (-4 *3 (-1018)))) (-3856 (*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)))) (-3455 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1201 *3)) (-4 *3 (-1018)))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))) (-2252 (*1 *2 *1 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))) (-3340 (*1 *2 *2 *2) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1201 *3)) (-4 *3 (-1018)) (-4 *3 (-541)))) (-2078 (*1 *2 *1 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-1018)) (-4 *3 (-541)) (-5 *2 (-747)))) (-3767 (*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))) (-3791 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))) (-3791 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1201 *3)) (-4 *3 (-1018)) (-4 *3 (-541)))) (-3593 (*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))) (-3285 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -1569 *3) (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-1201 *3)))) (-2806 (*1 *2 *1 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1201 *3)))) (-3340 (*1 *2 *3 *2) (-12 (-5 *3 (-400 *1)) (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-1531 (*1 *1 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549)))))))
-(-13 (-920 |t#1| (-747) (-1048)) (-279 |t#1| |t#1|) (-279 $ $) (-227) (-225 |t#1|) (-10 -8 (-15 -4186 ((-1225 |t#1|) $ (-747))) (-15 -2605 ((-1138 |t#1|) $)) (-15 -1916 ($ (-1138 |t#1|))) (-15 -2769 ($ $ (-747))) (-15 -2646 ((-3 $ "failed") $ (-747))) (-15 -4188 ((-2 (|:| -2112 $) (|:| -3249 $)) $ $)) (-15 -4175 ((-2 (|:| -2112 $) (|:| -3249 $)) $ (-747))) (-15 -3831 ($ $ (-747))) (-15 -2912 ($ $ (-747))) (-15 -3856 ($ $ $)) (-15 -3455 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -3086 (|t#1| $)) (-15 -2252 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-541)) (PROGN (-6 (-279 (-400 $) (-400 $))) (-15 -3340 ((-400 $) (-400 $) (-400 $))) (-15 -2078 ((-747) $ $)) (-15 -3767 ($ $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 (-400 $) "failed") (-400 $) $)) (-15 -3593 ($ $ $)) (-15 -3285 ((-2 (|:| -1569 |t#1|) (|:| -2112 $) (|:| -3249 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (-15 -2806 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-300)) (-6 -4332) (-15 -3340 (|t#1| (-400 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-549)))) (-15 -1531 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-747)) . T) ((-25) . T) ((-38 #1=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-594 (-525)) -12 (|has| (-1048) (-594 (-525))) (|has| |#1| (-594 (-525)))) ((-594 (-863 (-372))) -12 (|has| (-1048) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372))))) ((-594 (-863 (-549))) -12 (|has| (-1048) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549))))) ((-225 |#1|) . T) ((-227) . T) ((-279 (-400 $) (-400 $)) |has| |#1| (-541)) ((-279 |#1| |#1|) . T) ((-279 $ $) . T) ((-283) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 $) . T) ((-319 |#1| #0#) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1536 (|has| |#1| (-880)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-505 #2=(-1048) |#1|) . T) ((-505 #2# $) . T) ((-505 $ $) . T) ((-541) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-624 #1#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 #2#) . T) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-857 (-372)) -12 (|has| (-1048) (-857 (-372))) (|has| |#1| (-857 (-372)))) ((-857 (-549)) -12 (|has| (-1048) (-857 (-549))) (|has| |#1| (-857 (-549)))) ((-920 |#1| #0# #2#) . T) ((-880) |has| |#1| (-880)) ((-891) |has| |#1| (-356)) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 #2#) . T) ((-1009 |#1|) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1117) |has| |#1| (-1117)) ((-1183) |has| |#1| (-880)))
-((-2271 (((-621 (-1048)) $) 28)) (-2069 (($ $) 25)) (-2244 (($ |#2| |#3|) NIL) (($ $ (-1048) |#3|) 22) (($ $ (-621 (-1048)) (-621 |#3|)) 21)) (-2027 (($ $) 14)) (-2042 ((|#2| $) 12)) (-3068 ((|#3| $) 10)))
-(((-1202 |#1| |#2| |#3|) (-10 -8 (-15 -2271 ((-621 (-1048)) |#1|)) (-15 -2244 (|#1| |#1| (-621 (-1048)) (-621 |#3|))) (-15 -2244 (|#1| |#1| (-1048) |#3|)) (-15 -2069 (|#1| |#1|)) (-15 -2244 (|#1| |#2| |#3|)) (-15 -3068 (|#3| |#1|)) (-15 -2027 (|#1| |#1|)) (-15 -2042 (|#2| |#1|))) (-1203 |#2| |#3|) (-1018) (-768)) (T -1202))
-NIL
-(-10 -8 (-15 -2271 ((-621 (-1048)) |#1|)) (-15 -2244 (|#1| |#1| (-621 (-1048)) (-621 |#3|))) (-15 -2244 (|#1| |#1| (-1048) |#3|)) (-15 -2069 (|#1| |#1|)) (-15 -2244 (|#1| |#2| |#3|)) (-15 -3068 (|#3| |#1|)) (-15 -2027 (|#1| |#1|)) (-15 -2042 (|#2| |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2271 (((-621 (-1048)) $) 72)) (-3010 (((-1142) $) 101)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2408 (($ $) 50 (|has| |#1| (-541)))) (-2477 (((-112) $) 52 (|has| |#1| (-541)))) (-2305 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-1480 (((-1122 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2069 (($ $) 58)) (-3976 (((-3 $ "failed") $) 32)) (-3155 (((-112) $) 71)) (-2078 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-3987 (((-112) $) 30)) (-2769 (($ $ (-892)) 99)) (-2427 (((-112) $) 60)) (-2244 (($ |#1| |#2|) 59) (($ $ (-1048) |#2|) 74) (($ $ (-621 (-1048)) (-621 |#2|)) 73)) (-2796 (($ (-1 |#1| |#1|) $) 61)) (-2027 (($ $) 63)) (-2042 ((|#1| $) 64)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-2975 (($ $ |#2|) 93)) (-2038 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-2685 (((-1122 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3340 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1078)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-621 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3068 ((|#2| $) 62)) (-1814 (($ $) 70)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541))) (($ |#1|) 45 (|has| |#1| (-170)))) (-2944 ((|#1| $ |#2|) 57)) (-3407 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-1723 (((-747)) 28)) (-2597 ((|#1| $) 100)) (-4053 (((-112) $ $) 51 (|has| |#1| (-541)))) (-2660 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-621 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+((-4069 (*1 *2 *1) (-12 (-4 *1 (-1183)) (-5 *2 (-112)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1183)))) (-4117 (*1 *1 *1) (-4 *1 (-1183))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1183)))))
+(-13 (-444) (-10 -8 (-15 -4069 ((-112) $)) (-15 -4312 ((-398 $) $)) (-15 -4117 ($ $)) (-15 -4075 ((-398 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-835)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-542) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3447 (((-1214 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 10)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-2171 (($ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-2169 (((-112) $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-4113 (($ $ (-535)) NIL) (($ $ (-535) (-535)) NIL)) (-4116 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) NIL)) (-4074 (((-1214 |#1| |#2| |#3|) $) NIL)) (-4071 (((-3 (-1214 |#1| |#2| |#3|) "failed") $) NIL)) (-4072 (((-1214 |#1| |#2| |#3|) $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3969 (((-535) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-4161 (($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) NIL)) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-1214 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1142) #2#) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (((-3 (-400 (-535)) #2#) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356)))) (((-3 (-535) #2#) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356))))) (-3490 (((-1214 |#1| |#2| |#3|) $) NIL) (((-1142) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (((-400 (-535)) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356)))) (((-535) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356))))) (-4073 (($ $) NIL) (($ (-535) $) NIL)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-1214 |#1| |#2| |#3|)) (-665 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 (-1214 |#1| |#2| |#3|))) (|:| |vec| (-1224 (-1214 |#1| |#2| |#3|)))) (-665 $) (-1224 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-617 (-535))) (|has| |#1| (-356)))) (((-665 (-535)) (-665 $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-617 (-535))) (|has| |#1| (-356))))) (-3804 (((-3 $ "failed") $) NIL)) (-4070 (((-400 (-917 |#1|)) $ (-535)) NIL (|has| |#1| (-542))) (((-400 (-917 |#1|)) $ (-535) (-535)) NIL (|has| |#1| (-542)))) (-3315 (($) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3520 (((-112) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3117 (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-857 (-535))) (|has| |#1| (-356)))) (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-857 (-371))) (|has| |#1| (-356))))) (-4114 (((-535) $) NIL) (((-535) $ (-535)) NIL)) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL (|has| |#1| (-356)))) (-3319 (((-1214 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3786 (((-3 $ "failed") $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1117)) (|has| |#1| (-356))))) (-3521 (((-112) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-4119 (($ $ (-890)) NIL)) (-4158 (($ (-1 |#1| (-535)) $) NIL)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-535)) 17) (($ $ (-1048) (-535)) NIL) (($ $ (-618 (-1048)) (-618 (-535))) NIL)) (-3660 (($ $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3661 (($ $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4121 (($ (-535) (-1214 |#1| |#2| |#3|)) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-4155 (($ $) 25 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 26 (|has| |#1| (-38 (-400 (-535)))))) (-3787 (($) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1117)) (|has| |#1| (-356))) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3446 (($ $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3448 (((-1214 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-535)) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-535))))) (($ $ (-1142) (-1214 |#1| |#2| |#3|)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-505 (-1142) (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-618 (-1142)) (-618 (-1214 |#1| |#2| |#3|))) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-505 (-1142) (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-618 (-286 (-1214 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-302 (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-286 (-1214 |#1| |#2| |#3|))) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-302 (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-302 (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-618 (-1214 |#1| |#2| |#3|)) (-618 (-1214 |#1| |#2| |#3|))) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-302 (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-535)) NIL) (($ $ $) NIL (|has| (-535) (-1078))) (($ $ (-1214 |#1| |#2| |#3|)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-279 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-1 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1221 |#2|)) 24) (($ $ (-747)) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) 23 (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142) (-747)) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-618 (-1142))) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))) (-3316 (($ $) NIL (|has| |#1| (-356)))) (-3318 (((-1214 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-4290 (((-535) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4313 (((-524) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-594 (-524))) (|has| |#1| (-356)))) (((-371) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-991)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-991)) (|has| |#1| (-356)))) (((-861 (-371)) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-594 (-861 (-371)))) (|has| |#1| (-356)))) (((-861 (-535)) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-594 (-861 (-535)))) (|has| |#1| (-356))))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1214 |#1| |#2| |#3|)) NIL) (($ (-1221 |#2|)) 22) (($ (-1142)) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-1142))) (|has| |#1| (-356)))) (($ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (|has| |#1| (-542)))) (($ (-400 (-535))) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-1009 (-535))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-535))))))) (-4023 ((|#1| $ (-535)) NIL)) (-3023 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| $ (-143)) (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 11)) (-3449 (((-1214 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-881)) (|has| |#1| (-356))) (|has| |#1| (-542))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-535)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-535)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3725 (($ $) NIL (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2979 (($) 19 T CONST)) (-2985 (($) 15 T CONST)) (-2990 (($ $ (-1 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142) (-747)) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-618 (-1142))) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))) (-2885 (((-112) $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2886 (((-112) $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3006 (((-112) $ $) NIL (-3874 (-12 (|has| (-1214 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1214 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356))) (($ (-1214 |#1| |#2| |#3|) (-1214 |#1| |#2| |#3|)) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 20)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1214 |#1| |#2| |#3|)) NIL (|has| |#1| (-356))) (($ (-1214 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-1184 |#1| |#2| |#3|) (-13 (-1188 |#1| (-1214 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1184))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1188 |#1| (-1214 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|)))
+((-4301 (((-1184 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1184 |#1| |#3| |#5|)) 23)))
+(((-1185 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4301 ((-1184 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1184 |#1| |#3| |#5|)))) (-1018) (-1018) (-1142) (-1142) |#1| |#2|) (T -1185))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1184 *5 *7 *9)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-14 *7 (-1142)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1184 *6 *8 *10)) (-5 *1 (-1185 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1142)))))
+(-10 -7 (-15 -4301 ((-1184 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1184 |#1| |#3| |#5|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 (-1048)) $) 72)) (-4174 (((-1142) $) 101)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-4113 (($ $ (-535)) 96) (($ $ (-535) (-535)) 95)) (-4116 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) 103)) (-3829 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 116 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 160 (|has| |#1| (-356)))) (-4312 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3358 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3827 (($ $) 132 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) 171)) (-3831 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 118 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) 17 T CONST)) (-2883 (($ $ $) 155 (|has| |#1| (-356)))) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-4070 (((-400 (-917 |#1|)) $ (-535)) 169 (|has| |#1| (-542))) (((-400 (-917 |#1|)) $ (-535) (-535)) 168 (|has| |#1| (-542)))) (-2882 (($ $ $) 154 (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 149 (|has| |#1| (-356)))) (-4069 (((-112) $) 162 (|has| |#1| (-356)))) (-3213 (((-112) $) 71)) (-3973 (($) 143 (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-535) $) 98) (((-535) $ (-535)) 97)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 114 (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) 99)) (-4158 (($ (-1 |#1| (-535)) $) 170)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 158 (|has| |#1| (-356)))) (-4280 (((-112) $) 60)) (-3214 (($ |#1| (-535)) 59) (($ $ (-1048) (-535)) 74) (($ $ (-618 (-1048)) (-618 (-535))) 73)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-4285 (($ $) 140 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-2008 (($ (-618 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-3576 (((-1124) $) 9)) (-2725 (($ $) 163 (|has| |#1| (-356)))) (-4155 (($ $) 167 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 166 (-3874 (-12 (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-535))))) (-12 (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-535)))))))) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 148 (|has| |#1| (-356)))) (-3478 (($ (-618 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-4075 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 156 (|has| |#1| (-356)))) (-4111 (($ $ (-535)) 93)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 150 (|has| |#1| (-356)))) (-4286 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-535)))))) (-1699 (((-747) $) 152 (|has| |#1| (-356)))) (-4142 ((|#1| $ (-535)) 102) (($ $ $) 79 (|has| (-535) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 153 (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (-4290 (((-535) $) 62)) (-3832 (($ $) 130 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 129 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 120 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 128 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542)))) (-4023 ((|#1| $ (-535)) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-4115 ((|#1| $) 100)) (-3835 (($ $) 139 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 127 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3833 (($ $) 138 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 126 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 137 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-535)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-535)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 136 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 124 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 135 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 134 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 122 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 113 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535)))))))
+(((-1186 |#1|) (-138) (-1018)) (T -1186))
+((-4161 (*1 *1 *2) (-12 (-5 *2 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *3)))) (-4 *3 (-1018)) (-4 *1 (-1186 *3)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-535))) (-4 *1 (-1186 *3)) (-4 *3 (-1018)))) (-4070 (*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-1186 *4)) (-4 *4 (-1018)) (-4 *4 (-542)) (-5 *2 (-400 (-917 *4))))) (-4070 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-4 *1 (-1186 *4)) (-4 *4 (-1018)) (-4 *4 (-542)) (-5 *2 (-400 (-917 *4))))) (-4155 (*1 *1 *1) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535)))))) (-4155 (*1 *1 *1 *2) (-3874 (-12 (-5 *2 (-1142)) (-4 *1 (-1186 *3)) (-4 *3 (-1018)) (-12 (-4 *3 (-29 (-535))) (-4 *3 (-931)) (-4 *3 (-1164)) (-4 *3 (-38 (-400 (-535)))))) (-12 (-5 *2 (-1142)) (-4 *1 (-1186 *3)) (-4 *3 (-1018)) (-12 (|has| *3 (-15 -3405 ((-618 *2) *3))) (|has| *3 (-15 -4155 (*3 *3 *2))) (-4 *3 (-38 (-400 (-535)))))))))
+(-13 (-1203 |t#1| (-535)) (-10 -8 (-15 -4161 ($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |t#1|))))) (-15 -4158 ($ (-1 |t#1| (-535)) $)) (IF (|has| |t#1| (-542)) (PROGN (-15 -4070 ((-400 (-917 |t#1|)) $ (-535))) (-15 -4070 ((-400 (-917 |t#1|)) $ (-535) (-535)))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $)) (IF (|has| |t#1| (-15 -4155 (|t#1| |t#1| (-1142)))) (IF (|has| |t#1| (-15 -3405 ((-618 (-1142)) |t#1|))) (-15 -4155 ($ $ (-1142))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1164)) (IF (|has| |t#1| (-931)) (IF (|has| |t#1| (-29 (-535))) (-15 -4155 ($ $ (-1142))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-973)) (-6 (-1164))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-535)) . T) ((-25) . T) ((-38 #2=(-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-535)))) ((-94) |has| |#1| (-38 (-400 (-535)))) ((-101) . T) ((-111 #2# #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-535) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-535)))) ((-279 $ $) |has| (-535) (-1078)) ((-283) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-535)))) ((-542) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-624 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) ((-944 |#1| #1# (-1048)) . T) ((-892) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-535)))) ((-1024 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1164) |has| |#1| (-38 (-400 (-535)))) ((-1167) |has| |#1| (-38 (-400 (-535)))) ((-1183) |has| |#1| (-356)) ((-1203 |#1| #1#) . T))
+((-3522 (((-112) $) 12)) (-3491 (((-3 |#3| #1="failed") $) 17) (((-3 (-1142) #1#) $) NIL) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 (-535) #1#) $) NIL)) (-3490 ((|#3| $) 14) (((-1142) $) NIL) (((-400 (-535)) $) NIL) (((-535) $) NIL)))
+(((-1187 |#1| |#2| |#3|) (-10 -8 (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1="failed") |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-1142) |#1|)) (-15 -3491 ((-3 (-1142) #1#) |#1|)) (-15 -3490 (|#3| |#1|)) (-15 -3491 ((-3 |#3| #1#) |#1|)) (-15 -3522 ((-112) |#1|))) (-1188 |#2| |#3|) (-1018) (-1217 |#2|)) (T -1187))
+NIL
+(-10 -8 (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1="failed") |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -3490 ((-1142) |#1|)) (-15 -3491 ((-3 (-1142) #1#) |#1|)) (-15 -3490 (|#3| |#1|)) (-15 -3491 ((-3 |#3| #1#) |#1|)) (-15 -3522 ((-112) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3447 ((|#2| $) 228 (-3179 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3405 (((-618 (-1048)) $) 72)) (-4174 (((-1142) $) 101)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-4113 (($ $ (-535)) 96) (($ $ (-535) (-535)) 95)) (-4116 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) 103)) (-4074 ((|#2| $) 264)) (-4071 (((-3 |#2| "failed") $) 260)) (-4072 ((|#2| $) 261)) (-3829 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 116 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) 19)) (-3028 (((-398 (-1136 $)) (-1136 $)) 237 (-3179 (|has| |#2| (-881)) (|has| |#1| (-356))))) (-4117 (($ $) 160 (|has| |#1| (-356)))) (-4312 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3358 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 234 (-3179 (|has| |#2| (-881)) (|has| |#1| (-356))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3827 (($ $) 132 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-3969 (((-535) $) 246 (-3179 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-4161 (($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) 171)) (-3831 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 118 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#2| #2="failed") $) 267) (((-3 (-535) #2#) $) 256 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#1| (-356)))) (((-3 (-400 (-535)) #2#) $) 254 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#1| (-356)))) (((-3 (-1142) #2#) $) 239 (-3179 (|has| |#2| (-1009 (-1142))) (|has| |#1| (-356))))) (-3490 ((|#2| $) 266) (((-535) $) 257 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#1| (-356)))) (((-400 (-535)) $) 255 (-3179 (|has| |#2| (-1009 (-535))) (|has| |#1| (-356)))) (((-1142) $) 240 (-3179 (|has| |#2| (-1009 (-1142))) (|has| |#1| (-356))))) (-4073 (($ $) 263) (($ (-535) $) 262)) (-2883 (($ $ $) 155 (|has| |#1| (-356)))) (-4302 (($ $) 58)) (-2353 (((-665 |#2|) (-665 $)) 218 (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) 217 (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 216 (-3179 (|has| |#2| (-617 (-535))) (|has| |#1| (-356)))) (((-665 (-535)) (-665 $)) 215 (-3179 (|has| |#2| (-617 (-535))) (|has| |#1| (-356))))) (-3804 (((-3 $ "failed") $) 32)) (-4070 (((-400 (-917 |#1|)) $ (-535)) 169 (|has| |#1| (-542))) (((-400 (-917 |#1|)) $ (-535) (-535)) 168 (|has| |#1| (-542)))) (-3315 (($) 230 (-3179 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-2882 (($ $ $) 154 (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 149 (|has| |#1| (-356)))) (-4069 (((-112) $) 162 (|has| |#1| (-356)))) (-3520 (((-112) $) 244 (-3179 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-3213 (((-112) $) 71)) (-3973 (($) 143 (|has| |#1| (-38 (-400 (-535)))))) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 222 (-3179 (|has| |#2| (-857 (-371))) (|has| |#1| (-356)))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 221 (-3179 (|has| |#2| (-857 (-535))) (|has| |#1| (-356))))) (-4114 (((-535) $) 98) (((-535) $ (-535)) 97)) (-2493 (((-112) $) 30)) (-3317 (($ $) 226 (|has| |#1| (-356)))) (-3319 ((|#2| $) 224 (|has| |#1| (-356)))) (-3332 (($ $ (-535)) 114 (|has| |#1| (-38 (-400 (-535)))))) (-3786 (((-3 $ "failed") $) 258 (-3179 (|has| |#2| (-1117)) (|has| |#1| (-356))))) (-3521 (((-112) $) 245 (-3179 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-4119 (($ $ (-890)) 99)) (-4158 (($ (-1 |#1| (-535)) $) 170)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) 158 (|has| |#1| (-356)))) (-4280 (((-112) $) 60)) (-3214 (($ |#1| (-535)) 59) (($ $ (-1048) (-535)) 74) (($ $ (-618 (-1048)) (-618 (-535))) 73)) (-3660 (($ $ $) 248 (-3179 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-3661 (($ $ $) 249 (-3179 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-4301 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-356)))) (-4285 (($ $) 140 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-2008 (($ (-618 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-4121 (($ (-535) |#2|) 265)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 163 (|has| |#1| (-356)))) (-4155 (($ $) 167 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 166 (-3874 (-12 (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-535))))) (-12 (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-535)))))))) (-3787 (($) 259 (-3179 (|has| |#2| (-1117)) (|has| |#1| (-356))) CONST)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 148 (|has| |#1| (-356)))) (-3478 (($ (-618 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-3446 (($ $) 229 (-3179 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3448 ((|#2| $) 232 (-3179 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-3026 (((-398 (-1136 $)) (-1136 $)) 235 (-3179 (|has| |#2| (-881)) (|has| |#1| (-356))))) (-3027 (((-398 (-1136 $)) (-1136 $)) 236 (-3179 (|has| |#2| (-881)) (|has| |#1| (-356))))) (-4075 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 156 (|has| |#1| (-356)))) (-4111 (($ $ (-535)) 93)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 150 (|has| |#1| (-356)))) (-4286 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-535))))) (($ $ (-1142) |#2|) 209 (-3179 (|has| |#2| (-505 (-1142) |#2|)) (|has| |#1| (-356)))) (($ $ (-618 (-1142)) (-618 |#2|)) 208 (-3179 (|has| |#2| (-505 (-1142) |#2|)) (|has| |#1| (-356)))) (($ $ (-618 (-286 |#2|))) 207 (-3179 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-286 |#2|)) 206 (-3179 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ |#2| |#2|) 205 (-3179 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-618 |#2|) (-618 |#2|)) 204 (-3179 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356))))) (-1699 (((-747) $) 152 (|has| |#1| (-356)))) (-4142 ((|#1| $ (-535)) 102) (($ $ $) 79 (|has| (-535) (-1078))) (($ $ |#2|) 203 (-3179 (|has| |#2| (-279 |#2| |#2|)) (|has| |#1| (-356))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 153 (|has| |#1| (-356)))) (-4153 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) 213 (|has| |#1| (-356))) (($ $ (-747)) 82 (-3874 (-3179 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) 80 (-3874 (-3179 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) 87 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142) (-747)) 86 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-618 (-1142))) 85 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142)) 84 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))) (-3316 (($ $) 227 (|has| |#1| (-356)))) (-3318 ((|#2| $) 225 (|has| |#1| (-356)))) (-4290 (((-535) $) 62)) (-3832 (($ $) 130 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 129 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 120 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 128 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-4313 (((-219) $) 243 (-3179 (|has| |#2| (-991)) (|has| |#1| (-356)))) (((-371) $) 242 (-3179 (|has| |#2| (-991)) (|has| |#1| (-356)))) (((-524) $) 241 (-3179 (|has| |#2| (-594 (-524))) (|has| |#1| (-356)))) (((-861 (-371)) $) 220 (-3179 (|has| |#2| (-594 (-861 (-371)))) (|has| |#1| (-356)))) (((-861 (-535)) $) 219 (-3179 (|has| |#2| (-594 (-861 (-535)))) (|has| |#1| (-356))))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 233 (-3179 (-3179 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#1| (-356))))) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 268) (($ (-1142)) 238 (-3179 (|has| |#2| (-1009 (-1142))) (|has| |#1| (-356)))) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542)))) (-4023 ((|#1| $ (-535)) 57)) (-3023 (((-3 $ "failed") $) 46 (-3874 (-3179 (-3874 (|has| |#2| (-143)) (-3179 (|has| $ (-143)) (|has| |#2| (-881)))) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3444 (((-747)) 28)) (-4115 ((|#1| $) 100)) (-3449 ((|#2| $) 231 (-3179 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-3835 (($ $) 139 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 127 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3833 (($ $) 138 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 126 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 137 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-535)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-535)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 136 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 124 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 135 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 134 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 122 (|has| |#1| (-38 (-400 (-535)))))) (-3725 (($ $) 247 (-3179 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) 211 (|has| |#1| (-356))) (($ $ (-747)) 83 (-3874 (-3179 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) 81 (-3874 (-3179 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) 91 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142) (-747)) 90 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-618 (-1142))) 89 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))))) (($ $ (-1142)) 88 (-3874 (-3179 (|has| |#2| (-871 (-1142))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))))) (-2885 (((-112) $ $) 251 (-3179 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2886 (((-112) $ $) 252 (-3179 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 250 (-3179 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-3006 (((-112) $ $) 253 (-3179 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356))) (($ |#2| |#2|) 223 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 113 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-356))) (($ |#2| $) 201 (|has| |#1| (-356))) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535)))))))
+(((-1188 |#1| |#2|) (-138) (-1018) (-1217 |t#1|)) (T -1188))
+((-4290 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1217 *3)) (-5 *2 (-535)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-1188 *3 *2)) (-4 *2 (-1217 *3)))) (-4121 (*1 *1 *2 *3) (-12 (-5 *2 (-535)) (-4 *4 (-1018)) (-4 *1 (-1188 *4 *3)) (-4 *3 (-1217 *4)))) (-4074 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))) (-4073 (*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1217 *2)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1217 *3)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))) (-4071 (*1 *2 *1) (|partial| -12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))))
+(-13 (-1186 |t#1|) (-1009 |t#2|) (-10 -8 (-15 -4121 ($ (-535) |t#2|)) (-15 -4290 ((-535) $)) (-15 -4074 (|t#2| $)) (-15 -4073 ($ $)) (-15 -4073 ($ (-535) $)) (-15 -4300 ($ |t#2|)) (-15 -4072 (|t#2| $)) (-15 -4071 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-356)) (-6 (-962 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-535)) . T) ((-25) . T) ((-38 #2=(-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-356)) ((-38 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-535)))) ((-94) |has| |#1| (-38 (-400 (-535)))) ((-101) . T) ((-111 #2# #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-356)) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) -3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-594 (-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-991))) ((-594 (-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-991))) ((-594 (-524)) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-524)))) ((-594 (-861 (-371))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-861 (-371))))) ((-594 (-861 (-535))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-861 (-535))))) ((-225 |#2|) |has| |#1| (-356)) ((-227) -3874 (|has| |#1| (-15 * (|#1| (-535) |#1|))) (-12 (|has| |#1| (-356)) (|has| |#2| (-227)))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-535)))) ((-279 |#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) ((-279 $ $) |has| (-535) (-1078)) ((-283) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-356) |has| |#1| (-356)) ((-331 |#2|) |has| |#1| (-356)) ((-370 |#2|) |has| |#1| (-356)) ((-393 |#2|) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-535)))) ((-505 (-1142) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1142) |#2|))) ((-505 |#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-542) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-624 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-624 |#1|) . T) ((-624 |#2|) |has| |#1| (-356)) ((-624 $) . T) ((-617 (-535)) -12 (|has| |#1| (-356)) (|has| |#2| (-617 (-535)))) ((-617 |#2|) |has| |#1| (-356)) ((-694 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 |#2|) |has| |#1| (-356)) ((-694 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-703) . T) ((-767) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-768) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-770) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-773) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-796) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-821) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-823) -3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-823))) (-12 (|has| |#1| (-356)) (|has| |#2| (-796)))) ((-871 (-1142)) -3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142))))) ((-857 (-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-371)))) ((-857 (-535)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-535)))) ((-855 |#2|) |has| |#1| (-356)) ((-881) -12 (|has| |#1| (-356)) (|has| |#2| (-881))) ((-944 |#1| #1# (-1048)) . T) ((-892) |has| |#1| (-356)) ((-962 |#2|) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-535)))) ((-991) -12 (|has| |#1| (-356)) (|has| |#2| (-991))) ((-1009 (-400 (-535))) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535)))) ((-1009 (-535)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535)))) ((-1009 (-1142)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1142)))) ((-1009 |#2|) . T) ((-1024 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-1024 |#1|) . T) ((-1024 |#2|) |has| |#1| (-356)) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) -12 (|has| |#1| (-356)) (|has| |#2| (-1117))) ((-1164) |has| |#1| (-38 (-400 (-535)))) ((-1167) |has| |#1| (-38 (-400 (-535)))) ((-1178) |has| |#1| (-356)) ((-1183) |has| |#1| (-356)) ((-1186 |#1|) . T) ((-1203 |#1| #1#) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 70)) (-3447 ((|#2| $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-300))))) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 88)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-535)) 97) (($ $ (-535) (-535)) 99)) (-4116 (((-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|))) $) 47)) (-4074 ((|#2| $) 11)) (-4071 (((-3 |#2| "failed") $) 30)) (-4072 ((|#2| $) 31)) (-3829 (($ $) 192 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 168 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-881))))) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-881))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) 188 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 164 (|has| |#1| (-38 (-400 (-535)))))) (-3969 (((-535) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-796))))) (-4161 (($ (-1119 (-2 (|:| |k| (-535)) (|:| |c| |#1|)))) 57)) (-3831 (($ $) 196 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 172 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) 144) (((-3 (-535) #2#) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535))))) (((-3 (-400 (-535)) #2#) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535))))) (((-3 (-1142) #2#) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1142)))))) (-3490 ((|#2| $) 143) (((-535) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535))))) (((-400 (-535)) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-535))))) (((-1142) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1142)))))) (-4073 (($ $) 61) (($ (-535) $) 24)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-2353 (((-665 |#2|) (-665 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-617 (-535))))) (((-665 (-535)) (-665 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-617 (-535)))))) (-3804 (((-3 $ "failed") $) 77)) (-4070 (((-400 (-917 |#1|)) $ (-535)) 112 (|has| |#1| (-542))) (((-400 (-917 |#1|)) $ (-535) (-535)) 114 (|has| |#1| (-542)))) (-3315 (($) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-534))))) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3520 (((-112) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-796))))) (-3213 (((-112) $) 64)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-857 (-535)))))) (-4114 (((-535) $) 93) (((-535) $ (-535)) 95)) (-2493 (((-112) $) NIL)) (-3317 (($ $) NIL (|has| |#1| (-356)))) (-3319 ((|#2| $) 151 (|has| |#1| (-356)))) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3786 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1117))))) (-3521 (((-112) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-796))))) (-4119 (($ $ (-890)) 136)) (-4158 (($ (-1 |#1| (-535)) $) 132)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-535)) 19) (($ $ (-1048) (-535)) NIL) (($ $ (-618 (-1048)) (-618 (-535))) NIL)) (-3660 (($ $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))) (-3661 (($ $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))) (-4301 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-356)))) (-4285 (($ $) 162 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4121 (($ (-535) |#2|) 10)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 145 (|has| |#1| (-356)))) (-4155 (($ $) 214 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 219 (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))))))) (-3787 (($) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1117))) CONST)) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3446 (($ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-300))))) (-3448 ((|#2| $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-534))))) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-881))))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-881))))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-535)) 126)) (-3803 (((-3 $ "failed") $ $) 116 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) 160 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-535))))) (($ $ (-1142) |#2|) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1142) |#2|)))) (($ $ (-618 (-1142)) (-618 |#2|)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1142) |#2|)))) (($ $ (-618 (-286 |#2|))) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) (($ $ (-618 |#2|) (-618 |#2|)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-535)) 91) (($ $ $) 79 (|has| (-535) (-1078))) (($ $ |#2|) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) 137 (-3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))))) (($ $ (-1142) (-747)) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))))) (($ $ (-618 (-1142))) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))))) (($ $ (-1142)) 140 (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142))))))) (-3316 (($ $) NIL (|has| |#1| (-356)))) (-3318 ((|#2| $) 152 (|has| |#1| (-356)))) (-4290 (((-535) $) 12)) (-3832 (($ $) 198 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 174 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 194 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 170 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 190 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 166 (|has| |#1| (-38 (-400 (-535)))))) (-4313 (((-219) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-991)))) (((-371) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-991)))) (((-524) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-594 (-524))))) (((-861 (-371)) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-594 (-861 (-535))))))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-356)) (|has| |#2| (-881))))) (-3212 (($ $) 124)) (-4300 (((-835) $) 245) (($ (-535)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1142)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1142))))) (($ (-400 (-535))) 155 (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542)))) (-4023 ((|#1| $ (-535)) 74)) (-3023 (((-3 $ "failed") $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#1| (-356)) (|has| |#2| (-881))) (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| |#2| (-143)))))) (-3444 (((-747)) 142)) (-4115 ((|#1| $) 90)) (-3449 ((|#2| $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-534))))) (-3835 (($ $) 204 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 180 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) 200 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 176 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 208 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 184 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-535)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-535)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 210 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 186 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 206 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 182 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 202 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 178 (|has| |#1| (-38 (-400 (-535)))))) (-3725 (($ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-796))))) (-2979 (($) 13 T CONST)) (-2985 (($) 17 T CONST)) (-2990 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $) NIL (-3874 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-535) |#1|))))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))))) (($ $ (-1142) (-747)) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))))) (($ $ (-618 (-1142))) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142)))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-535) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1142))))))) (-2885 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))) (-2886 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))) (-3375 (((-112) $ $) 63)) (-3005 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))) (-3006 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 149 (|has| |#1| (-356))) (($ |#2| |#2|) 150 (|has| |#1| (-356)))) (-4180 (($ $) 213) (($ $ $) 68)) (-4182 (($ $ $) 66)) (** (($ $ (-890)) NIL) (($ $ (-747)) 73) (($ $ (-535)) 146 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 158 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-356))) (($ |#2| $) 147 (|has| |#1| (-356))) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-1189 |#1| |#2|) (-1188 |#1| |#2|) (-1018) (-1217 |#1|)) (T -1189))
+NIL
+(-1188 |#1| |#2|)
+((-4077 (((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112)) 12)) (-4076 (((-398 |#1|) |#1|) 22)) (-4075 (((-398 |#1|) |#1|) 21)))
+(((-1190 |#1|) (-10 -7 (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4076 ((-398 |#1|) |#1|)) (-15 -4077 ((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112)))) (-1200 (-535))) (T -1190))
+((-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535))))))) (-5 *1 (-1190 *3)) (-4 *3 (-1200 (-535))))) (-4076 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1200 (-535))))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1200 (-535))))))
+(-10 -7 (-15 -4075 ((-398 |#1|) |#1|)) (-15 -4076 ((-398 |#1|) |#1|)) (-15 -4077 ((-2 (|:| |contp| (-535)) (|:| -2758 (-618 (-2 (|:| |irr| |#1|) (|:| -2478 (-535)))))) |#1| (-112))))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4079 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4301 (((-1119 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-821)))) (-3563 ((|#1| $) 14)) (-3565 ((|#1| $) 10)) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-3561 (((-535) $) 18)) (-3562 ((|#1| $) 17)) (-3564 ((|#1| $) 11)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4078 (((-112) $) 16)) (-4306 (((-1119 |#1|) $) 38 (|has| |#1| (-821))) (((-1119 |#1|) (-618 $)) 37 (|has| |#1| (-821)))) (-4313 (($ |#1|) 25)) (-4300 (($ (-1055 |#1|)) 24) (((-835) $) 34 (|has| |#1| (-1067)))) (-4080 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3566 (($ $ (-535)) 13)) (-3375 (((-112) $ $) 27 (|has| |#1| (-1067)))))
+(((-1191 |#1|) (-13 (-1060 |#1|) (-10 -8 (-15 -4080 ($ |#1|)) (-15 -4079 ($ |#1|)) (-15 -4300 ($ (-1055 |#1|))) (-15 -4078 ((-112) $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1061 |#1| (-1119 |#1|))) |%noBranch|))) (-1178)) (T -1191))
+((-4080 (*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1178)))) (-4079 (*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1178)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-1178)) (-5 *1 (-1191 *3)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1178)))))
+(-13 (-1060 |#1|) (-10 -8 (-15 -4080 ($ |#1|)) (-15 -4079 ($ |#1|)) (-15 -4300 ($ (-1055 |#1|))) (-15 -4078 ((-112) $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1061 |#1| (-1119 |#1|))) |%noBranch|)))
+((-4301 (((-1119 |#2|) (-1 |#2| |#1|) (-1191 |#1|)) 23 (|has| |#1| (-821))) (((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|)) 17)))
+(((-1192 |#1| |#2|) (-10 -7 (-15 -4301 ((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|))) (IF (|has| |#1| (-821)) (-15 -4301 ((-1119 |#2|) (-1 |#2| |#1|) (-1191 |#1|))) |%noBranch|)) (-1178) (-1178)) (T -1192))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-821)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1119 *6)) (-5 *1 (-1192 *5 *6)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1191 *6)) (-5 *1 (-1192 *5 *6)))))
+(-10 -7 (-15 -4301 ((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|))) (IF (|has| |#1| (-821)) (-15 -4301 ((-1119 |#2|) (-1 |#2| |#1|) (-1191 |#1|))) |%noBranch|))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4109 (((-1224 |#2|) $ (-747)) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4107 (($ (-1136 |#2|)) NIL)) (-3407 (((-1136 $) $ (-1048)) NIL) (((-1136 |#2|) $) NIL)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#2| (-542)))) (-2171 (($ $) NIL (|has| |#2| (-542)))) (-2169 (((-112) $) NIL (|has| |#2| (-542)))) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1048))) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4098 (($ $ $) NIL (|has| |#2| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4117 (($ $) NIL (|has| |#2| (-444)))) (-4312 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-1700 (((-112) $ $) NIL (|has| |#2| (-356)))) (-4103 (($ $ (-747)) NIL)) (-4102 (($ $ (-747)) NIL)) (-4094 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-444)))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-535)) #2#) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) NIL (|has| |#2| (-1009 (-535)))) (((-3 (-1048) #2#) $) NIL)) (-3490 ((|#2| $) NIL) (((-400 (-535)) $) NIL (|has| |#2| (-1009 (-400 (-535))))) (((-535) $) NIL (|has| |#2| (-1009 (-535)))) (((-1048) $) NIL)) (-4099 (($ $ $ (-1048)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-2883 (($ $ $) NIL (|has| |#2| (-356)))) (-4302 (($ $) NIL)) (-2353 (((-665 (-535)) (-665 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) NIL (|has| |#2| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#2|)) (|:| |vec| (-1224 |#2|))) (-665 $) (-1224 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2882 (($ $ $) NIL (|has| |#2| (-356)))) (-4101 (($ $ $) NIL)) (-4096 (($ $ $) NIL (|has| |#2| (-542)))) (-4095 (((-2 (|:| -4296 |#2|) (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#2| (-356)))) (-3840 (($ $) NIL (|has| |#2| (-444))) (($ $ (-1048)) NIL (|has| |#2| (-444)))) (-3139 (((-618 $) $) NIL)) (-4069 (((-112) $) NIL (|has| |#2| (-881)))) (-1716 (($ $ |#2| (-747) $) NIL)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) NIL (-12 (|has| (-1048) (-857 (-371))) (|has| |#2| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) NIL (-12 (|has| (-1048) (-857 (-535))) (|has| |#2| (-857 (-535)))))) (-4114 (((-747) $ $) NIL (|has| |#2| (-542)))) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3786 (((-3 $ "failed") $) NIL (|has| |#2| (-1117)))) (-3408 (($ (-1136 |#2|) (-1048)) NIL) (($ (-1136 $) (-1048)) NIL)) (-4119 (($ $ (-747)) NIL)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) NIL (|has| |#2| (-356)))) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-3214 (($ |#2| (-747)) 17) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1048)) NIL) (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL)) (-3141 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-3660 (($ $ $) NIL (|has| |#2| (-823)))) (-3661 (($ $ $) NIL (|has| |#2| (-823)))) (-1717 (($ (-1 (-747) (-747)) $) NIL)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-4108 (((-1136 |#2|) $) NIL)) (-3406 (((-3 (-1048) #4="failed") $) NIL)) (-3215 (($ $) NIL)) (-3508 ((|#2| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3576 (((-1124) $) NIL)) (-4104 (((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747)) NIL)) (-3144 (((-3 (-618 $) #4#) $) NIL)) (-3143 (((-3 (-618 $) #4#) $) NIL)) (-3145 (((-3 (-2 (|:| |var| (-1048)) (|:| -2484 (-747))) #4#) $) NIL)) (-4155 (($ $) NIL (|has| |#2| (-38 (-400 (-535)))))) (-3787 (($) NIL (|has| |#2| (-1117)) CONST)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#2| (-444)))) (-3478 (($ (-618 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-4081 (($ $ (-747) |#2| $) NIL)) (-3026 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) NIL (|has| |#2| (-881)))) (-4075 (((-398 $) $) NIL (|has| |#2| (-881)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#2| (-356)))) (-3803 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-542))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#2| (-356)))) (-4110 (($ $ (-618 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1048) |#2|) NIL) (($ $ (-618 (-1048)) (-618 |#2|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-618 (-1048)) (-618 $)) NIL)) (-1699 (((-747) $) NIL (|has| |#2| (-356)))) (-4142 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#2| (-542))) ((|#2| (-400 $) |#2|) NIL (|has| |#2| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#2| (-542)))) (-4106 (((-3 $ #5="failed") $ (-747)) NIL)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#2| (-356)))) (-4100 (($ $ (-1048)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-4153 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4290 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-618 (-747)) $ (-618 (-1048))) NIL)) (-4313 (((-861 (-371)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-371)))) (|has| |#2| (-594 (-861 (-371)))))) (((-861 (-535)) $) NIL (-12 (|has| (-1048) (-594 (-861 (-535)))) (|has| |#2| (-594 (-861 (-535)))))) (((-524) $) NIL (-12 (|has| (-1048) (-594 (-524))) (|has| |#2| (-594 (-524)))))) (-3138 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-1048)) NIL (|has| |#2| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-881))))) (-4097 (((-3 $ #5#) $ $) NIL (|has| |#2| (-542))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#2| (-542)))) (-4300 (((-835) $) 13) (($ (-535)) NIL) (($ |#2|) NIL) (($ (-1048)) NIL) (($ (-1221 |#1|)) 19) (($ (-400 (-535))) NIL (-3874 (|has| |#2| (-38 (-400 (-535)))) (|has| |#2| (-1009 (-400 (-535)))))) (($ $) NIL (|has| |#2| (-542)))) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-3023 (((-3 $ #1#) $) NIL (-3874 (-12 (|has| $ (-143)) (|has| |#2| (-881))) (|has| |#2| (-143))))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-2170 (((-112) $ $) NIL (|has| |#2| (-542)))) (-2979 (($) NIL T CONST)) (-2985 (($) 14 T CONST)) (-2990 (($ $ (-1048)) NIL) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1142)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1142) (-747)) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) NIL (|has| |#2| (-871 (-1142)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2885 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3375 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL (|has| |#2| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#2| (-823)))) (-4291 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-400 (-535))) NIL (|has| |#2| (-38 (-400 (-535))))) (($ (-400 (-535)) $) NIL (|has| |#2| (-38 (-400 (-535))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1193 |#1| |#2|) (-13 (-1200 |#2|) (-10 -8 (-15 -4300 ($ (-1221 |#1|))) (-15 -4081 ($ $ (-747) |#2| $)))) (-1142) (-1018)) (T -1193))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *3)) (-14 *3 (-1142)) (-5 *1 (-1193 *3 *4)) (-4 *4 (-1018)))) (-4081 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1193 *4 *3)) (-14 *4 (-1142)) (-4 *3 (-1018)))))
+(-13 (-1200 |#2|) (-10 -8 (-15 -4300 ($ (-1221 |#1|))) (-15 -4081 ($ $ (-747) |#2| $))))
+((-4301 (((-1193 |#3| |#4|) (-1 |#4| |#2|) (-1193 |#1| |#2|)) 15)))
+(((-1194 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 ((-1193 |#3| |#4|) (-1 |#4| |#2|) (-1193 |#1| |#2|)))) (-1142) (-1018) (-1142) (-1018)) (T -1194))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1193 *5 *6)) (-14 *5 (-1142)) (-4 *6 (-1018)) (-4 *8 (-1018)) (-5 *2 (-1193 *7 *8)) (-5 *1 (-1194 *5 *6 *7 *8)) (-14 *7 (-1142)))))
+(-10 -7 (-15 -4301 ((-1193 |#3| |#4|) (-1 |#4| |#2|) (-1193 |#1| |#2|))))
+((-4084 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4082 ((|#1| |#3|) 13)) (-4083 ((|#3| |#3|) 19)))
+(((-1195 |#1| |#2| |#3|) (-10 -7 (-15 -4082 (|#1| |#3|)) (-15 -4083 (|#3| |#3|)) (-15 -4084 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-542) (-962 |#1|) (-1200 |#2|)) (T -1195))
+((-4084 (*1 *2 *3) (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1195 *4 *5 *3)) (-4 *3 (-1200 *5)))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-542)) (-4 *4 (-962 *3)) (-5 *1 (-1195 *3 *4 *2)) (-4 *2 (-1200 *4)))) (-4082 (*1 *2 *3) (-12 (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-1195 *2 *4 *3)) (-4 *3 (-1200 *4)))))
+(-10 -7 (-15 -4082 (|#1| |#3|)) (-15 -4083 (|#3| |#3|)) (-15 -4084 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-4086 (((-3 |#2| "failed") |#2| (-747) |#1|) 29)) (-4085 (((-3 |#2| "failed") |#2| (-747)) 30)) (-4088 (((-3 (-2 (|:| -3456 |#2|) (|:| -3455 |#2|)) "failed") |#2|) 43)) (-4089 (((-618 |#2|) |#2|) 45)) (-4087 (((-3 |#2| "failed") |#2| |#2|) 40)))
+(((-1196 |#1| |#2|) (-10 -7 (-15 -4085 ((-3 |#2| "failed") |#2| (-747))) (-15 -4086 ((-3 |#2| "failed") |#2| (-747) |#1|)) (-15 -4087 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4088 ((-3 (-2 (|:| -3456 |#2|) (|:| -3455 |#2|)) "failed") |#2|)) (-15 -4089 ((-618 |#2|) |#2|))) (-13 (-542) (-145)) (-1200 |#1|)) (T -1196))
+((-4089 (*1 *2 *3) (-12 (-4 *4 (-13 (-542) (-145))) (-5 *2 (-618 *3)) (-5 *1 (-1196 *4 *3)) (-4 *3 (-1200 *4)))) (-4088 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-542) (-145))) (-5 *2 (-2 (|:| -3456 *3) (|:| -3455 *3))) (-5 *1 (-1196 *4 *3)) (-4 *3 (-1200 *4)))) (-4087 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-1200 *3)))) (-4086 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-1196 *4 *2)) (-4 *2 (-1200 *4)))) (-4085 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-1196 *4 *2)) (-4 *2 (-1200 *4)))))
+(-10 -7 (-15 -4085 ((-3 |#2| "failed") |#2| (-747))) (-15 -4086 ((-3 |#2| "failed") |#2| (-747) |#1|)) (-15 -4087 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4088 ((-3 (-2 (|:| -3456 |#2|) (|:| -3455 |#2|)) "failed") |#2|)) (-15 -4089 ((-618 |#2|) |#2|)))
+((-4090 (((-3 (-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) "failed") |#2| |#2|) 32)))
+(((-1197 |#1| |#2|) (-10 -7 (-15 -4090 ((-3 (-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) "failed") |#2| |#2|))) (-542) (-1200 |#1|)) (T -1197))
+((-4090 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-1197 *4 *3)) (-4 *3 (-1200 *4)))))
+(-10 -7 (-15 -4090 ((-3 (-2 (|:| -2091 |#2|) (|:| -3223 |#2|)) "failed") |#2| |#2|)))
+((-4091 ((|#2| |#2| |#2|) 19)) (-4092 ((|#2| |#2| |#2|) 30)) (-4093 ((|#2| |#2| |#2| (-747) (-747)) 36)))
+(((-1198 |#1| |#2|) (-10 -7 (-15 -4091 (|#2| |#2| |#2|)) (-15 -4092 (|#2| |#2| |#2|)) (-15 -4093 (|#2| |#2| |#2| (-747) (-747)))) (-1018) (-1200 |#1|)) (T -1198))
+((-4093 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-1198 *4 *2)) (-4 *2 (-1200 *4)))) (-4092 (*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1200 *3)))) (-4091 (*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1200 *3)))))
+(-10 -7 (-15 -4091 (|#2| |#2| |#2|)) (-15 -4092 (|#2| |#2| |#2|)) (-15 -4093 (|#2| |#2| |#2| (-747) (-747))))
+((-4109 (((-1224 |#2|) $ (-747)) 114)) (-3405 (((-618 (-1048)) $) 15)) (-4107 (($ (-1136 |#2|)) 67)) (-3140 (((-747) $) NIL) (((-747) $ (-618 (-1048))) 18)) (-3028 (((-398 (-1136 $)) (-1136 $)) 185)) (-4117 (($ $) 175)) (-4312 (((-398 $) $) 173)) (-3025 (((-3 (-618 (-1136 $)) "failed") (-618 (-1136 $)) (-1136 $)) 82)) (-4103 (($ $ (-747)) 71)) (-4102 (($ $ (-747)) 73)) (-4094 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3491 (((-3 |#2| #1="failed") $) 117) (((-3 (-400 (-535)) #1#) $) NIL) (((-3 (-535) #1#) $) NIL) (((-3 (-1048) #1#) $) NIL)) (-3490 ((|#2| $) 115) (((-400 (-535)) $) NIL) (((-535) $) NIL) (((-1048) $) NIL)) (-4096 (($ $ $) 151)) (-4095 (((-2 (|:| -4296 |#2|) (|:| -2091 $) (|:| -3223 $)) $ $) 153)) (-4114 (((-747) $ $) 170)) (-3786 (((-3 $ "failed") $) 123)) (-3214 (($ |#2| (-747)) NIL) (($ $ (-1048) (-747)) 47) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-3141 (((-747) $) NIL) (((-747) $ (-1048)) 42) (((-618 (-747)) $ (-618 (-1048))) 43)) (-4108 (((-1136 |#2|) $) 59)) (-3406 (((-3 (-1048) "failed") $) 40)) (-4104 (((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747)) 70)) (-4155 (($ $) 197)) (-3787 (($) 119)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 182)) (-3026 (((-398 (-1136 $)) (-1136 $)) 88)) (-3027 (((-398 (-1136 $)) (-1136 $)) 86)) (-4075 (((-398 $) $) 107)) (-4110 (($ $ (-618 (-286 $))) 39) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-618 $) (-618 $)) NIL) (($ $ (-1048) |#2|) 31) (($ $ (-618 (-1048)) (-618 |#2|)) 28) (($ $ (-1048) $) 25) (($ $ (-618 (-1048)) (-618 $)) 23)) (-1699 (((-747) $) 188)) (-4142 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) 147) ((|#2| (-400 $) |#2|) 187) (((-400 $) $ (-400 $)) 169)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 191)) (-4153 (($ $ (-1048)) 140) (($ $ (-618 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL) (($ $ (-747)) NIL) (($ $) 138) (($ $ (-1142)) NIL) (($ $ (-618 (-1142))) NIL) (($ $ (-1142) (-747)) NIL) (($ $ (-618 (-1142)) (-618 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4290 (((-747) $) NIL) (((-747) $ (-1048)) 16) (((-618 (-747)) $ (-618 (-1048))) 20)) (-3138 ((|#2| $) NIL) (($ $ (-1048)) 125)) (-4097 (((-3 $ "failed") $ $) 161) (((-3 (-400 $) "failed") (-400 $) $) 157)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#2|) NIL) (($ (-1048)) 51) (($ (-400 (-535))) NIL) (($ $) NIL)))
+(((-1199 |#1| |#2|) (-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -4142 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -1699 ((-747) |#1|)) (-15 -3202 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -4155 (|#1| |#1|)) (-15 -4142 (|#2| (-400 |#1|) |#2|)) (-15 -4094 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4095 ((-2 (|:| -4296 |#2|) (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -4096 (|#1| |#1| |#1|)) (-15 -4097 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -4097 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4114 ((-747) |#1| |#1|)) (-15 -4142 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4102 (|#1| |#1| (-747))) (-15 -4103 (|#1| |#1| (-747))) (-15 -4104 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| (-747))) (-15 -4107 (|#1| (-1136 |#2|))) (-15 -4108 ((-1136 |#2|) |#1|)) (-15 -4109 ((-1224 |#2|) |#1| (-747))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4142 (|#1| |#1| |#1|)) (-15 -4142 (|#2| |#1| |#2|)) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3028 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3027 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3026 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3025 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3138 (|#1| |#1| (-1048))) (-15 -3405 ((-618 (-1048)) |#1|)) (-15 -3140 ((-747) |#1| (-618 (-1048)))) (-15 -3140 ((-747) |#1|)) (-15 -3214 (|#1| |#1| (-618 (-1048)) (-618 (-747)))) (-15 -3214 (|#1| |#1| (-1048) (-747))) (-15 -3141 ((-618 (-747)) |#1| (-618 (-1048)))) (-15 -3141 ((-747) |#1| (-1048))) (-15 -3406 ((-3 (-1048) "failed") |#1|)) (-15 -4290 ((-618 (-747)) |#1| (-618 (-1048)))) (-15 -4290 ((-747) |#1| (-1048))) (-15 -3490 ((-1048) |#1|)) (-15 -3491 ((-3 (-1048) #1="failed") |#1|)) (-15 -4300 (|#1| (-1048))) (-15 -4110 (|#1| |#1| (-618 (-1048)) (-618 |#1|))) (-15 -4110 (|#1| |#1| (-1048) |#1|)) (-15 -4110 (|#1| |#1| (-618 (-1048)) (-618 |#2|))) (-15 -4110 (|#1| |#1| (-1048) |#2|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4290 ((-747) |#1|)) (-15 -3214 (|#1| |#2| (-747))) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3141 ((-747) |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -4153 (|#1| |#1| (-618 (-1048)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1048) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1048)))) (-15 -4153 (|#1| |#1| (-1048))) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|))) (-1200 |#2|) (-1018)) (T -1199))
+NIL
+(-10 -8 (-15 -4300 (|#1| |#1|)) (-15 -3029 ((-1136 |#1|) (-1136 |#1|) (-1136 |#1|))) (-15 -4312 ((-398 |#1|) |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -3787 (|#1|)) (-15 -3786 ((-3 |#1| "failed") |#1|)) (-15 -4142 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -1699 ((-747) |#1|)) (-15 -3202 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -4155 (|#1| |#1|)) (-15 -4142 (|#2| (-400 |#1|) |#2|)) (-15 -4094 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4095 ((-2 (|:| -4296 |#2|) (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| |#1|)) (-15 -4096 (|#1| |#1| |#1|)) (-15 -4097 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -4097 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4114 ((-747) |#1| |#1|)) (-15 -4142 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4102 (|#1| |#1| (-747))) (-15 -4103 (|#1| |#1| (-747))) (-15 -4104 ((-2 (|:| -2091 |#1|) (|:| -3223 |#1|)) |#1| (-747))) (-15 -4107 (|#1| (-1136 |#2|))) (-15 -4108 ((-1136 |#2|) |#1|)) (-15 -4109 ((-1224 |#2|) |#1| (-747))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4153 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1142) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1142)))) (-15 -4153 (|#1| |#1| (-1142))) (-15 -4153 (|#1| |#1|)) (-15 -4153 (|#1| |#1| (-747))) (-15 -4142 (|#1| |#1| |#1|)) (-15 -4142 (|#2| |#1| |#2|)) (-15 -4075 ((-398 |#1|) |#1|)) (-15 -3028 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3027 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3026 ((-398 (-1136 |#1|)) (-1136 |#1|))) (-15 -3025 ((-3 (-618 (-1136 |#1|)) "failed") (-618 (-1136 |#1|)) (-1136 |#1|))) (-15 -3138 (|#1| |#1| (-1048))) (-15 -3405 ((-618 (-1048)) |#1|)) (-15 -3140 ((-747) |#1| (-618 (-1048)))) (-15 -3140 ((-747) |#1|)) (-15 -3214 (|#1| |#1| (-618 (-1048)) (-618 (-747)))) (-15 -3214 (|#1| |#1| (-1048) (-747))) (-15 -3141 ((-618 (-747)) |#1| (-618 (-1048)))) (-15 -3141 ((-747) |#1| (-1048))) (-15 -3406 ((-3 (-1048) "failed") |#1|)) (-15 -4290 ((-618 (-747)) |#1| (-618 (-1048)))) (-15 -4290 ((-747) |#1| (-1048))) (-15 -3490 ((-1048) |#1|)) (-15 -3491 ((-3 (-1048) #1="failed") |#1|)) (-15 -4300 (|#1| (-1048))) (-15 -4110 (|#1| |#1| (-618 (-1048)) (-618 |#1|))) (-15 -4110 (|#1| |#1| (-1048) |#1|)) (-15 -4110 (|#1| |#1| (-618 (-1048)) (-618 |#2|))) (-15 -4110 (|#1| |#1| (-1048) |#2|)) (-15 -4110 (|#1| |#1| (-618 |#1|) (-618 |#1|))) (-15 -4110 (|#1| |#1| |#1| |#1|)) (-15 -4110 (|#1| |#1| (-286 |#1|))) (-15 -4110 (|#1| |#1| (-618 (-286 |#1|)))) (-15 -4290 ((-747) |#1|)) (-15 -3214 (|#1| |#2| (-747))) (-15 -3490 ((-535) |#1|)) (-15 -3491 ((-3 (-535) #1#) |#1|)) (-15 -3490 ((-400 (-535)) |#1|)) (-15 -3491 ((-3 (-400 (-535)) #1#) |#1|)) (-15 -4300 (|#1| |#2|)) (-15 -3491 ((-3 |#2| #1#) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3141 ((-747) |#1|)) (-15 -3138 (|#2| |#1|)) (-15 -4153 (|#1| |#1| (-618 (-1048)) (-618 (-747)))) (-15 -4153 (|#1| |#1| (-1048) (-747))) (-15 -4153 (|#1| |#1| (-618 (-1048)))) (-15 -4153 (|#1| |#1| (-1048))) (-15 -4300 (|#1| (-535))) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-4109 (((-1224 |#1|) $ (-747)) 236)) (-3405 (((-618 (-1048)) $) 108)) (-4107 (($ (-1136 |#1|)) 234)) (-3407 (((-1136 $) $ (-1048)) 123) (((-1136 |#1|) $) 122)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 85 (|has| |#1| (-542)))) (-2171 (($ $) 86 (|has| |#1| (-542)))) (-2169 (((-112) $) 88 (|has| |#1| (-542)))) (-3140 (((-747) $) 110) (((-747) $ (-618 (-1048))) 109)) (-1363 (((-3 $ "failed") $ $) 19)) (-4098 (($ $ $) 221 (|has| |#1| (-542)))) (-3028 (((-398 (-1136 $)) (-1136 $)) 98 (|has| |#1| (-881)))) (-4117 (($ $) 96 (|has| |#1| (-444)))) (-4312 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3025 (((-3 (-618 (-1136 $)) #1="failed") (-618 (-1136 $)) (-1136 $)) 101 (|has| |#1| (-881)))) (-1700 (((-112) $ $) 206 (|has| |#1| (-356)))) (-4103 (($ $ (-747)) 229)) (-4102 (($ $ (-747)) 228)) (-4094 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-444)))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-535)) #2#) $) 160 (|has| |#1| (-1009 (-400 (-535))))) (((-3 (-535) #2#) $) 158 (|has| |#1| (-1009 (-535)))) (((-3 (-1048) #2#) $) 134)) (-3490 ((|#1| $) 163) (((-400 (-535)) $) 159 (|has| |#1| (-1009 (-400 (-535))))) (((-535) $) 157 (|has| |#1| (-1009 (-535)))) (((-1048) $) 133)) (-4099 (($ $ $ (-1048)) 106 (|has| |#1| (-170))) ((|#1| $ $) 224 (|has| |#1| (-170)))) (-2883 (($ $ $) 210 (|has| |#1| (-356)))) (-4302 (($ $) 152)) (-2353 (((-665 (-535)) (-665 $)) 132 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 (-535))) (|:| |vec| (-1224 (-535)))) (-665 $) (-1224 $)) 131 (|has| |#1| (-617 (-535)))) (((-2 (|:| -1695 (-665 |#1|)) (|:| |vec| (-1224 |#1|))) (-665 $) (-1224 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 209 (|has| |#1| (-356)))) (-4101 (($ $ $) 227)) (-4096 (($ $ $) 218 (|has| |#1| (-542)))) (-4095 (((-2 (|:| -4296 |#1|) (|:| -2091 $) (|:| -3223 $)) $ $) 217 (|has| |#1| (-542)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 204 (|has| |#1| (-356)))) (-3840 (($ $) 174 (|has| |#1| (-444))) (($ $ (-1048)) 103 (|has| |#1| (-444)))) (-3139 (((-618 $) $) 107)) (-4069 (((-112) $) 94 (|has| |#1| (-881)))) (-1716 (($ $ |#1| (-747) $) 170)) (-3117 (((-859 (-371) $) $ (-861 (-371)) (-859 (-371) $)) 82 (-12 (|has| (-1048) (-857 (-371))) (|has| |#1| (-857 (-371))))) (((-859 (-535) $) $ (-861 (-535)) (-859 (-535) $)) 81 (-12 (|has| (-1048) (-857 (-535))) (|has| |#1| (-857 (-535)))))) (-4114 (((-747) $ $) 222 (|has| |#1| (-542)))) (-2493 (((-112) $) 30)) (-2501 (((-747) $) 167)) (-3786 (((-3 $ "failed") $) 202 (|has| |#1| (-1117)))) (-3408 (($ (-1136 |#1|) (-1048)) 115) (($ (-1136 $) (-1048)) 114)) (-4119 (($ $ (-747)) 233)) (-1697 (((-3 (-618 $) #3="failed") (-618 $) $) 213 (|has| |#1| (-356)))) (-3142 (((-618 $) $) 124)) (-4280 (((-112) $) 150)) (-3214 (($ |#1| (-747)) 151) (($ $ (-1048) (-747)) 117) (($ $ (-618 (-1048)) (-618 (-747))) 116)) (-4105 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $ (-1048)) 118) (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 231)) (-3141 (((-747) $) 168) (((-747) $ (-1048)) 120) (((-618 (-747)) $ (-618 (-1048))) 119)) (-3660 (($ $ $) 77 (|has| |#1| (-823)))) (-3661 (($ $ $) 76 (|has| |#1| (-823)))) (-1717 (($ (-1 (-747) (-747)) $) 169)) (-4301 (($ (-1 |#1| |#1|) $) 149)) (-4108 (((-1136 |#1|) $) 235)) (-3406 (((-3 (-1048) #4="failed") $) 121)) (-3215 (($ $) 147)) (-3508 ((|#1| $) 146)) (-2008 (($ (-618 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3576 (((-1124) $) 9)) (-4104 (((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747)) 230)) (-3144 (((-3 (-618 $) #4#) $) 112)) (-3143 (((-3 (-618 $) #4#) $) 113)) (-3145 (((-3 (-2 (|:| |var| (-1048)) (|:| -2484 (-747))) #4#) $) 111)) (-4155 (($ $) 214 (|has| |#1| (-38 (-400 (-535)))))) (-3787 (($) 201 (|has| |#1| (-1117)) CONST)) (-3577 (((-1086) $) 10)) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 93 (|has| |#1| (-444)))) (-3478 (($ (-618 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3026 (((-398 (-1136 $)) (-1136 $)) 100 (|has| |#1| (-881)))) (-3027 (((-398 (-1136 $)) (-1136 $)) 99 (|has| |#1| (-881)))) (-4075 (((-398 $) $) 97 (|has| |#1| (-881)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 212 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 211 (|has| |#1| (-356)))) (-3803 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-542))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 205 (|has| |#1| (-356)))) (-4110 (($ $ (-618 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-618 $) (-618 $)) 140) (($ $ (-1048) |#1|) 139) (($ $ (-618 (-1048)) (-618 |#1|)) 138) (($ $ (-1048) $) 137) (($ $ (-618 (-1048)) (-618 $)) 136)) (-1699 (((-747) $) 207 (|has| |#1| (-356)))) (-4142 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-400 $) (-400 $) (-400 $)) 223 (|has| |#1| (-542))) ((|#1| (-400 $) |#1|) 215 (|has| |#1| (-356))) (((-400 $) $ (-400 $)) 203 (|has| |#1| (-542)))) (-4106 (((-3 $ "failed") $ (-747)) 232)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 208 (|has| |#1| (-356)))) (-4100 (($ $ (-1048)) 105 (|has| |#1| (-170))) ((|#1| $) 225 (|has| |#1| (-170)))) (-4153 (($ $ (-1048)) 40) (($ $ (-618 (-1048))) 39) (($ $ (-1048) (-747)) 38) (($ $ (-618 (-1048)) (-618 (-747))) 37) (($ $ (-747)) 251) (($ $) 249) (($ $ (-1142)) 248 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 247 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 246 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 245 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-4290 (((-747) $) 148) (((-747) $ (-1048)) 128) (((-618 (-747)) $ (-618 (-1048))) 127)) (-4313 (((-861 (-371)) $) 80 (-12 (|has| (-1048) (-594 (-861 (-371)))) (|has| |#1| (-594 (-861 (-371)))))) (((-861 (-535)) $) 79 (-12 (|has| (-1048) (-594 (-861 (-535)))) (|has| |#1| (-594 (-861 (-535)))))) (((-524) $) 78 (-12 (|has| (-1048) (-594 (-524))) (|has| |#1| (-594 (-524)))))) (-3138 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ (-1048)) 104 (|has| |#1| (-444)))) (-3024 (((-3 (-1224 $) #1#) (-665 $)) 102 (-3179 (|has| $ (-143)) (|has| |#1| (-881))))) (-4097 (((-3 $ "failed") $ $) 220 (|has| |#1| (-542))) (((-3 (-400 $) "failed") (-400 $) $) 219 (|has| |#1| (-542)))) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 161) (($ (-1048)) 135) (($ (-400 (-535))) 70 (-3874 (|has| |#1| (-1009 (-400 (-535)))) (|has| |#1| (-38 (-400 (-535)))))) (($ $) 83 (|has| |#1| (-542)))) (-4160 (((-618 |#1|) $) 166)) (-4023 ((|#1| $ (-747)) 153) (($ $ (-1048) (-747)) 126) (($ $ (-618 (-1048)) (-618 (-747))) 125)) (-3023 (((-3 $ #1#) $) 71 (-3874 (-3179 (|has| $ (-143)) (|has| |#1| (-881))) (|has| |#1| (-143))))) (-3444 (((-747)) 28)) (-1715 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-2170 (((-112) $ $) 87 (|has| |#1| (-542)))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-1048)) 36) (($ $ (-618 (-1048))) 35) (($ $ (-1048) (-747)) 34) (($ $ (-618 (-1048)) (-618 (-747))) 33) (($ $ (-747)) 252) (($ $) 250) (($ $ (-1142)) 244 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142))) 243 (|has| |#1| (-871 (-1142)))) (($ $ (-1142) (-747)) 242 (|has| |#1| (-871 (-1142)))) (($ $ (-618 (-1142)) (-618 (-747))) 241 (|has| |#1| (-871 (-1142)))) (($ $ (-1 |#1| |#1|) (-747)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2885 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 73 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 6)) (-3005 (((-112) $ $) 75 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 72 (|has| |#1| (-823)))) (-4291 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 156 (|has| |#1| (-38 (-400 (-535))))) (($ (-400 (-535)) $) 155 (|has| |#1| (-38 (-400 (-535))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(((-1200 |#1|) (-138) (-1018)) (T -1200))
+((-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-1200 *4)) (-4 *4 (-1018)) (-5 *2 (-1224 *4)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-5 *2 (-1136 *3)))) (-4107 (*1 *1 *2) (-12 (-5 *2 (-1136 *3)) (-4 *3 (-1018)) (-4 *1 (-1200 *3)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))) (-4106 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))) (-4105 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1200 *3)))) (-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1200 *4)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))) (-4102 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))) (-4101 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)))) (-4153 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))) (-4099 (*1 *2 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))) (-4142 (*1 *2 *2 *2) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-4 *3 (-542)))) (-4114 (*1 *2 *1 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-4 *3 (-542)) (-5 *2 (-747)))) (-4098 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-542)))) (-4097 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-542)))) (-4097 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-4 *3 (-542)))) (-4096 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-542)))) (-4095 (*1 *2 *1 *1) (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -4296 *3) (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1200 *3)))) (-4094 (*1 *2 *1 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1200 *3)))) (-4142 (*1 *2 *3 *2) (-12 (-5 *3 (-400 *1)) (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-4155 (*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535)))))))
+(-13 (-921 |t#1| (-747) (-1048)) (-279 |t#1| |t#1|) (-279 $ $) (-227) (-225 |t#1|) (-10 -8 (-15 -4109 ((-1224 |t#1|) $ (-747))) (-15 -4108 ((-1136 |t#1|) $)) (-15 -4107 ($ (-1136 |t#1|))) (-15 -4119 ($ $ (-747))) (-15 -4106 ((-3 $ "failed") $ (-747))) (-15 -4105 ((-2 (|:| -2091 $) (|:| -3223 $)) $ $)) (-15 -4104 ((-2 (|:| -2091 $) (|:| -3223 $)) $ (-747))) (-15 -4103 ($ $ (-747))) (-15 -4102 ($ $ (-747))) (-15 -4101 ($ $ $)) (-15 -4153 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4100 (|t#1| $)) (-15 -4099 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-6 (-279 (-400 $) (-400 $))) (-15 -4142 ((-400 $) (-400 $) (-400 $))) (-15 -4114 ((-747) $ $)) (-15 -4098 ($ $ $)) (-15 -4097 ((-3 $ "failed") $ $)) (-15 -4097 ((-3 (-400 $) "failed") (-400 $) $)) (-15 -4096 ($ $ $)) (-15 -4095 ((-2 (|:| -4296 |t#1|) (|:| -2091 $) (|:| -3223 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (-15 -4094 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-300)) (-6 -4332) (-15 -4142 (|t#1| (-400 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-535)))) (-15 -4155 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-747)) . T) ((-25) . T) ((-38 #2=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-594 (-524)) -12 (|has| |#1| (-594 (-524))) (|has| (-1048) (-594 (-524)))) ((-594 (-861 (-371))) -12 (|has| |#1| (-594 (-861 (-371)))) (|has| (-1048) (-594 (-861 (-371))))) ((-594 (-861 (-535))) -12 (|has| |#1| (-594 (-861 (-535)))) (|has| (-1048) (-594 (-861 (-535))))) ((-225 |#1|) . T) ((-227) . T) ((-279 (-400 $) (-400 $)) |has| |#1| (-542)) ((-279 |#1| |#1|) . T) ((-279 $ $) . T) ((-283) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 $) . T) ((-319 |#1| #1#) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3874 (|has| |#1| (-881)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-505 #3=(-1048) |#1|) . T) ((-505 #3# $) . T) ((-505 $ $) . T) ((-542) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-624 #2#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-535)) |has| |#1| (-617 (-535))) ((-617 |#1|) . T) ((-694 #2#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 #3#) . T) ((-871 (-1142)) |has| |#1| (-871 (-1142))) ((-857 (-371)) -12 (|has| |#1| (-857 (-371))) (|has| (-1048) (-857 (-371)))) ((-857 (-535)) -12 (|has| |#1| (-857 (-535))) (|has| (-1048) (-857 (-535)))) ((-921 |#1| #1# #3#) . T) ((-881) |has| |#1| (-881)) ((-892) |has| |#1| (-356)) ((-1009 (-400 (-535))) |has| |#1| (-1009 (-400 (-535)))) ((-1009 (-535)) |has| |#1| (-1009 (-535))) ((-1009 #3#) . T) ((-1009 |#1|) . T) ((-1024 #2#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-881)) (|has| |#1| (-542)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1117) |has| |#1| (-1117)) ((-1183) |has| |#1| (-881)))
+((-4301 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1201 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|))) (-1018) (-1200 |#1|) (-1018) (-1200 |#3|)) (T -1201))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1200 *6)) (-5 *1 (-1201 *5 *4 *6 *2)) (-4 *4 (-1200 *5)))))
+(-10 -7 (-15 -4301 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3405 (((-618 (-1048)) $) 28)) (-4302 (($ $) 25)) (-3214 (($ |#2| |#3|) NIL) (($ $ (-1048) |#3|) 22) (($ $ (-618 (-1048)) (-618 |#3|)) 21)) (-3215 (($ $) 14)) (-3508 ((|#2| $) 12)) (-4290 ((|#3| $) 10)))
+(((-1202 |#1| |#2| |#3|) (-10 -8 (-15 -3405 ((-618 (-1048)) |#1|)) (-15 -3214 (|#1| |#1| (-618 (-1048)) (-618 |#3|))) (-15 -3214 (|#1| |#1| (-1048) |#3|)) (-15 -4302 (|#1| |#1|)) (-15 -3214 (|#1| |#2| |#3|)) (-15 -4290 (|#3| |#1|)) (-15 -3215 (|#1| |#1|)) (-15 -3508 (|#2| |#1|))) (-1203 |#2| |#3|) (-1018) (-768)) (T -1202))
+NIL
+(-10 -8 (-15 -3405 ((-618 (-1048)) |#1|)) (-15 -3214 (|#1| |#1| (-618 (-1048)) (-618 |#3|))) (-15 -3214 (|#1| |#1| (-1048) |#3|)) (-15 -4302 (|#1| |#1|)) (-15 -3214 (|#1| |#2| |#3|)) (-15 -4290 (|#3| |#1|)) (-15 -3215 (|#1| |#1|)) (-15 -3508 (|#2| |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 (-1048)) $) 72)) (-4174 (((-1142) $) 101)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-4113 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4116 (((-1119 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-3213 (((-112) $) 71)) (-4114 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2493 (((-112) $) 30)) (-4119 (($ $ (-890)) 99)) (-4280 (((-112) $) 60)) (-3214 (($ |#1| |#2|) 59) (($ $ (-1048) |#2|) 74) (($ $ (-618 (-1048)) (-618 |#2|)) 73)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4111 (($ $ |#2|) 93)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-4110 (((-1119 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4142 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1078)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-618 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4290 ((|#2| $) 62)) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4023 ((|#1| $ |#2|) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-4115 ((|#1| $) 100)) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-4112 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-618 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535)))))))
(((-1203 |#1| |#2|) (-138) (-1018) (-768)) (T -1203))
-((-1480 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-1122 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3340 (*1 *2 *1 *3) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-1142)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-2769 (*1 *1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) (-2078 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-2078 (*1 *2 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-2305 (*1 *1 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-2305 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-2660 (*1 *2 *1 *3) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3845 (*2 (-1142)))) (-4 *2 (-1018)))) (-2975 (*1 *1 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-2685 (*1 *2 *1 *3) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1122 *3)))))
-(-13 (-944 |t#1| |t#2| (-1048)) (-10 -8 (-15 -1480 ((-1122 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3340 (|t#1| $ |t#2|)) (-15 -3010 ((-1142) $)) (-15 -2597 (|t#1| $)) (-15 -2769 ($ $ (-892))) (-15 -2078 (|t#2| $)) (-15 -2078 (|t#2| $ |t#2|)) (-15 -2305 ($ $ |t#2|)) (-15 -2305 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3845 (|t#1| (-1142)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2660 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2975 ($ $ |t#2|)) (IF (|has| |t#2| (-1078)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-227)) (IF (|has| |t#1| (-871 (-1142))) (-6 (-871 (-1142))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2685 ((-1122 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-279 $ $) |has| |#2| (-1078)) ((-283) |has| |#1| (-541)) ((-541) |has| |#1| (-541)) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-871 (-1142)))) ((-944 |#1| |#2| (-1048)) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-1912 ((|#2| |#2|) 12)) (-3513 (((-411 |#2|) |#2|) 14)) (-4291 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549)))) 30)))
-(((-1204 |#1| |#2|) (-10 -7 (-15 -3513 ((-411 |#2|) |#2|)) (-15 -1912 (|#2| |#2|)) (-15 -4291 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549)))))) (-541) (-13 (-1201 |#1|) (-541) (-10 -8 (-15 -3726 ($ $ $))))) (T -1204))
-((-4291 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-549)))) (-4 *4 (-13 (-1201 *3) (-541) (-10 -8 (-15 -3726 ($ $ $))))) (-4 *3 (-541)) (-5 *1 (-1204 *3 *4)))) (-1912 (*1 *2 *2) (-12 (-4 *3 (-541)) (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-1201 *3) (-541) (-10 -8 (-15 -3726 ($ $ $))))))) (-3513 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-411 *3)) (-5 *1 (-1204 *4 *3)) (-4 *3 (-13 (-1201 *4) (-541) (-10 -8 (-15 -3726 ($ $ $))))))))
-(-10 -7 (-15 -3513 ((-411 |#2|) |#2|)) (-15 -1912 (|#2| |#2|)) (-15 -4291 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))))))
-((-2796 (((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|)) 24)))
-(((-1205 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2796 ((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|)))) (-1018) (-1018) (-1142) (-1142) |#1| |#2|) (T -1205))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5 *7 *9)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-14 *7 (-1142)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1210 *6 *8 *10)) (-5 *1 (-1205 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1142)))))
-(-10 -7 (-15 -2796 ((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2271 (((-621 (-1048)) $) 72)) (-3010 (((-1142) $) 101)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2408 (($ $) 50 (|has| |#1| (-541)))) (-2477 (((-112) $) 52 (|has| |#1| (-541)))) (-2305 (($ $ (-400 (-549))) 96) (($ $ (-400 (-549)) (-400 (-549))) 95)) (-1480 (((-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) 103)) (-1663 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) 116 (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 160 (|has| |#1| (-356)))) (-3513 (((-411 $) $) 161 (|has| |#1| (-356)))) (-2134 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-2647 (((-112) $ $) 151 (|has| |#1| (-356)))) (-1639 (($ $) 132 (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-2825 (($ (-747) (-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) 169)) (-1685 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) 118 (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) 17 T CONST)) (-2094 (($ $ $) 155 (|has| |#1| (-356)))) (-2069 (($ $) 58)) (-3976 (((-3 $ "failed") $) 32)) (-2066 (($ $ $) 154 (|has| |#1| (-356)))) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 149 (|has| |#1| (-356)))) (-2471 (((-112) $) 162 (|has| |#1| (-356)))) (-3155 (((-112) $) 71)) (-1425 (($) 143 (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-400 (-549)) $) 98) (((-400 (-549)) $ (-400 (-549))) 97)) (-3987 (((-112) $) 30)) (-3930 (($ $ (-549)) 114 (|has| |#1| (-38 (-400 (-549)))))) (-2769 (($ $ (-892)) 99) (($ $ (-400 (-549))) 168)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 158 (|has| |#1| (-356)))) (-2427 (((-112) $) 60)) (-2244 (($ |#1| (-400 (-549))) 59) (($ $ (-1048) (-400 (-549))) 74) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) 73)) (-2796 (($ (-1 |#1| |#1|) $) 61)) (-3631 (($ $) 140 (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) 63)) (-2042 ((|#1| $) 64)) (-3696 (($ (-621 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-2677 (((-1124) $) 9)) (-1991 (($ $) 163 (|has| |#1| (-356)))) (-1531 (($ $) 167 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) 166 (-1536 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-930)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-549)))))))) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 148 (|has| |#1| (-356)))) (-3726 (($ (-621 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-2120 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 156 (|has| |#1| (-356)))) (-2975 (($ $ (-400 (-549))) 93)) (-2038 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 150 (|has| |#1| (-356)))) (-2718 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-4091 (((-747) $) 152 (|has| |#1| (-356)))) (-3340 ((|#1| $ (-400 (-549))) 102) (($ $ $) 79 (|has| (-400 (-549)) (-1078)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 153 (|has| |#1| (-356)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-621 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-3068 (((-400 (-549)) $) 62)) (-1697 (($ $) 130 (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) 129 (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) 120 (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) 128 (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) 70)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541)))) (-2944 ((|#1| $ (-400 (-549))) 57)) (-3407 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-1723 (((-747)) 28)) (-2597 ((|#1| $) 100)) (-1732 (($ $) 139 (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) 127 (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) 51 (|has| |#1| (-541)))) (-1708 (($ $) 138 (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) 126 (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) 137 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-400 (-549))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) 136 (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) 124 (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) 135 (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) 134 (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) 122 (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-621 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 113 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
-(((-1206 |#1|) (-138) (-1018)) (T -1206))
-((-2825 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| *4)))) (-4 *4 (-1018)) (-4 *1 (-1206 *4)))) (-2769 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-4 *1 (-1206 *3)) (-4 *3 (-1018)))) (-1531 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549)))))) (-1531 (*1 *1 *1 *2) (-1536 (-12 (-5 *2 (-1142)) (-4 *1 (-1206 *3)) (-4 *3 (-1018)) (-12 (-4 *3 (-29 (-549))) (-4 *3 (-930)) (-4 *3 (-1164)) (-4 *3 (-38 (-400 (-549)))))) (-12 (-5 *2 (-1142)) (-4 *1 (-1206 *3)) (-4 *3 (-1018)) (-12 (|has| *3 (-15 -2271 ((-621 *2) *3))) (|has| *3 (-15 -1531 (*3 *3 *2))) (-4 *3 (-38 (-400 (-549)))))))))
-(-13 (-1203 |t#1| (-400 (-549))) (-10 -8 (-15 -2825 ($ (-747) (-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |t#1|))))) (-15 -2769 ($ $ (-400 (-549)))) (IF (|has| |t#1| (-38 (-400 (-549)))) (PROGN (-15 -1531 ($ $)) (IF (|has| |t#1| (-15 -1531 (|t#1| |t#1| (-1142)))) (IF (|has| |t#1| (-15 -2271 ((-621 (-1142)) |t#1|))) (-15 -1531 ($ $ (-1142))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1164)) (IF (|has| |t#1| (-930)) (IF (|has| |t#1| (-29 (-549))) (-15 -1531 ($ $ (-1142))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-973)) (-6 (-1164))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-400 (-549))) . T) ((-25) . T) ((-38 #1=(-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-549)))) ((-94) |has| |#1| (-38 (-400 (-549)))) ((-101) . T) ((-111 #1# #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-549)))) ((-279 $ $) |has| (-400 (-549)) (-1078)) ((-283) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-549)))) ((-541) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-624 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142)))) ((-944 |#1| #0# (-1048)) . T) ((-891) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-549)))) ((-1024 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1164) |has| |#1| (-38 (-400 (-549)))) ((-1167) |has| |#1| (-38 (-400 (-549)))) ((-1183) |has| |#1| (-356)) ((-1203 |#1| #0#) . T))
-((-3166 (((-112) $) 12)) (-2713 (((-3 |#3| "failed") $) 17)) (-2658 ((|#3| $) 14)))
-(((-1207 |#1| |#2| |#3|) (-10 -8 (-15 -2658 (|#3| |#1|)) (-15 -2713 ((-3 |#3| "failed") |#1|)) (-15 -3166 ((-112) |#1|))) (-1208 |#2| |#3|) (-1018) (-1185 |#2|)) (T -1207))
-NIL
-(-10 -8 (-15 -2658 (|#3| |#1|)) (-15 -2713 ((-3 |#3| "failed") |#1|)) (-15 -3166 ((-112) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2271 (((-621 (-1048)) $) 72)) (-3010 (((-1142) $) 101)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2408 (($ $) 50 (|has| |#1| (-541)))) (-2477 (((-112) $) 52 (|has| |#1| (-541)))) (-2305 (($ $ (-400 (-549))) 96) (($ $ (-400 (-549)) (-400 (-549))) 95)) (-1480 (((-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) 103)) (-1663 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) 116 (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 160 (|has| |#1| (-356)))) (-3513 (((-411 $) $) 161 (|has| |#1| (-356)))) (-2134 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-2647 (((-112) $ $) 151 (|has| |#1| (-356)))) (-1639 (($ $) 132 (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-2825 (($ (-747) (-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) 169)) (-1685 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) 118 (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) 17 T CONST)) (-2713 (((-3 |#2| "failed") $) 180)) (-2658 ((|#2| $) 179)) (-2094 (($ $ $) 155 (|has| |#1| (-356)))) (-2069 (($ $) 58)) (-3976 (((-3 $ "failed") $) 32)) (-1668 (((-400 (-549)) $) 177)) (-2066 (($ $ $) 154 (|has| |#1| (-356)))) (-2366 (($ (-400 (-549)) |#2|) 178)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 149 (|has| |#1| (-356)))) (-2471 (((-112) $) 162 (|has| |#1| (-356)))) (-3155 (((-112) $) 71)) (-1425 (($) 143 (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-400 (-549)) $) 98) (((-400 (-549)) $ (-400 (-549))) 97)) (-3987 (((-112) $) 30)) (-3930 (($ $ (-549)) 114 (|has| |#1| (-38 (-400 (-549)))))) (-2769 (($ $ (-892)) 99) (($ $ (-400 (-549))) 168)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 158 (|has| |#1| (-356)))) (-2427 (((-112) $) 60)) (-2244 (($ |#1| (-400 (-549))) 59) (($ $ (-1048) (-400 (-549))) 74) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) 73)) (-2796 (($ (-1 |#1| |#1|) $) 61)) (-3631 (($ $) 140 (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) 63)) (-2042 ((|#1| $) 64)) (-3696 (($ (-621 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-4220 ((|#2| $) 176)) (-2338 (((-3 |#2| "failed") $) 174)) (-2354 ((|#2| $) 175)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 163 (|has| |#1| (-356)))) (-1531 (($ $) 167 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) 166 (-1536 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-930)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-549)))))))) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 148 (|has| |#1| (-356)))) (-3726 (($ (-621 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-2120 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 156 (|has| |#1| (-356)))) (-2975 (($ $ (-400 (-549))) 93)) (-2038 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 150 (|has| |#1| (-356)))) (-2718 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-4091 (((-747) $) 152 (|has| |#1| (-356)))) (-3340 ((|#1| $ (-400 (-549))) 102) (($ $ $) 79 (|has| (-400 (-549)) (-1078)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 153 (|has| |#1| (-356)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-621 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-3068 (((-400 (-549)) $) 62)) (-1697 (($ $) 130 (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) 129 (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) 120 (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) 128 (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) 70)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 181) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541)))) (-2944 ((|#1| $ (-400 (-549))) 57)) (-3407 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-1723 (((-747)) 28)) (-2597 ((|#1| $) 100)) (-1732 (($ $) 139 (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) 127 (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) 51 (|has| |#1| (-541)))) (-1708 (($ $) 138 (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) 126 (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) 137 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-400 (-549))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) 136 (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) 124 (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) 135 (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) 134 (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) 122 (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-621 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 113 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
-(((-1208 |#1| |#2|) (-138) (-1018) (-1185 |t#1|)) (T -1208))
-((-3068 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1185 *3)) (-5 *2 (-400 (-549))))) (-3845 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-1208 *3 *2)) (-4 *2 (-1185 *3)))) (-2366 (*1 *1 *2 *3) (-12 (-5 *2 (-400 (-549))) (-4 *4 (-1018)) (-4 *1 (-1208 *4 *3)) (-4 *3 (-1185 *4)))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1185 *3)) (-5 *2 (-400 (-549))))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1185 *3)))) (-2354 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1185 *3)))) (-2338 (*1 *2 *1) (|partial| -12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1185 *3)))))
-(-13 (-1206 |t#1|) (-1009 |t#2|) (-10 -8 (-15 -2366 ($ (-400 (-549)) |t#2|)) (-15 -1668 ((-400 (-549)) $)) (-15 -4220 (|t#2| $)) (-15 -3068 ((-400 (-549)) $)) (-15 -3845 ($ |t#2|)) (-15 -2354 (|t#2| $)) (-15 -2338 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-400 (-549))) . T) ((-25) . T) ((-38 #1=(-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-549)))) ((-94) |has| |#1| (-38 (-400 (-549)))) ((-101) . T) ((-111 #1# #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-549)))) ((-279 $ $) |has| (-400 (-549)) (-1078)) ((-283) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-549)))) ((-541) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-624 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142)))) ((-944 |#1| #0# (-1048)) . T) ((-891) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-549)))) ((-1009 |#2|) . T) ((-1024 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1164) |has| |#1| (-38 (-400 (-549)))) ((-1167) |has| |#1| (-38 (-400 (-549)))) ((-1183) |has| |#1| (-356)) ((-1203 |#1| #0#) . T) ((-1206 |#1|) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2271 (((-621 (-1048)) $) NIL)) (-3010 (((-1142) $) 96)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-2305 (($ $ (-400 (-549))) 106) (($ $ (-400 (-549)) (-400 (-549))) 108)) (-1480 (((-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) 51)) (-1663 (($ $) 180 (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) 156 (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL (|has| |#1| (-356)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1639 (($ $) 176 (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) 152 (|has| |#1| (-38 (-400 (-549)))))) (-2825 (($ (-747) (-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) 61)) (-1685 (($ $) 184 (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) 160 (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#2| "failed") $) NIL)) (-2658 ((|#2| $) NIL)) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) 79)) (-1668 (((-400 (-549)) $) 13)) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-2366 (($ (-400 (-549)) |#2|) 11)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-2471 (((-112) $) NIL (|has| |#1| (-356)))) (-3155 (((-112) $) 68)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-400 (-549)) $) 103) (((-400 (-549)) $ (-400 (-549))) 104)) (-3987 (((-112) $) NIL)) (-3930 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2769 (($ $ (-892)) 120) (($ $ (-400 (-549))) 118)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-400 (-549))) 31) (($ $ (-1048) (-400 (-549))) NIL) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) NIL)) (-2796 (($ (-1 |#1| |#1|) $) 115)) (-3631 (($ $) 150 (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4220 ((|#2| $) 12)) (-2338 (((-3 |#2| "failed") $) 41)) (-2354 ((|#2| $) 42)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) 93 (|has| |#1| (-356)))) (-1531 (($ $) 135 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) 140 (-1536 (-12 (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1164)))))) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-356)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2975 (($ $ (-400 (-549))) 112)) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2718 (($ $) 148 (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-4091 (((-747) $) NIL (|has| |#1| (-356)))) (-3340 ((|#1| $ (-400 (-549))) 100) (($ $ $) 86 (|has| (-400 (-549)) (-1078)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) 127 (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-3068 (((-400 (-549)) $) 16)) (-1697 (($ $) 186 (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) 162 (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) 182 (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) 158 (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) 178 (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) 154 (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) 110)) (-3845 (((-834) $) NIL) (($ (-549)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-400 (-549))) 128 (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541)))) (-2944 ((|#1| $ (-400 (-549))) 99)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) 117)) (-2597 ((|#1| $) 98)) (-1732 (($ $) 192 (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) 168 (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1708 (($ $) 188 (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) 164 (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) 196 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 172 (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-400 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) 198 (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) 174 (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) 194 (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) 170 (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) 190 (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) 166 (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) 21 T CONST)) (-3287 (($) 17 T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2388 (((-112) $ $) 66)) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 92 (|has| |#1| (-356)))) (-2499 (($ $) 131) (($ $ $) 72)) (-2485 (($ $ $) 70)) (** (($ $ (-892)) NIL) (($ $ (-747)) 76) (($ $ (-549)) 145 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 146 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-1209 |#1| |#2|) (-1208 |#1| |#2|) (-1018) (-1185 |#1|)) (T -1209))
-NIL
-(-1208 |#1| |#2|)
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2271 (((-621 (-1048)) $) NIL)) (-3010 (((-1142) $) 11)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) NIL (|has| |#1| (-541)))) (-2305 (($ $ (-400 (-549))) NIL) (($ $ (-400 (-549)) (-400 (-549))) NIL)) (-1480 (((-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) NIL)) (-1663 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-1912 (($ $) NIL (|has| |#1| (-356)))) (-3513 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2647 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1639 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2825 (($ (-747) (-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) NIL)) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-1189 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1217 |#1| |#2| |#3|) "failed") $) 22)) (-2658 (((-1189 |#1| |#2| |#3|) $) NIL) (((-1217 |#1| |#2| |#3|) $) NIL)) (-2094 (($ $ $) NIL (|has| |#1| (-356)))) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-1668 (((-400 (-549)) $) 57)) (-2066 (($ $ $) NIL (|has| |#1| (-356)))) (-2366 (($ (-400 (-549)) (-1189 |#1| |#2| |#3|)) NIL)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-2471 (((-112) $) NIL (|has| |#1| (-356)))) (-3155 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-400 (-549)) $) NIL) (((-400 (-549)) $ (-400 (-549))) NIL)) (-3987 (((-112) $) NIL)) (-3930 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2769 (($ $ (-892)) NIL) (($ $ (-400 (-549))) NIL)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-400 (-549))) 30) (($ $ (-1048) (-400 (-549))) NIL) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-3631 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-3696 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4220 (((-1189 |#1| |#2| |#3|) $) 60)) (-2338 (((-3 (-1189 |#1| |#2| |#3|) "failed") $) NIL)) (-2354 (((-1189 |#1| |#2| |#3|) $) NIL)) (-2677 (((-1124) $) NIL)) (-1991 (($ $) NIL (|has| |#1| (-356)))) (-1531 (($ $) 39 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) NIL (-1536 (-12 (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1164))))) (($ $ (-1221 |#2|)) 40 (|has| |#1| (-38 (-400 (-549)))))) (-3988 (((-1086) $) NIL)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) NIL (|has| |#1| (-356)))) (-3726 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2120 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3628 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) NIL (|has| |#1| (-356)))) (-2975 (($ $ (-400 (-549))) NIL)) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2245 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2718 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-4091 (((-747) $) NIL (|has| |#1| (-356)))) (-3340 ((|#1| $ (-400 (-549))) NIL) (($ $ $) NIL (|has| (-400 (-549)) (-1078)))) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) NIL (|has| |#1| (-356)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $ (-1221 |#2|)) 38)) (-3068 (((-400 (-549)) $) NIL)) (-1697 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) NIL)) (-3845 (((-834) $) 89) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1189 |#1| |#2| |#3|)) 16) (($ (-1217 |#1| |#2| |#3|)) 17) (($ (-1221 |#2|)) 36) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541)))) (-2944 ((|#1| $ (-400 (-549))) NIL)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-2597 ((|#1| $) 12)) (-1732 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1708 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-400 (-549))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) 32 T CONST)) (-3287 (($) 26 T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 34)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-1210 |#1| |#2| |#3|) (-13 (-1208 |#1| (-1189 |#1| |#2| |#3|)) (-1009 (-1217 |#1| |#2| |#3|)) (-10 -8 (-15 -3845 ($ (-1221 |#2|))) (-15 -3455 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1210))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-1531 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
-(-13 (-1208 |#1| (-1189 |#1| |#2| |#3|)) (-1009 (-1217 |#1| |#2| |#3|)) (-10 -8 (-15 -3845 ($ (-1221 |#2|))) (-15 -3455 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 34)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2408 (($ $) NIL)) (-2477 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 (-549) "failed") $) NIL (|has| (-1210 |#2| |#3| |#4|) (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-1210 |#2| |#3| |#4|) (-1009 (-400 (-549))))) (((-3 (-1210 |#2| |#3| |#4|) "failed") $) 20)) (-2658 (((-549) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-1009 (-400 (-549))))) (((-1210 |#2| |#3| |#4|) $) NIL)) (-2069 (($ $) 35)) (-3976 (((-3 $ "failed") $) 25)) (-4212 (($ $) NIL (|has| (-1210 |#2| |#3| |#4|) (-444)))) (-3744 (($ $ (-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|) $) NIL)) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) 11)) (-2427 (((-112) $) NIL)) (-2244 (($ (-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) 23)) (-2856 (((-312 |#2| |#3| |#4|) $) NIL)) (-4058 (($ (-1 (-312 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) $) NIL)) (-2796 (($ (-1 (-1210 |#2| |#3| |#4|) (-1210 |#2| |#3| |#4|)) $) NIL)) (-2716 (((-3 (-816 |#2|) "failed") $) 75)) (-2027 (($ $) NIL)) (-2042 (((-1210 |#2| |#3| |#4|) $) 18)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2002 (((-112) $) NIL)) (-2012 (((-1210 |#2| |#3| |#4|) $) NIL)) (-2038 (((-3 $ "failed") $ (-1210 |#2| |#3| |#4|)) NIL (|has| (-1210 |#2| |#3| |#4|) (-541))) (((-3 $ "failed") $ $) NIL)) (-3894 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1210 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-621 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#2|)))))) (|:| |%type| (-1124))) "failed") $) 58)) (-3068 (((-312 |#2| |#3| |#4|) $) 14)) (-1931 (((-1210 |#2| |#3| |#4|) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-444)))) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ (-1210 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL (-1536 (|has| (-1210 |#2| |#3| |#4|) (-38 (-400 (-549)))) (|has| (-1210 |#2| |#3| |#4|) (-1009 (-400 (-549))))))) (-3330 (((-621 (-1210 |#2| |#3| |#4|)) $) NIL)) (-2944 (((-1210 |#2| |#3| |#4|) $ (-312 |#2| |#3| |#4|)) NIL)) (-3407 (((-3 $ "failed") $) NIL (|has| (-1210 |#2| |#3| |#4|) (-143)))) (-1723 (((-747)) NIL)) (-1544 (($ $ $ (-747)) NIL (|has| (-1210 |#2| |#3| |#4|) (-170)))) (-4053 (((-112) $ $) NIL)) (-3275 (($) 63 T CONST)) (-3287 (($) NIL T CONST)) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ (-1210 |#2| |#3| |#4|)) NIL (|has| (-1210 |#2| |#3| |#4|) (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-1210 |#2| |#3| |#4|)) NIL) (($ (-1210 |#2| |#3| |#4|) $) NIL) (($ (-400 (-549)) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| (-1210 |#2| |#3| |#4|) (-38 (-400 (-549)))))))
-(((-1211 |#1| |#2| |#3| |#4|) (-13 (-319 (-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-541) (-10 -8 (-15 -2716 ((-3 (-816 |#2|) "failed") $)) (-15 -3894 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1210 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-621 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#2|)))))) (|:| |%type| (-1124))) "failed") $)))) (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444)) (-13 (-27) (-1164) (-423 |#1|)) (-1142) |#2|) (T -1211))
-((-2716 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444))) (-5 *2 (-816 *4)) (-5 *1 (-1211 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-423 *3))) (-14 *5 (-1142)) (-14 *6 *4))) (-3894 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1210 *4 *5 *6)) (|:| |%expon| (-312 *4 *5 *6)) (|:| |%expTerms| (-621 (-2 (|:| |k| (-400 (-549))) (|:| |c| *4)))))) (|:| |%type| (-1124)))) (-5 *1 (-1211 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-423 *3))) (-14 *5 (-1142)) (-14 *6 *4))))
-(-13 (-319 (-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-541) (-10 -8 (-15 -2716 ((-3 (-816 |#2|) "failed") $)) (-15 -3894 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1210 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-621 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#2|)))))) (|:| |%type| (-1124))) "failed") $))))
-((-4160 ((|#2| $) 29)) (-2838 ((|#2| $) 18)) (-1342 (($ $) 36)) (-3637 (($ $ (-549)) 64)) (-1323 (((-112) $ (-747)) 33)) (-3751 ((|#2| $ |#2|) 61)) (-4277 ((|#2| $ |#2|) 59)) (-2253 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-1900 (($ $ (-621 $)) 60)) (-2828 ((|#2| $) 17)) (-3655 (($ $) NIL) (($ $ (-747)) 42)) (-3630 (((-621 $) $) 26)) (-1742 (((-112) $ $) 50)) (-4202 (((-112) $ (-747)) 32)) (-4289 (((-112) $ (-747)) 31)) (-2456 (((-112) $) 28)) (-3828 ((|#2| $) 24) (($ $ (-747)) 46)) (-3340 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4187 (((-112) $) 22)) (-1811 (($ $) 39)) (-1679 (($ $) 65)) (-2041 (((-747) $) 41)) (-2277 (($ $) 40)) (-1951 (($ $ $) 58) (($ |#2| $) NIL)) (-1935 (((-621 $) $) 27)) (-2388 (((-112) $ $) 48)) (-3774 (((-747) $) 35)))
-(((-1212 |#1| |#2|) (-10 -8 (-15 -3637 (|#1| |#1| (-549))) (-15 -2253 (|#2| |#1| "last" |#2|)) (-15 -4277 (|#2| |#1| |#2|)) (-15 -2253 (|#1| |#1| "rest" |#1|)) (-15 -2253 (|#2| |#1| "first" |#2|)) (-15 -1679 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 -2041 ((-747) |#1|)) (-15 -2277 (|#1| |#1|)) (-15 -2838 (|#2| |#1|)) (-15 -2828 (|#2| |#1|)) (-15 -1342 (|#1| |#1|)) (-15 -3828 (|#1| |#1| (-747))) (-15 -3340 (|#2| |#1| "last")) (-15 -3828 (|#2| |#1|)) (-15 -3655 (|#1| |#1| (-747))) (-15 -3340 (|#1| |#1| "rest")) (-15 -3655 (|#1| |#1|)) (-15 -3340 (|#2| |#1| "first")) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#1|)) (-15 -3751 (|#2| |#1| |#2|)) (-15 -2253 (|#2| |#1| "value" |#2|)) (-15 -1900 (|#1| |#1| (-621 |#1|))) (-15 -1742 ((-112) |#1| |#1|)) (-15 -4187 ((-112) |#1|)) (-15 -3340 (|#2| |#1| "value")) (-15 -4160 (|#2| |#1|)) (-15 -2456 ((-112) |#1|)) (-15 -3630 ((-621 |#1|) |#1|)) (-15 -1935 ((-621 |#1|) |#1|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -3774 ((-747) |#1|)) (-15 -1323 ((-112) |#1| (-747))) (-15 -4202 ((-112) |#1| (-747))) (-15 -4289 ((-112) |#1| (-747)))) (-1213 |#2|) (-1179)) (T -1212))
-NIL
-(-10 -8 (-15 -3637 (|#1| |#1| (-549))) (-15 -2253 (|#2| |#1| "last" |#2|)) (-15 -4277 (|#2| |#1| |#2|)) (-15 -2253 (|#1| |#1| "rest" |#1|)) (-15 -2253 (|#2| |#1| "first" |#2|)) (-15 -1679 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 -2041 ((-747) |#1|)) (-15 -2277 (|#1| |#1|)) (-15 -2838 (|#2| |#1|)) (-15 -2828 (|#2| |#1|)) (-15 -1342 (|#1| |#1|)) (-15 -3828 (|#1| |#1| (-747))) (-15 -3340 (|#2| |#1| "last")) (-15 -3828 (|#2| |#1|)) (-15 -3655 (|#1| |#1| (-747))) (-15 -3340 (|#1| |#1| "rest")) (-15 -3655 (|#1| |#1|)) (-15 -3340 (|#2| |#1| "first")) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#1|)) (-15 -3751 (|#2| |#1| |#2|)) (-15 -2253 (|#2| |#1| "value" |#2|)) (-15 -1900 (|#1| |#1| (-621 |#1|))) (-15 -1742 ((-112) |#1| |#1|)) (-15 -4187 ((-112) |#1|)) (-15 -3340 (|#2| |#1| "value")) (-15 -4160 (|#2| |#1|)) (-15 -2456 ((-112) |#1|)) (-15 -3630 ((-621 |#1|) |#1|)) (-15 -1935 ((-621 |#1|) |#1|)) (-15 -2388 ((-112) |#1| |#1|)) (-15 -3774 ((-747) |#1|)) (-15 -1323 ((-112) |#1| (-747))) (-15 -4202 ((-112) |#1| (-747))) (-15 -4289 ((-112) |#1| (-747))))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-4160 ((|#1| $) 48)) (-2838 ((|#1| $) 65)) (-1342 (($ $) 67)) (-3637 (($ $ (-549)) 52 (|has| $ (-6 -4337)))) (-1323 (((-112) $ (-747)) 8)) (-3751 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-1362 (($ $ $) 56 (|has| $ (-6 -4337)))) (-4277 ((|#1| $ |#1|) 54 (|has| $ (-6 -4337)))) (-2627 ((|#1| $ |#1|) 58 (|has| $ (-6 -4337)))) (-2253 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4337))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4337))) (($ $ "rest" $) 55 (|has| $ (-6 -4337))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4337)))) (-1900 (($ $ (-621 $)) 41 (|has| $ (-6 -4337)))) (-2828 ((|#1| $) 66)) (-1705 (($) 7 T CONST)) (-3655 (($ $) 73) (($ $ (-747)) 71)) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3630 (((-621 $) $) 50)) (-1742 (((-112) $ $) 42 (|has| |#1| (-1066)))) (-4202 (((-112) $ (-747)) 9)) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35)) (-4289 (((-112) $ (-747)) 10)) (-3590 (((-621 |#1|) $) 45)) (-2456 (((-112) $) 49)) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-3828 ((|#1| $) 70) (($ $ (-747)) 68)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-3645 ((|#1| $) 76) (($ $ (-747)) 74)) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1953 (((-549) $ $) 44)) (-4187 (((-112) $) 46)) (-1811 (($ $) 62)) (-1679 (($ $) 59 (|has| $ (-6 -4337)))) (-2041 (((-747) $) 63)) (-2277 (($ $) 64)) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-2281 (($ $) 13)) (-3091 (($ $ $) 61 (|has| $ (-6 -4337))) (($ $ |#1|) 60 (|has| $ (-6 -4337)))) (-1951 (($ $ $) 78) (($ |#1| $) 77)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-1935 (((-621 $) $) 51)) (-2937 (((-112) $ $) 43 (|has| |#1| (-1066)))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-1213 |#1|) (-138) (-1179)) (T -1213))
-((-1951 (*1 *1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-1951 (*1 *1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-3645 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1179)))) (-3655 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1213 *3)) (-4 *3 (-1179)))) (-3655 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1179)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-3828 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1179)))) (-1342 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-2838 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-2277 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-2041 (*1 *2 *1) (-12 (-4 *1 (-1213 *3)) (-4 *3 (-1179)) (-5 *2 (-747)))) (-1811 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-3091 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-3091 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-1679 (*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-2627 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-2253 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-1362 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-2253 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *3)) (-4 *3 (-1179)))) (-4277 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-2253 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))) (-3637 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (|has| *1 (-6 -4337)) (-4 *1 (-1213 *3)) (-4 *3 (-1179)))))
-(-13 (-981 |t#1|) (-10 -8 (-15 -1951 ($ $ $)) (-15 -1951 ($ |t#1| $)) (-15 -3645 (|t#1| $)) (-15 -3340 (|t#1| $ "first")) (-15 -3645 ($ $ (-747))) (-15 -3655 ($ $)) (-15 -3340 ($ $ "rest")) (-15 -3655 ($ $ (-747))) (-15 -3828 (|t#1| $)) (-15 -3340 (|t#1| $ "last")) (-15 -3828 ($ $ (-747))) (-15 -1342 ($ $)) (-15 -2828 (|t#1| $)) (-15 -2838 (|t#1| $)) (-15 -2277 ($ $)) (-15 -2041 ((-747) $)) (-15 -1811 ($ $)) (IF (|has| $ (-6 -4337)) (PROGN (-15 -3091 ($ $ $)) (-15 -3091 ($ $ |t#1|)) (-15 -1679 ($ $)) (-15 -2627 (|t#1| $ |t#1|)) (-15 -2253 (|t#1| $ "first" |t#1|)) (-15 -1362 ($ $ $)) (-15 -2253 ($ $ "rest" $)) (-15 -4277 (|t#1| $ |t#1|)) (-15 -2253 (|t#1| $ "last" |t#1|)) (-15 -3637 ($ $ (-549)))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1066)) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-981 |#1|) . T) ((-1066) |has| |#1| (-1066)) ((-1179) . T))
-((-2796 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1214 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2796 (|#4| (-1 |#2| |#1|) |#3|))) (-1018) (-1018) (-1216 |#1|) (-1216 |#2|)) (T -1214))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1216 *6)) (-5 *1 (-1214 *5 *6 *4 *2)) (-4 *4 (-1216 *5)))))
-(-10 -7 (-15 -2796 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3166 (((-112) $) 15)) (-1663 (($ $) 92)) (-1511 (($ $) 68)) (-1639 (($ $) 88)) (-1485 (($ $) 64)) (-1685 (($ $) 96)) (-1538 (($ $) 72)) (-3631 (($ $) 62)) (-2718 (($ $) 60)) (-1697 (($ $) 98)) (-1551 (($ $) 74)) (-1674 (($ $) 94)) (-1525 (($ $) 70)) (-1649 (($ $) 90)) (-1500 (($ $) 66)) (-3845 (((-834) $) 48) (($ (-549)) NIL) (($ (-400 (-549))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1732 (($ $) 104)) (-1585 (($ $) 80)) (-1708 (($ $) 100)) (-1562 (($ $) 76)) (-1757 (($ $) 108)) (-1612 (($ $) 84)) (-1933 (($ $) 110)) (-1625 (($ $) 86)) (-1744 (($ $) 106)) (-1599 (($ $) 82)) (-1721 (($ $) 102)) (-1575 (($ $) 78)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-400 (-549))) 58)))
-(((-1215 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-400 (-549)))) (-15 -1511 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1538 (|#1| |#1|)) (-15 -1551 (|#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -1500 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -1625 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -1649 (|#1| |#1|)) (-15 -1674 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1933 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -2718 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3845 (|#1| |#2|)) (-15 -3845 (|#1| |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 (|#1| (-549))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892))) (-15 -3166 ((-112) |#1|)) (-15 -3845 ((-834) |#1|))) (-1216 |#2|) (-1018)) (T -1215))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-400 (-549)))) (-15 -1511 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1538 (|#1| |#1|)) (-15 -1551 (|#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -1500 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -1625 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -1649 (|#1| |#1|)) (-15 -1674 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1933 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -2718 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3845 (|#1| |#2|)) (-15 -3845 (|#1| |#1|)) (-15 -3845 (|#1| (-400 (-549)))) (-15 -3845 (|#1| (-549))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892))) (-15 -3166 ((-112) |#1|)) (-15 -3845 ((-834) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2271 (((-621 (-1048)) $) 72)) (-3010 (((-1142) $) 101)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2408 (($ $) 50 (|has| |#1| (-541)))) (-2477 (((-112) $) 52 (|has| |#1| (-541)))) (-2305 (($ $ (-747)) 96) (($ $ (-747) (-747)) 95)) (-1480 (((-1122 (-2 (|:| |k| (-747)) (|:| |c| |#1|))) $) 103)) (-1663 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) 116 (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) 19)) (-2134 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-1639 (($ $) 132 (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-2825 (($ (-1122 (-2 (|:| |k| (-747)) (|:| |c| |#1|)))) 153) (($ (-1122 |#1|)) 151)) (-1685 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) 118 (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) 17 T CONST)) (-2069 (($ $) 58)) (-3976 (((-3 $ "failed") $) 32)) (-1471 (($ $) 150)) (-1413 (((-923 |#1|) $ (-747)) 148) (((-923 |#1|) $ (-747) (-747)) 147)) (-3155 (((-112) $) 71)) (-1425 (($) 143 (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-747) $) 98) (((-747) $ (-747)) 97)) (-3987 (((-112) $) 30)) (-3930 (($ $ (-549)) 114 (|has| |#1| (-38 (-400 (-549)))))) (-2769 (($ $ (-892)) 99)) (-4299 (($ (-1 |#1| (-549)) $) 149)) (-2427 (((-112) $) 60)) (-2244 (($ |#1| (-747)) 59) (($ $ (-1048) (-747)) 74) (($ $ (-621 (-1048)) (-621 (-747))) 73)) (-2796 (($ (-1 |#1| |#1|) $) 61)) (-3631 (($ $) 140 (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) 63)) (-2042 ((|#1| $) 64)) (-2677 (((-1124) $) 9)) (-1531 (($ $) 145 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) 144 (-1536 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-930)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-549)))))))) (-3988 (((-1086) $) 10)) (-2975 (($ $ (-747)) 93)) (-2038 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-2718 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-2685 (((-1122 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-747)))))) (-3340 ((|#1| $ (-747)) 102) (($ $ $) 79 (|has| (-747) (-1078)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-621 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-3068 (((-747) $) 62)) (-1697 (($ $) 130 (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) 129 (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) 120 (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) 128 (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) 70)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541))) (($ |#1|) 45 (|has| |#1| (-170)))) (-3330 (((-1122 |#1|) $) 152)) (-2944 ((|#1| $ (-747)) 57)) (-3407 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-1723 (((-747)) 28)) (-2597 ((|#1| $) 100)) (-1732 (($ $) 139 (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) 127 (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) 51 (|has| |#1| (-541)))) (-1708 (($ $) 138 (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) 126 (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) 137 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-747)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-747)))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) 136 (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) 124 (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) 135 (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) 134 (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) 122 (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-621 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ |#1|) 146 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 113 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
-(((-1216 |#1|) (-138) (-1018)) (T -1216))
-((-2825 (*1 *1 *2) (-12 (-5 *2 (-1122 (-2 (|:| |k| (-747)) (|:| |c| *3)))) (-4 *3 (-1018)) (-4 *1 (-1216 *3)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1216 *3)) (-4 *3 (-1018)) (-5 *2 (-1122 *3)))) (-2825 (*1 *1 *2) (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-4 *1 (-1216 *3)))) (-1471 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1018)))) (-4299 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1216 *3)) (-4 *3 (-1018)))) (-1413 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-1216 *4)) (-4 *4 (-1018)) (-5 *2 (-923 *4)))) (-1413 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-4 *1 (-1216 *4)) (-4 *4 (-1018)) (-5 *2 (-923 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-1531 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549)))))) (-1531 (*1 *1 *1 *2) (-1536 (-12 (-5 *2 (-1142)) (-4 *1 (-1216 *3)) (-4 *3 (-1018)) (-12 (-4 *3 (-29 (-549))) (-4 *3 (-930)) (-4 *3 (-1164)) (-4 *3 (-38 (-400 (-549)))))) (-12 (-5 *2 (-1142)) (-4 *1 (-1216 *3)) (-4 *3 (-1018)) (-12 (|has| *3 (-15 -2271 ((-621 *2) *3))) (|has| *3 (-15 -1531 (*3 *3 *2))) (-4 *3 (-38 (-400 (-549)))))))))
-(-13 (-1203 |t#1| (-747)) (-10 -8 (-15 -2825 ($ (-1122 (-2 (|:| |k| (-747)) (|:| |c| |t#1|))))) (-15 -3330 ((-1122 |t#1|) $)) (-15 -2825 ($ (-1122 |t#1|))) (-15 -1471 ($ $)) (-15 -4299 ($ (-1 |t#1| (-549)) $)) (-15 -1413 ((-923 |t#1|) $ (-747))) (-15 -1413 ((-923 |t#1|) $ (-747) (-747))) (IF (|has| |t#1| (-356)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-549)))) (PROGN (-15 -1531 ($ $)) (IF (|has| |t#1| (-15 -1531 (|t#1| |t#1| (-1142)))) (IF (|has| |t#1| (-15 -2271 ((-621 (-1142)) |t#1|))) (-15 -1531 ($ $ (-1142))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1164)) (IF (|has| |t#1| (-930)) (IF (|has| |t#1| (-29 (-549))) (-15 -1531 ($ $ (-1142))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-973)) (-6 (-1164))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-747)) . T) ((-25) . T) ((-38 #1=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-35) |has| |#1| (-38 (-400 (-549)))) ((-94) |has| |#1| (-38 (-400 (-549)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-747) |#1|))) ((-277) |has| |#1| (-38 (-400 (-549)))) ((-279 $ $) |has| (-747) (-1078)) ((-283) |has| |#1| (-541)) ((-484) |has| |#1| (-38 (-400 (-549)))) ((-541) |has| |#1| (-541)) ((-624 #1#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142)))) ((-944 |#1| #0# (-1048)) . T) ((-973) |has| |#1| (-38 (-400 (-549)))) ((-1024 #1#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1164) |has| |#1| (-38 (-400 (-549)))) ((-1167) |has| |#1| (-38 (-400 (-549)))) ((-1203 |#1| #0#) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2271 (((-621 (-1048)) $) NIL)) (-3010 (((-1142) $) 87)) (-2984 (((-1198 |#2| |#1|) $ (-747)) 73)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2408 (($ $) NIL (|has| |#1| (-541)))) (-2477 (((-112) $) 137 (|has| |#1| (-541)))) (-2305 (($ $ (-747)) 122) (($ $ (-747) (-747)) 124)) (-1480 (((-1122 (-2 (|:| |k| (-747)) (|:| |c| |#1|))) $) 42)) (-1663 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1511 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2384 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1639 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1485 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2825 (($ (-1122 (-2 (|:| |k| (-747)) (|:| |c| |#1|)))) 53) (($ (-1122 |#1|)) NIL)) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1538 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1705 (($) NIL T CONST)) (-2870 (($ $) 128)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-1471 (($ $) 135)) (-1413 (((-923 |#1|) $ (-747)) 63) (((-923 |#1|) $ (-747) (-747)) 65)) (-3155 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2078 (((-747) $) NIL) (((-747) $ (-747)) NIL)) (-3987 (((-112) $) NIL)) (-3189 (($ $) 112)) (-3930 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3816 (($ (-549) (-549) $) 130)) (-2769 (($ $ (-892)) 134)) (-4299 (($ (-1 |#1| (-549)) $) 106)) (-2427 (((-112) $) NIL)) (-2244 (($ |#1| (-747)) 15) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-2796 (($ (-1 |#1| |#1|) $) 94)) (-3631 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2027 (($ $) NIL)) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-3316 (($ $) 110)) (-1513 (($ $) 108)) (-3495 (($ (-549) (-549) $) 132)) (-1531 (($ $) 145 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1142)) 151 (-1536 (-12 (|has| |#1| (-15 -1531 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -2271 ((-621 (-1142)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1164))))) (($ $ (-1221 |#2|)) 146 (|has| |#1| (-38 (-400 (-549)))))) (-3988 (((-1086) $) NIL)) (-3214 (($ $ (-549) (-549)) 116)) (-2975 (($ $ (-747)) 118)) (-2038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2718 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2868 (($ $) 114)) (-2685 (((-1122 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-747)))))) (-3340 ((|#1| $ (-747)) 91) (($ $ $) 126 (|has| (-747) (-1078)))) (-3455 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) 103 (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $ (-1221 |#2|)) 99)) (-3068 (((-747) $) NIL)) (-1697 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1551 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1674 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1525 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1649 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1500 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1814 (($ $) 120)) (-3845 (((-834) $) NIL) (($ (-549)) 24) (($ (-400 (-549))) 143 (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1198 |#2| |#1|)) 80) (($ (-1221 |#2|)) 20)) (-3330 (((-1122 |#1|) $) NIL)) (-2944 ((|#1| $ (-747)) 90)) (-3407 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1723 (((-747)) NIL)) (-2597 ((|#1| $) 88)) (-1732 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-4053 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1708 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1562 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2660 ((|#1| $ (-747)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-747)))) (|has| |#1| (-15 -3845 (|#1| (-1142))))))) (-1933 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1625 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1744 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1599 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1721 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3275 (($) 17 T CONST)) (-3287 (($) 13 T CONST)) (-1700 (($ $ (-621 (-1142)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-621 (-1142))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1142))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-2388 (((-112) $ $) NIL)) (-2512 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) 102)) (-2485 (($ $ $) 18)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ |#1|) 140 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
-(((-1217 |#1| |#2| |#3|) (-13 (-1216 |#1|) (-10 -8 (-15 -3845 ($ (-1198 |#2| |#1|))) (-15 -2984 ((-1198 |#2| |#1|) $ (-747))) (-15 -3845 ($ (-1221 |#2|))) (-15 -3455 ($ $ (-1221 |#2|))) (-15 -1513 ($ $)) (-15 -3316 ($ $)) (-15 -3189 ($ $)) (-15 -2868 ($ $)) (-15 -3214 ($ $ (-549) (-549))) (-15 -2870 ($ $)) (-15 -3816 ($ (-549) (-549) $)) (-15 -3495 ($ (-549) (-549) $)) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1217))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1198 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-1217 *3 *4 *5)))) (-2984 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1198 *5 *4)) (-5 *1 (-1217 *4 *5 *6)) (-4 *4 (-1018)) (-14 *5 (-1142)) (-14 *6 *4))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-1513 (*1 *1 *1) (-12 (-5 *1 (-1217 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-3316 (*1 *1 *1) (-12 (-5 *1 (-1217 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-3189 (*1 *1 *1) (-12 (-5 *1 (-1217 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-2868 (*1 *1 *1) (-12 (-5 *1 (-1217 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-3214 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3))) (-2870 (*1 *1 *1) (-12 (-5 *1 (-1217 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-3816 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3))) (-3495 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3))) (-1531 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
-(-13 (-1216 |#1|) (-10 -8 (-15 -3845 ($ (-1198 |#2| |#1|))) (-15 -2984 ((-1198 |#2| |#1|) $ (-747))) (-15 -3845 ($ (-1221 |#2|))) (-15 -3455 ($ $ (-1221 |#2|))) (-15 -1513 ($ $)) (-15 -3316 ($ $)) (-15 -3189 ($ $)) (-15 -2868 ($ $)) (-15 -3214 ($ $ (-549) (-549))) (-15 -2870 ($ $)) (-15 -3816 ($ (-549) (-549) $)) (-15 -3495 ($ (-549) (-549) $)) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -1531 ($ $ (-1221 |#2|))) |%noBranch|)))
-((-3757 (((-1 (-1122 |#1|) (-621 (-1122 |#1|))) (-1 |#2| (-621 |#2|))) 24)) (-1439 (((-1 (-1122 |#1|) (-1122 |#1|) (-1122 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2449 (((-1 (-1122 |#1|) (-1122 |#1|)) (-1 |#2| |#2|)) 13)) (-3048 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2698 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2158 ((|#2| (-1 |#2| (-621 |#2|)) (-621 |#1|)) 54)) (-4023 (((-621 |#2|) (-621 |#1|) (-621 (-1 |#2| (-621 |#2|)))) 61)) (-4022 ((|#2| |#2| |#2|) 43)))
-(((-1218 |#1| |#2|) (-10 -7 (-15 -2449 ((-1 (-1122 |#1|) (-1122 |#1|)) (-1 |#2| |#2|))) (-15 -1439 ((-1 (-1122 |#1|) (-1122 |#1|) (-1122 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3757 ((-1 (-1122 |#1|) (-621 (-1122 |#1|))) (-1 |#2| (-621 |#2|)))) (-15 -4022 (|#2| |#2| |#2|)) (-15 -2698 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2158 (|#2| (-1 |#2| (-621 |#2|)) (-621 |#1|))) (-15 -4023 ((-621 |#2|) (-621 |#1|) (-621 (-1 |#2| (-621 |#2|)))))) (-38 (-400 (-549))) (-1216 |#1|)) (T -1218))
-((-4023 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 (-1 *6 (-621 *6)))) (-4 *5 (-38 (-400 (-549)))) (-4 *6 (-1216 *5)) (-5 *2 (-621 *6)) (-5 *1 (-1218 *5 *6)))) (-2158 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-621 *2))) (-5 *4 (-621 *5)) (-4 *5 (-38 (-400 (-549)))) (-4 *2 (-1216 *5)) (-5 *1 (-1218 *5 *2)))) (-3048 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1216 *4)) (-5 *1 (-1218 *4 *2)) (-4 *4 (-38 (-400 (-549)))))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1216 *4)) (-5 *1 (-1218 *4 *2)) (-4 *4 (-38 (-400 (-549)))))) (-4022 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1216 *3)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-621 *5))) (-4 *5 (-1216 *4)) (-4 *4 (-38 (-400 (-549)))) (-5 *2 (-1 (-1122 *4) (-621 (-1122 *4)))) (-5 *1 (-1218 *4 *5)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1216 *4)) (-4 *4 (-38 (-400 (-549)))) (-5 *2 (-1 (-1122 *4) (-1122 *4) (-1122 *4))) (-5 *1 (-1218 *4 *5)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1216 *4)) (-4 *4 (-38 (-400 (-549)))) (-5 *2 (-1 (-1122 *4) (-1122 *4))) (-5 *1 (-1218 *4 *5)))))
-(-10 -7 (-15 -2449 ((-1 (-1122 |#1|) (-1122 |#1|)) (-1 |#2| |#2|))) (-15 -1439 ((-1 (-1122 |#1|) (-1122 |#1|) (-1122 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3757 ((-1 (-1122 |#1|) (-621 (-1122 |#1|))) (-1 |#2| (-621 |#2|)))) (-15 -4022 (|#2| |#2| |#2|)) (-15 -2698 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3048 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2158 (|#2| (-1 |#2| (-621 |#2|)) (-621 |#1|))) (-15 -4023 ((-621 |#2|) (-621 |#1|) (-621 (-1 |#2| (-621 |#2|))))))
-((-2907 ((|#2| |#4| (-747)) 30)) (-3459 ((|#4| |#2|) 25)) (-3854 ((|#4| (-400 |#2|)) 52 (|has| |#1| (-541)))) (-2592 (((-1 |#4| (-621 |#4|)) |#3|) 46)))
-(((-1219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3459 (|#4| |#2|)) (-15 -2907 (|#2| |#4| (-747))) (-15 -2592 ((-1 |#4| (-621 |#4|)) |#3|)) (IF (|has| |#1| (-541)) (-15 -3854 (|#4| (-400 |#2|))) |%noBranch|)) (-1018) (-1201 |#1|) (-632 |#2|) (-1216 |#1|)) (T -1219))
-((-3854 (*1 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *5 (-1201 *4)) (-4 *4 (-541)) (-4 *4 (-1018)) (-4 *2 (-1216 *4)) (-5 *1 (-1219 *4 *5 *6 *2)) (-4 *6 (-632 *5)))) (-2592 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-1201 *4)) (-5 *2 (-1 *6 (-621 *6))) (-5 *1 (-1219 *4 *5 *3 *6)) (-4 *3 (-632 *5)) (-4 *6 (-1216 *4)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-4 *2 (-1201 *5)) (-5 *1 (-1219 *5 *2 *6 *3)) (-4 *6 (-632 *2)) (-4 *3 (-1216 *5)))) (-3459 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *3 (-1201 *4)) (-4 *2 (-1216 *4)) (-5 *1 (-1219 *4 *3 *5 *2)) (-4 *5 (-632 *3)))))
-(-10 -7 (-15 -3459 (|#4| |#2|)) (-15 -2907 (|#2| |#4| (-747))) (-15 -2592 ((-1 |#4| (-621 |#4|)) |#3|)) (IF (|has| |#1| (-541)) (-15 -3854 (|#4| (-400 |#2|))) |%noBranch|))
+((-4116 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-1119 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4142 (*1 *2 *1 *3) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-1142)))) (-4115 (*1 *2 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4114 (*1 *2 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4113 (*1 *1 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4113 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4112 (*1 *2 *1 *3) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4300 (*2 (-1142)))) (-4 *2 (-1018)))) (-4111 (*1 *1 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-4110 (*1 *2 *1 *3) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1119 *3)))))
+(-13 (-944 |t#1| |t#2| (-1048)) (-10 -8 (-15 -4116 ((-1119 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4142 (|t#1| $ |t#2|)) (-15 -4174 ((-1142) $)) (-15 -4115 (|t#1| $)) (-15 -4119 ($ $ (-890))) (-15 -4114 (|t#2| $)) (-15 -4114 (|t#2| $ |t#2|)) (-15 -4113 ($ $ |t#2|)) (-15 -4113 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4300 (|t#1| (-1142)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4112 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4111 ($ $ |t#2|)) (IF (|has| |t#2| (-1078)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-227)) (IF (|has| |t#1| (-871 (-1142))) (-6 (-871 (-1142))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4110 ((-1119 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-279 $ $) |has| |#2| (-1078)) ((-283) |has| |#1| (-542)) ((-542) |has| |#1| (-542)) ((-624 #1#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-944 |#1| |#2| (-1048)) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-4117 ((|#2| |#2|) 12)) (-4312 (((-398 |#2|) |#2|) 14)) (-4118 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-535))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-535)))) 30)))
+(((-1204 |#1| |#2|) (-10 -7 (-15 -4312 ((-398 |#2|) |#2|)) (-15 -4117 (|#2| |#2|)) (-15 -4118 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-535))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-535)))))) (-542) (-13 (-1200 |#1|) (-542) (-10 -8 (-15 -3478 ($ $ $))))) (T -1204))
+((-4118 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-535)))) (-4 *4 (-13 (-1200 *3) (-542) (-10 -8 (-15 -3478 ($ $ $))))) (-4 *3 (-542)) (-5 *1 (-1204 *3 *4)))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-1200 *3) (-542) (-10 -8 (-15 -3478 ($ $ $))))))) (-4312 (*1 *2 *3) (-12 (-4 *4 (-542)) (-5 *2 (-398 *3)) (-5 *1 (-1204 *4 *3)) (-4 *3 (-13 (-1200 *4) (-542) (-10 -8 (-15 -3478 ($ $ $))))))))
+(-10 -7 (-15 -4312 ((-398 |#2|) |#2|)) (-15 -4117 (|#2| |#2|)) (-15 -4118 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-535))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-535))))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 11)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) NIL) (($ $ (-400 (-535)) (-400 (-535))) NIL)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) NIL)) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) NIL)) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-1184 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1214 |#1| |#2| |#3|) #1#) $) 22)) (-3490 (((-1184 |#1| |#2| |#3|) $) NIL) (((-1214 |#1| |#2| |#3|) $) NIL)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-4123 (((-400 (-535)) $) 57)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-4124 (($ (-400 (-535)) (-1184 |#1| |#2| |#3|)) NIL)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) NIL) (((-400 (-535)) $ (-400 (-535))) NIL)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) NIL) (($ $ (-400 (-535))) NIL)) (-1697 (((-3 (-618 $) #2="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-400 (-535))) 30) (($ $ (-1048) (-400 (-535))) NIL) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4122 (((-1184 |#1| |#2| |#3|) $) 60)) (-4120 (((-3 (-1184 |#1| |#2| |#3|) "failed") $) NIL)) (-4121 (((-1184 |#1| |#2| |#3|) $) NIL)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-356)))) (-4155 (($ $) 39 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) NIL (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 40 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) NIL) (($ $ $) NIL (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $ (-1221 |#2|)) 38)) (-4290 (((-400 (-535)) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) NIL)) (-4300 (((-835) $) 89) (($ (-535)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1184 |#1| |#2| |#3|)) 16) (($ (-1214 |#1| |#2| |#3|)) 17) (($ (-1221 |#2|)) 36) (($ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 12)) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 32 T CONST)) (-2985 (($) 26 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 34)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ (-535)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-1205 |#1| |#2| |#3|) (-13 (-1209 |#1| (-1184 |#1| |#2| |#3|)) (-1009 (-1214 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1205))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1209 |#1| (-1184 |#1| |#2| |#3|)) (-1009 (-1214 |#1| |#2| |#3|)) (-10 -8 (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|)))
+((-4301 (((-1205 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1205 |#1| |#3| |#5|)) 24)))
+(((-1206 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4301 ((-1205 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1205 |#1| |#3| |#5|)))) (-1018) (-1018) (-1142) (-1142) |#1| |#2|) (T -1206))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5 *7 *9)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-14 *7 (-1142)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1205 *6 *8 *10)) (-5 *1 (-1206 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1142)))))
+(-10 -7 (-15 -4301 ((-1205 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1205 |#1| |#3| |#5|))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 (-1048)) $) 72)) (-4174 (((-1142) $) 101)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) 96) (($ $ (-400 (-535)) (-400 (-535))) 95)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) 103)) (-3829 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 116 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 160 (|has| |#1| (-356)))) (-4312 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3358 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3827 (($ $) 132 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) 169)) (-3831 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 118 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) 17 T CONST)) (-2883 (($ $ $) 155 (|has| |#1| (-356)))) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 154 (|has| |#1| (-356)))) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 149 (|has| |#1| (-356)))) (-4069 (((-112) $) 162 (|has| |#1| (-356)))) (-3213 (((-112) $) 71)) (-3973 (($) 143 (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) 98) (((-400 (-535)) $ (-400 (-535))) 97)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 114 (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) 99) (($ $ (-400 (-535))) 168)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 158 (|has| |#1| (-356)))) (-4280 (((-112) $) 60)) (-3214 (($ |#1| (-400 (-535))) 59) (($ $ (-1048) (-400 (-535))) 74) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) 73)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-4285 (($ $) 140 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-2008 (($ (-618 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-3576 (((-1124) $) 9)) (-2725 (($ $) 163 (|has| |#1| (-356)))) (-4155 (($ $) 167 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 166 (-3874 (-12 (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-535))))) (-12 (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-535)))))))) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 148 (|has| |#1| (-356)))) (-3478 (($ (-618 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-4075 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 156 (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) 93)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 150 (|has| |#1| (-356)))) (-4286 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) 152 (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) 102) (($ $ $) 79 (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 153 (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-4290 (((-400 (-535)) $) 62)) (-3832 (($ $) 130 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 129 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 120 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 128 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-4115 ((|#1| $) 100)) (-3835 (($ $) 139 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 127 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3833 (($ $) 138 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 126 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 137 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 136 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 124 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 135 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 134 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 122 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 113 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535)))))))
+(((-1207 |#1|) (-138) (-1018)) (T -1207))
+((-4161 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| *4)))) (-4 *4 (-1018)) (-4 *1 (-1207 *4)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-4 *1 (-1207 *3)) (-4 *3 (-1018)))) (-4155 (*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535)))))) (-4155 (*1 *1 *1 *2) (-3874 (-12 (-5 *2 (-1142)) (-4 *1 (-1207 *3)) (-4 *3 (-1018)) (-12 (-4 *3 (-29 (-535))) (-4 *3 (-931)) (-4 *3 (-1164)) (-4 *3 (-38 (-400 (-535)))))) (-12 (-5 *2 (-1142)) (-4 *1 (-1207 *3)) (-4 *3 (-1018)) (-12 (|has| *3 (-15 -3405 ((-618 *2) *3))) (|has| *3 (-15 -4155 (*3 *3 *2))) (-4 *3 (-38 (-400 (-535)))))))))
+(-13 (-1203 |t#1| (-400 (-535))) (-10 -8 (-15 -4161 ($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |t#1|))))) (-15 -4119 ($ $ (-400 (-535)))) (IF (|has| |t#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $)) (IF (|has| |t#1| (-15 -4155 (|t#1| |t#1| (-1142)))) (IF (|has| |t#1| (-15 -3405 ((-618 (-1142)) |t#1|))) (-15 -4155 ($ $ (-1142))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1164)) (IF (|has| |t#1| (-931)) (IF (|has| |t#1| (-29 (-535))) (-15 -4155 ($ $ (-1142))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-973)) (-6 (-1164))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-400 (-535))) . T) ((-25) . T) ((-38 #2=(-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-535)))) ((-94) |has| |#1| (-38 (-400 (-535)))) ((-101) . T) ((-111 #2# #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-535)))) ((-279 $ $) |has| (-400 (-535)) (-1078)) ((-283) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-535)))) ((-542) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-624 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) ((-944 |#1| #1# (-1048)) . T) ((-892) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-535)))) ((-1024 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1164) |has| |#1| (-38 (-400 (-535)))) ((-1167) |has| |#1| (-38 (-400 (-535)))) ((-1183) |has| |#1| (-356)) ((-1203 |#1| #1#) . T))
+((-3522 (((-112) $) 12)) (-3491 (((-3 |#3| "failed") $) 17)) (-3490 ((|#3| $) 14)))
+(((-1208 |#1| |#2| |#3|) (-10 -8 (-15 -3490 (|#3| |#1|)) (-15 -3491 ((-3 |#3| "failed") |#1|)) (-15 -3522 ((-112) |#1|))) (-1209 |#2| |#3|) (-1018) (-1186 |#2|)) (T -1208))
+NIL
+(-10 -8 (-15 -3490 (|#3| |#1|)) (-15 -3491 ((-3 |#3| "failed") |#1|)) (-15 -3522 ((-112) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 (-1048)) $) 72)) (-4174 (((-1142) $) 101)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) 96) (($ $ (-400 (-535)) (-400 (-535))) 95)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) 103)) (-3829 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 116 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 160 (|has| |#1| (-356)))) (-4312 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3358 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3827 (($ $) 132 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) 169)) (-3831 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 118 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#2| "failed") $) 180)) (-3490 ((|#2| $) 179)) (-2883 (($ $ $) 155 (|has| |#1| (-356)))) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-4123 (((-400 (-535)) $) 177)) (-2882 (($ $ $) 154 (|has| |#1| (-356)))) (-4124 (($ (-400 (-535)) |#2|) 178)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 149 (|has| |#1| (-356)))) (-4069 (((-112) $) 162 (|has| |#1| (-356)))) (-3213 (((-112) $) 71)) (-3973 (($) 143 (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) 98) (((-400 (-535)) $ (-400 (-535))) 97)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 114 (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) 99) (($ $ (-400 (-535))) 168)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 158 (|has| |#1| (-356)))) (-4280 (((-112) $) 60)) (-3214 (($ |#1| (-400 (-535))) 59) (($ $ (-1048) (-400 (-535))) 74) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) 73)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-4285 (($ $) 140 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-2008 (($ (-618 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-4122 ((|#2| $) 176)) (-4120 (((-3 |#2| "failed") $) 174)) (-4121 ((|#2| $) 175)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 163 (|has| |#1| (-356)))) (-4155 (($ $) 167 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 166 (-3874 (-12 (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-535))))) (-12 (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-535)))))))) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 148 (|has| |#1| (-356)))) (-3478 (($ (-618 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-4075 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 156 (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) 93)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 150 (|has| |#1| (-356)))) (-4286 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) 152 (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) 102) (($ $ $) 79 (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 153 (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-4290 (((-400 (-535)) $) 62)) (-3832 (($ $) 130 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 129 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 120 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 128 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 181) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-4115 ((|#1| $) 100)) (-3835 (($ $) 139 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 127 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3833 (($ $) 138 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 126 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 137 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 136 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 124 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 135 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 134 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 122 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 113 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535)))))))
+(((-1209 |#1| |#2|) (-138) (-1018) (-1186 |t#1|)) (T -1209))
+((-4290 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1186 *3)) (-5 *2 (-400 (-535))))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-1209 *3 *2)) (-4 *2 (-1186 *3)))) (-4124 (*1 *1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-4 *4 (-1018)) (-4 *1 (-1209 *4 *3)) (-4 *3 (-1186 *4)))) (-4123 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1186 *3)) (-5 *2 (-400 (-535))))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))) (-4120 (*1 *2 *1) (|partial| -12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))))
+(-13 (-1207 |t#1|) (-1009 |t#2|) (-10 -8 (-15 -4124 ($ (-400 (-535)) |t#2|)) (-15 -4123 ((-400 (-535)) $)) (-15 -4122 (|t#2| $)) (-15 -4290 ((-400 (-535)) $)) (-15 -4300 ($ |t#2|)) (-15 -4121 (|t#2| $)) (-15 -4120 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-400 (-535))) . T) ((-25) . T) ((-38 #2=(-400 (-535))) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-535)))) ((-94) |has| |#1| (-38 (-400 (-535)))) ((-101) . T) ((-111 #2# #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-535)))) ((-279 $ $) |has| (-400 (-535)) (-1078)) ((-283) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-535)))) ((-542) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-624 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) ((-944 |#1| #1# (-1048)) . T) ((-892) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-535)))) ((-1009 |#2|) . T) ((-1024 #2#) -3874 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-535))))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1164) |has| |#1| (-38 (-400 (-535)))) ((-1167) |has| |#1| (-38 (-400 (-535)))) ((-1183) |has| |#1| (-356)) ((-1203 |#1| #1#) . T) ((-1207 |#1|) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 96)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) NIL (|has| |#1| (-542)))) (-4113 (($ $ (-400 (-535))) 106) (($ $ (-400 (-535)) (-400 (-535))) 108)) (-4116 (((-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|))) $) 51)) (-3829 (($ $) 180 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 156 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-356)))) (-4312 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3827 (($ $) 176 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 152 (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-747) (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#1|)))) 61)) (-3831 (($ $) 184 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 160 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| "failed") $) NIL)) (-3490 ((|#2| $) NIL)) (-2883 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) 79)) (-4123 (((-400 (-535)) $) 13)) (-2882 (($ $ $) NIL (|has| |#1| (-356)))) (-4124 (($ (-400 (-535)) |#2|) 11)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) NIL (|has| |#1| (-356)))) (-4069 (((-112) $) NIL (|has| |#1| (-356)))) (-3213 (((-112) $) 68)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-400 (-535)) $) 103) (((-400 (-535)) $ (-400 (-535))) 104)) (-2493 (((-112) $) NIL)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) 120) (($ $ (-400 (-535))) 118)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-400 (-535))) 31) (($ $ (-1048) (-400 (-535))) NIL) (($ $ (-618 (-1048)) (-618 (-400 (-535)))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) 115)) (-4285 (($ $) 150 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-2008 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4122 ((|#2| $) 12)) (-4120 (((-3 |#2| "failed") $) 41)) (-4121 ((|#2| $) 42)) (-3576 (((-1124) $) NIL)) (-2725 (($ $) 93 (|has| |#1| (-356)))) (-4155 (($ $) 135 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 140 (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))))))) (-3577 (((-1086) $) NIL)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) NIL (|has| |#1| (-356)))) (-3478 (($ (-618 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4075 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) NIL (|has| |#1| (-356)))) (-4111 (($ $ (-400 (-535))) 112)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-3061 (((-3 (-618 $) "failed") (-618 $) $) NIL (|has| |#1| (-356)))) (-4286 (($ $) 148 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))))) (-1699 (((-747) $) NIL (|has| |#1| (-356)))) (-4142 ((|#1| $ (-400 (-535))) 100) (($ $ $) 86 (|has| (-400 (-535)) (-1078)))) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) NIL (|has| |#1| (-356)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) 127 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-4290 (((-400 (-535)) $) 16)) (-3832 (($ $) 186 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 162 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 182 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 158 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 178 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 154 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 110)) (-4300 (((-835) $) NIL) (($ (-535)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-400 (-535))) 128 (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542)))) (-4023 ((|#1| $ (-400 (-535))) 99)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) 117)) (-4115 ((|#1| $) 98)) (-3835 (($ $) 192 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 168 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) 188 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 164 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 196 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 172 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-400 (-535))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-535))))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 198 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 174 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 194 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 170 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 190 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 166 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 21 T CONST)) (-2985 (($) 17 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-535)) |#1|))))) (-3375 (((-112) $ $) 66)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 92 (|has| |#1| (-356)))) (-4180 (($ $) 131) (($ $ $) 72)) (-4182 (($ $ $) 70)) (** (($ $ (-890)) NIL) (($ $ (-747)) 76) (($ $ (-535)) 145 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 146 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-1210 |#1| |#2|) (-1209 |#1| |#2|) (-1018) (-1186 |#1|)) (T -1210))
+NIL
+(-1209 |#1| |#2|)
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 34)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL)) (-2171 (($ $) NIL)) (-2169 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 (-535) #1="failed") $) NIL (|has| (-1205 |#2| |#3| |#4|) (-1009 (-535)))) (((-3 (-400 (-535)) #1#) $) NIL (|has| (-1205 |#2| |#3| |#4|) (-1009 (-400 (-535))))) (((-3 (-1205 |#2| |#3| |#4|) #1#) $) 20)) (-3490 (((-535) $) NIL (|has| (-1205 |#2| |#3| |#4|) (-1009 (-535)))) (((-400 (-535)) $) NIL (|has| (-1205 |#2| |#3| |#4|) (-1009 (-400 (-535))))) (((-1205 |#2| |#3| |#4|) $) NIL)) (-4302 (($ $) 35)) (-3804 (((-3 $ "failed") $) 25)) (-3840 (($ $) NIL (|has| (-1205 |#2| |#3| |#4|) (-444)))) (-1716 (($ $ (-1205 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|) $) NIL)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) 11)) (-4280 (((-112) $) NIL)) (-3214 (($ (-1205 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) 23)) (-3141 (((-312 |#2| |#3| |#4|) $) NIL)) (-1717 (($ (-1 (-312 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) $) NIL)) (-4301 (($ (-1 (-1205 |#2| |#3| |#4|) (-1205 |#2| |#3| |#4|)) $) NIL)) (-4126 (((-3 (-815 |#2|) "failed") $) 75)) (-3215 (($ $) NIL)) (-3508 (((-1205 |#2| |#3| |#4|) $) 18)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 (((-1205 |#2| |#3| |#4|) $) NIL)) (-3803 (((-3 $ "failed") $ (-1205 |#2| |#3| |#4|)) NIL (|has| (-1205 |#2| |#3| |#4|) (-542))) (((-3 $ "failed") $ $) NIL)) (-4125 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1205 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-618 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#2|)))))) (|:| |%type| (-1124))) "failed") $) 58)) (-4290 (((-312 |#2| |#3| |#4|) $) 14)) (-3138 (((-1205 |#2| |#3| |#4|) $) NIL (|has| (-1205 |#2| |#3| |#4|) (-444)))) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ (-1205 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-400 (-535))) NIL (-3874 (|has| (-1205 |#2| |#3| |#4|) (-1009 (-400 (-535)))) (|has| (-1205 |#2| |#3| |#4|) (-38 (-400 (-535))))))) (-4160 (((-618 (-1205 |#2| |#3| |#4|)) $) NIL)) (-4023 (((-1205 |#2| |#3| |#4|) $ (-312 |#2| |#3| |#4|)) NIL)) (-3023 (((-3 $ "failed") $) NIL (|has| (-1205 |#2| |#3| |#4|) (-143)))) (-3444 (((-747)) NIL)) (-1715 (($ $ $ (-747)) NIL (|has| (-1205 |#2| |#3| |#4|) (-170)))) (-2170 (((-112) $ $) NIL)) (-2979 (($) 63 T CONST)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ (-1205 |#2| |#3| |#4|)) NIL (|has| (-1205 |#2| |#3| |#4|) (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ (-1205 |#2| |#3| |#4|)) NIL) (($ (-1205 |#2| |#3| |#4|) $) NIL) (($ (-400 (-535)) $) NIL (|has| (-1205 |#2| |#3| |#4|) (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| (-1205 |#2| |#3| |#4|) (-38 (-400 (-535)))))))
+(((-1211 |#1| |#2| |#3| |#4|) (-13 (-319 (-1205 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-542) (-10 -8 (-15 -4126 ((-3 (-815 |#2|) "failed") $)) (-15 -4125 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1205 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-618 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#2|)))))) (|:| |%type| (-1124))) "failed") $)))) (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444)) (-13 (-27) (-1164) (-414 |#1|)) (-1142) |#2|) (T -1211))
+((-4126 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444))) (-5 *2 (-815 *4)) (-5 *1 (-1211 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-414 *3))) (-14 *5 (-1142)) (-14 *6 *4))) (-4125 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1205 *4 *5 *6)) (|:| |%expon| (-312 *4 *5 *6)) (|:| |%expTerms| (-618 (-2 (|:| |k| (-400 (-535))) (|:| |c| *4)))))) (|:| |%type| (-1124)))) (-5 *1 (-1211 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-414 *3))) (-14 *5 (-1142)) (-14 *6 *4))))
+(-13 (-319 (-1205 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-542) (-10 -8 (-15 -4126 ((-3 (-815 |#2|) "failed") $)) (-15 -4125 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1205 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-618 (-2 (|:| |k| (-400 (-535))) (|:| |c| |#2|)))))) (|:| |%type| (-1124))) "failed") $))))
+((-3744 ((|#2| $) 29)) (-4137 ((|#2| $) 18)) (-4139 (($ $) 36)) (-4127 (($ $ (-535)) 64)) (-1264 (((-112) $ (-747)) 33)) (-3346 ((|#2| $ |#2|) 61)) (-4128 ((|#2| $ |#2|) 59)) (-4130 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3347 (($ $ (-618 $)) 60)) (-4138 ((|#2| $) 17)) (-4141 (($ $) NIL) (($ $ (-747)) 42)) (-3352 (((-618 $) $) 26)) (-3348 (((-112) $ $) 50)) (-4065 (((-112) $ (-747)) 32)) (-4062 (((-112) $ (-747)) 31)) (-3864 (((-112) $) 28)) (-4140 ((|#2| $) 24) (($ $ (-747)) 46)) (-4142 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3979 (((-112) $) 22)) (-4134 (($ $) 39)) (-4132 (($ $) 65)) (-4135 (((-747) $) 41)) (-4136 (($ $) 40)) (-4144 (($ $ $) 58) (($ |#2| $) NIL)) (-3859 (((-618 $) $) 27)) (-3375 (((-112) $ $) 48)) (-4299 (((-747) $) 35)))
+(((-1212 |#1| |#2|) (-10 -8 (-15 -4127 (|#1| |#1| (-535))) (-15 -4130 (|#2| |#1| "last" |#2|)) (-15 -4128 (|#2| |#1| |#2|)) (-15 -4130 (|#1| |#1| "rest" |#1|)) (-15 -4130 (|#2| |#1| "first" |#2|)) (-15 -4132 (|#1| |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -4135 ((-747) |#1|)) (-15 -4136 (|#1| |#1|)) (-15 -4137 (|#2| |#1|)) (-15 -4138 (|#2| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4140 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| "last")) (-15 -4140 (|#2| |#1|)) (-15 -4141 (|#1| |#1| (-747))) (-15 -4142 (|#1| |#1| "rest")) (-15 -4141 (|#1| |#1|)) (-15 -4142 (|#2| |#1| "first")) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#1|)) (-15 -3346 (|#2| |#1| |#2|)) (-15 -4130 (|#2| |#1| #1="value" |#2|)) (-15 -3347 (|#1| |#1| (-618 |#1|))) (-15 -3348 ((-112) |#1| |#1|)) (-15 -3979 ((-112) |#1|)) (-15 -4142 (|#2| |#1| #1#)) (-15 -3744 (|#2| |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -3352 ((-618 |#1|) |#1|)) (-15 -3859 ((-618 |#1|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747)))) (-1213 |#2|) (-1178)) (T -1212))
+NIL
+(-10 -8 (-15 -4127 (|#1| |#1| (-535))) (-15 -4130 (|#2| |#1| "last" |#2|)) (-15 -4128 (|#2| |#1| |#2|)) (-15 -4130 (|#1| |#1| "rest" |#1|)) (-15 -4130 (|#2| |#1| "first" |#2|)) (-15 -4132 (|#1| |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -4135 ((-747) |#1|)) (-15 -4136 (|#1| |#1|)) (-15 -4137 (|#2| |#1|)) (-15 -4138 (|#2| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4140 (|#1| |#1| (-747))) (-15 -4142 (|#2| |#1| "last")) (-15 -4140 (|#2| |#1|)) (-15 -4141 (|#1| |#1| (-747))) (-15 -4142 (|#1| |#1| "rest")) (-15 -4141 (|#1| |#1|)) (-15 -4142 (|#2| |#1| "first")) (-15 -4144 (|#1| |#2| |#1|)) (-15 -4144 (|#1| |#1| |#1|)) (-15 -3346 (|#2| |#1| |#2|)) (-15 -4130 (|#2| |#1| #1="value" |#2|)) (-15 -3347 (|#1| |#1| (-618 |#1|))) (-15 -3348 ((-112) |#1| |#1|)) (-15 -3979 ((-112) |#1|)) (-15 -4142 (|#2| |#1| #1#)) (-15 -3744 (|#2| |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -3352 ((-618 |#1|) |#1|)) (-15 -3859 ((-618 |#1|) |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4299 ((-747) |#1|)) (-15 -1264 ((-112) |#1| (-747))) (-15 -4065 ((-112) |#1| (-747))) (-15 -4062 ((-112) |#1| (-747))))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3744 ((|#1| $) 48)) (-4137 ((|#1| $) 65)) (-4139 (($ $) 67)) (-4127 (($ $ (-535)) 52 (|has| $ (-6 -4337)))) (-1264 (((-112) $ (-747)) 8)) (-3346 ((|#1| $ |#1|) 39 (|has| $ (-6 -4337)))) (-4129 (($ $ $) 56 (|has| $ (-6 -4337)))) (-4128 ((|#1| $ |#1|) 54 (|has| $ (-6 -4337)))) (-4131 ((|#1| $ |#1|) 58 (|has| $ (-6 -4337)))) (-4130 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4337))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4337))) (($ $ "rest" $) 55 (|has| $ (-6 -4337))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4337)))) (-3347 (($ $ (-618 $)) 41 (|has| $ (-6 -4337)))) (-4138 ((|#1| $) 66)) (-3879 (($) 7 T CONST)) (-4141 (($ $) 73) (($ $ (-747)) 71)) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-3352 (((-618 $) $) 50)) (-3348 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-4065 (((-112) $ (-747)) 9)) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35)) (-4062 (((-112) $ (-747)) 10)) (-3351 (((-618 |#1|) $) 45)) (-3864 (((-112) $) 49)) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-4140 ((|#1| $) 70) (($ $ (-747)) 68)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 76) (($ $ (-747)) 74)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ #1#) 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3350 (((-535) $ $) 44)) (-3979 (((-112) $) 46)) (-4134 (($ $) 62)) (-4132 (($ $) 59 (|has| $ (-6 -4337)))) (-4135 (((-747) $) 63)) (-4136 (($ $) 64)) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3742 (($ $) 13)) (-4133 (($ $ $) 61 (|has| $ (-6 -4337))) (($ $ |#1|) 60 (|has| $ (-6 -4337)))) (-4144 (($ $ $) 78) (($ |#1| $) 77)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-3859 (((-618 $) $) 51)) (-3349 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-1213 |#1|) (-138) (-1178)) (T -1213))
+((-4144 (*1 *1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4144 (*1 *1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) (-4141 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) (-4141 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4140 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) (-4139 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4136 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-1213 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))) (-4134 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4133 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4133 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4132 (*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4131 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4130 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4129 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4130 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *3)) (-4 *3 (-1178)))) (-4128 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4130 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-535)) (|has| *1 (-6 -4337)) (-4 *1 (-1213 *3)) (-4 *3 (-1178)))))
+(-13 (-981 |t#1|) (-10 -8 (-15 -4144 ($ $ $)) (-15 -4144 ($ |t#1| $)) (-15 -4143 (|t#1| $)) (-15 -4142 (|t#1| $ "first")) (-15 -4143 ($ $ (-747))) (-15 -4141 ($ $)) (-15 -4142 ($ $ "rest")) (-15 -4141 ($ $ (-747))) (-15 -4140 (|t#1| $)) (-15 -4142 (|t#1| $ "last")) (-15 -4140 ($ $ (-747))) (-15 -4139 ($ $)) (-15 -4138 (|t#1| $)) (-15 -4137 (|t#1| $)) (-15 -4136 ($ $)) (-15 -4135 ((-747) $)) (-15 -4134 ($ $)) (IF (|has| $ (-6 -4337)) (PROGN (-15 -4133 ($ $ $)) (-15 -4133 ($ $ |t#1|)) (-15 -4132 ($ $)) (-15 -4131 (|t#1| $ |t#1|)) (-15 -4130 (|t#1| $ "first" |t#1|)) (-15 -4129 ($ $ $)) (-15 -4130 ($ $ "rest" $)) (-15 -4128 (|t#1| $ |t#1|)) (-15 -4130 (|t#1| $ "last" |t#1|)) (-15 -4127 ($ $ (-535)))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-593 (-835)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1178) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-3405 (((-618 (-1048)) $) NIL)) (-4174 (((-1142) $) 87)) (-4154 (((-1193 |#2| |#1|) $ (-747)) 73)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) NIL (|has| |#1| (-542)))) (-2171 (($ $) NIL (|has| |#1| (-542)))) (-2169 (((-112) $) 137 (|has| |#1| (-542)))) (-4113 (($ $ (-747)) 122) (($ $ (-747) (-747)) 124)) (-4116 (((-1119 (-2 (|:| |k| (-747)) (|:| |c| |#1|))) $) 42)) (-3829 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) NIL)) (-3358 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-1119 (-2 (|:| |k| (-747)) (|:| |c| |#1|)))) 53) (($ (-1119 |#1|)) NIL)) (-3831 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) NIL T CONST)) (-4147 (($ $) 128)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-4159 (($ $) 135)) (-4157 (((-917 |#1|) $ (-747)) 63) (((-917 |#1|) $ (-747) (-747)) 65)) (-3213 (((-112) $) NIL)) (-3973 (($) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-747) $) NIL) (((-747) $ (-747)) NIL)) (-2493 (((-112) $) NIL)) (-4150 (($ $) 112)) (-3332 (($ $ (-535)) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4146 (($ (-535) (-535) $) 130)) (-4119 (($ $ (-890)) 134)) (-4158 (($ (-1 |#1| (-535)) $) 106)) (-4280 (((-112) $) NIL)) (-3214 (($ |#1| (-747)) 15) (($ $ (-1048) (-747)) NIL) (($ $ (-618 (-1048)) (-618 (-747))) NIL)) (-4301 (($ (-1 |#1| |#1|) $) 94)) (-4285 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-4151 (($ $) 110)) (-4152 (($ $) 108)) (-4145 (($ (-535) (-535) $) 132)) (-4155 (($ $) 145 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 151 (-3874 (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164))) (-12 (|has| |#1| (-38 (-400 (-535)))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|)))))) (($ $ (-1221 |#2|)) 146 (|has| |#1| (-38 (-400 (-535)))))) (-3577 (((-1086) $) NIL)) (-4148 (($ $ (-535) (-535)) 116)) (-4111 (($ $ (-747)) 118)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-542)))) (-4286 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4149 (($ $) 114)) (-4110 (((-1119 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-747)))))) (-4142 ((|#1| $ (-747)) 91) (($ $ $) 126 (|has| (-747) (-1078)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) 103 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $ (-1221 |#2|)) 99)) (-4290 (((-747) $) NIL)) (-3832 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 120)) (-4300 (((-835) $) NIL) (($ (-535)) 24) (($ (-400 (-535))) 143 (|has| |#1| (-38 (-400 (-535))))) (($ $) NIL (|has| |#1| (-542))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1193 |#2| |#1|)) 80) (($ (-1221 |#2|)) 20)) (-4160 (((-1119 |#1|) $) NIL)) (-4023 ((|#1| $ (-747)) 90)) (-3023 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3444 (((-747)) NIL)) (-4115 ((|#1| $) 88)) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-747)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-747)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 17 T CONST)) (-2985 (($) 13 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-618 (-1142))) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) NIL (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-3375 (((-112) $ $) NIL)) (-4291 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) 102)) (-4182 (($ $ $) 18)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ |#1|) 140 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-400 (-535)) $) NIL (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) NIL (|has| |#1| (-38 (-400 (-535)))))))
+(((-1214 |#1| |#2| |#3|) (-13 (-1217 |#1|) (-10 -8 (-15 -4300 ($ (-1193 |#2| |#1|))) (-15 -4154 ((-1193 |#2| |#1|) $ (-747))) (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (-15 -4152 ($ $)) (-15 -4151 ($ $)) (-15 -4150 ($ $)) (-15 -4149 ($ $)) (-15 -4148 ($ $ (-535) (-535))) (-15 -4147 ($ $)) (-15 -4146 ($ (-535) (-535) $)) (-15 -4145 ($ (-535) (-535) $)) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|))) (-1018) (-1142) |#1|) (T -1214))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-1193 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-1214 *3 *4 *5)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1193 *5 *4)) (-5 *1 (-1214 *4 *5 *6)) (-4 *4 (-1018)) (-14 *5 (-1142)) (-14 *6 *4))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-4152 (*1 *1 *1) (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-4151 (*1 *1 *1) (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-4150 (*1 *1 *1) (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-4149 (*1 *1 *1) (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-4148 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3))) (-4147 (*1 *1 *1) (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))) (-4146 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3))) (-4145 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1217 |#1|) (-10 -8 (-15 -4300 ($ (-1193 |#2| |#1|))) (-15 -4154 ((-1193 |#2| |#1|) $ (-747))) (-15 -4300 ($ (-1221 |#2|))) (-15 -4153 ($ $ (-1221 |#2|))) (-15 -4152 ($ $)) (-15 -4151 ($ $)) (-15 -4150 ($ $)) (-15 -4149 ($ $)) (-15 -4148 ($ $ (-535) (-535))) (-15 -4147 ($ $)) (-15 -4146 ($ (-535) (-535) $)) (-15 -4145 ($ (-535) (-535) $)) (IF (|has| |#1| (-38 (-400 (-535)))) (-15 -4155 ($ $ (-1221 |#2|))) |%noBranch|)))
+((-4301 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4301 (|#4| (-1 |#2| |#1|) |#3|))) (-1018) (-1018) (-1217 |#1|) (-1217 |#2|)) (T -1215))
+((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1217 *6)) (-5 *1 (-1215 *5 *6 *4 *2)) (-4 *4 (-1217 *5)))))
+(-10 -7 (-15 -4301 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3522 (((-112) $) 15)) (-3829 (($ $) 92)) (-3985 (($ $) 68)) (-3827 (($ $) 88)) (-3984 (($ $) 64)) (-3831 (($ $) 96)) (-3983 (($ $) 72)) (-4285 (($ $) 62)) (-4286 (($ $) 60)) (-3832 (($ $) 98)) (-3982 (($ $) 74)) (-3830 (($ $) 94)) (-3981 (($ $) 70)) (-3828 (($ $) 90)) (-3980 (($ $) 66)) (-4300 (((-835) $) 48) (($ (-535)) NIL) (($ (-400 (-535))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3835 (($ $) 104)) (-3823 (($ $) 80)) (-3833 (($ $) 100)) (-3821 (($ $) 76)) (-3837 (($ $) 108)) (-3825 (($ $) 84)) (-3838 (($ $) 110)) (-3826 (($ $) 86)) (-3836 (($ $) 106)) (-3824 (($ $) 82)) (-3834 (($ $) 102)) (-3822 (($ $) 78)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-400 (-535))) 58)))
+(((-1216 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-400 (-535)))) (-15 -3985 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3983 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -3824 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3832 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| (-535))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890))) (-15 -3522 ((-112) |#1|)) (-15 -4300 ((-835) |#1|))) (-1217 |#2|) (-1018)) (T -1216))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-400 (-535)))) (-15 -3985 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3983 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -3824 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3832 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4300 (|#1| |#2|)) (-15 -4300 (|#1| |#1|)) (-15 -4300 (|#1| (-400 (-535)))) (-15 -4300 (|#1| (-535))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-890))) (-15 -3522 ((-112) |#1|)) (-15 -4300 ((-835) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-3405 (((-618 (-1048)) $) 72)) (-4174 (((-1142) $) 101)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 49 (|has| |#1| (-542)))) (-2171 (($ $) 50 (|has| |#1| (-542)))) (-2169 (((-112) $) 52 (|has| |#1| (-542)))) (-4113 (($ $ (-747)) 96) (($ $ (-747) (-747)) 95)) (-4116 (((-1119 (-2 (|:| |k| (-747)) (|:| |c| |#1|))) $) 103)) (-3829 (($ $) 133 (|has| |#1| (-38 (-400 (-535)))))) (-3985 (($ $) 116 (|has| |#1| (-38 (-400 (-535)))))) (-1363 (((-3 $ "failed") $ $) 19)) (-3358 (($ $) 115 (|has| |#1| (-38 (-400 (-535)))))) (-3827 (($ $) 132 (|has| |#1| (-38 (-400 (-535)))))) (-3984 (($ $) 117 (|has| |#1| (-38 (-400 (-535)))))) (-4161 (($ (-1119 (-2 (|:| |k| (-747)) (|:| |c| |#1|)))) 153) (($ (-1119 |#1|)) 151)) (-3831 (($ $) 131 (|has| |#1| (-38 (-400 (-535)))))) (-3983 (($ $) 118 (|has| |#1| (-38 (-400 (-535)))))) (-3879 (($) 17 T CONST)) (-4302 (($ $) 58)) (-3804 (((-3 $ "failed") $) 32)) (-4159 (($ $) 150)) (-4157 (((-917 |#1|) $ (-747)) 148) (((-917 |#1|) $ (-747) (-747)) 147)) (-3213 (((-112) $) 71)) (-3973 (($) 143 (|has| |#1| (-38 (-400 (-535)))))) (-4114 (((-747) $) 98) (((-747) $ (-747)) 97)) (-2493 (((-112) $) 30)) (-3332 (($ $ (-535)) 114 (|has| |#1| (-38 (-400 (-535)))))) (-4119 (($ $ (-890)) 99)) (-4158 (($ (-1 |#1| (-535)) $) 149)) (-4280 (((-112) $) 60)) (-3214 (($ |#1| (-747)) 59) (($ $ (-1048) (-747)) 74) (($ $ (-618 (-1048)) (-618 (-747))) 73)) (-4301 (($ (-1 |#1| |#1|) $) 61)) (-4285 (($ $) 140 (|has| |#1| (-38 (-400 (-535)))))) (-3215 (($ $) 63)) (-3508 ((|#1| $) 64)) (-3576 (((-1124) $) 9)) (-4155 (($ $) 145 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-1142)) 144 (-3874 (-12 (|has| |#1| (-29 (-535))) (|has| |#1| (-931)) (|has| |#1| (-1164)) (|has| |#1| (-38 (-400 (-535))))) (-12 (|has| |#1| (-15 -3405 ((-618 (-1142)) |#1|))) (|has| |#1| (-15 -4155 (|#1| |#1| (-1142)))) (|has| |#1| (-38 (-400 (-535)))))))) (-3577 (((-1086) $) 10)) (-4111 (($ $ (-747)) 93)) (-3803 (((-3 $ "failed") $ $) 48 (|has| |#1| (-542)))) (-4286 (($ $) 141 (|has| |#1| (-38 (-400 (-535)))))) (-4110 (((-1119 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-747)))))) (-4142 ((|#1| $ (-747)) 102) (($ $ $) 79 (|has| (-747) (-1078)))) (-4153 (($ $ (-618 (-1142)) (-618 (-747))) 87 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) 86 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-618 (-1142))) 85 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) 84 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-4290 (((-747) $) 62)) (-3832 (($ $) 130 (|has| |#1| (-38 (-400 (-535)))))) (-3982 (($ $) 119 (|has| |#1| (-38 (-400 (-535)))))) (-3830 (($ $) 129 (|has| |#1| (-38 (-400 (-535)))))) (-3981 (($ $) 120 (|has| |#1| (-38 (-400 (-535)))))) (-3828 (($ $) 128 (|has| |#1| (-38 (-400 (-535)))))) (-3980 (($ $) 121 (|has| |#1| (-38 (-400 (-535)))))) (-3212 (($ $) 70)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ (-400 (-535))) 55 (|has| |#1| (-38 (-400 (-535))))) (($ $) 47 (|has| |#1| (-542))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4160 (((-1119 |#1|) $) 152)) (-4023 ((|#1| $ (-747)) 57)) (-3023 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3444 (((-747)) 28)) (-4115 ((|#1| $) 100)) (-3835 (($ $) 139 (|has| |#1| (-38 (-400 (-535)))))) (-3823 (($ $) 127 (|has| |#1| (-38 (-400 (-535)))))) (-2170 (((-112) $ $) 51 (|has| |#1| (-542)))) (-3833 (($ $) 138 (|has| |#1| (-38 (-400 (-535)))))) (-3821 (($ $) 126 (|has| |#1| (-38 (-400 (-535)))))) (-3837 (($ $) 137 (|has| |#1| (-38 (-400 (-535)))))) (-3825 (($ $) 125 (|has| |#1| (-38 (-400 (-535)))))) (-4112 ((|#1| $ (-747)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-747)))) (|has| |#1| (-15 -4300 (|#1| (-1142))))))) (-3838 (($ $) 136 (|has| |#1| (-38 (-400 (-535)))))) (-3826 (($ $) 124 (|has| |#1| (-38 (-400 (-535)))))) (-3836 (($ $) 135 (|has| |#1| (-38 (-400 (-535)))))) (-3824 (($ $) 123 (|has| |#1| (-38 (-400 (-535)))))) (-3834 (($ $) 134 (|has| |#1| (-38 (-400 (-535)))))) (-3822 (($ $) 122 (|has| |#1| (-38 (-400 (-535)))))) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-2990 (($ $ (-618 (-1142)) (-618 (-747))) 91 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142) (-747)) 90 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-618 (-1142))) 89 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1142)) 88 (-12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ |#1|) 146 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 113 (|has| |#1| (-38 (-400 (-535)))))) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-535)) $) 54 (|has| |#1| (-38 (-400 (-535))))) (($ $ (-400 (-535))) 53 (|has| |#1| (-38 (-400 (-535)))))))
+(((-1217 |#1|) (-138) (-1018)) (T -1217))
+((-4161 (*1 *1 *2) (-12 (-5 *2 (-1119 (-2 (|:| |k| (-747)) (|:| |c| *3)))) (-4 *3 (-1018)) (-4 *1 (-1217 *3)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1018)) (-5 *2 (-1119 *3)))) (-4161 (*1 *1 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-4 *1 (-1217 *3)))) (-4159 (*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-535))) (-4 *1 (-1217 *3)) (-4 *3 (-1018)))) (-4157 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-1217 *4)) (-4 *4 (-1018)) (-5 *2 (-917 *4)))) (-4157 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-4 *1 (-1217 *4)) (-4 *4 (-1018)) (-5 *2 (-917 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-4155 (*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535)))))) (-4155 (*1 *1 *1 *2) (-3874 (-12 (-5 *2 (-1142)) (-4 *1 (-1217 *3)) (-4 *3 (-1018)) (-12 (-4 *3 (-29 (-535))) (-4 *3 (-931)) (-4 *3 (-1164)) (-4 *3 (-38 (-400 (-535)))))) (-12 (-5 *2 (-1142)) (-4 *1 (-1217 *3)) (-4 *3 (-1018)) (-12 (|has| *3 (-15 -3405 ((-618 *2) *3))) (|has| *3 (-15 -4155 (*3 *3 *2))) (-4 *3 (-38 (-400 (-535)))))))))
+(-13 (-1203 |t#1| (-747)) (-10 -8 (-15 -4161 ($ (-1119 (-2 (|:| |k| (-747)) (|:| |c| |t#1|))))) (-15 -4160 ((-1119 |t#1|) $)) (-15 -4161 ($ (-1119 |t#1|))) (-15 -4159 ($ $)) (-15 -4158 ($ (-1 |t#1| (-535)) $)) (-15 -4157 ((-917 |t#1|) $ (-747))) (-15 -4157 ((-917 |t#1|) $ (-747) (-747))) (IF (|has| |t#1| (-356)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-535)))) (PROGN (-15 -4155 ($ $)) (IF (|has| |t#1| (-15 -4155 (|t#1| |t#1| (-1142)))) (IF (|has| |t#1| (-15 -3405 ((-618 (-1142)) |t#1|))) (-15 -4155 ($ $ (-1142))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1164)) (IF (|has| |t#1| (-931)) (IF (|has| |t#1| (-29 (-535))) (-15 -4155 ($ $ (-1142))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-973)) (-6 (-1164))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-747)) . T) ((-25) . T) ((-38 #2=(-400 (-535))) |has| |#1| (-38 (-400 (-535)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-542)) ((-35) |has| |#1| (-38 (-400 (-535)))) ((-94) |has| |#1| (-38 (-400 (-535)))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-400 (-535)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-747) |#1|))) ((-277) |has| |#1| (-38 (-400 (-535)))) ((-279 $ $) |has| (-747) (-1078)) ((-283) |has| |#1| (-542)) ((-484) |has| |#1| (-38 (-400 (-535)))) ((-542) |has| |#1| (-542)) ((-624 #2#) |has| |#1| (-38 (-400 (-535)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #2#) |has| |#1| (-38 (-400 (-535)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-542)) ((-703) . T) ((-871 (-1142)) -12 (|has| |#1| (-871 (-1142))) (|has| |#1| (-15 * (|#1| (-747) |#1|)))) ((-944 |#1| #1# (-1048)) . T) ((-973) |has| |#1| (-38 (-400 (-535)))) ((-1024 #2#) |has| |#1| (-38 (-400 (-535)))) ((-1024 |#1|) . T) ((-1024 $) -3874 (|has| |#1| (-542)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1164) |has| |#1| (-38 (-400 (-535)))) ((-1167) |has| |#1| (-38 (-400 (-535)))) ((-1203 |#1| #1#) . T))
+((-4164 (((-1 (-1119 |#1|) (-618 (-1119 |#1|))) (-1 |#2| (-618 |#2|))) 24)) (-4163 (((-1 (-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4162 (((-1 (-1119 |#1|) (-1119 |#1|)) (-1 |#2| |#2|)) 13)) (-4167 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4166 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4168 ((|#2| (-1 |#2| (-618 |#2|)) (-618 |#1|)) 54)) (-4169 (((-618 |#2|) (-618 |#1|) (-618 (-1 |#2| (-618 |#2|)))) 61)) (-4165 ((|#2| |#2| |#2|) 43)))
+(((-1218 |#1| |#2|) (-10 -7 (-15 -4162 ((-1 (-1119 |#1|) (-1119 |#1|)) (-1 |#2| |#2|))) (-15 -4163 ((-1 (-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4164 ((-1 (-1119 |#1|) (-618 (-1119 |#1|))) (-1 |#2| (-618 |#2|)))) (-15 -4165 (|#2| |#2| |#2|)) (-15 -4166 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4167 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4168 (|#2| (-1 |#2| (-618 |#2|)) (-618 |#1|))) (-15 -4169 ((-618 |#2|) (-618 |#1|) (-618 (-1 |#2| (-618 |#2|)))))) (-38 (-400 (-535))) (-1217 |#1|)) (T -1218))
+((-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 (-1 *6 (-618 *6)))) (-4 *5 (-38 (-400 (-535)))) (-4 *6 (-1217 *5)) (-5 *2 (-618 *6)) (-5 *1 (-1218 *5 *6)))) (-4168 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-618 *2))) (-5 *4 (-618 *5)) (-4 *5 (-38 (-400 (-535)))) (-4 *2 (-1217 *5)) (-5 *1 (-1218 *5 *2)))) (-4167 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-1218 *4 *2)) (-4 *4 (-38 (-400 (-535)))))) (-4166 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-1218 *4 *2)) (-4 *4 (-38 (-400 (-535)))))) (-4165 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1217 *3)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-618 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-535)))) (-5 *2 (-1 (-1119 *4) (-618 (-1119 *4)))) (-5 *1 (-1218 *4 *5)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-535)))) (-5 *2 (-1 (-1119 *4) (-1119 *4) (-1119 *4))) (-5 *1 (-1218 *4 *5)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-535)))) (-5 *2 (-1 (-1119 *4) (-1119 *4))) (-5 *1 (-1218 *4 *5)))))
+(-10 -7 (-15 -4162 ((-1 (-1119 |#1|) (-1119 |#1|)) (-1 |#2| |#2|))) (-15 -4163 ((-1 (-1119 |#1|) (-1119 |#1|) (-1119 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4164 ((-1 (-1119 |#1|) (-618 (-1119 |#1|))) (-1 |#2| (-618 |#2|)))) (-15 -4165 (|#2| |#2| |#2|)) (-15 -4166 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4167 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4168 (|#2| (-1 |#2| (-618 |#2|)) (-618 |#1|))) (-15 -4169 ((-618 |#2|) (-618 |#1|) (-618 (-1 |#2| (-618 |#2|))))))
+((-4171 ((|#2| |#4| (-747)) 30)) (-4170 ((|#4| |#2|) 25)) (-4173 ((|#4| (-400 |#2|)) 52 (|has| |#1| (-542)))) (-4172 (((-1 |#4| (-618 |#4|)) |#3|) 46)))
+(((-1219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4170 (|#4| |#2|)) (-15 -4171 (|#2| |#4| (-747))) (-15 -4172 ((-1 |#4| (-618 |#4|)) |#3|)) (IF (|has| |#1| (-542)) (-15 -4173 (|#4| (-400 |#2|))) |%noBranch|)) (-1018) (-1200 |#1|) (-634 |#2|) (-1217 |#1|)) (T -1219))
+((-4173 (*1 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-542)) (-4 *4 (-1018)) (-4 *2 (-1217 *4)) (-5 *1 (-1219 *4 *5 *6 *2)) (-4 *6 (-634 *5)))) (-4172 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-1200 *4)) (-5 *2 (-1 *6 (-618 *6))) (-5 *1 (-1219 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-1217 *4)))) (-4171 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-4 *2 (-1200 *5)) (-5 *1 (-1219 *5 *2 *6 *3)) (-4 *6 (-634 *2)) (-4 *3 (-1217 *5)))) (-4170 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *3 (-1200 *4)) (-4 *2 (-1217 *4)) (-5 *1 (-1219 *4 *3 *5 *2)) (-4 *5 (-634 *3)))))
+(-10 -7 (-15 -4170 (|#4| |#2|)) (-15 -4171 (|#2| |#4| (-747))) (-15 -4172 ((-1 |#4| (-618 |#4|)) |#3|)) (IF (|has| |#1| (-542)) (-15 -4173 (|#4| (-400 |#2|))) |%noBranch|))
NIL
(((-1220) (-138)) (T -1220))
NIL
-(-13 (-10 -7 (-6 -2623)))
-((-3833 (((-112) $ $) NIL)) (-3010 (((-1142)) 12)) (-2677 (((-1124) $) 17)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 11) (((-1142) $) 8)) (-2388 (((-112) $ $) 14)))
-(((-1221 |#1|) (-13 (-1066) (-593 (-1142)) (-10 -8 (-15 -3845 ((-1142) $)) (-15 -3010 ((-1142))))) (-1142)) (T -1221))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1221 *3)) (-14 *3 *2))) (-3010 (*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1221 *3)) (-14 *3 *2))))
-(-13 (-1066) (-593 (-1142)) (-10 -8 (-15 -3845 ((-1142) $)) (-15 -3010 ((-1142)))))
-((-3768 (($ (-747)) 18)) (-4049 (((-665 |#2|) $ $) 40)) (-3054 ((|#2| $) 48)) (-4209 ((|#2| $) 47)) (-4140 ((|#2| $ $) 35)) (-1420 (($ $ $) 44)) (-2499 (($ $) 22) (($ $ $) 28)) (-2485 (($ $ $) 15)) (* (($ (-549) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
-(((-1222 |#1| |#2|) (-10 -8 (-15 -3054 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -1420 (|#1| |#1| |#1|)) (-15 -4049 ((-665 |#2|) |#1| |#1|)) (-15 -4140 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -3768 (|#1| (-747))) (-15 -2485 (|#1| |#1| |#1|))) (-1223 |#2|) (-1179)) (T -1222))
-NIL
-(-10 -8 (-15 -3054 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -1420 (|#1| |#1| |#1|)) (-15 -4049 ((-665 |#2|) |#1| |#1|)) (-15 -4140 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -3768 (|#1| (-747))) (-15 -2485 (|#1| |#1| |#1|)))
-((-3833 (((-112) $ $) 19 (|has| |#1| (-1066)))) (-3768 (($ (-747)) 112 (|has| |#1| (-23)))) (-2932 (((-1230) $ (-549) (-549)) 40 (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-4106 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1323 (((-112) $ (-747)) 8)) (-2253 ((|#1| $ (-549) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) 58 (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-1705 (($) 7 T CONST)) (-4273 (($ $) 90 (|has| $ (-6 -4337)))) (-3063 (($ $) 100)) (-3675 (($ $) 78 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-3812 (($ |#1| $) 77 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) 51)) (-2882 (((-549) (-1 (-112) |#1|) $) 97) (((-549) |#1| $) 96 (|has| |#1| (-1066))) (((-549) |#1| $ (-549)) 95 (|has| |#1| (-1066)))) (-2990 (((-621 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4049 (((-665 |#1|) $ $) 105 (|has| |#1| (-1018)))) (-3743 (($ (-747) |#1|) 69)) (-4202 (((-112) $ (-747)) 9)) (-3485 (((-549) $) 43 (|has| (-549) (-823)))) (-2862 (($ $ $) 87 (|has| |#1| (-823)))) (-1586 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1548 (((-549) $) 44 (|has| (-549) (-823)))) (-3574 (($ $ $) 86 (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3054 ((|#1| $) 102 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-4289 (((-112) $ (-747)) 10)) (-4209 ((|#1| $) 103 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-2677 (((-1124) $) 22 (|has| |#1| (-1066)))) (-2614 (($ |#1| $ (-549)) 60) (($ $ $ (-549)) 59)) (-3927 (((-621 (-549)) $) 46)) (-1286 (((-112) (-549) $) 47)) (-3988 (((-1086) $) 21 (|has| |#1| (-1066)))) (-3645 ((|#1| $) 42 (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3158 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) 14)) (-3781 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) 48)) (-1807 (((-112) $) 11)) (-1461 (($) 12)) (-3340 ((|#1| $ (-549) |#1|) 50) ((|#1| $ (-549)) 49) (($ $ (-1192 (-549))) 63)) (-4140 ((|#1| $ $) 106 (|has| |#1| (-1018)))) (-2166 (($ $ (-549)) 62) (($ $ (-1192 (-549))) 61)) (-1420 (($ $ $) 104 (|has| |#1| (-1018)))) (-3997 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1066)) (|has| $ (-6 -4336))))) (-1665 (($ $ $ (-549)) 91 (|has| $ (-6 -4337)))) (-2281 (($ $) 13)) (-2844 (((-525) $) 79 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 70)) (-1951 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3845 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2424 (((-112) $ $) 83 (|has| |#1| (-823)))) (-2388 (((-112) $ $) 20 (|has| |#1| (-1066)))) (-2436 (((-112) $ $) 85 (|has| |#1| (-823)))) (-2411 (((-112) $ $) 82 (|has| |#1| (-823)))) (-2499 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2485 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-549) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-703))) (($ $ |#1|) 107 (|has| |#1| (-703)))) (-3774 (((-747) $) 6 (|has| $ (-6 -4336)))))
-(((-1223 |#1|) (-138) (-1179)) (T -1223))
-((-2485 (*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-25)))) (-3768 (*1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1223 *3)) (-4 *3 (-23)) (-4 *3 (-1179)))) (-2499 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-21)))) (-2499 (*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-1223 *3)) (-4 *3 (-1179)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-703)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-703)))) (-4140 (*1 *2 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-1018)))) (-4049 (*1 *2 *1 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1179)) (-4 *3 (-1018)) (-5 *2 (-665 *3)))) (-1420 (*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-1018)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-973)) (-4 *2 (-1018)))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-973)) (-4 *2 (-1018)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2485 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3768 ($ (-747))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2499 ($ $)) (-15 -2499 ($ $ $)) (-15 * ($ (-549) $))) |%noBranch|) (IF (|has| |t#1| (-703)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-15 -4140 (|t#1| $ $)) (-15 -4049 ((-665 |t#1|) $ $)) (-15 -1420 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-973)) (IF (|has| |t#1| (-1018)) (PROGN (-15 -4209 (|t#1| $)) (-15 -3054 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-101) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823))) ((-593 (-834)) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))) ((-627 |#1|) . T) ((-19 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1066) -1536 (|has| |#1| (-1066)) (|has| |#1| (-823))) ((-1179) . T))
-((-3076 (((-1225 |#2|) (-1 |#2| |#1| |#2|) (-1225 |#1|) |#2|) 13)) (-2558 ((|#2| (-1 |#2| |#1| |#2|) (-1225 |#1|) |#2|) 15)) (-2796 (((-3 (-1225 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1225 |#1|)) 28) (((-1225 |#2|) (-1 |#2| |#1|) (-1225 |#1|)) 18)))
-(((-1224 |#1| |#2|) (-10 -7 (-15 -3076 ((-1225 |#2|) (-1 |#2| |#1| |#2|) (-1225 |#1|) |#2|)) (-15 -2558 (|#2| (-1 |#2| |#1| |#2|) (-1225 |#1|) |#2|)) (-15 -2796 ((-1225 |#2|) (-1 |#2| |#1|) (-1225 |#1|))) (-15 -2796 ((-3 (-1225 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1225 |#1|)))) (-1179) (-1179)) (T -1224))
-((-2796 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1225 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-1225 *6)) (-5 *1 (-1224 *5 *6)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1225 *5)) (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-1225 *6)) (-5 *1 (-1224 *5 *6)))) (-2558 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1225 *5)) (-4 *5 (-1179)) (-4 *2 (-1179)) (-5 *1 (-1224 *5 *2)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1225 *6)) (-4 *6 (-1179)) (-4 *5 (-1179)) (-5 *2 (-1225 *5)) (-5 *1 (-1224 *6 *5)))))
-(-10 -7 (-15 -3076 ((-1225 |#2|) (-1 |#2| |#1| |#2|) (-1225 |#1|) |#2|)) (-15 -2558 (|#2| (-1 |#2| |#1| |#2|) (-1225 |#1|) |#2|)) (-15 -2796 ((-1225 |#2|) (-1 |#2| |#1|) (-1225 |#1|))) (-15 -2796 ((-3 (-1225 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1225 |#1|))))
-((-3833 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-3768 (($ (-747)) NIL (|has| |#1| (-23)))) (-3444 (($ (-621 |#1|)) 9)) (-2932 (((-1230) $ (-549) (-549)) NIL (|has| $ (-6 -4337)))) (-1993 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4106 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1323 (((-112) $ (-747)) NIL)) (-2253 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1192 (-549)) |#1|) NIL (|has| $ (-6 -4337)))) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-1705 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| $ (-6 -4337)))) (-3063 (($ $) NIL)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2558 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1878 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4337)))) (-1808 ((|#1| $ (-549)) NIL)) (-2882 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1066))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1066)))) (-2990 (((-621 |#1|) $) 15 (|has| $ (-6 -4336)))) (-4049 (((-665 |#1|) $ $) NIL (|has| |#1| (-1018)))) (-3743 (($ (-747) |#1|) NIL)) (-4202 (((-112) $ (-747)) NIL)) (-3485 (((-549) $) NIL (|has| (-549) (-823)))) (-2862 (($ $ $) NIL (|has| |#1| (-823)))) (-1586 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1958 (((-621 |#1|) $) NIL (|has| $ (-6 -4336)))) (-2273 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1548 (((-549) $) NIL (|has| (-549) (-823)))) (-3574 (($ $ $) NIL (|has| |#1| (-823)))) (-1865 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3054 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-4289 (((-112) $ (-747)) NIL)) (-4209 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-2677 (((-1124) $) NIL (|has| |#1| (-1066)))) (-2614 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3927 (((-621 (-549)) $) NIL)) (-1286 (((-112) (-549) $) NIL)) (-3988 (((-1086) $) NIL (|has| |#1| (-1066)))) (-3645 ((|#1| $) NIL (|has| (-549) (-823)))) (-1917 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3158 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2470 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1066))))) (-2732 (((-112) $ $) NIL)) (-3781 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1738 (((-621 |#1|) $) NIL)) (-1807 (((-112) $) NIL)) (-1461 (($) NIL)) (-3340 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-4140 ((|#1| $ $) NIL (|has| |#1| (-1018)))) (-2166 (($ $ (-549)) NIL) (($ $ (-1192 (-549))) NIL)) (-1420 (($ $ $) NIL (|has| |#1| (-1018)))) (-3997 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1066))))) (-1665 (($ $ $ (-549)) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) 19 (|has| |#1| (-594 (-525))))) (-3853 (($ (-621 |#1|)) 8)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3845 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2150 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2424 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2388 (((-112) $ $) NIL (|has| |#1| (-1066)))) (-2436 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2411 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2499 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2485 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-549) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-703))) (($ $ |#1|) NIL (|has| |#1| (-703)))) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-1225 |#1|) (-13 (-1223 |#1|) (-10 -8 (-15 -3444 ($ (-621 |#1|))))) (-1179)) (T -1225))
-((-3444 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-1225 *3)))))
-(-13 (-1223 |#1|) (-10 -8 (-15 -3444 ($ (-621 |#1|)))))
-((-3833 (((-112) $ $) NIL)) (-2524 (((-1124) $ (-1124)) 90) (((-1124) $ (-1124) (-1124)) 88) (((-1124) $ (-1124) (-621 (-1124))) 87)) (-4147 (($) 59)) (-2824 (((-1230) $ (-460) (-892)) 45)) (-2035 (((-1230) $ (-892) (-1124)) 73) (((-1230) $ (-892) (-845)) 74)) (-2782 (((-1230) $ (-892) (-372) (-372)) 48)) (-1595 (((-1230) $ (-1124)) 69)) (-2885 (((-1230) $ (-892) (-1124)) 78)) (-4018 (((-1230) $ (-892) (-372) (-372)) 49)) (-1505 (((-1230) $ (-892) (-892)) 46)) (-2496 (((-1230) $) 70)) (-1312 (((-1230) $ (-892) (-1124)) 77)) (-2087 (((-1230) $ (-460) (-892)) 31)) (-3215 (((-1230) $ (-892) (-1124)) 76)) (-1486 (((-621 (-256)) $) 23) (($ $ (-621 (-256))) 24)) (-1930 (((-1230) $ (-747) (-747)) 43)) (-2019 (($ $) 60) (($ (-460) (-621 (-256))) 61)) (-2677 (((-1124) $) NIL)) (-3337 (((-549) $) 38)) (-3988 (((-1086) $) NIL)) (-1320 (((-1225 (-3 (-460) "undefined")) $) 37)) (-3508 (((-1225 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3215 (-549)) (|:| -2467 (-549)) (|:| |spline| (-549)) (|:| -2261 (-549)) (|:| |axesColor| (-845)) (|:| -2035 (-549)) (|:| |unitsColor| (-845)) (|:| |showing| (-549)))) $) 36)) (-2093 (((-1230) $ (-892) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-845) (-549) (-845) (-549)) 68)) (-4208 (((-621 (-914 (-219))) $) NIL)) (-2304 (((-460) $ (-892)) 33)) (-1928 (((-1230) $ (-747) (-747) (-892) (-892)) 40)) (-3370 (((-1230) $ (-1124)) 79)) (-2467 (((-1230) $ (-892) (-1124)) 75)) (-3845 (((-834) $) 85)) (-2680 (((-1230) $) 80)) (-2261 (((-1230) $ (-892) (-1124)) 71) (((-1230) $ (-892) (-845)) 72)) (-2388 (((-112) $ $) NIL)))
-(((-1226) (-13 (-1066) (-10 -8 (-15 -4208 ((-621 (-914 (-219))) $)) (-15 -4147 ($)) (-15 -2019 ($ $)) (-15 -1486 ((-621 (-256)) $)) (-15 -1486 ($ $ (-621 (-256)))) (-15 -2019 ($ (-460) (-621 (-256)))) (-15 -2093 ((-1230) $ (-892) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-845) (-549) (-845) (-549))) (-15 -3508 ((-1225 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3215 (-549)) (|:| -2467 (-549)) (|:| |spline| (-549)) (|:| -2261 (-549)) (|:| |axesColor| (-845)) (|:| -2035 (-549)) (|:| |unitsColor| (-845)) (|:| |showing| (-549)))) $)) (-15 -1320 ((-1225 (-3 (-460) "undefined")) $)) (-15 -1595 ((-1230) $ (-1124))) (-15 -2087 ((-1230) $ (-460) (-892))) (-15 -2304 ((-460) $ (-892))) (-15 -2261 ((-1230) $ (-892) (-1124))) (-15 -2261 ((-1230) $ (-892) (-845))) (-15 -2035 ((-1230) $ (-892) (-1124))) (-15 -2035 ((-1230) $ (-892) (-845))) (-15 -3215 ((-1230) $ (-892) (-1124))) (-15 -1312 ((-1230) $ (-892) (-1124))) (-15 -2467 ((-1230) $ (-892) (-1124))) (-15 -3370 ((-1230) $ (-1124))) (-15 -2680 ((-1230) $)) (-15 -1928 ((-1230) $ (-747) (-747) (-892) (-892))) (-15 -4018 ((-1230) $ (-892) (-372) (-372))) (-15 -2782 ((-1230) $ (-892) (-372) (-372))) (-15 -2885 ((-1230) $ (-892) (-1124))) (-15 -1930 ((-1230) $ (-747) (-747))) (-15 -2824 ((-1230) $ (-460) (-892))) (-15 -1505 ((-1230) $ (-892) (-892))) (-15 -2524 ((-1124) $ (-1124))) (-15 -2524 ((-1124) $ (-1124) (-1124))) (-15 -2524 ((-1124) $ (-1124) (-621 (-1124)))) (-15 -2496 ((-1230) $)) (-15 -3337 ((-549) $)) (-15 -3845 ((-834) $))))) (T -1226))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1226)))) (-4208 (*1 *2 *1) (-12 (-5 *2 (-621 (-914 (-219)))) (-5 *1 (-1226)))) (-4147 (*1 *1) (-5 *1 (-1226))) (-2019 (*1 *1 *1) (-5 *1 (-1226))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1226)))) (-1486 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1226)))) (-2019 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-621 (-256))) (-5 *1 (-1226)))) (-2093 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-892)) (-5 *4 (-219)) (-5 *5 (-549)) (-5 *6 (-845)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-1225 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3215 (-549)) (|:| -2467 (-549)) (|:| |spline| (-549)) (|:| -2261 (-549)) (|:| |axesColor| (-845)) (|:| -2035 (-549)) (|:| |unitsColor| (-845)) (|:| |showing| (-549))))) (-5 *1 (-1226)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-1225 (-3 (-460) "undefined"))) (-5 *1 (-1226)))) (-1595 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-2087 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-892)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-2304 (*1 *2 *1 *3) (-12 (-5 *3 (-892)) (-5 *2 (-460)) (-5 *1 (-1226)))) (-2261 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-2261 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-2035 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-2035 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-3215 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-1312 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-2467 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-3370 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1226)))) (-1928 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-747)) (-5 *4 (-892)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-4018 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-892)) (-5 *4 (-372)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-2782 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-892)) (-5 *4 (-372)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-2885 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-1930 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-2824 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-892)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-1505 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1230)) (-5 *1 (-1226)))) (-2524 (*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1226)))) (-2524 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1226)))) (-2524 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-621 (-1124))) (-5 *2 (-1124)) (-5 *1 (-1226)))) (-2496 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1226)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1226)))))
-(-13 (-1066) (-10 -8 (-15 -4208 ((-621 (-914 (-219))) $)) (-15 -4147 ($)) (-15 -2019 ($ $)) (-15 -1486 ((-621 (-256)) $)) (-15 -1486 ($ $ (-621 (-256)))) (-15 -2019 ($ (-460) (-621 (-256)))) (-15 -2093 ((-1230) $ (-892) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-845) (-549) (-845) (-549))) (-15 -3508 ((-1225 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3215 (-549)) (|:| -2467 (-549)) (|:| |spline| (-549)) (|:| -2261 (-549)) (|:| |axesColor| (-845)) (|:| -2035 (-549)) (|:| |unitsColor| (-845)) (|:| |showing| (-549)))) $)) (-15 -1320 ((-1225 (-3 (-460) "undefined")) $)) (-15 -1595 ((-1230) $ (-1124))) (-15 -2087 ((-1230) $ (-460) (-892))) (-15 -2304 ((-460) $ (-892))) (-15 -2261 ((-1230) $ (-892) (-1124))) (-15 -2261 ((-1230) $ (-892) (-845))) (-15 -2035 ((-1230) $ (-892) (-1124))) (-15 -2035 ((-1230) $ (-892) (-845))) (-15 -3215 ((-1230) $ (-892) (-1124))) (-15 -1312 ((-1230) $ (-892) (-1124))) (-15 -2467 ((-1230) $ (-892) (-1124))) (-15 -3370 ((-1230) $ (-1124))) (-15 -2680 ((-1230) $)) (-15 -1928 ((-1230) $ (-747) (-747) (-892) (-892))) (-15 -4018 ((-1230) $ (-892) (-372) (-372))) (-15 -2782 ((-1230) $ (-892) (-372) (-372))) (-15 -2885 ((-1230) $ (-892) (-1124))) (-15 -1930 ((-1230) $ (-747) (-747))) (-15 -2824 ((-1230) $ (-460) (-892))) (-15 -1505 ((-1230) $ (-892) (-892))) (-15 -2524 ((-1124) $ (-1124))) (-15 -2524 ((-1124) $ (-1124) (-1124))) (-15 -2524 ((-1124) $ (-1124) (-621 (-1124)))) (-15 -2496 ((-1230) $)) (-15 -3337 ((-549) $)) (-15 -3845 ((-834) $))))
-((-3833 (((-112) $ $) NIL)) (-3958 (((-1230) $ (-372)) 140) (((-1230) $ (-372) (-372) (-372)) 141)) (-2524 (((-1124) $ (-1124)) 148) (((-1124) $ (-1124) (-1124)) 146) (((-1124) $ (-1124) (-621 (-1124))) 145)) (-1617 (($) 50)) (-3601 (((-1230) $ (-372) (-372) (-372) (-372) (-372)) 116) (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $) 114) (((-1230) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 115) (((-1230) $ (-549) (-549) (-372) (-372) (-372)) 117) (((-1230) $ (-372) (-372)) 118) (((-1230) $ (-372) (-372) (-372)) 125)) (-1476 (((-372)) 97) (((-372) (-372)) 98)) (-3388 (((-372)) 92) (((-372) (-372)) 94)) (-2132 (((-372)) 95) (((-372) (-372)) 96)) (-1265 (((-372)) 101) (((-372) (-372)) 102)) (-3211 (((-372)) 99) (((-372) (-372)) 100)) (-2782 (((-1230) $ (-372) (-372)) 142)) (-1595 (((-1230) $ (-1124)) 126)) (-3002 (((-1099 (-219)) $) 51) (($ $ (-1099 (-219))) 52)) (-2626 (((-1230) $ (-1124)) 154)) (-2541 (((-1230) $ (-1124)) 155)) (-1857 (((-1230) $ (-372) (-372)) 124) (((-1230) $ (-549) (-549)) 139)) (-1505 (((-1230) $ (-892) (-892)) 132)) (-2496 (((-1230) $) 112)) (-3453 (((-1230) $ (-1124)) 153)) (-1772 (((-1230) $ (-1124)) 109)) (-1486 (((-621 (-256)) $) 53) (($ $ (-621 (-256))) 54)) (-1930 (((-1230) $ (-747) (-747)) 131)) (-2673 (((-1230) $ (-747) (-914 (-219))) 160)) (-4037 (($ $) 56) (($ (-1099 (-219)) (-1124)) 57) (($ (-1099 (-219)) (-621 (-256))) 58)) (-1329 (((-1230) $ (-372) (-372) (-372)) 106)) (-2677 (((-1124) $) NIL)) (-3337 (((-549) $) 103)) (-2284 (((-1230) $ (-372)) 143)) (-2504 (((-1230) $ (-372)) 158)) (-3988 (((-1086) $) NIL)) (-3150 (((-1230) $ (-372)) 157)) (-2676 (((-1230) $ (-1124)) 111)) (-1928 (((-1230) $ (-747) (-747) (-892) (-892)) 130)) (-2491 (((-1230) $ (-1124)) 108)) (-3370 (((-1230) $ (-1124)) 110)) (-3599 (((-1230) $ (-155) (-155)) 129)) (-3845 (((-834) $) 137)) (-2680 (((-1230) $) 113)) (-3647 (((-1230) $ (-1124)) 156)) (-2261 (((-1230) $ (-1124)) 107)) (-2388 (((-112) $ $) NIL)))
-(((-1227) (-13 (-1066) (-10 -8 (-15 -3388 ((-372))) (-15 -3388 ((-372) (-372))) (-15 -2132 ((-372))) (-15 -2132 ((-372) (-372))) (-15 -1476 ((-372))) (-15 -1476 ((-372) (-372))) (-15 -3211 ((-372))) (-15 -3211 ((-372) (-372))) (-15 -1265 ((-372))) (-15 -1265 ((-372) (-372))) (-15 -1617 ($)) (-15 -4037 ($ $)) (-15 -4037 ($ (-1099 (-219)) (-1124))) (-15 -4037 ($ (-1099 (-219)) (-621 (-256)))) (-15 -3002 ((-1099 (-219)) $)) (-15 -3002 ($ $ (-1099 (-219)))) (-15 -2673 ((-1230) $ (-747) (-914 (-219)))) (-15 -1486 ((-621 (-256)) $)) (-15 -1486 ($ $ (-621 (-256)))) (-15 -1930 ((-1230) $ (-747) (-747))) (-15 -1505 ((-1230) $ (-892) (-892))) (-15 -1595 ((-1230) $ (-1124))) (-15 -1928 ((-1230) $ (-747) (-747) (-892) (-892))) (-15 -3601 ((-1230) $ (-372) (-372) (-372) (-372) (-372))) (-15 -3601 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -3601 ((-1230) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -3601 ((-1230) $ (-549) (-549) (-372) (-372) (-372))) (-15 -3601 ((-1230) $ (-372) (-372))) (-15 -3601 ((-1230) $ (-372) (-372) (-372))) (-15 -3370 ((-1230) $ (-1124))) (-15 -2261 ((-1230) $ (-1124))) (-15 -2491 ((-1230) $ (-1124))) (-15 -1772 ((-1230) $ (-1124))) (-15 -2676 ((-1230) $ (-1124))) (-15 -1857 ((-1230) $ (-372) (-372))) (-15 -1857 ((-1230) $ (-549) (-549))) (-15 -3958 ((-1230) $ (-372))) (-15 -3958 ((-1230) $ (-372) (-372) (-372))) (-15 -2782 ((-1230) $ (-372) (-372))) (-15 -3453 ((-1230) $ (-1124))) (-15 -3150 ((-1230) $ (-372))) (-15 -2504 ((-1230) $ (-372))) (-15 -2626 ((-1230) $ (-1124))) (-15 -2541 ((-1230) $ (-1124))) (-15 -3647 ((-1230) $ (-1124))) (-15 -1329 ((-1230) $ (-372) (-372) (-372))) (-15 -2284 ((-1230) $ (-372))) (-15 -2496 ((-1230) $)) (-15 -3599 ((-1230) $ (-155) (-155))) (-15 -2524 ((-1124) $ (-1124))) (-15 -2524 ((-1124) $ (-1124) (-1124))) (-15 -2524 ((-1124) $ (-1124) (-621 (-1124)))) (-15 -2680 ((-1230) $)) (-15 -3337 ((-549) $))))) (T -1227))
-((-3388 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))) (-2132 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))) (-2132 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))) (-1476 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))) (-1476 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))) (-3211 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))) (-3211 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))) (-1265 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))) (-1265 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))) (-1617 (*1 *1) (-5 *1 (-1227))) (-4037 (*1 *1 *1) (-5 *1 (-1227))) (-4037 (*1 *1 *2 *3) (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-1124)) (-5 *1 (-1227)))) (-4037 (*1 *1 *2 *3) (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-621 (-256))) (-5 *1 (-1227)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1227)))) (-3002 (*1 *1 *1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1227)))) (-2673 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1227)))) (-1486 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1227)))) (-1930 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-1505 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-1595 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-1928 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-747)) (-5 *4 (-892)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3601 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-1227)))) (-3601 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3601 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-549)) (-5 *4 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3601 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3601 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3370 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-2261 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-2491 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-1772 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-2676 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-1857 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-1857 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3958 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3958 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-2782 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3453 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3150 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-2504 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-2626 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-2541 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3647 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-1329 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-2284 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-2496 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3599 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-2524 (*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1227)))) (-2524 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1227)))) (-2524 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-621 (-1124))) (-5 *2 (-1124)) (-5 *1 (-1227)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1227)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1227)))))
-(-13 (-1066) (-10 -8 (-15 -3388 ((-372))) (-15 -3388 ((-372) (-372))) (-15 -2132 ((-372))) (-15 -2132 ((-372) (-372))) (-15 -1476 ((-372))) (-15 -1476 ((-372) (-372))) (-15 -3211 ((-372))) (-15 -3211 ((-372) (-372))) (-15 -1265 ((-372))) (-15 -1265 ((-372) (-372))) (-15 -1617 ($)) (-15 -4037 ($ $)) (-15 -4037 ($ (-1099 (-219)) (-1124))) (-15 -4037 ($ (-1099 (-219)) (-621 (-256)))) (-15 -3002 ((-1099 (-219)) $)) (-15 -3002 ($ $ (-1099 (-219)))) (-15 -2673 ((-1230) $ (-747) (-914 (-219)))) (-15 -1486 ((-621 (-256)) $)) (-15 -1486 ($ $ (-621 (-256)))) (-15 -1930 ((-1230) $ (-747) (-747))) (-15 -1505 ((-1230) $ (-892) (-892))) (-15 -1595 ((-1230) $ (-1124))) (-15 -1928 ((-1230) $ (-747) (-747) (-892) (-892))) (-15 -3601 ((-1230) $ (-372) (-372) (-372) (-372) (-372))) (-15 -3601 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -3601 ((-1230) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -3601 ((-1230) $ (-549) (-549) (-372) (-372) (-372))) (-15 -3601 ((-1230) $ (-372) (-372))) (-15 -3601 ((-1230) $ (-372) (-372) (-372))) (-15 -3370 ((-1230) $ (-1124))) (-15 -2261 ((-1230) $ (-1124))) (-15 -2491 ((-1230) $ (-1124))) (-15 -1772 ((-1230) $ (-1124))) (-15 -2676 ((-1230) $ (-1124))) (-15 -1857 ((-1230) $ (-372) (-372))) (-15 -1857 ((-1230) $ (-549) (-549))) (-15 -3958 ((-1230) $ (-372))) (-15 -3958 ((-1230) $ (-372) (-372) (-372))) (-15 -2782 ((-1230) $ (-372) (-372))) (-15 -3453 ((-1230) $ (-1124))) (-15 -3150 ((-1230) $ (-372))) (-15 -2504 ((-1230) $ (-372))) (-15 -2626 ((-1230) $ (-1124))) (-15 -2541 ((-1230) $ (-1124))) (-15 -3647 ((-1230) $ (-1124))) (-15 -1329 ((-1230) $ (-372) (-372) (-372))) (-15 -2284 ((-1230) $ (-372))) (-15 -2496 ((-1230) $)) (-15 -3599 ((-1230) $ (-155) (-155))) (-15 -2524 ((-1124) $ (-1124))) (-15 -2524 ((-1124) $ (-1124) (-1124))) (-15 -2524 ((-1124) $ (-1124) (-621 (-1124)))) (-15 -2680 ((-1230) $)) (-15 -3337 ((-549) $))))
-((-3245 (((-621 (-1124)) (-621 (-1124))) 94) (((-621 (-1124))) 90)) (-2472 (((-621 (-1124))) 88)) (-2501 (((-621 (-892)) (-621 (-892))) 63) (((-621 (-892))) 60)) (-1760 (((-621 (-747)) (-621 (-747))) 57) (((-621 (-747))) 53)) (-3035 (((-1230)) 65)) (-4225 (((-892) (-892)) 81) (((-892)) 80)) (-3338 (((-892) (-892)) 79) (((-892)) 78)) (-2184 (((-845) (-845)) 75) (((-845)) 74)) (-4043 (((-219)) 85) (((-219) (-372)) 87)) (-1992 (((-892)) 82) (((-892) (-892)) 83)) (-1924 (((-892) (-892)) 77) (((-892)) 76)) (-1554 (((-845) (-845)) 69) (((-845)) 67)) (-4138 (((-845) (-845)) 71) (((-845)) 70)) (-3989 (((-845) (-845)) 73) (((-845)) 72)))
-(((-1228) (-10 -7 (-15 -1554 ((-845))) (-15 -1554 ((-845) (-845))) (-15 -4138 ((-845))) (-15 -4138 ((-845) (-845))) (-15 -3989 ((-845))) (-15 -3989 ((-845) (-845))) (-15 -2184 ((-845))) (-15 -2184 ((-845) (-845))) (-15 -1924 ((-892))) (-15 -1924 ((-892) (-892))) (-15 -1760 ((-621 (-747)))) (-15 -1760 ((-621 (-747)) (-621 (-747)))) (-15 -2501 ((-621 (-892)))) (-15 -2501 ((-621 (-892)) (-621 (-892)))) (-15 -3035 ((-1230))) (-15 -3245 ((-621 (-1124)))) (-15 -3245 ((-621 (-1124)) (-621 (-1124)))) (-15 -2472 ((-621 (-1124)))) (-15 -3338 ((-892))) (-15 -4225 ((-892))) (-15 -3338 ((-892) (-892))) (-15 -4225 ((-892) (-892))) (-15 -1992 ((-892) (-892))) (-15 -1992 ((-892))) (-15 -4043 ((-219) (-372))) (-15 -4043 ((-219))))) (T -1228))
-((-4043 (*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1228)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-1228)))) (-1992 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228)))) (-1992 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228)))) (-4225 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228)))) (-3338 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228)))) (-4225 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228)))) (-3338 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228)))) (-2472 (*1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1228)))) (-3245 (*1 *2 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1228)))) (-3245 (*1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1228)))) (-3035 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1228)))) (-2501 (*1 *2 *2) (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1228)))) (-2501 (*1 *2) (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1228)))) (-1760 (*1 *2 *2) (-12 (-5 *2 (-621 (-747))) (-5 *1 (-1228)))) (-1760 (*1 *2) (-12 (-5 *2 (-621 (-747))) (-5 *1 (-1228)))) (-1924 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228)))) (-1924 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228)))) (-2184 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228)))) (-2184 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228)))) (-3989 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228)))) (-3989 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228)))) (-4138 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228)))) (-4138 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228)))) (-1554 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228)))) (-1554 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228)))))
-(-10 -7 (-15 -1554 ((-845))) (-15 -1554 ((-845) (-845))) (-15 -4138 ((-845))) (-15 -4138 ((-845) (-845))) (-15 -3989 ((-845))) (-15 -3989 ((-845) (-845))) (-15 -2184 ((-845))) (-15 -2184 ((-845) (-845))) (-15 -1924 ((-892))) (-15 -1924 ((-892) (-892))) (-15 -1760 ((-621 (-747)))) (-15 -1760 ((-621 (-747)) (-621 (-747)))) (-15 -2501 ((-621 (-892)))) (-15 -2501 ((-621 (-892)) (-621 (-892)))) (-15 -3035 ((-1230))) (-15 -3245 ((-621 (-1124)))) (-15 -3245 ((-621 (-1124)) (-621 (-1124)))) (-15 -2472 ((-621 (-1124)))) (-15 -3338 ((-892))) (-15 -4225 ((-892))) (-15 -3338 ((-892) (-892))) (-15 -4225 ((-892) (-892))) (-15 -1992 ((-892) (-892))) (-15 -1992 ((-892))) (-15 -4043 ((-219) (-372))) (-15 -4043 ((-219))))
-((-1466 (((-460) (-621 (-621 (-914 (-219)))) (-621 (-256))) 21) (((-460) (-621 (-621 (-914 (-219))))) 20) (((-460) (-621 (-621 (-914 (-219)))) (-845) (-845) (-892) (-621 (-256))) 19)) (-2829 (((-1226) (-621 (-621 (-914 (-219)))) (-621 (-256))) 27) (((-1226) (-621 (-621 (-914 (-219)))) (-845) (-845) (-892) (-621 (-256))) 26)) (-3845 (((-1226) (-460)) 38)))
-(((-1229) (-10 -7 (-15 -1466 ((-460) (-621 (-621 (-914 (-219)))) (-845) (-845) (-892) (-621 (-256)))) (-15 -1466 ((-460) (-621 (-621 (-914 (-219)))))) (-15 -1466 ((-460) (-621 (-621 (-914 (-219)))) (-621 (-256)))) (-15 -2829 ((-1226) (-621 (-621 (-914 (-219)))) (-845) (-845) (-892) (-621 (-256)))) (-15 -2829 ((-1226) (-621 (-621 (-914 (-219)))) (-621 (-256)))) (-15 -3845 ((-1226) (-460))))) (T -1229))
-((-3845 (*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1226)) (-5 *1 (-1229)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-621 (-256))) (-5 *2 (-1226)) (-5 *1 (-1229)))) (-2829 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-845)) (-5 *5 (-892)) (-5 *6 (-621 (-256))) (-5 *2 (-1226)) (-5 *1 (-1229)))) (-1466 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-621 (-256))) (-5 *2 (-460)) (-5 *1 (-1229)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *2 (-460)) (-5 *1 (-1229)))) (-1466 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-845)) (-5 *5 (-892)) (-5 *6 (-621 (-256))) (-5 *2 (-460)) (-5 *1 (-1229)))))
-(-10 -7 (-15 -1466 ((-460) (-621 (-621 (-914 (-219)))) (-845) (-845) (-892) (-621 (-256)))) (-15 -1466 ((-460) (-621 (-621 (-914 (-219)))))) (-15 -1466 ((-460) (-621 (-621 (-914 (-219)))) (-621 (-256)))) (-15 -2829 ((-1226) (-621 (-621 (-914 (-219)))) (-845) (-845) (-892) (-621 (-256)))) (-15 -2829 ((-1226) (-621 (-621 (-914 (-219)))) (-621 (-256)))) (-15 -3845 ((-1226) (-460))))
-((-2902 (($) 7)) (-3845 (((-834) $) 10)))
-(((-1230) (-10 -8 (-15 -2902 ($)) (-15 -3845 ((-834) $)))) (T -1230))
-((-3845 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1230)))) (-2902 (*1 *1) (-5 *1 (-1230))))
-(-10 -8 (-15 -2902 ($)) (-15 -3845 ((-834) $)))
-((-2512 (($ $ |#2|) 10)))
-(((-1231 |#1| |#2|) (-10 -8 (-15 -2512 (|#1| |#1| |#2|))) (-1232 |#2|) (-356)) (T -1231))
-NIL
-(-10 -8 (-15 -2512 (|#1| |#1| |#2|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3128 (((-133)) 28)) (-3845 (((-834) $) 11)) (-3275 (($) 18 T CONST)) (-2388 (((-112) $ $) 6)) (-2512 (($ $ |#1|) 29)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(-13 (-10 -7 (-6 -2359)))
+((-2887 (((-112) $ $) NIL)) (-4174 (((-1142)) 12)) (-3576 (((-1124) $) 17)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 11) (((-1142) $) 8)) (-3375 (((-112) $ $) 14)))
+(((-1221 |#1|) (-13 (-1067) (-593 (-1142)) (-10 -8 (-15 -4300 ((-1142) $)) (-15 -4174 ((-1142))))) (-1142)) (T -1221))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1221 *3)) (-14 *3 *2))) (-4174 (*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1221 *3)) (-14 *3 *2))))
+(-13 (-1067) (-593 (-1142)) (-10 -8 (-15 -4300 ((-1142) $)) (-15 -4174 ((-1142)))))
+((-4181 (($ (-747)) 18)) (-4178 (((-665 |#2|) $ $) 40)) (-4175 ((|#2| $) 48)) (-4176 ((|#2| $) 47)) (-4179 ((|#2| $ $) 35)) (-4177 (($ $ $) 44)) (-4180 (($ $) 22) (($ $ $) 28)) (-4182 (($ $ $) 15)) (* (($ (-535) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
+(((-1222 |#1| |#2|) (-10 -8 (-15 -4175 (|#2| |#1|)) (-15 -4176 (|#2| |#1|)) (-15 -4177 (|#1| |#1| |#1|)) (-15 -4178 ((-665 |#2|) |#1| |#1|)) (-15 -4179 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -4181 (|#1| (-747))) (-15 -4182 (|#1| |#1| |#1|))) (-1223 |#2|) (-1178)) (T -1222))
+NIL
+(-10 -8 (-15 -4175 (|#2| |#1|)) (-15 -4176 (|#2| |#1|)) (-15 -4177 (|#1| |#1| |#1|)) (-15 -4178 ((-665 |#2|) |#1| |#1|)) (-15 -4179 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-535) |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -4181 (|#1| (-747))) (-15 -4182 (|#1| |#1| |#1|)))
+((-2887 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4181 (($ (-747)) 112 (|has| |#1| (-23)))) (-2296 (((-1230) $ (-535) (-535)) 40 (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4337))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4337))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) 8)) (-4130 ((|#1| $ (-535) |#1|) 52 (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) 58 (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4336)))) (-3879 (($) 7 T CONST)) (-2368 (($ $) 90 (|has| $ (-6 -4337)))) (-2369 (($ $) 100)) (-1394 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-3748 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) 53 (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) 51)) (-3761 (((-535) (-1 (-112) |#1|) $) 97) (((-535) |#1| $) 96 (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) 95 (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) 30 (|has| $ (-6 -4336)))) (-4178 (((-665 |#1|) $ $) 105 (|has| |#1| (-1018)))) (-3960 (($ (-747) |#1|) 69)) (-4065 (((-112) $ (-747)) 9)) (-2298 (((-535) $) 43 (|has| (-535) (-823)))) (-3660 (($ $ $) 87 (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-2299 (((-535) $) 44 (|has| (-535) (-823)))) (-3661 (($ $ $) 86 (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4175 ((|#1| $) 102 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-4062 (((-112) $ (-747)) 10)) (-4176 ((|#1| $) 103 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-3576 (((-1124) $) 22 (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) 60) (($ $ $ (-535)) 59)) (-2301 (((-618 (-535)) $) 46)) (-2302 (((-112) (-535) $) 47)) (-3577 (((-1086) $) 21 (|has| |#1| (-1067)))) (-4143 ((|#1| $) 42 (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2297 (($ $ |#1|) 41 (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) 14)) (-2300 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) 48)) (-3745 (((-112) $) 11)) (-3911 (($) 12)) (-4142 ((|#1| $ (-535) |#1|) 50) ((|#1| $ (-535)) 49) (($ $ (-1191 (-535))) 63)) (-4179 ((|#1| $ $) 106 (|has| |#1| (-1018)))) (-2374 (($ $ (-535)) 62) (($ $ (-1191 (-535))) 61)) (-4177 (($ $ $) 104 (|has| |#1| (-1018)))) (-2064 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4336))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4336))))) (-1842 (($ $ $ (-535)) 91 (|has| $ (-6 -4337)))) (-3742 (($ $) 13)) (-4313 (((-524) $) 79 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 70)) (-4144 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-618 $)) 65)) (-4300 (((-835) $) 18 (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2886 (((-112) $ $) 83 (|has| |#1| (-823)))) (-3375 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-823)))) (-3006 (((-112) $ $) 82 (|has| |#1| (-823)))) (-4180 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4182 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-535) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-703))) (($ $ |#1|) 107 (|has| |#1| (-703)))) (-4299 (((-747) $) 6 (|has| $ (-6 -4336)))))
+(((-1223 |#1|) (-138) (-1178)) (T -1223))
+((-4182 (*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-25)))) (-4181 (*1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1223 *3)) (-4 *3 (-23)) (-4 *3 (-1178)))) (-4180 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-21)))) (-4180 (*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-4 *1 (-1223 *3)) (-4 *3 (-1178)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-703)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-703)))) (-4179 (*1 *2 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-1018)))) (-4178 (*1 *2 *1 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1178)) (-4 *3 (-1018)) (-5 *2 (-665 *3)))) (-4177 (*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-1018)))) (-4176 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-973)) (-4 *2 (-1018)))) (-4175 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-973)) (-4 *2 (-1018)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4182 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4181 ($ (-747))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4180 ($ $)) (-15 -4180 ($ $ $)) (-15 * ($ (-535) $))) |%noBranch|) (IF (|has| |t#1| (-703)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-15 -4179 (|t#1| $ $)) (-15 -4178 ((-665 |t#1|) $ $)) (-15 -4177 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-973)) (IF (|has| |t#1| (-1018)) (PROGN (-15 -4176 (|t#1| $)) (-15 -4175 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-101) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-835)) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-835)))) ((-149 |#1|) . T) ((-594 (-524)) |has| |#1| (-594 (-524))) ((-279 #1=(-535) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-584 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-19 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1067) -3874 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1178) . T))
+((-2887 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4181 (($ (-747)) NIL (|has| |#1| (-23)))) (-4183 (($ (-618 |#1|)) 9)) (-2296 (((-1230) $ (-535) (-535)) NIL (|has| $ (-6 -4337)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4337))) (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-823))))) (-3230 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1264 (((-112) $ (-747)) NIL)) (-4130 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337))) ((|#1| $ (-1191 (-535)) |#1|) NIL (|has| $ (-6 -4337)))) (-4056 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-3879 (($) NIL T CONST)) (-2368 (($ $) NIL (|has| $ (-6 -4337)))) (-2369 (($ $) NIL)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-3748 (($ |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4336))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4336)))) (-1632 ((|#1| $ (-535) |#1|) NIL (|has| $ (-6 -4337)))) (-3431 ((|#1| $ (-535)) NIL)) (-3761 (((-535) (-1 (-112) |#1|) $) NIL) (((-535) |#1| $) NIL (|has| |#1| (-1067))) (((-535) |#1| $ (-535)) NIL (|has| |#1| (-1067)))) (-2063 (((-618 |#1|) $) 15 (|has| $ (-6 -4336)))) (-4178 (((-665 |#1|) $ $) NIL (|has| |#1| (-1018)))) (-3960 (($ (-747) |#1|) NIL)) (-4065 (((-112) $ (-747)) NIL)) (-2298 (((-535) $) NIL (|has| (-535) (-823)))) (-3660 (($ $ $) NIL (|has| |#1| (-823)))) (-3855 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-2502 (((-618 |#1|) $) NIL (|has| $ (-6 -4336)))) (-3579 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2299 (((-535) $) NIL (|has| (-535) (-823)))) (-3661 (($ $ $) NIL (|has| |#1| (-823)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4175 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-4062 (((-112) $ (-747)) NIL)) (-4176 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-3576 (((-1124) $) NIL (|has| |#1| (-1067)))) (-2373 (($ |#1| $ (-535)) NIL) (($ $ $ (-535)) NIL)) (-2301 (((-618 (-535)) $) NIL)) (-2302 (((-112) (-535) $) NIL)) (-3577 (((-1086) $) NIL (|has| |#1| (-1067)))) (-4143 ((|#1| $) NIL (|has| (-535) (-823)))) (-1395 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2297 (($ $ |#1|) NIL (|has| $ (-6 -4337)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-618 |#1|) (-618 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-1265 (((-112) $ $) NIL)) (-2300 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-2303 (((-618 |#1|) $) NIL)) (-3745 (((-112) $) NIL)) (-3911 (($) NIL)) (-4142 ((|#1| $ (-535) |#1|) NIL) ((|#1| $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-4179 ((|#1| $ $) NIL (|has| |#1| (-1018)))) (-2374 (($ $ (-535)) NIL) (($ $ (-1191 (-535))) NIL)) (-4177 (($ $ $) NIL (|has| |#1| (-1018)))) (-2064 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#1| (-1067))))) (-1842 (($ $ $ (-535)) NIL (|has| $ (-6 -4337)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) 19 (|has| |#1| (-594 (-524))))) (-3867 (($ (-618 |#1|)) 8)) (-4144 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-618 $)) NIL)) (-4300 (((-835) $) NIL (|has| |#1| (-593 (-835))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4336)))) (-2885 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2886 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3375 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4180 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4182 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-535) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-703))) (($ $ |#1|) NIL (|has| |#1| (-703)))) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-1224 |#1|) (-13 (-1223 |#1|) (-10 -8 (-15 -4183 ($ (-618 |#1|))))) (-1178)) (T -1224))
+((-4183 (*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1224 *3)))))
+(-13 (-1223 |#1|) (-10 -8 (-15 -4183 ($ (-618 |#1|)))))
+((-4184 (((-1224 |#2|) (-1 |#2| |#1| |#2|) (-1224 |#1|) |#2|) 13)) (-4185 ((|#2| (-1 |#2| |#1| |#2|) (-1224 |#1|) |#2|) 15)) (-4301 (((-3 (-1224 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1224 |#1|)) 28) (((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|)) 18)))
+(((-1225 |#1| |#2|) (-10 -7 (-15 -4184 ((-1224 |#2|) (-1 |#2| |#1| |#2|) (-1224 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-1224 |#1|) |#2|)) (-15 -4301 ((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) (-15 -4301 ((-3 (-1224 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1224 |#1|)))) (-1178) (-1178)) (T -1225))
+((-4301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1224 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1224 *6)) (-5 *1 (-1225 *5 *6)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1224 *6)) (-5 *1 (-1225 *5 *6)))) (-4185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1224 *5)) (-4 *5 (-1178)) (-4 *2 (-1178)) (-5 *1 (-1225 *5 *2)))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1224 *6)) (-4 *6 (-1178)) (-4 *5 (-1178)) (-5 *2 (-1224 *5)) (-5 *1 (-1225 *6 *5)))))
+(-10 -7 (-15 -4184 ((-1224 |#2|) (-1 |#2| |#1| |#2|) (-1224 |#1|) |#2|)) (-15 -4185 (|#2| (-1 |#2| |#1| |#2|) (-1224 |#1|) |#2|)) (-15 -4301 ((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) (-15 -4301 ((-3 (-1224 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1224 |#1|))))
+((-4186 (((-460) (-618 (-618 (-914 (-219)))) (-618 (-254))) 21) (((-460) (-618 (-618 (-914 (-219))))) 20) (((-460) (-618 (-618 (-914 (-219)))) (-845) (-845) (-890) (-618 (-254))) 19)) (-4187 (((-1227) (-618 (-618 (-914 (-219)))) (-618 (-254))) 27) (((-1227) (-618 (-618 (-914 (-219)))) (-845) (-845) (-890) (-618 (-254))) 26)) (-4300 (((-1227) (-460)) 38)))
+(((-1226) (-10 -7 (-15 -4186 ((-460) (-618 (-618 (-914 (-219)))) (-845) (-845) (-890) (-618 (-254)))) (-15 -4186 ((-460) (-618 (-618 (-914 (-219)))))) (-15 -4186 ((-460) (-618 (-618 (-914 (-219)))) (-618 (-254)))) (-15 -4187 ((-1227) (-618 (-618 (-914 (-219)))) (-845) (-845) (-890) (-618 (-254)))) (-15 -4187 ((-1227) (-618 (-618 (-914 (-219)))) (-618 (-254)))) (-15 -4300 ((-1227) (-460))))) (T -1226))
+((-4300 (*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1227)) (-5 *1 (-1226)))) (-4187 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-1226)))) (-4187 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-845)) (-5 *5 (-890)) (-5 *6 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-1226)))) (-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-618 (-254))) (-5 *2 (-460)) (-5 *1 (-1226)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *2 (-460)) (-5 *1 (-1226)))) (-4186 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-845)) (-5 *5 (-890)) (-5 *6 (-618 (-254))) (-5 *2 (-460)) (-5 *1 (-1226)))))
+(-10 -7 (-15 -4186 ((-460) (-618 (-618 (-914 (-219)))) (-845) (-845) (-890) (-618 (-254)))) (-15 -4186 ((-460) (-618 (-618 (-914 (-219)))))) (-15 -4186 ((-460) (-618 (-618 (-914 (-219)))) (-618 (-254)))) (-15 -4187 ((-1227) (-618 (-618 (-914 (-219)))) (-845) (-845) (-890) (-618 (-254)))) (-15 -4187 ((-1227) (-618 (-618 (-914 (-219)))) (-618 (-254)))) (-15 -4300 ((-1227) (-460))))
+((-2887 (((-112) $ $) NIL)) (-4205 (((-1124) $ (-1124)) 90) (((-1124) $ (-1124) (-1124)) 88) (((-1124) $ (-1124) (-618 (-1124))) 87)) (-4201 (($) 59)) (-4188 (((-1230) $ (-460) (-890)) 45)) (-4194 (((-1230) $ (-890) (-1124)) 73) (((-1230) $ (-890) (-845)) 74)) (-4216 (((-1230) $ (-890) (-371) (-371)) 48)) (-4226 (((-1230) $ (-1124)) 69)) (-4189 (((-1230) $ (-890) (-1124)) 78)) (-4190 (((-1230) $ (-890) (-371) (-371)) 49)) (-4227 (((-1230) $ (-890) (-890)) 46)) (-4207 (((-1230) $) 70)) (-4192 (((-1230) $ (-890) (-1124)) 77)) (-4196 (((-1230) $ (-460) (-890)) 31)) (-4193 (((-1230) $ (-890) (-1124)) 76)) (-4229 (((-618 (-254)) $) 23) (($ $ (-618 (-254))) 24)) (-4228 (((-1230) $ (-747) (-747)) 43)) (-4200 (($ $) 60) (($ (-460) (-618 (-254))) 61)) (-3576 (((-1124) $) NIL)) (-4203 (((-535) $) 38)) (-3577 (((-1086) $) NIL)) (-4197 (((-1224 (-3 (-460) "undefined")) $) 37)) (-4198 (((-1224 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4193 (-535)) (|:| -4191 (-535)) (|:| |spline| (-535)) (|:| -4222 (-535)) (|:| |axesColor| (-845)) (|:| -4194 (-535)) (|:| |unitsColor| (-845)) (|:| |showing| (-535)))) $) 36)) (-4199 (((-1230) $ (-890) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-845) (-535) (-845) (-535)) 68)) (-4202 (((-618 (-914 (-219))) $) NIL)) (-4195 (((-460) $ (-890)) 33)) (-4225 (((-1230) $ (-747) (-747) (-890) (-890)) 40)) (-4223 (((-1230) $ (-1124)) 79)) (-4191 (((-1230) $ (-890) (-1124)) 75)) (-4300 (((-835) $) 85)) (-4204 (((-1230) $) 80)) (-4222 (((-1230) $ (-890) (-1124)) 71) (((-1230) $ (-890) (-845)) 72)) (-3375 (((-112) $ $) NIL)))
+(((-1227) (-13 (-1067) (-10 -8 (-15 -4202 ((-618 (-914 (-219))) $)) (-15 -4201 ($)) (-15 -4200 ($ $)) (-15 -4229 ((-618 (-254)) $)) (-15 -4229 ($ $ (-618 (-254)))) (-15 -4200 ($ (-460) (-618 (-254)))) (-15 -4199 ((-1230) $ (-890) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-845) (-535) (-845) (-535))) (-15 -4198 ((-1224 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4193 (-535)) (|:| -4191 (-535)) (|:| |spline| (-535)) (|:| -4222 (-535)) (|:| |axesColor| (-845)) (|:| -4194 (-535)) (|:| |unitsColor| (-845)) (|:| |showing| (-535)))) $)) (-15 -4197 ((-1224 (-3 (-460) "undefined")) $)) (-15 -4226 ((-1230) $ (-1124))) (-15 -4196 ((-1230) $ (-460) (-890))) (-15 -4195 ((-460) $ (-890))) (-15 -4222 ((-1230) $ (-890) (-1124))) (-15 -4222 ((-1230) $ (-890) (-845))) (-15 -4194 ((-1230) $ (-890) (-1124))) (-15 -4194 ((-1230) $ (-890) (-845))) (-15 -4193 ((-1230) $ (-890) (-1124))) (-15 -4192 ((-1230) $ (-890) (-1124))) (-15 -4191 ((-1230) $ (-890) (-1124))) (-15 -4223 ((-1230) $ (-1124))) (-15 -4204 ((-1230) $)) (-15 -4225 ((-1230) $ (-747) (-747) (-890) (-890))) (-15 -4190 ((-1230) $ (-890) (-371) (-371))) (-15 -4216 ((-1230) $ (-890) (-371) (-371))) (-15 -4189 ((-1230) $ (-890) (-1124))) (-15 -4228 ((-1230) $ (-747) (-747))) (-15 -4188 ((-1230) $ (-460) (-890))) (-15 -4227 ((-1230) $ (-890) (-890))) (-15 -4205 ((-1124) $ (-1124))) (-15 -4205 ((-1124) $ (-1124) (-1124))) (-15 -4205 ((-1124) $ (-1124) (-618 (-1124)))) (-15 -4207 ((-1230) $)) (-15 -4203 ((-535) $)) (-15 -4300 ((-835) $))))) (T -1227))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1227)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-618 (-914 (-219)))) (-5 *1 (-1227)))) (-4201 (*1 *1) (-5 *1 (-1227))) (-4200 (*1 *1 *1) (-5 *1 (-1227))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1227)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1227)))) (-4200 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-618 (-254))) (-5 *1 (-1227)))) (-4199 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-890)) (-5 *4 (-219)) (-5 *5 (-535)) (-5 *6 (-845)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4198 (*1 *2 *1) (-12 (-5 *2 (-1224 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4193 (-535)) (|:| -4191 (-535)) (|:| |spline| (-535)) (|:| -4222 (-535)) (|:| |axesColor| (-845)) (|:| -4194 (-535)) (|:| |unitsColor| (-845)) (|:| |showing| (-535))))) (-5 *1 (-1227)))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-1224 (-3 (-460) "undefined"))) (-5 *1 (-1227)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4196 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4195 (*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-5 *2 (-460)) (-5 *1 (-1227)))) (-4222 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4222 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4194 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4194 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4193 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4192 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4191 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4223 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4225 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-747)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4190 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4216 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4189 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4228 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4188 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4227 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4205 (*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1227)))) (-4205 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1227)))) (-4205 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1124)) (-5 *1 (-1227)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1227)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1227)))))
+(-13 (-1067) (-10 -8 (-15 -4202 ((-618 (-914 (-219))) $)) (-15 -4201 ($)) (-15 -4200 ($ $)) (-15 -4229 ((-618 (-254)) $)) (-15 -4229 ($ $ (-618 (-254)))) (-15 -4200 ($ (-460) (-618 (-254)))) (-15 -4199 ((-1230) $ (-890) (-219) (-219) (-219) (-219) (-535) (-535) (-535) (-535) (-845) (-535) (-845) (-535))) (-15 -4198 ((-1224 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4193 (-535)) (|:| -4191 (-535)) (|:| |spline| (-535)) (|:| -4222 (-535)) (|:| |axesColor| (-845)) (|:| -4194 (-535)) (|:| |unitsColor| (-845)) (|:| |showing| (-535)))) $)) (-15 -4197 ((-1224 (-3 (-460) "undefined")) $)) (-15 -4226 ((-1230) $ (-1124))) (-15 -4196 ((-1230) $ (-460) (-890))) (-15 -4195 ((-460) $ (-890))) (-15 -4222 ((-1230) $ (-890) (-1124))) (-15 -4222 ((-1230) $ (-890) (-845))) (-15 -4194 ((-1230) $ (-890) (-1124))) (-15 -4194 ((-1230) $ (-890) (-845))) (-15 -4193 ((-1230) $ (-890) (-1124))) (-15 -4192 ((-1230) $ (-890) (-1124))) (-15 -4191 ((-1230) $ (-890) (-1124))) (-15 -4223 ((-1230) $ (-1124))) (-15 -4204 ((-1230) $)) (-15 -4225 ((-1230) $ (-747) (-747) (-890) (-890))) (-15 -4190 ((-1230) $ (-890) (-371) (-371))) (-15 -4216 ((-1230) $ (-890) (-371) (-371))) (-15 -4189 ((-1230) $ (-890) (-1124))) (-15 -4228 ((-1230) $ (-747) (-747))) (-15 -4188 ((-1230) $ (-460) (-890))) (-15 -4227 ((-1230) $ (-890) (-890))) (-15 -4205 ((-1124) $ (-1124))) (-15 -4205 ((-1124) $ (-1124) (-1124))) (-15 -4205 ((-1124) $ (-1124) (-618 (-1124)))) (-15 -4207 ((-1230) $)) (-15 -4203 ((-535) $)) (-15 -4300 ((-835) $))))
+((-2887 (((-112) $ $) NIL)) (-4217 (((-1230) $ (-371)) 140) (((-1230) $ (-371) (-371) (-371)) 141)) (-4205 (((-1124) $ (-1124)) 148) (((-1124) $ (-1124) (-1124)) 146) (((-1124) $ (-1124) (-618 (-1124))) 145)) (-4233 (($) 50)) (-4224 (((-1230) $ (-371) (-371) (-371) (-371) (-371)) 116) (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $) 114) (((-1230) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 115) (((-1230) $ (-535) (-535) (-371) (-371) (-371)) 117) (((-1230) $ (-371) (-371)) 118) (((-1230) $ (-371) (-371) (-371)) 125)) (-4236 (((-371)) 97) (((-371) (-371)) 98)) (-4238 (((-371)) 92) (((-371) (-371)) 94)) (-4237 (((-371)) 95) (((-371) (-371)) 96)) (-4234 (((-371)) 101) (((-371) (-371)) 102)) (-4235 (((-371)) 99) (((-371) (-371)) 100)) (-4216 (((-1230) $ (-371) (-371)) 142)) (-4226 (((-1230) $ (-1124)) 126)) (-4231 (((-1099 (-219)) $) 51) (($ $ (-1099 (-219))) 52)) (-4212 (((-1230) $ (-1124)) 154)) (-4211 (((-1230) $ (-1124)) 155)) (-4218 (((-1230) $ (-371) (-371)) 124) (((-1230) $ (-535) (-535)) 139)) (-4227 (((-1230) $ (-890) (-890)) 132)) (-4207 (((-1230) $) 112)) (-4215 (((-1230) $ (-1124)) 153)) (-4220 (((-1230) $ (-1124)) 109)) (-4229 (((-618 (-254)) $) 53) (($ $ (-618 (-254))) 54)) (-4228 (((-1230) $ (-747) (-747)) 131)) (-4230 (((-1230) $ (-747) (-914 (-219))) 160)) (-4232 (($ $) 56) (($ (-1099 (-219)) (-1124)) 57) (($ (-1099 (-219)) (-618 (-254))) 58)) (-4209 (((-1230) $ (-371) (-371) (-371)) 106)) (-3576 (((-1124) $) NIL)) (-4203 (((-535) $) 103)) (-4208 (((-1230) $ (-371)) 143)) (-4213 (((-1230) $ (-371)) 158)) (-3577 (((-1086) $) NIL)) (-4214 (((-1230) $ (-371)) 157)) (-4219 (((-1230) $ (-1124)) 111)) (-4225 (((-1230) $ (-747) (-747) (-890) (-890)) 130)) (-4221 (((-1230) $ (-1124)) 108)) (-4223 (((-1230) $ (-1124)) 110)) (-4206 (((-1230) $ (-155) (-155)) 129)) (-4300 (((-835) $) 137)) (-4204 (((-1230) $) 113)) (-4210 (((-1230) $ (-1124)) 156)) (-4222 (((-1230) $ (-1124)) 107)) (-3375 (((-112) $ $) NIL)))
+(((-1228) (-13 (-1067) (-10 -8 (-15 -4238 ((-371))) (-15 -4238 ((-371) (-371))) (-15 -4237 ((-371))) (-15 -4237 ((-371) (-371))) (-15 -4236 ((-371))) (-15 -4236 ((-371) (-371))) (-15 -4235 ((-371))) (-15 -4235 ((-371) (-371))) (-15 -4234 ((-371))) (-15 -4234 ((-371) (-371))) (-15 -4233 ($)) (-15 -4232 ($ $)) (-15 -4232 ($ (-1099 (-219)) (-1124))) (-15 -4232 ($ (-1099 (-219)) (-618 (-254)))) (-15 -4231 ((-1099 (-219)) $)) (-15 -4231 ($ $ (-1099 (-219)))) (-15 -4230 ((-1230) $ (-747) (-914 (-219)))) (-15 -4229 ((-618 (-254)) $)) (-15 -4229 ($ $ (-618 (-254)))) (-15 -4228 ((-1230) $ (-747) (-747))) (-15 -4227 ((-1230) $ (-890) (-890))) (-15 -4226 ((-1230) $ (-1124))) (-15 -4225 ((-1230) $ (-747) (-747) (-890) (-890))) (-15 -4224 ((-1230) $ (-371) (-371) (-371) (-371) (-371))) (-15 -4224 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -4224 ((-1230) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4224 ((-1230) $ (-535) (-535) (-371) (-371) (-371))) (-15 -4224 ((-1230) $ (-371) (-371))) (-15 -4224 ((-1230) $ (-371) (-371) (-371))) (-15 -4223 ((-1230) $ (-1124))) (-15 -4222 ((-1230) $ (-1124))) (-15 -4221 ((-1230) $ (-1124))) (-15 -4220 ((-1230) $ (-1124))) (-15 -4219 ((-1230) $ (-1124))) (-15 -4218 ((-1230) $ (-371) (-371))) (-15 -4218 ((-1230) $ (-535) (-535))) (-15 -4217 ((-1230) $ (-371))) (-15 -4217 ((-1230) $ (-371) (-371) (-371))) (-15 -4216 ((-1230) $ (-371) (-371))) (-15 -4215 ((-1230) $ (-1124))) (-15 -4214 ((-1230) $ (-371))) (-15 -4213 ((-1230) $ (-371))) (-15 -4212 ((-1230) $ (-1124))) (-15 -4211 ((-1230) $ (-1124))) (-15 -4210 ((-1230) $ (-1124))) (-15 -4209 ((-1230) $ (-371) (-371) (-371))) (-15 -4208 ((-1230) $ (-371))) (-15 -4207 ((-1230) $)) (-15 -4206 ((-1230) $ (-155) (-155))) (-15 -4205 ((-1124) $ (-1124))) (-15 -4205 ((-1124) $ (-1124) (-1124))) (-15 -4205 ((-1124) $ (-1124) (-618 (-1124)))) (-15 -4204 ((-1230) $)) (-15 -4203 ((-535) $))))) (T -1228))
+((-4238 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4238 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4237 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4237 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4236 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4236 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4235 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4235 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4234 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4234 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))) (-4233 (*1 *1) (-5 *1 (-1228))) (-4232 (*1 *1 *1) (-5 *1 (-1228))) (-4232 (*1 *1 *2 *3) (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-1124)) (-5 *1 (-1228)))) (-4232 (*1 *1 *2 *3) (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-618 (-254))) (-5 *1 (-1228)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1228)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1228)))) (-4230 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1228)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1228)))) (-4228 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4227 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4225 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-747)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4224 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-1228)))) (-4224 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4224 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-535)) (-5 *4 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4224 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4224 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4223 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4222 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4221 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4220 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4219 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4218 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4218 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4217 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4217 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4216 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4215 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4214 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4213 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4212 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4211 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4210 (*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4209 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4208 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4206 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4205 (*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1228)))) (-4205 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1228)))) (-4205 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1124)) (-5 *1 (-1228)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1228)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1228)))))
+(-13 (-1067) (-10 -8 (-15 -4238 ((-371))) (-15 -4238 ((-371) (-371))) (-15 -4237 ((-371))) (-15 -4237 ((-371) (-371))) (-15 -4236 ((-371))) (-15 -4236 ((-371) (-371))) (-15 -4235 ((-371))) (-15 -4235 ((-371) (-371))) (-15 -4234 ((-371))) (-15 -4234 ((-371) (-371))) (-15 -4233 ($)) (-15 -4232 ($ $)) (-15 -4232 ($ (-1099 (-219)) (-1124))) (-15 -4232 ($ (-1099 (-219)) (-618 (-254)))) (-15 -4231 ((-1099 (-219)) $)) (-15 -4231 ($ $ (-1099 (-219)))) (-15 -4230 ((-1230) $ (-747) (-914 (-219)))) (-15 -4229 ((-618 (-254)) $)) (-15 -4229 ($ $ (-618 (-254)))) (-15 -4228 ((-1230) $ (-747) (-747))) (-15 -4227 ((-1230) $ (-890) (-890))) (-15 -4226 ((-1230) $ (-1124))) (-15 -4225 ((-1230) $ (-747) (-747) (-890) (-890))) (-15 -4224 ((-1230) $ (-371) (-371) (-371) (-371) (-371))) (-15 -4224 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -4224 ((-1230) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4224 ((-1230) $ (-535) (-535) (-371) (-371) (-371))) (-15 -4224 ((-1230) $ (-371) (-371))) (-15 -4224 ((-1230) $ (-371) (-371) (-371))) (-15 -4223 ((-1230) $ (-1124))) (-15 -4222 ((-1230) $ (-1124))) (-15 -4221 ((-1230) $ (-1124))) (-15 -4220 ((-1230) $ (-1124))) (-15 -4219 ((-1230) $ (-1124))) (-15 -4218 ((-1230) $ (-371) (-371))) (-15 -4218 ((-1230) $ (-535) (-535))) (-15 -4217 ((-1230) $ (-371))) (-15 -4217 ((-1230) $ (-371) (-371) (-371))) (-15 -4216 ((-1230) $ (-371) (-371))) (-15 -4215 ((-1230) $ (-1124))) (-15 -4214 ((-1230) $ (-371))) (-15 -4213 ((-1230) $ (-371))) (-15 -4212 ((-1230) $ (-1124))) (-15 -4211 ((-1230) $ (-1124))) (-15 -4210 ((-1230) $ (-1124))) (-15 -4209 ((-1230) $ (-371) (-371) (-371))) (-15 -4208 ((-1230) $ (-371))) (-15 -4207 ((-1230) $)) (-15 -4206 ((-1230) $ (-155) (-155))) (-15 -4205 ((-1124) $ (-1124))) (-15 -4205 ((-1124) $ (-1124) (-1124))) (-15 -4205 ((-1124) $ (-1124) (-618 (-1124)))) (-15 -4204 ((-1230) $)) (-15 -4203 ((-535) $))))
+((-4247 (((-618 (-1124)) (-618 (-1124))) 94) (((-618 (-1124))) 90)) (-4248 (((-618 (-1124))) 88)) (-4245 (((-618 (-890)) (-618 (-890))) 63) (((-618 (-890))) 60)) (-4244 (((-618 (-747)) (-618 (-747))) 57) (((-618 (-747))) 53)) (-4246 (((-1230)) 65)) (-4250 (((-890) (-890)) 81) (((-890)) 80)) (-4249 (((-890) (-890)) 79) (((-890)) 78)) (-4242 (((-845) (-845)) 75) (((-845)) 74)) (-4252 (((-219)) 85) (((-219) (-371)) 87)) (-4251 (((-890)) 82) (((-890) (-890)) 83)) (-4243 (((-890) (-890)) 77) (((-890)) 76)) (-4239 (((-845) (-845)) 69) (((-845)) 67)) (-4240 (((-845) (-845)) 71) (((-845)) 70)) (-4241 (((-845) (-845)) 73) (((-845)) 72)))
+(((-1229) (-10 -7 (-15 -4239 ((-845))) (-15 -4239 ((-845) (-845))) (-15 -4240 ((-845))) (-15 -4240 ((-845) (-845))) (-15 -4241 ((-845))) (-15 -4241 ((-845) (-845))) (-15 -4242 ((-845))) (-15 -4242 ((-845) (-845))) (-15 -4243 ((-890))) (-15 -4243 ((-890) (-890))) (-15 -4244 ((-618 (-747)))) (-15 -4244 ((-618 (-747)) (-618 (-747)))) (-15 -4245 ((-618 (-890)))) (-15 -4245 ((-618 (-890)) (-618 (-890)))) (-15 -4246 ((-1230))) (-15 -4247 ((-618 (-1124)))) (-15 -4247 ((-618 (-1124)) (-618 (-1124)))) (-15 -4248 ((-618 (-1124)))) (-15 -4249 ((-890))) (-15 -4250 ((-890))) (-15 -4249 ((-890) (-890))) (-15 -4250 ((-890) (-890))) (-15 -4251 ((-890) (-890))) (-15 -4251 ((-890))) (-15 -4252 ((-219) (-371))) (-15 -4252 ((-219))))) (T -1229))
+((-4252 (*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1229)))) (-4252 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-1229)))) (-4251 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4251 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4250 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4249 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4250 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4249 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4248 (*1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1229)))) (-4247 (*1 *2 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1229)))) (-4247 (*1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1229)))) (-4246 (*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1229)))) (-4245 (*1 *2 *2) (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1229)))) (-4245 (*1 *2) (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1229)))) (-4244 (*1 *2 *2) (-12 (-5 *2 (-618 (-747))) (-5 *1 (-1229)))) (-4244 (*1 *2) (-12 (-5 *2 (-618 (-747))) (-5 *1 (-1229)))) (-4243 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4243 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))) (-4242 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4242 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4241 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4241 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4240 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4240 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4239 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-4239 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))))
+(-10 -7 (-15 -4239 ((-845))) (-15 -4239 ((-845) (-845))) (-15 -4240 ((-845))) (-15 -4240 ((-845) (-845))) (-15 -4241 ((-845))) (-15 -4241 ((-845) (-845))) (-15 -4242 ((-845))) (-15 -4242 ((-845) (-845))) (-15 -4243 ((-890))) (-15 -4243 ((-890) (-890))) (-15 -4244 ((-618 (-747)))) (-15 -4244 ((-618 (-747)) (-618 (-747)))) (-15 -4245 ((-618 (-890)))) (-15 -4245 ((-618 (-890)) (-618 (-890)))) (-15 -4246 ((-1230))) (-15 -4247 ((-618 (-1124)))) (-15 -4247 ((-618 (-1124)) (-618 (-1124)))) (-15 -4248 ((-618 (-1124)))) (-15 -4249 ((-890))) (-15 -4250 ((-890))) (-15 -4249 ((-890) (-890))) (-15 -4250 ((-890) (-890))) (-15 -4251 ((-890) (-890))) (-15 -4251 ((-890))) (-15 -4252 ((-219) (-371))) (-15 -4252 ((-219))))
+((-4253 (($) 7)) (-4300 (((-835) $) 10)))
+(((-1230) (-10 -8 (-15 -4253 ($)) (-15 -4300 ((-835) $)))) (T -1230))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1230)))) (-4253 (*1 *1) (-5 *1 (-1230))))
+(-10 -8 (-15 -4253 ($)) (-15 -4300 ((-835) $)))
+((-4291 (($ $ |#2|) 10)))
+(((-1231 |#1| |#2|) (-10 -8 (-15 -4291 (|#1| |#1| |#2|))) (-1232 |#2|) (-356)) (T -1231))
+NIL
+(-10 -8 (-15 -4291 (|#1| |#1| |#2|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4254 (((-133)) 28)) (-4300 (((-835) $) 11)) (-2979 (($) 18 T CONST)) (-3375 (((-112) $ $) 6)) (-4291 (($ $ |#1|) 29)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-1232 |#1|) (-138) (-356)) (T -1232))
-((-2512 (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-356)))) (-3128 (*1 *2) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-356)) (-5 *2 (-133)))))
-(-13 (-694 |t#1|) (-10 -8 (-15 -2512 ($ $ |t#1|)) (-15 -3128 ((-133)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-1024 |#1|) . T) ((-1066) . T))
-((-2678 (((-621 (-1173 |#1|)) (-1142) (-1173 |#1|)) 74)) (-3279 (((-1122 (-1122 (-923 |#1|))) (-1142) (-1122 (-923 |#1|))) 53)) (-1699 (((-1 (-1122 (-1173 |#1|)) (-1122 (-1173 |#1|))) (-747) (-1173 |#1|) (-1122 (-1173 |#1|))) 64)) (-2326 (((-1 (-1122 (-923 |#1|)) (-1122 (-923 |#1|))) (-747)) 55)) (-1347 (((-1 (-1138 (-923 |#1|)) (-923 |#1|)) (-1142)) 29)) (-4253 (((-1 (-1122 (-923 |#1|)) (-1122 (-923 |#1|))) (-747)) 54)))
-(((-1233 |#1|) (-10 -7 (-15 -2326 ((-1 (-1122 (-923 |#1|)) (-1122 (-923 |#1|))) (-747))) (-15 -4253 ((-1 (-1122 (-923 |#1|)) (-1122 (-923 |#1|))) (-747))) (-15 -3279 ((-1122 (-1122 (-923 |#1|))) (-1142) (-1122 (-923 |#1|)))) (-15 -1347 ((-1 (-1138 (-923 |#1|)) (-923 |#1|)) (-1142))) (-15 -2678 ((-621 (-1173 |#1|)) (-1142) (-1173 |#1|))) (-15 -1699 ((-1 (-1122 (-1173 |#1|)) (-1122 (-1173 |#1|))) (-747) (-1173 |#1|) (-1122 (-1173 |#1|))))) (-356)) (T -1233))
-((-1699 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-747)) (-4 *6 (-356)) (-5 *4 (-1173 *6)) (-5 *2 (-1 (-1122 *4) (-1122 *4))) (-5 *1 (-1233 *6)) (-5 *5 (-1122 *4)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-4 *5 (-356)) (-5 *2 (-621 (-1173 *5))) (-5 *1 (-1233 *5)) (-5 *4 (-1173 *5)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1 (-1138 (-923 *4)) (-923 *4))) (-5 *1 (-1233 *4)) (-4 *4 (-356)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-4 *5 (-356)) (-5 *2 (-1122 (-1122 (-923 *5)))) (-5 *1 (-1233 *5)) (-5 *4 (-1122 (-923 *5))))) (-4253 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1122 (-923 *4)) (-1122 (-923 *4)))) (-5 *1 (-1233 *4)) (-4 *4 (-356)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1122 (-923 *4)) (-1122 (-923 *4)))) (-5 *1 (-1233 *4)) (-4 *4 (-356)))))
-(-10 -7 (-15 -2326 ((-1 (-1122 (-923 |#1|)) (-1122 (-923 |#1|))) (-747))) (-15 -4253 ((-1 (-1122 (-923 |#1|)) (-1122 (-923 |#1|))) (-747))) (-15 -3279 ((-1122 (-1122 (-923 |#1|))) (-1142) (-1122 (-923 |#1|)))) (-15 -1347 ((-1 (-1138 (-923 |#1|)) (-923 |#1|)) (-1142))) (-15 -2678 ((-621 (-1173 |#1|)) (-1142) (-1173 |#1|))) (-15 -1699 ((-1 (-1122 (-1173 |#1|)) (-1122 (-1173 |#1|))) (-747) (-1173 |#1|) (-1122 (-1173 |#1|)))))
-((-2675 (((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|) 75)) (-2581 (((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) 74)))
-(((-1234 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2581 ((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -2675 ((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|))) (-342) (-1201 |#1|) (-1201 |#2|) (-402 |#2| |#3|)) (T -1234))
-((-2675 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *3 (-1201 *4)) (-4 *5 (-1201 *3)) (-5 *2 (-2 (|:| -3420 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-1234 *4 *3 *5 *6)) (-4 *6 (-402 *3 *5)))) (-2581 (*1 *2) (-12 (-4 *3 (-342)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 *4)) (-5 *2 (-2 (|:| -3420 (-665 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-665 *4)))) (-5 *1 (-1234 *3 *4 *5 *6)) (-4 *6 (-402 *4 *5)))))
-(-10 -7 (-15 -2581 ((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -2675 ((-2 (|:| -3420 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|)))
-((-3833 (((-112) $ $) NIL)) (-1879 (((-1101) $) 11)) (-1379 (((-1101) $) 9)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-1235) (-13 (-1049) (-10 -8 (-15 -1379 ((-1101) $)) (-15 -1879 ((-1101) $))))) (T -1235))
-((-1379 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1235)))) (-1879 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1235)))))
-(-13 (-1049) (-10 -8 (-15 -1379 ((-1101) $)) (-15 -1879 ((-1101) $))))
-((-3833 (((-112) $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1926 (((-1101) $) 9)) (-3845 (((-834) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-2388 (((-112) $ $) NIL)))
-(((-1236) (-13 (-1049) (-10 -8 (-15 -1926 ((-1101) $))))) (T -1236))
-((-1926 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1236)))))
-(-13 (-1049) (-10 -8 (-15 -1926 ((-1101) $))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 43)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) NIL)) (-3987 (((-112) $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3845 (((-834) $) 64) (($ (-549)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-170)))) (-1723 (((-747)) NIL)) (-3565 (((-1230) (-747)) 16)) (-3275 (($) 27 T CONST)) (-3287 (($) 67 T CONST)) (-2388 (((-112) $ $) 69)) (-2512 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-2499 (($ $) 71) (($ $ $) NIL)) (-2485 (($ $ $) 47)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
-(((-1237 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3845 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -2512 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3845 ($ |#4|)) (-15 -3565 ((-1230) (-747))))) (-1018) (-823) (-769) (-920 |#1| |#3| |#2|) (-621 |#2|) (-621 (-747)) (-747)) (T -1237))
-((-3845 (*1 *2 *1) (-12 (-4 *2 (-920 *3 *5 *4)) (-5 *1 (-1237 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-621 *4)) (-14 *7 (-621 (-747))) (-14 *8 (-747)))) (-2512 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-769)) (-14 *6 (-621 *3)) (-5 *1 (-1237 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-920 *2 *4 *3)) (-14 *7 (-621 (-747))) (-14 *8 (-747)))) (-3845 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-621 *4)) (-5 *1 (-1237 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-920 *3 *5 *4)) (-14 *7 (-621 (-747))) (-14 *8 (-747)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) (-14 *8 (-621 *5)) (-5 *2 (-1230)) (-5 *1 (-1237 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-920 *4 *6 *5)) (-14 *9 (-621 *3)) (-14 *10 *3))))
-(-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3845 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -2512 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3845 ($ |#4|)) (-15 -3565 ((-1230) (-747)))))
-((-3833 (((-112) $ $) NIL)) (-3684 (((-621 (-2 (|:| -2680 $) (|:| -1358 (-621 |#4|)))) (-621 |#4|)) NIL)) (-3840 (((-621 $) (-621 |#4|)) 88)) (-2271 (((-621 |#3|) $) NIL)) (-3863 (((-112) $) NIL)) (-1771 (((-112) $) NIL (|has| |#1| (-541)))) (-2344 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1305 ((|#4| |#4| $) NIL)) (-3193 (((-2 (|:| |under| $) (|:| -4060 $) (|:| |upper| $)) $ |#3|) NIL)) (-1323 (((-112) $ (-747)) NIL)) (-1488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1705 (($) NIL T CONST)) (-1717 (((-112) $) NIL (|has| |#1| (-541)))) (-1766 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2498 (((-112) $) NIL (|has| |#1| (-541)))) (-3074 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-1436 (((-621 |#4|) (-621 |#4|) $) 25 (|has| |#1| (-541)))) (-3001 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2713 (((-3 $ "failed") (-621 |#4|)) NIL)) (-2658 (($ (-621 |#4|)) NIL)) (-3655 (((-3 $ "failed") $) 70)) (-2514 ((|#4| |#4| $) 75)) (-3675 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-3812 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3249 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-4042 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3678 ((|#4| |#4| $) NIL)) (-2558 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2235 (((-2 (|:| -2680 (-621 |#4|)) (|:| -1358 (-621 |#4|))) $) NIL)) (-2990 (((-621 |#4|) $) NIL (|has| $ (-6 -4336)))) (-3929 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4170 ((|#3| $) 76)) (-4202 (((-112) $ (-747)) NIL)) (-1958 (((-621 |#4|) $) 29 (|has| $ (-6 -4336)))) (-2273 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066))))) (-4073 (((-3 $ "failed") (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-621 |#4|)) 35)) (-1865 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4337)))) (-2796 (($ (-1 |#4| |#4|) $) NIL)) (-1670 (((-621 |#3|) $) NIL)) (-2911 (((-112) |#3| $) NIL)) (-4289 (((-112) $ (-747)) NIL)) (-2677 (((-1124) $) NIL)) (-3828 (((-3 |#4| "failed") $) NIL)) (-4069 (((-621 |#4|) $) 50)) (-3130 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2741 ((|#4| |#4| $) 74)) (-3739 (((-112) $ $) 85)) (-2205 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-1582 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3952 ((|#4| |#4| $) NIL)) (-3988 (((-1086) $) NIL)) (-3645 (((-3 |#4| "failed") $) 69)) (-1917 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1762 (((-3 $ "failed") $ |#4|) NIL)) (-2975 (($ $ |#4|) NIL)) (-2470 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2685 (($ $ (-621 |#4|) (-621 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066)))) (($ $ (-621 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1066))))) (-2732 (((-112) $ $) NIL)) (-1807 (((-112) $) 67)) (-1461 (($) 42)) (-3068 (((-747) $) NIL)) (-3997 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1066)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2281 (($ $) NIL)) (-2844 (((-525) $) NIL (|has| |#4| (-594 (-525))))) (-3853 (($ (-621 |#4|)) NIL)) (-1651 (($ $ |#3|) NIL)) (-3183 (($ $ |#3|) NIL)) (-1821 (($ $) NIL)) (-2432 (($ $ |#3|) NIL)) (-3845 (((-834) $) NIL) (((-621 |#4|) $) 57)) (-1509 (((-747) $) NIL (|has| |#3| (-361)))) (-3842 (((-3 $ "failed") (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-621 |#4|)) 41)) (-1778 (((-621 $) (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-621 $) (-621 |#4|)) 66)) (-3472 (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2316 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2197 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) NIL)) (-2150 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-2691 (((-621 |#3|) $) NIL)) (-2923 (((-112) |#3| $) NIL)) (-2388 (((-112) $ $) NIL)) (-3774 (((-747) $) NIL (|has| $ (-6 -4336)))))
-(((-1238 |#1| |#2| |#3| |#4|) (-13 (-1172 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4073 ((-3 $ "failed") (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4073 ((-3 $ "failed") (-621 |#4|))) (-15 -3842 ((-3 $ "failed") (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3842 ((-3 $ "failed") (-621 |#4|))) (-15 -1778 ((-621 $) (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1778 ((-621 $) (-621 |#4|))))) (-541) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -1238))
-((-4073 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-621 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1238 *5 *6 *7 *8)))) (-4073 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1238 *3 *4 *5 *6)))) (-3842 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-621 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1238 *5 *6 *7 *8)))) (-3842 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1238 *3 *4 *5 *6)))) (-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-541)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-621 (-1238 *6 *7 *8 *9))) (-5 *1 (-1238 *6 *7 *8 *9)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 (-1238 *4 *5 *6 *7))) (-5 *1 (-1238 *4 *5 *6 *7)))))
-(-13 (-1172 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4073 ((-3 $ "failed") (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4073 ((-3 $ "failed") (-621 |#4|))) (-15 -3842 ((-3 $ "failed") (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3842 ((-3 $ "failed") (-621 |#4|))) (-15 -1778 ((-621 $) (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1778 ((-621 $) (-621 |#4|)))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2384 (((-3 $ "failed") $ $) 19)) (-1705 (($) 17 T CONST)) (-3976 (((-3 $ "failed") $) 32)) (-3987 (((-112) $) 30)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 36)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37)))
+((-4291 (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-356)))) (-4254 (*1 *2) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-356)) (-5 *2 (-133)))))
+(-13 (-694 |t#1|) (-10 -8 (-15 -4291 ($ $ |t#1|)) (-15 -4254 ((-133)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-4259 (((-618 (-1171 |#1|)) (-1142) (-1171 |#1|)) 74)) (-4257 (((-1119 (-1119 (-917 |#1|))) (-1142) (-1119 (-917 |#1|))) 53)) (-4260 (((-1 (-1119 (-1171 |#1|)) (-1119 (-1171 |#1|))) (-747) (-1171 |#1|) (-1119 (-1171 |#1|))) 64)) (-4255 (((-1 (-1119 (-917 |#1|)) (-1119 (-917 |#1|))) (-747)) 55)) (-4258 (((-1 (-1136 (-917 |#1|)) (-917 |#1|)) (-1142)) 29)) (-4256 (((-1 (-1119 (-917 |#1|)) (-1119 (-917 |#1|))) (-747)) 54)))
+(((-1233 |#1|) (-10 -7 (-15 -4255 ((-1 (-1119 (-917 |#1|)) (-1119 (-917 |#1|))) (-747))) (-15 -4256 ((-1 (-1119 (-917 |#1|)) (-1119 (-917 |#1|))) (-747))) (-15 -4257 ((-1119 (-1119 (-917 |#1|))) (-1142) (-1119 (-917 |#1|)))) (-15 -4258 ((-1 (-1136 (-917 |#1|)) (-917 |#1|)) (-1142))) (-15 -4259 ((-618 (-1171 |#1|)) (-1142) (-1171 |#1|))) (-15 -4260 ((-1 (-1119 (-1171 |#1|)) (-1119 (-1171 |#1|))) (-747) (-1171 |#1|) (-1119 (-1171 |#1|))))) (-356)) (T -1233))
+((-4260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-747)) (-4 *6 (-356)) (-5 *4 (-1171 *6)) (-5 *2 (-1 (-1119 *4) (-1119 *4))) (-5 *1 (-1233 *6)) (-5 *5 (-1119 *4)))) (-4259 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-4 *5 (-356)) (-5 *2 (-618 (-1171 *5))) (-5 *1 (-1233 *5)) (-5 *4 (-1171 *5)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1 (-1136 (-917 *4)) (-917 *4))) (-5 *1 (-1233 *4)) (-4 *4 (-356)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *3 (-1142)) (-4 *5 (-356)) (-5 *2 (-1119 (-1119 (-917 *5)))) (-5 *1 (-1233 *5)) (-5 *4 (-1119 (-917 *5))))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1119 (-917 *4)) (-1119 (-917 *4)))) (-5 *1 (-1233 *4)) (-4 *4 (-356)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1119 (-917 *4)) (-1119 (-917 *4)))) (-5 *1 (-1233 *4)) (-4 *4 (-356)))))
+(-10 -7 (-15 -4255 ((-1 (-1119 (-917 |#1|)) (-1119 (-917 |#1|))) (-747))) (-15 -4256 ((-1 (-1119 (-917 |#1|)) (-1119 (-917 |#1|))) (-747))) (-15 -4257 ((-1119 (-1119 (-917 |#1|))) (-1142) (-1119 (-917 |#1|)))) (-15 -4258 ((-1 (-1136 (-917 |#1|)) (-917 |#1|)) (-1142))) (-15 -4259 ((-618 (-1171 |#1|)) (-1142) (-1171 |#1|))) (-15 -4260 ((-1 (-1119 (-1171 |#1|)) (-1119 (-1171 |#1|))) (-747) (-1171 |#1|) (-1119 (-1171 |#1|)))))
+((-4262 (((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|) 75)) (-4261 (((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) 74)))
+(((-1234 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4261 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -4262 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|))) (-343) (-1200 |#1|) (-1200 |#2|) (-403 |#2| |#3|)) (T -1234))
+((-4262 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 *3)) (-5 *2 (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-1234 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5)))) (-4261 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-2 (|:| -2123 (-665 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-665 *4)))) (-5 *1 (-1234 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5)))))
+(-10 -7 (-15 -4261 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -4262 ((-2 (|:| -2123 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|)))
+((-2887 (((-112) $ $) NIL)) (-4263 (((-1101) $) 11)) (-4264 (((-1101) $) 9)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 19) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-1235) (-13 (-1049) (-10 -8 (-15 -4264 ((-1101) $)) (-15 -4263 ((-1101) $))))) (T -1235))
+((-4264 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1235)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1235)))))
+(-13 (-1049) (-10 -8 (-15 -4264 ((-1101) $)) (-15 -4263 ((-1101) $))))
+((-2887 (((-112) $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4265 (((-1101) $) 9)) (-4300 (((-835) $) 17) (((-1147) $) NIL) (($ (-1147)) NIL)) (-3375 (((-112) $ $) NIL)))
+(((-1236) (-13 (-1049) (-10 -8 (-15 -4265 ((-1101) $))))) (T -1236))
+((-4265 (*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1236)))))
+(-13 (-1049) (-10 -8 (-15 -4265 ((-1101) $))))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 43)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) NIL)) (-2493 (((-112) $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4300 (((-835) $) 64) (($ (-535)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-170)))) (-3444 (((-747)) NIL)) (-4266 (((-1230) (-747)) 16)) (-2979 (($) 27 T CONST)) (-2985 (($) 67 T CONST)) (-3375 (((-112) $ $) 69)) (-4291 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-4180 (($ $) 71) (($ $ $) NIL)) (-4182 (($ $ $) 47)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
+(((-1237 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4300 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -4291 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4300 ($ |#4|)) (-15 -4266 ((-1230) (-747))))) (-1018) (-823) (-769) (-921 |#1| |#3| |#2|) (-618 |#2|) (-618 (-747)) (-747)) (T -1237))
+((-4300 (*1 *2 *1) (-12 (-4 *2 (-921 *3 *5 *4)) (-5 *1 (-1237 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-618 *4)) (-14 *7 (-618 (-747))) (-14 *8 (-747)))) (-4291 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-769)) (-14 *6 (-618 *3)) (-5 *1 (-1237 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-921 *2 *4 *3)) (-14 *7 (-618 (-747))) (-14 *8 (-747)))) (-4300 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-618 *4)) (-5 *1 (-1237 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-921 *3 *5 *4)) (-14 *7 (-618 (-747))) (-14 *8 (-747)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) (-14 *8 (-618 *5)) (-5 *2 (-1230)) (-5 *1 (-1237 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-921 *4 *6 *5)) (-14 *9 (-618 *3)) (-14 *10 *3))))
+(-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4300 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -4291 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4300 ($ |#4|)) (-15 -4266 ((-1230) (-747)))))
+((-2887 (((-112) $ $) NIL)) (-4027 (((-618 (-2 (|:| -4204 $) (|:| -1813 (-618 |#4|)))) (-618 |#4|)) NIL)) (-4028 (((-618 $) (-618 |#4|)) 88)) (-3405 (((-618 |#3|) $) NIL)) (-3229 (((-112) $) NIL)) (-3220 (((-112) $) NIL (|has| |#1| (-542)))) (-4039 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4034 ((|#4| |#4| $) NIL)) (-3230 (((-2 (|:| |under| $) (|:| -3448 $) (|:| |upper| $)) $ |#3|) NIL)) (-1264 (((-112) $ (-747)) NIL)) (-4056 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3879 (($) NIL T CONST)) (-3225 (((-112) $) NIL (|has| |#1| (-542)))) (-3227 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3226 (((-112) $ $) NIL (|has| |#1| (-542)))) (-3228 (((-112) $) NIL (|has| |#1| (-542)))) (-4035 (((-618 |#4|) (-618 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3221 (((-618 |#4|) (-618 |#4|) $) 25 (|has| |#1| (-542)))) (-3222 (((-618 |#4|) (-618 |#4|) $) NIL (|has| |#1| (-542)))) (-3491 (((-3 $ "failed") (-618 |#4|)) NIL)) (-3490 (($ (-618 |#4|)) NIL)) (-4141 (((-3 $ #1#) $) 70)) (-4031 ((|#4| |#4| $) 75)) (-1394 (($ $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-3748 (($ |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3223 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4040 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4029 ((|#4| |#4| $) NIL)) (-4185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4336))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4336))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4042 (((-2 (|:| -4204 (-618 |#4|)) (|:| -1813 (-618 |#4|))) $) NIL)) (-2063 (((-618 |#4|) $) NIL (|has| $ (-6 -4336)))) (-4041 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3514 ((|#3| $) 76)) (-4065 (((-112) $ (-747)) NIL)) (-2502 (((-618 |#4|) $) 29 (|has| $ (-6 -4336)))) (-3579 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067))))) (-4269 (((-3 $ "failed") (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-618 |#4|)) 35)) (-2067 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4337)))) (-4301 (($ (-1 |#4| |#4|) $) NIL)) (-3235 (((-618 |#3|) $) NIL)) (-3234 (((-112) |#3| $) NIL)) (-4062 (((-112) $ (-747)) NIL)) (-3576 (((-1124) $) NIL)) (-4140 (((-3 |#4| #1#) $) NIL)) (-4043 (((-618 |#4|) $) 50)) (-4037 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4032 ((|#4| |#4| $) 74)) (-4045 (((-112) $ $) 85)) (-3224 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-542)))) (-4038 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4033 ((|#4| |#4| $) NIL)) (-3577 (((-1086) $) NIL)) (-4143 (((-3 |#4| #1#) $) 69)) (-1395 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4025 (((-3 $ #1#) $ |#4|) NIL)) (-4111 (($ $ |#4|) NIL)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4110 (($ $ (-618 |#4|) (-618 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-618 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-1265 (((-112) $ $) NIL)) (-3745 (((-112) $) 67)) (-3911 (($) 42)) (-4290 (((-747) $) NIL)) (-2064 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4336)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-3742 (($ $) NIL)) (-4313 (((-524) $) NIL (|has| |#4| (-594 (-524))))) (-3867 (($ (-618 |#4|)) NIL)) (-3231 (($ $ |#3|) NIL)) (-3233 (($ $ |#3|) NIL)) (-4030 (($ $) NIL)) (-3232 (($ $ |#3|) NIL)) (-4300 (((-835) $) NIL) (((-618 |#4|) $) 57)) (-4024 (((-747) $) NIL (|has| |#3| (-361)))) (-4268 (((-3 $ "failed") (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-618 |#4|)) 41)) (-4267 (((-618 $) (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-618 $) (-618 |#4|)) 66)) (-4044 (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3666 (-618 |#4|))) #1#) (-618 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4036 (((-112) $ (-1 (-112) |#4| (-618 |#4|))) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4336)))) (-4026 (((-618 |#3|) $) NIL)) (-4276 (((-112) |#3| $) NIL)) (-3375 (((-112) $ $) NIL)) (-4299 (((-747) $) NIL (|has| $ (-6 -4336)))))
+(((-1238 |#1| |#2| |#3| |#4|) (-13 (-1173 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4269 ((-3 $ "failed") (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4269 ((-3 $ "failed") (-618 |#4|))) (-15 -4268 ((-3 $ "failed") (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4268 ((-3 $ "failed") (-618 |#4|))) (-15 -4267 ((-618 $) (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4267 ((-618 $) (-618 |#4|))))) (-542) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -1238))
+((-4269 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-618 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1238 *5 *6 *7 *8)))) (-4269 (*1 *1 *2) (|partial| -12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1238 *3 *4 *5 *6)))) (-4268 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-618 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1238 *5 *6 *7 *8)))) (-4268 (*1 *1 *2) (|partial| -12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1238 *3 *4 *5 *6)))) (-4267 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-618 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-618 (-1238 *6 *7 *8 *9))) (-5 *1 (-1238 *6 *7 *8 *9)))) (-4267 (*1 *2 *3) (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 (-1238 *4 *5 *6 *7))) (-5 *1 (-1238 *4 *5 *6 *7)))))
+(-13 (-1173 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4269 ((-3 $ "failed") (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4269 ((-3 $ "failed") (-618 |#4|))) (-15 -4268 ((-3 $ "failed") (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4268 ((-3 $ "failed") (-618 |#4|))) (-15 -4267 ((-618 $) (-618 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4267 ((-618 $) (-618 |#4|)))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-1363 (((-3 $ "failed") $ $) 19)) (-3879 (($) 17 T CONST)) (-3804 (((-3 $ "failed") $) 32)) (-2493 (((-112) $) 30)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#1|) 36)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37)))
(((-1239 |#1|) (-138) (-1018)) (T -1239))
-((-3845 (*1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1018)))))
-(-13 (-1018) (-111 |t#1| |t#1|) (-10 -8 (-15 -3845 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T))
-((-3833 (((-112) $ $) 60)) (-3166 (((-112) $) NIL)) (-3303 (((-621 |#1|) $) 45)) (-3447 (($ $ (-747)) 39)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2506 (($ $ (-747)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-1705 (($) NIL T CONST)) (-3537 (($ $ $) 63) (($ $ (-795 |#1|)) 49) (($ $ |#1|) 53)) (-2713 (((-3 (-795 |#1|) "failed") $) NIL)) (-2658 (((-795 |#1|) $) NIL)) (-2069 (($ $) 32)) (-3976 (((-3 $ "failed") $) NIL)) (-1527 (((-112) $) NIL)) (-4044 (($ $) NIL)) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-3525 (($ (-795 |#1|) |#2|) 31)) (-3276 (($ $) 33)) (-3313 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) 12)) (-3760 (((-795 |#1|) $) NIL)) (-2720 (((-795 |#1|) $) 34)) (-2796 (($ (-1 |#2| |#2|) $) NIL)) (-3434 (($ $ $) 62) (($ $ (-795 |#1|)) 51) (($ $ |#1|) 55)) (-3196 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2027 (((-795 |#1|) $) 28)) (-2042 ((|#2| $) 30)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3068 (((-747) $) 36)) (-3983 (((-112) $) 40)) (-2588 ((|#2| $) NIL)) (-3845 (((-834) $) NIL) (($ (-795 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-549)) NIL)) (-3330 (((-621 |#2|) $) NIL)) (-2944 ((|#2| $ (-795 |#1|)) NIL)) (-1569 ((|#2| $ $) 65) ((|#2| $ (-795 |#1|)) NIL)) (-1723 (((-747)) NIL)) (-3275 (($) 13 T CONST)) (-3287 (($) 15 T CONST)) (-2729 (((-621 (-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2388 (((-112) $ $) 38)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 22)) (** (($ $ (-747)) NIL) (($ $ (-892)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-795 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1240 |#1| |#2|) (-13 (-375 |#2| (-795 |#1|)) (-1246 |#1| |#2|)) (-823) (-1018)) (T -1240))
-NIL
-(-13 (-375 |#2| (-795 |#1|)) (-1246 |#1| |#2|))
-((-3631 ((|#3| |#3| (-747)) 23)) (-2718 ((|#3| |#3| (-747)) 27)) (-4222 ((|#3| |#3| |#3| (-747)) 28)))
-(((-1241 |#1| |#2| |#3|) (-10 -7 (-15 -2718 (|#3| |#3| (-747))) (-15 -3631 (|#3| |#3| (-747))) (-15 -4222 (|#3| |#3| |#3| (-747)))) (-13 (-1018) (-694 (-400 (-549)))) (-823) (-1246 |#2| |#1|)) (T -1241))
-((-4222 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-549))))) (-4 *5 (-823)) (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1246 *5 *4)))) (-3631 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-549))))) (-4 *5 (-823)) (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1246 *5 *4)))) (-2718 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-549))))) (-4 *5 (-823)) (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1246 *5 *4)))))
-(-10 -7 (-15 -2718 (|#3| |#3| (-747))) (-15 -3631 (|#3| |#3| (-747))) (-15 -4222 (|#3| |#3| |#3| (-747))))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-3303 (((-621 |#1|) $) 38)) (-2384 (((-3 $ "failed") $ $) 19)) (-2506 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-747)) 40 (|has| |#2| (-170)))) (-1705 (($) 17 T CONST)) (-3537 (($ $ |#1|) 52) (($ $ (-795 |#1|)) 51) (($ $ $) 50)) (-2713 (((-3 (-795 |#1|) "failed") $) 62)) (-2658 (((-795 |#1|) $) 61)) (-3976 (((-3 $ "failed") $) 32)) (-1527 (((-112) $) 43)) (-4044 (($ $) 42)) (-3987 (((-112) $) 30)) (-2427 (((-112) $) 48)) (-3525 (($ (-795 |#1|) |#2|) 49)) (-3276 (($ $) 47)) (-3313 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) 58)) (-3760 (((-795 |#1|) $) 59)) (-2796 (($ (-1 |#2| |#2|) $) 39)) (-3434 (($ $ |#1|) 55) (($ $ (-795 |#1|)) 54) (($ $ $) 53)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3983 (((-112) $) 45)) (-2588 ((|#2| $) 44)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#2|) 66) (($ (-795 |#1|)) 63) (($ |#1|) 46)) (-1569 ((|#2| $ (-795 |#1|)) 57) ((|#2| $ $) 56)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
-(((-1242 |#1| |#2|) (-138) (-823) (-1018)) (T -1242))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-795 *3)))) (-3313 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-2 (|:| |k| (-795 *3)) (|:| |c| *4))))) (-1569 (*1 *2 *1 *3) (-12 (-5 *3 (-795 *4)) (-4 *1 (-1242 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1018)))) (-1569 (*1 *2 *1 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) (-3434 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-3434 (*1 *1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-3434 (*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-3537 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-3537 (*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-3525 (*1 *1 *2 *3) (-12 (-5 *2 (-795 *4)) (-4 *4 (-823)) (-4 *1 (-1242 *4 *3)) (-4 *3 (-1018)))) (-2427 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) (-3276 (*1 *1 *1) (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-3845 (*1 *1 *2) (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) (-2588 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) (-4044 (*1 *1 *1) (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-2506 (*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)) (-4 *3 (-170)))) (-2506 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-4 *4 (-170)))) (-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-621 *3)))))
-(-13 (-1018) (-1239 |t#2|) (-1009 (-795 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3760 ((-795 |t#1|) $)) (-15 -3313 ((-2 (|:| |k| (-795 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1569 (|t#2| $ (-795 |t#1|))) (-15 -1569 (|t#2| $ $)) (-15 -3434 ($ $ |t#1|)) (-15 -3434 ($ $ (-795 |t#1|))) (-15 -3434 ($ $ $)) (-15 -3537 ($ $ |t#1|)) (-15 -3537 ($ $ (-795 |t#1|))) (-15 -3537 ($ $ $)) (-15 -3525 ($ (-795 |t#1|) |t#2|)) (-15 -2427 ((-112) $)) (-15 -3276 ($ $)) (-15 -3845 ($ |t#1|)) (-15 -3983 ((-112) $)) (-15 -2588 (|t#2| $)) (-15 -1527 ((-112) $)) (-15 -4044 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -2506 ($ $ $)) (-15 -2506 ($ $ (-747)))) |%noBranch|) (-15 -2796 ($ (-1 |t#2| |t#2|) $)) (-15 -3303 ((-621 |t#1|) $)) (IF (|has| |t#2| (-6 -4329)) (-6 -4329) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#2|) . T) ((-624 $) . T) ((-694 |#2|) |has| |#2| (-170)) ((-703) . T) ((-1009 (-795 |#1|)) . T) ((-1024 |#2|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1239 |#2|) . T))
-((-2642 (((-112) $) 15)) (-2923 (((-112) $) 14)) (-2731 (($ $) 19) (($ $ (-747)) 20)))
-(((-1243 |#1| |#2|) (-10 -8 (-15 -2731 (|#1| |#1| (-747))) (-15 -2731 (|#1| |#1|)) (-15 -2642 ((-112) |#1|)) (-15 -2923 ((-112) |#1|))) (-1244 |#2|) (-356)) (T -1243))
-NIL
-(-10 -8 (-15 -2731 (|#1| |#1| (-747))) (-15 -2731 (|#1| |#1|)) (-15 -2642 ((-112) |#1|)) (-15 -2923 ((-112) |#1|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-2139 (((-2 (|:| -2699 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2408 (($ $) 38)) (-2477 (((-112) $) 36)) (-2642 (((-112) $) 91)) (-1703 (((-747)) 87)) (-2384 (((-3 $ "failed") $ $) 19)) (-1912 (($ $) 70)) (-3513 (((-411 $) $) 69)) (-2647 (((-112) $ $) 57)) (-1705 (($) 17 T CONST)) (-2713 (((-3 |#1| "failed") $) 98)) (-2658 ((|#1| $) 97)) (-2094 (($ $ $) 53)) (-3976 (((-3 $ "failed") $) 32)) (-2066 (($ $ $) 54)) (-3614 (((-2 (|:| -1569 (-621 $)) (|:| -4246 $)) (-621 $)) 49)) (-3225 (($ $ (-747)) 84 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2471 (((-112) $) 68)) (-2078 (((-809 (-892)) $) 81 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3987 (((-112) $) 30)) (-1496 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-3696 (($ $ $) 44) (($ (-621 $)) 43)) (-2677 (((-1124) $) 9)) (-1991 (($ $) 67)) (-2360 (((-112) $) 90)) (-3988 (((-1086) $) 10)) (-1443 (((-1138 $) (-1138 $) (-1138 $)) 42)) (-3726 (($ $ $) 46) (($ (-621 $)) 45)) (-2120 (((-411 $) $) 71)) (-3656 (((-809 (-892))) 88)) (-3628 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4246 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2038 (((-3 $ "failed") $ $) 40)) (-2245 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-4091 (((-747) $) 56)) (-1346 (((-2 (|:| -2112 $) (|:| -3249 $)) $ $) 55)) (-2591 (((-3 (-747) "failed") $ $) 82 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3128 (((-133)) 96)) (-3068 (((-809 (-892)) $) 89)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63) (($ |#1|) 99)) (-3407 (((-3 $ "failed") $) 80 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1723 (((-747)) 28)) (-4053 (((-112) $ $) 37)) (-2923 (((-112) $) 92)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2731 (($ $) 86 (|has| |#1| (-361))) (($ $ (-747)) 85 (|has| |#1| (-361)))) (-2388 (((-112) $ $) 6)) (-2512 (($ $ $) 62) (($ $ |#1|) 95)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
-(((-1244 |#1|) (-138) (-356)) (T -1244))
-((-2923 (*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-2642 (*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-2360 (*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-5 *2 (-809 (-892))))) (-3656 (*1 *2) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-5 *2 (-809 (-892))))) (-1703 (*1 *2) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-5 *2 (-747)))) (-2731 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-356)) (-4 *2 (-361)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-4 *3 (-361)))))
-(-13 (-356) (-1009 |t#1|) (-1232 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-395)) |%noBranch|) (-15 -2923 ((-112) $)) (-15 -2642 ((-112) $)) (-15 -2360 ((-112) $)) (-15 -3068 ((-809 (-892)) $)) (-15 -3656 ((-809 (-892)))) (-15 -1703 ((-747))) (IF (|has| |t#1| (-361)) (PROGN (-6 (-395)) (-15 -2731 ($ $)) (-15 -2731 ($ $ (-747)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1536 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) -1536 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 |#1|) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1009 |#1|) . T) ((-1024 #0#) . T) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1183) . T) ((-1232 |#1|) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3303 (((-621 |#1|) $) 86)) (-3447 (($ $ (-747)) 89)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2506 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-747)) NIL (|has| |#2| (-170)))) (-1705 (($) NIL T CONST)) (-3537 (($ $ |#1|) NIL) (($ $ (-795 |#1|)) NIL) (($ $ $) NIL)) (-2713 (((-3 (-795 |#1|) "failed") $) NIL) (((-3 (-864 |#1|) "failed") $) NIL)) (-2658 (((-795 |#1|) $) NIL) (((-864 |#1|) $) NIL)) (-2069 (($ $) 88)) (-3976 (((-3 $ "failed") $) NIL)) (-1527 (((-112) $) 77)) (-4044 (($ $) 81)) (-1626 (($ $ $ (-747)) 90)) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-3525 (($ (-795 |#1|) |#2|) NIL) (($ (-864 |#1|) |#2|) 26)) (-3276 (($ $) 103)) (-3313 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3760 (((-795 |#1|) $) NIL)) (-2720 (((-795 |#1|) $) NIL)) (-2796 (($ (-1 |#2| |#2|) $) NIL)) (-3434 (($ $ |#1|) NIL) (($ $ (-795 |#1|)) NIL) (($ $ $) NIL)) (-3631 (($ $ (-747)) 97 (|has| |#2| (-694 (-400 (-549)))))) (-3196 (((-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2027 (((-864 |#1|) $) 70)) (-2042 ((|#2| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-2718 (($ $ (-747)) 94 (|has| |#2| (-694 (-400 (-549)))))) (-3068 (((-747) $) 87)) (-3983 (((-112) $) 71)) (-2588 ((|#2| $) 75)) (-3845 (((-834) $) 57) (($ (-549)) NIL) (($ |#2|) 51) (($ (-795 |#1|)) NIL) (($ |#1|) 59) (($ (-864 |#1|)) NIL) (($ (-640 |#1| |#2|)) 43) (((-1240 |#1| |#2|) $) 64) (((-1249 |#1| |#2|) $) 69)) (-3330 (((-621 |#2|) $) NIL)) (-2944 ((|#2| $ (-864 |#1|)) NIL)) (-1569 ((|#2| $ (-795 |#1|)) NIL) ((|#2| $ $) NIL)) (-1723 (((-747)) NIL)) (-3275 (($) 21 T CONST)) (-3287 (($) 25 T CONST)) (-2729 (((-621 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3765 (((-3 (-640 |#1| |#2|) "failed") $) 102)) (-2388 (((-112) $ $) 65)) (-2499 (($ $) 96) (($ $ $) 95)) (-2485 (($ $ $) 20)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-864 |#1|)) NIL)))
-(((-1245 |#1| |#2|) (-13 (-1246 |#1| |#2|) (-375 |#2| (-864 |#1|)) (-10 -8 (-15 -3845 ($ (-640 |#1| |#2|))) (-15 -3845 ((-1240 |#1| |#2|) $)) (-15 -3845 ((-1249 |#1| |#2|) $)) (-15 -3765 ((-3 (-640 |#1| |#2|) "failed") $)) (-15 -1626 ($ $ $ (-747))) (IF (|has| |#2| (-694 (-400 (-549)))) (PROGN (-15 -2718 ($ $ (-747))) (-15 -3631 ($ $ (-747)))) |%noBranch|))) (-823) (-170)) (T -1245))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *1 (-1245 *3 *4)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-3765 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-1626 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-2718 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *4 (-694 (-400 (-549)))) (-4 *3 (-823)) (-4 *4 (-170)))) (-3631 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *4 (-694 (-400 (-549)))) (-4 *3 (-823)) (-4 *4 (-170)))))
-(-13 (-1246 |#1| |#2|) (-375 |#2| (-864 |#1|)) (-10 -8 (-15 -3845 ($ (-640 |#1| |#2|))) (-15 -3845 ((-1240 |#1| |#2|) $)) (-15 -3845 ((-1249 |#1| |#2|) $)) (-15 -3765 ((-3 (-640 |#1| |#2|) "failed") $)) (-15 -1626 ($ $ $ (-747))) (IF (|has| |#2| (-694 (-400 (-549)))) (PROGN (-15 -2718 ($ $ (-747))) (-15 -3631 ($ $ (-747)))) |%noBranch|)))
-((-3833 (((-112) $ $) 7)) (-3166 (((-112) $) 16)) (-3303 (((-621 |#1|) $) 38)) (-3447 (($ $ (-747)) 71)) (-2384 (((-3 $ "failed") $ $) 19)) (-2506 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-747)) 40 (|has| |#2| (-170)))) (-1705 (($) 17 T CONST)) (-3537 (($ $ |#1|) 52) (($ $ (-795 |#1|)) 51) (($ $ $) 50)) (-2713 (((-3 (-795 |#1|) "failed") $) 62)) (-2658 (((-795 |#1|) $) 61)) (-3976 (((-3 $ "failed") $) 32)) (-1527 (((-112) $) 43)) (-4044 (($ $) 42)) (-3987 (((-112) $) 30)) (-2427 (((-112) $) 48)) (-3525 (($ (-795 |#1|) |#2|) 49)) (-3276 (($ $) 47)) (-3313 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) 58)) (-3760 (((-795 |#1|) $) 59)) (-2720 (((-795 |#1|) $) 73)) (-2796 (($ (-1 |#2| |#2|) $) 39)) (-3434 (($ $ |#1|) 55) (($ $ (-795 |#1|)) 54) (($ $ $) 53)) (-2677 (((-1124) $) 9)) (-3988 (((-1086) $) 10)) (-3068 (((-747) $) 72)) (-3983 (((-112) $) 45)) (-2588 ((|#2| $) 44)) (-3845 (((-834) $) 11) (($ (-549)) 27) (($ |#2|) 66) (($ (-795 |#1|)) 63) (($ |#1|) 46)) (-1569 ((|#2| $ (-795 |#1|)) 57) ((|#2| $ $) 56)) (-1723 (((-747)) 28)) (-3275 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 6)) (-2499 (($ $) 22) (($ $ $) 21)) (-2485 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
-(((-1246 |#1| |#2|) (-138) (-823) (-1018)) (T -1246))
-((-2720 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-795 *3)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-747)))) (-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1246 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))))
-(-13 (-1242 |t#1| |t#2|) (-10 -8 (-15 -2720 ((-795 |t#1|) $)) (-15 -3068 ((-747) $)) (-15 -3447 ($ $ (-747)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#2|) . T) ((-624 $) . T) ((-694 |#2|) |has| |#2| (-170)) ((-703) . T) ((-1009 (-795 |#1|)) . T) ((-1024 |#2|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1066) . T) ((-1239 |#2|) . T) ((-1242 |#1| |#2|) . T))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-3303 (((-621 (-1142)) $) NIL)) (-4174 (($ (-1240 (-1142) |#1|)) NIL)) (-3447 (($ $ (-747)) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2506 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-747)) NIL (|has| |#1| (-170)))) (-1705 (($) NIL T CONST)) (-3537 (($ $ (-1142)) NIL) (($ $ (-795 (-1142))) NIL) (($ $ $) NIL)) (-2713 (((-3 (-795 (-1142)) "failed") $) NIL)) (-2658 (((-795 (-1142)) $) NIL)) (-3976 (((-3 $ "failed") $) NIL)) (-1527 (((-112) $) NIL)) (-4044 (($ $) NIL)) (-3987 (((-112) $) NIL)) (-2427 (((-112) $) NIL)) (-3525 (($ (-795 (-1142)) |#1|) NIL)) (-3276 (($ $) NIL)) (-3313 (((-2 (|:| |k| (-795 (-1142))) (|:| |c| |#1|)) $) NIL)) (-3760 (((-795 (-1142)) $) NIL)) (-2720 (((-795 (-1142)) $) NIL)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-3434 (($ $ (-1142)) NIL) (($ $ (-795 (-1142))) NIL) (($ $ $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1448 (((-1240 (-1142) |#1|) $) NIL)) (-3068 (((-747) $) NIL)) (-3983 (((-112) $) NIL)) (-2588 ((|#1| $) NIL)) (-3845 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-795 (-1142))) NIL) (($ (-1142)) NIL)) (-1569 ((|#1| $ (-795 (-1142))) NIL) ((|#1| $ $) NIL)) (-1723 (((-747)) NIL)) (-3275 (($) NIL T CONST)) (-3716 (((-621 (-2 (|:| |k| (-1142)) (|:| |c| $))) $) NIL)) (-3287 (($) NIL T CONST)) (-2388 (((-112) $ $) NIL)) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1142) $) NIL)))
-(((-1247 |#1|) (-13 (-1246 (-1142) |#1|) (-10 -8 (-15 -1448 ((-1240 (-1142) |#1|) $)) (-15 -4174 ($ (-1240 (-1142) |#1|))) (-15 -3716 ((-621 (-2 (|:| |k| (-1142)) (|:| |c| $))) $)))) (-1018)) (T -1247))
-((-1448 (*1 *2 *1) (-12 (-5 *2 (-1240 (-1142) *3)) (-5 *1 (-1247 *3)) (-4 *3 (-1018)))) (-4174 (*1 *1 *2) (-12 (-5 *2 (-1240 (-1142) *3)) (-4 *3 (-1018)) (-5 *1 (-1247 *3)))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |k| (-1142)) (|:| |c| (-1247 *3))))) (-5 *1 (-1247 *3)) (-4 *3 (-1018)))))
-(-13 (-1246 (-1142) |#1|) (-10 -8 (-15 -1448 ((-1240 (-1142) |#1|) $)) (-15 -4174 ($ (-1240 (-1142) |#1|))) (-15 -3716 ((-621 (-2 (|:| |k| (-1142)) (|:| |c| $))) $))))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) NIL)) (-2384 (((-3 $ "failed") $ $) NIL)) (-1705 (($) NIL T CONST)) (-2713 (((-3 |#2| "failed") $) NIL)) (-2658 ((|#2| $) NIL)) (-2069 (($ $) NIL)) (-3976 (((-3 $ "failed") $) 36)) (-1527 (((-112) $) 30)) (-4044 (($ $) 32)) (-3987 (((-112) $) NIL)) (-3454 (((-747) $) NIL)) (-1298 (((-621 $) $) NIL)) (-2427 (((-112) $) NIL)) (-3525 (($ |#2| |#1|) NIL)) (-3760 ((|#2| $) 19)) (-2720 ((|#2| $) 16)) (-2796 (($ (-1 |#1| |#1|) $) NIL)) (-3196 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2027 ((|#2| $) NIL)) (-2042 ((|#1| $) NIL)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-3983 (((-112) $) 27)) (-2588 ((|#1| $) 28)) (-3845 (((-834) $) 55) (($ (-549)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3330 (((-621 |#1|) $) NIL)) (-2944 ((|#1| $ |#2|) NIL)) (-1569 ((|#1| $ |#2|) 24)) (-1723 (((-747)) 14)) (-3275 (($) 25 T CONST)) (-3287 (($) 11 T CONST)) (-2729 (((-621 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2388 (((-112) $ $) 26)) (-2512 (($ $ |#1|) 57 (|has| |#1| (-356)))) (-2499 (($ $) NIL) (($ $ $) NIL)) (-2485 (($ $ $) 44)) (** (($ $ (-892)) NIL) (($ $ (-747)) 46)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3774 (((-747) $) 15)))
-(((-1248 |#1| |#2|) (-13 (-1018) (-1239 |#1|) (-375 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3774 ((-747) $)) (-15 -3845 ($ |#2|)) (-15 -2720 (|#2| $)) (-15 -3760 (|#2| $)) (-15 -2069 ($ $)) (-15 -1569 (|#1| $ |#2|)) (-15 -3983 ((-112) $)) (-15 -2588 (|#1| $)) (-15 -1527 ((-112) $)) (-15 -4044 ($ $)) (-15 -2796 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -2512 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4329)) (-6 -4329) |%noBranch|) (IF (|has| |#1| (-6 -4333)) (-6 -4333) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|))) (-1018) (-819)) (T -1248))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))) (-2069 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))) (-2796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-1248 *3 *4)) (-4 *4 (-819)))) (-3845 (*1 *1 *2) (-12 (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-819)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))) (-2720 (*1 *2 *1) (-12 (-4 *2 (-819)) (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)))) (-3760 (*1 *2 *1) (-12 (-4 *2 (-819)) (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)))) (-1569 (*1 *2 *1 *3) (-12 (-4 *2 (-1018)) (-5 *1 (-1248 *2 *3)) (-4 *3 (-819)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))) (-2588 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-1248 *2 *3)) (-4 *3 (-819)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))) (-4044 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))) (-2512 (*1 *1 *1 *2) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-819)))))
-(-13 (-1018) (-1239 |#1|) (-375 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3774 ((-747) $)) (-15 -3845 ($ |#2|)) (-15 -2720 (|#2| $)) (-15 -3760 (|#2| $)) (-15 -2069 ($ $)) (-15 -1569 (|#1| $ |#2|)) (-15 -3983 ((-112) $)) (-15 -2588 (|#1| $)) (-15 -1527 ((-112) $)) (-15 -4044 ($ $)) (-15 -2796 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -2512 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4329)) (-6 -4329) |%noBranch|) (IF (|has| |#1| (-6 -4333)) (-6 -4333) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|)))
-((-3833 (((-112) $ $) 26)) (-3166 (((-112) $) NIL)) (-3303 (((-621 |#1|) $) 120)) (-4174 (($ (-1240 |#1| |#2|)) 44)) (-3447 (($ $ (-747)) 32)) (-2384 (((-3 $ "failed") $ $) NIL)) (-2506 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-747)) 46 (|has| |#2| (-170)))) (-1705 (($) NIL T CONST)) (-3537 (($ $ |#1|) 102) (($ $ (-795 |#1|)) 103) (($ $ $) 25)) (-2713 (((-3 (-795 |#1|) "failed") $) NIL)) (-2658 (((-795 |#1|) $) NIL)) (-3976 (((-3 $ "failed") $) 110)) (-1527 (((-112) $) 105)) (-4044 (($ $) 106)) (-3987 (((-112) $) NIL)) (-2427 (((-112) $) NIL)) (-3525 (($ (-795 |#1|) |#2|) 19)) (-3276 (($ $) NIL)) (-3313 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3760 (((-795 |#1|) $) 111)) (-2720 (((-795 |#1|) $) 114)) (-2796 (($ (-1 |#2| |#2|) $) 119)) (-3434 (($ $ |#1|) 100) (($ $ (-795 |#1|)) 101) (($ $ $) 56)) (-2677 (((-1124) $) NIL)) (-3988 (((-1086) $) NIL)) (-1448 (((-1240 |#1| |#2|) $) 84)) (-3068 (((-747) $) 117)) (-3983 (((-112) $) 70)) (-2588 ((|#2| $) 28)) (-3845 (((-834) $) 63) (($ (-549)) 77) (($ |#2|) 74) (($ (-795 |#1|)) 17) (($ |#1|) 73)) (-1569 ((|#2| $ (-795 |#1|)) 104) ((|#2| $ $) 27)) (-1723 (((-747)) 108)) (-3275 (($) 14 T CONST)) (-3716 (((-621 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3287 (($) 29 T CONST)) (-2388 (((-112) $ $) 13)) (-2499 (($ $) 88) (($ $ $) 91)) (-2485 (($ $ $) 55)) (** (($ $ (-892)) NIL) (($ $ (-747)) 49)) (* (($ (-892) $) NIL) (($ (-747) $) 47) (($ (-549) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1249 |#1| |#2|) (-13 (-1246 |#1| |#2|) (-10 -8 (-15 -1448 ((-1240 |#1| |#2|) $)) (-15 -4174 ($ (-1240 |#1| |#2|))) (-15 -3716 ((-621 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-823) (-1018)) (T -1249))
-((-1448 (*1 *2 *1) (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-1249 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-4174 (*1 *1 *2) (-12 (-5 *2 (-1240 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *1 (-1249 *3 *4)))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |k| *3) (|:| |c| (-1249 *3 *4))))) (-5 *1 (-1249 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))))
-(-13 (-1246 |#1| |#2|) (-10 -8 (-15 -1448 ((-1240 |#1| |#2|) $)) (-15 -4174 ($ (-1240 |#1| |#2|))) (-15 -3716 ((-621 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-2662 (((-621 (-1122 |#1|)) (-1 (-621 (-1122 |#1|)) (-621 (-1122 |#1|))) (-549)) 15) (((-1122 |#1|) (-1 (-1122 |#1|) (-1122 |#1|))) 11)))
-(((-1250 |#1|) (-10 -7 (-15 -2662 ((-1122 |#1|) (-1 (-1122 |#1|) (-1122 |#1|)))) (-15 -2662 ((-621 (-1122 |#1|)) (-1 (-621 (-1122 |#1|)) (-621 (-1122 |#1|))) (-549)))) (-1179)) (T -1250))
-((-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-621 (-1122 *5)) (-621 (-1122 *5)))) (-5 *4 (-549)) (-5 *2 (-621 (-1122 *5))) (-5 *1 (-1250 *5)) (-4 *5 (-1179)))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-1 (-1122 *4) (-1122 *4))) (-5 *2 (-1122 *4)) (-5 *1 (-1250 *4)) (-4 *4 (-1179)))))
-(-10 -7 (-15 -2662 ((-1122 |#1|) (-1 (-1122 |#1|) (-1122 |#1|)))) (-15 -2662 ((-621 (-1122 |#1|)) (-1 (-621 (-1122 |#1|)) (-621 (-1122 |#1|))) (-549))))
-((-3493 (((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|))) 148) (((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112)) 147) (((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112)) 146) (((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112) (-112)) 145) (((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-1015 |#1| |#2|)) 130)) (-2875 (((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|))) 72) (((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)) (-112)) 71) (((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)) (-112) (-112)) 70)) (-3513 (((-621 (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) (-1015 |#1| |#2|)) 61)) (-1316 (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|))) 115) (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112)) 114) (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112)) 113) (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112) (-112)) 112) (((-621 (-621 (-995 (-400 |#1|)))) (-1015 |#1| |#2|)) 107)) (-2153 (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|))) 120) (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112)) 119) (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112)) 118) (((-621 (-621 (-995 (-400 |#1|)))) (-1015 |#1| |#2|)) 117)) (-2844 (((-621 (-756 |#1| (-836 |#3|))) (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) 98) (((-1138 (-995 (-400 |#1|))) (-1138 |#1|)) 89) (((-923 (-995 (-400 |#1|))) (-756 |#1| (-836 |#3|))) 96) (((-923 (-995 (-400 |#1|))) (-923 |#1|)) 94) (((-756 |#1| (-836 |#3|)) (-756 |#1| (-836 |#2|))) 33)))
-(((-1251 |#1| |#2| |#3|) (-10 -7 (-15 -2875 ((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)) (-112) (-112))) (-15 -2875 ((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)) (-112))) (-15 -2875 ((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)))) (-15 -3493 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-1015 |#1| |#2|))) (-15 -3493 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112) (-112))) (-15 -3493 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112))) (-15 -3493 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112))) (-15 -3493 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)))) (-15 -1316 ((-621 (-621 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -1316 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112) (-112))) (-15 -1316 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112))) (-15 -1316 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112))) (-15 -1316 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)))) (-15 -2153 ((-621 (-621 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -2153 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112))) (-15 -2153 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112))) (-15 -2153 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)))) (-15 -3513 ((-621 (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) (-1015 |#1| |#2|))) (-15 -2844 ((-756 |#1| (-836 |#3|)) (-756 |#1| (-836 |#2|)))) (-15 -2844 ((-923 (-995 (-400 |#1|))) (-923 |#1|))) (-15 -2844 ((-923 (-995 (-400 |#1|))) (-756 |#1| (-836 |#3|)))) (-15 -2844 ((-1138 (-995 (-400 |#1|))) (-1138 |#1|))) (-15 -2844 ((-621 (-756 |#1| (-836 |#3|))) (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))))) (-13 (-821) (-300) (-145) (-993)) (-621 (-1142)) (-621 (-1142))) (T -1251))
-((-2844 (*1 *2 *3) (-12 (-5 *3 (-1112 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6)))) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *6 (-621 (-1142))) (-5 *2 (-621 (-756 *4 (-836 *6)))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-621 (-1142))))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-1138 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-1138 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-621 (-1142))) (-14 *6 (-621 (-1142))))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-756 *4 (-836 *6))) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *6 (-621 (-1142))) (-5 *2 (-923 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-621 (-1142))))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-923 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-923 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-621 (-1142))) (-14 *6 (-621 (-1142))))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-756 *4 (-836 *5))) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *5 (-621 (-1142))) (-5 *2 (-756 *4 (-836 *6))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-621 (-1142))))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *5 (-621 (-1142))) (-5 *2 (-621 (-1112 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-621 (-1142))))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-621 (-1142))) (-14 *6 (-621 (-1142))))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142))))) (-2153 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142))))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *5 (-621 (-1142))) (-5 *2 (-621 (-621 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-621 (-1142))))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-621 (-1142))) (-14 *6 (-621 (-1142))))) (-1316 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142))))) (-1316 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142))))) (-1316 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142))))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *5 (-621 (-1142))) (-5 *2 (-621 (-621 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-621 (-1142))))) (-3493 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-2 (|:| -2136 (-1138 *4)) (|:| -4163 (-621 (-923 *4)))))) (-5 *1 (-1251 *4 *5 *6)) (-5 *3 (-621 (-923 *4))) (-14 *5 (-621 (-1142))) (-14 *6 (-621 (-1142))))) (-3493 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-2 (|:| -2136 (-1138 *5)) (|:| -4163 (-621 (-923 *5)))))) (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-621 (-923 *5))) (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142))))) (-3493 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-2 (|:| -2136 (-1138 *5)) (|:| -4163 (-621 (-923 *5)))))) (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-621 (-923 *5))) (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142))))) (-3493 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-2 (|:| -2136 (-1138 *5)) (|:| -4163 (-621 (-923 *5)))))) (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-621 (-923 *5))) (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142))))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *5 (-621 (-1142))) (-5 *2 (-621 (-2 (|:| -2136 (-1138 *4)) (|:| -4163 (-621 (-923 *4)))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-621 (-1142))))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-1015 *4 *5))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-621 (-1142))) (-14 *6 (-621 (-1142))))) (-2875 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142))))) (-2875 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142))))))
-(-10 -7 (-15 -2875 ((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)) (-112) (-112))) (-15 -2875 ((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)) (-112))) (-15 -2875 ((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)))) (-15 -3493 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-1015 |#1| |#2|))) (-15 -3493 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112) (-112))) (-15 -3493 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112))) (-15 -3493 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112))) (-15 -3493 ((-621 (-2 (|:| -2136 (-1138 |#1|)) (|:| -4163 (-621 (-923 |#1|))))) (-621 (-923 |#1|)))) (-15 -1316 ((-621 (-621 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -1316 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112) (-112))) (-15 -1316 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112))) (-15 -1316 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112))) (-15 -1316 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)))) (-15 -2153 ((-621 (-621 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -2153 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112))) (-15 -2153 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112))) (-15 -2153 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)))) (-15 -3513 ((-621 (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) (-1015 |#1| |#2|))) (-15 -2844 ((-756 |#1| (-836 |#3|)) (-756 |#1| (-836 |#2|)))) (-15 -2844 ((-923 (-995 (-400 |#1|))) (-923 |#1|))) (-15 -2844 ((-923 (-995 (-400 |#1|))) (-756 |#1| (-836 |#3|)))) (-15 -2844 ((-1138 (-995 (-400 |#1|))) (-1138 |#1|))) (-15 -2844 ((-621 (-756 |#1| (-836 |#3|))) (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|))))))
-((-3560 (((-3 (-1225 (-400 (-549))) "failed") (-1225 |#1|) |#1|) 21)) (-3104 (((-112) (-1225 |#1|)) 12)) (-4282 (((-3 (-1225 (-549)) "failed") (-1225 |#1|)) 16)))
-(((-1252 |#1|) (-10 -7 (-15 -3104 ((-112) (-1225 |#1|))) (-15 -4282 ((-3 (-1225 (-549)) "failed") (-1225 |#1|))) (-15 -3560 ((-3 (-1225 (-400 (-549))) "failed") (-1225 |#1|) |#1|))) (-617 (-549))) (T -1252))
-((-3560 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1225 *4)) (-4 *4 (-617 (-549))) (-5 *2 (-1225 (-400 (-549)))) (-5 *1 (-1252 *4)))) (-4282 (*1 *2 *3) (|partial| -12 (-5 *3 (-1225 *4)) (-4 *4 (-617 (-549))) (-5 *2 (-1225 (-549))) (-5 *1 (-1252 *4)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-1225 *4)) (-4 *4 (-617 (-549))) (-5 *2 (-112)) (-5 *1 (-1252 *4)))))
-(-10 -7 (-15 -3104 ((-112) (-1225 |#1|))) (-15 -4282 ((-3 (-1225 (-549)) "failed") (-1225 |#1|))) (-15 -3560 ((-3 (-1225 (-400 (-549))) "failed") (-1225 |#1|) |#1|)))
-((-3833 (((-112) $ $) NIL)) (-3166 (((-112) $) 11)) (-2384 (((-3 $ "failed") $ $) NIL)) (-3615 (((-747)) 8)) (-1705 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $) 43)) (-3238 (($) 36)) (-3987 (((-112) $) NIL)) (-3982 (((-3 $ "failed") $) 29)) (-2723 (((-892) $) 15)) (-2677 (((-1124) $) NIL)) (-3060 (($) 25 T CONST)) (-3491 (($ (-892)) 37)) (-3988 (((-1086) $) NIL)) (-2844 (((-549) $) 13)) (-3845 (((-834) $) 22) (($ (-549)) 19)) (-1723 (((-747)) 9)) (-3275 (($) 23 T CONST)) (-3287 (($) 24 T CONST)) (-2388 (((-112) $ $) 27)) (-2499 (($ $) 38) (($ $ $) 35)) (-2485 (($ $ $) 26)) (** (($ $ (-892)) NIL) (($ $ (-747)) 40)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 32) (($ $ $) 31)))
-(((-1253 |#1|) (-13 (-170) (-361) (-594 (-549)) (-1117)) (-892)) (T -1253))
-NIL
-(-13 (-170) (-361) (-594 (-549)) (-1117))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3173930 3173935 3173940 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3173915 3173920 3173925 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3173900 3173905 3173910 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3173885 3173890 3173895 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1253 3173061 3173760 3173837 "ZMOD" 3173842 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1252 3172171 3172335 3172544 "ZLINDEP" 3172893 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1251 3161547 3163299 3165258 "ZDSOLVE" 3170313 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1250 3160793 3160934 3161123 "YSTREAM" 3161393 NIL YSTREAM (NIL T) -7 NIL NIL) (-1249 3158604 3160094 3160298 "XRPOLY" 3160636 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1248 3155096 3156379 3156963 "XPR" 3158067 NIL XPR (NIL T T) -8 NIL NIL) (-1247 3152852 3154427 3154631 "XPOLY" 3154927 NIL XPOLY (NIL T) -8 NIL NIL) (-1246 3150701 3152035 3152090 "XPOLYC" 3152378 NIL XPOLYC (NIL T T) -9 NIL 3152491) (-1245 3147119 3149218 3149606 "XPBWPOLY" 3150359 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1244 3143104 3145352 3145394 "XF" 3146015 NIL XF (NIL T) -9 NIL 3146415) (-1243 3142725 3142813 3142982 "XF-" 3142987 NIL XF- (NIL T T) -8 NIL NIL) (-1242 3138117 3139372 3139427 "XFALG" 3141599 NIL XFALG (NIL T T) -9 NIL 3142388) (-1241 3137250 3137354 3137559 "XEXPPKG" 3138009 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1240 3135394 3137100 3137196 "XDPOLY" 3137201 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1239 3134310 3134876 3134919 "XALG" 3134982 NIL XALG (NIL T) -9 NIL 3135102) (-1238 3127779 3132287 3132781 "WUTSET" 3133902 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1237 3125630 3126391 3126744 "WP" 3127560 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1236 3125259 3125452 3125522 "WHILEAST" 3125582 T WHILEAST (NIL) -8 NIL NIL) (-1235 3124758 3124976 3125070 "WHEREAST" 3125187 T WHEREAST (NIL) -8 NIL NIL) (-1234 3123644 3123842 3124137 "WFFINTBS" 3124555 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1233 3121548 3121975 3122437 "WEIER" 3123216 NIL WEIER (NIL T) -7 NIL NIL) (-1232 3120695 3121119 3121161 "VSPACE" 3121297 NIL VSPACE (NIL T) -9 NIL 3121371) (-1231 3120533 3120560 3120651 "VSPACE-" 3120656 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1230 3120279 3120322 3120393 "VOID" 3120484 T VOID (NIL) -8 NIL NIL) (-1229 3118415 3118774 3119180 "VIEW" 3119895 T VIEW (NIL) -7 NIL NIL) (-1228 3114840 3115478 3116215 "VIEWDEF" 3117700 T VIEWDEF (NIL) -7 NIL NIL) (-1227 3104178 3106388 3108561 "VIEW3D" 3112689 T VIEW3D (NIL) -8 NIL NIL) (-1226 3096460 3098089 3099668 "VIEW2D" 3102621 T VIEW2D (NIL) -8 NIL NIL) (-1225 3091864 3096230 3096322 "VECTOR" 3096403 NIL VECTOR (NIL T) -8 NIL NIL) (-1224 3090441 3090700 3091018 "VECTOR2" 3091594 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1223 3083968 3088225 3088268 "VECTCAT" 3089261 NIL VECTCAT (NIL T) -9 NIL 3089847) (-1222 3082982 3083236 3083626 "VECTCAT-" 3083631 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1221 3082463 3082633 3082753 "VARIABLE" 3082897 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1220 3082396 3082401 3082431 "UTYPE" 3082436 T UTYPE (NIL) -9 NIL NIL) (-1219 3081226 3081380 3081642 "UTSODETL" 3082222 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1218 3078666 3079126 3079650 "UTSODE" 3080767 NIL UTSODE (NIL T T) -7 NIL NIL) (-1217 3070542 3076292 3076781 "UTS" 3078235 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1216 3061915 3067234 3067277 "UTSCAT" 3068389 NIL UTSCAT (NIL T) -9 NIL 3069146) (-1215 3059269 3059985 3060974 "UTSCAT-" 3060979 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1214 3058896 3058939 3059072 "UTS2" 3059220 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1213 3053171 3055736 3055779 "URAGG" 3057849 NIL URAGG (NIL T) -9 NIL 3058571) (-1212 3050110 3050973 3052096 "URAGG-" 3052101 NIL URAGG- (NIL T T) -8 NIL NIL) (-1211 3045834 3048724 3049196 "UPXSSING" 3049774 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1210 3037804 3044949 3045231 "UPXS" 3045610 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1209 3030917 3037708 3037780 "UPXSCONS" 3037785 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1208 3021275 3028020 3028082 "UPXSCCA" 3028738 NIL UPXSCCA (NIL T T) -9 NIL 3028980) (-1207 3020913 3020998 3021172 "UPXSCCA-" 3021177 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1206 3011197 3017715 3017758 "UPXSCAT" 3018406 NIL UPXSCAT (NIL T) -9 NIL 3019014) (-1205 3010627 3010706 3010885 "UPXS2" 3011112 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1204 3009281 3009534 3009885 "UPSQFREE" 3010370 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1203 3003199 3006208 3006263 "UPSCAT" 3007424 NIL UPSCAT (NIL T T) -9 NIL 3008198) (-1202 3002403 3002610 3002937 "UPSCAT-" 3002942 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1201 2988494 2996490 2996533 "UPOLYC" 2998634 NIL UPOLYC (NIL T) -9 NIL 2999855) (-1200 2979823 2982248 2985395 "UPOLYC-" 2985400 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1199 2979450 2979493 2979626 "UPOLYC2" 2979774 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1198 2970907 2979016 2979154 "UP" 2979360 NIL UP (NIL NIL T) -8 NIL NIL) (-1197 2970246 2970353 2970517 "UPMP" 2970796 NIL UPMP (NIL T T) -7 NIL NIL) (-1196 2969799 2969880 2970019 "UPDIVP" 2970159 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1195 2968367 2968616 2968932 "UPDECOMP" 2969548 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1194 2967602 2967714 2967899 "UPCDEN" 2968251 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1193 2967121 2967190 2967339 "UP2" 2967527 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1192 2965638 2966325 2966602 "UNISEG" 2966879 NIL UNISEG (NIL T) -8 NIL NIL) (-1191 2964853 2964980 2965185 "UNISEG2" 2965481 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1190 2963913 2964093 2964319 "UNIFACT" 2964669 NIL UNIFACT (NIL T) -7 NIL NIL) (-1189 2947882 2963090 2963341 "ULS" 2963720 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1188 2935924 2947786 2947858 "ULSCONS" 2947863 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1187 2918728 2930663 2930725 "ULSCCAT" 2931445 NIL ULSCCAT (NIL T T) -9 NIL 2931742) (-1186 2917778 2918023 2918411 "ULSCCAT-" 2918416 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1185 2907839 2914271 2914314 "ULSCAT" 2915177 NIL ULSCAT (NIL T) -9 NIL 2915907) (-1184 2907269 2907348 2907527 "ULS2" 2907754 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1183 2905707 2906630 2906660 "UFD" 2906872 T UFD (NIL) -9 NIL 2906986) (-1182 2905501 2905547 2905642 "UFD-" 2905647 NIL UFD- (NIL T) -8 NIL NIL) (-1181 2904583 2904766 2904982 "UDVO" 2905307 T UDVO (NIL) -7 NIL NIL) (-1180 2902399 2902808 2903279 "UDPO" 2904147 NIL UDPO (NIL T) -7 NIL NIL) (-1179 2902332 2902337 2902367 "TYPE" 2902372 T TYPE (NIL) -9 NIL NIL) (-1178 2902119 2902287 2902318 "TYPEAST" 2902323 T TYPEAST (NIL) -8 NIL NIL) (-1177 2901090 2901292 2901532 "TWOFACT" 2901913 NIL TWOFACT (NIL T) -7 NIL NIL) (-1176 2900028 2900365 2900628 "TUPLE" 2900862 NIL TUPLE (NIL T) -8 NIL NIL) (-1175 2897719 2898238 2898777 "TUBETOOL" 2899511 T TUBETOOL (NIL) -7 NIL NIL) (-1174 2896568 2896773 2897014 "TUBE" 2897512 NIL TUBE (NIL T) -8 NIL NIL) (-1173 2891332 2895540 2895823 "TS" 2896320 NIL TS (NIL T) -8 NIL NIL) (-1172 2879999 2884091 2884188 "TSETCAT" 2889457 NIL TSETCAT (NIL T T T T) -9 NIL 2890988) (-1171 2874733 2876331 2878222 "TSETCAT-" 2878227 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1170 2868996 2869842 2870784 "TRMANIP" 2873869 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1169 2868437 2868500 2868663 "TRIMAT" 2868928 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1168 2866233 2866470 2866834 "TRIGMNIP" 2868186 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1167 2865753 2865866 2865896 "TRIGCAT" 2866109 T TRIGCAT (NIL) -9 NIL NIL) (-1166 2865422 2865501 2865642 "TRIGCAT-" 2865647 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1165 2862321 2864282 2864562 "TREE" 2865177 NIL TREE (NIL T) -8 NIL NIL) (-1164 2861595 2862123 2862153 "TRANFUN" 2862188 T TRANFUN (NIL) -9 NIL 2862254) (-1163 2860874 2861065 2861345 "TRANFUN-" 2861350 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1162 2860678 2860710 2860771 "TOPSP" 2860835 T TOPSP (NIL) -7 NIL NIL) (-1161 2860026 2860141 2860295 "TOOLSIGN" 2860559 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1160 2858687 2859203 2859442 "TEXTFILE" 2859809 T TEXTFILE (NIL) -8 NIL NIL) (-1159 2856552 2857066 2857504 "TEX" 2858271 T TEX (NIL) -8 NIL NIL) (-1158 2856333 2856364 2856436 "TEX1" 2856515 NIL TEX1 (NIL T) -7 NIL NIL) (-1157 2855981 2856044 2856134 "TEMUTL" 2856265 T TEMUTL (NIL) -7 NIL NIL) (-1156 2854135 2854415 2854740 "TBCMPPK" 2855704 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1155 2846023 2852295 2852351 "TBAGG" 2852751 NIL TBAGG (NIL T T) -9 NIL 2852962) (-1154 2841093 2842581 2844335 "TBAGG-" 2844340 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1153 2840477 2840584 2840729 "TANEXP" 2840982 NIL TANEXP (NIL T) -7 NIL NIL) (-1152 2833978 2840334 2840427 "TABLE" 2840432 NIL TABLE (NIL T T) -8 NIL NIL) (-1151 2833390 2833489 2833627 "TABLEAU" 2833875 NIL TABLEAU (NIL T) -8 NIL NIL) (-1150 2827998 2829218 2830466 "TABLBUMP" 2832176 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1149 2827426 2827526 2827654 "SYSTEM" 2827892 T SYSTEM (NIL) -7 NIL NIL) (-1148 2823889 2824584 2825367 "SYSSOLP" 2826677 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1147 2820181 2820888 2821622 "SYNTAX" 2823177 T SYNTAX (NIL) -8 NIL NIL) (-1146 2817339 2817941 2818573 "SYMTAB" 2819571 T SYMTAB (NIL) -8 NIL NIL) (-1145 2812588 2813490 2814473 "SYMS" 2816378 T SYMS (NIL) -8 NIL NIL) (-1144 2809860 2812046 2812276 "SYMPOLY" 2812393 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1143 2809377 2809452 2809575 "SYMFUNC" 2809772 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1142 2805354 2806614 2807436 "SYMBOL" 2808577 T SYMBOL (NIL) -8 NIL NIL) (-1141 2798893 2800582 2802302 "SWITCH" 2803656 T SWITCH (NIL) -8 NIL NIL) (-1140 2792163 2797714 2798017 "SUTS" 2798648 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1139 2784132 2791278 2791560 "SUPXS" 2791939 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1138 2775661 2783750 2783876 "SUP" 2784041 NIL SUP (NIL T) -8 NIL NIL) (-1137 2774820 2774947 2775164 "SUPFRACF" 2775529 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1136 2774441 2774500 2774613 "SUP2" 2774755 NIL SUP2 (NIL T T) -7 NIL NIL) (-1135 2772854 2773128 2773491 "SUMRF" 2774140 NIL SUMRF (NIL T) -7 NIL NIL) (-1134 2772168 2772234 2772433 "SUMFS" 2772775 NIL SUMFS (NIL T T) -7 NIL NIL) (-1133 2756177 2771345 2771596 "SULS" 2771975 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1132 2755806 2755999 2756069 "SUCHTAST" 2756129 T SUCHTAST (NIL) -8 NIL NIL) (-1131 2755128 2755331 2755471 "SUCH" 2755714 NIL SUCH (NIL T T) -8 NIL NIL) (-1130 2749022 2750034 2750993 "SUBSPACE" 2754216 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1129 2748452 2748542 2748706 "SUBRESP" 2748910 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1128 2741821 2743117 2744428 "STTF" 2747188 NIL STTF (NIL T) -7 NIL NIL) (-1127 2735994 2737114 2738261 "STTFNC" 2740721 NIL STTFNC (NIL T) -7 NIL NIL) (-1126 2727309 2729176 2730970 "STTAYLOR" 2734235 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1125 2720553 2727173 2727256 "STRTBL" 2727261 NIL STRTBL (NIL T) -8 NIL NIL) (-1124 2715944 2720508 2720539 "STRING" 2720544 T STRING (NIL) -8 NIL NIL) (-1123 2710832 2715317 2715347 "STRICAT" 2715406 T STRICAT (NIL) -9 NIL 2715468) (-1122 2703545 2708355 2708975 "STREAM" 2710247 NIL STREAM (NIL T) -8 NIL NIL) (-1121 2703055 2703132 2703276 "STREAM3" 2703462 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1120 2702037 2702220 2702455 "STREAM2" 2702868 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1119 2701725 2701777 2701870 "STREAM1" 2701979 NIL STREAM1 (NIL T) -7 NIL NIL) (-1118 2700741 2700922 2701153 "STINPROD" 2701541 NIL STINPROD (NIL T) -7 NIL NIL) (-1117 2700319 2700503 2700533 "STEP" 2700613 T STEP (NIL) -9 NIL 2700691) (-1116 2693862 2700218 2700295 "STBL" 2700300 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1115 2689037 2693084 2693127 "STAGG" 2693280 NIL STAGG (NIL T) -9 NIL 2693369) (-1114 2686739 2687341 2688213 "STAGG-" 2688218 NIL STAGG- (NIL T T) -8 NIL NIL) (-1113 2684934 2686509 2686601 "STACK" 2686682 NIL STACK (NIL T) -8 NIL NIL) (-1112 2677659 2683075 2683531 "SREGSET" 2684564 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1111 2670085 2671453 2672966 "SRDCMPK" 2676265 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1110 2663052 2667525 2667555 "SRAGG" 2668858 T SRAGG (NIL) -9 NIL 2669466) (-1109 2662069 2662324 2662703 "SRAGG-" 2662708 NIL SRAGG- (NIL T) -8 NIL NIL) (-1108 2656555 2660984 2661412 "SQMATRIX" 2661688 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1107 2650307 2653275 2654001 "SPLTREE" 2655901 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1106 2646297 2646963 2647609 "SPLNODE" 2649733 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1105 2645344 2645577 2645607 "SPFCAT" 2646051 T SPFCAT (NIL) -9 NIL NIL) (-1104 2644081 2644291 2644555 "SPECOUT" 2645102 T SPECOUT (NIL) -7 NIL NIL) (-1103 2635770 2637514 2637544 "SPADXPT" 2641936 T SPADXPT (NIL) -9 NIL 2643970) (-1102 2635531 2635571 2635640 "SPADPRSR" 2635723 T SPADPRSR (NIL) -7 NIL NIL) (-1101 2633714 2635486 2635517 "SPADAST" 2635522 T SPADAST (NIL) -8 NIL NIL) (-1100 2625685 2627432 2627475 "SPACEC" 2631848 NIL SPACEC (NIL T) -9 NIL 2633664) (-1099 2623856 2625617 2625666 "SPACE3" 2625671 NIL SPACE3 (NIL T) -8 NIL NIL) (-1098 2622608 2622779 2623070 "SORTPAK" 2623661 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1097 2620658 2620961 2621380 "SOLVETRA" 2622272 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1096 2619669 2619891 2620165 "SOLVESER" 2620431 NIL SOLVESER (NIL T) -7 NIL NIL) (-1095 2614889 2615770 2616772 "SOLVERAD" 2618721 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1094 2610704 2611313 2612042 "SOLVEFOR" 2614256 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1093 2605001 2610053 2610150 "SNTSCAT" 2610155 NIL SNTSCAT (NIL T T T T) -9 NIL 2610225) (-1092 2599144 2603324 2603715 "SMTS" 2604691 NIL SMTS (NIL T T T) -8 NIL NIL) (-1091 2593594 2599032 2599109 "SMP" 2599114 NIL SMP (NIL T T) -8 NIL NIL) (-1090 2591753 2592054 2592452 "SMITH" 2593291 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1089 2584736 2588891 2588994 "SMATCAT" 2590345 NIL SMATCAT (NIL NIL T T T) -9 NIL 2590895) (-1088 2581676 2582499 2583677 "SMATCAT-" 2583682 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1087 2579389 2580912 2580955 "SKAGG" 2581216 NIL SKAGG (NIL T) -9 NIL 2581351) (-1086 2575505 2578493 2578771 "SINT" 2579133 T SINT (NIL) -8 NIL NIL) (-1085 2575277 2575315 2575381 "SIMPAN" 2575461 T SIMPAN (NIL) -7 NIL NIL) (-1084 2574584 2574812 2574952 "SIG" 2575159 T SIG (NIL) -8 NIL NIL) (-1083 2573422 2573643 2573918 "SIGNRF" 2574343 NIL SIGNRF (NIL T) -7 NIL NIL) (-1082 2572227 2572378 2572669 "SIGNEF" 2573251 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1081 2571560 2571810 2571934 "SIGAST" 2572125 T SIGAST (NIL) -8 NIL NIL) (-1080 2569250 2569704 2570210 "SHP" 2571101 NIL SHP (NIL T NIL) -7 NIL NIL) (-1079 2563156 2569151 2569227 "SHDP" 2569232 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1078 2562755 2562921 2562951 "SGROUP" 2563044 T SGROUP (NIL) -9 NIL 2563106) (-1077 2562613 2562639 2562712 "SGROUP-" 2562717 NIL SGROUP- (NIL T) -8 NIL NIL) (-1076 2559449 2560146 2560869 "SGCF" 2561912 T SGCF (NIL) -7 NIL NIL) (-1075 2553844 2558896 2558993 "SFRTCAT" 2558998 NIL SFRTCAT (NIL T T T T) -9 NIL 2559037) (-1074 2547268 2548283 2549419 "SFRGCD" 2552827 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1073 2540396 2541467 2542653 "SFQCMPK" 2546201 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1072 2540018 2540107 2540217 "SFORT" 2540337 NIL SFORT (NIL T T) -8 NIL NIL) (-1071 2539163 2539858 2539979 "SEXOF" 2539984 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1070 2538297 2539044 2539112 "SEX" 2539117 T SEX (NIL) -8 NIL NIL) (-1069 2533073 2533762 2533857 "SEXCAT" 2537628 NIL SEXCAT (NIL T T T T T) -9 NIL 2538247) (-1068 2530253 2533007 2533055 "SET" 2533060 NIL SET (NIL T) -8 NIL NIL) (-1067 2528504 2528966 2529271 "SETMN" 2529994 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1066 2528110 2528236 2528266 "SETCAT" 2528383 T SETCAT (NIL) -9 NIL 2528468) (-1065 2527890 2527942 2528041 "SETCAT-" 2528046 NIL SETCAT- (NIL T) -8 NIL NIL) (-1064 2524277 2526351 2526394 "SETAGG" 2527264 NIL SETAGG (NIL T) -9 NIL 2527604) (-1063 2523735 2523851 2524088 "SETAGG-" 2524093 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1062 2523205 2523431 2523532 "SEQAST" 2523656 T SEQAST (NIL) -8 NIL NIL) (-1061 2522409 2522702 2522763 "SEGXCAT" 2523049 NIL SEGXCAT (NIL T T) -9 NIL 2523169) (-1060 2521465 2522075 2522257 "SEG" 2522262 NIL SEG (NIL T) -8 NIL NIL) (-1059 2520372 2520585 2520628 "SEGCAT" 2521210 NIL SEGCAT (NIL T) -9 NIL 2521448) (-1058 2519421 2519751 2519951 "SEGBIND" 2520207 NIL SEGBIND (NIL T) -8 NIL NIL) (-1057 2519042 2519101 2519214 "SEGBIND2" 2519356 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1056 2518643 2518843 2518920 "SEGAST" 2518987 T SEGAST (NIL) -8 NIL NIL) (-1055 2517862 2517988 2518192 "SEG2" 2518487 NIL SEG2 (NIL T T) -7 NIL NIL) (-1054 2517299 2517797 2517844 "SDVAR" 2517849 NIL SDVAR (NIL T) -8 NIL NIL) (-1053 2509589 2517069 2517199 "SDPOL" 2517204 NIL SDPOL (NIL T) -8 NIL NIL) (-1052 2508182 2508448 2508767 "SCPKG" 2509304 NIL SCPKG (NIL T) -7 NIL NIL) (-1051 2507318 2507498 2507698 "SCOPE" 2508004 T SCOPE (NIL) -8 NIL NIL) (-1050 2506539 2506672 2506851 "SCACHE" 2507173 NIL SCACHE (NIL T) -7 NIL NIL) (-1049 2506248 2506408 2506438 "SASTCAT" 2506443 T SASTCAT (NIL) -9 NIL 2506456) (-1048 2505687 2506008 2506093 "SAOS" 2506185 T SAOS (NIL) -8 NIL NIL) (-1047 2505252 2505287 2505460 "SAERFFC" 2505646 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1046 2499226 2505149 2505229 "SAE" 2505234 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1045 2498819 2498854 2499013 "SAEFACT" 2499185 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1044 2497140 2497454 2497855 "RURPK" 2498485 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1043 2495776 2496055 2496367 "RULESET" 2496974 NIL RULESET (NIL T T T) -8 NIL NIL) (-1042 2492963 2493466 2493931 "RULE" 2495457 NIL RULE (NIL T T T) -8 NIL NIL) (-1041 2492602 2492757 2492840 "RULECOLD" 2492915 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1040 2492100 2492319 2492413 "RSTRCAST" 2492530 T RSTRCAST (NIL) -8 NIL NIL) (-1039 2486949 2487743 2488663 "RSETGCD" 2491299 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1038 2476206 2481258 2481355 "RSETCAT" 2485474 NIL RSETCAT (NIL T T T T) -9 NIL 2486571) (-1037 2474133 2474672 2475496 "RSETCAT-" 2475501 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1036 2466520 2467895 2469415 "RSDCMPK" 2472732 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1035 2464525 2464966 2465040 "RRCC" 2466126 NIL RRCC (NIL T T) -9 NIL 2466470) (-1034 2463876 2464050 2464329 "RRCC-" 2464334 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1033 2463346 2463572 2463673 "RPTAST" 2463797 T RPTAST (NIL) -8 NIL NIL) (-1032 2437574 2447159 2447226 "RPOLCAT" 2457890 NIL RPOLCAT (NIL T T T) -9 NIL 2461049) (-1031 2429074 2431412 2434534 "RPOLCAT-" 2434539 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1030 2420121 2427285 2427767 "ROUTINE" 2428614 T ROUTINE (NIL) -8 NIL NIL) (-1029 2416879 2419672 2419821 "ROMAN" 2419994 T ROMAN (NIL) -8 NIL NIL) (-1028 2415154 2415739 2415999 "ROIRC" 2416684 NIL ROIRC (NIL T T) -8 NIL NIL) (-1027 2411605 2413844 2413874 "RNS" 2414178 T RNS (NIL) -9 NIL 2414450) (-1026 2410114 2410497 2411031 "RNS-" 2411106 NIL RNS- (NIL T) -8 NIL NIL) (-1025 2409563 2409945 2409975 "RNG" 2409980 T RNG (NIL) -9 NIL 2410001) (-1024 2408955 2409317 2409360 "RMODULE" 2409422 NIL RMODULE (NIL T) -9 NIL 2409464) (-1023 2407791 2407885 2408221 "RMCAT2" 2408856 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1022 2404496 2406965 2407290 "RMATRIX" 2407525 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1021 2397438 2399672 2399787 "RMATCAT" 2403146 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2404128) (-1020 2396813 2396960 2397267 "RMATCAT-" 2397272 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1019 2396380 2396455 2396583 "RINTERP" 2396732 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1018 2395468 2395988 2396018 "RING" 2396130 T RING (NIL) -9 NIL 2396225) (-1017 2395260 2395304 2395401 "RING-" 2395406 NIL RING- (NIL T) -8 NIL NIL) (-1016 2394101 2394338 2394596 "RIDIST" 2395024 T RIDIST (NIL) -7 NIL NIL) (-1015 2385417 2393569 2393775 "RGCHAIN" 2393949 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1014 2382411 2383025 2383695 "RF" 2384781 NIL RF (NIL T) -7 NIL NIL) (-1013 2382057 2382120 2382223 "RFFACTOR" 2382342 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1012 2381782 2381817 2381914 "RFFACT" 2382016 NIL RFFACT (NIL T) -7 NIL NIL) (-1011 2379899 2380263 2380645 "RFDIST" 2381422 T RFDIST (NIL) -7 NIL NIL) (-1010 2379352 2379444 2379607 "RETSOL" 2379801 NIL RETSOL (NIL T T) -7 NIL NIL) (-1009 2378940 2379020 2379063 "RETRACT" 2379256 NIL RETRACT (NIL T) -9 NIL NIL) (-1008 2378789 2378814 2378901 "RETRACT-" 2378906 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1007 2378418 2378611 2378681 "RETAST" 2378741 T RETAST (NIL) -8 NIL NIL) (-1006 2371272 2378071 2378198 "RESULT" 2378313 T RESULT (NIL) -8 NIL NIL) (-1005 2369898 2370541 2370740 "RESRING" 2371175 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1004 2369534 2369583 2369681 "RESLATC" 2369835 NIL RESLATC (NIL T) -7 NIL NIL) (-1003 2369240 2369274 2369381 "REPSQ" 2369493 NIL REPSQ (NIL T) -7 NIL NIL) (-1002 2366662 2367242 2367844 "REP" 2368660 T REP (NIL) -7 NIL NIL) (-1001 2366360 2366394 2366505 "REPDB" 2366621 NIL REPDB (NIL T) -7 NIL NIL) (-1000 2360270 2361649 2362872 "REP2" 2365172 NIL REP2 (NIL T) -7 NIL NIL) (-999 2356662 2357343 2358149 "REP1" 2359497 NIL REP1 (NIL T) -7 NIL NIL) (-998 2349400 2354815 2355269 "REGSET" 2356292 NIL REGSET (NIL T T T T) -8 NIL NIL) (-997 2348221 2348556 2348804 "REF" 2349185 NIL REF (NIL T) -8 NIL NIL) (-996 2347602 2347705 2347870 "REDORDER" 2348105 NIL REDORDER (NIL T T) -7 NIL NIL) (-995 2343622 2346830 2347053 "RECLOS" 2347431 NIL RECLOS (NIL T) -8 NIL NIL) (-994 2342679 2342860 2343073 "REALSOLV" 2343429 T REALSOLV (NIL) -7 NIL NIL) (-993 2342527 2342568 2342596 "REAL" 2342601 T REAL (NIL) -9 NIL 2342636) (-992 2339018 2339820 2340702 "REAL0Q" 2341692 NIL REAL0Q (NIL T) -7 NIL NIL) (-991 2334629 2335617 2336676 "REAL0" 2337999 NIL REAL0 (NIL T) -7 NIL NIL) (-990 2334131 2334350 2334442 "RDUCEAST" 2334557 T RDUCEAST (NIL) -8 NIL NIL) (-989 2333539 2333611 2333816 "RDIV" 2334053 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-988 2332612 2332786 2332997 "RDIST" 2333361 NIL RDIST (NIL T) -7 NIL NIL) (-987 2331213 2331500 2331870 "RDETRS" 2332320 NIL RDETRS (NIL T T) -7 NIL NIL) (-986 2329030 2329484 2330020 "RDETR" 2330755 NIL RDETR (NIL T T) -7 NIL NIL) (-985 2327644 2327922 2328324 "RDEEFS" 2328746 NIL RDEEFS (NIL T T) -7 NIL NIL) (-984 2326142 2326448 2326878 "RDEEF" 2327332 NIL RDEEF (NIL T T) -7 NIL NIL) (-983 2320479 2323350 2323378 "RCFIELD" 2324655 T RCFIELD (NIL) -9 NIL 2325385) (-982 2318548 2319052 2319745 "RCFIELD-" 2319818 NIL RCFIELD- (NIL T) -8 NIL NIL) (-981 2314879 2316664 2316705 "RCAGG" 2317776 NIL RCAGG (NIL T) -9 NIL 2318241) (-980 2314510 2314604 2314764 "RCAGG-" 2314769 NIL RCAGG- (NIL T T) -8 NIL NIL) (-979 2313850 2313962 2314125 "RATRET" 2314394 NIL RATRET (NIL T) -7 NIL NIL) (-978 2313407 2313474 2313593 "RATFACT" 2313778 NIL RATFACT (NIL T) -7 NIL NIL) (-977 2312722 2312842 2312992 "RANDSRC" 2313277 T RANDSRC (NIL) -7 NIL NIL) (-976 2312459 2312503 2312574 "RADUTIL" 2312671 T RADUTIL (NIL) -7 NIL NIL) (-975 2305524 2311202 2311519 "RADIX" 2312174 NIL RADIX (NIL NIL) -8 NIL NIL) (-974 2297180 2305368 2305496 "RADFF" 2305501 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-973 2296832 2296907 2296935 "RADCAT" 2297092 T RADCAT (NIL) -9 NIL NIL) (-972 2296617 2296665 2296762 "RADCAT-" 2296767 NIL RADCAT- (NIL T) -8 NIL NIL) (-971 2294768 2296392 2296481 "QUEUE" 2296561 NIL QUEUE (NIL T) -8 NIL NIL) (-970 2291344 2294705 2294750 "QUAT" 2294755 NIL QUAT (NIL T) -8 NIL NIL) (-969 2290982 2291025 2291152 "QUATCT2" 2291295 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-968 2284842 2288143 2288183 "QUATCAT" 2288963 NIL QUATCAT (NIL T) -9 NIL 2289729) (-967 2280986 2282023 2283410 "QUATCAT-" 2283504 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-966 2278506 2280070 2280111 "QUAGG" 2280486 NIL QUAGG (NIL T) -9 NIL 2280661) (-965 2278138 2278331 2278399 "QQUTAST" 2278458 T QQUTAST (NIL) -8 NIL NIL) (-964 2277063 2277536 2277708 "QFORM" 2278010 NIL QFORM (NIL NIL T) -8 NIL NIL) (-963 2268396 2273599 2273639 "QFCAT" 2274297 NIL QFCAT (NIL T) -9 NIL 2275296) (-962 2263968 2265169 2266760 "QFCAT-" 2266854 NIL QFCAT- (NIL T T) -8 NIL NIL) (-961 2263606 2263649 2263776 "QFCAT2" 2263919 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-960 2263066 2263176 2263306 "QEQUAT" 2263496 T QEQUAT (NIL) -8 NIL NIL) (-959 2256214 2257285 2258469 "QCMPACK" 2261999 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-958 2253790 2254211 2254639 "QALGSET" 2255869 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-957 2253035 2253209 2253441 "QALGSET2" 2253610 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-956 2251726 2251949 2252266 "PWFFINTB" 2252808 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-955 2249908 2250076 2250430 "PUSHVAR" 2251540 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-954 2245826 2246880 2246921 "PTRANFN" 2248805 NIL PTRANFN (NIL T) -9 NIL NIL) (-953 2244228 2244519 2244841 "PTPACK" 2245537 NIL PTPACK (NIL T) -7 NIL NIL) (-952 2243860 2243917 2244026 "PTFUNC2" 2244165 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-951 2238326 2242671 2242712 "PTCAT" 2243085 NIL PTCAT (NIL T) -9 NIL 2243247) (-950 2237984 2238019 2238143 "PSQFR" 2238285 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-949 2236579 2236877 2237211 "PSEUDLIN" 2237682 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-948 2223348 2225713 2228037 "PSETPK" 2234339 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-947 2216392 2219106 2219202 "PSETCAT" 2222223 NIL PSETCAT (NIL T T T T) -9 NIL 2223037) (-946 2214228 2214862 2215683 "PSETCAT-" 2215688 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-945 2213577 2213742 2213770 "PSCURVE" 2214038 T PSCURVE (NIL) -9 NIL 2214205) (-944 2210058 2211540 2211605 "PSCAT" 2212449 NIL PSCAT (NIL T T T) -9 NIL 2212689) (-943 2209121 2209337 2209737 "PSCAT-" 2209742 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-942 2207773 2208406 2208620 "PRTITION" 2208927 T PRTITION (NIL) -8 NIL NIL) (-941 2207275 2207494 2207586 "PRTDAST" 2207701 T PRTDAST (NIL) -8 NIL NIL) (-940 2196373 2198579 2200767 "PRS" 2205137 NIL PRS (NIL T T) -7 NIL NIL) (-939 2194231 2195723 2195763 "PRQAGG" 2195946 NIL PRQAGG (NIL T) -9 NIL 2196048) (-938 2193617 2193846 2193874 "PROPLOG" 2194059 T PROPLOG (NIL) -9 NIL 2194181) (-937 2190787 2191431 2191895 "PROPFRML" 2193185 NIL PROPFRML (NIL T) -8 NIL NIL) (-936 2190247 2190357 2190487 "PROPERTY" 2190677 T PROPERTY (NIL) -8 NIL NIL) (-935 2184332 2188413 2189233 "PRODUCT" 2189473 NIL PRODUCT (NIL T T) -8 NIL NIL) (-934 2181645 2183790 2184024 "PR" 2184143 NIL PR (NIL T T) -8 NIL NIL) (-933 2181441 2181473 2181532 "PRINT" 2181606 T PRINT (NIL) -7 NIL NIL) (-932 2180781 2180898 2181050 "PRIMES" 2181321 NIL PRIMES (NIL T) -7 NIL NIL) (-931 2178846 2179247 2179713 "PRIMELT" 2180360 NIL PRIMELT (NIL T) -7 NIL NIL) (-930 2178575 2178624 2178652 "PRIMCAT" 2178776 T PRIMCAT (NIL) -9 NIL NIL) (-929 2174736 2178513 2178558 "PRIMARR" 2178563 NIL PRIMARR (NIL T) -8 NIL NIL) (-928 2173743 2173921 2174149 "PRIMARR2" 2174554 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-927 2173386 2173442 2173553 "PREASSOC" 2173681 NIL PREASSOC (NIL T T) -7 NIL NIL) (-926 2172861 2172994 2173022 "PPCURVE" 2173227 T PPCURVE (NIL) -9 NIL 2173363) (-925 2172483 2172656 2172739 "PORTNUM" 2172798 T PORTNUM (NIL) -8 NIL NIL) (-924 2169842 2170241 2170833 "POLYROOT" 2172064 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-923 2163787 2169446 2169606 "POLY" 2169715 NIL POLY (NIL T) -8 NIL NIL) (-922 2163170 2163228 2163462 "POLYLIFT" 2163723 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-921 2159445 2159894 2160523 "POLYCATQ" 2162715 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-920 2146484 2151840 2151905 "POLYCAT" 2155419 NIL POLYCAT (NIL T T T) -9 NIL 2157347) (-919 2139934 2141795 2144179 "POLYCAT-" 2144184 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-918 2139521 2139589 2139709 "POLY2UP" 2139860 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-917 2139153 2139210 2139319 "POLY2" 2139458 NIL POLY2 (NIL T T) -7 NIL NIL) (-916 2137838 2138077 2138353 "POLUTIL" 2138927 NIL POLUTIL (NIL T T) -7 NIL NIL) (-915 2136193 2136470 2136801 "POLTOPOL" 2137560 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-914 2131711 2136129 2136175 "POINT" 2136180 NIL POINT (NIL T) -8 NIL NIL) (-913 2129898 2130255 2130630 "PNTHEORY" 2131356 T PNTHEORY (NIL) -7 NIL NIL) (-912 2128317 2128614 2129026 "PMTOOLS" 2129596 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-911 2127910 2127988 2128105 "PMSYM" 2128233 NIL PMSYM (NIL T) -7 NIL NIL) (-910 2127420 2127489 2127663 "PMQFCAT" 2127835 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-909 2126775 2126885 2127041 "PMPRED" 2127297 NIL PMPRED (NIL T) -7 NIL NIL) (-908 2126171 2126257 2126418 "PMPREDFS" 2126676 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-907 2124814 2125022 2125407 "PMPLCAT" 2125933 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-906 2124346 2124425 2124577 "PMLSAGG" 2124729 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-905 2123821 2123897 2124078 "PMKERNEL" 2124264 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-904 2123438 2123513 2123626 "PMINS" 2123740 NIL PMINS (NIL T) -7 NIL NIL) (-903 2122866 2122935 2123151 "PMFS" 2123363 NIL PMFS (NIL T T T) -7 NIL NIL) (-902 2122094 2122212 2122417 "PMDOWN" 2122743 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-901 2121257 2121416 2121598 "PMASS" 2121932 T PMASS (NIL) -7 NIL NIL) (-900 2120531 2120642 2120805 "PMASSFS" 2121143 NIL PMASSFS (NIL T T) -7 NIL NIL) (-899 2120186 2120254 2120348 "PLOTTOOL" 2120457 T PLOTTOOL (NIL) -7 NIL NIL) (-898 2114808 2115997 2117145 "PLOT" 2119058 T PLOT (NIL) -8 NIL NIL) (-897 2110622 2111656 2112577 "PLOT3D" 2113907 T PLOT3D (NIL) -8 NIL NIL) (-896 2109534 2109711 2109946 "PLOT1" 2110426 NIL PLOT1 (NIL T) -7 NIL NIL) (-895 2084928 2089600 2094451 "PLEQN" 2104800 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-894 2084246 2084368 2084548 "PINTERP" 2084793 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-893 2083939 2083986 2084089 "PINTERPA" 2084193 NIL PINTERPA (NIL T T) -7 NIL NIL) (-892 2083224 2083745 2083832 "PI" 2083872 T PI (NIL) -8 NIL NIL) (-891 2081656 2082597 2082625 "PID" 2082807 T PID (NIL) -9 NIL 2082941) (-890 2081381 2081418 2081506 "PICOERCE" 2081613 NIL PICOERCE (NIL T) -7 NIL NIL) (-889 2080701 2080840 2081016 "PGROEB" 2081237 NIL PGROEB (NIL T) -7 NIL NIL) (-888 2076288 2077102 2078007 "PGE" 2079816 T PGE (NIL) -7 NIL NIL) (-887 2074412 2074658 2075024 "PGCD" 2076005 NIL PGCD (NIL T T T T) -7 NIL NIL) (-886 2073750 2073853 2074014 "PFRPAC" 2074296 NIL PFRPAC (NIL T) -7 NIL NIL) (-885 2070430 2072298 2072651 "PFR" 2073429 NIL PFR (NIL T) -8 NIL NIL) (-884 2068819 2069063 2069388 "PFOTOOLS" 2070177 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-883 2067352 2067591 2067942 "PFOQ" 2068576 NIL PFOQ (NIL T T T) -7 NIL NIL) (-882 2065825 2066037 2066400 "PFO" 2067136 NIL PFO (NIL T T T T T) -7 NIL NIL) (-881 2062413 2065714 2065783 "PF" 2065788 NIL PF (NIL NIL) -8 NIL NIL) (-880 2059882 2061119 2061147 "PFECAT" 2061732 T PFECAT (NIL) -9 NIL 2062116) (-879 2059327 2059481 2059695 "PFECAT-" 2059700 NIL PFECAT- (NIL T) -8 NIL NIL) (-878 2057931 2058182 2058483 "PFBRU" 2059076 NIL PFBRU (NIL T T) -7 NIL NIL) (-877 2055798 2056149 2056581 "PFBR" 2057582 NIL PFBR (NIL T T T T) -7 NIL NIL) (-876 2051714 2053174 2053850 "PERM" 2055155 NIL PERM (NIL T) -8 NIL NIL) (-875 2046980 2047921 2048791 "PERMGRP" 2050877 NIL PERMGRP (NIL T) -8 NIL NIL) (-874 2045112 2046043 2046084 "PERMCAT" 2046530 NIL PERMCAT (NIL T) -9 NIL 2046835) (-873 2044765 2044806 2044930 "PERMAN" 2045065 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-872 2042205 2044334 2044465 "PENDTREE" 2044667 NIL PENDTREE (NIL T) -8 NIL NIL) (-871 2040318 2041052 2041093 "PDRING" 2041750 NIL PDRING (NIL T) -9 NIL 2042036) (-870 2039421 2039639 2040001 "PDRING-" 2040006 NIL PDRING- (NIL T T) -8 NIL NIL) (-869 2036562 2037313 2038004 "PDEPROB" 2038750 T PDEPROB (NIL) -8 NIL NIL) (-868 2034109 2034611 2035166 "PDEPACK" 2036027 T PDEPACK (NIL) -7 NIL NIL) (-867 2033021 2033211 2033462 "PDECOMP" 2033908 NIL PDECOMP (NIL T T) -7 NIL NIL) (-866 2030626 2031443 2031471 "PDECAT" 2032258 T PDECAT (NIL) -9 NIL 2032971) (-865 2030377 2030410 2030500 "PCOMP" 2030587 NIL PCOMP (NIL T T) -7 NIL NIL) (-864 2028582 2029178 2029475 "PBWLB" 2030106 NIL PBWLB (NIL T) -8 NIL NIL) (-863 2021086 2022655 2023993 "PATTERN" 2027265 NIL PATTERN (NIL T) -8 NIL NIL) (-862 2020718 2020775 2020884 "PATTERN2" 2021023 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-861 2018475 2018863 2019320 "PATTERN1" 2020307 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-860 2015870 2016424 2016905 "PATRES" 2018040 NIL PATRES (NIL T T) -8 NIL NIL) (-859 2015434 2015501 2015633 "PATRES2" 2015797 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-858 2013317 2013722 2014129 "PATMATCH" 2015101 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-857 2012853 2013036 2013077 "PATMAB" 2013184 NIL PATMAB (NIL T) -9 NIL 2013267) (-856 2011398 2011707 2011965 "PATLRES" 2012658 NIL PATLRES (NIL T T T) -8 NIL NIL) (-855 2010944 2011067 2011108 "PATAB" 2011113 NIL PATAB (NIL T) -9 NIL 2011285) (-854 2008425 2008957 2009530 "PARTPERM" 2010391 T PARTPERM (NIL) -7 NIL NIL) (-853 2008046 2008109 2008211 "PARSURF" 2008356 NIL PARSURF (NIL T) -8 NIL NIL) (-852 2007678 2007735 2007844 "PARSU2" 2007983 NIL PARSU2 (NIL T T) -7 NIL NIL) (-851 2007442 2007482 2007549 "PARSER" 2007631 T PARSER (NIL) -7 NIL NIL) (-850 2007063 2007126 2007228 "PARSCURV" 2007373 NIL PARSCURV (NIL T) -8 NIL NIL) (-849 2006695 2006752 2006861 "PARSC2" 2007000 NIL PARSC2 (NIL T T) -7 NIL NIL) (-848 2006334 2006392 2006489 "PARPCURV" 2006631 NIL PARPCURV (NIL T) -8 NIL NIL) (-847 2005966 2006023 2006132 "PARPC2" 2006271 NIL PARPC2 (NIL T T) -7 NIL NIL) (-846 2005486 2005572 2005691 "PAN2EXPR" 2005867 T PAN2EXPR (NIL) -7 NIL NIL) (-845 2004292 2004607 2004835 "PALETTE" 2005278 T PALETTE (NIL) -8 NIL NIL) (-844 2002760 2003297 2003657 "PAIR" 2003978 NIL PAIR (NIL T T) -8 NIL NIL) (-843 1996668 2002019 2002213 "PADICRC" 2002615 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-842 1989934 1996014 1996198 "PADICRAT" 1996516 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-841 1988284 1989871 1989916 "PADIC" 1989921 NIL PADIC (NIL NIL) -8 NIL NIL) (-840 1985529 1987059 1987099 "PADICCT" 1987680 NIL PADICCT (NIL NIL) -9 NIL 1987962) (-839 1984486 1984686 1984954 "PADEPAC" 1985316 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-838 1983698 1983831 1984037 "PADE" 1984348 NIL PADE (NIL T T T) -7 NIL NIL) (-837 1981748 1982534 1982851 "OWP" 1983465 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-836 1980857 1981353 1981525 "OVAR" 1981616 NIL OVAR (NIL NIL) -8 NIL NIL) (-835 1980121 1980242 1980403 "OUT" 1980716 T OUT (NIL) -7 NIL NIL) (-834 1969175 1971346 1973516 "OUTFORM" 1977971 T OUTFORM (NIL) -8 NIL NIL) (-833 1968812 1968895 1968923 "OUTBCON" 1969074 T OUTBCON (NIL) -9 NIL 1969159) (-832 1968652 1968687 1968763 "OUTBCON-" 1968768 NIL OUTBCON- (NIL T) -8 NIL NIL) (-831 1968060 1968381 1968470 "OSI" 1968583 T OSI (NIL) -8 NIL NIL) (-830 1967616 1967928 1967956 "OSGROUP" 1967961 T OSGROUP (NIL) -9 NIL 1967983) (-829 1966361 1966588 1966873 "ORTHPOL" 1967363 NIL ORTHPOL (NIL T) -7 NIL NIL) (-828 1963771 1966020 1966159 "OREUP" 1966304 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-827 1961209 1963462 1963589 "ORESUP" 1963713 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-826 1958737 1959237 1959798 "OREPCTO" 1960698 NIL OREPCTO (NIL T T) -7 NIL NIL) (-825 1952648 1954815 1954856 "OREPCAT" 1957204 NIL OREPCAT (NIL T) -9 NIL 1958308) (-824 1949795 1950577 1951635 "OREPCAT-" 1951640 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-823 1948972 1949244 1949272 "ORDSET" 1949581 T ORDSET (NIL) -9 NIL 1949745) (-822 1948491 1948613 1948806 "ORDSET-" 1948811 NIL ORDSET- (NIL T) -8 NIL NIL) (-821 1947145 1947902 1947930 "ORDRING" 1948132 T ORDRING (NIL) -9 NIL 1948257) (-820 1946790 1946884 1947028 "ORDRING-" 1947033 NIL ORDRING- (NIL T) -8 NIL NIL) (-819 1946196 1946633 1946661 "ORDMON" 1946666 T ORDMON (NIL) -9 NIL 1946687) (-818 1945358 1945505 1945700 "ORDFUNS" 1946045 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-817 1944869 1945228 1945256 "ORDFIN" 1945261 T ORDFIN (NIL) -9 NIL 1945282) (-816 1941461 1943455 1943864 "ORDCOMP" 1944493 NIL ORDCOMP (NIL T) -8 NIL NIL) (-815 1940727 1940854 1941040 "ORDCOMP2" 1941321 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-814 1937234 1938117 1938954 "OPTPROB" 1939910 T OPTPROB (NIL) -8 NIL NIL) (-813 1934036 1934675 1935379 "OPTPACK" 1936550 T OPTPACK (NIL) -7 NIL NIL) (-812 1931749 1932489 1932517 "OPTCAT" 1933336 T OPTCAT (NIL) -9 NIL 1933986) (-811 1931517 1931556 1931622 "OPQUERY" 1931703 T OPQUERY (NIL) -7 NIL NIL) (-810 1928683 1929828 1930332 "OP" 1931046 NIL OP (NIL T) -8 NIL NIL) (-809 1925528 1927480 1927849 "ONECOMP" 1928347 NIL ONECOMP (NIL T) -8 NIL NIL) (-808 1924833 1924948 1925122 "ONECOMP2" 1925400 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-807 1924252 1924358 1924488 "OMSERVER" 1924723 T OMSERVER (NIL) -7 NIL NIL) (-806 1921140 1923692 1923732 "OMSAGG" 1923793 NIL OMSAGG (NIL T) -9 NIL 1923857) (-805 1919763 1920026 1920308 "OMPKG" 1920878 T OMPKG (NIL) -7 NIL NIL) (-804 1919193 1919296 1919324 "OM" 1919623 T OM (NIL) -9 NIL NIL) (-803 1917775 1918742 1918911 "OMLO" 1919074 NIL OMLO (NIL T T) -8 NIL NIL) (-802 1916700 1916847 1917074 "OMEXPR" 1917601 NIL OMEXPR (NIL T) -7 NIL NIL) (-801 1916018 1916246 1916382 "OMERR" 1916584 T OMERR (NIL) -8 NIL NIL) (-800 1915196 1915439 1915599 "OMERRK" 1915878 T OMERRK (NIL) -8 NIL NIL) (-799 1914674 1914873 1914981 "OMENC" 1915108 T OMENC (NIL) -8 NIL NIL) (-798 1908569 1909754 1910925 "OMDEV" 1913523 T OMDEV (NIL) -8 NIL NIL) (-797 1907638 1907809 1908003 "OMCONN" 1908395 T OMCONN (NIL) -8 NIL NIL) (-796 1906294 1907236 1907264 "OINTDOM" 1907269 T OINTDOM (NIL) -9 NIL 1907290) (-795 1902100 1903284 1904000 "OFMONOID" 1905610 NIL OFMONOID (NIL T) -8 NIL NIL) (-794 1901538 1902037 1902082 "ODVAR" 1902087 NIL ODVAR (NIL T) -8 NIL NIL) (-793 1898748 1901035 1901220 "ODR" 1901413 NIL ODR (NIL T T NIL) -8 NIL NIL) (-792 1891092 1898524 1898650 "ODPOL" 1898655 NIL ODPOL (NIL T) -8 NIL NIL) (-791 1884968 1890964 1891069 "ODP" 1891074 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-790 1883734 1883949 1884224 "ODETOOLS" 1884742 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-789 1880703 1881359 1882075 "ODESYS" 1883067 NIL ODESYS (NIL T T) -7 NIL NIL) (-788 1875585 1876493 1877518 "ODERTRIC" 1879778 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-787 1875011 1875093 1875287 "ODERED" 1875497 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-786 1871899 1872447 1873124 "ODERAT" 1874434 NIL ODERAT (NIL T T) -7 NIL NIL) (-785 1868859 1869323 1869920 "ODEPRRIC" 1871428 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-784 1866728 1867297 1867806 "ODEPROB" 1868370 T ODEPROB (NIL) -8 NIL NIL) (-783 1863250 1863733 1864380 "ODEPRIM" 1866207 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-782 1862499 1862601 1862861 "ODEPAL" 1863142 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-781 1858661 1859452 1860316 "ODEPACK" 1861655 T ODEPACK (NIL) -7 NIL NIL) (-780 1857694 1857801 1858030 "ODEINT" 1858550 NIL ODEINT (NIL T T) -7 NIL NIL) (-779 1851795 1853220 1854667 "ODEIFTBL" 1856267 T ODEIFTBL (NIL) -8 NIL NIL) (-778 1847130 1847916 1848875 "ODEEF" 1850954 NIL ODEEF (NIL T T) -7 NIL NIL) (-777 1846465 1846554 1846784 "ODECONST" 1847035 NIL ODECONST (NIL T T T) -7 NIL NIL) (-776 1844616 1845251 1845279 "ODECAT" 1845884 T ODECAT (NIL) -9 NIL 1846415) (-775 1841523 1844328 1844447 "OCT" 1844529 NIL OCT (NIL T) -8 NIL NIL) (-774 1841161 1841204 1841331 "OCTCT2" 1841474 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-773 1836022 1838422 1838462 "OC" 1839559 NIL OC (NIL T) -9 NIL 1840417) (-772 1833249 1833997 1834987 "OC-" 1835081 NIL OC- (NIL T T) -8 NIL NIL) (-771 1832627 1833069 1833097 "OCAMON" 1833102 T OCAMON (NIL) -9 NIL 1833123) (-770 1832184 1832499 1832527 "OASGP" 1832532 T OASGP (NIL) -9 NIL 1832552) (-769 1831471 1831934 1831962 "OAMONS" 1832002 T OAMONS (NIL) -9 NIL 1832045) (-768 1830911 1831318 1831346 "OAMON" 1831351 T OAMON (NIL) -9 NIL 1831371) (-767 1830215 1830707 1830735 "OAGROUP" 1830740 T OAGROUP (NIL) -9 NIL 1830760) (-766 1829905 1829955 1830043 "NUMTUBE" 1830159 NIL NUMTUBE (NIL T) -7 NIL NIL) (-765 1823478 1824996 1826532 "NUMQUAD" 1828389 T NUMQUAD (NIL) -7 NIL NIL) (-764 1819234 1820222 1821247 "NUMODE" 1822473 T NUMODE (NIL) -7 NIL NIL) (-763 1816615 1817469 1817497 "NUMINT" 1818420 T NUMINT (NIL) -9 NIL 1819184) (-762 1815563 1815760 1815978 "NUMFMT" 1816417 T NUMFMT (NIL) -7 NIL NIL) (-761 1801922 1804867 1807399 "NUMERIC" 1813070 NIL NUMERIC (NIL T) -7 NIL NIL) (-760 1796319 1801371 1801466 "NTSCAT" 1801471 NIL NTSCAT (NIL T T T T) -9 NIL 1801510) (-759 1795513 1795678 1795871 "NTPOLFN" 1796158 NIL NTPOLFN (NIL T) -7 NIL NIL) (-758 1783353 1792338 1793150 "NSUP" 1794734 NIL NSUP (NIL T) -8 NIL NIL) (-757 1782985 1783042 1783151 "NSUP2" 1783290 NIL NSUP2 (NIL T T) -7 NIL NIL) (-756 1772982 1782759 1782892 "NSMP" 1782897 NIL NSMP (NIL T T) -8 NIL NIL) (-755 1771414 1771715 1772072 "NREP" 1772670 NIL NREP (NIL T) -7 NIL NIL) (-754 1770005 1770257 1770615 "NPCOEF" 1771157 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-753 1769071 1769186 1769402 "NORMRETR" 1769886 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-752 1767112 1767402 1767811 "NORMPK" 1768779 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-751 1766797 1766825 1766949 "NORMMA" 1767078 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-750 1766624 1766754 1766783 "NONE" 1766788 T NONE (NIL) -8 NIL NIL) (-749 1766413 1766442 1766511 "NONE1" 1766588 NIL NONE1 (NIL T) -7 NIL NIL) (-748 1765896 1765958 1766144 "NODE1" 1766345 NIL NODE1 (NIL T T) -7 NIL NIL) (-747 1764236 1765059 1765314 "NNI" 1765661 T NNI (NIL) -8 NIL NIL) (-746 1762656 1762969 1763333 "NLINSOL" 1763904 NIL NLINSOL (NIL T) -7 NIL NIL) (-745 1758823 1759791 1760713 "NIPROB" 1761754 T NIPROB (NIL) -8 NIL NIL) (-744 1757580 1757814 1758116 "NFINTBAS" 1758585 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-743 1756288 1756519 1756800 "NCODIV" 1757348 NIL NCODIV (NIL T T) -7 NIL NIL) (-742 1756050 1756087 1756162 "NCNTFRAC" 1756245 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-741 1754230 1754594 1755014 "NCEP" 1755675 NIL NCEP (NIL T) -7 NIL NIL) (-740 1753141 1753880 1753908 "NASRING" 1754018 T NASRING (NIL) -9 NIL 1754092) (-739 1752936 1752980 1753074 "NASRING-" 1753079 NIL NASRING- (NIL T) -8 NIL NIL) (-738 1752089 1752588 1752616 "NARNG" 1752733 T NARNG (NIL) -9 NIL 1752824) (-737 1751781 1751848 1751982 "NARNG-" 1751987 NIL NARNG- (NIL T) -8 NIL NIL) (-736 1750660 1750867 1751102 "NAGSP" 1751566 T NAGSP (NIL) -7 NIL NIL) (-735 1741932 1743616 1745289 "NAGS" 1749007 T NAGS (NIL) -7 NIL NIL) (-734 1740480 1740788 1741119 "NAGF07" 1741621 T NAGF07 (NIL) -7 NIL NIL) (-733 1735018 1736309 1737616 "NAGF04" 1739193 T NAGF04 (NIL) -7 NIL NIL) (-732 1727986 1729600 1731233 "NAGF02" 1733405 T NAGF02 (NIL) -7 NIL NIL) (-731 1723210 1724310 1725427 "NAGF01" 1726889 T NAGF01 (NIL) -7 NIL NIL) (-730 1716838 1718404 1719989 "NAGE04" 1721645 T NAGE04 (NIL) -7 NIL NIL) (-729 1708007 1710128 1712258 "NAGE02" 1714728 T NAGE02 (NIL) -7 NIL NIL) (-728 1703960 1704907 1705871 "NAGE01" 1707063 T NAGE01 (NIL) -7 NIL NIL) (-727 1701755 1702289 1702847 "NAGD03" 1703422 T NAGD03 (NIL) -7 NIL NIL) (-726 1693505 1695433 1697387 "NAGD02" 1699821 T NAGD02 (NIL) -7 NIL NIL) (-725 1687316 1688741 1690181 "NAGD01" 1692085 T NAGD01 (NIL) -7 NIL NIL) (-724 1683525 1684347 1685184 "NAGC06" 1686499 T NAGC06 (NIL) -7 NIL NIL) (-723 1681990 1682322 1682678 "NAGC05" 1683189 T NAGC05 (NIL) -7 NIL NIL) (-722 1681366 1681485 1681629 "NAGC02" 1681866 T NAGC02 (NIL) -7 NIL NIL) (-721 1680426 1680983 1681023 "NAALG" 1681102 NIL NAALG (NIL T) -9 NIL 1681163) (-720 1680261 1680290 1680380 "NAALG-" 1680385 NIL NAALG- (NIL T T) -8 NIL NIL) (-719 1674211 1675319 1676506 "MULTSQFR" 1679157 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-718 1673530 1673605 1673789 "MULTFACT" 1674123 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-717 1666753 1670618 1670671 "MTSCAT" 1671741 NIL MTSCAT (NIL T T) -9 NIL 1672255) (-716 1666465 1666519 1666611 "MTHING" 1666693 NIL MTHING (NIL T) -7 NIL NIL) (-715 1666257 1666290 1666350 "MSYSCMD" 1666425 T MSYSCMD (NIL) -7 NIL NIL) (-714 1662369 1665012 1665332 "MSET" 1665970 NIL MSET (NIL T) -8 NIL NIL) (-713 1659464 1661930 1661971 "MSETAGG" 1661976 NIL MSETAGG (NIL T) -9 NIL 1662010) (-712 1655347 1656843 1657588 "MRING" 1658764 NIL MRING (NIL T T) -8 NIL NIL) (-711 1654913 1654980 1655111 "MRF2" 1655274 NIL MRF2 (NIL T T T) -7 NIL NIL) (-710 1654531 1654566 1654710 "MRATFAC" 1654872 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-709 1652143 1652438 1652869 "MPRFF" 1654236 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-708 1646203 1651997 1652094 "MPOLY" 1652099 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-707 1645693 1645728 1645936 "MPCPF" 1646162 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-706 1645207 1645250 1645434 "MPC3" 1645644 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-705 1644402 1644483 1644704 "MPC2" 1645122 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-704 1642703 1643040 1643430 "MONOTOOL" 1644062 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-703 1641954 1642245 1642273 "MONOID" 1642492 T MONOID (NIL) -9 NIL 1642639) (-702 1641500 1641619 1641800 "MONOID-" 1641805 NIL MONOID- (NIL T) -8 NIL NIL) (-701 1632550 1638456 1638515 "MONOGEN" 1639189 NIL MONOGEN (NIL T T) -9 NIL 1639645) (-700 1629768 1630503 1631503 "MONOGEN-" 1631622 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-699 1628627 1629047 1629075 "MONADWU" 1629467 T MONADWU (NIL) -9 NIL 1629705) (-698 1627999 1628158 1628406 "MONADWU-" 1628411 NIL MONADWU- (NIL T) -8 NIL NIL) (-697 1627384 1627602 1627630 "MONAD" 1627837 T MONAD (NIL) -9 NIL 1627949) (-696 1627069 1627147 1627279 "MONAD-" 1627284 NIL MONAD- (NIL T) -8 NIL NIL) (-695 1625385 1625982 1626261 "MOEBIUS" 1626822 NIL MOEBIUS (NIL T) -8 NIL NIL) (-694 1624777 1625155 1625195 "MODULE" 1625200 NIL MODULE (NIL T) -9 NIL 1625226) (-693 1624345 1624441 1624631 "MODULE-" 1624636 NIL MODULE- (NIL T T) -8 NIL NIL) (-692 1622060 1622709 1623036 "MODRING" 1624169 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-691 1619046 1620165 1620686 "MODOP" 1621589 NIL MODOP (NIL T T) -8 NIL NIL) (-690 1617233 1617685 1618026 "MODMONOM" 1618845 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-689 1606941 1615425 1615848 "MODMON" 1616861 NIL MODMON (NIL T T) -8 NIL NIL) (-688 1604132 1605785 1606061 "MODFIELD" 1606816 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-687 1603136 1603413 1603603 "MMLFORM" 1603962 T MMLFORM (NIL) -8 NIL NIL) (-686 1602662 1602705 1602884 "MMAP" 1603087 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-685 1600931 1601664 1601705 "MLO" 1602128 NIL MLO (NIL T) -9 NIL 1602370) (-684 1598298 1598813 1599415 "MLIFT" 1600412 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-683 1597689 1597773 1597927 "MKUCFUNC" 1598209 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-682 1597288 1597358 1597481 "MKRECORD" 1597612 NIL MKRECORD (NIL T T) -7 NIL NIL) (-681 1596336 1596497 1596725 "MKFUNC" 1597099 NIL MKFUNC (NIL T) -7 NIL NIL) (-680 1595724 1595828 1595984 "MKFLCFN" 1596219 NIL MKFLCFN (NIL T) -7 NIL NIL) (-679 1595150 1595517 1595606 "MKCHSET" 1595668 NIL MKCHSET (NIL T) -8 NIL NIL) (-678 1594427 1594529 1594714 "MKBCFUNC" 1595043 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-677 1591169 1593981 1594117 "MINT" 1594311 T MINT (NIL) -8 NIL NIL) (-676 1589981 1590224 1590501 "MHROWRED" 1590924 NIL MHROWRED (NIL T) -7 NIL NIL) (-675 1585407 1588516 1588921 "MFLOAT" 1589596 T MFLOAT (NIL) -8 NIL NIL) (-674 1584764 1584840 1585011 "MFINFACT" 1585319 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-673 1581079 1581927 1582811 "MESH" 1583900 T MESH (NIL) -7 NIL NIL) (-672 1579469 1579781 1580134 "MDDFACT" 1580766 NIL MDDFACT (NIL T) -7 NIL NIL) (-671 1576311 1578628 1578669 "MDAGG" 1578924 NIL MDAGG (NIL T) -9 NIL 1579067) (-670 1566091 1575604 1575811 "MCMPLX" 1576124 T MCMPLX (NIL) -8 NIL NIL) (-669 1565232 1565378 1565578 "MCDEN" 1565940 NIL MCDEN (NIL T T) -7 NIL NIL) (-668 1563122 1563392 1563772 "MCALCFN" 1564962 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-667 1562033 1562206 1562447 "MAYBE" 1562920 NIL MAYBE (NIL T) -8 NIL NIL) (-666 1559645 1560168 1560730 "MATSTOR" 1561504 NIL MATSTOR (NIL T) -7 NIL NIL) (-665 1555651 1559017 1559265 "MATRIX" 1559430 NIL MATRIX (NIL T) -8 NIL NIL) (-664 1551420 1552124 1552860 "MATLIN" 1555008 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-663 1541574 1544712 1544789 "MATCAT" 1549669 NIL MATCAT (NIL T T T) -9 NIL 1551086) (-662 1537938 1538951 1540307 "MATCAT-" 1540312 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-661 1536532 1536685 1537018 "MATCAT2" 1537773 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-660 1534644 1534968 1535352 "MAPPKG3" 1536207 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-659 1533625 1533798 1534020 "MAPPKG2" 1534468 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-658 1532124 1532408 1532735 "MAPPKG1" 1533331 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-657 1531230 1531530 1531707 "MAPPAST" 1531967 T MAPPAST (NIL) -8 NIL NIL) (-656 1530841 1530899 1531022 "MAPHACK3" 1531166 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-655 1530433 1530494 1530608 "MAPHACK2" 1530773 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-654 1529871 1529974 1530116 "MAPHACK1" 1530324 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-653 1527977 1528571 1528875 "MAGMA" 1529599 NIL MAGMA (NIL T) -8 NIL NIL) (-652 1527483 1527701 1527792 "MACROAST" 1527906 T MACROAST (NIL) -8 NIL NIL) (-651 1523950 1525722 1526183 "M3D" 1527055 NIL M3D (NIL T) -8 NIL NIL) (-650 1518105 1522320 1522361 "LZSTAGG" 1523143 NIL LZSTAGG (NIL T) -9 NIL 1523438) (-649 1514078 1515236 1516693 "LZSTAGG-" 1516698 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-648 1511192 1511969 1512456 "LWORD" 1513623 NIL LWORD (NIL T) -8 NIL NIL) (-647 1510795 1510996 1511071 "LSTAST" 1511137 T LSTAST (NIL) -8 NIL NIL) (-646 1503996 1510566 1510700 "LSQM" 1510705 NIL LSQM (NIL NIL T) -8 NIL NIL) (-645 1503220 1503359 1503587 "LSPP" 1503851 NIL LSPP (NIL T T T T) -7 NIL NIL) (-644 1501032 1501333 1501789 "LSMP" 1502909 NIL LSMP (NIL T T T T) -7 NIL NIL) (-643 1497811 1498485 1499215 "LSMP1" 1500334 NIL LSMP1 (NIL T) -7 NIL NIL) (-642 1491737 1496979 1497020 "LSAGG" 1497082 NIL LSAGG (NIL T) -9 NIL 1497160) (-641 1488432 1489356 1490569 "LSAGG-" 1490574 NIL LSAGG- (NIL T T) -8 NIL NIL) (-640 1486058 1487576 1487825 "LPOLY" 1488227 NIL LPOLY (NIL T T) -8 NIL NIL) (-639 1485640 1485725 1485848 "LPEFRAC" 1485967 NIL LPEFRAC (NIL T) -7 NIL NIL) (-638 1483987 1484734 1484987 "LO" 1485472 NIL LO (NIL T T T) -8 NIL NIL) (-637 1483639 1483751 1483779 "LOGIC" 1483890 T LOGIC (NIL) -9 NIL 1483971) (-636 1483501 1483524 1483595 "LOGIC-" 1483600 NIL LOGIC- (NIL T) -8 NIL NIL) (-635 1482694 1482834 1483027 "LODOOPS" 1483357 NIL LODOOPS (NIL T T) -7 NIL NIL) (-634 1480152 1482610 1482676 "LODO" 1482681 NIL LODO (NIL T NIL) -8 NIL NIL) (-633 1478690 1478925 1479278 "LODOF" 1479899 NIL LODOF (NIL T T) -7 NIL NIL) (-632 1475133 1477530 1477571 "LODOCAT" 1478009 NIL LODOCAT (NIL T) -9 NIL 1478220) (-631 1474866 1474924 1475051 "LODOCAT-" 1475056 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-630 1472221 1474707 1474825 "LODO2" 1474830 NIL LODO2 (NIL T T) -8 NIL NIL) (-629 1469691 1472158 1472203 "LODO1" 1472208 NIL LODO1 (NIL T) -8 NIL NIL) (-628 1468551 1468716 1469028 "LODEEF" 1469514 NIL LODEEF (NIL T T T) -7 NIL NIL) (-627 1463837 1466681 1466722 "LNAGG" 1467669 NIL LNAGG (NIL T) -9 NIL 1468113) (-626 1462984 1463198 1463540 "LNAGG-" 1463545 NIL LNAGG- (NIL T T) -8 NIL NIL) (-625 1459147 1459909 1460548 "LMOPS" 1462399 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-624 1458542 1458904 1458945 "LMODULE" 1459006 NIL LMODULE (NIL T) -9 NIL 1459048) (-623 1455788 1458187 1458310 "LMDICT" 1458452 NIL LMDICT (NIL T) -8 NIL NIL) (-622 1455514 1455696 1455756 "LITERAL" 1455761 NIL LITERAL (NIL T) -8 NIL NIL) (-621 1448741 1454460 1454758 "LIST" 1455249 NIL LIST (NIL T) -8 NIL NIL) (-620 1448266 1448340 1448479 "LIST3" 1448661 NIL LIST3 (NIL T T T) -7 NIL NIL) (-619 1447273 1447451 1447679 "LIST2" 1448084 NIL LIST2 (NIL T T) -7 NIL NIL) (-618 1445407 1445719 1446118 "LIST2MAP" 1446920 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-617 1444157 1444793 1444834 "LINEXP" 1445089 NIL LINEXP (NIL T) -9 NIL 1445238) (-616 1442804 1443064 1443361 "LINDEP" 1443909 NIL LINDEP (NIL T T) -7 NIL NIL) (-615 1439571 1440290 1441067 "LIMITRF" 1442059 NIL LIMITRF (NIL T) -7 NIL NIL) (-614 1437847 1438142 1438558 "LIMITPS" 1439266 NIL LIMITPS (NIL T T) -7 NIL NIL) (-613 1432302 1437358 1437586 "LIE" 1437668 NIL LIE (NIL T T) -8 NIL NIL) (-612 1431351 1431794 1431834 "LIECAT" 1431974 NIL LIECAT (NIL T) -9 NIL 1432125) (-611 1431192 1431219 1431307 "LIECAT-" 1431312 NIL LIECAT- (NIL T T) -8 NIL NIL) (-610 1423804 1430641 1430806 "LIB" 1431047 T LIB (NIL) -8 NIL NIL) (-609 1419441 1420322 1421257 "LGROBP" 1422921 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-608 1417307 1417581 1417943 "LF" 1419162 NIL LF (NIL T T) -7 NIL NIL) (-607 1416147 1416839 1416867 "LFCAT" 1417074 T LFCAT (NIL) -9 NIL 1417213) (-606 1413051 1413679 1414367 "LEXTRIPK" 1415511 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-605 1409822 1410621 1411124 "LEXP" 1412631 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-604 1409325 1409543 1409635 "LETAST" 1409750 T LETAST (NIL) -8 NIL NIL) (-603 1407723 1408036 1408437 "LEADCDET" 1409007 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-602 1406913 1406987 1407216 "LAZM3PK" 1407644 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-601 1401869 1404990 1405528 "LAUPOL" 1406425 NIL LAUPOL (NIL T T) -8 NIL NIL) (-600 1401434 1401478 1401646 "LAPLACE" 1401819 NIL LAPLACE (NIL T T) -7 NIL NIL) (-599 1399408 1400535 1400786 "LA" 1401267 NIL LA (NIL T T T) -8 NIL NIL) (-598 1398509 1399059 1399100 "LALG" 1399162 NIL LALG (NIL T) -9 NIL 1399221) (-597 1398223 1398282 1398418 "LALG-" 1398423 NIL LALG- (NIL T T) -8 NIL NIL) (-596 1397023 1397440 1397669 "KTVLOGIC" 1398014 T KTVLOGIC (NIL) -8 NIL NIL) (-595 1395927 1396114 1396413 "KOVACIC" 1396823 NIL KOVACIC (NIL T T) -7 NIL NIL) (-594 1395762 1395786 1395827 "KONVERT" 1395889 NIL KONVERT (NIL T) -9 NIL NIL) (-593 1395597 1395621 1395662 "KOERCE" 1395724 NIL KOERCE (NIL T) -9 NIL NIL) (-592 1393331 1394091 1394484 "KERNEL" 1395236 NIL KERNEL (NIL T) -8 NIL NIL) (-591 1392833 1392914 1393044 "KERNEL2" 1393245 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-590 1386684 1391372 1391426 "KDAGG" 1391803 NIL KDAGG (NIL T T) -9 NIL 1392009) (-589 1386213 1386337 1386542 "KDAGG-" 1386547 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-588 1379388 1385874 1386029 "KAFILE" 1386091 NIL KAFILE (NIL T) -8 NIL NIL) (-587 1373843 1378899 1379127 "JORDAN" 1379209 NIL JORDAN (NIL T T) -8 NIL NIL) (-586 1373249 1373492 1373613 "JOINAST" 1373742 T JOINAST (NIL) -8 NIL NIL) (-585 1372978 1373037 1373124 "JAVACODE" 1373182 T JAVACODE (NIL) -8 NIL NIL) (-584 1369277 1371183 1371237 "IXAGG" 1372166 NIL IXAGG (NIL T T) -9 NIL 1372625) (-583 1368196 1368502 1368921 "IXAGG-" 1368926 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-582 1363776 1368118 1368177 "IVECTOR" 1368182 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-581 1362542 1362779 1363045 "ITUPLE" 1363543 NIL ITUPLE (NIL T) -8 NIL NIL) (-580 1360978 1361155 1361461 "ITRIGMNP" 1362364 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-579 1359723 1359927 1360210 "ITFUN3" 1360754 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-578 1359355 1359412 1359521 "ITFUN2" 1359660 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-577 1357192 1358217 1358516 "ITAYLOR" 1359089 NIL ITAYLOR (NIL T) -8 NIL NIL) (-576 1346186 1351338 1352498 "ISUPS" 1356065 NIL ISUPS (NIL T) -8 NIL NIL) (-575 1345290 1345430 1345666 "ISUMP" 1346033 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-574 1340554 1345091 1345170 "ISTRING" 1345243 NIL ISTRING (NIL NIL) -8 NIL NIL) (-573 1340057 1340275 1340367 "ISAST" 1340482 T ISAST (NIL) -8 NIL NIL) (-572 1339267 1339348 1339564 "IRURPK" 1339971 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-571 1338203 1338404 1338644 "IRSN" 1339047 T IRSN (NIL) -7 NIL NIL) (-570 1336232 1336587 1337023 "IRRF2F" 1337841 NIL IRRF2F (NIL T) -7 NIL NIL) (-569 1335979 1336017 1336093 "IRREDFFX" 1336188 NIL IRREDFFX (NIL T) -7 NIL NIL) (-568 1334594 1334853 1335152 "IROOT" 1335712 NIL IROOT (NIL T) -7 NIL NIL) (-567 1331226 1332278 1332970 "IR" 1333934 NIL IR (NIL T) -8 NIL NIL) (-566 1328839 1329334 1329900 "IR2" 1330704 NIL IR2 (NIL T T) -7 NIL NIL) (-565 1327911 1328024 1328245 "IR2F" 1328722 NIL IR2F (NIL T T) -7 NIL NIL) (-564 1327702 1327736 1327796 "IPRNTPK" 1327871 T IPRNTPK (NIL) -7 NIL NIL) (-563 1324321 1327591 1327660 "IPF" 1327665 NIL IPF (NIL NIL) -8 NIL NIL) (-562 1322684 1324246 1324303 "IPADIC" 1324308 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-561 1322448 1322588 1322616 "IOBCON" 1322621 T IOBCON (NIL) -9 NIL 1322642) (-560 1321945 1322003 1322193 "INVLAPLA" 1322384 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-559 1311594 1313947 1316333 "INTTR" 1319609 NIL INTTR (NIL T T) -7 NIL NIL) (-558 1307938 1308680 1309544 "INTTOOLS" 1310779 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-557 1307524 1307615 1307732 "INTSLPE" 1307841 T INTSLPE (NIL) -7 NIL NIL) (-556 1305519 1307447 1307506 "INTRVL" 1307511 NIL INTRVL (NIL T) -8 NIL NIL) (-555 1303121 1303633 1304208 "INTRF" 1305004 NIL INTRF (NIL T) -7 NIL NIL) (-554 1302532 1302629 1302771 "INTRET" 1303019 NIL INTRET (NIL T) -7 NIL NIL) (-553 1300529 1300918 1301388 "INTRAT" 1302140 NIL INTRAT (NIL T T) -7 NIL NIL) (-552 1297757 1298340 1298966 "INTPM" 1300014 NIL INTPM (NIL T T) -7 NIL NIL) (-551 1294460 1295059 1295804 "INTPAF" 1297143 NIL INTPAF (NIL T T T) -7 NIL NIL) (-550 1289639 1290601 1291652 "INTPACK" 1293429 T INTPACK (NIL) -7 NIL NIL) (-549 1286551 1289368 1289495 "INT" 1289532 T INT (NIL) -8 NIL NIL) (-548 1285803 1285955 1286163 "INTHERTR" 1286393 NIL INTHERTR (NIL T T) -7 NIL NIL) (-547 1285242 1285322 1285510 "INTHERAL" 1285717 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-546 1283088 1283531 1283988 "INTHEORY" 1284805 T INTHEORY (NIL) -7 NIL NIL) (-545 1274396 1276017 1277796 "INTG0" 1281440 NIL INTG0 (NIL T T T) -7 NIL NIL) (-544 1254969 1259759 1264569 "INTFTBL" 1269606 T INTFTBL (NIL) -8 NIL NIL) (-543 1254218 1254356 1254529 "INTFACT" 1254828 NIL INTFACT (NIL T) -7 NIL NIL) (-542 1251603 1252049 1252613 "INTEF" 1253772 NIL INTEF (NIL T T) -7 NIL NIL) (-541 1250105 1250810 1250838 "INTDOM" 1251139 T INTDOM (NIL) -9 NIL 1251346) (-540 1249474 1249648 1249890 "INTDOM-" 1249895 NIL INTDOM- (NIL T) -8 NIL NIL) (-539 1246007 1247893 1247947 "INTCAT" 1248746 NIL INTCAT (NIL T) -9 NIL 1249066) (-538 1245480 1245582 1245710 "INTBIT" 1245899 T INTBIT (NIL) -7 NIL NIL) (-537 1244151 1244305 1244619 "INTALG" 1245325 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-536 1243608 1243698 1243868 "INTAF" 1244055 NIL INTAF (NIL T T) -7 NIL NIL) (-535 1237062 1243418 1243558 "INTABL" 1243563 NIL INTABL (NIL T T T) -8 NIL NIL) (-534 1232117 1234788 1234816 "INS" 1235750 T INS (NIL) -9 NIL 1236414) (-533 1229357 1230128 1231102 "INS-" 1231175 NIL INS- (NIL T) -8 NIL NIL) (-532 1228132 1228359 1228657 "INPSIGN" 1229110 NIL INPSIGN (NIL T T) -7 NIL NIL) (-531 1227250 1227367 1227564 "INPRODPF" 1228012 NIL INPRODPF (NIL T T) -7 NIL NIL) (-530 1226144 1226261 1226498 "INPRODFF" 1227130 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-529 1225144 1225296 1225556 "INNMFACT" 1225980 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-528 1224341 1224438 1224626 "INMODGCD" 1225043 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-527 1222850 1223094 1223418 "INFSP" 1224086 NIL INFSP (NIL T T T) -7 NIL NIL) (-526 1222034 1222151 1222334 "INFPROD0" 1222730 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-525 1218916 1220099 1220614 "INFORM" 1221527 T INFORM (NIL) -8 NIL NIL) (-524 1218526 1218586 1218684 "INFORM1" 1218851 NIL INFORM1 (NIL T) -7 NIL NIL) (-523 1218049 1218138 1218252 "INFINITY" 1218432 T INFINITY (NIL) -7 NIL NIL) (-522 1216666 1216915 1217236 "INEP" 1217797 NIL INEP (NIL T T T) -7 NIL NIL) (-521 1215942 1216563 1216628 "INDE" 1216633 NIL INDE (NIL T) -8 NIL NIL) (-520 1215506 1215574 1215691 "INCRMAPS" 1215869 NIL INCRMAPS (NIL T) -7 NIL NIL) (-519 1210817 1211742 1212686 "INBFF" 1214594 NIL INBFF (NIL T) -7 NIL NIL) (-518 1210486 1210562 1210590 "INBCON" 1210723 T INBCON (NIL) -9 NIL 1210801) (-517 1210326 1210361 1210437 "INBCON-" 1210442 NIL INBCON- (NIL T) -8 NIL NIL) (-516 1209828 1210047 1210139 "INAST" 1210254 T INAST (NIL) -8 NIL NIL) (-515 1209282 1209507 1209613 "IMPTAST" 1209742 T IMPTAST (NIL) -8 NIL NIL) (-514 1205776 1209126 1209230 "IMATRIX" 1209235 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-513 1204488 1204611 1204926 "IMATQF" 1205632 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-512 1202708 1202935 1203272 "IMATLIN" 1204244 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-511 1197334 1202632 1202690 "ILIST" 1202695 NIL ILIST (NIL T NIL) -8 NIL NIL) (-510 1195287 1197194 1197307 "IIARRAY2" 1197312 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-509 1190720 1195198 1195262 "IFF" 1195267 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-508 1190094 1190337 1190453 "IFAST" 1190624 T IFAST (NIL) -8 NIL NIL) (-507 1185137 1189386 1189574 "IFARRAY" 1189951 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-506 1184344 1185041 1185114 "IFAMON" 1185119 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-505 1183928 1183993 1184047 "IEVALAB" 1184254 NIL IEVALAB (NIL T T) -9 NIL NIL) (-504 1183603 1183671 1183831 "IEVALAB-" 1183836 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-503 1183261 1183517 1183580 "IDPO" 1183585 NIL IDPO (NIL T T) -8 NIL NIL) (-502 1182538 1183150 1183225 "IDPOAMS" 1183230 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-501 1181872 1182427 1182502 "IDPOAM" 1182507 NIL IDPOAM (NIL T T) -8 NIL NIL) (-500 1180957 1181207 1181260 "IDPC" 1181673 NIL IDPC (NIL T T) -9 NIL 1181822) (-499 1180453 1180849 1180922 "IDPAM" 1180927 NIL IDPAM (NIL T T) -8 NIL NIL) (-498 1179856 1180345 1180418 "IDPAG" 1180423 NIL IDPAG (NIL T T) -8 NIL NIL) (-497 1179586 1179771 1179821 "IDENT" 1179826 T IDENT (NIL) -8 NIL NIL) (-496 1175841 1176689 1177584 "IDECOMP" 1178743 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-495 1168714 1169764 1170811 "IDEAL" 1174877 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-494 1167878 1167990 1168189 "ICDEN" 1168598 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-493 1166977 1167358 1167505 "ICARD" 1167751 T ICARD (NIL) -8 NIL NIL) (-492 1165037 1165350 1165755 "IBPTOOLS" 1166654 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-491 1160671 1164657 1164770 "IBITS" 1164956 NIL IBITS (NIL NIL) -8 NIL NIL) (-490 1157394 1157970 1158665 "IBATOOL" 1160088 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-489 1155174 1155635 1156168 "IBACHIN" 1156929 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-488 1153051 1155020 1155123 "IARRAY2" 1155128 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-487 1149204 1152977 1153034 "IARRAY1" 1153039 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-486 1143199 1147618 1148098 "IAN" 1148744 T IAN (NIL) -8 NIL NIL) (-485 1142710 1142767 1142940 "IALGFACT" 1143136 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-484 1142238 1142351 1142379 "HYPCAT" 1142586 T HYPCAT (NIL) -9 NIL NIL) (-483 1141776 1141893 1142079 "HYPCAT-" 1142084 NIL HYPCAT- (NIL T) -8 NIL NIL) (-482 1141398 1141571 1141654 "HOSTNAME" 1141713 T HOSTNAME (NIL) -8 NIL NIL) (-481 1138077 1139408 1139449 "HOAGG" 1140430 NIL HOAGG (NIL T) -9 NIL 1141109) (-480 1136671 1137070 1137596 "HOAGG-" 1137601 NIL HOAGG- (NIL T T) -8 NIL NIL) (-479 1130559 1136112 1136278 "HEXADEC" 1136525 T HEXADEC (NIL) -8 NIL NIL) (-478 1129307 1129529 1129792 "HEUGCD" 1130336 NIL HEUGCD (NIL T) -7 NIL NIL) (-477 1128410 1129144 1129274 "HELLFDIV" 1129279 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-476 1126638 1128187 1128275 "HEAP" 1128354 NIL HEAP (NIL T) -8 NIL NIL) (-475 1125929 1126190 1126324 "HEADAST" 1126524 T HEADAST (NIL) -8 NIL NIL) (-474 1119849 1125844 1125906 "HDP" 1125911 NIL HDP (NIL NIL T) -8 NIL NIL) (-473 1113600 1119484 1119636 "HDMP" 1119750 NIL HDMP (NIL NIL T) -8 NIL NIL) (-472 1112925 1113064 1113228 "HB" 1113456 T HB (NIL) -7 NIL NIL) (-471 1106422 1112771 1112875 "HASHTBL" 1112880 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-470 1105925 1106143 1106235 "HASAST" 1106350 T HASAST (NIL) -8 NIL NIL) (-469 1103739 1105549 1105730 "HACKPI" 1105764 T HACKPI (NIL) -8 NIL NIL) (-468 1099434 1103592 1103705 "GTSET" 1103710 NIL GTSET (NIL T T T T) -8 NIL NIL) (-467 1092960 1099312 1099410 "GSTBL" 1099415 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-466 1085273 1091991 1092256 "GSERIES" 1092751 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-465 1084440 1084831 1084859 "GROUP" 1085062 T GROUP (NIL) -9 NIL 1085196) (-464 1083806 1083965 1084216 "GROUP-" 1084221 NIL GROUP- (NIL T) -8 NIL NIL) (-463 1082175 1082494 1082881 "GROEBSOL" 1083483 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-462 1081115 1081377 1081428 "GRMOD" 1081957 NIL GRMOD (NIL T T) -9 NIL 1082125) (-461 1080883 1080919 1081047 "GRMOD-" 1081052 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-460 1076208 1077237 1078237 "GRIMAGE" 1079903 T GRIMAGE (NIL) -8 NIL NIL) (-459 1074675 1074935 1075259 "GRDEF" 1075904 T GRDEF (NIL) -7 NIL NIL) (-458 1074119 1074235 1074376 "GRAY" 1074554 T GRAY (NIL) -7 NIL NIL) (-457 1073350 1073730 1073781 "GRALG" 1073934 NIL GRALG (NIL T T) -9 NIL 1074027) (-456 1073011 1073084 1073247 "GRALG-" 1073252 NIL GRALG- (NIL T T T) -8 NIL NIL) (-455 1069815 1072596 1072774 "GPOLSET" 1072918 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-454 1069169 1069226 1069484 "GOSPER" 1069752 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-453 1064928 1065607 1066133 "GMODPOL" 1068868 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-452 1063933 1064117 1064355 "GHENSEL" 1064740 NIL GHENSEL (NIL T T) -7 NIL NIL) (-451 1057984 1058827 1059854 "GENUPS" 1063017 NIL GENUPS (NIL T T) -7 NIL NIL) (-450 1057681 1057732 1057821 "GENUFACT" 1057927 NIL GENUFACT (NIL T) -7 NIL NIL) (-449 1057093 1057170 1057335 "GENPGCD" 1057599 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-448 1056567 1056602 1056815 "GENMFACT" 1057052 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-447 1055135 1055390 1055697 "GENEEZ" 1056310 NIL GENEEZ (NIL T T) -7 NIL NIL) (-446 1049048 1054746 1054908 "GDMP" 1055058 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-445 1038425 1042819 1043925 "GCNAALG" 1048031 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-444 1036887 1037715 1037743 "GCDDOM" 1037998 T GCDDOM (NIL) -9 NIL 1038155) (-443 1036357 1036484 1036699 "GCDDOM-" 1036704 NIL GCDDOM- (NIL T) -8 NIL NIL) (-442 1035029 1035214 1035518 "GB" 1036136 NIL GB (NIL T T T T) -7 NIL NIL) (-441 1023649 1025975 1028367 "GBINTERN" 1032720 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-440 1021486 1021778 1022199 "GBF" 1023324 NIL GBF (NIL T T T T) -7 NIL NIL) (-439 1020267 1020432 1020699 "GBEUCLID" 1021302 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-438 1019616 1019741 1019890 "GAUSSFAC" 1020138 T GAUSSFAC (NIL) -7 NIL NIL) (-437 1017983 1018285 1018599 "GALUTIL" 1019335 NIL GALUTIL (NIL T) -7 NIL NIL) (-436 1016291 1016565 1016889 "GALPOLYU" 1017710 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-435 1013656 1013946 1014353 "GALFACTU" 1015988 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-434 1005462 1006961 1008569 "GALFACT" 1012088 NIL GALFACT (NIL T) -7 NIL NIL) (-433 1002850 1003508 1003536 "FVFUN" 1004692 T FVFUN (NIL) -9 NIL 1005412) (-432 1002116 1002298 1002326 "FVC" 1002617 T FVC (NIL) -9 NIL 1002800) (-431 1001758 1001913 1001994 "FUNCTION" 1002068 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-430 999428 999979 1000468 "FT" 1001289 T FT (NIL) -8 NIL NIL) (-429 998246 998729 998932 "FTEM" 999245 T FTEM (NIL) -8 NIL NIL) (-428 996502 996791 997195 "FSUPFACT" 997937 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-427 994899 995188 995520 "FST" 996190 T FST (NIL) -8 NIL NIL) (-426 994070 994176 994371 "FSRED" 994781 NIL FSRED (NIL T T) -7 NIL NIL) (-425 992749 993004 993358 "FSPRMELT" 993785 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-424 989834 990272 990771 "FSPECF" 992312 NIL FSPECF (NIL T T) -7 NIL NIL) (-423 972276 980718 980758 "FS" 984606 NIL FS (NIL T) -9 NIL 986895) (-422 960926 963916 967972 "FS-" 968269 NIL FS- (NIL T T) -8 NIL NIL) (-421 960440 960494 960671 "FSINT" 960867 NIL FSINT (NIL T T) -7 NIL NIL) (-420 958767 959433 959736 "FSERIES" 960219 NIL FSERIES (NIL T T) -8 NIL NIL) (-419 957781 957897 958128 "FSCINT" 958647 NIL FSCINT (NIL T T) -7 NIL NIL) (-418 954015 956725 956766 "FSAGG" 957136 NIL FSAGG (NIL T) -9 NIL 957395) (-417 951777 952378 953174 "FSAGG-" 953269 NIL FSAGG- (NIL T T) -8 NIL NIL) (-416 950819 950962 951189 "FSAGG2" 951630 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-415 948474 948753 949307 "FS2UPS" 950537 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-414 948056 948099 948254 "FS2" 948425 NIL FS2 (NIL T T T T) -7 NIL NIL) (-413 946913 947084 947393 "FS2EXPXP" 947881 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-412 946339 946454 946606 "FRUTIL" 946793 NIL FRUTIL (NIL T) -7 NIL NIL) (-411 937800 941838 943194 "FR" 945015 NIL FR (NIL T) -8 NIL NIL) (-410 932875 935518 935558 "FRNAALG" 936954 NIL FRNAALG (NIL T) -9 NIL 937561) (-409 928553 929624 930899 "FRNAALG-" 931649 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-408 928191 928234 928361 "FRNAAF2" 928504 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-407 926598 927045 927340 "FRMOD" 928003 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-406 924377 924981 925298 "FRIDEAL" 926389 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-405 923572 923659 923948 "FRIDEAL2" 924284 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-404 922814 923228 923269 "FRETRCT" 923274 NIL FRETRCT (NIL T) -9 NIL 923450) (-403 921926 922157 922508 "FRETRCT-" 922513 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-402 919176 920352 920411 "FRAMALG" 921293 NIL FRAMALG (NIL T T) -9 NIL 921585) (-401 917310 917765 918395 "FRAMALG-" 918618 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-400 911270 916785 917061 "FRAC" 917066 NIL FRAC (NIL T) -8 NIL NIL) (-399 910906 910963 911070 "FRAC2" 911207 NIL FRAC2 (NIL T T) -7 NIL NIL) (-398 910542 910599 910706 "FR2" 910843 NIL FR2 (NIL T T) -7 NIL NIL) (-397 905272 908120 908148 "FPS" 909267 T FPS (NIL) -9 NIL 909824) (-396 904721 904830 904994 "FPS-" 905140 NIL FPS- (NIL T) -8 NIL NIL) (-395 902227 903862 903890 "FPC" 904115 T FPC (NIL) -9 NIL 904257) (-394 902020 902060 902157 "FPC-" 902162 NIL FPC- (NIL T) -8 NIL NIL) (-393 900898 901508 901549 "FPATMAB" 901554 NIL FPATMAB (NIL T) -9 NIL 901706) (-392 898598 899074 899500 "FPARFRAC" 900535 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-391 893991 894490 895172 "FORTRAN" 898030 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-390 891707 892207 892746 "FORT" 893472 T FORT (NIL) -7 NIL NIL) (-389 889383 889945 889973 "FORTFN" 891033 T FORTFN (NIL) -9 NIL 891657) (-388 889147 889197 889225 "FORTCAT" 889284 T FORTCAT (NIL) -9 NIL 889346) (-387 887207 887690 888089 "FORMULA" 888768 T FORMULA (NIL) -8 NIL NIL) (-386 886995 887025 887094 "FORMULA1" 887171 NIL FORMULA1 (NIL T) -7 NIL NIL) (-385 886518 886570 886743 "FORDER" 886937 NIL FORDER (NIL T T T T) -7 NIL NIL) (-384 885614 885778 885971 "FOP" 886345 T FOP (NIL) -7 NIL NIL) (-383 884222 884894 885068 "FNLA" 885496 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-382 882890 883279 883307 "FNCAT" 883879 T FNCAT (NIL) -9 NIL 884172) (-381 882456 882849 882877 "FNAME" 882882 T FNAME (NIL) -8 NIL NIL) (-380 881154 882083 882111 "FMTC" 882116 T FMTC (NIL) -9 NIL 882152) (-379 877516 878677 879306 "FMONOID" 880558 NIL FMONOID (NIL T) -8 NIL NIL) (-378 876735 877258 877407 "FM" 877412 NIL FM (NIL T T) -8 NIL NIL) (-377 874159 874805 874833 "FMFUN" 875977 T FMFUN (NIL) -9 NIL 876685) (-376 873428 873609 873637 "FMC" 873927 T FMC (NIL) -9 NIL 874109) (-375 870640 871474 871528 "FMCAT" 872723 NIL FMCAT (NIL T T) -9 NIL 873218) (-374 869533 870406 870506 "FM1" 870585 NIL FM1 (NIL T T) -8 NIL NIL) (-373 867307 867723 868217 "FLOATRP" 869084 NIL FLOATRP (NIL T) -7 NIL NIL) (-372 860858 864963 865593 "FLOAT" 866697 T FLOAT (NIL) -8 NIL NIL) (-371 858296 858796 859374 "FLOATCP" 860325 NIL FLOATCP (NIL T) -7 NIL NIL) (-370 857125 857929 857970 "FLINEXP" 857975 NIL FLINEXP (NIL T) -9 NIL 858068) (-369 856279 856514 856842 "FLINEXP-" 856847 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-368 855355 855499 855723 "FLASORT" 856131 NIL FLASORT (NIL T T) -7 NIL NIL) (-367 852572 853414 853466 "FLALG" 854693 NIL FLALG (NIL T T) -9 NIL 855160) (-366 846356 850058 850099 "FLAGG" 851361 NIL FLAGG (NIL T) -9 NIL 852013) (-365 845082 845421 845911 "FLAGG-" 845916 NIL FLAGG- (NIL T T) -8 NIL NIL) (-364 844124 844267 844494 "FLAGG2" 844935 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-363 841137 842111 842170 "FINRALG" 843298 NIL FINRALG (NIL T T) -9 NIL 843806) (-362 840297 840526 840865 "FINRALG-" 840870 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-361 839703 839916 839944 "FINITE" 840140 T FINITE (NIL) -9 NIL 840247) (-360 832161 834322 834362 "FINAALG" 838029 NIL FINAALG (NIL T) -9 NIL 839482) (-359 827502 828543 829687 "FINAALG-" 831066 NIL FINAALG- (NIL T T) -8 NIL NIL) (-358 826897 827257 827360 "FILE" 827432 NIL FILE (NIL T) -8 NIL NIL) (-357 825581 825893 825947 "FILECAT" 826631 NIL FILECAT (NIL T T) -9 NIL 826847) (-356 823501 824995 825023 "FIELD" 825063 T FIELD (NIL) -9 NIL 825143) (-355 822121 822506 823017 "FIELD-" 823022 NIL FIELD- (NIL T) -8 NIL NIL) (-354 819999 820756 821103 "FGROUP" 821807 NIL FGROUP (NIL T) -8 NIL NIL) (-353 819089 819253 819473 "FGLMICPK" 819831 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-352 814956 819014 819071 "FFX" 819076 NIL FFX (NIL T NIL) -8 NIL NIL) (-351 814557 814618 814753 "FFSLPE" 814889 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-350 810550 811329 812125 "FFPOLY" 813793 NIL FFPOLY (NIL T) -7 NIL NIL) (-349 810054 810090 810299 "FFPOLY2" 810508 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-348 805940 809973 810036 "FFP" 810041 NIL FFP (NIL T NIL) -8 NIL NIL) (-347 801373 805851 805915 "FF" 805920 NIL FF (NIL NIL NIL) -8 NIL NIL) (-346 796534 800716 800906 "FFNBX" 801227 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-345 791508 795669 795927 "FFNBP" 796388 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-344 786176 790792 791003 "FFNB" 791341 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-343 785008 785206 785521 "FFINTBAS" 785973 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-342 781292 783467 783495 "FFIELDC" 784115 T FFIELDC (NIL) -9 NIL 784491) (-341 779955 780325 780822 "FFIELDC-" 780827 NIL FFIELDC- (NIL T) -8 NIL NIL) (-340 779525 779570 779694 "FFHOM" 779897 NIL FFHOM (NIL T T T) -7 NIL NIL) (-339 777223 777707 778224 "FFF" 779040 NIL FFF (NIL T) -7 NIL NIL) (-338 772876 776965 777066 "FFCGX" 777166 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-337 768543 772608 772715 "FFCGP" 772819 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-336 763761 768270 768378 "FFCG" 768479 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-335 745819 754855 754941 "FFCAT" 760106 NIL FFCAT (NIL T T T) -9 NIL 761557) (-334 741017 742064 743378 "FFCAT-" 744608 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-333 740428 740471 740706 "FFCAT2" 740968 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-332 729640 733400 734620 "FEXPR" 739280 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-331 728640 729075 729116 "FEVALAB" 729200 NIL FEVALAB (NIL T) -9 NIL 729461) (-330 727799 728009 728347 "FEVALAB-" 728352 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-329 726392 727182 727385 "FDIV" 727698 NIL FDIV (NIL T T T T) -8 NIL NIL) (-328 723458 724173 724288 "FDIVCAT" 725856 NIL FDIVCAT (NIL T T T T) -9 NIL 726293) (-327 723220 723247 723417 "FDIVCAT-" 723422 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-326 722440 722527 722804 "FDIV2" 723127 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-325 721126 721385 721674 "FCPAK1" 722171 T FCPAK1 (NIL) -7 NIL NIL) (-324 720254 720626 720767 "FCOMP" 721017 NIL FCOMP (NIL T) -8 NIL NIL) (-323 703889 707303 710864 "FC" 716713 T FC (NIL) -8 NIL NIL) (-322 696542 700523 700563 "FAXF" 702365 NIL FAXF (NIL T) -9 NIL 703057) (-321 693821 694476 695301 "FAXF-" 695766 NIL FAXF- (NIL T T) -8 NIL NIL) (-320 688921 693197 693373 "FARRAY" 693678 NIL FARRAY (NIL T) -8 NIL NIL) (-319 684328 686360 686413 "FAMR" 687436 NIL FAMR (NIL T T) -9 NIL 687896) (-318 683218 683520 683955 "FAMR-" 683960 NIL FAMR- (NIL T T T) -8 NIL NIL) (-317 682414 683140 683193 "FAMONOID" 683198 NIL FAMONOID (NIL T) -8 NIL NIL) (-316 680244 680928 680981 "FAMONC" 681922 NIL FAMONC (NIL T T) -9 NIL 682308) (-315 678936 679998 680135 "FAGROUP" 680140 NIL FAGROUP (NIL T) -8 NIL NIL) (-314 676731 677050 677453 "FACUTIL" 678617 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-313 675830 676015 676237 "FACTFUNC" 676541 NIL FACTFUNC (NIL T) -7 NIL NIL) (-312 668235 675081 675293 "EXPUPXS" 675686 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-311 665718 666258 666844 "EXPRTUBE" 667669 T EXPRTUBE (NIL) -7 NIL NIL) (-310 661912 662504 663241 "EXPRODE" 665057 NIL EXPRODE (NIL T T) -7 NIL NIL) (-309 647286 660567 660995 "EXPR" 661516 NIL EXPR (NIL T) -8 NIL NIL) (-308 641693 642280 643093 "EXPR2UPS" 646584 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-307 641329 641386 641493 "EXPR2" 641630 NIL EXPR2 (NIL T T) -7 NIL NIL) (-306 632736 640461 640758 "EXPEXPAN" 641166 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-305 632563 632693 632722 "EXIT" 632727 T EXIT (NIL) -8 NIL NIL) (-304 632070 632287 632378 "EXITAST" 632492 T EXITAST (NIL) -8 NIL NIL) (-303 631697 631759 631872 "EVALCYC" 632002 NIL EVALCYC (NIL T) -7 NIL NIL) (-302 631238 631356 631397 "EVALAB" 631567 NIL EVALAB (NIL T) -9 NIL 631671) (-301 630719 630841 631062 "EVALAB-" 631067 NIL EVALAB- (NIL T T) -8 NIL NIL) (-300 628222 629490 629518 "EUCDOM" 630073 T EUCDOM (NIL) -9 NIL 630423) (-299 626627 627069 627659 "EUCDOM-" 627664 NIL EUCDOM- (NIL T) -8 NIL NIL) (-298 614167 616925 619675 "ESTOOLS" 623897 T ESTOOLS (NIL) -7 NIL NIL) (-297 613799 613856 613965 "ESTOOLS2" 614104 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-296 613550 613592 613672 "ESTOOLS1" 613751 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-295 607475 609203 609231 "ES" 611999 T ES (NIL) -9 NIL 613408) (-294 602422 603709 605526 "ES-" 605690 NIL ES- (NIL T) -8 NIL NIL) (-293 598797 599557 600337 "ESCONT" 601662 T ESCONT (NIL) -7 NIL NIL) (-292 598542 598574 598656 "ESCONT1" 598759 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-291 598217 598267 598367 "ES2" 598486 NIL ES2 (NIL T T) -7 NIL NIL) (-290 597847 597905 598014 "ES1" 598153 NIL ES1 (NIL T T) -7 NIL NIL) (-289 597063 597192 597368 "ERROR" 597691 T ERROR (NIL) -7 NIL NIL) (-288 590566 596922 597013 "EQTBL" 597018 NIL EQTBL (NIL T T) -8 NIL NIL) (-287 583123 585880 587329 "EQ" 589150 NIL -3907 (NIL T) -8 NIL NIL) (-286 582755 582812 582921 "EQ2" 583060 NIL EQ2 (NIL T T) -7 NIL NIL) (-285 578047 579093 580186 "EP" 581694 NIL EP (NIL T) -7 NIL NIL) (-284 576629 576930 577247 "ENV" 577750 T ENV (NIL) -8 NIL NIL) (-283 575828 576348 576376 "ENTIRER" 576381 T ENTIRER (NIL) -9 NIL 576427) (-282 572330 573783 574153 "EMR" 575627 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-281 571474 571659 571713 "ELTAGG" 572093 NIL ELTAGG (NIL T T) -9 NIL 572304) (-280 571193 571255 571396 "ELTAGG-" 571401 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-279 570982 571011 571065 "ELTAB" 571149 NIL ELTAB (NIL T T) -9 NIL NIL) (-278 570108 570254 570453 "ELFUTS" 570833 NIL ELFUTS (NIL T T) -7 NIL NIL) (-277 569850 569906 569934 "ELEMFUN" 570039 T ELEMFUN (NIL) -9 NIL NIL) (-276 569720 569741 569809 "ELEMFUN-" 569814 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-275 564611 567820 567861 "ELAGG" 568801 NIL ELAGG (NIL T) -9 NIL 569264) (-274 562896 563330 563993 "ELAGG-" 563998 NIL ELAGG- (NIL T T) -8 NIL NIL) (-273 561553 561833 562128 "ELABEXPR" 562621 T ELABEXPR (NIL) -8 NIL NIL) (-272 554419 556220 557047 "EFUPXS" 560829 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-271 547869 549670 550480 "EFULS" 553695 NIL EFULS (NIL T T T) -8 NIL NIL) (-270 545291 545649 546128 "EFSTRUC" 547501 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-269 534363 535928 537488 "EF" 543806 NIL EF (NIL T T) -7 NIL NIL) (-268 533464 533848 533997 "EAB" 534234 T EAB (NIL) -8 NIL NIL) (-267 532673 533423 533451 "E04UCFA" 533456 T E04UCFA (NIL) -8 NIL NIL) (-266 531882 532632 532660 "E04NAFA" 532665 T E04NAFA (NIL) -8 NIL NIL) (-265 531091 531841 531869 "E04MBFA" 531874 T E04MBFA (NIL) -8 NIL NIL) (-264 530300 531050 531078 "E04JAFA" 531083 T E04JAFA (NIL) -8 NIL NIL) (-263 529511 530259 530287 "E04GCFA" 530292 T E04GCFA (NIL) -8 NIL NIL) (-262 528722 529470 529498 "E04FDFA" 529503 T E04FDFA (NIL) -8 NIL NIL) (-261 527931 528681 528709 "E04DGFA" 528714 T E04DGFA (NIL) -8 NIL NIL) (-260 522109 523456 524820 "E04AGNT" 526587 T E04AGNT (NIL) -7 NIL NIL) (-259 520833 521313 521353 "DVARCAT" 521828 NIL DVARCAT (NIL T) -9 NIL 522027) (-258 520037 520249 520563 "DVARCAT-" 520568 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-257 512937 519836 519965 "DSMP" 519970 NIL DSMP (NIL T T T) -8 NIL NIL) (-256 507747 508882 509950 "DROPT" 511889 T DROPT (NIL) -8 NIL NIL) (-255 507412 507471 507569 "DROPT1" 507682 NIL DROPT1 (NIL T) -7 NIL NIL) (-254 502527 503653 504790 "DROPT0" 506295 T DROPT0 (NIL) -7 NIL NIL) (-253 500872 501197 501583 "DRAWPT" 502161 T DRAWPT (NIL) -7 NIL NIL) (-252 495459 496382 497461 "DRAW" 499846 NIL DRAW (NIL T) -7 NIL NIL) (-251 495092 495145 495263 "DRAWHACK" 495400 NIL DRAWHACK (NIL T) -7 NIL NIL) (-250 493823 494092 494383 "DRAWCX" 494821 T DRAWCX (NIL) -7 NIL NIL) (-249 493339 493407 493558 "DRAWCURV" 493749 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-248 483810 485769 487884 "DRAWCFUN" 491244 T DRAWCFUN (NIL) -7 NIL NIL) (-247 480623 482505 482546 "DQAGG" 483175 NIL DQAGG (NIL T) -9 NIL 483448) (-246 469142 475839 475922 "DPOLCAT" 477774 NIL DPOLCAT (NIL T T T T) -9 NIL 478319) (-245 463981 465327 467285 "DPOLCAT-" 467290 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-244 457136 463842 463940 "DPMO" 463945 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-243 450194 456916 457083 "DPMM" 457088 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-242 449614 449817 449931 "DOMAIN" 450100 T DOMAIN (NIL) -8 NIL NIL) (-241 443365 449249 449401 "DMP" 449515 NIL DMP (NIL NIL T) -8 NIL NIL) (-240 442965 443021 443165 "DLP" 443303 NIL DLP (NIL T) -7 NIL NIL) (-239 436609 442066 442293 "DLIST" 442770 NIL DLIST (NIL T) -8 NIL NIL) (-238 433455 435464 435505 "DLAGG" 436055 NIL DLAGG (NIL T) -9 NIL 436284) (-237 432305 432935 432963 "DIVRING" 433055 T DIVRING (NIL) -9 NIL 433138) (-236 431542 431732 432032 "DIVRING-" 432037 NIL DIVRING- (NIL T) -8 NIL NIL) (-235 429644 430001 430407 "DISPLAY" 431156 T DISPLAY (NIL) -7 NIL NIL) (-234 423586 429558 429621 "DIRPROD" 429626 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-233 422434 422637 422902 "DIRPROD2" 423379 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-232 411972 417924 417977 "DIRPCAT" 418387 NIL DIRPCAT (NIL NIL T) -9 NIL 419227) (-231 409298 409940 410821 "DIRPCAT-" 411158 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-230 408585 408745 408931 "DIOSP" 409132 T DIOSP (NIL) -7 NIL NIL) (-229 405287 407497 407538 "DIOPS" 407972 NIL DIOPS (NIL T) -9 NIL 408201) (-228 404836 404950 405141 "DIOPS-" 405146 NIL DIOPS- (NIL T T) -8 NIL NIL) (-227 403748 404342 404370 "DIFRING" 404557 T DIFRING (NIL) -9 NIL 404667) (-226 403394 403471 403623 "DIFRING-" 403628 NIL DIFRING- (NIL T) -8 NIL NIL) (-225 401219 402457 402498 "DIFEXT" 402861 NIL DIFEXT (NIL T) -9 NIL 403155) (-224 399504 399932 400598 "DIFEXT-" 400603 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-223 396826 399036 399077 "DIAGG" 399082 NIL DIAGG (NIL T) -9 NIL 399102) (-222 396210 396367 396619 "DIAGG-" 396624 NIL DIAGG- (NIL T T) -8 NIL NIL) (-221 391675 395169 395446 "DHMATRIX" 395979 NIL DHMATRIX (NIL T) -8 NIL NIL) (-220 387287 388196 389206 "DFSFUN" 390685 T DFSFUN (NIL) -7 NIL NIL) (-219 382255 386102 386444 "DFLOAT" 386965 T DFLOAT (NIL) -8 NIL NIL) (-218 380483 380764 381160 "DFINTTLS" 381963 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-217 377548 378504 378904 "DERHAM" 380149 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-216 375397 377323 377412 "DEQUEUE" 377492 NIL DEQUEUE (NIL T) -8 NIL NIL) (-215 374612 374745 374941 "DEGRED" 375259 NIL DEGRED (NIL T T) -7 NIL NIL) (-214 371007 371752 372605 "DEFINTRF" 373840 NIL DEFINTRF (NIL T) -7 NIL NIL) (-213 368534 369003 369602 "DEFINTEF" 370526 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-212 367911 368154 368269 "DEFAST" 368439 T DEFAST (NIL) -8 NIL NIL) (-211 361799 367352 367518 "DECIMAL" 367765 T DECIMAL (NIL) -8 NIL NIL) (-210 359311 359769 360275 "DDFACT" 361343 NIL DDFACT (NIL T T) -7 NIL NIL) (-209 358907 358950 359101 "DBLRESP" 359262 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-208 356617 356951 357320 "DBASE" 358665 NIL DBASE (NIL T) -8 NIL NIL) (-207 355886 356097 356243 "DATABUF" 356516 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-206 355019 355845 355873 "D03FAFA" 355878 T D03FAFA (NIL) -8 NIL NIL) (-205 354153 354978 355006 "D03EEFA" 355011 T D03EEFA (NIL) -8 NIL NIL) (-204 352103 352569 353058 "D03AGNT" 353684 T D03AGNT (NIL) -7 NIL NIL) (-203 351419 352062 352090 "D02EJFA" 352095 T D02EJFA (NIL) -8 NIL NIL) (-202 350735 351378 351406 "D02CJFA" 351411 T D02CJFA (NIL) -8 NIL NIL) (-201 350051 350694 350722 "D02BHFA" 350727 T D02BHFA (NIL) -8 NIL NIL) (-200 349367 350010 350038 "D02BBFA" 350043 T D02BBFA (NIL) -8 NIL NIL) (-199 342565 344153 345759 "D02AGNT" 347781 T D02AGNT (NIL) -7 NIL NIL) (-198 340334 340856 341402 "D01WGTS" 342039 T D01WGTS (NIL) -7 NIL NIL) (-197 339429 340293 340321 "D01TRNS" 340326 T D01TRNS (NIL) -8 NIL NIL) (-196 338524 339388 339416 "D01GBFA" 339421 T D01GBFA (NIL) -8 NIL NIL) (-195 337619 338483 338511 "D01FCFA" 338516 T D01FCFA (NIL) -8 NIL NIL) (-194 336714 337578 337606 "D01ASFA" 337611 T D01ASFA (NIL) -8 NIL NIL) (-193 335809 336673 336701 "D01AQFA" 336706 T D01AQFA (NIL) -8 NIL NIL) (-192 334904 335768 335796 "D01APFA" 335801 T D01APFA (NIL) -8 NIL NIL) (-191 333999 334863 334891 "D01ANFA" 334896 T D01ANFA (NIL) -8 NIL NIL) (-190 333094 333958 333986 "D01AMFA" 333991 T D01AMFA (NIL) -8 NIL NIL) (-189 332189 333053 333081 "D01ALFA" 333086 T D01ALFA (NIL) -8 NIL NIL) (-188 331284 332148 332176 "D01AKFA" 332181 T D01AKFA (NIL) -8 NIL NIL) (-187 330379 331243 331271 "D01AJFA" 331276 T D01AJFA (NIL) -8 NIL NIL) (-186 323676 325227 326788 "D01AGNT" 328838 T D01AGNT (NIL) -7 NIL NIL) (-185 323013 323141 323293 "CYCLOTOM" 323544 T CYCLOTOM (NIL) -7 NIL NIL) (-184 319748 320461 321188 "CYCLES" 322306 T CYCLES (NIL) -7 NIL NIL) (-183 319060 319194 319365 "CVMP" 319609 NIL CVMP (NIL T) -7 NIL NIL) (-182 316831 317089 317465 "CTRIGMNP" 318788 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-181 316342 316531 316630 "CTORCALL" 316752 T CTORCALL (NIL) -8 NIL NIL) (-180 315716 315815 315968 "CSTTOOLS" 316239 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 311515 312172 312930 "CRFP" 315028 NIL CRFP (NIL T T) -7 NIL NIL) (-178 311017 311236 311328 "CRCEAST" 311443 T CRCEAST (NIL) -8 NIL NIL) (-177 310064 310249 310477 "CRAPACK" 310821 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 309448 309549 309753 "CPMATCH" 309940 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 309173 309201 309307 "CPIMA" 309414 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 305537 306209 306927 "COORDSYS" 308508 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 304921 305050 305200 "CONTOUR" 305407 T CONTOUR (NIL) -8 NIL NIL) (-172 300847 302924 303416 "CONTFRAC" 304461 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 300727 300748 300776 "CONDUIT" 300813 T CONDUIT (NIL) -9 NIL NIL) (-170 299920 300440 300468 "COMRING" 300473 T COMRING (NIL) -9 NIL 300525) (-169 299001 299278 299462 "COMPPROP" 299756 T COMPPROP (NIL) -8 NIL NIL) (-168 298662 298697 298825 "COMPLPAT" 298960 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 288721 298471 298580 "COMPLEX" 298585 NIL COMPLEX (NIL T) -8 NIL NIL) (-166 288357 288414 288521 "COMPLEX2" 288658 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-165 288075 288110 288208 "COMPFACT" 288316 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 272473 282689 282729 "COMPCAT" 283733 NIL COMPCAT (NIL T) -9 NIL 285128) (-163 261988 264912 268539 "COMPCAT-" 268895 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261717 261745 261848 "COMMUPC" 261954 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 261512 261545 261604 "COMMONOP" 261678 T COMMONOP (NIL) -7 NIL NIL) (-160 261095 261263 261350 "COMM" 261445 T COMM (NIL) -8 NIL NIL) (-159 260699 260899 260974 "COMMAAST" 261040 T COMMAAST (NIL) -8 NIL NIL) (-158 259948 260142 260170 "COMBOPC" 260508 T COMBOPC (NIL) -9 NIL 260683) (-157 258844 259054 259296 "COMBINAT" 259738 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 255042 255615 256255 "COMBF" 258266 NIL COMBF (NIL T T) -7 NIL NIL) (-155 253828 254158 254393 "COLOR" 254827 T COLOR (NIL) -8 NIL NIL) (-154 253331 253549 253641 "COLONAST" 253756 T COLONAST (NIL) -8 NIL NIL) (-153 252971 253018 253143 "CMPLXRT" 253278 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 252446 252671 252770 "CLLCTAST" 252892 T CLLCTAST (NIL) -8 NIL NIL) (-151 247948 248976 250056 "CLIP" 251386 T CLIP (NIL) -7 NIL NIL) (-150 246330 247054 247293 "CLIF" 247775 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242552 244476 244517 "CLAGG" 245446 NIL CLAGG (NIL T) -9 NIL 245982) (-148 240974 241431 242014 "CLAGG-" 242019 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240518 240603 240743 "CINTSLPE" 240883 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 238019 238490 239038 "CHVAR" 240046 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 237282 237802 237830 "CHARZ" 237835 T CHARZ (NIL) -9 NIL 237850) (-144 237036 237076 237154 "CHARPOL" 237236 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 236183 236736 236764 "CHARNZ" 236811 T CHARNZ (NIL) -9 NIL 236867) (-142 234208 234873 235208 "CHAR" 235868 T CHAR (NIL) -8 NIL NIL) (-141 233934 233995 234023 "CFCAT" 234134 T CFCAT (NIL) -9 NIL NIL) (-140 233179 233290 233472 "CDEN" 233818 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 229171 232332 232612 "CCLASS" 232919 T CCLASS (NIL) -8 NIL NIL) (-138 229090 229116 229151 "CATEGORY" 229156 T -10 (NIL) -8 NIL NIL) (-137 228564 228790 228889 "CATAST" 229011 T CATAST (NIL) -8 NIL NIL) (-136 228067 228285 228377 "CASEAST" 228492 T CASEAST (NIL) -8 NIL NIL) (-135 223119 224096 224849 "CARTEN" 227370 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222227 222375 222596 "CARTEN2" 222966 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220569 221377 221634 "CARD" 221990 T CARD (NIL) -8 NIL NIL) (-132 220172 220373 220448 "CAPSLAST" 220514 T CAPSLAST (NIL) -8 NIL NIL) (-131 219544 219872 219900 "CACHSET" 220032 T CACHSET (NIL) -9 NIL 220109) (-130 219040 219336 219364 "CABMON" 219414 T CABMON (NIL) -9 NIL 219470) (-129 218209 218587 218730 "BYTE" 218917 T BYTE (NIL) -8 NIL NIL) (-128 214157 218156 218190 "BYTEARY" 218195 T BYTEARY (NIL) -8 NIL NIL) (-127 211714 213849 213956 "BTREE" 214083 NIL BTREE (NIL T) -8 NIL NIL) (-126 209212 211362 211484 "BTOURN" 211624 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206630 208683 208724 "BTCAT" 208792 NIL BTCAT (NIL T) -9 NIL 208869) (-124 206297 206377 206526 "BTCAT-" 206531 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 201589 205440 205468 "BTAGG" 205690 T BTAGG (NIL) -9 NIL 205851) (-122 201079 201204 201410 "BTAGG-" 201415 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 198123 200357 200572 "BSTREE" 200896 NIL BSTREE (NIL T) -8 NIL NIL) (-120 197261 197387 197571 "BRILL" 197979 NIL BRILL (NIL T) -7 NIL NIL) (-119 193962 195989 196030 "BRAGG" 196679 NIL BRAGG (NIL T) -9 NIL 196936) (-118 192491 192897 193452 "BRAGG-" 193457 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185757 191837 192021 "BPADICRT" 192339 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 184107 185694 185739 "BPADIC" 185744 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183805 183835 183949 "BOUNDZRO" 184071 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 179320 180411 181278 "BOP" 182958 T BOP (NIL) -8 NIL NIL) (-113 176941 177385 177905 "BOP1" 178833 NIL BOP1 (NIL T) -7 NIL NIL) (-112 175679 176365 176558 "BOOLEAN" 176768 T BOOLEAN (NIL) -8 NIL NIL) (-111 175041 175419 175473 "BMODULE" 175478 NIL BMODULE (NIL T T) -9 NIL 175543) (-110 170871 174839 174912 "BITS" 174988 T BITS (NIL) -8 NIL NIL) (-109 169968 170403 170555 "BINFILE" 170739 T BINFILE (NIL) -8 NIL NIL) (-108 169380 169502 169644 "BINDING" 169846 T BINDING (NIL) -8 NIL NIL) (-107 163272 168824 168989 "BINARY" 169235 T BINARY (NIL) -8 NIL NIL) (-106 161099 162527 162568 "BGAGG" 162828 NIL BGAGG (NIL T) -9 NIL 162965) (-105 160930 160962 161053 "BGAGG-" 161058 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 160028 160314 160519 "BFUNCT" 160745 T BFUNCT (NIL) -8 NIL NIL) (-103 158718 158896 159184 "BEZOUT" 159852 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155235 157570 157900 "BBTREE" 158421 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154969 155022 155050 "BASTYPE" 155169 T BASTYPE (NIL) -9 NIL NIL) (-100 154821 154850 154923 "BASTYPE-" 154928 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154259 154335 154485 "BALFACT" 154732 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 153142 153674 153860 "AUTOMOR" 154104 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152868 152873 152899 "ATTREG" 152904 T ATTREG (NIL) -9 NIL NIL) (-96 151147 151565 151917 "ATTRBUT" 152534 T ATTRBUT (NIL) -8 NIL NIL) (-95 150782 150975 151041 "ATTRAST" 151099 T ATTRAST (NIL) -8 NIL NIL) (-94 150318 150431 150457 "ATRIG" 150658 T ATRIG (NIL) -9 NIL NIL) (-93 150127 150168 150255 "ATRIG-" 150260 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149749 149909 149935 "ASTCAT" 149993 T ASTCAT (NIL) -9 NIL 150056) (-91 149476 149535 149654 "ASTCAT-" 149659 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147673 149252 149340 "ASTACK" 149419 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146178 146475 146840 "ASSOCEQ" 147355 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145210 145837 145961 "ASP9" 146085 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144974 145158 145197 "ASP8" 145202 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143843 144579 144721 "ASP80" 144863 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142742 143478 143610 "ASP7" 143742 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141696 142419 142537 "ASP78" 142655 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140665 141376 141493 "ASP77" 141610 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139577 140303 140434 "ASP74" 140565 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138477 139212 139344 "ASP73" 139476 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137432 138154 138272 "ASP6" 138390 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136380 137109 137227 "ASP55" 137345 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135330 136054 136173 "ASP50" 136292 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134418 135031 135141 "ASP4" 135251 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133506 134119 134229 "ASP49" 134339 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132291 133045 133213 "ASP42" 133395 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131068 131824 131994 "ASP41" 132178 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130018 130745 130863 "ASP35" 130981 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129783 129966 130005 "ASP34" 130010 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129520 129587 129663 "ASP33" 129738 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128415 129155 129287 "ASP31" 129419 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128180 128363 128402 "ASP30" 128407 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127915 127984 128060 "ASP29" 128135 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127680 127863 127902 "ASP28" 127907 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127445 127628 127667 "ASP27" 127672 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126529 127143 127254 "ASP24" 127365 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125445 126170 126300 "ASP20" 126430 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124533 125146 125256 "ASP1" 125366 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123477 124207 124326 "ASP19" 124445 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123214 123281 123357 "ASP12" 123432 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122066 122813 122957 "ASP10" 123101 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119965 121910 122001 "ARRAY2" 122006 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115781 119613 119727 "ARRAY1" 119882 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114813 114986 115207 "ARRAY12" 115604 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109172 111043 111118 "ARR2CAT" 113748 NIL ARR2CAT (NIL T T T) -9 NIL 114506) (-55 106606 107350 108304 "ARR2CAT-" 108309 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105354 105506 105812 "APPRULE" 106442 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 105005 105053 105172 "APPLYORE" 105300 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103979 104270 104465 "ANY" 104828 T ANY (NIL) -8 NIL NIL) (-51 103257 103380 103537 "ANY1" 103853 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100822 101694 102021 "ANTISYM" 102981 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100337 100526 100623 "ANON" 100743 T ANON (NIL) -8 NIL NIL) (-48 94471 98878 99331 "AN" 99902 T AN (NIL) -8 NIL NIL) (-47 90852 92206 92257 "AMR" 93005 NIL AMR (NIL T T) -9 NIL 93605) (-46 89964 90185 90548 "AMR-" 90553 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74514 89881 89942 "ALIST" 89947 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71351 74108 74277 "ALGSC" 74432 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67907 68461 69068 "ALGPKG" 70791 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67184 67285 67469 "ALGMFACT" 67793 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62923 63608 64263 "ALGMANIP" 66707 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54329 62549 62699 "ALGFF" 62856 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53525 53656 53835 "ALGFACT" 54187 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52555 53121 53159 "ALGEBRA" 53219 NIL ALGEBRA (NIL T) -9 NIL 53278) (-37 52273 52332 52464 "ALGEBRA-" 52469 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34533 50276 50328 "ALAGG" 50464 NIL ALAGG (NIL T T) -9 NIL 50625) (-35 34069 34182 34208 "AHYP" 34409 T AHYP (NIL) -9 NIL NIL) (-34 33000 33248 33274 "AGG" 33773 T AGG (NIL) -9 NIL 34052) (-33 32434 32596 32810 "AGG-" 32815 NIL AGG- (NIL T) -8 NIL NIL) (-32 30111 30533 30951 "AF" 32076 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29836 29926 "ADDAST" 30039 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-4300 (*1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1018)))))
+(-13 (-1018) (-111 |t#1| |t#1|) (-10 -8 (-15 -4300 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T))
+((-2887 (((-112) $ $) 60)) (-3522 (((-112) $) NIL)) (-4277 (((-618 |#1|) $) 45)) (-4289 (($ $ (-747)) 39)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ (-747)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-3879 (($) NIL T CONST)) (-4282 (($ $ $) 63) (($ $ (-795 |#1|)) 49) (($ $ |#1|) 53)) (-3491 (((-3 (-795 |#1|) "failed") $) NIL)) (-3490 (((-795 |#1|) $) NIL)) (-4302 (($ $) 32)) (-3804 (((-3 $ "failed") $) NIL)) (-4293 (((-112) $) NIL)) (-4292 (($ $) NIL)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-4281 (($ (-795 |#1|) |#2|) 31)) (-4279 (($ $) 33)) (-4284 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) 12)) (-4297 (((-795 |#1|) $) NIL)) (-4298 (((-795 |#1|) $) 34)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-4283 (($ $ $) 62) (($ $ (-795 |#1|)) 51) (($ $ |#1|) 55)) (-1860 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3215 (((-795 |#1|) $) 28)) (-3508 ((|#2| $) 30)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4290 (((-747) $) 36)) (-4295 (((-112) $) 40)) (-4294 ((|#2| $) NIL)) (-4300 (((-835) $) NIL) (($ (-795 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-535)) NIL)) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-795 |#1|)) NIL)) (-4296 ((|#2| $ $) 65) ((|#2| $ (-795 |#1|)) NIL)) (-3444 (((-747)) NIL)) (-2979 (($) 13 T CONST)) (-2985 (($) 15 T CONST)) (-2984 (((-618 (-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3375 (((-112) $ $) 38)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 22)) (** (($ $ (-747)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-795 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1240 |#1| |#2|) (-13 (-377 |#2| (-795 |#1|)) (-1247 |#1| |#2|)) (-823) (-1018)) (T -1240))
+NIL
+(-13 (-377 |#2| (-795 |#1|)) (-1247 |#1| |#2|))
+((-4285 ((|#3| |#3| (-747)) 23)) (-4286 ((|#3| |#3| (-747)) 27)) (-4270 ((|#3| |#3| |#3| (-747)) 28)))
+(((-1241 |#1| |#2| |#3|) (-10 -7 (-15 -4286 (|#3| |#3| (-747))) (-15 -4285 (|#3| |#3| (-747))) (-15 -4270 (|#3| |#3| |#3| (-747)))) (-13 (-1018) (-694 (-400 (-535)))) (-823) (-1247 |#2| |#1|)) (T -1241))
+((-4270 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-535))))) (-4 *5 (-823)) (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1247 *5 *4)))) (-4285 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-535))))) (-4 *5 (-823)) (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1247 *5 *4)))) (-4286 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-535))))) (-4 *5 (-823)) (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1247 *5 *4)))))
+(-10 -7 (-15 -4286 (|#3| |#3| (-747))) (-15 -4285 (|#3| |#3| (-747))) (-15 -4270 (|#3| |#3| |#3| (-747))))
+((-4275 (((-112) $) 15)) (-4276 (((-112) $) 14)) (-4271 (($ $) 19) (($ $ (-747)) 20)))
+(((-1242 |#1| |#2|) (-10 -8 (-15 -4271 (|#1| |#1| (-747))) (-15 -4271 (|#1| |#1|)) (-15 -4275 ((-112) |#1|)) (-15 -4276 ((-112) |#1|))) (-1243 |#2|) (-356)) (T -1242))
+NIL
+(-10 -8 (-15 -4271 (|#1| |#1| (-747))) (-15 -4271 (|#1| |#1|)) (-15 -4275 ((-112) |#1|)) (-15 -4276 ((-112) |#1|)))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-2172 (((-2 (|:| -1887 $) (|:| -4323 $) (|:| |associate| $)) $) 39)) (-2171 (($ $) 38)) (-2169 (((-112) $) 36)) (-4275 (((-112) $) 91)) (-4272 (((-747)) 87)) (-1363 (((-3 $ "failed") $ $) 19)) (-4117 (($ $) 70)) (-4312 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3879 (($) 17 T CONST)) (-3491 (((-3 |#1| "failed") $) 98)) (-3490 ((|#1| $) 97)) (-2883 (($ $ $) 53)) (-3804 (((-3 $ "failed") $) 32)) (-2882 (($ $ $) 54)) (-3062 (((-2 (|:| -4296 (-618 $)) (|:| -2492 $)) (-618 $)) 49)) (-1881 (($ $ (-747)) 84 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4069 (((-112) $) 68)) (-4114 (((-808 (-890)) $) 81 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2493 (((-112) $) 30)) (-1697 (((-3 (-618 $) #1="failed") (-618 $) $) 50)) (-2008 (($ $ $) 44) (($ (-618 $)) 43)) (-3576 (((-1124) $) 9)) (-2725 (($ $) 67)) (-4274 (((-112) $) 90)) (-3577 (((-1086) $) 10)) (-3029 (((-1136 $) (-1136 $) (-1136 $)) 42)) (-3478 (($ $ $) 46) (($ (-618 $)) 45)) (-4075 (((-398 $) $) 71)) (-4273 (((-808 (-890))) 88)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2492 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3803 (((-3 $ "failed") $ $) 40)) (-3061 (((-3 (-618 $) "failed") (-618 $) $) 48)) (-1699 (((-747) $) 56)) (-3202 (((-2 (|:| -2091 $) (|:| -3223 $)) $ $) 55)) (-1882 (((-3 (-747) "failed") $ $) 82 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4254 (((-133)) 96)) (-4290 (((-808 (-890)) $) 89)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ $) 41) (($ (-400 (-535))) 63) (($ |#1|) 99)) (-3023 (((-3 $ "failed") $) 80 (-3874 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3444 (((-747)) 28)) (-2170 (((-112) $ $) 37)) (-4276 (((-112) $) 92)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-4271 (($ $) 86 (|has| |#1| (-361))) (($ $ (-747)) 85 (|has| |#1| (-361)))) (-3375 (((-112) $ $) 6)) (-4291 (($ $ $) 62) (($ $ |#1|) 95)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31) (($ $ (-535)) 66)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ $ (-400 (-535))) 65) (($ (-400 (-535)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
+(((-1243 |#1|) (-138) (-356)) (T -1243))
+((-4276 (*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4275 (*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-808 (-890))))) (-4273 (*1 *2) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-808 (-890))))) (-4272 (*1 *2) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-747)))) (-4271 (*1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-356)) (-4 *2 (-361)))) (-4271 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-4 *3 (-361)))))
+(-13 (-356) (-1009 |t#1|) (-1232 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-395)) |%noBranch|) (-15 -4276 ((-112) $)) (-15 -4275 ((-112) $)) (-15 -4274 ((-112) $)) (-15 -4290 ((-808 (-890)) $)) (-15 -4273 ((-808 (-890)))) (-15 -4272 ((-747))) (IF (|has| |t#1| (-361)) (PROGN (-6 (-395)) (-15 -4271 ($ $)) (-15 -4271 ($ $ (-747)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-535))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3874 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-835)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) -3874 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-444) . T) ((-542) . T) ((-624 #1#) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) . T) ((-694 |#1|) . T) ((-694 $) . T) ((-703) . T) ((-892) . T) ((-1009 |#1|) . T) ((-1024 #1#) . T) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1183) . T) ((-1232 |#1|) . T))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-4277 (((-618 |#1|) $) 38)) (-1363 (((-3 $ "failed") $ $) 19)) (-4278 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-747)) 40 (|has| |#2| (-170)))) (-3879 (($) 17 T CONST)) (-4282 (($ $ |#1|) 52) (($ $ (-795 |#1|)) 51) (($ $ $) 50)) (-3491 (((-3 (-795 |#1|) "failed") $) 62)) (-3490 (((-795 |#1|) $) 61)) (-3804 (((-3 $ "failed") $) 32)) (-4293 (((-112) $) 43)) (-4292 (($ $) 42)) (-2493 (((-112) $) 30)) (-4280 (((-112) $) 48)) (-4281 (($ (-795 |#1|) |#2|) 49)) (-4279 (($ $) 47)) (-4284 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) 58)) (-4297 (((-795 |#1|) $) 59)) (-4301 (($ (-1 |#2| |#2|) $) 39)) (-4283 (($ $ |#1|) 55) (($ $ (-795 |#1|)) 54) (($ $ $) 53)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4295 (((-112) $) 45)) (-4294 ((|#2| $) 44)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#2|) 66) (($ (-795 |#1|)) 63) (($ |#1|) 46)) (-4296 ((|#2| $ (-795 |#1|)) 57) ((|#2| $ $) 56)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
+(((-1244 |#1| |#2|) (-138) (-823) (-1018)) (T -1244))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-795 *3)))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-2 (|:| |k| (-795 *3)) (|:| |c| *4))))) (-4296 (*1 *2 *1 *3) (-12 (-5 *3 (-795 *4)) (-4 *1 (-1244 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1018)))) (-4296 (*1 *2 *1 *1) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) (-4283 (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4283 (*1 *1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-4283 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4282 (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4282 (*1 *1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-4282 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4281 (*1 *1 *2 *3) (-12 (-5 *2 (-795 *4)) (-4 *4 (-823)) (-4 *1 (-1244 *4 *3)) (-4 *3 (-1018)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) (-4279 (*1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4300 (*1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) (-4292 (*1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-4278 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)) (-4 *3 (-170)))) (-4278 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-4 *4 (-170)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-4277 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-618 *3)))))
+(-13 (-1018) (-1239 |t#2|) (-1009 (-795 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4297 ((-795 |t#1|) $)) (-15 -4284 ((-2 (|:| |k| (-795 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4296 (|t#2| $ (-795 |t#1|))) (-15 -4296 (|t#2| $ $)) (-15 -4283 ($ $ |t#1|)) (-15 -4283 ($ $ (-795 |t#1|))) (-15 -4283 ($ $ $)) (-15 -4282 ($ $ |t#1|)) (-15 -4282 ($ $ (-795 |t#1|))) (-15 -4282 ($ $ $)) (-15 -4281 ($ (-795 |t#1|) |t#2|)) (-15 -4280 ((-112) $)) (-15 -4279 ($ $)) (-15 -4300 ($ |t#1|)) (-15 -4295 ((-112) $)) (-15 -4294 (|t#2| $)) (-15 -4293 ((-112) $)) (-15 -4292 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -4278 ($ $ $)) (-15 -4278 ($ $ (-747)))) |%noBranch|) (-15 -4301 ($ (-1 |t#2| |t#2|) $)) (-15 -4277 ((-618 |t#1|) $)) (IF (|has| |t#2| (-6 -4329)) (-6 -4329) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#2|) . T) ((-624 $) . T) ((-694 |#2|) |has| |#2| (-170)) ((-703) . T) ((-1009 (-795 |#1|)) . T) ((-1024 |#2|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1239 |#2|) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4277 (((-618 |#1|) $) 86)) (-4289 (($ $ (-747)) 89)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-747)) NIL (|has| |#2| (-170)))) (-3879 (($) NIL T CONST)) (-4282 (($ $ |#1|) NIL) (($ $ (-795 |#1|)) NIL) (($ $ $) NIL)) (-3491 (((-3 (-795 |#1|) #1="failed") $) NIL) (((-3 (-864 |#1|) #1#) $) NIL)) (-3490 (((-795 |#1|) $) NIL) (((-864 |#1|) $) NIL)) (-4302 (($ $) 88)) (-3804 (((-3 $ "failed") $) NIL)) (-4293 (((-112) $) 77)) (-4292 (($ $) 81)) (-4287 (($ $ $ (-747)) 90)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-4281 (($ (-795 |#1|) |#2|) NIL) (($ (-864 |#1|) |#2|) 26)) (-4279 (($ $) 103)) (-4284 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4297 (((-795 |#1|) $) NIL)) (-4298 (((-795 |#1|) $) NIL)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-4283 (($ $ |#1|) NIL) (($ $ (-795 |#1|)) NIL) (($ $ $) NIL)) (-4285 (($ $ (-747)) 97 (|has| |#2| (-694 (-400 (-535)))))) (-1860 (((-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3215 (((-864 |#1|) $) 70)) (-3508 ((|#2| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4286 (($ $ (-747)) 94 (|has| |#2| (-694 (-400 (-535)))))) (-4290 (((-747) $) 87)) (-4295 (((-112) $) 71)) (-4294 ((|#2| $) 75)) (-4300 (((-835) $) 57) (($ (-535)) NIL) (($ |#2|) 51) (($ (-795 |#1|)) NIL) (($ |#1|) 59) (($ (-864 |#1|)) NIL) (($ (-640 |#1| |#2|)) 43) (((-1240 |#1| |#2|) $) 64) (((-1249 |#1| |#2|) $) 69)) (-4160 (((-618 |#2|) $) NIL)) (-4023 ((|#2| $ (-864 |#1|)) NIL)) (-4296 ((|#2| $ (-795 |#1|)) NIL) ((|#2| $ $) NIL)) (-3444 (((-747)) NIL)) (-2979 (($) 21 T CONST)) (-2985 (($) 25 T CONST)) (-2984 (((-618 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4288 (((-3 (-640 |#1| |#2|) "failed") $) 102)) (-3375 (((-112) $ $) 65)) (-4180 (($ $) 96) (($ $ $) 95)) (-4182 (($ $ $) 20)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-864 |#1|)) NIL)))
+(((-1245 |#1| |#2|) (-13 (-1247 |#1| |#2|) (-377 |#2| (-864 |#1|)) (-10 -8 (-15 -4300 ($ (-640 |#1| |#2|))) (-15 -4300 ((-1240 |#1| |#2|) $)) (-15 -4300 ((-1249 |#1| |#2|) $)) (-15 -4288 ((-3 (-640 |#1| |#2|) "failed") $)) (-15 -4287 ($ $ $ (-747))) (IF (|has| |#2| (-694 (-400 (-535)))) (PROGN (-15 -4286 ($ $ (-747))) (-15 -4285 ($ $ (-747)))) |%noBranch|))) (-823) (-170)) (T -1245))
+((-4300 (*1 *1 *2) (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *1 (-1245 *3 *4)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-4288 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-4287 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-4286 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *4 (-694 (-400 (-535)))) (-4 *3 (-823)) (-4 *4 (-170)))) (-4285 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *4 (-694 (-400 (-535)))) (-4 *3 (-823)) (-4 *4 (-170)))))
+(-13 (-1247 |#1| |#2|) (-377 |#2| (-864 |#1|)) (-10 -8 (-15 -4300 ($ (-640 |#1| |#2|))) (-15 -4300 ((-1240 |#1| |#2|) $)) (-15 -4300 ((-1249 |#1| |#2|) $)) (-15 -4288 ((-3 (-640 |#1| |#2|) "failed") $)) (-15 -4287 ($ $ $ (-747))) (IF (|has| |#2| (-694 (-400 (-535)))) (PROGN (-15 -4286 ($ $ (-747))) (-15 -4285 ($ $ (-747)))) |%noBranch|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-4277 (((-618 (-1142)) $) NIL)) (-4305 (($ (-1240 (-1142) |#1|)) NIL)) (-4289 (($ $ (-747)) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-747)) NIL (|has| |#1| (-170)))) (-3879 (($) NIL T CONST)) (-4282 (($ $ (-1142)) NIL) (($ $ (-795 (-1142))) NIL) (($ $ $) NIL)) (-3491 (((-3 (-795 (-1142)) "failed") $) NIL)) (-3490 (((-795 (-1142)) $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-4293 (((-112) $) NIL)) (-4292 (($ $) NIL)) (-2493 (((-112) $) NIL)) (-4280 (((-112) $) NIL)) (-4281 (($ (-795 (-1142)) |#1|) NIL)) (-4279 (($ $) NIL)) (-4284 (((-2 (|:| |k| (-795 (-1142))) (|:| |c| |#1|)) $) NIL)) (-4297 (((-795 (-1142)) $) NIL)) (-4298 (((-795 (-1142)) $) NIL)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-4283 (($ $ (-1142)) NIL) (($ $ (-795 (-1142))) NIL) (($ $ $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4306 (((-1240 (-1142) |#1|) $) NIL)) (-4290 (((-747) $) NIL)) (-4295 (((-112) $) NIL)) (-4294 ((|#1| $) NIL)) (-4300 (((-835) $) NIL) (($ (-535)) NIL) (($ |#1|) NIL) (($ (-795 (-1142))) NIL) (($ (-1142)) NIL)) (-4296 ((|#1| $ (-795 (-1142))) NIL) ((|#1| $ $) NIL)) (-3444 (((-747)) NIL)) (-2979 (($) NIL T CONST)) (-4304 (((-618 (-2 (|:| |k| (-1142)) (|:| |c| $))) $) NIL)) (-2985 (($) NIL T CONST)) (-3375 (((-112) $ $) NIL)) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-747)) NIL)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1142) $) NIL)))
+(((-1246 |#1|) (-13 (-1247 (-1142) |#1|) (-10 -8 (-15 -4306 ((-1240 (-1142) |#1|) $)) (-15 -4305 ($ (-1240 (-1142) |#1|))) (-15 -4304 ((-618 (-2 (|:| |k| (-1142)) (|:| |c| $))) $)))) (-1018)) (T -1246))
+((-4306 (*1 *2 *1) (-12 (-5 *2 (-1240 (-1142) *3)) (-5 *1 (-1246 *3)) (-4 *3 (-1018)))) (-4305 (*1 *1 *2) (-12 (-5 *2 (-1240 (-1142) *3)) (-4 *3 (-1018)) (-5 *1 (-1246 *3)))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |k| (-1142)) (|:| |c| (-1246 *3))))) (-5 *1 (-1246 *3)) (-4 *3 (-1018)))))
+(-13 (-1247 #1=(-1142) |#1|) (-10 -8 (-15 -4306 ((-1240 #1# |#1|) $)) (-15 -4305 ($ (-1240 #1# |#1|))) (-15 -4304 ((-618 (-2 (|:| |k| #1#) (|:| |c| $))) $))))
+((-2887 (((-112) $ $) 7)) (-3522 (((-112) $) 16)) (-4277 (((-618 |#1|) $) 38)) (-4289 (($ $ (-747)) 71)) (-1363 (((-3 $ "failed") $ $) 19)) (-4278 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-747)) 40 (|has| |#2| (-170)))) (-3879 (($) 17 T CONST)) (-4282 (($ $ |#1|) 52) (($ $ (-795 |#1|)) 51) (($ $ $) 50)) (-3491 (((-3 (-795 |#1|) "failed") $) 62)) (-3490 (((-795 |#1|) $) 61)) (-3804 (((-3 $ "failed") $) 32)) (-4293 (((-112) $) 43)) (-4292 (($ $) 42)) (-2493 (((-112) $) 30)) (-4280 (((-112) $) 48)) (-4281 (($ (-795 |#1|) |#2|) 49)) (-4279 (($ $) 47)) (-4284 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) 58)) (-4297 (((-795 |#1|) $) 59)) (-4298 (((-795 |#1|) $) 73)) (-4301 (($ (-1 |#2| |#2|) $) 39)) (-4283 (($ $ |#1|) 55) (($ $ (-795 |#1|)) 54) (($ $ $) 53)) (-3576 (((-1124) $) 9)) (-3577 (((-1086) $) 10)) (-4290 (((-747) $) 72)) (-4295 (((-112) $) 45)) (-4294 ((|#2| $) 44)) (-4300 (((-835) $) 11) (($ (-535)) 27) (($ |#2|) 66) (($ (-795 |#1|)) 63) (($ |#1|) 46)) (-4296 ((|#2| $ (-795 |#1|)) 57) ((|#2| $ $) 56)) (-3444 (((-747)) 28)) (-2979 (($) 18 T CONST)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 6)) (-4180 (($ $) 22) (($ $ $) 21)) (-4182 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-747)) 31)) (* (($ (-890) $) 13) (($ (-747) $) 15) (($ (-535) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
+(((-1247 |#1| |#2|) (-138) (-823) (-1018)) (T -1247))
+((-4298 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-795 *3)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-747)))) (-4289 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))))
+(-13 (-1244 |t#1| |t#2|) (-10 -8 (-15 -4298 ((-795 |t#1|) $)) (-15 -4290 ((-747) $)) (-15 -4289 ($ $ (-747)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-835)) . T) ((-624 |#2|) . T) ((-624 $) . T) ((-694 |#2|) |has| |#2| (-170)) ((-703) . T) ((-1009 (-795 |#1|)) . T) ((-1024 |#2|) . T) ((-1018) . T) ((-1025) . T) ((-1078) . T) ((-1067) . T) ((-1239 |#2|) . T) ((-1244 |#1| |#2|) . T))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) NIL)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3879 (($) NIL T CONST)) (-3491 (((-3 |#2| "failed") $) NIL)) (-3490 ((|#2| $) NIL)) (-4302 (($ $) NIL)) (-3804 (((-3 $ "failed") $) 36)) (-4293 (((-112) $) 30)) (-4292 (($ $) 32)) (-2493 (((-112) $) NIL)) (-2501 (((-747) $) NIL)) (-3142 (((-618 $) $) NIL)) (-4280 (((-112) $) NIL)) (-4281 (($ |#2| |#1|) NIL)) (-4297 ((|#2| $) 19)) (-4298 ((|#2| $) 16)) (-4301 (($ (-1 |#1| |#1|) $) NIL)) (-1860 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3215 ((|#2| $) NIL)) (-3508 ((|#1| $) NIL)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4295 (((-112) $) 27)) (-4294 ((|#1| $) 28)) (-4300 (((-835) $) 55) (($ (-535)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-4160 (((-618 |#1|) $) NIL)) (-4023 ((|#1| $ |#2|) NIL)) (-4296 ((|#1| $ |#2|) 24)) (-3444 (((-747)) 14)) (-2979 (($) 25 T CONST)) (-2985 (($) 11 T CONST)) (-2984 (((-618 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3375 (((-112) $ $) 26)) (-4291 (($ $ |#1|) 57 (|has| |#1| (-356)))) (-4180 (($ $) NIL) (($ $ $) NIL)) (-4182 (($ $ $) 44)) (** (($ $ (-890)) NIL) (($ $ (-747)) 46)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4299 (((-747) $) 15)))
+(((-1248 |#1| |#2|) (-13 (-1018) (-1239 |#1|) (-377 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4299 ((-747) $)) (-15 -4300 ($ |#2|)) (-15 -4298 (|#2| $)) (-15 -4297 (|#2| $)) (-15 -4302 ($ $)) (-15 -4296 (|#1| $ |#2|)) (-15 -4295 ((-112) $)) (-15 -4294 (|#1| $)) (-15 -4293 ((-112) $)) (-15 -4292 ($ $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -4291 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4329)) (-6 -4329) |%noBranch|) (IF (|has| |#1| (-6 -4333)) (-6 -4333) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|))) (-1018) (-819)) (T -1248))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))) (-4302 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-1248 *3 *4)) (-4 *4 (-819)))) (-4300 (*1 *1 *2) (-12 (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-819)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))) (-4298 (*1 *2 *1) (-12 (-4 *2 (-819)) (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)))) (-4297 (*1 *2 *1) (-12 (-4 *2 (-819)) (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)))) (-4296 (*1 *2 *1 *3) (-12 (-4 *2 (-1018)) (-5 *1 (-1248 *2 *3)) (-4 *3 (-819)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))) (-4294 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-1248 *2 *3)) (-4 *3 (-819)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))) (-4292 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))) (-4291 (*1 *1 *1 *2) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-819)))))
+(-13 (-1018) (-1239 |#1|) (-377 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4299 ((-747) $)) (-15 -4300 ($ |#2|)) (-15 -4298 (|#2| $)) (-15 -4297 (|#2| $)) (-15 -4302 ($ $)) (-15 -4296 (|#1| $ |#2|)) (-15 -4295 ((-112) $)) (-15 -4294 (|#1| $)) (-15 -4293 ((-112) $)) (-15 -4292 ($ $)) (-15 -4301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -4291 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4329)) (-6 -4329) |%noBranch|) (IF (|has| |#1| (-6 -4333)) (-6 -4333) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|)))
+((-2887 (((-112) $ $) 26)) (-3522 (((-112) $) NIL)) (-4277 (((-618 |#1|) $) 120)) (-4305 (($ (-1240 |#1| |#2|)) 44)) (-4289 (($ $ (-747)) 32)) (-1363 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-747)) 46 (|has| |#2| (-170)))) (-3879 (($) NIL T CONST)) (-4282 (($ $ |#1|) 102) (($ $ (-795 |#1|)) 103) (($ $ $) 25)) (-3491 (((-3 (-795 |#1|) "failed") $) NIL)) (-3490 (((-795 |#1|) $) NIL)) (-3804 (((-3 $ "failed") $) 110)) (-4293 (((-112) $) 105)) (-4292 (($ $) 106)) (-2493 (((-112) $) NIL)) (-4280 (((-112) $) NIL)) (-4281 (($ (-795 |#1|) |#2|) 19)) (-4279 (($ $) NIL)) (-4284 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4297 (((-795 |#1|) $) 111)) (-4298 (((-795 |#1|) $) 114)) (-4301 (($ (-1 |#2| |#2|) $) 119)) (-4283 (($ $ |#1|) 100) (($ $ (-795 |#1|)) 101) (($ $ $) 56)) (-3576 (((-1124) $) NIL)) (-3577 (((-1086) $) NIL)) (-4306 (((-1240 |#1| |#2|) $) 84)) (-4290 (((-747) $) 117)) (-4295 (((-112) $) 70)) (-4294 ((|#2| $) 28)) (-4300 (((-835) $) 63) (($ (-535)) 77) (($ |#2|) 74) (($ (-795 |#1|)) 17) (($ |#1|) 73)) (-4296 ((|#2| $ (-795 |#1|)) 104) ((|#2| $ $) 27)) (-3444 (((-747)) 108)) (-2979 (($) 14 T CONST)) (-4304 (((-618 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2985 (($) 29 T CONST)) (-3375 (((-112) $ $) 13)) (-4180 (($ $) 88) (($ $ $) 91)) (-4182 (($ $ $) 55)) (** (($ $ (-890)) NIL) (($ $ (-747)) 49)) (* (($ (-890) $) NIL) (($ (-747) $) 47) (($ (-535) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1249 |#1| |#2|) (-13 (-1247 |#1| |#2|) (-10 -8 (-15 -4306 ((-1240 |#1| |#2|) $)) (-15 -4305 ($ (-1240 |#1| |#2|))) (-15 -4304 ((-618 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-823) (-1018)) (T -1249))
+((-4306 (*1 *2 *1) (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-1249 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-4305 (*1 *1 *2) (-12 (-5 *2 (-1240 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *1 (-1249 *3 *4)))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-618 (-2 (|:| |k| *3) (|:| |c| (-1249 *3 *4))))) (-5 *1 (-1249 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))))
+(-13 (-1247 |#1| |#2|) (-10 -8 (-15 -4306 ((-1240 |#1| |#2|) $)) (-15 -4305 ($ (-1240 |#1| |#2|))) (-15 -4304 ((-618 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-4307 (((-618 (-1119 |#1|)) (-1 (-618 (-1119 |#1|)) (-618 (-1119 |#1|))) (-535)) 15) (((-1119 |#1|) (-1 (-1119 |#1|) (-1119 |#1|))) 11)))
+(((-1250 |#1|) (-10 -7 (-15 -4307 ((-1119 |#1|) (-1 (-1119 |#1|) (-1119 |#1|)))) (-15 -4307 ((-618 (-1119 |#1|)) (-1 (-618 (-1119 |#1|)) (-618 (-1119 |#1|))) (-535)))) (-1178)) (T -1250))
+((-4307 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-618 (-1119 *5)) (-618 (-1119 *5)))) (-5 *4 (-535)) (-5 *2 (-618 (-1119 *5))) (-5 *1 (-1250 *5)) (-4 *5 (-1178)))) (-4307 (*1 *2 *3) (-12 (-5 *3 (-1 (-1119 *4) (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1250 *4)) (-4 *4 (-1178)))))
+(-10 -7 (-15 -4307 ((-1119 |#1|) (-1 (-1119 |#1|) (-1119 |#1|)))) (-15 -4307 ((-618 (-1119 |#1|)) (-1 (-618 (-1119 |#1|)) (-618 (-1119 |#1|))) (-535))))
+((-4309 (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|))) 148) (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112)) 147) (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112)) 146) (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112) (-112)) 145) (((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-1015 |#1| |#2|)) 130)) (-4308 (((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|))) 72) (((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)) (-112)) 71) (((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)) (-112) (-112)) 70)) (-4312 (((-618 (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) (-1015 |#1| |#2|)) 61)) (-4310 (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|))) 115) (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112)) 114) (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112)) 113) (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112) (-112)) 112) (((-618 (-618 (-995 (-400 |#1|)))) (-1015 |#1| |#2|)) 107)) (-4311 (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|))) 120) (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112)) 119) (((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112)) 118) (((-618 (-618 (-995 (-400 |#1|)))) (-1015 |#1| |#2|)) 117)) (-4313 (((-618 (-756 |#1| (-836 |#3|))) (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) 98) (((-1136 (-995 (-400 |#1|))) (-1136 |#1|)) 89) (((-917 (-995 (-400 |#1|))) (-756 |#1| (-836 |#3|))) 96) (((-917 (-995 (-400 |#1|))) (-917 |#1|)) 94) (((-756 |#1| (-836 |#3|)) (-756 |#1| (-836 |#2|))) 33)))
+(((-1251 |#1| |#2| |#3|) (-10 -7 (-15 -4308 ((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4308 ((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)) (-112))) (-15 -4308 ((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-1015 |#1| |#2|))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112) (-112))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112) (-112))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)))) (-15 -4312 ((-618 (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) (-1015 |#1| |#2|))) (-15 -4313 ((-756 |#1| (-836 |#3|)) (-756 |#1| (-836 |#2|)))) (-15 -4313 ((-917 (-995 (-400 |#1|))) (-917 |#1|))) (-15 -4313 ((-917 (-995 (-400 |#1|))) (-756 |#1| (-836 |#3|)))) (-15 -4313 ((-1136 (-995 (-400 |#1|))) (-1136 |#1|))) (-15 -4313 ((-618 (-756 |#1| (-836 |#3|))) (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))))) (-13 (-821) (-300) (-145) (-991)) (-618 (-1142)) (-618 (-1142))) (T -1251))
+((-4313 (*1 *2 *3) (-12 (-5 *3 (-1112 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6)))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-756 *4 (-836 *6)))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-1136 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-1136 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-756 *4 (-836 *6))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *6 (-618 (-1142))) (-5 *2 (-917 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-917 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-917 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-756 *4 (-836 *5))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *5 (-618 (-1142))) (-5 *2 (-756 *4 (-836 *6))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *5 (-618 (-1142))) (-5 *2 (-618 (-1112 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) (-4311 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4311 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *5 (-618 (-1142))) (-5 *2 (-618 (-618 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) (-4310 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) (-4310 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4310 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4310 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4310 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *5 (-618 (-1142))) (-5 *2 (-618 (-618 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) (-4309 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *4)) (|:| -3558 (-618 (-917 *4)))))) (-5 *1 (-1251 *4 *5 *6)) (-5 *3 (-618 (-917 *4))) (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) (-4309 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4309 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4309 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5)))))) (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4309 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *5 (-618 (-1142))) (-5 *2 (-618 (-2 (|:| -1858 (-1136 *4)) (|:| -3558 (-618 (-917 *4)))))) (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))) (-4308 (*1 *2 *3) (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-1015 *4 *5))) (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))) (-4308 (*1 *2 *3 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))) (-4308 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142))))))
+(-10 -7 (-15 -4308 ((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4308 ((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)) (-112))) (-15 -4308 ((-618 (-1015 |#1| |#2|)) (-618 (-917 |#1|)))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-1015 |#1| |#2|))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112) (-112))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)) (-112))) (-15 -4309 ((-618 (-2 (|:| -1858 (-1136 |#1|)) (|:| -3558 (-618 (-917 |#1|))))) (-618 (-917 |#1|)))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112) (-112))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112))) (-15 -4310 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112) (-112))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)) (-112))) (-15 -4311 ((-618 (-618 (-995 (-400 |#1|)))) (-618 (-917 |#1|)))) (-15 -4312 ((-618 (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) (-1015 |#1| |#2|))) (-15 -4313 ((-756 |#1| (-836 |#3|)) (-756 |#1| (-836 |#2|)))) (-15 -4313 ((-917 (-995 (-400 |#1|))) (-917 |#1|))) (-15 -4313 ((-917 (-995 (-400 |#1|))) (-756 |#1| (-836 |#3|)))) (-15 -4313 ((-1136 (-995 (-400 |#1|))) (-1136 |#1|))) (-15 -4313 ((-618 (-756 |#1| (-836 |#3|))) (-1112 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|))))))
+((-4316 (((-3 (-1224 (-400 (-535))) "failed") (-1224 |#1|) |#1|) 21)) (-4314 (((-112) (-1224 |#1|)) 12)) (-4315 (((-3 (-1224 (-535)) "failed") (-1224 |#1|)) 16)))
+(((-1252 |#1|) (-10 -7 (-15 -4314 ((-112) (-1224 |#1|))) (-15 -4315 ((-3 (-1224 (-535)) "failed") (-1224 |#1|))) (-15 -4316 ((-3 (-1224 (-400 (-535))) "failed") (-1224 |#1|) |#1|))) (-617 (-535))) (T -1252))
+((-4316 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 (-535))) (-5 *2 (-1224 (-400 (-535)))) (-5 *1 (-1252 *4)))) (-4315 (*1 *2 *3) (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 (-535))) (-5 *2 (-1224 (-535))) (-5 *1 (-1252 *4)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-1224 *4)) (-4 *4 (-617 (-535))) (-5 *2 (-112)) (-5 *1 (-1252 *4)))))
+(-10 -7 (-15 -4314 ((-112) (-1224 |#1|))) (-15 -4315 ((-3 (-1224 (-535)) "failed") (-1224 |#1|))) (-15 -4316 ((-3 (-1224 (-400 (-535))) "failed") (-1224 |#1|) |#1|)))
+((-2887 (((-112) $ $) NIL)) (-3522 (((-112) $) 11)) (-1363 (((-3 $ "failed") $ $) NIL)) (-3454 (((-747)) 8)) (-3879 (($) NIL T CONST)) (-3804 (((-3 $ "failed") $) 43)) (-3315 (($) 36)) (-2493 (((-112) $) NIL)) (-3786 (((-3 $ "failed") $) 29)) (-2121 (((-890) $) 15)) (-3576 (((-1124) $) NIL)) (-3787 (($) 25 T CONST)) (-2483 (($ (-890)) 37)) (-3577 (((-1086) $) NIL)) (-4313 (((-535) $) 13)) (-4300 (((-835) $) 22) (($ (-535)) 19)) (-3444 (((-747)) 9)) (-2979 (($) 23 T CONST)) (-2985 (($) 24 T CONST)) (-3375 (((-112) $ $) 27)) (-4180 (($ $) 38) (($ $ $) 35)) (-4182 (($ $ $) 26)) (** (($ $ (-890)) NIL) (($ $ (-747)) 40)) (* (($ (-890) $) NIL) (($ (-747) $) NIL) (($ (-535) $) 32) (($ $ $) 31)))
+(((-1253 |#1|) (-13 (-170) (-361) (-594 (-535)) (-1117)) (-890)) (T -1253))
+NIL
+(-13 (-170) (-361) (-594 (-535)) (-1117))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3163802 3163807 3163812 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3163787 3163792 3163797 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3163772 3163777 3163782 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3163757 3163762 3163767 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1253 3162933 3163632 3163709 "ZMOD" 3163714 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1252 3162043 3162207 3162416 "ZLINDEP" 3162765 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1251 3151419 3153171 3155130 "ZDSOLVE" 3160185 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1250 3150665 3150806 3150995 "YSTREAM" 3151265 NIL YSTREAM (NIL T) -7 NIL NIL) (-1249 3148476 3149966 3150170 "XRPOLY" 3150508 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1248 3144968 3146251 3146835 "XPR" 3147939 NIL XPR (NIL T T) -8 NIL NIL) (-1247 3142817 3144151 3144206 "XPOLYC" 3144494 NIL XPOLYC (NIL T T) -9 NIL 3144607) (-1246 3140582 3142157 3142361 "XPOLY" 3142657 NIL XPOLY (NIL T) -8 NIL NIL) (-1245 3137002 3139099 3139487 "XPBWPOLY" 3140240 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1244 3132394 3133649 3133704 "XFALG" 3135876 NIL XFALG (NIL T T) -9 NIL 3136665) (-1243 3128381 3130627 3130669 "XF" 3131290 NIL XF (NIL T) -9 NIL 3131690) (-1242 3128002 3128090 3128259 "XF-" 3128264 NIL XF- (NIL T T) -8 NIL NIL) (-1241 3127135 3127239 3127444 "XEXPPKG" 3127894 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1240 3125279 3126985 3127081 "XDPOLY" 3127086 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1239 3124195 3124761 3124804 "XALG" 3124867 NIL XALG (NIL T) -9 NIL 3124987) (-1238 3117691 3122172 3122666 "WUTSET" 3123787 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1237 3115542 3116303 3116656 "WP" 3117472 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1236 3115171 3115364 3115434 "WHILEAST" 3115494 T WHILEAST (NIL) -8 NIL NIL) (-1235 3114670 3114888 3114982 "WHEREAST" 3115099 T WHEREAST (NIL) -8 NIL NIL) (-1234 3113556 3113754 3114049 "WFFINTBS" 3114467 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1233 3111460 3111887 3112349 "WEIER" 3113128 NIL WEIER (NIL T) -7 NIL NIL) (-1232 3110607 3111031 3111073 "VSPACE" 3111209 NIL VSPACE (NIL T) -9 NIL 3111283) (-1231 3110445 3110472 3110563 "VSPACE-" 3110568 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1230 3110191 3110234 3110305 "VOID" 3110396 T VOID (NIL) -8 NIL NIL) (-1229 3106616 3107254 3107991 "VIEWDEF" 3109476 T VIEWDEF (NIL) -7 NIL NIL) (-1228 3095954 3098164 3100337 "VIEW3D" 3104465 T VIEW3D (NIL) -8 NIL NIL) (-1227 3088236 3089865 3091444 "VIEW2D" 3094397 T VIEW2D (NIL) -8 NIL NIL) (-1226 3086372 3086731 3087137 "VIEW" 3087852 T VIEW (NIL) -7 NIL NIL) (-1225 3084949 3085208 3085526 "VECTOR2" 3086102 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1224 3080353 3084719 3084811 "VECTOR" 3084892 NIL VECTOR (NIL T) -8 NIL NIL) (-1223 3073880 3078137 3078180 "VECTCAT" 3079173 NIL VECTCAT (NIL T) -9 NIL 3079759) (-1222 3072894 3073148 3073538 "VECTCAT-" 3073543 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1221 3072375 3072545 3072665 "VARIABLE" 3072809 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1220 3072308 3072313 3072343 "UTYPE" 3072348 T UTYPE (NIL) -9 NIL NIL) (-1219 3071138 3071292 3071554 "UTSODETL" 3072134 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1218 3068578 3069038 3069562 "UTSODE" 3070679 NIL UTSODE (NIL T T) -7 NIL NIL) (-1217 3059951 3065270 3065313 "UTSCAT" 3066425 NIL UTSCAT (NIL T) -9 NIL 3067182) (-1216 3057305 3058021 3059010 "UTSCAT-" 3059015 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1215 3056932 3056975 3057108 "UTS2" 3057256 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1214 3048808 3054558 3055047 "UTS" 3056501 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1213 3043084 3045648 3045691 "URAGG" 3047761 NIL URAGG (NIL T) -9 NIL 3048483) (-1212 3040026 3040888 3042010 "URAGG-" 3042015 NIL URAGG- (NIL T T) -8 NIL NIL) (-1211 3035757 3038640 3039112 "UPXSSING" 3039690 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1210 3028872 3035661 3035733 "UPXSCONS" 3035738 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1209 3019232 3025975 3026037 "UPXSCCA" 3026693 NIL UPXSCCA (NIL T T) -9 NIL 3026935) (-1208 3018870 3018955 3019129 "UPXSCCA-" 3019134 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1207 3009156 3015672 3015715 "UPXSCAT" 3016363 NIL UPXSCAT (NIL T) -9 NIL 3016971) (-1206 3008586 3008665 3008844 "UPXS2" 3009071 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1205 3000560 3007701 3007983 "UPXS" 3008362 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1204 2999217 2999469 2999819 "UPSQFREE" 3000304 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1203 2993135 2996144 2996199 "UPSCAT" 2997360 NIL UPSCAT (NIL T T) -9 NIL 2998134) (-1202 2992339 2992546 2992873 "UPSCAT-" 2992878 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1201 2991966 2992009 2992142 "UPOLYC2" 2992290 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1200 2978090 2986053 2986096 "UPOLYC" 2988197 NIL UPOLYC (NIL T) -9 NIL 2989418) (-1199 2969455 2971868 2975003 "UPOLYC-" 2975008 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1198 2968794 2968901 2969065 "UPMP" 2969344 NIL UPMP (NIL T T) -7 NIL NIL) (-1197 2968347 2968428 2968567 "UPDIVP" 2968707 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1196 2966915 2967164 2967480 "UPDECOMP" 2968096 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1195 2966150 2966262 2966447 "UPCDEN" 2966799 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1194 2965669 2965738 2965887 "UP2" 2966075 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1193 2957166 2965235 2965373 "UP" 2965579 NIL UP (NIL NIL T) -8 NIL NIL) (-1192 2956381 2956508 2956713 "UNISEG2" 2957009 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1191 2954898 2955585 2955862 "UNISEG" 2956139 NIL UNISEG (NIL T) -8 NIL NIL) (-1190 2953958 2954138 2954364 "UNIFACT" 2954714 NIL UNIFACT (NIL T) -7 NIL NIL) (-1189 2942016 2953862 2953934 "ULSCONS" 2953939 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1188 2924836 2936755 2936817 "ULSCCAT" 2937537 NIL ULSCCAT (NIL T T) -9 NIL 2937834) (-1187 2923922 2924155 2924531 "ULSCCAT-" 2924536 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1186 2913985 2920415 2920458 "ULSCAT" 2921321 NIL ULSCAT (NIL T) -9 NIL 2922051) (-1185 2913415 2913494 2913673 "ULS2" 2913900 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1184 2897400 2912592 2912843 "ULS" 2913222 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1183 2895838 2896761 2896791 "UFD" 2897003 T UFD (NIL) -9 NIL 2897117) (-1182 2895632 2895678 2895773 "UFD-" 2895778 NIL UFD- (NIL T) -8 NIL NIL) (-1181 2894714 2894897 2895113 "UDVO" 2895438 T UDVO (NIL) -7 NIL NIL) (-1180 2892530 2892939 2893410 "UDPO" 2894278 NIL UDPO (NIL T) -7 NIL NIL) (-1179 2892317 2892485 2892516 "TYPEAST" 2892521 T TYPEAST (NIL) -8 NIL NIL) (-1178 2892250 2892255 2892285 "TYPE" 2892290 T TYPE (NIL) -9 NIL NIL) (-1177 2891221 2891423 2891663 "TWOFACT" 2892044 NIL TWOFACT (NIL T) -7 NIL NIL) (-1176 2890159 2890496 2890759 "TUPLE" 2890993 NIL TUPLE (NIL T) -8 NIL NIL) (-1175 2887850 2888369 2888908 "TUBETOOL" 2889642 T TUBETOOL (NIL) -7 NIL NIL) (-1174 2886699 2886904 2887145 "TUBE" 2887643 NIL TUBE (NIL T) -8 NIL NIL) (-1173 2875366 2879458 2879555 "TSETCAT" 2884824 NIL TSETCAT (NIL T T T T) -9 NIL 2886355) (-1172 2870100 2871698 2873589 "TSETCAT-" 2873594 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1171 2864864 2869072 2869355 "TS" 2869852 NIL TS (NIL T) -8 NIL NIL) (-1170 2859127 2859973 2860915 "TRMANIP" 2864000 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1169 2858568 2858631 2858794 "TRIMAT" 2859059 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1168 2856364 2856601 2856965 "TRIGMNIP" 2858317 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1167 2855884 2855997 2856027 "TRIGCAT" 2856240 T TRIGCAT (NIL) -9 NIL NIL) (-1166 2855553 2855632 2855773 "TRIGCAT-" 2855778 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1165 2852453 2854413 2854693 "TREE" 2855308 NIL TREE (NIL T) -8 NIL NIL) (-1164 2851727 2852255 2852285 "TRANFUN" 2852320 T TRANFUN (NIL) -9 NIL 2852386) (-1163 2851006 2851197 2851477 "TRANFUN-" 2851482 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1162 2850810 2850842 2850903 "TOPSP" 2850967 T TOPSP (NIL) -7 NIL NIL) (-1161 2850158 2850273 2850427 "TOOLSIGN" 2850691 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1160 2848819 2849335 2849574 "TEXTFILE" 2849941 T TEXTFILE (NIL) -8 NIL NIL) (-1159 2848600 2848631 2848703 "TEX1" 2848782 NIL TEX1 (NIL T) -7 NIL NIL) (-1158 2846465 2846979 2847417 "TEX" 2848184 T TEX (NIL) -8 NIL NIL) (-1157 2846113 2846176 2846266 "TEMUTL" 2846397 T TEMUTL (NIL) -7 NIL NIL) (-1156 2844267 2844547 2844872 "TBCMPPK" 2845836 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1155 2836157 2842427 2842483 "TBAGG" 2842883 NIL TBAGG (NIL T T) -9 NIL 2843094) (-1154 2831227 2832715 2834469 "TBAGG-" 2834474 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1153 2830611 2830718 2830863 "TANEXP" 2831116 NIL TANEXP (NIL T) -7 NIL NIL) (-1152 2830023 2830122 2830260 "TABLEAU" 2830508 NIL TABLEAU (NIL T) -8 NIL NIL) (-1151 2823526 2829880 2829973 "TABLE" 2829978 NIL TABLE (NIL T T) -8 NIL NIL) (-1150 2818134 2819354 2820602 "TABLBUMP" 2822312 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1149 2817562 2817662 2817790 "SYSTEM" 2818028 T SYSTEM (NIL) -7 NIL NIL) (-1148 2814025 2814720 2815503 "SYSSOLP" 2816813 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1147 2810317 2811024 2811758 "SYNTAX" 2813313 T SYNTAX (NIL) -8 NIL NIL) (-1146 2807475 2808077 2808709 "SYMTAB" 2809707 T SYMTAB (NIL) -8 NIL NIL) (-1145 2802748 2803644 2804621 "SYMS" 2806520 T SYMS (NIL) -8 NIL NIL) (-1144 2800030 2802209 2802439 "SYMPOLY" 2802556 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1143 2799547 2799622 2799745 "SYMFUNC" 2799942 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1142 2795524 2796784 2797606 "SYMBOL" 2798747 T SYMBOL (NIL) -8 NIL NIL) (-1141 2789063 2790752 2792472 "SWITCH" 2793826 T SWITCH (NIL) -8 NIL NIL) (-1140 2782333 2787884 2788187 "SUTS" 2788818 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1139 2774306 2781448 2781730 "SUPXS" 2782109 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1138 2773465 2773592 2773809 "SUPFRACF" 2774174 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1137 2773086 2773145 2773258 "SUP2" 2773400 NIL SUP2 (NIL T T) -7 NIL NIL) (-1136 2764655 2772704 2772830 "SUP" 2772995 NIL SUP (NIL T) -8 NIL NIL) (-1135 2763068 2763342 2763705 "SUMRF" 2764354 NIL SUMRF (NIL T) -7 NIL NIL) (-1134 2762382 2762448 2762647 "SUMFS" 2762989 NIL SUMFS (NIL T T) -7 NIL NIL) (-1133 2746407 2761559 2761810 "SULS" 2762189 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1132 2746036 2746229 2746299 "SUCHTAST" 2746359 T SUCHTAST (NIL) -8 NIL NIL) (-1131 2745358 2745561 2745701 "SUCH" 2745944 NIL SUCH (NIL T T) -8 NIL NIL) (-1130 2739252 2740264 2741223 "SUBSPACE" 2744446 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1129 2738682 2738772 2738936 "SUBRESP" 2739140 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1128 2732855 2733975 2735122 "STTFNC" 2737582 NIL STTFNC (NIL T) -7 NIL NIL) (-1127 2726224 2727520 2728831 "STTF" 2731591 NIL STTF (NIL T) -7 NIL NIL) (-1126 2717539 2719406 2721200 "STTAYLOR" 2724465 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1125 2710785 2717403 2717486 "STRTBL" 2717491 NIL STRTBL (NIL T) -8 NIL NIL) (-1124 2706176 2710740 2710771 "STRING" 2710776 T STRING (NIL) -8 NIL NIL) (-1123 2701064 2705549 2705579 "STRICAT" 2705638 T STRICAT (NIL) -9 NIL 2705700) (-1122 2700574 2700651 2700795 "STREAM3" 2700981 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1121 2699556 2699739 2699974 "STREAM2" 2700387 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1120 2699244 2699296 2699389 "STREAM1" 2699498 NIL STREAM1 (NIL T) -7 NIL NIL) (-1119 2691959 2696767 2697387 "STREAM" 2698659 NIL STREAM (NIL T) -8 NIL NIL) (-1118 2690975 2691156 2691387 "STINPROD" 2691775 NIL STINPROD (NIL T) -7 NIL NIL) (-1117 2690553 2690737 2690767 "STEP" 2690847 T STEP (NIL) -9 NIL 2690925) (-1116 2684098 2690452 2690529 "STBL" 2690534 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1115 2679275 2683320 2683363 "STAGG" 2683516 NIL STAGG (NIL T) -9 NIL 2683605) (-1114 2676983 2677583 2678453 "STAGG-" 2678458 NIL STAGG- (NIL T T) -8 NIL NIL) (-1113 2675178 2676753 2676845 "STACK" 2676926 NIL STACK (NIL T) -8 NIL NIL) (-1112 2667930 2673319 2673775 "SREGSET" 2674808 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1111 2660356 2661724 2663237 "SRDCMPK" 2666536 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1110 2653323 2657796 2657826 "SRAGG" 2659129 T SRAGG (NIL) -9 NIL 2659737) (-1109 2652340 2652595 2652974 "SRAGG-" 2652979 NIL SRAGG- (NIL T) -8 NIL NIL) (-1108 2646839 2651287 2651708 "SQMATRIX" 2651966 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1107 2640592 2643559 2644285 "SPLTREE" 2646185 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1106 2636582 2637248 2637894 "SPLNODE" 2640018 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1105 2635629 2635862 2635892 "SPFCAT" 2636336 T SPFCAT (NIL) -9 NIL NIL) (-1104 2634366 2634576 2634840 "SPECOUT" 2635387 T SPECOUT (NIL) -7 NIL NIL) (-1103 2626055 2627799 2627829 "SPADXPT" 2632221 T SPADXPT (NIL) -9 NIL 2634255) (-1102 2625816 2625856 2625925 "SPADPRSR" 2626008 T SPADPRSR (NIL) -7 NIL NIL) (-1101 2623999 2625771 2625802 "SPADAST" 2625807 T SPADAST (NIL) -8 NIL NIL) (-1100 2615970 2617717 2617760 "SPACEC" 2622133 NIL SPACEC (NIL T) -9 NIL 2623949) (-1099 2614141 2615902 2615951 "SPACE3" 2615956 NIL SPACE3 (NIL T) -8 NIL NIL) (-1098 2612893 2613064 2613355 "SORTPAK" 2613946 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1097 2610943 2611246 2611665 "SOLVETRA" 2612557 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1096 2609954 2610176 2610450 "SOLVESER" 2610716 NIL SOLVESER (NIL T) -7 NIL NIL) (-1095 2605174 2606055 2607057 "SOLVERAD" 2609006 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1094 2600989 2601598 2602327 "SOLVEFOR" 2604541 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1093 2595313 2600338 2600435 "SNTSCAT" 2600440 NIL SNTSCAT (NIL T T T T) -9 NIL 2600510) (-1092 2589456 2593636 2594027 "SMTS" 2595003 NIL SMTS (NIL T T T) -8 NIL NIL) (-1091 2583932 2589344 2589421 "SMP" 2589426 NIL SMP (NIL T T) -8 NIL NIL) (-1090 2582091 2582392 2582790 "SMITH" 2583629 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1089 2575072 2579223 2579326 "SMATCAT" 2580680 NIL SMATCAT (NIL NIL T T T) -9 NIL 2581230) (-1088 2572033 2572849 2574020 "SMATCAT-" 2574025 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1087 2569746 2571269 2571312 "SKAGG" 2571573 NIL SKAGG (NIL T) -9 NIL 2571708) (-1086 2565864 2568850 2569128 "SINT" 2569490 T SINT (NIL) -8 NIL NIL) (-1085 2565636 2565674 2565740 "SIMPAN" 2565820 T SIMPAN (NIL) -7 NIL NIL) (-1084 2564495 2564709 2564977 "SIGNRF" 2565402 NIL SIGNRF (NIL T) -7 NIL NIL) (-1083 2563321 2563465 2563749 "SIGNEF" 2564331 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1082 2562654 2562904 2563028 "SIGAST" 2563219 T SIGAST (NIL) -8 NIL NIL) (-1081 2561961 2562189 2562329 "SIG" 2562536 T SIG (NIL) -8 NIL NIL) (-1080 2559651 2560105 2560611 "SHP" 2561502 NIL SHP (NIL T NIL) -7 NIL NIL) (-1079 2553564 2559552 2559628 "SHDP" 2559633 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1078 2553163 2553329 2553359 "SGROUP" 2553452 T SGROUP (NIL) -9 NIL 2553514) (-1077 2553021 2553047 2553120 "SGROUP-" 2553125 NIL SGROUP- (NIL T) -8 NIL NIL) (-1076 2549857 2550554 2551277 "SGCF" 2552320 T SGCF (NIL) -7 NIL NIL) (-1075 2544279 2549304 2549401 "SFRTCAT" 2549406 NIL SFRTCAT (NIL T T T T) -9 NIL 2549445) (-1074 2537703 2538718 2539854 "SFRGCD" 2543262 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1073 2530831 2531902 2533088 "SFQCMPK" 2536636 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1072 2530453 2530542 2530652 "SFORT" 2530772 NIL SFORT (NIL T T) -8 NIL NIL) (-1071 2529598 2530293 2530414 "SEXOF" 2530419 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1070 2524374 2525063 2525158 "SEXCAT" 2528929 NIL SEXCAT (NIL T T T T T) -9 NIL 2529548) (-1069 2523508 2524255 2524323 "SEX" 2524328 T SEX (NIL) -8 NIL NIL) (-1068 2521765 2522225 2522528 "SETMN" 2523251 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1067 2521371 2521497 2521527 "SETCAT" 2521644 T SETCAT (NIL) -9 NIL 2521729) (-1066 2521151 2521203 2521302 "SETCAT-" 2521307 NIL SETCAT- (NIL T) -8 NIL NIL) (-1065 2517538 2519612 2519655 "SETAGG" 2520525 NIL SETAGG (NIL T) -9 NIL 2520865) (-1064 2516996 2517112 2517349 "SETAGG-" 2517354 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1063 2514176 2516930 2516978 "SET" 2516983 NIL SET (NIL T) -8 NIL NIL) (-1062 2513646 2513872 2513973 "SEQAST" 2514097 T SEQAST (NIL) -8 NIL NIL) (-1061 2512850 2513143 2513204 "SEGXCAT" 2513490 NIL SEGXCAT (NIL T T) -9 NIL 2513610) (-1060 2511757 2511970 2512013 "SEGCAT" 2512595 NIL SEGCAT (NIL T) -9 NIL 2512833) (-1059 2511378 2511437 2511550 "SEGBIND2" 2511692 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1058 2510427 2510757 2510957 "SEGBIND" 2511213 NIL SEGBIND (NIL T) -8 NIL NIL) (-1057 2510028 2510228 2510305 "SEGAST" 2510372 T SEGAST (NIL) -8 NIL NIL) (-1056 2509247 2509373 2509577 "SEG2" 2509872 NIL SEG2 (NIL T T) -7 NIL NIL) (-1055 2508303 2508913 2509095 "SEG" 2509100 NIL SEG (NIL T) -8 NIL NIL) (-1054 2507740 2508238 2508285 "SDVAR" 2508290 NIL SDVAR (NIL T) -8 NIL NIL) (-1053 2500071 2507510 2507640 "SDPOL" 2507645 NIL SDPOL (NIL T) -8 NIL NIL) (-1052 2498664 2498930 2499249 "SCPKG" 2499786 NIL SCPKG (NIL T) -7 NIL NIL) (-1051 2497800 2497980 2498180 "SCOPE" 2498486 T SCOPE (NIL) -8 NIL NIL) (-1050 2497021 2497154 2497333 "SCACHE" 2497655 NIL SCACHE (NIL T) -7 NIL NIL) (-1049 2496730 2496890 2496920 "SASTCAT" 2496925 T SASTCAT (NIL) -9 NIL 2496938) (-1048 2496169 2496490 2496575 "SAOS" 2496667 T SAOS (NIL) -8 NIL NIL) (-1047 2495734 2495769 2495942 "SAERFFC" 2496128 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1046 2495327 2495362 2495521 "SAEFACT" 2495693 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1045 2489310 2495224 2495304 "SAE" 2495309 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1044 2487631 2487945 2488346 "RURPK" 2488976 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1043 2486267 2486546 2486858 "RULESET" 2487465 NIL RULESET (NIL T T T) -8 NIL NIL) (-1042 2485906 2486061 2486144 "RULECOLD" 2486219 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1041 2483093 2483596 2484061 "RULE" 2485587 NIL RULE (NIL T T T) -8 NIL NIL) (-1040 2482591 2482810 2482904 "RSTRCAST" 2483021 T RSTRCAST (NIL) -8 NIL NIL) (-1039 2477440 2478234 2479154 "RSETGCD" 2481790 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1038 2466724 2471749 2471846 "RSETCAT" 2475965 NIL RSETCAT (NIL T T T T) -9 NIL 2477062) (-1037 2464651 2465190 2466014 "RSETCAT-" 2466019 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1036 2457038 2458413 2459933 "RSDCMPK" 2463250 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1035 2455043 2455484 2455558 "RRCC" 2456644 NIL RRCC (NIL T T) -9 NIL 2456988) (-1034 2454394 2454568 2454847 "RRCC-" 2454852 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1033 2453864 2454090 2454191 "RPTAST" 2454315 T RPTAST (NIL) -8 NIL NIL) (-1032 2428123 2437677 2437744 "RPOLCAT" 2448408 NIL RPOLCAT (NIL T T T) -9 NIL 2451567) (-1031 2419659 2421985 2425095 "RPOLCAT-" 2425100 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1030 2410708 2417870 2418352 "ROUTINE" 2419199 T ROUTINE (NIL) -8 NIL NIL) (-1029 2407468 2410259 2410408 "ROMAN" 2410581 T ROMAN (NIL) -8 NIL NIL) (-1028 2405745 2406328 2406588 "ROIRC" 2407273 NIL ROIRC (NIL T T) -8 NIL NIL) (-1027 2402200 2404435 2404465 "RNS" 2404769 T RNS (NIL) -9 NIL 2405041) (-1026 2400709 2401092 2401626 "RNS-" 2401701 NIL RNS- (NIL T) -8 NIL NIL) (-1025 2400158 2400540 2400570 "RNG" 2400575 T RNG (NIL) -9 NIL 2400596) (-1024 2399550 2399912 2399955 "RMODULE" 2400017 NIL RMODULE (NIL T) -9 NIL 2400059) (-1023 2398386 2398480 2398816 "RMCAT2" 2399451 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1022 2395091 2397560 2397885 "RMATRIX" 2398120 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1021 2388033 2390267 2390382 "RMATCAT" 2393741 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2394723) (-1020 2387408 2387555 2387862 "RMATCAT-" 2387867 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1019 2386975 2387050 2387178 "RINTERP" 2387327 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1018 2386063 2386583 2386613 "RING" 2386725 T RING (NIL) -9 NIL 2386820) (-1017 2385855 2385899 2385996 "RING-" 2386001 NIL RING- (NIL T) -8 NIL NIL) (-1016 2384696 2384933 2385191 "RIDIST" 2385619 T RIDIST (NIL) -7 NIL NIL) (-1015 2376039 2384164 2384370 "RGCHAIN" 2384544 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1014 2375685 2375748 2375851 "RFFACTOR" 2375970 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1013 2375410 2375445 2375542 "RFFACT" 2375644 NIL RFFACT (NIL T) -7 NIL NIL) (-1012 2373527 2373891 2374273 "RFDIST" 2375050 T RFDIST (NIL) -7 NIL NIL) (-1011 2370521 2371135 2371805 "RF" 2372891 NIL RF (NIL T) -7 NIL NIL) (-1010 2369974 2370066 2370229 "RETSOL" 2370423 NIL RETSOL (NIL T T) -7 NIL NIL) (-1009 2369562 2369642 2369685 "RETRACT" 2369878 NIL RETRACT (NIL T) -9 NIL NIL) (-1008 2369411 2369436 2369523 "RETRACT-" 2369528 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1007 2369040 2369233 2369303 "RETAST" 2369363 T RETAST (NIL) -8 NIL NIL) (-1006 2361896 2368693 2368820 "RESULT" 2368935 T RESULT (NIL) -8 NIL NIL) (-1005 2360522 2361165 2361364 "RESRING" 2361799 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1004 2360158 2360207 2360305 "RESLATC" 2360459 NIL RESLATC (NIL T) -7 NIL NIL) (-1003 2359864 2359898 2360005 "REPSQ" 2360117 NIL REPSQ (NIL T) -7 NIL NIL) (-1002 2359562 2359596 2359707 "REPDB" 2359823 NIL REPDB (NIL T) -7 NIL NIL) (-1001 2353472 2354851 2356074 "REP2" 2358374 NIL REP2 (NIL T) -7 NIL NIL) (-1000 2349849 2350530 2351338 "REP1" 2352699 NIL REP1 (NIL T) -7 NIL NIL) (-999 2347280 2347860 2348460 "REP" 2349269 T REP (NIL) -7 NIL NIL) (-998 2340045 2345433 2345887 "REGSET" 2346910 NIL REGSET (NIL T T T T) -8 NIL NIL) (-997 2338866 2339201 2339449 "REF" 2339830 NIL REF (NIL T) -8 NIL NIL) (-996 2338247 2338350 2338515 "REDORDER" 2338750 NIL REDORDER (NIL T T) -7 NIL NIL) (-995 2334298 2337475 2337698 "RECLOS" 2338076 NIL RECLOS (NIL T) -8 NIL NIL) (-994 2333355 2333536 2333749 "REALSOLV" 2334105 T REALSOLV (NIL) -7 NIL NIL) (-993 2329846 2330648 2331530 "REAL0Q" 2332520 NIL REAL0Q (NIL T) -7 NIL NIL) (-992 2325457 2326445 2327504 "REAL0" 2328827 NIL REAL0 (NIL T) -7 NIL NIL) (-991 2325305 2325346 2325374 "REAL" 2325379 T REAL (NIL) -9 NIL 2325414) (-990 2324807 2325026 2325118 "RDUCEAST" 2325233 T RDUCEAST (NIL) -8 NIL NIL) (-989 2324215 2324287 2324492 "RDIV" 2324729 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-988 2323288 2323462 2323673 "RDIST" 2324037 NIL RDIST (NIL T) -7 NIL NIL) (-987 2321889 2322176 2322546 "RDETRS" 2322996 NIL RDETRS (NIL T T) -7 NIL NIL) (-986 2319706 2320160 2320696 "RDETR" 2321431 NIL RDETR (NIL T T) -7 NIL NIL) (-985 2318320 2318598 2319000 "RDEEFS" 2319422 NIL RDEEFS (NIL T T) -7 NIL NIL) (-984 2316818 2317124 2317554 "RDEEF" 2318008 NIL RDEEF (NIL T T) -7 NIL NIL) (-983 2311164 2314026 2314054 "RCFIELD" 2315331 T RCFIELD (NIL) -9 NIL 2316061) (-982 2309233 2309737 2310430 "RCFIELD-" 2310503 NIL RCFIELD- (NIL T) -8 NIL NIL) (-981 2305564 2307349 2307390 "RCAGG" 2308461 NIL RCAGG (NIL T) -9 NIL 2308926) (-980 2305195 2305289 2305449 "RCAGG-" 2305454 NIL RCAGG- (NIL T T) -8 NIL NIL) (-979 2304535 2304647 2304810 "RATRET" 2305079 NIL RATRET (NIL T) -7 NIL NIL) (-978 2304092 2304159 2304278 "RATFACT" 2304463 NIL RATFACT (NIL T) -7 NIL NIL) (-977 2303407 2303527 2303677 "RANDSRC" 2303962 T RANDSRC (NIL) -7 NIL NIL) (-976 2303144 2303188 2303259 "RADUTIL" 2303356 T RADUTIL (NIL) -7 NIL NIL) (-975 2296230 2301887 2302204 "RADIX" 2302859 NIL RADIX (NIL NIL) -8 NIL NIL) (-974 2287897 2296074 2296202 "RADFF" 2296207 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-973 2287549 2287624 2287652 "RADCAT" 2287809 T RADCAT (NIL) -9 NIL NIL) (-972 2287334 2287382 2287479 "RADCAT-" 2287484 NIL RADCAT- (NIL T) -8 NIL NIL) (-971 2285485 2287109 2287198 "QUEUE" 2287278 NIL QUEUE (NIL T) -8 NIL NIL) (-970 2285123 2285166 2285293 "QUATCT2" 2285436 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-969 2278990 2282284 2282324 "QUATCAT" 2283104 NIL QUATCAT (NIL T) -9 NIL 2283870) (-968 2275155 2276185 2277565 "QUATCAT-" 2277659 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-967 2271738 2275092 2275137 "QUAT" 2275142 NIL QUAT (NIL T) -8 NIL NIL) (-966 2269258 2270822 2270863 "QUAGG" 2271238 NIL QUAGG (NIL T) -9 NIL 2271413) (-965 2268890 2269083 2269151 "QQUTAST" 2269210 T QQUTAST (NIL) -8 NIL NIL) (-964 2267815 2268288 2268460 "QFORM" 2268762 NIL QFORM (NIL NIL T) -8 NIL NIL) (-963 2267453 2267496 2267623 "QFCAT2" 2267766 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-962 2258802 2263989 2264029 "QFCAT" 2264687 NIL QFCAT (NIL T) -9 NIL 2265686) (-961 2254410 2255599 2257178 "QFCAT-" 2257272 NIL QFCAT- (NIL T T) -8 NIL NIL) (-960 2253870 2253980 2254110 "QEQUAT" 2254300 T QEQUAT (NIL) -8 NIL NIL) (-959 2247018 2248089 2249273 "QCMPACK" 2252803 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-958 2246263 2246437 2246669 "QALGSET2" 2246838 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-957 2243845 2244264 2244690 "QALGSET" 2245920 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-956 2242536 2242759 2243076 "PWFFINTB" 2243618 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-955 2240735 2240903 2241257 "PUSHVAR" 2242350 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-954 2236653 2237707 2237748 "PTRANFN" 2239632 NIL PTRANFN (NIL T) -9 NIL NIL) (-953 2235055 2235346 2235668 "PTPACK" 2236364 NIL PTPACK (NIL T) -7 NIL NIL) (-952 2234687 2234744 2234853 "PTFUNC2" 2234992 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-951 2229153 2233498 2233539 "PTCAT" 2233912 NIL PTCAT (NIL T) -9 NIL 2234074) (-950 2228811 2228846 2228970 "PSQFR" 2229112 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-949 2227406 2227704 2228038 "PSEUDLIN" 2228509 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-948 2214175 2216540 2218864 "PSETPK" 2225166 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-947 2207219 2209933 2210029 "PSETCAT" 2213050 NIL PSETCAT (NIL T T T T) -9 NIL 2213864) (-946 2205055 2205689 2206510 "PSETCAT-" 2206515 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-945 2204404 2204569 2204597 "PSCURVE" 2204865 T PSCURVE (NIL) -9 NIL 2205032) (-944 2200885 2202367 2202432 "PSCAT" 2203276 NIL PSCAT (NIL T T T) -9 NIL 2203516) (-943 2199948 2200164 2200564 "PSCAT-" 2200569 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-942 2198600 2199233 2199447 "PRTITION" 2199754 T PRTITION (NIL) -8 NIL NIL) (-941 2198102 2198321 2198413 "PRTDAST" 2198528 T PRTDAST (NIL) -8 NIL NIL) (-940 2187200 2189406 2191594 "PRS" 2195964 NIL PRS (NIL T T) -7 NIL NIL) (-939 2185058 2186550 2186590 "PRQAGG" 2186773 NIL PRQAGG (NIL T) -9 NIL 2186875) (-938 2184444 2184673 2184701 "PROPLOG" 2184886 T PROPLOG (NIL) -9 NIL 2185008) (-937 2181614 2182258 2182722 "PROPFRML" 2184012 NIL PROPFRML (NIL T) -8 NIL NIL) (-936 2181074 2181184 2181314 "PROPERTY" 2181504 T PROPERTY (NIL) -8 NIL NIL) (-935 2175159 2179240 2180060 "PRODUCT" 2180300 NIL PRODUCT (NIL T T) -8 NIL NIL) (-934 2174955 2174987 2175046 "PRINT" 2175120 T PRINT (NIL) -7 NIL NIL) (-933 2174295 2174412 2174564 "PRIMES" 2174835 NIL PRIMES (NIL T) -7 NIL NIL) (-932 2172360 2172761 2173227 "PRIMELT" 2173874 NIL PRIMELT (NIL T) -7 NIL NIL) (-931 2172089 2172138 2172166 "PRIMCAT" 2172290 T PRIMCAT (NIL) -9 NIL NIL) (-930 2171096 2171274 2171502 "PRIMARR2" 2171907 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-929 2167257 2171034 2171079 "PRIMARR" 2171084 NIL PRIMARR (NIL T) -8 NIL NIL) (-928 2166900 2166956 2167067 "PREASSOC" 2167195 NIL PREASSOC (NIL T T) -7 NIL NIL) (-927 2164220 2166358 2166592 "PR" 2166711 NIL PR (NIL T T) -8 NIL NIL) (-926 2163695 2163828 2163856 "PPCURVE" 2164061 T PPCURVE (NIL) -9 NIL 2164197) (-925 2163317 2163490 2163573 "PORTNUM" 2163632 T PORTNUM (NIL) -8 NIL NIL) (-924 2160676 2161075 2161667 "POLYROOT" 2162898 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-923 2160059 2160117 2160351 "POLYLIFT" 2160612 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-922 2156334 2156783 2157412 "POLYCATQ" 2159604 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-921 2143387 2148729 2148794 "POLYCAT" 2152308 NIL POLYCAT (NIL T T T) -9 NIL 2154236) (-920 2136894 2138736 2141101 "POLYCAT-" 2141106 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-919 2136481 2136549 2136669 "POLY2UP" 2136820 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-918 2136113 2136170 2136279 "POLY2" 2136418 NIL POLY2 (NIL T T) -7 NIL NIL) (-917 2130089 2135717 2135877 "POLY" 2135986 NIL POLY (NIL T) -8 NIL NIL) (-916 2128774 2129013 2129289 "POLUTIL" 2129863 NIL POLUTIL (NIL T T) -7 NIL NIL) (-915 2127129 2127406 2127737 "POLTOPOL" 2128496 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-914 2122647 2127065 2127111 "POINT" 2127116 NIL POINT (NIL T) -8 NIL NIL) (-913 2120834 2121191 2121566 "PNTHEORY" 2122292 T PNTHEORY (NIL) -7 NIL NIL) (-912 2119253 2119550 2119962 "PMTOOLS" 2120532 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-911 2118846 2118924 2119041 "PMSYM" 2119169 NIL PMSYM (NIL T) -7 NIL NIL) (-910 2118356 2118425 2118599 "PMQFCAT" 2118771 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-909 2117752 2117838 2117999 "PMPREDFS" 2118257 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-908 2117107 2117217 2117373 "PMPRED" 2117629 NIL PMPRED (NIL T) -7 NIL NIL) (-907 2115750 2115958 2116343 "PMPLCAT" 2116869 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-906 2115282 2115361 2115513 "PMLSAGG" 2115665 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-905 2114757 2114833 2115014 "PMKERNEL" 2115200 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-904 2114374 2114449 2114562 "PMINS" 2114676 NIL PMINS (NIL T) -7 NIL NIL) (-903 2113802 2113871 2114087 "PMFS" 2114299 NIL PMFS (NIL T T T) -7 NIL NIL) (-902 2113030 2113148 2113353 "PMDOWN" 2113679 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-901 2112304 2112415 2112578 "PMASSFS" 2112916 NIL PMASSFS (NIL T T) -7 NIL NIL) (-900 2111467 2111626 2111808 "PMASS" 2112142 T PMASS (NIL) -7 NIL NIL) (-899 2111122 2111190 2111284 "PLOTTOOL" 2111393 T PLOTTOOL (NIL) -7 NIL NIL) (-898 2106936 2107970 2108891 "PLOT3D" 2110221 T PLOT3D (NIL) -8 NIL NIL) (-897 2105848 2106025 2106260 "PLOT1" 2106740 NIL PLOT1 (NIL T) -7 NIL NIL) (-896 2100470 2101659 2102807 "PLOT" 2104720 T PLOT (NIL) -8 NIL NIL) (-895 2075864 2080536 2085387 "PLEQN" 2095736 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-894 2075557 2075604 2075707 "PINTERPA" 2075811 NIL PINTERPA (NIL T T) -7 NIL NIL) (-893 2074875 2074997 2075177 "PINTERP" 2075422 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-892 2073307 2074248 2074276 "PID" 2074458 T PID (NIL) -9 NIL 2074592) (-891 2073032 2073069 2073157 "PICOERCE" 2073264 NIL PICOERCE (NIL T) -7 NIL NIL) (-890 2072317 2072838 2072925 "PI" 2072965 T PI (NIL) -8 NIL NIL) (-889 2071637 2071776 2071952 "PGROEB" 2072173 NIL PGROEB (NIL T) -7 NIL NIL) (-888 2067224 2068038 2068943 "PGE" 2070752 T PGE (NIL) -7 NIL NIL) (-887 2065348 2065594 2065960 "PGCD" 2066941 NIL PGCD (NIL T T T T) -7 NIL NIL) (-886 2064686 2064789 2064950 "PFRPAC" 2065232 NIL PFRPAC (NIL T) -7 NIL NIL) (-885 2061368 2063234 2063587 "PFR" 2064365 NIL PFR (NIL T) -8 NIL NIL) (-884 2059757 2060001 2060326 "PFOTOOLS" 2061115 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-883 2058290 2058529 2058880 "PFOQ" 2059514 NIL PFOQ (NIL T T T) -7 NIL NIL) (-882 2056763 2056975 2057338 "PFO" 2058074 NIL PFO (NIL T T T T T) -7 NIL NIL) (-881 2054232 2055469 2055497 "PFECAT" 2056082 T PFECAT (NIL) -9 NIL 2056466) (-880 2053677 2053831 2054045 "PFECAT-" 2054050 NIL PFECAT- (NIL T) -8 NIL NIL) (-879 2052281 2052532 2052833 "PFBRU" 2053426 NIL PFBRU (NIL T T) -7 NIL NIL) (-878 2050148 2050499 2050931 "PFBR" 2051932 NIL PFBR (NIL T T T T) -7 NIL NIL) (-877 2046738 2050037 2050106 "PF" 2050111 NIL PF (NIL NIL) -8 NIL NIL) (-876 2042004 2042945 2043815 "PERMGRP" 2045901 NIL PERMGRP (NIL T) -8 NIL NIL) (-875 2040136 2041067 2041108 "PERMCAT" 2041554 NIL PERMCAT (NIL T) -9 NIL 2041859) (-874 2039789 2039830 2039954 "PERMAN" 2040089 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-873 2035705 2037165 2037841 "PERM" 2039146 NIL PERM (NIL T) -8 NIL NIL) (-872 2033147 2035274 2035405 "PENDTREE" 2035607 NIL PENDTREE (NIL T) -8 NIL NIL) (-871 2031260 2031994 2032035 "PDRING" 2032692 NIL PDRING (NIL T) -9 NIL 2032978) (-870 2030363 2030581 2030943 "PDRING-" 2030948 NIL PDRING- (NIL T T) -8 NIL NIL) (-869 2027504 2028255 2028946 "PDEPROB" 2029692 T PDEPROB (NIL) -8 NIL NIL) (-868 2025051 2025553 2026108 "PDEPACK" 2026969 T PDEPACK (NIL) -7 NIL NIL) (-867 2023963 2024153 2024404 "PDECOMP" 2024850 NIL PDECOMP (NIL T T) -7 NIL NIL) (-866 2021568 2022385 2022413 "PDECAT" 2023200 T PDECAT (NIL) -9 NIL 2023913) (-865 2021319 2021352 2021442 "PCOMP" 2021529 NIL PCOMP (NIL T T) -7 NIL NIL) (-864 2019524 2020120 2020417 "PBWLB" 2021048 NIL PBWLB (NIL T) -8 NIL NIL) (-863 2019156 2019213 2019322 "PATTERN2" 2019461 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-862 2016913 2017301 2017758 "PATTERN1" 2018745 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-861 2009419 2010986 2012324 "PATTERN" 2015596 NIL PATTERN (NIL T) -8 NIL NIL) (-860 2008983 2009050 2009182 "PATRES2" 2009346 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-859 2006378 2006932 2007413 "PATRES" 2008548 NIL PATRES (NIL T T) -8 NIL NIL) (-858 2004261 2004666 2005073 "PATMATCH" 2006045 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-857 2003797 2003980 2004021 "PATMAB" 2004128 NIL PATMAB (NIL T) -9 NIL 2004211) (-856 2002342 2002651 2002909 "PATLRES" 2003602 NIL PATLRES (NIL T T T) -8 NIL NIL) (-855 2001888 2002011 2002052 "PATAB" 2002057 NIL PATAB (NIL T) -9 NIL 2002229) (-854 1999369 1999901 2000474 "PARTPERM" 2001335 T PARTPERM (NIL) -7 NIL NIL) (-853 1998990 1999053 1999155 "PARSURF" 1999300 NIL PARSURF (NIL T) -8 NIL NIL) (-852 1998622 1998679 1998788 "PARSU2" 1998927 NIL PARSU2 (NIL T T) -7 NIL NIL) (-851 1998386 1998426 1998493 "PARSER" 1998575 T PARSER (NIL) -7 NIL NIL) (-850 1998007 1998070 1998172 "PARSCURV" 1998317 NIL PARSCURV (NIL T) -8 NIL NIL) (-849 1997639 1997696 1997805 "PARSC2" 1997944 NIL PARSC2 (NIL T T) -7 NIL NIL) (-848 1997278 1997336 1997433 "PARPCURV" 1997575 NIL PARPCURV (NIL T) -8 NIL NIL) (-847 1996910 1996967 1997076 "PARPC2" 1997215 NIL PARPC2 (NIL T T) -7 NIL NIL) (-846 1996430 1996516 1996635 "PAN2EXPR" 1996811 T PAN2EXPR (NIL) -7 NIL NIL) (-845 1995236 1995551 1995779 "PALETTE" 1996222 T PALETTE (NIL) -8 NIL NIL) (-844 1993704 1994241 1994601 "PAIR" 1994922 NIL PAIR (NIL T T) -8 NIL NIL) (-843 1987633 1992963 1993157 "PADICRC" 1993559 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-842 1980920 1986979 1987163 "PADICRAT" 1987481 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-841 1978167 1979695 1979735 "PADICCT" 1980316 NIL PADICCT (NIL NIL) -9 NIL 1980598) (-840 1976519 1978104 1978149 "PADIC" 1978154 NIL PADIC (NIL NIL) -8 NIL NIL) (-839 1975476 1975676 1975944 "PADEPAC" 1976306 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-838 1974688 1974821 1975027 "PADE" 1975338 NIL PADE (NIL T T T) -7 NIL NIL) (-837 1972738 1973524 1973841 "OWP" 1974455 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-836 1971847 1972343 1972515 "OVAR" 1972606 NIL OVAR (NIL NIL) -8 NIL NIL) (-835 1960901 1963072 1965242 "OUTFORM" 1969697 T OUTFORM (NIL) -8 NIL NIL) (-834 1960538 1960621 1960649 "OUTBCON" 1960800 T OUTBCON (NIL) -9 NIL 1960885) (-833 1960378 1960413 1960489 "OUTBCON-" 1960494 NIL OUTBCON- (NIL T) -8 NIL NIL) (-832 1959642 1959763 1959924 "OUT" 1960237 T OUT (NIL) -7 NIL NIL) (-831 1959050 1959371 1959460 "OSI" 1959573 T OSI (NIL) -8 NIL NIL) (-830 1958606 1958918 1958946 "OSGROUP" 1958951 T OSGROUP (NIL) -9 NIL 1958973) (-829 1957351 1957578 1957863 "ORTHPOL" 1958353 NIL ORTHPOL (NIL T) -7 NIL NIL) (-828 1954775 1957010 1957149 "OREUP" 1957294 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-827 1952227 1954466 1954593 "ORESUP" 1954717 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-826 1949755 1950255 1950816 "OREPCTO" 1951716 NIL OREPCTO (NIL T T) -7 NIL NIL) (-825 1943673 1945833 1945874 "OREPCAT" 1948222 NIL OREPCAT (NIL T) -9 NIL 1949326) (-824 1940841 1941616 1942667 "OREPCAT-" 1942672 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-823 1940018 1940290 1940318 "ORDSET" 1940627 T ORDSET (NIL) -9 NIL 1940791) (-822 1939537 1939659 1939852 "ORDSET-" 1939857 NIL ORDSET- (NIL T) -8 NIL NIL) (-821 1938191 1938948 1938976 "ORDRING" 1939178 T ORDRING (NIL) -9 NIL 1939303) (-820 1937836 1937930 1938074 "ORDRING-" 1938079 NIL ORDRING- (NIL T) -8 NIL NIL) (-819 1937242 1937679 1937707 "ORDMON" 1937712 T ORDMON (NIL) -9 NIL 1937733) (-818 1936404 1936551 1936746 "ORDFUNS" 1937091 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-817 1935915 1936274 1936302 "ORDFIN" 1936307 T ORDFIN (NIL) -9 NIL 1936328) (-816 1935181 1935308 1935494 "ORDCOMP2" 1935775 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-815 1931780 1933767 1934176 "ORDCOMP" 1934805 NIL ORDCOMP (NIL T) -8 NIL NIL) (-814 1928287 1929170 1930007 "OPTPROB" 1930963 T OPTPROB (NIL) -8 NIL NIL) (-813 1925089 1925728 1926432 "OPTPACK" 1927603 T OPTPACK (NIL) -7 NIL NIL) (-812 1922802 1923542 1923570 "OPTCAT" 1924389 T OPTCAT (NIL) -9 NIL 1925039) (-811 1922570 1922609 1922675 "OPQUERY" 1922756 T OPQUERY (NIL) -7 NIL NIL) (-810 1919738 1920881 1921385 "OP" 1922099 NIL OP (NIL T) -8 NIL NIL) (-809 1919043 1919158 1919332 "ONECOMP2" 1919610 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-808 1915895 1917840 1918209 "ONECOMP" 1918707 NIL ONECOMP (NIL T) -8 NIL NIL) (-807 1915314 1915420 1915550 "OMSERVER" 1915785 T OMSERVER (NIL) -7 NIL NIL) (-806 1912202 1914754 1914794 "OMSAGG" 1914855 NIL OMSAGG (NIL T) -9 NIL 1914919) (-805 1910825 1911088 1911370 "OMPKG" 1911940 T OMPKG (NIL) -7 NIL NIL) (-804 1909407 1910374 1910543 "OMLO" 1910706 NIL OMLO (NIL T T) -8 NIL NIL) (-803 1908332 1908479 1908706 "OMEXPR" 1909233 NIL OMEXPR (NIL T) -7 NIL NIL) (-802 1907510 1907753 1907913 "OMERRK" 1908192 T OMERRK (NIL) -8 NIL NIL) (-801 1906828 1907056 1907192 "OMERR" 1907394 T OMERR (NIL) -8 NIL NIL) (-800 1906306 1906505 1906613 "OMENC" 1906740 T OMENC (NIL) -8 NIL NIL) (-799 1900201 1901386 1902557 "OMDEV" 1905155 T OMDEV (NIL) -8 NIL NIL) (-798 1899270 1899441 1899635 "OMCONN" 1900027 T OMCONN (NIL) -8 NIL NIL) (-797 1898700 1898803 1898831 "OM" 1899130 T OM (NIL) -9 NIL NIL) (-796 1897356 1898298 1898326 "OINTDOM" 1898331 T OINTDOM (NIL) -9 NIL 1898352) (-795 1893162 1894346 1895062 "OFMONOID" 1896672 NIL OFMONOID (NIL T) -8 NIL NIL) (-794 1892600 1893099 1893144 "ODVAR" 1893149 NIL ODVAR (NIL T) -8 NIL NIL) (-793 1889812 1892097 1892282 "ODR" 1892475 NIL ODR (NIL T T NIL) -8 NIL NIL) (-792 1882197 1889588 1889714 "ODPOL" 1889719 NIL ODPOL (NIL T) -8 NIL NIL) (-791 1876080 1882069 1882174 "ODP" 1882179 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-790 1874846 1875061 1875336 "ODETOOLS" 1875854 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-789 1871815 1872471 1873187 "ODESYS" 1874179 NIL ODESYS (NIL T T) -7 NIL NIL) (-788 1866697 1867605 1868630 "ODERTRIC" 1870890 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-787 1866123 1866205 1866399 "ODERED" 1866609 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-786 1863019 1863565 1864240 "ODERAT" 1865548 NIL ODERAT (NIL T T) -7 NIL NIL) (-785 1859979 1860443 1861040 "ODEPRRIC" 1862548 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-784 1857848 1858417 1858926 "ODEPROB" 1859490 T ODEPROB (NIL) -8 NIL NIL) (-783 1854370 1854853 1855500 "ODEPRIM" 1857327 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-782 1853619 1853721 1853981 "ODEPAL" 1854262 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-781 1849781 1850572 1851436 "ODEPACK" 1852775 T ODEPACK (NIL) -7 NIL NIL) (-780 1848814 1848921 1849150 "ODEINT" 1849670 NIL ODEINT (NIL T T) -7 NIL NIL) (-779 1842915 1844340 1845787 "ODEIFTBL" 1847387 T ODEIFTBL (NIL) -8 NIL NIL) (-778 1838264 1839046 1840001 "ODEEF" 1842078 NIL ODEEF (NIL T T) -7 NIL NIL) (-777 1837599 1837688 1837918 "ODECONST" 1838169 NIL ODECONST (NIL T T T) -7 NIL NIL) (-776 1835750 1836385 1836413 "ODECAT" 1837018 T ODECAT (NIL) -9 NIL 1837549) (-775 1835388 1835431 1835558 "OCTCT2" 1835701 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-774 1832307 1835100 1835219 "OCT" 1835301 NIL OCT (NIL T) -8 NIL NIL) (-773 1831685 1832127 1832155 "OCAMON" 1832160 T OCAMON (NIL) -9 NIL 1832181) (-772 1826553 1828946 1828986 "OC" 1830083 NIL OC (NIL T) -9 NIL 1830941) (-771 1823801 1824542 1825525 "OC-" 1825619 NIL OC- (NIL T T) -8 NIL NIL) (-770 1823358 1823673 1823701 "OASGP" 1823706 T OASGP (NIL) -9 NIL 1823726) (-769 1822645 1823108 1823136 "OAMONS" 1823176 T OAMONS (NIL) -9 NIL 1823219) (-768 1822085 1822492 1822520 "OAMON" 1822525 T OAMON (NIL) -9 NIL 1822545) (-767 1821389 1821881 1821909 "OAGROUP" 1821914 T OAGROUP (NIL) -9 NIL 1821934) (-766 1821079 1821129 1821217 "NUMTUBE" 1821333 NIL NUMTUBE (NIL T) -7 NIL NIL) (-765 1814652 1816170 1817706 "NUMQUAD" 1819563 T NUMQUAD (NIL) -7 NIL NIL) (-764 1810408 1811396 1812421 "NUMODE" 1813647 T NUMODE (NIL) -7 NIL NIL) (-763 1807789 1808643 1808671 "NUMINT" 1809594 T NUMINT (NIL) -9 NIL 1810358) (-762 1806737 1806934 1807152 "NUMFMT" 1807591 T NUMFMT (NIL) -7 NIL NIL) (-761 1793096 1796041 1798573 "NUMERIC" 1804244 NIL NUMERIC (NIL T) -7 NIL NIL) (-760 1787520 1792545 1792640 "NTSCAT" 1792645 NIL NTSCAT (NIL T T T T) -9 NIL 1792684) (-759 1786714 1786879 1787072 "NTPOLFN" 1787359 NIL NTPOLFN (NIL T) -7 NIL NIL) (-758 1786346 1786403 1786512 "NSUP2" 1786651 NIL NSUP2 (NIL T T) -7 NIL NIL) (-757 1774231 1783171 1783983 "NSUP" 1785567 NIL NSUP (NIL T) -8 NIL NIL) (-756 1764276 1774005 1774138 "NSMP" 1774143 NIL NSMP (NIL T T) -8 NIL NIL) (-755 1762708 1763009 1763366 "NREP" 1763964 NIL NREP (NIL T) -7 NIL NIL) (-754 1761299 1761551 1761909 "NPCOEF" 1762451 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-753 1760365 1760480 1760696 "NORMRETR" 1761180 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-752 1758406 1758696 1759105 "NORMPK" 1760073 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-751 1758091 1758119 1758243 "NORMMA" 1758372 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-750 1757880 1757909 1757978 "NONE1" 1758055 NIL NONE1 (NIL T) -7 NIL NIL) (-749 1757707 1757837 1757866 "NONE" 1757871 T NONE (NIL) -8 NIL NIL) (-748 1757190 1757252 1757438 "NODE1" 1757639 NIL NODE1 (NIL T T) -7 NIL NIL) (-747 1755530 1756353 1756608 "NNI" 1756955 T NNI (NIL) -8 NIL NIL) (-746 1753950 1754263 1754627 "NLINSOL" 1755198 NIL NLINSOL (NIL T) -7 NIL NIL) (-745 1750117 1751085 1752007 "NIPROB" 1753048 T NIPROB (NIL) -8 NIL NIL) (-744 1748874 1749108 1749410 "NFINTBAS" 1749879 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-743 1747582 1747813 1748094 "NCODIV" 1748642 NIL NCODIV (NIL T T) -7 NIL NIL) (-742 1747344 1747381 1747456 "NCNTFRAC" 1747539 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-741 1745524 1745888 1746308 "NCEP" 1746969 NIL NCEP (NIL T) -7 NIL NIL) (-740 1744442 1745174 1745202 "NASRING" 1745312 T NASRING (NIL) -9 NIL 1745386) (-739 1744237 1744281 1744375 "NASRING-" 1744380 NIL NASRING- (NIL T) -8 NIL NIL) (-738 1743390 1743889 1743917 "NARNG" 1744034 T NARNG (NIL) -9 NIL 1744125) (-737 1743082 1743149 1743283 "NARNG-" 1743288 NIL NARNG- (NIL T) -8 NIL NIL) (-736 1741961 1742168 1742403 "NAGSP" 1742867 T NAGSP (NIL) -7 NIL NIL) (-735 1733233 1734917 1736590 "NAGS" 1740308 T NAGS (NIL) -7 NIL NIL) (-734 1731781 1732089 1732420 "NAGF07" 1732922 T NAGF07 (NIL) -7 NIL NIL) (-733 1726319 1727610 1728917 "NAGF04" 1730494 T NAGF04 (NIL) -7 NIL NIL) (-732 1719287 1720901 1722534 "NAGF02" 1724706 T NAGF02 (NIL) -7 NIL NIL) (-731 1714511 1715611 1716728 "NAGF01" 1718190 T NAGF01 (NIL) -7 NIL NIL) (-730 1708139 1709705 1711290 "NAGE04" 1712946 T NAGE04 (NIL) -7 NIL NIL) (-729 1699308 1701429 1703559 "NAGE02" 1706029 T NAGE02 (NIL) -7 NIL NIL) (-728 1695261 1696208 1697172 "NAGE01" 1698364 T NAGE01 (NIL) -7 NIL NIL) (-727 1693056 1693590 1694148 "NAGD03" 1694723 T NAGD03 (NIL) -7 NIL NIL) (-726 1684806 1686734 1688688 "NAGD02" 1691122 T NAGD02 (NIL) -7 NIL NIL) (-725 1678617 1680042 1681482 "NAGD01" 1683386 T NAGD01 (NIL) -7 NIL NIL) (-724 1674826 1675648 1676485 "NAGC06" 1677800 T NAGC06 (NIL) -7 NIL NIL) (-723 1673291 1673623 1673979 "NAGC05" 1674490 T NAGC05 (NIL) -7 NIL NIL) (-722 1672667 1672786 1672930 "NAGC02" 1673167 T NAGC02 (NIL) -7 NIL NIL) (-721 1671727 1672284 1672324 "NAALG" 1672403 NIL NAALG (NIL T) -9 NIL 1672464) (-720 1671562 1671591 1671681 "NAALG-" 1671686 NIL NAALG- (NIL T T) -8 NIL NIL) (-719 1665512 1666620 1667807 "MULTSQFR" 1670458 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-718 1664831 1664906 1665090 "MULTFACT" 1665424 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-717 1658054 1661919 1661972 "MTSCAT" 1663042 NIL MTSCAT (NIL T T) -9 NIL 1663556) (-716 1657766 1657820 1657912 "MTHING" 1657994 NIL MTHING (NIL T) -7 NIL NIL) (-715 1657558 1657591 1657651 "MSYSCMD" 1657726 T MSYSCMD (NIL) -7 NIL NIL) (-714 1654653 1657119 1657160 "MSETAGG" 1657165 NIL MSETAGG (NIL T) -9 NIL 1657199) (-713 1650765 1653408 1653728 "MSET" 1654366 NIL MSET (NIL T) -8 NIL NIL) (-712 1646650 1648144 1648889 "MRING" 1650065 NIL MRING (NIL T T) -8 NIL NIL) (-711 1646216 1646283 1646414 "MRF2" 1646577 NIL MRF2 (NIL T T T) -7 NIL NIL) (-710 1645834 1645869 1646013 "MRATFAC" 1646175 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-709 1643446 1643741 1644172 "MPRFF" 1645539 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-708 1637532 1643300 1643397 "MPOLY" 1643402 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-707 1637022 1637057 1637265 "MPCPF" 1637491 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-706 1636536 1636579 1636763 "MPC3" 1636973 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-705 1635731 1635812 1636033 "MPC2" 1636451 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-704 1634032 1634369 1634759 "MONOTOOL" 1635391 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-703 1633283 1633574 1633602 "MONOID" 1633821 T MONOID (NIL) -9 NIL 1633968) (-702 1632829 1632948 1633129 "MONOID-" 1633134 NIL MONOID- (NIL T) -8 NIL NIL) (-701 1623888 1629785 1629844 "MONOGEN" 1630518 NIL MONOGEN (NIL T T) -9 NIL 1630974) (-700 1621127 1621855 1622848 "MONOGEN-" 1622967 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-699 1619986 1620406 1620434 "MONADWU" 1620826 T MONADWU (NIL) -9 NIL 1621064) (-698 1619358 1619517 1619765 "MONADWU-" 1619770 NIL MONADWU- (NIL T) -8 NIL NIL) (-697 1618743 1618961 1618989 "MONAD" 1619196 T MONAD (NIL) -9 NIL 1619308) (-696 1618428 1618506 1618638 "MONAD-" 1618643 NIL MONAD- (NIL T) -8 NIL NIL) (-695 1616744 1617341 1617620 "MOEBIUS" 1618181 NIL MOEBIUS (NIL T) -8 NIL NIL) (-694 1616136 1616514 1616554 "MODULE" 1616559 NIL MODULE (NIL T) -9 NIL 1616585) (-693 1615704 1615800 1615990 "MODULE-" 1615995 NIL MODULE- (NIL T T) -8 NIL NIL) (-692 1613463 1614112 1614439 "MODRING" 1615528 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-691 1610451 1611568 1612089 "MODOP" 1612992 NIL MODOP (NIL T T) -8 NIL NIL) (-690 1608638 1609090 1609431 "MODMONOM" 1610250 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-689 1598386 1606830 1607253 "MODMON" 1608266 NIL MODMON (NIL T T) -8 NIL NIL) (-688 1595603 1597254 1597530 "MODFIELD" 1598261 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-687 1594607 1594884 1595074 "MMLFORM" 1595433 T MMLFORM (NIL) -8 NIL NIL) (-686 1594133 1594176 1594355 "MMAP" 1594558 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-685 1592402 1593135 1593176 "MLO" 1593599 NIL MLO (NIL T) -9 NIL 1593841) (-684 1589769 1590284 1590886 "MLIFT" 1591883 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-683 1589160 1589244 1589398 "MKUCFUNC" 1589680 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-682 1588759 1588829 1588952 "MKRECORD" 1589083 NIL MKRECORD (NIL T T) -7 NIL NIL) (-681 1587807 1587968 1588196 "MKFUNC" 1588570 NIL MKFUNC (NIL T) -7 NIL NIL) (-680 1587195 1587299 1587455 "MKFLCFN" 1587690 NIL MKFLCFN (NIL T) -7 NIL NIL) (-679 1586621 1586988 1587077 "MKCHSET" 1587139 NIL MKCHSET (NIL T) -8 NIL NIL) (-678 1585898 1586000 1586185 "MKBCFUNC" 1586514 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-677 1582642 1585452 1585588 "MINT" 1585782 T MINT (NIL) -8 NIL NIL) (-676 1581454 1581697 1581974 "MHROWRED" 1582397 NIL MHROWRED (NIL T) -7 NIL NIL) (-675 1576889 1579989 1580394 "MFLOAT" 1581069 T MFLOAT (NIL) -8 NIL NIL) (-674 1576246 1576322 1576493 "MFINFACT" 1576801 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-673 1572581 1573424 1574303 "MESH" 1575387 T MESH (NIL) -7 NIL NIL) (-672 1570971 1571283 1571636 "MDDFACT" 1572268 NIL MDDFACT (NIL T) -7 NIL NIL) (-671 1567813 1570130 1570171 "MDAGG" 1570426 NIL MDAGG (NIL T) -9 NIL 1570569) (-670 1557611 1567106 1567313 "MCMPLX" 1567626 T MCMPLX (NIL) -8 NIL NIL) (-669 1556752 1556898 1557098 "MCDEN" 1557460 NIL MCDEN (NIL T T) -7 NIL NIL) (-668 1554642 1554912 1555292 "MCALCFN" 1556482 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-667 1553553 1553726 1553967 "MAYBE" 1554440 NIL MAYBE (NIL T) -8 NIL NIL) (-666 1551165 1551688 1552250 "MATSTOR" 1553024 NIL MATSTOR (NIL T) -7 NIL NIL) (-665 1547170 1550537 1550785 "MATRIX" 1550950 NIL MATRIX (NIL T) -8 NIL NIL) (-664 1542939 1543643 1544379 "MATLIN" 1546527 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-663 1541533 1541686 1542019 "MATCAT2" 1542774 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-662 1531681 1534822 1534899 "MATCAT" 1539782 NIL MATCAT (NIL T T T) -9 NIL 1541199) (-661 1528045 1529058 1530414 "MATCAT-" 1530419 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-660 1526157 1526481 1526865 "MAPPKG3" 1527720 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-659 1525138 1525311 1525533 "MAPPKG2" 1525981 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-658 1523637 1523921 1524248 "MAPPKG1" 1524844 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-657 1522743 1523043 1523220 "MAPPAST" 1523480 T MAPPAST (NIL) -8 NIL NIL) (-656 1522354 1522412 1522535 "MAPHACK3" 1522679 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-655 1521946 1522007 1522121 "MAPHACK2" 1522286 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-654 1521384 1521487 1521629 "MAPHACK1" 1521837 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-653 1519490 1520084 1520388 "MAGMA" 1521112 NIL MAGMA (NIL T) -8 NIL NIL) (-652 1518996 1519214 1519305 "MACROAST" 1519419 T MACROAST (NIL) -8 NIL NIL) (-651 1515463 1517235 1517696 "M3D" 1518568 NIL M3D (NIL T) -8 NIL NIL) (-650 1509620 1513833 1513874 "LZSTAGG" 1514656 NIL LZSTAGG (NIL T) -9 NIL 1514951) (-649 1505593 1506751 1508208 "LZSTAGG-" 1508213 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-648 1502707 1503484 1503971 "LWORD" 1505138 NIL LWORD (NIL T) -8 NIL NIL) (-647 1502310 1502511 1502586 "LSTAST" 1502652 T LSTAST (NIL) -8 NIL NIL) (-646 1495542 1502081 1502215 "LSQM" 1502220 NIL LSQM (NIL NIL T) -8 NIL NIL) (-645 1494766 1494905 1495133 "LSPP" 1495397 NIL LSPP (NIL T T T T) -7 NIL NIL) (-644 1491608 1492265 1492978 "LSMP1" 1494085 NIL LSMP1 (NIL T) -7 NIL NIL) (-643 1489443 1489737 1490186 "LSMP" 1491304 NIL LSMP (NIL T T T T) -7 NIL NIL) (-642 1483371 1488611 1488652 "LSAGG" 1488714 NIL LSAGG (NIL T) -9 NIL 1488792) (-641 1480066 1480990 1482203 "LSAGG-" 1482208 NIL LSAGG- (NIL T T) -8 NIL NIL) (-640 1477692 1479210 1479459 "LPOLY" 1479861 NIL LPOLY (NIL T T) -8 NIL NIL) (-639 1477274 1477359 1477482 "LPEFRAC" 1477601 NIL LPEFRAC (NIL T) -7 NIL NIL) (-638 1476926 1477038 1477066 "LOGIC" 1477177 T LOGIC (NIL) -9 NIL 1477258) (-637 1476788 1476811 1476882 "LOGIC-" 1476887 NIL LOGIC- (NIL T) -8 NIL NIL) (-636 1475981 1476121 1476314 "LODOOPS" 1476644 NIL LODOOPS (NIL T T) -7 NIL NIL) (-635 1474519 1474754 1475107 "LODOF" 1475728 NIL LODOF (NIL T T) -7 NIL NIL) (-634 1470976 1473359 1473400 "LODOCAT" 1473838 NIL LODOCAT (NIL T) -9 NIL 1474049) (-633 1470709 1470767 1470894 "LODOCAT-" 1470899 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-632 1468078 1470550 1470668 "LODO2" 1470673 NIL LODO2 (NIL T T) -8 NIL NIL) (-631 1465562 1468015 1468060 "LODO1" 1468065 NIL LODO1 (NIL T) -8 NIL NIL) (-630 1463034 1465478 1465544 "LODO" 1465549 NIL LODO (NIL T NIL) -8 NIL NIL) (-629 1461894 1462059 1462371 "LODEEF" 1462857 NIL LODEEF (NIL T T T) -7 NIL NIL) (-628 1460241 1460988 1461241 "LO" 1461726 NIL LO (NIL T T T) -8 NIL NIL) (-627 1455527 1458371 1458412 "LNAGG" 1459359 NIL LNAGG (NIL T) -9 NIL 1459803) (-626 1454674 1454888 1455230 "LNAGG-" 1455235 NIL LNAGG- (NIL T T) -8 NIL NIL) (-625 1450837 1451599 1452238 "LMOPS" 1454089 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-624 1450232 1450594 1450635 "LMODULE" 1450696 NIL LMODULE (NIL T) -9 NIL 1450738) (-623 1447478 1449877 1450000 "LMDICT" 1450142 NIL LMDICT (NIL T) -8 NIL NIL) (-622 1447204 1447386 1447446 "LITERAL" 1447451 NIL LITERAL (NIL T) -8 NIL NIL) (-621 1446729 1446803 1446942 "LIST3" 1447124 NIL LIST3 (NIL T T T) -7 NIL NIL) (-620 1444863 1445175 1445574 "LIST2MAP" 1446376 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-619 1443870 1444048 1444276 "LIST2" 1444681 NIL LIST2 (NIL T T) -7 NIL NIL) (-618 1437099 1442816 1443114 "LIST" 1443605 NIL LIST (NIL T) -8 NIL NIL) (-617 1435849 1436485 1436526 "LINEXP" 1436781 NIL LINEXP (NIL T) -9 NIL 1436930) (-616 1434496 1434756 1435053 "LINDEP" 1435601 NIL LINDEP (NIL T T) -7 NIL NIL) (-615 1431334 1432034 1432792 "LIMITRF" 1433770 NIL LIMITRF (NIL T) -7 NIL NIL) (-614 1429633 1429921 1430330 "LIMITPS" 1431036 NIL LIMITPS (NIL T T) -7 NIL NIL) (-613 1428682 1429125 1429165 "LIECAT" 1429305 NIL LIECAT (NIL T) -9 NIL 1429456) (-612 1428523 1428550 1428638 "LIECAT-" 1428643 NIL LIECAT- (NIL T T) -8 NIL NIL) (-611 1423010 1428034 1428262 "LIE" 1428344 NIL LIE (NIL T T) -8 NIL NIL) (-610 1415624 1422459 1422624 "LIB" 1422865 T LIB (NIL) -8 NIL NIL) (-609 1411261 1412142 1413077 "LGROBP" 1414741 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-608 1410101 1410793 1410821 "LFCAT" 1411028 T LFCAT (NIL) -9 NIL 1411167) (-607 1407967 1408241 1408603 "LF" 1409822 NIL LF (NIL T T) -7 NIL NIL) (-606 1404871 1405499 1406187 "LEXTRIPK" 1407331 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-605 1401642 1402441 1402944 "LEXP" 1404451 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-604 1401145 1401363 1401455 "LETAST" 1401570 T LETAST (NIL) -8 NIL NIL) (-603 1399543 1399856 1400257 "LEADCDET" 1400827 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-602 1398733 1398807 1399036 "LAZM3PK" 1399464 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-601 1393703 1396810 1397348 "LAUPOL" 1398245 NIL LAUPOL (NIL T T) -8 NIL NIL) (-600 1393268 1393312 1393480 "LAPLACE" 1393653 NIL LAPLACE (NIL T T) -7 NIL NIL) (-599 1392369 1392919 1392960 "LALG" 1393022 NIL LALG (NIL T) -9 NIL 1393081) (-598 1392083 1392142 1392278 "LALG-" 1392283 NIL LALG- (NIL T T) -8 NIL NIL) (-597 1390057 1391184 1391435 "LA" 1391916 NIL LA (NIL T T T) -8 NIL NIL) (-596 1388857 1389274 1389503 "KTVLOGIC" 1389848 T KTVLOGIC (NIL) -8 NIL NIL) (-595 1387761 1387948 1388247 "KOVACIC" 1388657 NIL KOVACIC (NIL T T) -7 NIL NIL) (-594 1387596 1387620 1387661 "KONVERT" 1387723 NIL KONVERT (NIL T) -9 NIL NIL) (-593 1387431 1387455 1387496 "KOERCE" 1387558 NIL KOERCE (NIL T) -9 NIL NIL) (-592 1386933 1387014 1387144 "KERNEL2" 1387345 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-591 1384667 1385427 1385820 "KERNEL" 1386572 NIL KERNEL (NIL T) -8 NIL NIL) (-590 1378518 1383206 1383260 "KDAGG" 1383637 NIL KDAGG (NIL T T) -9 NIL 1383843) (-589 1378047 1378171 1378376 "KDAGG-" 1378381 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-588 1371224 1377708 1377863 "KAFILE" 1377925 NIL KAFILE (NIL T) -8 NIL NIL) (-587 1365711 1370735 1370963 "JORDAN" 1371045 NIL JORDAN (NIL T T) -8 NIL NIL) (-586 1365117 1365360 1365481 "JOINAST" 1365610 T JOINAST (NIL) -8 NIL NIL) (-585 1364846 1364905 1364992 "JAVACODE" 1365050 T JAVACODE (NIL) -8 NIL NIL) (-584 1361145 1363051 1363105 "IXAGG" 1364034 NIL IXAGG (NIL T T) -9 NIL 1364493) (-583 1360064 1360370 1360789 "IXAGG-" 1360794 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-582 1355644 1359986 1360045 "IVECTOR" 1360050 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-581 1354410 1354647 1354913 "ITUPLE" 1355411 NIL ITUPLE (NIL T) -8 NIL NIL) (-580 1352846 1353023 1353329 "ITRIGMNP" 1354232 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-579 1351591 1351795 1352078 "ITFUN3" 1352622 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-578 1351223 1351280 1351389 "ITFUN2" 1351528 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-577 1349060 1350085 1350384 "ITAYLOR" 1350957 NIL ITAYLOR (NIL T) -8 NIL NIL) (-576 1338054 1343206 1344366 "ISUPS" 1347933 NIL ISUPS (NIL T) -8 NIL NIL) (-575 1337158 1337298 1337534 "ISUMP" 1337901 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-574 1332422 1336959 1337038 "ISTRING" 1337111 NIL ISTRING (NIL NIL) -8 NIL NIL) (-573 1331925 1332143 1332235 "ISAST" 1332350 T ISAST (NIL) -8 NIL NIL) (-572 1331135 1331216 1331432 "IRURPK" 1331839 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-571 1330071 1330272 1330512 "IRSN" 1330915 T IRSN (NIL) -7 NIL NIL) (-570 1328100 1328455 1328891 "IRRF2F" 1329709 NIL IRRF2F (NIL T) -7 NIL NIL) (-569 1327847 1327885 1327961 "IRREDFFX" 1328056 NIL IRREDFFX (NIL T) -7 NIL NIL) (-568 1326462 1326721 1327020 "IROOT" 1327580 NIL IROOT (NIL T) -7 NIL NIL) (-567 1325534 1325647 1325868 "IR2F" 1326345 NIL IR2F (NIL T T) -7 NIL NIL) (-566 1323147 1323642 1324208 "IR2" 1325012 NIL IR2 (NIL T T) -7 NIL NIL) (-565 1319779 1320831 1321523 "IR" 1322487 NIL IR (NIL T) -8 NIL NIL) (-564 1319570 1319604 1319664 "IPRNTPK" 1319739 T IPRNTPK (NIL) -7 NIL NIL) (-563 1316191 1319459 1319528 "IPF" 1319533 NIL IPF (NIL NIL) -8 NIL NIL) (-562 1314556 1316116 1316173 "IPADIC" 1316178 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-561 1314320 1314460 1314488 "IOBCON" 1314493 T IOBCON (NIL) -9 NIL 1314514) (-560 1313817 1313875 1314065 "INVLAPLA" 1314256 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-559 1303514 1305855 1308229 "INTTR" 1311493 NIL INTTR (NIL T T) -7 NIL NIL) (-558 1299858 1300600 1301464 "INTTOOLS" 1302699 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-557 1299444 1299535 1299652 "INTSLPE" 1299761 T INTSLPE (NIL) -7 NIL NIL) (-556 1297439 1299367 1299426 "INTRVL" 1299431 NIL INTRVL (NIL T) -8 NIL NIL) (-555 1295041 1295553 1296128 "INTRF" 1296924 NIL INTRF (NIL T) -7 NIL NIL) (-554 1294452 1294549 1294691 "INTRET" 1294939 NIL INTRET (NIL T) -7 NIL NIL) (-553 1292449 1292838 1293308 "INTRAT" 1294060 NIL INTRAT (NIL T T) -7 NIL NIL) (-552 1289677 1290260 1290886 "INTPM" 1291934 NIL INTPM (NIL T T) -7 NIL NIL) (-551 1286403 1286995 1287733 "INTPAF" 1289070 NIL INTPAF (NIL T T T) -7 NIL NIL) (-550 1281582 1282544 1283595 "INTPACK" 1285372 T INTPACK (NIL) -7 NIL NIL) (-549 1280834 1280986 1281194 "INTHERTR" 1281424 NIL INTHERTR (NIL T T) -7 NIL NIL) (-548 1280273 1280353 1280541 "INTHERAL" 1280748 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-547 1278119 1278562 1279019 "INTHEORY" 1279836 T INTHEORY (NIL) -7 NIL NIL) (-546 1269485 1271088 1272849 "INTG0" 1276489 NIL INTG0 (NIL T T T) -7 NIL NIL) (-545 1255758 1259123 1262508 "INTFTBL" 1266120 T INTFTBL (NIL) -8 NIL NIL) (-544 1255007 1255145 1255318 "INTFACT" 1255617 NIL INTFACT (NIL T) -7 NIL NIL) (-543 1252398 1252842 1253404 "INTEF" 1254563 NIL INTEF (NIL T T) -7 NIL NIL) (-542 1250900 1251605 1251633 "INTDOM" 1251934 T INTDOM (NIL) -9 NIL 1252141) (-541 1250269 1250443 1250685 "INTDOM-" 1250690 NIL INTDOM- (NIL T) -8 NIL NIL) (-540 1246802 1248688 1248742 "INTCAT" 1249541 NIL INTCAT (NIL T) -9 NIL 1249861) (-539 1246275 1246377 1246505 "INTBIT" 1246694 T INTBIT (NIL) -7 NIL NIL) (-538 1244946 1245100 1245414 "INTALG" 1246120 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-537 1244403 1244493 1244663 "INTAF" 1244850 NIL INTAF (NIL T T) -7 NIL NIL) (-536 1237859 1244213 1244353 "INTABL" 1244358 NIL INTABL (NIL T T T) -8 NIL NIL) (-535 1234773 1237588 1237715 "INT" 1237752 T INT (NIL) -8 NIL NIL) (-534 1229830 1232499 1232527 "INS" 1233461 T INS (NIL) -9 NIL 1234125) (-533 1227070 1227841 1228815 "INS-" 1228888 NIL INS- (NIL T) -8 NIL NIL) (-532 1225918 1226123 1226399 "INPSIGN" 1226845 NIL INPSIGN (NIL T T) -7 NIL NIL) (-531 1225036 1225153 1225350 "INPRODPF" 1225798 NIL INPRODPF (NIL T T) -7 NIL NIL) (-530 1223930 1224047 1224284 "INPRODFF" 1224916 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-529 1222930 1223082 1223342 "INNMFACT" 1223766 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-528 1222127 1222224 1222412 "INMODGCD" 1222829 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-527 1220636 1220880 1221204 "INFSP" 1221872 NIL INFSP (NIL T T T) -7 NIL NIL) (-526 1219820 1219937 1220120 "INFPROD0" 1220516 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-525 1219430 1219490 1219588 "INFORM1" 1219755 NIL INFORM1 (NIL T) -7 NIL NIL) (-524 1216312 1217495 1218010 "INFORM" 1218923 T INFORM (NIL) -8 NIL NIL) (-523 1215835 1215924 1216038 "INFINITY" 1216218 T INFINITY (NIL) -7 NIL NIL) (-522 1214452 1214701 1215022 "INEP" 1215583 NIL INEP (NIL T T T) -7 NIL NIL) (-521 1213728 1214349 1214414 "INDE" 1214419 NIL INDE (NIL T) -8 NIL NIL) (-520 1213292 1213360 1213477 "INCRMAPS" 1213655 NIL INCRMAPS (NIL T) -7 NIL NIL) (-519 1208603 1209528 1210472 "INBFF" 1212380 NIL INBFF (NIL T) -7 NIL NIL) (-518 1208272 1208348 1208376 "INBCON" 1208509 T INBCON (NIL) -9 NIL 1208587) (-517 1208112 1208147 1208223 "INBCON-" 1208228 NIL INBCON- (NIL T) -8 NIL NIL) (-516 1207614 1207833 1207925 "INAST" 1208040 T INAST (NIL) -8 NIL NIL) (-515 1207068 1207293 1207399 "IMPTAST" 1207528 T IMPTAST (NIL) -8 NIL NIL) (-514 1203561 1206912 1207016 "IMATRIX" 1207021 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-513 1202273 1202396 1202711 "IMATQF" 1203417 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-512 1200493 1200720 1201057 "IMATLIN" 1202029 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-511 1195121 1200417 1200475 "ILIST" 1200480 NIL ILIST (NIL T NIL) -8 NIL NIL) (-510 1193074 1194981 1195094 "IIARRAY2" 1195099 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-509 1188509 1192985 1193049 "IFF" 1193054 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-508 1187883 1188126 1188242 "IFAST" 1188413 T IFAST (NIL) -8 NIL NIL) (-507 1182926 1187175 1187363 "IFARRAY" 1187740 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-506 1182133 1182830 1182903 "IFAMON" 1182908 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-505 1181717 1181782 1181836 "IEVALAB" 1182043 NIL IEVALAB (NIL T T) -9 NIL NIL) (-504 1181392 1181460 1181620 "IEVALAB-" 1181625 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-503 1180669 1181281 1181356 "IDPOAMS" 1181361 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-502 1180003 1180558 1180633 "IDPOAM" 1180638 NIL IDPOAM (NIL T T) -8 NIL NIL) (-501 1179661 1179917 1179980 "IDPO" 1179985 NIL IDPO (NIL T T) -8 NIL NIL) (-500 1178746 1178996 1179049 "IDPC" 1179462 NIL IDPC (NIL T T) -9 NIL 1179611) (-499 1178242 1178638 1178711 "IDPAM" 1178716 NIL IDPAM (NIL T T) -8 NIL NIL) (-498 1177645 1178134 1178207 "IDPAG" 1178212 NIL IDPAG (NIL T T) -8 NIL NIL) (-497 1177375 1177560 1177610 "IDENT" 1177615 T IDENT (NIL) -8 NIL NIL) (-496 1173630 1174478 1175373 "IDECOMP" 1176532 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-495 1166503 1167553 1168600 "IDEAL" 1172666 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-494 1165667 1165779 1165978 "ICDEN" 1166387 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-493 1164766 1165147 1165294 "ICARD" 1165540 T ICARD (NIL) -8 NIL NIL) (-492 1162826 1163139 1163544 "IBPTOOLS" 1164443 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-491 1158460 1162446 1162559 "IBITS" 1162745 NIL IBITS (NIL NIL) -8 NIL NIL) (-490 1155183 1155759 1156454 "IBATOOL" 1157877 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-489 1152963 1153424 1153957 "IBACHIN" 1154718 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-488 1150840 1152809 1152912 "IARRAY2" 1152917 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-487 1146993 1150766 1150823 "IARRAY1" 1150828 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-486 1140997 1145407 1145887 "IAN" 1146533 T IAN (NIL) -8 NIL NIL) (-485 1140508 1140565 1140738 "IALGFACT" 1140934 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-484 1140036 1140149 1140177 "HYPCAT" 1140384 T HYPCAT (NIL) -9 NIL NIL) (-483 1139574 1139691 1139877 "HYPCAT-" 1139882 NIL HYPCAT- (NIL T) -8 NIL NIL) (-482 1139196 1139369 1139452 "HOSTNAME" 1139511 T HOSTNAME (NIL) -8 NIL NIL) (-481 1135875 1137206 1137247 "HOAGG" 1138228 NIL HOAGG (NIL T) -9 NIL 1138907) (-480 1134469 1134868 1135394 "HOAGG-" 1135399 NIL HOAGG- (NIL T T) -8 NIL NIL) (-479 1128378 1133910 1134076 "HEXADEC" 1134323 T HEXADEC (NIL) -8 NIL NIL) (-478 1127126 1127348 1127611 "HEUGCD" 1128155 NIL HEUGCD (NIL T) -7 NIL NIL) (-477 1126229 1126963 1127093 "HELLFDIV" 1127098 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-476 1124457 1126006 1126094 "HEAP" 1126173 NIL HEAP (NIL T) -8 NIL NIL) (-475 1123748 1124009 1124143 "HEADAST" 1124343 T HEADAST (NIL) -8 NIL NIL) (-474 1117675 1123663 1123725 "HDP" 1123730 NIL HDP (NIL NIL T) -8 NIL NIL) (-473 1111457 1117310 1117462 "HDMP" 1117576 NIL HDMP (NIL NIL T) -8 NIL NIL) (-472 1110782 1110921 1111085 "HB" 1111313 T HB (NIL) -7 NIL NIL) (-471 1104281 1110628 1110732 "HASHTBL" 1110737 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-470 1103784 1104002 1104094 "HASAST" 1104209 T HASAST (NIL) -8 NIL NIL) (-469 1101602 1103408 1103589 "HACKPI" 1103623 T HACKPI (NIL) -8 NIL NIL) (-468 1097324 1101455 1101568 "GTSET" 1101573 NIL GTSET (NIL T T T T) -8 NIL NIL) (-467 1090852 1097202 1097300 "GSTBL" 1097305 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-466 1083167 1089883 1090148 "GSERIES" 1090643 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-465 1082334 1082725 1082753 "GROUP" 1082956 T GROUP (NIL) -9 NIL 1083090) (-464 1081700 1081859 1082110 "GROUP-" 1082115 NIL GROUP- (NIL T) -8 NIL NIL) (-463 1080069 1080388 1080775 "GROEBSOL" 1081377 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-462 1079009 1079271 1079322 "GRMOD" 1079851 NIL GRMOD (NIL T T) -9 NIL 1080019) (-461 1078777 1078813 1078941 "GRMOD-" 1078946 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-460 1074102 1075131 1076131 "GRIMAGE" 1077797 T GRIMAGE (NIL) -8 NIL NIL) (-459 1072569 1072829 1073153 "GRDEF" 1073798 T GRDEF (NIL) -7 NIL NIL) (-458 1072013 1072129 1072270 "GRAY" 1072448 T GRAY (NIL) -7 NIL NIL) (-457 1071244 1071624 1071675 "GRALG" 1071828 NIL GRALG (NIL T T) -9 NIL 1071921) (-456 1070905 1070978 1071141 "GRALG-" 1071146 NIL GRALG- (NIL T T T) -8 NIL NIL) (-455 1067709 1070490 1070668 "GPOLSET" 1070812 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-454 1067063 1067120 1067378 "GOSPER" 1067646 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-453 1062822 1063501 1064027 "GMODPOL" 1066762 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-452 1061827 1062011 1062249 "GHENSEL" 1062634 NIL GHENSEL (NIL T T) -7 NIL NIL) (-451 1055878 1056721 1057748 "GENUPS" 1060911 NIL GENUPS (NIL T T) -7 NIL NIL) (-450 1055575 1055626 1055715 "GENUFACT" 1055821 NIL GENUFACT (NIL T) -7 NIL NIL) (-449 1054987 1055064 1055229 "GENPGCD" 1055493 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-448 1054461 1054496 1054709 "GENMFACT" 1054946 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-447 1053029 1053284 1053591 "GENEEZ" 1054204 NIL GENEEZ (NIL T T) -7 NIL NIL) (-446 1046973 1052640 1052802 "GDMP" 1052952 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-445 1036372 1040744 1041850 "GCNAALG" 1045956 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-444 1034834 1035662 1035690 "GCDDOM" 1035945 T GCDDOM (NIL) -9 NIL 1036102) (-443 1034304 1034431 1034646 "GCDDOM-" 1034651 NIL GCDDOM- (NIL T) -8 NIL NIL) (-442 1022924 1025250 1027642 "GBINTERN" 1031995 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-441 1020761 1021053 1021474 "GBF" 1022599 NIL GBF (NIL T T T T) -7 NIL NIL) (-440 1019542 1019707 1019974 "GBEUCLID" 1020577 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-439 1018214 1018399 1018703 "GB" 1019321 NIL GB (NIL T T T T) -7 NIL NIL) (-438 1017563 1017688 1017837 "GAUSSFAC" 1018085 T GAUSSFAC (NIL) -7 NIL NIL) (-437 1015930 1016232 1016546 "GALUTIL" 1017282 NIL GALUTIL (NIL T) -7 NIL NIL) (-436 1014238 1014512 1014836 "GALPOLYU" 1015657 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-435 1011603 1011893 1012300 "GALFACTU" 1013935 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-434 1003409 1004908 1006516 "GALFACT" 1010035 NIL GALFACT (NIL T) -7 NIL NIL) (-433 1000797 1001455 1001483 "FVFUN" 1002639 T FVFUN (NIL) -9 NIL 1003359) (-432 1000063 1000245 1000273 "FVC" 1000564 T FVC (NIL) -9 NIL 1000747) (-431 999705 999860 999941 "FUNCTION" 1000015 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-430 998523 999006 999209 "FTEM" 999522 T FTEM (NIL) -8 NIL NIL) (-429 996205 996753 997239 "FT" 998057 T FT (NIL) -8 NIL NIL) (-428 994461 994750 995154 "FSUPFACT" 995896 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-427 992858 993147 993479 "FST" 994149 T FST (NIL) -8 NIL NIL) (-426 992029 992135 992330 "FSRED" 992740 NIL FSRED (NIL T T) -7 NIL NIL) (-425 990708 990963 991317 "FSPRMELT" 991744 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-424 987793 988231 988730 "FSPECF" 990271 NIL FSPECF (NIL T T) -7 NIL NIL) (-423 987307 987361 987538 "FSINT" 987734 NIL FSINT (NIL T T) -7 NIL NIL) (-422 985634 986300 986603 "FSERIES" 987086 NIL FSERIES (NIL T T) -8 NIL NIL) (-421 984648 984764 984995 "FSCINT" 985514 NIL FSCINT (NIL T T) -7 NIL NIL) (-420 983690 983833 984060 "FSAGG2" 984501 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-419 979924 982634 982675 "FSAGG" 983045 NIL FSAGG (NIL T) -9 NIL 983304) (-418 977686 978287 979083 "FSAGG-" 979178 NIL FSAGG- (NIL T T) -8 NIL NIL) (-417 975341 975620 976174 "FS2UPS" 977404 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-416 974198 974369 974678 "FS2EXPXP" 975166 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-415 973780 973823 973978 "FS2" 974149 NIL FS2 (NIL T T T T) -7 NIL NIL) (-414 956251 964664 964704 "FS" 968552 NIL FS (NIL T) -9 NIL 970841) (-413 944982 947945 951974 "FS-" 952271 NIL FS- (NIL T T) -8 NIL NIL) (-412 944408 944523 944675 "FRUTIL" 944862 NIL FRUTIL (NIL T) -7 NIL NIL) (-411 939515 942126 942166 "FRNAALG" 943562 NIL FRNAALG (NIL T) -9 NIL 944169) (-410 935244 936298 937556 "FRNAALG-" 938306 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-409 934882 934925 935052 "FRNAAF2" 935195 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-408 933289 933736 934031 "FRMOD" 934694 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-407 932484 932571 932860 "FRIDEAL2" 933196 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-406 930263 930867 931184 "FRIDEAL" 932275 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-405 929512 929919 929960 "FRETRCT" 929965 NIL FRETRCT (NIL T) -9 NIL 930141) (-404 928645 928869 929213 "FRETRCT-" 929218 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-403 925895 927071 927130 "FRAMALG" 928012 NIL FRAMALG (NIL T T) -9 NIL 928304) (-402 924029 924484 925114 "FRAMALG-" 925337 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-401 923665 923722 923829 "FRAC2" 923966 NIL FRAC2 (NIL T T) -7 NIL NIL) (-400 917646 923140 923416 "FRAC" 923421 NIL FRAC (NIL T) -8 NIL NIL) (-399 917282 917339 917446 "FR2" 917583 NIL FR2 (NIL T T) -7 NIL NIL) (-398 908858 912862 914191 "FR" 915985 NIL FR (NIL T) -8 NIL NIL) (-397 903592 906436 906464 "FPS" 907583 T FPS (NIL) -9 NIL 908140) (-396 903041 903150 903314 "FPS-" 903460 NIL FPS- (NIL T) -8 NIL NIL) (-395 900549 902182 902210 "FPC" 902435 T FPC (NIL) -9 NIL 902577) (-394 900342 900382 900479 "FPC-" 900484 NIL FPC- (NIL T) -8 NIL NIL) (-393 899220 899830 899871 "FPATMAB" 899876 NIL FPATMAB (NIL T) -9 NIL 900028) (-392 896920 897396 897822 "FPARFRAC" 898857 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-391 892352 892851 893533 "FORTRAN" 896352 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-390 890028 890590 890618 "FORTFN" 891678 T FORTFN (NIL) -9 NIL 892302) (-389 889792 889842 889870 "FORTCAT" 889929 T FORTCAT (NIL) -9 NIL 889991) (-388 887508 888008 888547 "FORT" 889273 T FORT (NIL) -7 NIL NIL) (-387 887296 887326 887395 "FORMULA1" 887472 NIL FORMULA1 (NIL T) -7 NIL NIL) (-386 885356 885839 886238 "FORMULA" 886917 T FORMULA (NIL) -8 NIL NIL) (-385 884879 884931 885104 "FORDER" 885298 NIL FORDER (NIL T T T T) -7 NIL NIL) (-384 883975 884139 884332 "FOP" 884706 T FOP (NIL) -7 NIL NIL) (-383 882583 883255 883429 "FNLA" 883857 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-382 881251 881640 881668 "FNCAT" 882240 T FNCAT (NIL) -9 NIL 882533) (-381 880817 881210 881238 "FNAME" 881243 T FNAME (NIL) -8 NIL NIL) (-380 879515 880444 880472 "FMTC" 880477 T FMTC (NIL) -9 NIL 880513) (-379 875877 877038 877667 "FMONOID" 878919 NIL FMONOID (NIL T) -8 NIL NIL) (-378 873301 873947 873975 "FMFUN" 875119 T FMFUN (NIL) -9 NIL 875827) (-377 870513 871347 871401 "FMCAT" 872596 NIL FMCAT (NIL T T) -9 NIL 873091) (-376 869782 869963 869991 "FMC" 870281 T FMC (NIL) -9 NIL 870463) (-375 868675 869548 869648 "FM1" 869727 NIL FM1 (NIL T T) -8 NIL NIL) (-374 867894 868417 868566 "FM" 868571 NIL FM (NIL T T) -8 NIL NIL) (-373 865668 866084 866578 "FLOATRP" 867445 NIL FLOATRP (NIL T) -7 NIL NIL) (-372 863106 863606 864184 "FLOATCP" 865135 NIL FLOATCP (NIL T) -7 NIL NIL) (-371 856661 860762 861392 "FLOAT" 862496 T FLOAT (NIL) -8 NIL NIL) (-370 855490 856294 856335 "FLINEXP" 856340 NIL FLINEXP (NIL T) -9 NIL 856433) (-369 854644 854879 855207 "FLINEXP-" 855212 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-368 853720 853864 854088 "FLASORT" 854496 NIL FLASORT (NIL T T) -7 NIL NIL) (-367 850937 851779 851831 "FLALG" 853058 NIL FLALG (NIL T T) -9 NIL 853525) (-366 849979 850122 850349 "FLAGG2" 850790 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-365 843763 847465 847506 "FLAGG" 848768 NIL FLAGG (NIL T) -9 NIL 849420) (-364 842489 842828 843318 "FLAGG-" 843323 NIL FLAGG- (NIL T T) -8 NIL NIL) (-363 839502 840476 840535 "FINRALG" 841663 NIL FINRALG (NIL T T) -9 NIL 842171) (-362 838662 838891 839230 "FINRALG-" 839235 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-361 838068 838281 838309 "FINITE" 838505 T FINITE (NIL) -9 NIL 838612) (-360 830526 832687 832727 "FINAALG" 836394 NIL FINAALG (NIL T) -9 NIL 837847) (-359 825867 826908 828052 "FINAALG-" 829431 NIL FINAALG- (NIL T T) -8 NIL NIL) (-358 824551 824863 824917 "FILECAT" 825601 NIL FILECAT (NIL T T) -9 NIL 825817) (-357 823946 824306 824409 "FILE" 824481 NIL FILE (NIL T) -8 NIL NIL) (-356 821868 823360 823388 "FIELD" 823428 T FIELD (NIL) -9 NIL 823508) (-355 820488 820873 821384 "FIELD-" 821389 NIL FIELD- (NIL T) -8 NIL NIL) (-354 818366 819123 819470 "FGROUP" 820174 NIL FGROUP (NIL T) -8 NIL NIL) (-353 817456 817620 817840 "FGLMICPK" 818198 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-352 813325 817381 817438 "FFX" 817443 NIL FFX (NIL T NIL) -8 NIL NIL) (-351 812926 812987 813122 "FFSLPE" 813258 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-350 812430 812466 812675 "FFPOLY2" 812884 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-349 808423 809202 809998 "FFPOLY" 811666 NIL FFPOLY (NIL T) -7 NIL NIL) (-348 804311 808342 808405 "FFP" 808410 NIL FFP (NIL T NIL) -8 NIL NIL) (-347 799474 803654 803844 "FFNBX" 804165 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-346 794450 798609 798867 "FFNBP" 799328 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-345 789120 793734 793945 "FFNB" 794283 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-344 787952 788150 788465 "FFINTBAS" 788917 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-343 784238 786411 786439 "FFIELDC" 787059 T FFIELDC (NIL) -9 NIL 787435) (-342 782901 783271 783768 "FFIELDC-" 783773 NIL FFIELDC- (NIL T) -8 NIL NIL) (-341 782471 782516 782640 "FFHOM" 782843 NIL FFHOM (NIL T T T) -7 NIL NIL) (-340 780169 780653 781170 "FFF" 781986 NIL FFF (NIL T) -7 NIL NIL) (-339 775824 779911 780012 "FFCGX" 780112 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-338 771493 775556 775663 "FFCGP" 775767 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-337 766713 771220 771328 "FFCG" 771429 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-336 766124 766167 766402 "FFCAT2" 766664 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-335 748191 757218 757304 "FFCAT" 762469 NIL FFCAT (NIL T T T) -9 NIL 763920) (-334 743389 744436 745750 "FFCAT-" 746980 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-333 738824 743300 743364 "FF" 743369 NIL FF (NIL NIL NIL) -8 NIL NIL) (-332 728038 731796 733016 "FEXPR" 737676 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-331 727038 727473 727514 "FEVALAB" 727598 NIL FEVALAB (NIL T) -9 NIL 727859) (-330 726197 726407 726745 "FEVALAB-" 726750 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-329 723263 723978 724093 "FDIVCAT" 725661 NIL FDIVCAT (NIL T T T T) -9 NIL 726098) (-328 723025 723052 723222 "FDIVCAT-" 723227 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-327 722245 722332 722609 "FDIV2" 722932 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-326 720838 721628 721831 "FDIV" 722144 NIL FDIV (NIL T T T T) -8 NIL NIL) (-325 719524 719783 720072 "FCPAK1" 720569 T FCPAK1 (NIL) -7 NIL NIL) (-324 718652 719024 719165 "FCOMP" 719415 NIL FCOMP (NIL T) -8 NIL NIL) (-323 702287 705701 709262 "FC" 715111 T FC (NIL) -8 NIL NIL) (-322 694942 698921 698961 "FAXF" 700763 NIL FAXF (NIL T) -9 NIL 701455) (-321 692221 692876 693701 "FAXF-" 694166 NIL FAXF- (NIL T T) -8 NIL NIL) (-320 687321 691597 691773 "FARRAY" 692078 NIL FARRAY (NIL T) -8 NIL NIL) (-319 682735 684760 684813 "FAMR" 685836 NIL FAMR (NIL T T) -9 NIL 686296) (-318 681625 681927 682362 "FAMR-" 682367 NIL FAMR- (NIL T T T) -8 NIL NIL) (-317 680821 681547 681600 "FAMONOID" 681605 NIL FAMONOID (NIL T) -8 NIL NIL) (-316 678651 679335 679388 "FAMONC" 680329 NIL FAMONC (NIL T T) -9 NIL 680715) (-315 677343 678405 678542 "FAGROUP" 678547 NIL FAGROUP (NIL T) -8 NIL NIL) (-314 675138 675457 675860 "FACUTIL" 677024 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-313 674237 674422 674644 "FACTFUNC" 674948 NIL FACTFUNC (NIL T) -7 NIL NIL) (-312 666644 673488 673700 "EXPUPXS" 674093 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-311 664127 664667 665253 "EXPRTUBE" 666078 T EXPRTUBE (NIL) -7 NIL NIL) (-310 660321 660913 661650 "EXPRODE" 663466 NIL EXPRODE (NIL T T) -7 NIL NIL) (-309 654728 655315 656128 "EXPR2UPS" 659619 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-308 654364 654421 654528 "EXPR2" 654665 NIL EXPR2 (NIL T T) -7 NIL NIL) (-307 639799 653019 653447 "EXPR" 653968 NIL EXPR (NIL T) -8 NIL NIL) (-306 631232 638931 639228 "EXPEXPAN" 639636 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-305 630739 630956 631047 "EXITAST" 631161 T EXITAST (NIL) -8 NIL NIL) (-304 630566 630696 630725 "EXIT" 630730 T EXIT (NIL) -8 NIL NIL) (-303 630193 630255 630368 "EVALCYC" 630498 NIL EVALCYC (NIL T) -7 NIL NIL) (-302 629734 629852 629893 "EVALAB" 630063 NIL EVALAB (NIL T) -9 NIL 630167) (-301 629215 629337 629558 "EVALAB-" 629563 NIL EVALAB- (NIL T T) -8 NIL NIL) (-300 626718 627986 628014 "EUCDOM" 628569 T EUCDOM (NIL) -9 NIL 628919) (-299 625123 625565 626155 "EUCDOM-" 626160 NIL EUCDOM- (NIL T) -8 NIL NIL) (-298 624755 624812 624921 "ESTOOLS2" 625060 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-297 624506 624548 624628 "ESTOOLS1" 624707 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-296 612046 614804 617554 "ESTOOLS" 621776 T ESTOOLS (NIL) -7 NIL NIL) (-295 611791 611823 611905 "ESCONT1" 612008 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-294 608166 608926 609706 "ESCONT" 611031 T ESCONT (NIL) -7 NIL NIL) (-293 607841 607891 607991 "ES2" 608110 NIL ES2 (NIL T T) -7 NIL NIL) (-292 607471 607529 607638 "ES1" 607777 NIL ES1 (NIL T T) -7 NIL NIL) (-291 601396 603124 603152 "ES" 605920 T ES (NIL) -9 NIL 607329) (-290 596343 597630 599447 "ES-" 599611 NIL ES- (NIL T) -8 NIL NIL) (-289 595559 595688 595864 "ERROR" 596187 T ERROR (NIL) -7 NIL NIL) (-288 589064 595418 595509 "EQTBL" 595514 NIL EQTBL (NIL T T) -8 NIL NIL) (-287 588696 588753 588862 "EQ2" 589001 NIL EQ2 (NIL T T) -7 NIL NIL) (-286 581253 584010 585459 "EQ" 587280 NIL -3873 (NIL T) -8 NIL NIL) (-285 576545 577591 578684 "EP" 580192 NIL EP (NIL T) -7 NIL NIL) (-284 575127 575428 575745 "ENV" 576248 T ENV (NIL) -8 NIL NIL) (-283 574326 574846 574874 "ENTIRER" 574879 T ENTIRER (NIL) -9 NIL 574925) (-282 570884 572335 572705 "EMR" 574125 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-281 570028 570213 570267 "ELTAGG" 570647 NIL ELTAGG (NIL T T) -9 NIL 570858) (-280 569747 569809 569950 "ELTAGG-" 569955 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-279 569536 569565 569619 "ELTAB" 569703 NIL ELTAB (NIL T T) -9 NIL NIL) (-278 568662 568808 569007 "ELFUTS" 569387 NIL ELFUTS (NIL T T) -7 NIL NIL) (-277 568404 568460 568488 "ELEMFUN" 568593 T ELEMFUN (NIL) -9 NIL NIL) (-276 568274 568295 568363 "ELEMFUN-" 568368 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-275 563165 566374 566415 "ELAGG" 567355 NIL ELAGG (NIL T) -9 NIL 567818) (-274 561450 561884 562547 "ELAGG-" 562552 NIL ELAGG- (NIL T T) -8 NIL NIL) (-273 560107 560387 560682 "ELABEXPR" 561175 T ELABEXPR (NIL) -8 NIL NIL) (-272 553100 554774 555601 "EFUPXS" 559383 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-271 546677 548351 549161 "EFULS" 552376 NIL EFULS (NIL T T T) -8 NIL NIL) (-270 544099 544457 544936 "EFSTRUC" 546309 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-269 533171 534736 536296 "EF" 542614 NIL EF (NIL T T) -7 NIL NIL) (-268 532272 532656 532805 "EAB" 533042 T EAB (NIL) -8 NIL NIL) (-267 531481 532231 532259 "E04UCFA" 532264 T E04UCFA (NIL) -8 NIL NIL) (-266 530690 531440 531468 "E04NAFA" 531473 T E04NAFA (NIL) -8 NIL NIL) (-265 529899 530649 530677 "E04MBFA" 530682 T E04MBFA (NIL) -8 NIL NIL) (-264 529108 529858 529886 "E04JAFA" 529891 T E04JAFA (NIL) -8 NIL NIL) (-263 528319 529067 529095 "E04GCFA" 529100 T E04GCFA (NIL) -8 NIL NIL) (-262 527530 528278 528306 "E04FDFA" 528311 T E04FDFA (NIL) -8 NIL NIL) (-261 526739 527489 527517 "E04DGFA" 527522 T E04DGFA (NIL) -8 NIL NIL) (-260 520917 522264 523628 "E04AGNT" 525395 T E04AGNT (NIL) -7 NIL NIL) (-259 519641 520121 520161 "DVARCAT" 520636 NIL DVARCAT (NIL T) -9 NIL 520835) (-258 518845 519057 519371 "DVARCAT-" 519376 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-257 511786 518644 518773 "DSMP" 518778 NIL DSMP (NIL T T T) -8 NIL NIL) (-256 511451 511510 511608 "DROPT1" 511721 NIL DROPT1 (NIL T) -7 NIL NIL) (-255 506566 507692 508829 "DROPT0" 510334 T DROPT0 (NIL) -7 NIL NIL) (-254 501376 502511 503579 "DROPT" 505518 T DROPT (NIL) -8 NIL NIL) (-253 499721 500046 500432 "DRAWPT" 501010 T DRAWPT (NIL) -7 NIL NIL) (-252 499354 499407 499525 "DRAWHACK" 499662 NIL DRAWHACK (NIL T) -7 NIL NIL) (-251 498085 498354 498645 "DRAWCX" 499083 T DRAWCX (NIL) -7 NIL NIL) (-250 497601 497669 497820 "DRAWCURV" 498011 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-249 488072 490031 492146 "DRAWCFUN" 495506 T DRAWCFUN (NIL) -7 NIL NIL) (-248 482659 483582 484661 "DRAW" 487046 NIL DRAW (NIL T) -7 NIL NIL) (-247 479472 481354 481395 "DQAGG" 482024 NIL DQAGG (NIL T) -9 NIL 482297) (-246 468027 474688 474771 "DPOLCAT" 476623 NIL DPOLCAT (NIL T T T T) -9 NIL 477168) (-245 462917 464246 466187 "DPOLCAT-" 466192 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-244 456079 462778 462876 "DPMO" 462881 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-243 449144 455859 456026 "DPMM" 456031 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-242 448564 448767 448881 "DOMAIN" 449050 T DOMAIN (NIL) -8 NIL NIL) (-241 442346 448199 448351 "DMP" 448465 NIL DMP (NIL NIL T) -8 NIL NIL) (-240 441946 442002 442146 "DLP" 442284 NIL DLP (NIL T) -7 NIL NIL) (-239 435592 441047 441274 "DLIST" 441751 NIL DLIST (NIL T) -8 NIL NIL) (-238 432439 434447 434488 "DLAGG" 435038 NIL DLAGG (NIL T) -9 NIL 435267) (-237 431289 431919 431947 "DIVRING" 432039 T DIVRING (NIL) -9 NIL 432122) (-236 430526 430716 431016 "DIVRING-" 431021 NIL DIVRING- (NIL T) -8 NIL NIL) (-235 428628 428985 429391 "DISPLAY" 430140 T DISPLAY (NIL) -7 NIL NIL) (-234 427476 427679 427944 "DIRPROD2" 428421 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-233 421425 427390 427453 "DIRPROD" 427458 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-232 410970 416915 416968 "DIRPCAT" 417378 NIL DIRPCAT (NIL NIL T) -9 NIL 418218) (-231 408296 408938 409819 "DIRPCAT-" 410156 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-230 407583 407743 407929 "DIOSP" 408130 T DIOSP (NIL) -7 NIL NIL) (-229 404285 406495 406536 "DIOPS" 406970 NIL DIOPS (NIL T) -9 NIL 407199) (-228 403834 403948 404139 "DIOPS-" 404144 NIL DIOPS- (NIL T T) -8 NIL NIL) (-227 402746 403340 403368 "DIFRING" 403555 T DIFRING (NIL) -9 NIL 403665) (-226 402392 402469 402621 "DIFRING-" 402626 NIL DIFRING- (NIL T) -8 NIL NIL) (-225 400217 401455 401496 "DIFEXT" 401859 NIL DIFEXT (NIL T) -9 NIL 402153) (-224 398502 398930 399596 "DIFEXT-" 399601 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-223 395824 398034 398075 "DIAGG" 398080 NIL DIAGG (NIL T) -9 NIL 398100) (-222 395208 395365 395617 "DIAGG-" 395622 NIL DIAGG- (NIL T T) -8 NIL NIL) (-221 390672 394167 394444 "DHMATRIX" 394977 NIL DHMATRIX (NIL T) -8 NIL NIL) (-220 386284 387193 388203 "DFSFUN" 389682 T DFSFUN (NIL) -7 NIL NIL) (-219 381256 385099 385441 "DFLOAT" 385962 T DFLOAT (NIL) -8 NIL NIL) (-218 379484 379765 380161 "DFINTTLS" 380964 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-217 376549 377505 377905 "DERHAM" 379150 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-216 374398 376324 376413 "DEQUEUE" 376493 NIL DEQUEUE (NIL T) -8 NIL NIL) (-215 373613 373746 373942 "DEGRED" 374260 NIL DEGRED (NIL T T) -7 NIL NIL) (-214 370188 370888 371696 "DEFINTRF" 372886 NIL DEFINTRF (NIL T) -7 NIL NIL) (-213 367827 368268 368839 "DEFINTEF" 369735 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-212 367204 367447 367562 "DEFAST" 367732 T DEFAST (NIL) -8 NIL NIL) (-211 361113 366645 366811 "DECIMAL" 367058 T DECIMAL (NIL) -8 NIL NIL) (-210 358625 359083 359589 "DDFACT" 360657 NIL DDFACT (NIL T T) -7 NIL NIL) (-209 358221 358264 358415 "DBLRESP" 358576 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-208 355931 356265 356634 "DBASE" 357979 NIL DBASE (NIL T) -8 NIL NIL) (-207 355200 355411 355557 "DATABUF" 355830 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-206 354333 355159 355187 "D03FAFA" 355192 T D03FAFA (NIL) -8 NIL NIL) (-205 353467 354292 354320 "D03EEFA" 354325 T D03EEFA (NIL) -8 NIL NIL) (-204 351417 351883 352372 "D03AGNT" 352998 T D03AGNT (NIL) -7 NIL NIL) (-203 350733 351376 351404 "D02EJFA" 351409 T D02EJFA (NIL) -8 NIL NIL) (-202 350049 350692 350720 "D02CJFA" 350725 T D02CJFA (NIL) -8 NIL NIL) (-201 349365 350008 350036 "D02BHFA" 350041 T D02BHFA (NIL) -8 NIL NIL) (-200 348681 349324 349352 "D02BBFA" 349357 T D02BBFA (NIL) -8 NIL NIL) (-199 341879 343467 345073 "D02AGNT" 347095 T D02AGNT (NIL) -7 NIL NIL) (-198 339648 340170 340716 "D01WGTS" 341353 T D01WGTS (NIL) -7 NIL NIL) (-197 338743 339607 339635 "D01TRNS" 339640 T D01TRNS (NIL) -8 NIL NIL) (-196 337838 338702 338730 "D01GBFA" 338735 T D01GBFA (NIL) -8 NIL NIL) (-195 336933 337797 337825 "D01FCFA" 337830 T D01FCFA (NIL) -8 NIL NIL) (-194 336028 336892 336920 "D01ASFA" 336925 T D01ASFA (NIL) -8 NIL NIL) (-193 335123 335987 336015 "D01AQFA" 336020 T D01AQFA (NIL) -8 NIL NIL) (-192 334218 335082 335110 "D01APFA" 335115 T D01APFA (NIL) -8 NIL NIL) (-191 333313 334177 334205 "D01ANFA" 334210 T D01ANFA (NIL) -8 NIL NIL) (-190 332408 333272 333300 "D01AMFA" 333305 T D01AMFA (NIL) -8 NIL NIL) (-189 331503 332367 332395 "D01ALFA" 332400 T D01ALFA (NIL) -8 NIL NIL) (-188 330598 331462 331490 "D01AKFA" 331495 T D01AKFA (NIL) -8 NIL NIL) (-187 329693 330557 330585 "D01AJFA" 330590 T D01AJFA (NIL) -8 NIL NIL) (-186 322990 324541 326102 "D01AGNT" 328152 T D01AGNT (NIL) -7 NIL NIL) (-185 322327 322455 322607 "CYCLOTOM" 322858 T CYCLOTOM (NIL) -7 NIL NIL) (-184 319062 319775 320502 "CYCLES" 321620 T CYCLES (NIL) -7 NIL NIL) (-183 318374 318508 318679 "CVMP" 318923 NIL CVMP (NIL T) -7 NIL NIL) (-182 316145 316403 316779 "CTRIGMNP" 318102 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-181 315656 315845 315944 "CTORCALL" 316066 T CTORCALL (NIL) -8 NIL NIL) (-180 315030 315129 315282 "CSTTOOLS" 315553 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 310829 311486 312244 "CRFP" 314342 NIL CRFP (NIL T T) -7 NIL NIL) (-178 310331 310550 310642 "CRCEAST" 310757 T CRCEAST (NIL) -8 NIL NIL) (-177 309378 309563 309791 "CRAPACK" 310135 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 308762 308863 309067 "CPMATCH" 309254 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 308487 308515 308621 "CPIMA" 308728 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 304851 305523 306241 "COORDSYS" 307822 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 304235 304364 304514 "CONTOUR" 304721 T CONTOUR (NIL) -8 NIL NIL) (-172 300163 302238 302730 "CONTFRAC" 303775 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 300043 300064 300092 "CONDUIT" 300129 T CONDUIT (NIL) -9 NIL NIL) (-170 299236 299756 299784 "COMRING" 299789 T COMRING (NIL) -9 NIL 299841) (-169 298317 298594 298778 "COMPPROP" 299072 T COMPPROP (NIL) -8 NIL NIL) (-168 297978 298013 298141 "COMPLPAT" 298276 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 297614 297671 297778 "COMPLEX2" 297915 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-166 287691 297423 297532 "COMPLEX" 297537 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 287409 287444 287542 "COMPFACT" 287650 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 271816 282023 282063 "COMPCAT" 283067 NIL COMPCAT (NIL T) -9 NIL 284462) (-163 261352 264269 267889 "COMPCAT-" 268245 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261081 261109 261212 "COMMUPC" 261318 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 260876 260909 260968 "COMMONOP" 261042 T COMMONOP (NIL) -7 NIL NIL) (-160 260480 260680 260755 "COMMAAST" 260821 T COMMAAST (NIL) -8 NIL NIL) (-159 260063 260231 260318 "COMM" 260413 T COMM (NIL) -8 NIL NIL) (-158 259312 259506 259534 "COMBOPC" 259872 T COMBOPC (NIL) -9 NIL 260047) (-157 258208 258418 258660 "COMBINAT" 259102 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 254406 254979 255619 "COMBF" 257630 NIL COMBF (NIL T T) -7 NIL NIL) (-155 253192 253522 253757 "COLOR" 254191 T COLOR (NIL) -8 NIL NIL) (-154 252695 252913 253005 "COLONAST" 253120 T COLONAST (NIL) -8 NIL NIL) (-153 252335 252382 252507 "CMPLXRT" 252642 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 251810 252035 252134 "CLLCTAST" 252256 T CLLCTAST (NIL) -8 NIL NIL) (-151 247312 248340 249420 "CLIP" 250750 T CLIP (NIL) -7 NIL NIL) (-150 245694 246418 246657 "CLIF" 247139 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 241916 243840 243881 "CLAGG" 244810 NIL CLAGG (NIL T) -9 NIL 245346) (-148 240338 240795 241378 "CLAGG-" 241383 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 239882 239967 240107 "CINTSLPE" 240247 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 237383 237854 238402 "CHVAR" 239410 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 236646 237166 237194 "CHARZ" 237199 T CHARZ (NIL) -9 NIL 237214) (-144 236400 236440 236518 "CHARPOL" 236600 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 235547 236100 236128 "CHARNZ" 236175 T CHARNZ (NIL) -9 NIL 236231) (-142 233572 234237 234572 "CHAR" 235232 T CHAR (NIL) -8 NIL NIL) (-141 233298 233359 233387 "CFCAT" 233498 T CFCAT (NIL) -9 NIL NIL) (-140 232543 232654 232836 "CDEN" 233182 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 228535 231696 231976 "CCLASS" 232283 T CCLASS (NIL) -8 NIL NIL) (-138 228454 228480 228515 "CATEGORY" 228520 T -10 (NIL) -8 NIL NIL) (-137 227928 228154 228253 "CATAST" 228375 T CATAST (NIL) -8 NIL NIL) (-136 227431 227649 227741 "CASEAST" 227856 T CASEAST (NIL) -8 NIL NIL) (-135 226539 226687 226908 "CARTEN2" 227278 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-134 221591 222568 223321 "CARTEN" 225842 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-133 219933 220741 220998 "CARD" 221354 T CARD (NIL) -8 NIL NIL) (-132 219536 219737 219812 "CAPSLAST" 219878 T CAPSLAST (NIL) -8 NIL NIL) (-131 218908 219236 219264 "CACHSET" 219396 T CACHSET (NIL) -9 NIL 219473) (-130 218404 218700 218728 "CABMON" 218778 T CABMON (NIL) -9 NIL 218834) (-129 214352 218351 218385 "BYTEARY" 218390 T BYTEARY (NIL) -8 NIL NIL) (-128 213521 213899 214042 "BYTE" 214229 T BYTE (NIL) -8 NIL NIL) (-127 211080 213213 213320 "BTREE" 213447 NIL BTREE (NIL T) -8 NIL NIL) (-126 208580 210728 210850 "BTOURN" 210990 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206000 208051 208092 "BTCAT" 208160 NIL BTCAT (NIL T) -9 NIL 208237) (-124 205667 205747 205896 "BTCAT-" 205901 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 200959 204810 204838 "BTAGG" 205060 T BTAGG (NIL) -9 NIL 205221) (-122 200449 200574 200780 "BTAGG-" 200785 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197495 199727 199942 "BSTREE" 200266 NIL BSTREE (NIL T) -8 NIL NIL) (-120 196633 196759 196943 "BRILL" 197351 NIL BRILL (NIL T) -7 NIL NIL) (-119 193335 195361 195402 "BRAGG" 196051 NIL BRAGG (NIL T) -9 NIL 196308) (-118 191867 192272 192826 "BRAGG-" 192831 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185154 191213 191397 "BPADICRT" 191715 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183506 185091 185136 "BPADIC" 185141 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183204 183234 183348 "BOUNDZRO" 183470 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 180825 181269 181789 "BOP1" 182717 NIL BOP1 (NIL T) -7 NIL NIL) (-113 176340 177431 178298 "BOP" 179978 T BOP (NIL) -8 NIL NIL) (-112 175078 175764 175957 "BOOLEAN" 176167 T BOOLEAN (NIL) -8 NIL NIL) (-111 174440 174818 174872 "BMODULE" 174877 NIL BMODULE (NIL T T) -9 NIL 174942) (-110 170270 174238 174311 "BITS" 174387 T BITS (NIL) -8 NIL NIL) (-109 169367 169802 169954 "BINFILE" 170138 T BINFILE (NIL) -8 NIL NIL) (-108 168779 168901 169043 "BINDING" 169245 T BINDING (NIL) -8 NIL NIL) (-107 162692 168223 168388 "BINARY" 168634 T BINARY (NIL) -8 NIL NIL) (-106 160519 161947 161988 "BGAGG" 162248 NIL BGAGG (NIL T) -9 NIL 162385) (-105 160350 160382 160473 "BGAGG-" 160478 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 159448 159734 159939 "BFUNCT" 160165 T BFUNCT (NIL) -8 NIL NIL) (-103 158132 158313 158601 "BEZOUT" 159272 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 154651 156984 157314 "BBTREE" 157835 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154385 154438 154466 "BASTYPE" 154585 T BASTYPE (NIL) -9 NIL NIL) (-100 154237 154266 154339 "BASTYPE-" 154344 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 153675 153751 153901 "BALFACT" 154148 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 152558 153090 153276 "AUTOMOR" 153520 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152284 152289 152315 "ATTREG" 152320 T ATTREG (NIL) -9 NIL NIL) (-96 150563 150981 151333 "ATTRBUT" 151950 T ATTRBUT (NIL) -8 NIL NIL) (-95 150198 150391 150457 "ATTRAST" 150515 T ATTRAST (NIL) -8 NIL NIL) (-94 149734 149847 149873 "ATRIG" 150074 T ATRIG (NIL) -9 NIL NIL) (-93 149543 149584 149671 "ATRIG-" 149676 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149165 149325 149351 "ASTCAT" 149409 T ASTCAT (NIL) -9 NIL 149472) (-91 148892 148951 149070 "ASTCAT-" 149075 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147089 148668 148756 "ASTACK" 148835 NIL ASTACK (NIL T) -8 NIL NIL) (-89 145594 145891 146256 "ASSOCEQ" 146771 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 144648 145253 145377 "ASP9" 145501 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 143539 144253 144395 "ASP80" 144537 NIL ASP80 (NIL NIL) -8 NIL NIL) (-86 143303 143487 143526 "ASP8" 143531 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 142279 142980 143098 "ASP78" 143216 NIL ASP78 (NIL NIL) -8 NIL NIL) (-84 141270 141959 142076 "ASP77" 142193 NIL ASP77 (NIL NIL) -8 NIL NIL) (-83 140204 140908 141039 "ASP74" 141170 NIL ASP74 (NIL NIL) -8 NIL NIL) (-82 139126 139839 139971 "ASP73" 140103 NIL ASP73 (NIL NIL) -8 NIL NIL) (-81 138047 138761 138893 "ASP7" 139025 NIL ASP7 (NIL NIL) -8 NIL NIL) (-80 137024 137724 137842 "ASP6" 137960 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 135994 136701 136819 "ASP55" 136937 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 134966 135668 135787 "ASP50" 135906 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134076 134667 134777 "ASP49" 134887 NIL ASP49 (NIL NIL) -8 NIL NIL) (-76 132883 133615 133783 "ASP42" 133965 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-75 131682 132416 132586 "ASP41" 132770 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-74 130792 131383 131493 "ASP4" 131603 NIL ASP4 (NIL NIL) -8 NIL NIL) (-73 129764 130469 130587 "ASP35" 130705 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129529 129712 129751 "ASP34" 129756 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129266 129333 129409 "ASP33" 129484 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128183 128901 129033 "ASP31" 129165 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 127948 128131 128170 "ASP30" 128175 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127683 127752 127828 "ASP29" 127903 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127448 127631 127670 "ASP28" 127675 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127213 127396 127435 "ASP27" 127440 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126319 126911 127022 "ASP24" 127133 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125257 125960 126090 "ASP20" 126220 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124223 124931 125050 "ASP19" 125169 NIL ASP19 (NIL NIL) -8 NIL NIL) (-62 123960 124027 124103 "ASP12" 124178 NIL ASP12 (NIL NIL) -8 NIL NIL) (-61 122834 123559 123703 "ASP10" 123847 NIL ASP10 (NIL NIL) -8 NIL NIL) (-60 121944 122535 122645 "ASP1" 122755 NIL ASP1 (NIL NIL) -8 NIL NIL) (-59 119843 121788 121879 "ARRAY2" 121884 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 118875 119048 119269 "ARRAY12" 119666 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-57 114691 118523 118637 "ARRAY1" 118792 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 109050 110921 110996 "ARR2CAT" 113626 NIL ARR2CAT (NIL T T T) -9 NIL 114384) (-55 106484 107228 108182 "ARR2CAT-" 108187 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105232 105384 105690 "APPRULE" 106320 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 104883 104931 105050 "APPLYORE" 105178 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 104161 104284 104441 "ANY1" 104757 NIL ANY1 (NIL T) -7 NIL NIL) (-51 103135 103426 103621 "ANY" 103984 T ANY (NIL) -8 NIL NIL) (-50 100700 101572 101899 "ANTISYM" 102859 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100215 100404 100501 "ANON" 100621 T ANON (NIL) -8 NIL NIL) (-48 94358 98756 99209 "AN" 99780 T AN (NIL) -8 NIL NIL) (-47 90739 92093 92144 "AMR" 92892 NIL AMR (NIL T T) -9 NIL 93492) (-46 89851 90072 90435 "AMR-" 90440 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74407 89768 89829 "ALIST" 89834 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71276 74001 74170 "ALGSC" 74325 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67832 68386 68993 "ALGPKG" 70716 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67109 67210 67394 "ALGMFACT" 67718 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62848 63533 64188 "ALGMANIP" 66632 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54265 62474 62624 "ALGFF" 62781 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53461 53592 53771 "ALGFACT" 54123 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52491 53057 53095 "ALGEBRA" 53155 NIL ALGEBRA (NIL T) -9 NIL 53214) (-37 52209 52268 52400 "ALGEBRA-" 52405 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34475 50212 50264 "ALAGG" 50400 NIL ALAGG (NIL T T) -9 NIL 50561) (-35 34011 34124 34150 "AHYP" 34351 T AHYP (NIL) -9 NIL NIL) (-34 32942 33190 33216 "AGG" 33715 T AGG (NIL) -9 NIL 33994) (-33 32376 32538 32752 "AGG-" 32757 NIL AGG- (NIL T) -8 NIL NIL) (-32 30053 30475 30893 "AF" 32018 NIL AF (NIL T T) -7 NIL NIL) (-31 29560 29778 29868 "ADDAST" 29981 T ADDAST (NIL) -8 NIL NIL) (-30 28829 29087 29243 "ACPLOT" 29422 T ACPLOT (NIL) -8 NIL NIL) (-29 18356 26221 26272 "ACFS" 26983 NIL ACFS (NIL T) -9 NIL 27222) (-28 16370 16860 17635 "ACFS-" 17640 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14589 14615 "ACF" 15494 T ACF (NIL) -9 NIL 15906) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 05832ded..a850dada 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,2412 +1,798 @@
-(737692 . 3431185331)
-(((*1 *2 *3)
- (-12 (-5 *3 (-1151 (-621 *4))) (-4 *4 (-823))
- (-5 *2 (-621 (-621 *4))) (-5 *1 (-1150 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-935 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1230)) (-5 *1 (-1104))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-834))) (-5 *2 (-1230)) (-5 *1 (-1104)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-621 (-1142))) (-4 *5 (-541))
- (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-746 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-541))
- (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-746 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-665 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3420 (-621 *6)))
- *7 *6))
- (-4 *6 (-356)) (-4 *7 (-632 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1225 *6) "failed"))
- (|:| -3420 (-621 (-1225 *6)))))
- (-5 *1 (-789 *6 *7)) (-5 *4 (-1225 *6)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-729)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-863 *4)) (-4 *4 (-1066)) (-5 *1 (-860 *4 *3))
- (-4 *3 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-665 (-400 (-923 (-549)))))
- (-5 *2
- (-621
- (-2 (|:| |radval| (-309 (-549))) (|:| |radmult| (-549))
- (|:| |radvect| (-621 (-665 (-309 (-549))))))))
- (-5 *1 (-1002)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
- (-5 *2
- (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549))
- (|:| |success| (-112))))
- (-5 *1 (-765)) (-5 *5 (-549)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1142))
- (-5 *5 (-1060 (-816 (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-186))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1142))
- (-5 *5 (-1060 (-816 (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-293)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1225 (-1225 (-549)))) (-5 *3 (-892)) (-5 *1 (-458)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-309 (-219))) (-5 *2 (-400 (-549))) (-5 *1 (-298)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1051)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1138 *7))
- (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *2 (-1201 *5))
- (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1201 *2)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1124)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-256)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219)))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))))
- (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *3 (-219))
- (-5 *2 (-1006)) (-5 *1 (-726)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-549))) (-4 *3 (-1018)) (-5 *1 (-576 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1185 *3)) (-4 *3 (-1018))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1216 *3)) (-4 *3 (-1018)))))
+(729636 . 3431436955)
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1980 *4))))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-250)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-4 *6 (-335 *3 *4 *5))
- (-5 *2 (-406 *4 (-400 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1225 *6)) (-4 *6 (-13 (-402 *4 *5) (-1009 *4)))
- (-4 *4 (-963 *3)) (-4 *5 (-1201 *4)) (-4 *3 (-300))
- (-5 *1 (-406 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-356))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-400 (-549))) (-5 *2 (-219)) (-5 *1 (-298)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2)))))
-(((*1 *1) (-5 *1 (-219))) ((*1 *1) (-5 *1 (-372))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-549))))
- (-4 *4 (-13 (-1201 *3) (-541) (-10 -8 (-15 -3726 ($ $ $)))))
- (-4 *3 (-541)) (-5 *1 (-1204 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-1066))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1066)) (-5 *2 (-112))
- (-5 *1 (-1180 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)) (-4 *2 (-541))))
- ((*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1051))) (-5 *1 (-284)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-958 (-400 (-549)) (-836 *3) (-234 *4 (-747))
- (-241 *3 (-400 (-549)))))
- (-14 *3 (-621 (-1142))) (-14 *4 (-747)) (-5 *1 (-957 *3 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-885 *3)) (-4 *3 (-300)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1225 *4)) (-4 *4 (-617 (-549)))
- (-5 *2 (-1225 (-549))) (-5 *1 (-1252 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *4)) (-4 *4 (-821)) (-4 *4 (-356)) (-5 *2 (-747))
- (-5 *1 (-916 *4 *5)) (-4 *5 (-1201 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-410 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *8)) (-4 *8 (-920 *5 *7 *6))
- (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142))))
- (-4 *7 (-769))
- (-5 *2
- (-621
- (-2 (|:| -3122 (-747))
- (|:| |eqns|
- (-621
- (-2 (|:| |det| *8) (|:| |rows| (-621 (-549)))
- (|:| |cols| (-621 (-549))))))
- (|:| |fgb| (-621 *8)))))
- (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-747)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-541))
- (-5 *2 (-2 (|:| -1859 (-665 *5)) (|:| |vec| (-1225 (-621 (-892))))))
- (-5 *1 (-89 *5 *3)) (-5 *4 (-892)) (-4 *3 (-632 *5)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219)))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-219))
- (-5 *2 (-1006)) (-5 *1 (-726)))))
-(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-52)) (-5 *1 (-805)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-366 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018))))
- ((*1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1030)) (-5 *3 (-1124)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1179))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1179))
- (-14 *4 (-549)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-621 (-1142)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823)))
- (-14 *3 (-621 (-1142))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1225 *4)) (-4 *4 (-342)) (-5 *2 (-1138 *4))
- (-5 *1 (-519 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-1145)) (-5 *3 (-1142)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-541)) (-4 *3 (-170))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -3420 (-621 *1))))
- (-4 *1 (-360 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-445 *3 *4 *5 *6))
- (|:| -3420 (-621 (-445 *3 *4 *5 *6)))))
- (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1179)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))))
-(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-798)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-400 (-549))) (-5 *1 (-312 *3 *4 *5))
- (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *3 (-621 (-845)))
- (-5 *4 (-621 (-892))) (-5 *5 (-621 (-256))) (-5 *1 (-460))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *3 (-621 (-845)))
- (-5 *4 (-621 (-892))) (-5 *1 (-460))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-460))))
- ((*1 *1 *1) (-5 *1 (-460))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-5 *1 (-430)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-169))))))
+ (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 (-535)))
+ (-5 *2 (-1224 (-400 (-535)))) (-5 *1 (-1252 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-665 *2)) (-4 *4 (-1201 *2))
- (-4 *2 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $)))))
- (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-402 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2))
- (-4 *5 (-232 *3 *2)) (-4 *2 (-1018)))))
+ (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 (-535)))
+ (-5 *2 (-1224 (-535))) (-5 *1 (-1252 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1122 (-923 *4)) (-1122 (-923 *4))))
- (-5 *1 (-1233 *4)) (-4 *4 (-356)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-4 *1 (-229 *3))))
- ((*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-219)))
- (-5 *2 (-1006)) (-5 *1 (-734)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-219)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1179)))))
+ (-12 (-5 *3 (-1224 *4)) (-4 *4 (-617 (-535))) (-5 *2 (-112))
+ (-5 *1 (-1252 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-549)) (-4 *4 (-1201 (-400 *3))) (-5 *2 (-892))
- (-5 *1 (-884 *4 *5)) (-4 *5 (-1201 (-400 *4))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
- (-14 *4 (-621 (-1142)))))
+ (-12 (-4 *5 (-13 (-594 *2) (-170))) (-5 *2 (-861 *4)) (-5 *1 (-168 *4 *5 *3))
+ (-4 *4 (-1067)) (-4 *3 (-164 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-1055 (-815 (-371)))))
+ (-5 *2 (-618 (-1055 (-815 (-219))))) (-5 *1 (-296))))
+ ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-371))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-835)) (-5 *3 (-535)) (-5 *1 (-386))))
((*1 *1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
- (-14 *4 (-621 (-1142)))))
- ((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356))))
+ (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4))
+ (-4 *4 (-1200 *3))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-328 *3 *4 *5 *2)) (-4 *3 (-356))
- (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4)))
- (-4 *2 (-335 *3 *4 *5))))
+ (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3))
+ (-5 *2 (-1224 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1224 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-170))))
- ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-701 *2 *3)) (-4 *3 (-1201 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-758 *3)) (|:| |polden| *3) (|:| -4002 (-747))))
- (-5 *1 (-758 *3)) (-4 *3 (-1018))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4002 (-747))))
- (-4 *1 (-1032 *3 *4 *5)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-621 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-541)) (-4 *7 (-769))
- (-4 *8 (-823)) (-5 *1 (-948 *6 *7 *8 *9)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1225 *3)) (-4 *3 (-1201 *4)) (-4 *4 (-1183))
- (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1201 (-400 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))))
-(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1179)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4338 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2))
- (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1201 *2))
- (-4 *4 (-663 *2 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
- (-5 *2 (-1006)) (-5 *1 (-730)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-892)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-256)))))
-(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-677))))
- ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-677)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -2460 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-356)) (-5 *1 (-559 *4 *2)) (-4 *2 (-1201 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142)) (-4 *4 (-541)) (-4 *4 (-823))
- (-5 *1 (-558 *4 *2)) (-4 *2 (-423 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1130 3 *3)) (-4 *3 (-1018)) (-4 *1 (-1100 *3))))
- ((*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-920 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))
- (-5 *2 (-1138 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3726 (-758 *3)) (|:| |coef2| (-758 *3))))
- (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *2 (-2 (|:| -3726 *1) (|:| |coef2| *1)))
- (-4 *1 (-1032 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228))))
- ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4)
- (-241 *4 (-400 (-549)))))
- (-14 *4 (-621 (-1142))) (-14 *5 (-747)) (-5 *2 (-112))
- (-5 *1 (-496 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-549)))))
- (-4 *5 (-823)) (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1246 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-621 (-621 (-549)))) (-5 *1 (-942))
- (-5 *3 (-621 (-549))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1185 *3)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1142)) (-4 *4 (-1018)) (-4 *4 (-823))
- (-5 *2 (-2 (|:| |var| (-592 *1)) (|:| -3577 (-549))))
- (-4 *1 (-423 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1018)) (-4 *4 (-823))
- (-5 *2 (-2 (|:| |var| (-592 *1)) (|:| -3577 (-549))))
- (-4 *1 (-423 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1078)) (-4 *3 (-823))
- (-5 *2 (-2 (|:| |var| (-592 *1)) (|:| -3577 (-549))))
- (-4 *1 (-423 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-863 *3)) (|:| -3577 (-747))))
- (-5 *1 (-863 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-2 (|:| |var| *5) (|:| -3577 (-747))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
- (-4 *7 (-920 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -3577 (-549))))
- (-5 *1 (-921 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-356)
- (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $))
- (-15 -1404 (*7 $))))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| -3161 (-621 (-834))) (|:| -3100 (-621 (-834)))
- (|:| |presup| (-621 (-834))) (|:| -4229 (-621 (-834)))
- (|:| |args| (-621 (-834)))))
- (-5 *1 (-1142)))))
-(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-1124)) (-5 *5 (-665 (-219)))
- (-5 *2 (-1006)) (-5 *1 (-724)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-541))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-541)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-875 *4))
- (-4 *4 (-1066))))
- ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-479)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))
- (-4 *2 (-444))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-1201 *2))
- (-4 *4 (-1201 (-400 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823)) (-4 *3 (-444))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-920 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-444))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-300)) (-4 *3 (-541)) (-5 *1 (-1129 *3 *2))
- (-4 *2 (-1201 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1142)) (-5 *1 (-567 *2)) (-4 *2 (-1009 *3))
- (-4 *2 (-356))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-608 *4 *2))
- (-4 *2 (-13 (-423 *4) (-973) (-1164)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1058 *2)) (-4 *2 (-13 (-423 *4) (-973) (-1164)))
- (-4 *4 (-13 (-823) (-541))) (-5 *1 (-608 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-1142))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-930)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *3))
- (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-541))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-621 *7) (-621 *7))) (-5 *2 (-621 *7))
- (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769))
- (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1018))
- (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))
- (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1201 *4))))
- ((*1 *1 *1) (-4 *1 (-534)))
- ((*1 *2 *1) (-12 (-5 *2 (-892)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
- ((*1 *2 *1) (-12 (-5 *2 (-892)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-864 *3)) (-4 *3 (-823))))
- ((*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-1179)) (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1176 *3)) (-4 *3 (-1179))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-973))
- (-4 *2 (-1018)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-914 (-219)))) (-5 *1 (-1226)))))
-(((*1 *1) (-5 *1 (-284))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-1056)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1 *1) (-4 *1 (-938))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-229 *3))
- (-4 *3 (-1066))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4336)) (-4 *1 (-229 *2)) (-4 *2 (-1066))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-275 *2)) (-4 *2 (-1179)) (-4 *2 (-1066))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1179))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1066))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1066))
- (-5 *1 (-714 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-5 *1 (-714 *2)) (-4 *2 (-1066))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1066) (-34)))
- (-4 *4 (-13 (-1066) (-34))) (-5 *1 (-1107 *3 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-769)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823))
- (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-823))
- (-4 *3 (-1066)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1078)) (-4 *3 (-823)) (-5 *2 (-621 *1))
- (-4 *1 (-423 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3))
- (-4 *3 (-1066))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *2 (-621 *1)) (-4 *1 (-920 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
- (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-621 *3))
- (-5 *1 (-921 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-356)
- (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $))
- (-15 -1404 (*7 $))))))))
-(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-621
- (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8))
- (|:| |wcond| (-621 (-923 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1225 (-400 (-923 *5))))
- (|:| -3420 (-621 (-1225 (-400 (-923 *5))))))))))
- (-5 *4 (-1124)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-920 *5 *7 *6))
- (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-549))
- (-5 *1 (-895 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1066))
- (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3))))
- (-5 *2 (-621 (-1142))) (-5 *1 (-1042 *3 *4 *5))
- (-4 *5 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1210 *3 *4 *5)) (-4 *3 (-13 (-356) (-823)))
- (-14 *4 (-1142)) (-14 *5 *3) (-5 *1 (-312 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1011)) (-5 *3 (-372)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-621 *5)) (-5 *4 (-549)) (-4 *5 (-821)) (-4 *5 (-356))
- (-5 *2 (-747)) (-5 *1 (-916 *5 *6)) (-4 *6 (-1201 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
- ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *1 *1) (-4 *1 (-1105))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549))))
- (-5 *2 (-167 (-309 *4))) (-5 *1 (-182 *4 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 (-167 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-167 *3)) (-5 *1 (-1168 *4 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *8)) (-5 *4 (-747)) (-4 *8 (-920 *5 *7 *6))
- (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142))))
- (-4 *7 (-769))
- (-5 *2
- (-621
- (-2 (|:| |det| *8) (|:| |rows| (-621 (-549)))
- (|:| |cols| (-621 (-549))))))
- (-5 *1 (-895 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-732)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-541)) (-4 *3 (-1018))
- (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-825 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-98 *5)) (-4 *5 (-541)) (-4 *5 (-1018))
- (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-826 *5 *3))
- (-4 *3 (-825 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 (-241 *4 *5))) (-5 *2 (-241 *4 *5))
- (-14 *4 (-621 (-1142))) (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
- (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-920 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1)))
- (-4 *1 (-1201 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1179)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-4 *1 (-1201 *4)) (-4 *4 (-1018))
- (-5 *2 (-1225 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-549))))
- (-4 *2 (-170)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-860 *4 *5)) (-5 *3 (-860 *4 *6)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-642 *5)) (-5 *1 (-856 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-816 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1138 *9)) (-5 *4 (-621 *7)) (-5 *5 (-621 (-621 *8)))
- (-4 *7 (-823)) (-4 *8 (-300)) (-4 *9 (-920 *8 *6 *7)) (-4 *6 (-769))
- (-5 *2
- (-2 (|:| |upol| (-1138 *8)) (|:| |Lval| (-621 *8))
- (|:| |Lfact|
- (-621 (-2 (|:| -2120 (-1138 *8)) (|:| -3577 (-549)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-719 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-621 *8))) (-5 *3 (-621 *8))
- (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145)))
- (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-112))
- (-5 *1 (-895 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-834)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747))
- (-14 *4 (-747)) (-4 *5 (-170)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-400 (-1138 (-309 *3)))) (-4 *3 (-13 (-541) (-823)))
- (-5 *1 (-1096 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1066)) (-5 *1 (-876 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-4 *4 (-1018))
- (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-1201 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1240 (-1142) *3)) (-4 *3 (-1018)) (-5 *1 (-1247 *3))))
+ (-12 (-5 *2 (-398 *1)) (-4 *1 (-414 *3)) (-4 *3 (-542)) (-4 *3 (-823))))
((*1 *1 *2)
- (-12 (-5 *2 (-1240 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
- (-5 *1 (-1249 *3 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769))
- (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-738))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-219))) (-5 *2 (-1225 (-675))) (-5 *1 (-298)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-1032 *3 *4 *2)) (-4 *2 (-823))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-472)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-1138 (-923 *4))) (-5 *1 (-409 *3 *4))
- (-4 *3 (-410 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356))
- (-5 *2 (-1138 (-923 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1138 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2))
- (-4 *2 (-1201 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-256))))
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-455 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1069)) (-5 *1 (-524))))
+ ((*1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1200 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1029))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-917 *3)) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5))
+ (-4 *5 (-594 (-1142))) (-4 *4 (-769)) (-4 *5 (-823))))
+ ((*1 *1 *2)
+ (-3874
+ (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5))
+ (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535)))
+ (-4 *5 (-594 (-1142))))
+ (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))
+ (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-917 (-400 (-535)))) (-4 *1 (-1032 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823))))
((*1 *2 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356))
- (-5 *2 (-665 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1225 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
- (-5 *2 (-665 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
- (-5 *2 (-1225 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1201 *4)) (-5 *2 (-665 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1201 *4)) (-5 *2 (-1225 *4))))
+ (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8)))
+ (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1124))
+ (-5 *1 (-1036 *4 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1048))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *2)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1070 *3 *4 *5 *2 *6)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *2 (-1067)) (-4 *6 (-1067))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *2 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1070 *3 *2 *4 *5 *6)) (-4 *3 (-1067)) (-4 *2 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-618 *1)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067))))
((*1 *2 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-402 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1201 *4)) (-5 *2 (-665 *4))))
+ (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8)))
+ (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1075 *4 *5 *6 *7)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1124))
+ (-5 *1 (-1111 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1069)) (-5 *1 (-1147))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-1147))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-835)) (-5 *3 (-535)) (-5 *1 (-1158))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-835)) (-5 *3 (-535)) (-5 *1 (-1158))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-756 *4 (-836 *5))) (-4 *4 (-13 (-821) (-300) (-145) (-991)))
+ (-14 *5 (-618 (-1142))) (-5 *2 (-756 *4 (-836 *6))) (-5 *1 (-1251 *4 *5 *6))
+ (-14 *6 (-618 (-1142)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-917 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-917 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6))
+ (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-756 *4 (-836 *6))) (-4 *4 (-13 (-821) (-300) (-145) (-991)))
+ (-14 *6 (-618 (-1142))) (-5 *2 (-917 (-995 (-400 *4))))
+ (-5 *1 (-1251 *4 *5 *6)) (-14 *5 (-618 (-1142)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1136 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-1136 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6))
+ (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1112 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6))))
+ (-4 *4 (-13 (-821) (-300) (-145) (-991))) (-14 *6 (-618 (-1142)))
+ (-5 *2 (-618 (-756 *4 (-836 *6)))) (-5 *1 (-1251 *4 *5 *6))
+ (-14 *5 (-618 (-1142))))))
+(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-544 *3)) (-4 *3 (-534))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-398 *3))
+ (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-921 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-4 *7 (-921 *6 *4 *5))
+ (-5 *2 (-398 (-1136 *7))) (-5 *1 (-719 *4 *5 *6 *7)) (-5 *3 (-1136 *7))))
((*1 *2 *1)
- (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1201 *3))
- (-5 *2 (-1225 *3))))
+ (-12 (-4 *3 (-444)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-398 *1)) (-4 *1 (-921 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-410 *4)) (-4 *4 (-170))
- (-5 *2 (-665 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1225 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-665 *5))) (-5 *3 (-665 *5)) (-4 *5 (-356))
- (-5 *2 (-1225 *5)) (-5 *1 (-1052 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-354 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-5 *2 (-747)) (-5 *1 (-379 *4)) (-4 *4 (-1066))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *2 (-23)) (-5 *1 (-625 *4 *2 *5))
- (-4 *4 (-1066)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-5 *2 (-747)) (-5 *1 (-795 *4)) (-4 *4 (-823)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3))
- (-4 *3 (-938)))))
-(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-831))))
- ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-936))))
- ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-960))))
- ((*1 *2 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1066) (-34))) (-5 *1 (-1106 *2 *3))
- (-4 *3 (-13 (-1066) (-34))))))
-(((*1 *1) (-5 *1 (-142)))
+ (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-444)) (-5 *2 (-398 *3))
+ (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-921 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-256)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1138 *1)) (-4 *1 (-983)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-747)) (-5 *4 (-1225 *2)) (-4 *5 (-300))
- (-4 *6 (-963 *5)) (-4 *2 (-13 (-402 *6 *7) (-1009 *6)))
- (-5 *1 (-406 *5 *6 *7 *2)) (-4 *7 (-1201 *6)))))
-(((*1 *1) (-5 *1 (-460))))
-(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1164))))
- ((*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-592 *3)) (-4 *3 (-823)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
- (-5 *2 (-621 (-219))) (-5 *1 (-198)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-876 *4)) (-4 *4 (-1066)) (-5 *2 (-621 (-747)))
- (-5 *1 (-875 *4)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-112))
- (-5 *6 (-219)) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))))
- (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))
- (-5 *2 (-1006)) (-5 *1 (-733)))))
-(((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *1)
- (-12 (-4 *3 (-1066)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1066))
- (-4 *4 (-642 *3))))
- ((*1 *1) (-12 (-5 *1 (-860 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *1) (-5 *1 (-323))))
-(((*1 *1) (-5 *1 (-1226))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-3 *3 (-621 *1)))
- (-4 *1 (-1038 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4))
- (-4 *4 (-342)))))
-(((*1 *2)
- (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-410 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1006))
- (-5 *1 (-723)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1179)) (-4 *2 (-1018))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-834))))
- ((*1 *1 *1) (-5 *1 (-834)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-914 (-219))) (-5 *2 (-219)) (-5 *1 (-1175))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-1018)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228))))
- ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-295))))
- ((*1 *1 *1) (-4 *1 (-295))) ((*1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006))
- (-5 *1 (-732)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-549)) (-5 *1 (-672 *2)) (-4 *2 (-1201 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-167 (-219)))) (-5 *2 (-1006))
- (-5 *1 (-733)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *1 (-1094 *3 *2)) (-4 *3 (-1201 *2)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-109)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-356))
- (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-5 *1 (-442 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356))
- (-5 *2
- (-2 (|:| R (-665 *6)) (|:| A (-665 *6)) (|:| |Ainv| (-665 *6))))
- (-5 *1 (-949 *6)) (-5 *3 (-665 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1201 *4))
- (-4 *5 (-1201 (-400 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1192 (-549))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1060 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-186))))
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444)) (-4 *7 (-921 *6 *4 *5))
+ (-5 *2 (-398 (-1136 (-400 *7)))) (-5 *1 (-1138 *4 *5 *6 *7))
+ (-5 *3 (-1136 (-400 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1183))))
((*1 *2 *3)
- (-12 (-5 *3 (-1060 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-293))))
+ (-12 (-4 *4 (-542)) (-5 *2 (-398 *3)) (-5 *1 (-1204 *4 *3))
+ (-4 *3 (-13 (-1200 *4) (-542) (-10 -8 (-15 -3478 ($ $ $)))))))
((*1 *2 *3)
- (-12 (-5 *3 (-1060 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-298)))))
+ (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991)))
+ (-14 *5 (-618 (-1142)))
+ (-5 *2 (-618 (-1112 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6)))))
+ (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-724)))))
-(((*1 *1 *1 *1) (-4 *1 (-534))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-411 (-1138 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1138 *1))
- (-4 *4 (-444)) (-4 *4 (-541)) (-4 *4 (-823))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-880)) (-5 *2 (-411 (-1138 *1))) (-5 *3 (-1138 *1)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-1197 *4 *2))
- (-4 *2 (-1201 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
- ((*1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-4 *1 (-1064 *3))))
- ((*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-592 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1138 (-48))) (-5 *3 (-621 (-592 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1138 (-48))) (-5 *3 (-592 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991)))
+ (-14 *5 (-618 (-1142))) (-5 *2 (-618 (-618 (-995 (-400 *4)))))
+ (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7))
+ (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7))
+ (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-618 (-618 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6))
+ (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-618 (-1142)))
+ (-5 *2 (-618 (-618 (-371)))) (-5 *1 (-994)) (-5 *5 (-371))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3))
- (-4 *3 (-1201 (-167 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-892)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))))
- ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1201 *2)) (-4 *2 (-170))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1201 *2)) (-4 *2 (-963 *3)) (-5 *1 (-406 *3 *2 *4 *5))
- (-4 *3 (-300)) (-4 *5 (-13 (-402 *2 *4) (-1009 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1201 *2)) (-4 *2 (-963 *3))
- (-5 *1 (-407 *3 *2 *4 *5 *6)) (-4 *3 (-300)) (-4 *5 (-402 *2 *4))
- (-14 *6 (-1225 *5))))
+ (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991)))
+ (-14 *5 (-618 (-1142))) (-5 *2 (-618 (-618 (-995 (-400 *4)))))
+ (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7))
+ (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7))
+ (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-618 (-618 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7))
+ (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-618 (-618 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6))
+ (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-991)))
+ (-14 *5 (-618 (-1142)))
+ (-5 *2 (-618 (-2 (|:| -1858 (-1136 *4)) (|:| -3558 (-618 (-917 *4))))))
+ (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-618 (-1142)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5))))))
+ (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142)))
+ (-14 *7 (-618 (-1142)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5))))))
+ (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142)))
+ (-14 *7 (-618 (-1142)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5))))))
+ (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142)))
+ (-14 *7 (-618 (-1142)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-618 (-2 (|:| -1858 (-1136 *4)) (|:| -3558 (-618 (-917 *4))))))
+ (-5 *1 (-1251 *4 *5 *6)) (-5 *3 (-618 (-917 *4))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-618 (-1142))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-1015 *5 *6)))
+ (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-892)) (-4 *5 (-1018))
- (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1164) (-277)))
- (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1201 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-592 (-486)))) (-5 *1 (-486))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-486))) (-5 *1 (-486))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1138 (-486))) (-5 *3 (-621 (-592 (-486))))
- (-5 *1 (-486))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1138 (-486))) (-5 *3 (-592 (-486))) (-5 *1 (-486))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1225 *4)) (-5 *3 (-892)) (-4 *4 (-342))
- (-5 *1 (-519 *4))))
+ (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-991))) (-5 *2 (-618 (-1015 *5 *6)))
+ (-5 *1 (-1251 *5 *6 *7)) (-14 *6 (-618 (-1142))) (-14 *7 (-618 (-1142)))))
((*1 *2 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-701 *4 *2)) (-4 *2 (-1201 *4))
- (-5 *1 (-751 *4 *2 *5 *3)) (-4 *3 (-1201 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170))))
- ((*1 *1 *1) (-4 *1 (-1027))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-848 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-850 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-853 *2)) (-4 *2 (-1179)))))
-(((*1 *2)
- (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-410 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-834)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-4 *1 (-874 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-703)) (-4 *2 (-1179)))))
-(((*1 *2 *1) (-12 (-5 *2 (-942)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-366 *2)) (-4 *2 (-1179))
- (-4 *2 (-823))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4337))
- (-4 *1 (-366 *3)) (-4 *3 (-1179)))))
-(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1179))
- (-4 *5 (-366 *4)) (-4 *2 (-366 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *6 *7 *2)) (-4 *6 (-1018))
- (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| |k| (-648 *3)) (|:| |c| *4))))
- (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
- (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-430)) (-5 *3 (-1142)) (-5 *1 (-1145))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-430)) (-5 *3 (-1142)) (-5 *1 (-1145))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-430)) (-5 *3 (-621 (-1142))) (-5 *4 (-1142))
- (-5 *1 (-1145))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-430)) (-5 *3 (-1142)) (-5 *1 (-1145))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-430)) (-5 *3 (-1142)) (-5 *1 (-1146))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-430)) (-5 *3 (-621 (-1142))) (-5 *1 (-1146)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-659 *4 *3)) (-4 *4 (-1066))
- (-4 *3 (-1066)))))
-(((*1 *1)
- (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2) (-12 (-5 *1 (-568 *2)) (-4 *2 (-534)))))
-(((*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834))))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-592 *3))
- (-4 *3 (-13 (-423 *5) (-27) (-1164)))
- (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2 (-2 (|:| -2460 *3) (|:| |coeff| *3)))
- (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1066)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-621 *4)) (-4 *4 (-1066)) (-4 *4 (-1179)) (-5 *2 (-112))
- (-5 *1 (-1122 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-747)))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-1070)) (-5 *1 (-284)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-130))
- (-4 *3 (-768)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-5 *2 (-1124)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1201 *5)) (-4 *5 (-356))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-559 *5 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-823)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-356)) (-4 *3 (-1018))
- (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-825 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018))
- (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-826 *5 *3))
- (-4 *3 (-825 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-541)) (-4 *3 (-170)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2))
- (-4 *2 (-663 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-423 *3) (-973))) (-5 *1 (-269 *3 *2))
- (-4 *3 (-13 (-823) (-541))))))
+ (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-991)))
+ (-5 *2 (-618 (-1015 *4 *5))) (-5 *1 (-1251 *4 *5 *6))
+ (-14 *5 (-618 (-1142))) (-14 *6 (-618 (-1142))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
- (|:| |lb| (-621 (-816 (-219))))
- (|:| |cf| (-621 (-309 (-219))))
- (|:| |ub| (-621 (-816 (-219))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-621 (-309 (-219))))
- (|:| -3060 (-621 (-219)))))))
- (-5 *2 (-621 (-1124))) (-5 *1 (-260)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1201 (-400 *2)))
- (-4 *2 (-1201 *5)) (-5 *1 (-209 *5 *2 *6 *3))
- (-4 *3 (-335 *5 *2 *6)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3))))
- (-5 *1 (-379 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-795 *3)) (|:| |mm| (-795 *3)) (|:| |rm| (-795 *3))))
- (-5 *1 (-795 *3)) (-4 *3 (-823)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-747)) (-5 *1 (-546)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5))
- (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-1238 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-621 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541))
- (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1238 *5 *6 *7 *8)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-549) (-549))) (-5 *1 (-354 *3)) (-4 *3 (-1066))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-747) (-747))) (-5 *1 (-379 *3)) (-4 *3 (-1066))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1066)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))
- (-5 *2 (-621 (-219))) (-5 *1 (-298)))))
-(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
- (-5 *1 (-959 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
- (-5 *1 (-1073 *3 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-736)))))
-(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-675)) (-5 *1 (-298)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-549)))
- (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3))
- (-4 *2
- (-13 (-356) (-295)
- (-10 -8 (-15 -1393 ((-1091 *3 (-592 $)) $))
- (-15 -1404 ((-1091 *3 (-592 $)) $))
- (-15 -3845 ($ (-1091 *3 (-592 $))))))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1009 (-549))) (-4 *1 (-295)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-534))))
- ((*1 *1 *1) (-4 *1 (-1027))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
- (-5 *2 (-1006)) (-5 *1 (-729)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-768)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-541))
- (-5 *2 (-1138 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-411 (-1138 (-549)))) (-5 *1 (-185)) (-5 *3 (-549)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 (-1122 *7))) (-4 *6 (-823))
- (-4 *7 (-920 *5 (-521 *6) *6)) (-4 *5 (-1018))
- (-5 *2 (-1 (-1122 *7) *7)) (-5 *1 (-1092 *5 *6 *7)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-541)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-219)) (-5 *4 (-549))
- (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006))
- (-5 *1 (-725)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-823))
- (-4 *5 (-769)) (-4 *2 (-259 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-429)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1179)) (-4 *3 (-1018))
- (-5 *2 (-665 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-356))
- (-5 *2
- (-2 (|:| A (-665 *5))
- (|:| |eqs|
- (-621
- (-2 (|:| C (-665 *5)) (|:| |g| (-1225 *5)) (|:| -2650 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *5)) (-5 *4 (-1225 *5))
- (-4 *6 (-632 *5))))
+ (-12 (-5 *3 (-1 (-1119 *4) (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1250 *4))
+ (-4 *4 (-1178))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-356)) (-4 *6 (-632 *5))
- (-5 *2 (-2 (|:| -1859 (-665 *6)) (|:| |vec| (-1225 *5))))
- (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *6)) (-5 *4 (-1225 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4))
- (-4 *4 (-1201 *3)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-549))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-769)) (-4 *4 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823))
- (-5 *1 (-441 *5 *6 *7 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))))
-(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-1228))))
- ((*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1228)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1172 *5 *6 *7 *3))
- (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-665 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-170)) (-4 *2 (-1201 *4)) (-5 *1 (-175 *4 *2 *3))
- (-4 *3 (-701 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 (-400 (-923 *5)))) (-5 *4 (-1142))
- (-5 *2 (-923 *5)) (-5 *1 (-285 *5)) (-4 *5 (-444))))
+ (-12 (-5 *3 (-1 (-618 (-1119 *5)) (-618 (-1119 *5)))) (-5 *4 (-535))
+ (-5 *2 (-618 (-1119 *5))) (-5 *1 (-1250 *5)) (-4 *5 (-1178)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-890)) (-4 *6 (-13 (-542) (-823))) (-5 *2 (-618 (-307 *6)))
+ (-5 *1 (-215 *5 *6)) (-5 *3 (-307 *6)) (-4 *5 (-1018))))
+ ((*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-542))))
((*1 *2 *3)
- (-12 (-5 *3 (-665 (-400 (-923 *4)))) (-5 *2 (-923 *4))
- (-5 *1 (-285 *4)) (-4 *4 (-444))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1201 *3))))
+ (-12 (-5 *3 (-565 *5)) (-4 *5 (-13 (-29 *4) (-1164)))
+ (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-618 *5))
+ (-5 *1 (-567 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-665 (-167 (-400 (-549)))))
- (-5 *2 (-923 (-167 (-400 (-549))))) (-5 *1 (-741 *4))
- (-4 *4 (-13 (-356) (-821)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 (-167 (-400 (-549))))) (-5 *4 (-1142))
- (-5 *2 (-923 (-167 (-400 (-549))))) (-5 *1 (-741 *5))
- (-4 *5 (-13 (-356) (-821)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *2 (-923 (-400 (-549))))
- (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *4 (-1142))
- (-5 *2 (-923 (-400 (-549)))) (-5 *1 (-755 *5))
- (-4 *5 (-13 (-356) (-821))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1011)) (-5 *3 (-372)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-592 *5))) (-4 *4 (-823)) (-5 *2 (-592 *5))
- (-5 *1 (-558 *4 *5)) (-4 *5 (-423 *4)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-621 (-621 (-621 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-621 *5)) (-4 *5 (-823)) (-5 *1 (-1150 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-621 (-256))) (-5 *1 (-1227))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-1124)) (-5 *1 (-1227))))
- ((*1 *1 *1) (-5 *1 (-1227))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *2 (-621 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1201 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *2 (-621 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1201 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1179)) (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-747))))
+ (-12 (-5 *3 (-565 (-400 (-917 *4))))
+ (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535))))
+ (-5 *2 (-618 (-307 *4))) (-5 *1 (-570 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1115 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-1018))
- (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))
- (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1201 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-592 *3)) (-4 *3 (-823))))
- ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834))))
- ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-621
- (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1138 *2))
- (|:| |logand| (-1138 *2)))))
- (-5 *4 (-621 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-356)) (-5 *1 (-567 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *3 *2))
- (-4 *2 (-13 (-27) (-1164) (-423 (-167 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-541) (-823) (-1009 (-549))))
- (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 (-167 *4))))))
+ (-12 (-5 *3 (-618 *1)) (-4 *1 (-1061 *4 *2)) (-4 *4 (-821))
+ (-4 *2 (-1115 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4))))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-816 *4)) (-5 *3 (-592 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1164) (-29 *6)))
- (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-218 *6 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-892)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1138 *1))
- (-4 *1 (-322 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1138 *3))))
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164)))))
((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356))
- (-4 *2 (-1201 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1225 *4)) (-4 *4 (-342)) (-5 *2 (-1138 *4))
- (-5 *1 (-519 *4)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1142)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
- (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-892)) (-5 *1 (-1001 *2))
- (-4 *2 (-13 (-1066) (-10 -8 (-15 -2485 ($ $ $))))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300))
- (-5 *1 (-887 *3 *4 *5 *2)) (-4 *2 (-920 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1138 *6)) (-4 *6 (-920 *5 *3 *4)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *6 *4 *5))
- (-5 *1 (-887 *4 *5 *6 *2)) (-4 *4 (-769)) (-4 *5 (-823))
- (-4 *6 (-300)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-287 (-923 (-549))))
- (-5 *2
- (-2 (|:| |varOrder| (-621 (-1142)))
- (|:| |inhom| (-3 (-621 (-1225 (-747))) "failed"))
- (|:| |hom| (-621 (-1225 (-747))))))
- (-5 *1 (-230)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1018)) (-4 *2 (-663 *4 *5 *6))
- (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1201 *4)) (-4 *5 (-366 *4))
- (-4 *6 (-366 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 (-1 *6 (-621 *6))))
- (-4 *5 (-38 (-400 (-549)))) (-4 *6 (-1216 *5)) (-5 *2 (-621 *6))
- (-5 *1 (-1218 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-1216 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
- ((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1225 *4)) (-5 *3 (-1086)) (-4 *4 (-342))
- (-5 *1 (-519 *4)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
- ((*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-892)) (-5 *4 (-372)) (-5 *2 (-1230)) (-5 *1 (-1226)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))))
-(((*1 *1 *1) (-4 *1 (-1027))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549))
- (-5 *2 (-1006)) (-5 *1 (-733)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))
- (-5 *2 (-400 (-549))) (-5 *1 (-991 *4)) (-4 *4 (-1201 (-549))))))
-(((*1 *1) (-5 *1 (-430))))
-(((*1 *2 *2) (-12 (-5 *2 (-621 (-665 (-309 (-549))))) (-5 *1 (-1002)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 (-2 (|:| -2120 (-1138 *6)) (|:| -3577 (-549)))))
- (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
- (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-715)))))
-(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1) (-4 *1 (-938))) ((*1 *1 *1) (-5 *1 (-1086))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-541))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-541)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-444)) (-4 *4 (-541))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -3829 *4))) (-5 *1 (-940 *4 *3))
- (-4 *3 (-1201 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4))
- (-4 *4 (-342)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-219) (-219) (-219)))
- (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined"))
- (-5 *5 (-1060 (-219))) (-5 *6 (-621 (-256))) (-5 *2 (-1099 (-219)))
- (-5 *1 (-673))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1060 (-219)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-673))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-1 (-914 (-219)) (-219) (-219)))
- (-5 *4 (-1060 (-219))) (-5 *5 (-621 (-256))) (-5 *1 (-673)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-356)) (-4 *3 (-1018))
- (-5 *1 (-1126 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2718 *4))))
- (-4 *3 (-1066)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892))
+ (-12 (-5 *2 (-1240 (-1142) *3)) (-5 *1 (-1246 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-1249 *3 *4)) (-4 *3 (-823))
(-4 *4 (-1018)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-621 (-549))) (-5 *1 (-1076)) (-5 *3 (-549)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1179))
- (-4 *3 (-1066)) (-5 *2 (-747))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4))
- (-4 *4 (-1179)) (-5 *2 (-747)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1216 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1018)) (-5 *1 (-865 *2 *3)) (-4 *2 (-1201 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-5 *2 (-549))
- (-5 *1 (-435 *5 *3 *6)) (-4 *3 (-1201 *5))
- (-4 *6 (-13 (-397) (-1009 *5) (-356) (-1164) (-277)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *4 *3 *5))
- (-4 *3 (-1201 *4))
- (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-411 *3)) (-4 *3 (-541)) (-5 *1 (-412 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-427))
- (-5 *2
- (-621
- (-3 (|:| -2480 (-1142))
- (|:| -4206 (-621 (-3 (|:| S (-1142)) (|:| P (-923 (-549)))))))))
- (-5 *1 (-1146)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-112))
- (-5 *2 (-1006)) (-5 *1 (-730)))))
-(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228))))
- ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228)))))
-(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-574 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1066)) (-5 *2 (-1086)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1240 (-1142) *3)) (-4 *3 (-1018)) (-5 *1 (-1246 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1240 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
+ (-5 *1 (-1249 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
- (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-699)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-554 *3)) (-4 *3 (-1009 (-549)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-212))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1081))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-1147))) (-5 *3 (-1147)) (-5 *1 (-1084)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
- (-5 *2 (-112))))
+ (-12 (-5 *2 (-618 (-2 (|:| |k| (-1142)) (|:| |c| (-1246 *3)))))
+ (-5 *1 (-1246 *3)) (-4 *3 (-1018))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-819)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1117))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-621 *2)) (-5 *1 (-113 *2))
- (-4 *2 (-1066))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-621 *4))) (-4 *4 (-1066))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1066))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-621 *4)))
- (-5 *1 (-113 *4)) (-4 *4 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018))
- (-5 *1 (-691 *3 *4))))
+ (-12 (-5 *2 (-618 (-2 (|:| |k| *3) (|:| |c| (-1249 *3 *4)))))
+ (-5 *1 (-1249 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-535))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-747))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-890))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-155))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164))) (-5 *1 (-221 *3))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1178)) (-4 *2 (-703))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1178)) (-4 *2 (-703))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1078)) (-4 *2 (-1178))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1078)) (-4 *2 (-1178))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-130))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *6 (-232 (-4299 *3) (-747)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *6))
+ (-2 (|:| -2483 *5) (|:| -2484 *6))))
+ (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-823))
+ (-4 *2 (-921 *4 *6 (-836 *3)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5))
+ (-4 *5 (-921 *2 *3 *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-524)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-4 *7 (-1067)) (-5 *2 (-1 *7 *5)) (-5 *1 (-660 *5 *6 *7))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-662 *3 *2 *4)) (-4 *3 (-1018)) (-4 *2 (-365 *3))
+ (-4 *4 (-365 *3))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-662 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *2 (-365 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-298))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |num| (-863 *3)) (|:| |den| (-863 *3))))
- (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *2)
- (-12 (-5 *2 (-1225 (-1067 *3 *4))) (-5 *1 (-1067 *3 *4))
- (-14 *3 (-892)) (-14 *4 (-892)))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-892)) (-4 *3 (-356))
- (-14 *4 (-964 *2 *3))))
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-697)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1224 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-542))
+ (-5 *1 (-940 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *1) (-4 *1 (-1078)))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1089 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *2 (-232 *3 *4))
+ (-4 *5 (-232 *3 *4))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1089 *3 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4))
+ (-4 *2 (-232 *3 *4))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1092 *3 *4 *2))
+ (-4 *2 (-921 *3 (-521 *4) *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-914 (-219))) (-5 *3 (-219)) (-5 *1 (-1175))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-703))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-703))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-535)) (-4 *1 (-1223 *3)) (-4 *3 (-1178)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))))
+ ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-618 (-1142)))))
((*1 *1 *1)
- (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1201 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823)))
+ (-14 *3 (-618 (-1142)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1067))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-541))))
+ (-12 (-14 *2 (-618 (-1142))) (-4 *3 (-170)) (-4 *5 (-232 (-4299 *2) (-747)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2483 *4) (|:| -2484 *5))
+ (-2 (|:| -2483 *4) (|:| -2484 *5))))
+ (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-823))
+ (-4 *7 (-921 *3 *5 (-836 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-823))))
+ ((*1 *1 *1) (-12 (-4 *2 (-542)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1200 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018))))
((*1 *1 *1)
- (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
- ((*1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
- ((*1 *1 *1) (|partial| -4 *1 (-699)))
- ((*1 *1 *1) (|partial| -4 *1 (-703)))
+ (-12 (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1018)) (-4 *3 (-703))))
+ ((*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-618 (-1142)))))
+ ((*1 *1 *2 *1 *1 *3)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178))
+ (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178))
+ (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178))
+ (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356)))
- (-4 *2 (-1201 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-567 *2)) (-4 *2 (-13 (-29 *4) (-1164)))
- (-5 *1 (-565 *4 *2))
- (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-567 (-400 (-923 *4))))
- (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
- (-5 *2 (-309 *4)) (-5 *1 (-570 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-400 (-549))) (-5 *1 (-995 *3))
- (-4 *3 (-13 (-821) (-356) (-993)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3))
- (-4 *3 (-1201 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356)))
- (-4 *3 (-1201 *2)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-920 *4 *6 *5)) (-4 *4 (-444))
- (-4 *5 (-823)) (-4 *6 (-769)) (-5 *1 (-958 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-342)) (-5 *2 (-929 (-1138 *4))) (-5 *1 (-350 *4))
- (-5 *3 (-1138 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-356))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *1 *1 *1) (-4 *1 (-141)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1066)) (-4 *3 (-871 *5)) (-5 *2 (-1225 *3))
- (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-366 *3))
- (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4336)))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-260)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-621 (-923 *4))) (-5 *3 (-621 (-1142))) (-4 *4 (-444))
- (-5 *1 (-889 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *2 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066)))))
-(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1230) (-1225 *5) (-1225 *5) (-372)))
- (-5 *3 (-1225 (-372))) (-5 *5 (-372)) (-5 *2 (-1230))
- (-5 *1 (-764)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-876 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-892)) (|has| *1 (-6 -4327)) (-4 *1 (-397))))
- ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-897))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-898))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-898))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-5 *1 (-867 *2 *4))
- (-4 *2 (-1201 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1124)) (-4 *1 (-357 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-178))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-304))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-941))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-965))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1007))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1040)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-798)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-816 (-219)))) (-5 *4 (-219)) (-5 *2 (-621 *4))
- (-5 *1 (-260)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-621 (-592 *2))) (-5 *4 (-621 (-1142)))
- (-4 *2 (-13 (-423 (-167 *5)) (-973) (-1164)))
- (-4 *5 (-13 (-541) (-823))) (-5 *1 (-580 *5 *6 *2))
- (-4 *6 (-13 (-423 *5) (-973) (-1164))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-1146)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-812))
- (-5 *3
- (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
- (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219))))
- (|:| |ub| (-621 (-816 (-219))))))
- (-5 *2 (-1006))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-812))
- (-5 *3
- (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))
- (-5 *2 (-1006)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-834)))) (-5 *1 (-834))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1108 *3 *4)) (-5 *1 (-964 *3 *4)) (-14 *3 (-892))
- (-4 *4 (-356))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 (-621 *5))) (-4 *5 (-1018))
- (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *6 (-232 *4 *5))
- (-4 *7 (-232 *3 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1216 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *2 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-549))) (-5 *4 (-549)) (-5 *2 (-52))
- (-5 *1 (-976)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
- (-5 *2 (-1006)) (-5 *1 (-728)))))
-(((*1 *1 *1) (-5 *1 (-525))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-621
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-769)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823))
- (-5 *1 (-441 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-724)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145))))
- ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1146)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
- (-5 *2 (-1006)) (-5 *1 (-733)))))
-(((*1 *1 *1 *1) (-5 *1 (-834))) ((*1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1138 (-549))) (-5 *3 (-549)) (-4 *1 (-840 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-411 *5)) (-4 *5 (-541))
- (-5 *2
- (-2 (|:| -3577 (-747)) (|:| -1569 *5) (|:| |radicand| (-621 *5))))
- (-5 *1 (-313 *5)) (-5 *4 (-747))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-549)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1172 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769))
- (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1138 *7)) (-5 *3 (-549)) (-4 *7 (-920 *6 *4 *5))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
- (-5 *1 (-314 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1179))
- (-5 *2 (-621 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1225 (-1142))) (-5 *3 (-1225 (-445 *4 *5 *6 *7)))
- (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-892))
- (-14 *6 (-621 (-1142))) (-14 *7 (-1225 (-665 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-445 *4 *5 *6 *7)))
- (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-892))
- (-14 *6 (-621 *2)) (-14 *7 (-1225 (-665 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142)))
- (-14 *6 (-1225 (-665 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-1142))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1142)))
- (-14 *6 (-1225 (-665 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1142)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170))
- (-14 *4 (-892)) (-14 *5 (-621 *2)) (-14 *6 (-1225 (-665 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-892))
- (-14 *4 (-621 (-1142))) (-14 *5 (-1225 (-665 *2))))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1066) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-13 (-1066) (-34))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-680 *3))
- (-4 *3 (-594 (-525)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1142)) (-5 *2 (-1 (-219) (-219) (-219)))
- (-5 *1 (-680 *3)) (-4 *3 (-594 (-525))))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-541))))
- ((*1 *1 *1) (|partial| -4 *1 (-699))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-621 (-1060 (-372)))) (-5 *3 (-621 (-256)))
- (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-1060 (-372)))) (-5 *1 (-256))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1060 (-372)))) (-5 *1 (-460))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-1060 (-372)))) (-5 *1 (-460)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006))
- (-5 *1 (-725)))))
-(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459))))
- ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459))))
- ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))
- (-5 *2 (-1006)) (-5 *1 (-725)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-400 *6))
- (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1216 *5)) (-4 *6 (-1201 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1217 *5 *6 *7)) (-4 *5 (-356))
- (-14 *6 (-1142)) (-14 *7 *5) (-5 *2 (-400 (-1198 *6 *5)))
- (-5 *1 (-839 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1217 *5 *6 *7)) (-4 *5 (-356))
- (-14 *6 (-1142)) (-14 *7 *5) (-5 *2 (-400 (-1198 *6 *5)))
- (-5 *1 (-839 *5 *6 *7)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-541)) (-4 *2 (-170)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-621 (-1198 *5 *4)))
- (-5 *1 (-1080 *4 *5)) (-5 *3 (-1198 *5 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-729)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-142))) (-5 *1 (-139))))
- ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-139)))))
-(((*1 *2) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-104)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-983)) (-5 *2 (-834)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-219) (-219) (-219)))
- (-5 *4 (-1 (-219) (-219) (-219) (-219)))
- (-5 *2 (-1 (-914 (-219)) (-219) (-219))) (-5 *1 (-673)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4))
- (-5 *2 (-411 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1201 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-400 (-549))))
- (-5 *1 (-298)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372)))
- (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141))))
- (-5 *1 (-1141)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *4 *3 *5))
- (-4 *3 (-1201 *4))
- (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *3))
- (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1142))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-57 *6)) (-5 *1 (-58 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-535))
+ (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8))
+ (-5 *1 (-135 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-170)) (-4 *6 (-170))
+ (-5 *2 (-166 *6)) (-5 *1 (-167 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-307 *3) (-307 *3))) (-4 *3 (-13 (-1018) (-823)))
+ (-5 *1 (-217 *3 *4)) (-14 *4 (-618 (-1142)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-233 *5 *6)) (-14 *5 (-747)) (-4 *6 (-1178))
+ (-4 *7 (-1178)) (-5 *2 (-233 *5 *7)) (-5 *1 (-234 *5 *6 *7))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-286 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-286 *6)) (-5 *1 (-287 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-591 *1)) (-4 *1 (-291))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1124)) (-5 *5 (-591 *6)) (-4 *6 (-291))
+ (-4 *2 (-1178)) (-5 *1 (-292 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-591 *5)) (-4 *5 (-291)) (-4 *2 (-291))
+ (-5 *1 (-293 *5 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-665 *5)) (-4 *5 (-1018)) (-4 *6 (-1018))
+ (-5 *2 (-665 *6)) (-5 *1 (-298 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-307 *5)) (-4 *5 (-823)) (-4 *6 (-823))
+ (-5 *2 (-307 *6)) (-5 *1 (-308 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-326 *5 *6 *7 *8)) (-4 *5 (-356))
+ (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7))
+ (-4 *9 (-356)) (-4 *10 (-1200 *9)) (-4 *11 (-1200 (-400 *10)))
+ (-5 *2 (-326 *9 *10 *11 *12)) (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-335 *9 *10 *11))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1183)) (-4 *8 (-1183)) (-4 *6 (-1200 *5))
+ (-4 *7 (-1200 (-400 *6))) (-4 *9 (-1200 *8)) (-4 *2 (-335 *8 *9 *10))
+ (-5 *1 (-336 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-335 *5 *6 *7))
+ (-4 *10 (-1200 (-400 *9)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1178)) (-4 *6 (-1178)) (-4 *2 (-365 *6))
+ (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-365 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-1067))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-542)) (-5 *1 (-398 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-542)) (-4 *6 (-542))
+ (-5 *2 (-398 *6)) (-5 *1 (-399 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-542)) (-4 *6 (-542))
+ (-5 *2 (-400 *6)) (-5 *1 (-401 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300))
+ (-4 *6 (-962 *5)) (-4 *7 (-1200 *6)) (-4 *8 (-13 (-403 *6 *7) (-1009 *6)))
+ (-4 *9 (-300)) (-4 *10 (-962 *9)) (-4 *11 (-1200 *10))
+ (-5 *2 (-406 *9 *10 *11 *12)) (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-403 *10 *11) (-1009 *10)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-411 *6))
+ (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1018) (-823)))
+ (-4 *6 (-13 (-1018) (-823))) (-4 *2 (-414 *6)) (-5 *1 (-415 *5 *4 *6 *2))
+ (-4 *4 (-414 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-419 *6))
+ (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-419 *5))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-823))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-565 *5)) (-4 *5 (-356)) (-4 *6 (-356))
+ (-5 *2 (-565 *6)) (-5 *1 (-566 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4 (-3 (-2 (|:| -2242 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-356))
+ (-4 *6 (-356)) (-5 *2 (-2 (|:| -2242 *6) (|:| |coeff| *6)))
+ (-5 *1 (-566 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-356))
+ (-4 *2 (-356)) (-5 *1 (-566 *5 *2))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4
+ (-3
+ (-2 (|:| |mainpart| *5)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ "failed"))
+ (-4 *5 (-356)) (-4 *6 (-356))
(-5 *2
- (-2 (|:| |zeros| (-1122 (-219))) (|:| |ones| (-1122 (-219)))
- (|:| |singularities| (-1122 (-219)))))
- (-5 *1 (-104)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-671 *3)) (-4 *3 (-1066))
- (-5 *2 (-621 (-2 (|:| -1792 *3) (|:| -3997 (-747))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-549))))
- ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-876 *3)) (-4 *3 (-1066))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356)))
- (-4 *3 (-1201 *4)) (-5 *2 (-549))))
- ((*1 *2 *3)
- (|partial| -12
- (-4 *4 (-13 (-541) (-823) (-1009 *2) (-617 *2) (-444)))
- (-5 *2 (-549)) (-5 *1 (-1082 *4 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *4)))))
+ (-2 (|:| |mainpart| *6)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-566 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-581 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-581 *6)) (-5 *1 (-578 *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-816 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *6)))
- (-4 *6 (-13 (-541) (-823) (-1009 *2) (-617 *2) (-444)))
- (-5 *2 (-549)) (-5 *1 (-1082 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-1124))
- (-4 *6 (-13 (-541) (-823) (-1009 *2) (-617 *2) (-444)))
- (-5 *2 (-549)) (-5 *1 (-1082 *6 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-444)) (-5 *2 (-549))
- (-5 *1 (-1083 *4))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-581 *7))
+ (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-581 *8))
+ (-5 *1 (-579 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-816 (-400 (-923 *6))))
- (-5 *3 (-400 (-923 *6))) (-4 *6 (-444)) (-5 *2 (-549))
- (-5 *1 (-1083 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-400 (-923 *6))) (-5 *4 (-1142))
- (-5 *5 (-1124)) (-4 *6 (-444)) (-5 *2 (-549)) (-5 *1 (-1083 *6))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1161 *3)) (-4 *3 (-1018)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769))
- (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-621 *4))
- (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))))
- (-5 *1 (-1036 *7 *8 *9 *3 *4)) (-4 *4 (-1038 *7 *8 *9 *3))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1119 *6)) (-5 *5 (-581 *7))
+ (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-1119 *8))
+ (-5 *1 (-579 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
- (-4 *3 (-1032 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-621 *4))
- (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))))
- (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-1119 *7))
+ (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-1119 *8))
+ (-5 *1 (-579 *6 *7 *8))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-621 *4))
- (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))))
- (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769))
- (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-621 *4))
- (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))))
- (-5 *1 (-1111 *7 *8 *9 *3 *4)) (-4 *4 (-1075 *7 *8 *9 *3))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-618 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-618 *6)) (-5 *1 (-619 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
- (-4 *3 (-1032 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-621 *4))
- (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))))
- (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-618 *6)) (-5 *5 (-618 *7))
+ (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-618 *8))
+ (-5 *1 (-621 *6 *7 *8))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-627 *3)) (-4 *3 (-1178))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-621 *4))
- (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))))
- (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-747)) (-4 *5 (-541))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-940 *5 *3)) (-4 *3 (-1201 *5)))))
-(((*1 *1 *1) (-5 *1 (-219))) ((*1 *1 *1) (-5 *1 (-372)))
- ((*1 *1) (-5 *1 (-372))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-114)) (-5 *4 (-747)) (-4 *5 (-444)) (-4 *5 (-823))
- (-4 *5 (-1009 (-549))) (-4 *5 (-541)) (-5 *1 (-41 *5 *2))
- (-4 *2 (-423 *5))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-365 *5))
+ (-4 *7 (-365 *5)) (-4 *2 (-662 *8 *9 *10))
+ (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-662 *5 *6 *7))
+ (-4 *9 (-365 *8)) (-4 *10 (-365 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1018))
+ (-4 *8 (-1018)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-662 *8 *9 *10))
+ (-5 *1 (-663 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-662 *5 *6 *7))
+ (-4 *9 (-365 *8)) (-4 *10 (-365 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-542)) (-4 *7 (-542)) (-4 *6 (-1200 *5))
+ (-4 *2 (-1200 (-400 *8))) (-5 *1 (-686 *5 *6 *4 *7 *8 *2))
+ (-4 *4 (-1200 (-400 *6))) (-4 *8 (-1200 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1018)) (-4 *9 (-1018)) (-4 *5 (-823))
+ (-4 *6 (-769)) (-4 *2 (-921 *9 *7 *5)) (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-769)) (-4 *4 (-921 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-823)) (-4 *6 (-823)) (-4 *7 (-769))
+ (-4 *9 (-1018)) (-4 *2 (-921 *9 *8 *6)) (-5 *1 (-706 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *8 (-769)) (-4 *4 (-921 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-712 *5 *7)) (-4 *5 (-1018)) (-4 *6 (-1018))
+ (-4 *7 (-703)) (-5 *2 (-712 *6 *7)) (-5 *1 (-711 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-712 *3 *4)) (-4 *4 (-703))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-757 *5)) (-4 *5 (-1018)) (-4 *6 (-1018))
+ (-5 *2 (-757 *6)) (-5 *1 (-758 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-772 *6))
+ (-5 *1 (-775 *4 *5 *2 *6)) (-4 *4 (-772 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-5 *2 (-808 *6)) (-5 *1 (-809 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-808 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-5 *1 (-809 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-5 *2 (-815 *6)) (-5 *1 (-816 *5 *6))))
+ ((*1 *2 *3 *4 *2 *2)
+ (-12 (-5 *2 (-815 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-5 *1 (-816 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-850 *6)) (-5 *1 (-849 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-859 *5 *6)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-4 *7 (-1067)) (-5 *2 (-859 *5 *7)) (-5 *1 (-860 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-5 *2 (-861 *6)) (-5 *1 (-863 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1018)) (-4 *6 (-1018))
+ (-5 *2 (-917 *6)) (-5 *1 (-918 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-823)) (-4 *8 (-1018))
+ (-4 *6 (-769))
(-4 *2
- (-13 (-356) (-295)
- (-10 -8 (-15 -1393 ((-1091 *5 (-592 $)) $))
- (-15 -1404 ((-1091 *5 (-592 $)) $))
- (-15 -3845 ($ (-1091 *5 (-592 $))))))))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-834) (-834) (-834))) (-5 *4 (-549)) (-5 *2 (-834))
- (-5 *1 (-625 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-834)) (-5 *1 (-827 *3 *4 *5)) (-4 *3 (-1018))
- (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-834))))
- ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-834))))
- ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-834))))
- ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-834)) (-5 *1 (-1138 *3)) (-4 *3 (-1018)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1210 *4 *5 *6))
- (|:| |%expon| (-312 *4 *5 *6))
- (|:| |%expTerms|
- (-621 (-2 (|:| |k| (-400 (-549))) (|:| |c| *4))))))
- (|:| |%type| (-1124))))
- (-5 *1 (-1211 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-423 *3)))
- (-14 *5 (-1142)) (-14 *6 *4))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018))
- (-5 *2 (-621 (-621 (-621 (-747))))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-372)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-621 (-309 (-219)))) (-5 *3 (-219)) (-5 *2 (-112))
- (-5 *1 (-204)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-621 (-549))) (-5 *3 (-665 (-549))) (-5 *1 (-1076)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1066)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-400 (-549))) (-4 *4 (-1009 (-549)))
- (-4 *4 (-13 (-823) (-541))) (-5 *1 (-32 *4 *2)) (-4 *2 (-423 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-133)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-219)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-549))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-400 (-549))) (-4 *4 (-356)) (-4 *4 (-38 *3))
- (-4 *5 (-1216 *4)) (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1187 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-400 (-549))) (-4 *4 (-356)) (-4 *4 (-38 *3))
- (-4 *5 (-1185 *4)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1208 *4 *5))
- (-4 *6 (-954 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-277)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-354 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *1) (-5 *1 (-372)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-379 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-423 *3)) (-4 *3 (-823)) (-4 *3 (-1078))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-549))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1225 *4)) (-5 *3 (-549)) (-4 *4 (-342))
- (-5 *1 (-519 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-525))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-525))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *4 (-1066))
- (-5 *1 (-658 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-356))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018))
- (-5 *1 (-666 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-549)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4))
- (-4 *4 (-624 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-549)) (-4 *4 (-1018))
- (-5 *1 (-691 *4 *5)) (-4 *5 (-624 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-892))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-747))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-795 *2)) (-4 *2 (-823))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-810 *3)) (-4 *3 (-1018))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-549)) (-5 *1 (-810 *4)) (-4 *4 (-1018))))
- ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-863 *3)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-400 (-549)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1078)) (-5 *2 (-892))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-549)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *4 (-1018))
- (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1066) (-34)))
- (-4 *3 (-13 (-1066) (-34))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-621 (-473 *4 *5))) (-5 *3 (-621 (-836 *4)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6))
- (-4 *6 (-444)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-923 (-549))))
- (-5 *4 (-309 (-167 (-372)))) (-5 *1 (-323))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-923 (-549))))
- (-5 *4 (-309 (-372))) (-5 *1 (-323))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-923 (-549))))
- (-5 *4 (-309 (-549))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-309 (-167 (-372)))))
- (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-309 (-372)))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-309 (-549)))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-309 (-167 (-372)))))
- (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-309 (-372)))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-309 (-549)))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-309 (-167 (-372)))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-309 (-372))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-309 (-549))) (-5 *1 (-323))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-923 (-549))))
- (-5 *4 (-309 (-670))) (-5 *1 (-323))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-923 (-549))))
- (-5 *4 (-309 (-675))) (-5 *1 (-323))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-923 (-549))))
- (-5 *4 (-309 (-677))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-309 (-670)))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-309 (-675)))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-309 (-677)))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-309 (-670)))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-309 (-675)))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-309 (-677)))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-670))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-675))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1225 (-677))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-670))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-675))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-677))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-309 (-670))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-309 (-675))) (-5 *1 (-323))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-309 (-677))) (-5 *1 (-323))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1124)) (-5 *1 (-323))))
- ((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549))
- (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170))
- (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *9)) (-4 *9 (-1018)) (-4 *5 (-823)) (-4 *6 (-769))
- (-4 *8 (-1018)) (-4 *2 (-920 *9 *7 *5))
- (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-769))
- (-4 *4 (-920 *8 *6 *5)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-747)) (-4 *3 (-541)) (-5 *1 (-940 *3 *2))
- (-4 *2 (-1201 *3)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-725)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
- (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
- (|:| |abserr| (-219)) (|:| |relerr| (-219))))
- (-5 *2 (-372)) (-5 *1 (-199)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
- (-5 *2
- (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549))
- (|:| |success| (-112))))
- (-5 *1 (-765)) (-5 *5 (-549)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549))
- (-14 *4 (-747)) (-4 *5 (-170)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-541) (-145)))
- (-5 *1 (-1195 *4 *2)) (-4 *2 (-1201 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-1144 (-400 (-549))))
- (-5 *1 (-184)))))
-(((*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-356)) (-4 *3 (-1201 *4)) (-4 *5 (-1201 (-400 *3)))
- (-4 *1 (-328 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-549)) (-4 *2 (-356)) (-4 *4 (-1201 *2))
- (-4 *5 (-1201 (-400 *4))) (-4 *1 (-328 *2 *4 *5 *6))
- (-4 *6 (-335 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-356)) (-4 *3 (-1201 *2)) (-4 *4 (-1201 (-400 *3)))
- (-4 *1 (-328 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-356)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4)))
- (-4 *1 (-328 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356))
- (-4 *1 (-328 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534))
- (-5 *2 (-400 (-549)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-400 (-549))) (-5 *1 (-411 *3)) (-4 *3 (-534))
- (-4 *3 (-541))))
- ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-400 (-549)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-773 *3)) (-4 *3 (-170)) (-4 *3 (-534))
- (-5 *2 (-400 (-549)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-400 (-549))) (-5 *1 (-809 *3)) (-4 *3 (-534))
- (-4 *3 (-1066))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-400 (-549))) (-5 *1 (-816 *3)) (-4 *3 (-534))
- (-4 *3 (-1066))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-968 *3)) (-4 *3 (-170)) (-4 *3 (-534))
- (-5 *2 (-400 (-549)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-400 (-549))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-621 (-1138 (-549)))) (-5 *1 (-185)) (-5 *3 (-549)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-472)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -2316 (-621 *7))))
- (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *5)) (-5 *4 (-892)) (-4 *5 (-823))
- (-5 *2 (-621 (-648 *5))) (-5 *1 (-648 *5)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-747)) (-4 *6 (-1066)) (-4 *7 (-871 *6))
- (-5 *2 (-665 *7)) (-5 *1 (-668 *6 *7 *3 *4)) (-4 *3 (-366 *7))
- (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4336)))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-549)) (-4 *4 (-170)) (-4 *5 (-366 *4))
- (-4 *6 (-366 *4)) (-5 *1 (-664 *4 *5 *6 *2))
- (-4 *2 (-663 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1201 *2)) (-4 *2 (-1201 *4)) (-5 *1 (-956 *4 *2 *3 *5))
- (-4 *4 (-342)) (-4 *5 (-701 *2 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1124) (-750))) (-5 *1 (-114)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-823)) (-5 *2 (-621 (-621 *4))) (-5 *1 (-1150 *4))
- (-5 *3 (-621 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-567 *3) *3 (-1142)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1142)))
- (-4 *3 (-277)) (-4 *3 (-607)) (-4 *3 (-1009 *4)) (-4 *3 (-423 *7))
- (-5 *4 (-1142)) (-4 *7 (-594 (-863 (-549)))) (-4 *7 (-444))
- (-4 *7 (-857 (-549))) (-4 *7 (-823)) (-5 *2 (-567 *3))
- (-5 *1 (-558 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-400 *5)) (-4 *5 (-1201 *4)) (-4 *4 (-541))
- (-4 *4 (-1018)) (-4 *2 (-1216 *4)) (-5 *1 (-1219 *4 *5 *6 *2))
- (-4 *6 (-632 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-4 *1 (-149 *3))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-621 (-2 (|:| -3577 (-747)) (|:| -2597 *4) (|:| |num| *4))))
- (-4 *4 (-1201 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-112)) (-5 *1 (-430))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-5 *3 (-621 (-1142))) (-5 *4 (-112)) (-5 *1 (-430))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1122 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1179))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-170))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4))
- (-4 *4 (-170))))
+ (-13 (-1067)
+ (-10 -8 (-15 -4182 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747))))))
+ (-5 *1 (-923 *6 *7 *8 *5 *2)) (-4 *5 (-921 *8 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-929 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-929 *6)) (-5 *1 (-930 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-914 *5)) (-4 *5 (-1018)) (-4 *6 (-1018))
+ (-5 *2 (-914 *6)) (-5 *1 (-952 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 *2 (-917 *4))) (-4 *4 (-1018)) (-4 *2 (-921 (-917 *4) *5 *6))
+ (-4 *5 (-769))
+ (-4 *6
+ (-13 (-823)
+ (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142))))))
+ (-5 *1 (-955 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-542)) (-4 *6 (-542)) (-4 *2 (-962 *6))
+ (-5 *1 (-963 *5 *6 *4 *2)) (-4 *4 (-962 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-969 *6))
+ (-5 *1 (-970 *4 *5 *2 *6)) (-4 *4 (-969 *5))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4))
- (-4 *4 (-170))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4))
- (-4 *4 (-170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 (-621 (-621 *3)))) (-4 *3 (-1066))
- (-5 *1 (-651 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-690 *2 *3 *4)) (-4 *2 (-823)) (-4 *3 (-1066))
- (-14 *4
- (-1 (-112) (-2 (|:| -3491 *2) (|:| -3577 *3))
- (-2 (|:| -3491 *2) (|:| -3577 *3))))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1179)) (-4 *3 (-1179))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 *4))))
- (-4 *4 (-1066)) (-5 *1 (-860 *3 *4)) (-4 *3 (-1066))))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 *5)) (-4 *5 (-13 (-1066) (-34)))
- (-5 *2 (-621 (-1106 *3 *5))) (-5 *1 (-1106 *3 *5))
- (-4 *3 (-13 (-1066) (-34)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-2 (|:| |val| *4) (|:| -1980 *5))))
- (-4 *4 (-13 (-1066) (-34))) (-4 *5 (-13 (-1066) (-34)))
- (-5 *2 (-621 (-1106 *4 *5))) (-5 *1 (-1106 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1980 *4)))
- (-4 *3 (-13 (-1066) (-34))) (-4 *4 (-13 (-1066) (-34)))
- (-5 *1 (-1106 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1066) (-34)))
- (-4 *3 (-13 (-1066) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1066) (-34)))
- (-4 *3 (-13 (-1066) (-34)))))
- ((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-1066) (-34)))
- (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1066) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-1106 *2 *3))) (-4 *2 (-13 (-1066) (-34)))
- (-4 *3 (-13 (-1066) (-34))) (-5 *1 (-1107 *2 *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-1107 *2 *3))) (-5 *1 (-1107 *2 *3))
- (-4 *2 (-13 (-1066) (-34))) (-4 *3 (-13 (-1066) (-34)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1066) (-34)))
- (-4 *4 (-13 (-1066) (-34))) (-5 *1 (-1107 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823))
- (-4 *4 (-259 *3)) (-4 *5 (-769)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1179)) (-5 *1 (-180 *3 *2))
- (-4 *2 (-650 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1018)) (-5 *2 (-621 *1)) (-4 *1 (-1100 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823))))
- ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
- ((*1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3))
- (-4 *3 (-1201 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1018)) (-4 *10 (-1018)) (-14 *5 (-747))
+ (-14 *6 (-747)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7))
+ (-4 *2 (-1021 *5 *6 *10 *11 *12))
+ (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10))
+ (-4 *12 (-232 *5 *10))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-1055 *6)) (-5 *1 (-1056 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-821)) (-4 *5 (-1178))
+ (-4 *6 (-1178)) (-5 *2 (-618 *6)) (-5 *1 (-1056 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-1058 *6)) (-5 *1 (-1059 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1061 *4 *2)) (-4 *4 (-821))
+ (-4 *2 (-1115 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-1119 *6)) (-5 *1 (-1121 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1119 *6)) (-5 *5 (-1119 *7))
+ (-4 *6 (-1178)) (-4 *7 (-1178)) (-4 *8 (-1178)) (-5 *2 (-1119 *8))
+ (-5 *1 (-1122 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5)) (-4 *5 (-1018)) (-4 *6 (-1018))
+ (-5 *2 (-1136 *6)) (-5 *1 (-1137 *5 *6))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1155 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1067))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1184 *5 *7 *9)) (-4 *5 (-1018))
+ (-4 *6 (-1018)) (-14 *7 (-1142)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1184 *6 *8 *10)) (-5 *1 (-1185 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1142))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-1191 *6)) (-5 *1 (-1192 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-821)) (-4 *5 (-1178))
+ (-4 *6 (-1178)) (-5 *2 (-1119 *6)) (-5 *1 (-1192 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1193 *5 *6)) (-14 *5 (-1142))
+ (-4 *6 (-1018)) (-4 *8 (-1018)) (-5 *2 (-1193 *7 *8))
+ (-5 *1 (-1194 *5 *6 *7 *8)) (-14 *7 (-1142))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1200 *6))
+ (-5 *1 (-1201 *5 *4 *6 *2)) (-4 *4 (-1200 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5 *7 *9)) (-4 *5 (-1018))
+ (-4 *6 (-1018)) (-14 *7 (-1142)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1205 *6 *8 *10)) (-5 *1 (-1206 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1142))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1217 *6))
+ (-5 *1 (-1215 *5 *6 *4 *2)) (-4 *4 (-1217 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-1178)) (-4 *6 (-1178))
+ (-5 *2 (-1224 *6)) (-5 *1 (-1225 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1224 *5))
+ (-4 *5 (-1178)) (-4 *6 (-1178)) (-5 *2 (-1224 *6)) (-5 *1 (-1225 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-1018))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-1248 *3 *4))
+ (-4 *4 (-819)))))
(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 *3)) (-4 *3 (-356)) (-14 *6 (-1225 (-665 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-892)) (-14 *5 (-621 (-1142)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1091 (-549) (-592 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1179))))
+ (-12 (-5 *2 (-1224 *3)) (-4 *3 (-356)) (-14 *6 (-1224 (-665 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091 (-535) (-591 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1178))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-332 (-3853 'JINT 'X 'ELAM) (-3853) (-675))))
- (-5 *1 (-60 *3)) (-14 *3 (-1142))))
+ (-12 (-5 *2 (-332 (-3867 'X) (-3867) (-675))) (-5 *1 (-60 *3))
+ (-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-332 (-3853) (-3853 'XC) (-675))))
- (-5 *1 (-62 *3)) (-14 *3 (-1142))))
+ (-12 (-5 *2 (-1224 (-332 (-3867 'JINT 'X 'ELAM) (-3867) (-675))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-332 (-3853 'X) (-3853) (-675))) (-5 *1 (-63 *3))
+ (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 'XC) (-675)))) (-5 *1 (-63 *3))
(-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-665 (-332 (-3853) (-3853 'X 'HESS) (-675))))
- (-5 *1 (-64 *3)) (-14 *3 (-1142))))
+ (-12 (-5 *2 (-665 (-332 (-3867) (-3867 'X 'HESS) (-675)))) (-5 *1 (-64 *3))
+ (-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-332 (-3853) (-3853 'XC) (-675))) (-5 *1 (-65 *3))
+ (-12 (-5 *2 (-332 (-3867) (-3867 'XC) (-675))) (-5 *1 (-65 *3))
(-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-332 (-3853 'X) (-3853 '-2662) (-675))))
- (-5 *1 (-70 *3)) (-14 *3 (-1142))))
+ (-12 (-5 *2 (-1224 (-332 (-3867 'X) (-3867 '-4307) (-675)))) (-5 *1 (-70 *3))
+ (-14 *3 (-1142))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 'X) (-675)))) (-5 *1 (-73 *3))
+ (-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-332 (-3853) (-3853 'X) (-675))))
- (-5 *1 (-73 *3)) (-14 *3 (-1142))))
+ (-12 (-5 *2 (-332 (-3867) (-3867 'X) (-675))) (-5 *1 (-74 *3))
+ (-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-332 (-3853 'X 'EPS) (-3853 '-2662) (-675))))
- (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1142)) (-14 *4 (-1142))
- (-14 *5 (-1142))))
+ (-12 (-5 *2 (-1224 (-332 (-3867 'X 'EPS) (-3867 '-4307) (-675))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1142)) (-14 *4 (-1142)) (-14 *5 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-332 (-3853 'EPS) (-3853 'YA 'YB) (-675))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1142)) (-14 *4 (-1142))
- (-14 *5 (-1142))))
+ (-12 (-5 *2 (-1224 (-332 (-3867 'EPS) (-3867 'YA 'YB) (-675))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1142)) (-14 *4 (-1142)) (-14 *5 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-332 (-3853) (-3853 'X) (-675))) (-5 *1 (-76 *3))
+ (-12 (-5 *2 (-332 (-3867) (-3867 'X) (-675))) (-5 *1 (-77 *3))
(-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-332 (-3853) (-3853 'X) (-675))) (-5 *1 (-77 *3))
+ (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 'XC) (-675)))) (-5 *1 (-78 *3))
(-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-332 (-3853) (-3853 'XC) (-675))))
- (-5 *1 (-78 *3)) (-14 *3 (-1142))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-332 (-3853) (-3853 'X) (-675))))
- (-5 *1 (-79 *3)) (-14 *3 (-1142))))
+ (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 'X) (-675)))) (-5 *1 (-79 *3))
+ (-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-332 (-3853) (-3853 'X) (-675))))
- (-5 *1 (-80 *3)) (-14 *3 (-1142))))
+ (-12 (-5 *2 (-1224 (-332 (-3867) (-3867 'X) (-675)))) (-5 *1 (-80 *3))
+ (-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-332 (-3853 'X '-2662) (-3853) (-675))))
- (-5 *1 (-81 *3)) (-14 *3 (-1142))))
+ (-12 (-5 *2 (-1224 (-332 (-3867 'X) (-3867 '-4307) (-675)))) (-5 *1 (-81 *3))
+ (-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-665 (-332 (-3853 'X '-2662) (-3853) (-675))))
- (-5 *1 (-82 *3)) (-14 *3 (-1142))))
+ (-12 (-5 *2 (-1224 (-332 (-3867 'X '-4307) (-3867) (-675)))) (-5 *1 (-82 *3))
+ (-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-665 (-332 (-3853 'X) (-3853) (-675)))) (-5 *1 (-83 *3))
+ (-12 (-5 *2 (-665 (-332 (-3867 'X '-4307) (-3867) (-675)))) (-5 *1 (-83 *3))
(-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-332 (-3853 'X) (-3853) (-675))))
- (-5 *1 (-84 *3)) (-14 *3 (-1142))))
+ (-12 (-5 *2 (-665 (-332 (-3867 'X) (-3867) (-675)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-332 (-3853 'X) (-3853 '-2662) (-675))))
- (-5 *1 (-85 *3)) (-14 *3 (-1142))))
+ (-12 (-5 *2 (-1224 (-332 (-3867 'X) (-3867) (-675)))) (-5 *1 (-85 *3))
+ (-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-665 (-332 (-3853 'XL 'XR 'ELAM) (-3853) (-675))))
- (-5 *1 (-86 *3)) (-14 *3 (-1142))))
+ (-12 (-5 *2 (-665 (-332 (-3867 'XL 'XR 'ELAM) (-3867) (-675))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1142))))
((*1 *1 *2)
- (-12 (-5 *2 (-332 (-3853 'X) (-3853 '-2662) (-675))) (-5 *1 (-88 *3))
+ (-12 (-5 *2 (-332 (-3867 'X) (-3867 '-4307) (-675))) (-5 *1 (-88 *3))
(-14 *3 (-1142))))
((*1 *1 *2) (-12 (-5 *2 (-1147)) (-4 *1 (-92))))
((*1 *2 *1) (-12 (-5 *2 (-975 2)) (-5 *1 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-107))))
- ((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-107))))
+ ((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-128))))
((*1 *1 *2)
- (-12 (-5 *2 (-621 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-549)) (-14 *4 (-747)) (-4 *5 (-170))))
+ (-12 (-5 *2 (-618 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535))
+ (-14 *4 (-747)) (-4 *5 (-170))))
((*1 *1 *2)
- (-12 (-5 *2 (-621 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-549)) (-14 *4 (-747))))
+ (-12 (-5 *2 (-618 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535))
+ (-14 *4 (-747))))
((*1 *1 *2)
(-12 (-5 *2 (-1108 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170))
- (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549))))
+ (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535))))
((*1 *1 *2)
- (-12 (-5 *2 (-234 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170))
- (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549))))
+ (-12 (-5 *2 (-233 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170))
+ (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535))))
((*1 *2 *3)
- (-12 (-5 *3 (-1225 (-665 *4))) (-4 *4 (-170))
- (-5 *2 (-1225 (-665 (-400 (-923 *4))))) (-5 *1 (-183 *4))))
+ (-12 (-5 *3 (-1224 (-665 *4))) (-4 *4 (-170))
+ (-5 *2 (-1224 (-665 (-400 (-917 *4))))) (-5 *1 (-183 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-621 *3))
+ (-12 (-5 *2 (-618 *3))
(-4 *3
(-13 (-823)
- (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 ((-1230) $))
- (-15 -3431 ((-1230) $)))))
+ (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $))
+ (-15 -2082 ((-1230) $)))))
(-5 *1 (-208 *3))))
((*1 *2 *1) (-12 (-5 *2 (-975 10)) (-5 *1 (-211))))
- ((*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-211))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-239 *3)) (-4 *3 (-823))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-211))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-239 *3)) (-4 *3 (-823))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1058 (-309 *4)))
- (-4 *4 (-13 (-823) (-541) (-594 (-372)))) (-5 *2 (-1058 (-372)))
- (-5 *1 (-251 *4))))
+ (-12 (-5 *3 (-1058 (-307 *4))) (-4 *4 (-13 (-823) (-542) (-594 (-371))))
+ (-5 *2 (-1058 (-371))) (-5 *1 (-252 *4))))
((*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-268))))
((*1 *2 *1)
- (-12 (-4 *2 (-1201 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7))
- (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-12 (-4 *2 (-1200 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170))
+ (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1210 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-423 *3)))
+ (-12 (-5 *2 (-1205 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-414 *3)))
(-14 *5 (-1142)) (-14 *6 *4)
- (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444)))
+ (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444)))
(-5 *1 (-306 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-323))))
+ ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-323))))
((*1 *2 *1)
- (-12 (-5 *2 (-309 *5)) (-5 *1 (-332 *3 *4 *5))
- (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
+ (-12 (-5 *2 (-307 *5)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142)))
+ (-14 *4 (-618 (-1142))) (-4 *5 (-380))))
((*1 *2 *3)
- (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *3 *4 *2))
+ (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *3 *4 *2))
(-4 *3 (-322 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *2 *4 *3))
+ (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *2 *4 *3))
(-4 *3 (-322 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))
@@ -2416,359 +802,322 @@
(-5 *2 (-1240 *3 *4))))
((*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170))))
((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323)))))
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))
(-4 *1 (-376))))
((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-376))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-376))))
((*1 *1 *2) (-12 (-5 *2 (-665 (-675))) (-4 *1 (-376))))
((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323)))))
- (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-377))))
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))
+ (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-378))))
((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124))))
((*1 *1 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382))))
- ((*1 *2 *3) (-12 (-5 *2 (-387)) (-5 *1 (-386 *3)) (-4 *3 (-1066))))
- ((*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-387))))
+ ((*1 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-386))))
+ ((*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-387 *3)) (-4 *3 (-1067))))
((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323)))))
- (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-389))))
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))
+ (-4 *1 (-390))))
+ ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-390))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-390))))
((*1 *1 *2)
- (-12 (-5 *2 (-287 (-309 (-167 (-372))))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-286 (-307 (-166 (-371))))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1="void")))
+ (-14 *5 (-618 (-1142))) (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-287 (-309 (-372)))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-286 (-307 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-287 (-309 (-549)))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-286 (-307 (-535)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-372))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-307 (-371))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-549))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-307 (-535))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-287 (-309 (-670)))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-286 (-307 (-670)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-287 (-309 (-675)))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-286 (-307 (-675)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-287 (-309 (-677)))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-286 (-307 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-670))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-307 (-670))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-675))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-307 (-675))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-677))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-307 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323)))))
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))
(-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
- (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-621 (-323))) (-5 *1 (-391 *3 *4 *5 *6))
- (-14 *3 (-1142)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-12 (-5 *2 (-618 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
(-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1142))
- (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1146))))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1146))))
((*1 *1 *2)
- (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-823) (-21)))
- (-5 *1 (-420 *3 *4)) (-4 *3 (-13 (-170) (-38 (-400 (-549)))))))
+ (-12 (-5 *2 (-400 (-917 (-400 *3)))) (-4 *3 (-542)) (-4 *3 (-823))
+ (-4 *1 (-414 *3))))
((*1 *1 *2)
- (-12 (-5 *1 (-420 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-549)))))
- (-4 *3 (-13 (-823) (-21)))))
+ (-12 (-5 *2 (-917 (-400 *3))) (-4 *3 (-542)) (-4 *3 (-823))
+ (-4 *1 (-414 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-400 (-923 (-400 *3)))) (-4 *3 (-541)) (-4 *3 (-823))
- (-4 *1 (-423 *3))))
+ (-12 (-5 *2 (-400 *3)) (-4 *3 (-542)) (-4 *3 (-823)) (-4 *1 (-414 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-923 (-400 *3))) (-4 *3 (-541)) (-4 *3 (-823))
- (-4 *1 (-423 *3))))
+ (-12 (-5 *2 (-1091 *3 (-591 *1))) (-4 *3 (-1018)) (-4 *3 (-823))
+ (-4 *1 (-414 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-400 *3)) (-4 *3 (-541)) (-4 *3 (-823))
- (-4 *1 (-423 *3))))
+ (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-823) (-21))) (-5 *1 (-422 *3 *4))
+ (-4 *3 (-13 (-170) (-38 (-400 (-535)))))))
((*1 *1 *2)
- (-12 (-5 *2 (-1091 *3 (-592 *1))) (-4 *3 (-1018)) (-4 *3 (-823))
- (-4 *1 (-423 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-427))))
+ (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-535)))))
+ (-4 *3 (-13 (-823) (-21)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-427))))
((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-427))))
((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-427))))
((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-427))))
- ((*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-430))))
- ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-430))))
+ ((*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-429))))
+ ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-429))))
((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323)))))
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))
(-4 *1 (-432))))
((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-432))))
- ((*1 *1 *2) (-12 (-5 *2 (-1225 (-675))) (-4 *1 (-432))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-432))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1224 (-675))) (-4 *1 (-432))))
((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -2101 (-621 (-323)))))
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1146)) (|:| -1725 (-618 (-323)))))
(-4 *1 (-433))))
((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-4 *1 (-433))))
((*1 *1 *2)
- (-12 (-5 *2 (-1225 (-400 (-923 *3)))) (-4 *3 (-170))
- (-14 *6 (-1225 (-665 *3))) (-5 *1 (-445 *3 *4 *5 *6))
- (-14 *4 (-892)) (-14 *5 (-621 (-1142)))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-460))))
- ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-460))))
+ (-12 (-5 *2 (-1224 (-400 (-917 *3)))) (-4 *3 (-170))
+ (-14 *6 (-1224 (-665 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-14 *4 (-890))
+ (-14 *5 (-618 (-1142)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-460))))
+ ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-460))))
((*1 *1 *2)
- (-12 (-5 *2 (-1210 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142))
- (-14 *5 *3) (-5 *1 (-466 *3 *4 *5))))
+ (-12 (-5 *2 (-1205 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3)
+ (-5 *1 (-466 *3 *4 *5))))
((*1 *1 *2)
(-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5))
(-4 *3 (-1018)) (-14 *5 *3)))
((*1 *2 *1) (-12 (-5 *2 (-975 16)) (-5 *1 (-479))))
- ((*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-479))))
- ((*1 *1 *2) (-12 (-5 *2 (-1091 (-549) (-592 (-486)))) (-5 *1 (-486))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-479))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091 (-535) (-591 (-486)))) (-5 *1 (-486))))
((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-493))))
((*1 *1 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-356))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-1178))) (-5 *1 (-515))))
- ((*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-585))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-1178))) (-5 *1 (-586))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-170)) (-5 *1 (-587 *3 *2)) (-4 *2 (-721 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1179))))
- ((*1 *1 *2) (-12 (-4 *1 (-598 *2)) (-4 *2 (-1018))))
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-515))))
+ ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-585))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-586))))
+ ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-587 *3 *2)) (-4 *2 (-721 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *2) (-12 (-4 *1 (-599 *2)) (-4 *2 (-1018))))
((*1 *2 *1)
(-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
- (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892))))
+ (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890))))
((*1 *2 *1)
(-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
- (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-170)) (-5 *1 (-613 *3 *2)) (-4 *2 (-721 *3))))
+ (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890))))
+ ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-611 *3 *2)) (-4 *2 (-721 *3))))
((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
((*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
((*1 *2 *1)
- (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-5 *1 (-651 *3))
- (-4 *3 (-1066))))
+ (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-5 *1 (-651 *3)) (-4 *3 (-1067))))
((*1 *1 *2)
- (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-4 *3 (-1066))
- (-5 *1 (-651 *3))))
+ (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-4 *3 (-1067)) (-5 *1 (-651 *3))))
((*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-657))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1066))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-657))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1067))))
((*1 *1 *2)
- (-12 (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *2)) (-4 *4 (-366 *3))
- (-4 *2 (-366 *3))))
- ((*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834)))))
- ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834)))))
- ((*1 *2 *1) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-670))))
- ((*1 *1 *2) (-12 (-5 *2 (-167 (-677))) (-5 *1 (-670))))
- ((*1 *1 *2) (-12 (-5 *2 (-167 (-675))) (-5 *1 (-670))))
- ((*1 *1 *2) (-12 (-5 *2 (-167 (-549))) (-5 *1 (-670))))
- ((*1 *1 *2) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-670))))
+ (-12 (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *2)) (-4 *4 (-365 *3))
+ (-4 *2 (-365 *3))))
+ ((*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835)))))
+ ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-670))))
+ ((*1 *1 *2) (-12 (-5 *2 (-166 (-677))) (-5 *1 (-670))))
+ ((*1 *1 *2) (-12 (-5 *2 (-166 (-675))) (-5 *1 (-670))))
+ ((*1 *1 *2) (-12 (-5 *2 (-166 (-535))) (-5 *1 (-670))))
+ ((*1 *1 *2) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-670))))
((*1 *1 *2) (-12 (-5 *2 (-677)) (-5 *1 (-675))))
- ((*1 *2 *1) (-12 (-5 *2 (-372)) (-5 *1 (-675))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-309 (-549))) (-5 *2 (-309 (-677))) (-5 *1 (-677))))
- ((*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1066))))
- ((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1124)) (-5 *1 (-687))))
+ ((*1 *2 *1) (-12 (-5 *2 (-371)) (-5 *1 (-675))))
+ ((*1 *2 *3) (-12 (-5 *3 (-307 (-535))) (-5 *2 (-307 (-677))) (-5 *1 (-677))))
+ ((*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687))))
((*1 *2 *1)
(-12 (-4 *2 (-170)) (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1201 *3))))
+ ((*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1200 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -3491 *3) (|:| -3577 *4)))
- (-5 *1 (-690 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-1066))
- (-14 *5 (-1 (-112) *2 *2))))
+ (-12 (-5 *2 (-2 (|:| -2483 *3) (|:| -2484 *4))) (-5 *1 (-690 *3 *4 *5))
+ (-4 *3 (-823)) (-4 *4 (-1067)) (-14 *5 (-1 (-112) *2 *2))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| -3491 *3) (|:| -3577 *4))) (-4 *3 (-823))
- (-4 *4 (-1066)) (-5 *1 (-690 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2))))
+ (-12 (-5 *2 (-2 (|:| -2483 *3) (|:| -2484 *4))) (-4 *3 (-823))
+ (-4 *4 (-1067)) (-5 *1 (-690 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2))))
((*1 *2 *1)
(-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-621 (-2 (|:| -1569 *3) (|:| -3525 *4))))
- (-4 *3 (-1018)) (-4 *4 (-703)) (-5 *1 (-712 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-740))))
+ (-12 (-5 *2 (-618 (-2 (|:| -4296 *3) (|:| -4281 *4)))) (-4 *3 (-1018))
+ (-4 *4 (-703)) (-5 *1 (-712 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-740))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
(|:| |relerr| (-219))))
(|:| |mdnia|
- (-2 (|:| |fn| (-309 (-219)))
- (|:| -2062 (-621 (-1060 (-816 (-219)))))
+ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219)))))
(|:| |abserr| (-219)) (|:| |relerr| (-219))))))
(-5 *1 (-745))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-309 (-219)))
- (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
+ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219)))))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
(-5 *1 (-745))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
(|:| |relerr| (-219))))
(-5 *1 (-745))))
- ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-745))))
- ((*1 *2 *3) (-12 (-5 *2 (-750)) (-5 *1 (-749 *3)) (-4 *3 (-1179))))
+ ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-745))))
+ ((*1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-750 *3)) (-4 *3 (-1178))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
- (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
(|:| |abserr| (-219)) (|:| |relerr| (-219))))
(-5 *1 (-784))))
- ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-784))))
((*1 *2 *1)
- (-12 (-4 *2 (-871 *3)) (-5 *1 (-793 *3 *2 *4)) (-4 *3 (-1066))
- (-14 *4 *3)))
+ (-12 (-4 *2 (-871 *3)) (-5 *1 (-793 *3 *2 *4)) (-4 *3 (-1067)) (-14 *4 *3)))
((*1 *1 *2)
- (-12 (-4 *3 (-1066)) (-14 *4 *3) (-5 *1 (-793 *3 *2 *4))
- (-4 *2 (-871 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-800))))
+ (-12 (-4 *3 (-1067)) (-14 *4 *3) (-5 *1 (-793 *3 *2 *4)) (-4 *2 (-871 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-802))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
- (|:| |lb| (-621 (-816 (-219))))
- (|:| |cf| (-621 (-309 (-219))))
- (|:| |ub| (-621 (-816 (-219))))))
+ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219)))
+ (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219))))
+ (|:| |ub| (-618 (-815 (-219))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-621 (-309 (-219))))
- (|:| -3060 (-621 (-219)))))))
+ (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))))
(-5 *1 (-814))))
((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))
+ (-12 (-5 *2 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))
(-5 *1 (-814))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
- (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219))))
- (|:| |ub| (-621 (-816 (-219))))))
+ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219)))
+ (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219))))
+ (|:| |ub| (-618 (-815 (-219))))))
(-5 *1 (-814))))
- ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-814))))
+ ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-814))))
((*1 *1 *2)
(-12 (-5 *2 (-1221 *3)) (-14 *3 (-1142)) (-5 *1 (-828 *3 *4 *5 *6))
(-4 *4 (-1018)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-831))))
+ ((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-831))))
((*1 *1 *2)
- (-12 (-5 *2 (-923 *3)) (-4 *3 (-1018)) (-5 *1 (-837 *3 *4 *5 *6))
- (-14 *4 (-621 (-1142))) (-14 *5 (-621 (-747))) (-14 *6 (-747))))
+ (-12 (-5 *2 (-917 *3)) (-4 *3 (-1018)) (-5 *1 (-837 *3 *4 *5 *6))
+ (-14 *4 (-618 (-1142))) (-14 *5 (-618 (-747))) (-14 *6 (-747))))
((*1 *2 *1)
- (-12 (-5 *2 (-923 *3)) (-5 *1 (-837 *3 *4 *5 *6)) (-4 *3 (-1018))
- (-14 *4 (-621 (-1142))) (-14 *5 (-621 (-747))) (-14 *6 (-747))))
+ (-12 (-5 *2 (-917 *3)) (-5 *1 (-837 *3 *4 *5 *6)) (-4 *3 (-1018))
+ (-14 *4 (-618 (-1142))) (-14 *5 (-618 (-747))) (-14 *6 (-747))))
((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845))))
+ ((*1 *2 *3) (-12 (-5 *3 (-917 (-48))) (-5 *2 (-307 (-535))) (-5 *1 (-846))))
((*1 *2 *3)
- (-12 (-5 *3 (-923 (-48))) (-5 *2 (-309 (-549))) (-5 *1 (-846))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-400 (-923 (-48)))) (-5 *2 (-309 (-549)))
- (-5 *1 (-846))))
+ (-12 (-5 *3 (-400 (-917 (-48)))) (-5 *2 (-307 (-535))) (-5 *1 (-846))))
((*1 *1 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823))))
((*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-621 (-309 (-219))))
+ (-2 (|:| |pde| (-618 (-307 (-219))))
(|:| |constraints|
- (-621
- (-2 (|:| |start| (-219)) (|:| |finish| (-219))
- (|:| |grid| (-747)) (|:| |boundaryType| (-549))
- (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219))))))
- (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124))
+ (-618
+ (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747))
+ (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219)))
+ (|:| |dFinish| (-665 (-219))))))
+ (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124))
(|:| |tol| (-219))))
(-5 *1 (-869))))
- ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-869))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1165 *3)) (-5 *1 (-872 *3)) (-4 *3 (-1066))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 (-876 *3))) (-4 *3 (-1066)) (-5 *1 (-875 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1066))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-876 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1066)) (-5 *1 (-876 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-400 (-411 *3))) (-4 *3 (-300)) (-5 *1 (-885 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-869))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-872 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-873 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-873 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-873 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400 (-398 *3))) (-4 *3 (-300)) (-5 *1 (-885 *3))))
((*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300))))
((*1 *2 *3)
- (-12 (-5 *3 (-469)) (-5 *2 (-309 *4)) (-5 *1 (-890 *4))
- (-4 *4 (-13 (-823) (-541)))))
+ (-12 (-5 *3 (-469)) (-5 *2 (-307 *4)) (-5 *1 (-891 *4))
+ (-4 *4 (-13 (-823) (-542)))))
((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-937 *3)) (-4 *3 (-938))))
((*1 *1 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-942))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-400 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549))))
- ((*1 *2 *3) (-12 (-5 *2 (-1230)) (-5 *1 (-1004 *3)) (-4 *3 (-1179))))
- ((*1 *2 *3) (-12 (-5 *3 (-305)) (-5 *1 (-1004 *2)) (-4 *2 (-1179))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-942))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1230)) (-5 *1 (-1004 *3)) (-4 *3 (-1178))))
+ ((*1 *2 *3) (-12 (-5 *3 (-304)) (-5 *1 (-1004 *2)) (-4 *2 (-1178))))
((*1 *1 *2)
(-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-920 *3 *4 *5))
- (-14 *6 (-621 *2))))
- ((*1 *1 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1179))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-1014 *3)) (-4 *3 (-541))))
- ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1018))))
+ (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-921 *3 *4 *5)) (-14 *6 (-618 *2))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *3) (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-1011 *3)) (-4 *3 (-542))))
+ ((*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1018))))
((*1 *2 *1)
(-12 (-5 *2 (-665 *5)) (-5 *1 (-1022 *3 *4 *5)) (-14 *3 (-747))
(-14 *4 (-747)) (-4 *5 (-1018))))
((*1 *1 *2)
(-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1092 *3 *4 *2))
- (-4 *2 (-920 *3 (-521 *4) *4))))
+ (-4 *2 (-921 *3 (-521 *4) *4))))
((*1 *1 *2)
(-12 (-4 *3 (-1018)) (-4 *2 (-823)) (-5 *1 (-1092 *3 *2 *4))
- (-4 *4 (-920 *3 (-521 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-834))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-665 *4)) (-5 *1 (-1108 *3 *4)) (-14 *3 (-747))
- (-4 *4 (-1018))))
+ (-4 *4 (-921 *3 (-521 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-835))))
((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1110))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-1122 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1122 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018))))
((*1 *1 *2)
(-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5))
(-4 *3 (-1018)) (-14 *5 *3)))
@@ -2779,63 +1128,57 @@
(-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5))
(-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1198 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1142))
- (-14 *5 *3) (-5 *1 (-1140 *3 *4 *5))))
+ (-12 (-5 *2 (-1193 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3)
+ (-5 *1 (-1140 *3 *4 *5))))
((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1141))))
((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1142))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152 (-1142) (-430))) (-5 *1 (-1146))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1151 (-1142) (-429))) (-5 *1 (-1146))))
((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1147))))
((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1147))))
((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1147))))
((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1147))))
((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1147))))
((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1147))))
- ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1147))))
- ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1147))))
- ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1151 *3)) (-4 *3 (-1066))))
- ((*1 *2 *3) (-12 (-5 *2 (-1159)) (-5 *1 (-1158 *3)) (-4 *3 (-1066))))
- ((*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1159))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-923 *3)) (-4 *3 (-1018)) (-5 *1 (-1173 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1173 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1147))))
+ ((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1147))))
+ ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1152 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-1158))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *1 (-1159 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1018)) (-5 *1 (-1171 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1171 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *2) (-12 (-5 *2 (-929 *3)) (-4 *3 (-1178)) (-5 *1 (-1176 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-929 *3)) (-4 *3 (-1179)) (-5 *1 (-1176 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1018)) (-4 *1 (-1187 *3 *2)) (-4 *2 (-1216 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1189 *3 *4 *5))
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1184 *3 *4 *5))
(-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-1188 *3 *2)) (-4 *2 (-1217 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-1178)) (-5 *1 (-1191 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1060 *3)) (-4 *3 (-1179)) (-5 *1 (-1192 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1221 *3)) (-14 *3 (-1142)) (-5 *1 (-1198 *3 *4))
+ (-12 (-5 *2 (-1221 *3)) (-14 *3 (-1142)) (-5 *1 (-1193 *3 *4))
(-4 *4 (-1018))))
((*1 *1 *2)
- (-12 (-4 *3 (-1018)) (-4 *1 (-1208 *3 *2)) (-4 *2 (-1185 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1210 *3 *4 *5))
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1205 *3 *4 *5))
(-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-1209 *3 *2)) (-4 *2 (-1186 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1217 *3 *4 *5))
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1214 *3 *4 *5))
(-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1198 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1142))
- (-14 *5 *3) (-5 *1 (-1217 *3 *4 *5))))
+ (-12 (-5 *2 (-1193 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1142)) (-14 *5 *3)
+ (-5 *1 (-1214 *3 *4 *5))))
((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1221 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1226))))
- ((*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1226)) (-5 *1 (-1229))))
- ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1230))))
+ ((*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1227)) (-5 *1 (-1226))))
+ ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1227))))
+ ((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-1230))))
((*1 *1 *2)
- (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-621 *4))
- (-5 *1 (-1237 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-920 *3 *5 *4))
- (-14 *7 (-621 (-747))) (-14 *8 (-747))))
+ (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-618 *4))
+ (-5 *1 (-1237 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-921 *3 *5 *4))
+ (-14 *7 (-618 (-747))) (-14 *8 (-747))))
((*1 *2 *1)
- (-12 (-4 *2 (-920 *3 *5 *4)) (-5 *1 (-1237 *3 *4 *5 *2 *6 *7 *8))
- (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-621 *4))
- (-14 *7 (-621 (-747))) (-14 *8 (-747))))
+ (-12 (-4 *2 (-921 *3 *5 *4)) (-5 *1 (-1237 *3 *4 *5 *2 *6 *7 *8))
+ (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-618 *4))
+ (-14 *7 (-618 (-747))) (-14 *8 (-747))))
((*1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1018))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
((*1 *2 *1)
(-12 (-5 *2 (-1249 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823))
(-4 *4 (-170))))
@@ -2845,1971 +1188,1200 @@
((*1 *1 *2)
(-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))
(-5 *1 (-1245 *3 *4))))
- ((*1 *1 *2)
- (-12 (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-819)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549))
- (-5 *2 (-1006)) (-5 *1 (-731)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769))
- (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-920 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-920 *3 *4 *5)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5))
- (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-1238 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-621 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541))
- (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1238 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-665 (-219)))
- (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))
- (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 *10))
- (-5 *1 (-602 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1038 *5 *6 *7 *8))
- (-4 *10 (-1075 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
- (-14 *6 (-621 (-1142))) (-5 *2 (-621 (-1015 *5 *6)))
- (-5 *1 (-606 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
- (-14 *6 (-621 (-1142)))
- (-5 *2
- (-621 (-1112 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6)))))
- (-5 *1 (-606 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-621 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-621 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
- (-14 *6 (-621 (-1142))) (-5 *2 (-621 (-1015 *5 *6)))
- (-5 *1 (-1015 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 *1))
- (-4 *1 (-1038 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-621 (-1112 *5 *6 *7 *8))) (-5 *1 (-1112 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-621 (-1112 *5 *6 *7 *8))) (-5 *1 (-1112 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1))
- (-4 *1 (-1172 *4 *5 *6 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1225 *3)) (-4 *3 (-1018)) (-5 *1 (-689 *3 *4))
- (-4 *4 (-1201 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-102 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823))))
- ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
- ((*1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-819)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-34)) (-5 *2 (-747))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3))
- (-4 *3 (-1201 *2)))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-535))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-795 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-819)) (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-795 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-819)) (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-5 *2 (-2 (|:| -3337 *3) (|:| -1792 *4))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-747)) (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-411 *2)) (-4 *2 (-300)) (-5 *1 (-885 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1142))
- (-4 *5 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-886 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-411 (-923 *6))) (-5 *5 (-1142)) (-5 *3 (-923 *6))
- (-4 *6 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-886 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-621 *6) "failed") (-549) *6 *6)) (-4 *6 (-356))
- (-4 *7 (-1201 *6))
- (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6)))
- (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
+ (-12 (-5 *3 (-1249 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-823))
+ (-4 *2 (-170))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-795 *4)) (-4 *1 (-1244 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1018))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-1018)) (-5 *1 (-1248 *2 *3)) (-4 *3 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1067)) (-5 *2 (-1 *5 *4)) (-5 *1 (-659 *4 *5))
+ (-4 *4 (-1067))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-307 (-535))) (-5 *1 (-900))))
+ ((*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-901 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-1248 *2 *3)) (-4 *3 (-819)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1201 *3)) (-4 *3 (-1018)))))
-(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-356))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-219))))
+ ((*1 *1 *1 *1)
+ (-3874 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1178)))
+ (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1178)))))
+ ((*1 *1 *1 *1) (-4 *1 (-356)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-371))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1091 *3 (-591 *1))) (-4 *3 (-542)) (-4 *3 (-823))
+ (-4 *1 (-414 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-465)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-524)))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-170)) (-5 *1 (-597 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-703) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-170)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-703) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-170)) (-4 *2 (-356))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-170)) (-5 *1 (-628 *2 *4 *3)) (-4 *2 (-694 *4))
+ (-4 *3 (|SubsetCategory| (-703) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-170)) (-5 *1 (-628 *3 *4 *2)) (-4 *3 (-694 *4))
+ (-4 *2 (|SubsetCategory| (-703) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2)) (-4 *2 (-356))))
+ ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-837 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *2 (-1018))
+ (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-747))) (-14 *5 (-747))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018)) (-4 *5 (-232 *4 *2))
+ (-4 *6 (-232 *3 *2)) (-4 *2 (-356))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-356))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-769))
+ (-14 *6 (-618 *3)) (-5 *1 (-1237 *2 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-921 *2 *4 *3)) (-14 *7 (-618 (-747))) (-14 *8 (-747))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-819)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
+ (-14 *4 (-618 (-1142)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-535)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
+ (-14 *4 (-618 (-1142)))))
+ ((*1 *2 *1 *3)
(-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823))
- (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-621 (-747)))))
+ (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-268))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1136 *8)) (-5 *4 (-618 *6)) (-4 *6 (-823))
+ (-4 *8 (-921 *7 *5 *6)) (-4 *5 (-769)) (-4 *7 (-1018)) (-5 *2 (-618 (-747)))
+ (-5 *1 (-314 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-890))))
((*1 *2 *1)
- (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
- (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-621 (-747))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-541)) (-4 *2 (-444)) (-5 *1 (-940 *2 *3))
- (-4 *3 (-1201 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1062))))
+ (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5))))
+ (-12 (-4 *3 (-542)) (-5 *2 (-535)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1200 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-873 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-618 *6)) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-618 (-747)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-921 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
+ (-5 *2 (-747))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-944 *3 *2 *4)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *2 (-768))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-747))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1217 *3))
+ (-5 *2 (-535))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1186 *3))
+ (-5 *2 (-400 (-535)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-808 (-890)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-747)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1179))))
- ((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7))))
- (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-444)) (-5 *2 (-112))
- (-5 *1 (-353 *4 *5)) (-14 *5 (-621 (-1142)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-756 *4 (-836 *5)))) (-4 *4 (-444))
- (-14 *5 (-621 (-1142))) (-5 *2 (-112)) (-5 *1 (-606 *4 *5)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-834))) ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-942)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1225 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183))
- (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(((*1 *1 *1 *1) (-5 *1 (-160)))
- ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-160)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-538)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1006)) (-5 *3 (-1142)) (-5 *1 (-186)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-549))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-842 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-14 *2 (-549))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-549)) (-14 *3 *2) (-5 *1 (-843 *3 *4))
- (-4 *4 (-840 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-549)) (-5 *1 (-843 *2 *3)) (-4 *3 (-840 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-549)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-1216 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1216 *2)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1122 *4)) (-5 *3 (-549)) (-4 *4 (-1018))
- (-5 *1 (-1126 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-549)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1018))
- (-14 *4 (-1142)) (-14 *5 *3))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2))
- (-4 *2 (-423 *3))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1240 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))
+ (-5 *1 (-640 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-640 *3 *4)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-170)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2))
+ (-4 *2 (-414 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2))
- (-4 *2 (-423 *4))))
+ (-12 (-5 *3 (-1058 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-823) (-542)))
+ (-5 *1 (-156 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-158))))
((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142))))
- ((*1 *1 *1) (-4 *1 (-158))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1201 *3)) (-5 *1 (-392 *3 *2))
- (-4 *3 (-13 (-356) (-145))))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-1113 *3)))))
-(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1179))
- (-4 *2 (-1066))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *3))
- (-4 *3 (-1179))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1179))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1066))
- (-5 *1 (-714 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-5 *1 (-714 *2)) (-4 *2 (-1066))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1066) (-34)))
- (-4 *4 (-13 (-1066) (-34))) (-5 *1 (-1107 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1138 *1)) (-5 *4 (-1142)) (-4 *1 (-27))
- (-5 *2 (-621 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1138 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-923 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-621 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *2 (-621 *1)) (-4 *1 (-29 *3)))))
+ (-12 (-5 *2 (-618 (-535))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
+ (-14 *4 (-618 (-1142)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1) (-4 *1 (-277)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-5 *1 (-605 *3 *4 *5))
+ (-14 *5 (-890))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-535))))) (-4 *5 (-823))
+ (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1247 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *4 (-694 (-400 (-535))))
+ (-4 *3 (-823)) (-4 *4 (-170)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1142))))
- (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-920 *3 *5 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-549))))
- ((*1 *1 *1) (-5 *1 (-1086))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-665 *4)) (-5 *3 (-892)) (-4 *4 (-1018))
- (-5 *1 (-999 *4))))
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1) (-4 *1 (-277)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-398 *4)) (-4 *4 (-542))
+ (-5 *2 (-618 (-2 (|:| -4296 (-747)) (|:| |logand| *4)))) (-5 *1 (-313 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-640 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-621 (-665 *4))) (-5 *3 (-892)) (-4 *4 (-1018))
- (-5 *1 (-999 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
-(((*1 *1) (-5 *1 (-799))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
- (-5 *2 (-1006)) (-5 *1 (-729)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-660 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1122 *3))) (-5 *2 (-1122 *3)) (-5 *1 (-1126 *3))
- (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-914 *5)) (-5 *3 (-747)) (-4 *5 (-1018))
- (-5 *1 (-1130 *4 *5)) (-14 *4 (-892)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1142)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *4 *5 *6 *7))
- (-4 *4 (-594 (-525))) (-4 *5 (-1179)) (-4 *6 (-1179))
- (-4 *7 (-1179)))))
+ (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-535))))) (-4 *5 (-823))
+ (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1247 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *4 (-694 (-400 (-535))))
+ (-4 *3 (-823)) (-4 *4 (-170)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892))
- (-4 *4 (-1018)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-549))))
- ((*1 *1 *1 *1) (-5 *1 (-1086))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1124)) (-5 *2 (-549)) (-5 *1 (-1161 *4))
- (-4 *4 (-1018)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1138 *4)) (-4 *4 (-342))
- (-4 *2
- (-13 (-395)
- (-10 -7 (-15 -3845 (*2 *4)) (-15 -2723 ((-892) *2))
- (-15 -3420 ((-1225 *2) (-892))) (-15 -2731 (*2 *2)))))
- (-5 *1 (-349 *2 *4)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-892)) (-5 *1 (-434 *2))
- (-4 *2 (-1201 (-549)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-892)) (-5 *4 (-747)) (-5 *1 (-434 *2))
- (-4 *2 (-1201 (-549)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-892)) (-5 *4 (-621 (-747))) (-5 *1 (-434 *2))
- (-4 *2 (-1201 (-549)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-892)) (-5 *4 (-621 (-747))) (-5 *5 (-747))
- (-5 *1 (-434 *2)) (-4 *2 (-1201 (-549)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-892)) (-5 *4 (-621 (-747))) (-5 *5 (-747))
- (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1201 (-549)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-892)) (-5 *4 (-411 *2)) (-4 *2 (-1201 *5))
- (-5 *1 (-436 *5 *2)) (-4 *5 (-1018)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1066)) (-4 *3 (-871 *5)) (-5 *2 (-665 *3))
- (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-366 *3))
- (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4336)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 *1)) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1201 *3)) (-4 *3 (-1018))
- (-4 *3 (-541))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1066)) (-4 *2 (-871 *4)) (-5 *1 (-668 *4 *2 *5 *3))
- (-4 *5 (-366 *2)) (-4 *3 (-13 (-366 *4) (-10 -7 (-6 -4336)))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-400 (-923 *6)) (-1131 (-1142) (-923 *6))))
- (-5 *5 (-747)) (-4 *6 (-444)) (-5 *2 (-621 (-665 (-400 (-923 *6)))))
- (-5 *1 (-285 *6)) (-5 *4 (-665 (-400 (-923 *6))))))
+ (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
+ (-5 *2 (-2 (|:| |k| (-795 *3)) (|:| |c| *4))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1249 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-170))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-795 *3)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1249 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-170))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-795 *3)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1067))))
((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-400 (-923 *5)) (-1131 (-1142) (-923 *5))))
- (|:| |eigmult| (-747)) (|:| |eigvec| (-621 *4))))
- (-4 *5 (-444)) (-5 *2 (-621 (-665 (-400 (-923 *5)))))
- (-5 *1 (-285 *5)) (-5 *4 (-665 (-400 (-923 *5)))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-549))))
- ((*1 *1 *1 *1) (-5 *1 (-1086))))
-(((*1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1162)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-798)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1160)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *3 (-621 (-845)))
- (-5 *1 (-460)))))
-(((*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4336)) (-4 *1 (-584 *4 *3)) (-4 *4 (-1066))
- (-4 *3 (-1179)) (-4 *3 (-1066)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-4 *1 (-534))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-400 (-923 *4))) (-5 *3 (-1142))
- (-4 *4 (-13 (-541) (-1009 (-549)) (-145))) (-5 *1 (-555 *4)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-621 *3)) (-5 *6 (-1138 *3))
- (-4 *3 (-13 (-423 *7) (-27) (-1164)))
- (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-545 *7 *3 *8)) (-4 *8 (-1066))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-621 *3))
- (-5 *6 (-400 (-1138 *3))) (-4 *3 (-13 (-423 *7) (-27) (-1164)))
- (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-545 *7 *3 *8)) (-4 *8 (-1066)))))
-(((*1 *1 *1 *1) (-4 *1 (-295))) ((*1 *1 *1) (-4 *1 (-295))))
-(((*1 *2)
- (-12 (-5 *2 (-665 (-881 *3))) (-5 *1 (-344 *3 *4)) (-14 *3 (-892))
- (-14 *4 (-892))))
- ((*1 *2)
- (-12 (-5 *2 (-665 *3)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342))
- (-14 *4
- (-3 (-1138 *3)
- (-1225 (-621 (-2 (|:| -4160 *3) (|:| -3491 (-1086)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-665 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342))
- (-14 *4 (-892)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-34)) (-5 *2 (-747))))
+ (-12 (-5 *4 (-535)) (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-795 *4)) (-4 *4 (-823)) (-4 *1 (-1244 *4 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-549))))
+ (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018))))
((*1 *2 *1)
- (-12 (-5 *2 (-747)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-819)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-541)) (-4 *3 (-170)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2))
- (-4 *2 (-663 *3 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *3 (-621 (-549)))
- (-5 *1 (-854)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-4 *2 (-1066)) (-5 *1 (-656 *5 *6 *2)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)))))
-(((*1 *2) (-12 (-5 *2 (-1113 (-1124))) (-5 *1 (-384)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1223 *3)) (-4 *3 (-23)) (-4 *3 (-1179)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1201 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-541))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-621 (-1138 *7))) (-5 *3 (-1138 *7))
- (-4 *7 (-920 *5 *6 *4)) (-4 *5 (-880)) (-4 *6 (-769))
- (-4 *4 (-823)) (-5 *1 (-877 *5 *6 *4 *7)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1240 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))
- (-5 *1 (-640 *3 *4))))
+ (-12 (-4 *3 (-542)) (-5 *2 (-112)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1200 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-640 *3 *4)) (-5 *1 (-1245 *3 *4))
- (-4 *3 (-823)) (-4 *4 (-170)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1138 *7)) (-4 *7 (-920 *6 *4 *5)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *2 (-1138 *6))
- (-5 *1 (-314 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-96)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2 *3 *4)) (-4 *2 (-823))
+ (-4 *3 (-13 (-170) (-694 (-400 (-535))))) (-14 *4 (-890))))
+ ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
+ (-4 *4 (-170))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1244 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)) (-4 *3 (-170)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1980 *9))))
- (-5 *4 (-747)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8))
- (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1230))
- (-5 *1 (-1036 *5 *6 *7 *8 *9))))
+ (-12 (-5 *4 (-747)) (-5 *2 (-618 (-1142))) (-5 *1 (-204)) (-5 *3 (-1142))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1980 *9))))
- (-5 *4 (-747)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8))
- (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1230))
- (-5 *1 (-1111 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
- (-5 *2 (-795 *3))))
+ (-12 (-5 *3 (-307 (-219))) (-5 *4 (-747)) (-5 *2 (-618 (-1142)))
+ (-5 *1 (-260))))
((*1 *2 *1)
- (-12 (-4 *2 (-819)) (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1124)) (-5 *4 (-167 (-219))) (-5 *5 (-549))
- (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-621 *5))) (-4 *5 (-1216 *4))
- (-4 *4 (-38 (-400 (-549))))
- (-5 *2 (-1 (-1122 *4) (-621 (-1122 *4)))) (-5 *1 (-1218 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1066)) (-4 *5 (-1066))
- (-5 *2 (-1 *5)) (-5 *1 (-659 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-747)) (-5 *1 (-220))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-167 (-219))) (-5 *3 (-747)) (-5 *1 (-220))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1105))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-981 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-167 (-219)))) (-5 *2 (-1006))
- (-5 *1 (-731)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-923 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298)))))
-(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1066) (-34)))
- (-4 *3 (-13 (-1066) (-34))))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -2719 (-114)) (|:| |arg| (-621 (-863 *3)))))
- (-5 *1 (-863 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-621 (-863 *4)))
- (-5 *1 (-863 *4)) (-4 *4 (-1066)))))
+ (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-618 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-618 *3)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-795 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-618 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1173 *4 *5 *3 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *3 (-823))
+ (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-356)) (-5 *2 (-890)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-356)) (-5 *2 (-808 (-890))) (-5 *1 (-321 *3 *4))
+ (-4 *3 (-322 *4))))
+ ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-890))))
+ ((*1 *2) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-808 (-890))))))
+(((*1 *2)
+ (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-5 *2 (-747)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-747)) (-4 *3 (-1179)) (-4 *1 (-56 *3 *4 *5))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *1) (-5 *1 (-169)))
- ((*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1066))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382))))
- ((*1 *1) (-5 *1 (-387)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-4 *1 (-627 *3)) (-4 *3 (-1179))))
- ((*1 *1)
- (-12 (-4 *3 (-1066)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1066))
- (-4 *4 (-642 *3))))
- ((*1 *1) (-12 (-5 *1 (-860 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066))))
- ((*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018))))
- ((*1 *1 *1) (-5 *1 (-1142))) ((*1 *1) (-5 *1 (-1142)))
- ((*1 *1) (-5 *1 (-1159))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1070)) (-5 *1 (-284)))))
+ (-12 (-4 *3 (-343)) (-4 *4 (-322 *3)) (-4 *5 (-1200 *4))
+ (-5 *1 (-753 *3 *4 *5 *2 *6)) (-4 *2 (-1200 *5)) (-14 *6 (-890))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-1243 *3)) (-4 *3 (-356)) (-4 *3 (-361))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-356)) (-4 *2 (-361)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-535))))) (-4 *5 (-823))
+ (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1247 *5 *4)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1238 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-618 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769))
+ (-4 *7 (-823)) (-5 *1 (-1238 *5 *6 *7 *8)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1238 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-618 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769))
+ (-4 *7 (-823)) (-5 *1 (-1238 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1066) (-1009 *5)))
- (-4 *5 (-857 *4)) (-4 *4 (-1066)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-902 *4 *5 *6)))))
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-618 (-1238 *4 *5 *6 *7)))
+ (-5 *1 (-1238 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-618 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-5 *2 (-618 (-1238 *6 *7 *8 *9))) (-5 *1 (-1238 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-1142))) (-4 *4 (-13 (-300) (-145)))
- (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769))
- (-5 *2 (-621 (-400 (-923 *4)))) (-5 *1 (-895 *4 *5 *6 *7))
- (-4 *7 (-920 *4 *6 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-837 *4 *5 *6 *7))
+ (-4 *4 (-1018)) (-14 *5 (-618 (-1142))) (-14 *6 (-618 *3)) (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-4 *5 (-823)) (-4 *6 (-769))
+ (-14 *8 (-618 *5)) (-5 *2 (-1230)) (-5 *1 (-1237 *4 *5 *6 *7 *8 *9 *10))
+ (-4 *7 (-921 *4 *6 *5)) (-14 *9 (-618 *3)) (-14 *10 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1067) (-34))) (-5 *1 (-1106 *3 *2))
+ (-4 *3 (-13 (-1067) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1236)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1235)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1235)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-541))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3086 *4)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-596))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
- (-4 *6 (-769)) (-4 *7 (-920 *4 *6 *5))
+ (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $)))))
+ (-4 *4 (-1200 *3))
(-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-621 *7)) (|:| |n0| (-621 *7))))
- (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-167 (-219))))
- (-5 *2 (-1006)) (-5 *1 (-731)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
- (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5))))
+ (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3))))
+ (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-541)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))
- (-4 *7 (-963 *4)) (-4 *2 (-663 *7 *8 *9))
- (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-663 *4 *5 *6))
- (-4 *8 (-366 *7)) (-4 *9 (-366 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018))
- (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-356))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2))
- (-4 *2 (-663 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-665 *2)) (-4 *2 (-356)) (-4 *2 (-1018))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1089 *2 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356))))
- ((*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-1150 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-2 (|:| -3337 *3) (|:| -1792 *4))))
- (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *1 (-1155 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1155 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-592 *4)) (-5 *6 (-1138 *4))
- (-4 *4 (-13 (-423 *7) (-27) (-1164)))
- (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-12 (-5 *3 (-535)) (-4 *4 (-1200 *3))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4))))
- (-5 *1 (-545 *7 *4 *3)) (-4 *3 (-632 *4)) (-4 *3 (-1066))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-592 *4)) (-5 *6 (-400 (-1138 *4)))
- (-4 *4 (-13 (-423 *7) (-27) (-1164)))
- (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4))))
- (-5 *1 (-545 *7 *4 *3)) (-4 *3 (-632 *4)) (-4 *3 (-1066)))))
-(((*1 *1) (-5 *1 (-1145))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-621
- (-2 (|:| -3122 (-747))
- (|:| |eqns|
- (-621
- (-2 (|:| |det| *7) (|:| |rows| (-621 (-549)))
- (|:| |cols| (-621 (-549))))))
- (|:| |fgb| (-621 *7)))))
- (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145)))
- (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-747))
- (-5 *1 (-895 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230))
- (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230))
- (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-444))))
- ((*1 *1 *1 *1) (-4 *1 (-444)))
+ (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3))))
+ (-5 *1 (-744 *4 *5)) (-4 *5 (-403 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1201 (-549)))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-549)) (-5 *1 (-672 *2)) (-4 *2 (-1201 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-747)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300))
- (-5 *1 (-887 *3 *4 *5 *2)) (-4 *2 (-920 *5 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *6 *4 *5))
- (-5 *1 (-887 *4 *5 *6 *2)) (-4 *4 (-769)) (-4 *5 (-823))
- (-4 *6 (-300))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1138 *6)) (-4 *6 (-920 *5 *3 *4)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-1138 *7))) (-4 *4 (-769)) (-4 *5 (-823))
- (-4 *6 (-300)) (-5 *2 (-1138 *7)) (-5 *1 (-887 *4 *5 *6 *7))
- (-4 *7 (-920 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-892)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-444)) (-4 *3 (-541)) (-5 *1 (-940 *3 *2))
- (-4 *2 (-1201 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-444)))))
-(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
- (-5 *2 (-549)) (-5 *1 (-198)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1108 *4 *2)) (-14 *4 (-892))
- (-4 *2 (-13 (-1018) (-10 -7 (-6 (-4338 "*")))))
- (-5 *1 (-873 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *3 *2))
- (-4 *2 (-13 (-27) (-1164) (-423 (-167 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-356) (-1164) (-973))))))
-(((*1 *2 *1) (-12 (-5 *2 (-800)) (-5 *1 (-801)))))
-(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1124)) (-5 *1 (-298)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| |k| (-1142)) (|:| |c| (-1247 *3)))))
- (-5 *1 (-1247 *3)) (-4 *3 (-1018))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| |k| *3) (|:| |c| (-1249 *3 *4)))))
- (-5 *1 (-1249 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-834)) (-5 *1 (-1122 *3)) (-4 *3 (-1066))
- (-4 *3 (-1179)))))
-(((*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1066)))))
-(((*1 *1 *1) (-5 *1 (-1030))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-863 *4)) (-4 *4 (-1066)) (-5 *1 (-860 *4 *3))
- (-4 *3 (-1066)))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1142)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-665 *4)) (-4 *4 (-1018)) (-5 *1 (-1108 *3 *4))
- (-14 *3 (-747)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-621 *3)) (-5 *1 (-940 *4 *3))
- (-4 *3 (-1201 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *1 *1 *1) (-4 *1 (-637))) ((*1 *1 *1 *1) (-5 *1 (-1086))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-219))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))))
- (-5 *2 (-1006)) (-5 *1 (-726))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-219))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))))
- (-5 *8 (-381)) (-5 *2 (-1006)) (-5 *1 (-726)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-4 *6 (-335 *3 *4 *5))
+ (-12 (-4 *4 (-343)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 *3))
(-5 *2
- (-2 (|:| -3713 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-356))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -4040 (-400 *6))
- (|:| |special| (-400 *6))))
- (-5 *1 (-704 *5 *6)) (-5 *3 (-400 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-5 *2 (-621 *3)) (-5 *1 (-867 *3 *4))
- (-4 *3 (-1201 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-747)) (-4 *5 (-356))
- (-5 *2 (-2 (|:| -3837 *3) (|:| -3847 *3))) (-5 *1 (-867 *3 *5))
- (-4 *3 (-1201 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112))
- (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
- (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112))
- (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
- (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112))
- (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444))
- (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1111 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112))
- (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444))
- (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-621 *5) *6))
- (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *6 (-1201 *5))
- (-5 *2 (-621 (-2 (|:| -2588 *5) (|:| -2650 *3))))
- (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-632 *6))
- (-4 *7 (-632 (-400 *6))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-834)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-549)) (-5 *1 (-372)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549)))))
- (-4 *3 (-1201 *4)) (-5 *1 (-785 *4 *3 *2 *5)) (-4 *2 (-632 *3))
- (-4 *5 (-632 (-400 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-400 *5))
- (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-1201 *4))
- (-5 *1 (-785 *4 *5 *2 *6)) (-4 *2 (-632 *5)) (-4 *6 (-632 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-356) (-1164) (-973)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1201 (-400 *2)))
- (-4 *2 (-1201 *4)) (-5 *1 (-334 *3 *4 *2 *5))
- (-4 *3 (-335 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1183))
- (-4 *4 (-1201 (-400 *2))) (-4 *2 (-1201 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-444))))
- ((*1 *1 *1 *1) (-4 *1 (-444))))
-(((*1 *1 *1 *1) (-4 *1 (-637))) ((*1 *1 *1 *1) (-5 *1 (-1086))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549))
- (-5 *2 (-1006)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1124)) (-5 *1 (-687)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-799)) (-5 *1 (-798)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1018))
- (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))
- (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1201 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-892)) (-4 *5 (-1018))
- (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1164) (-277)))
- (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1201 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-621 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
- (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
- (|:| |abserr| (-219)) (|:| |relerr| (-219))))
- (-5 *2 (-372)) (-5 *1 (-199)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4))
- (-4 *6 (-1201 *5)) (-4 *7 (-1201 (-400 *6)))
- (-4 *8 (-335 *5 *6 *7))
- (-4 *4 (-13 (-823) (-541) (-1009 (-549))))
- (-5 *2 (-2 (|:| -2078 (-747)) (|:| -3567 *8)))
- (-5 *1 (-882 *4 *5 *6 *7 *8))))
+ (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3))))
+ (-5 *1 (-956 *4 *3 *5 *6)) (-4 *6 (-701 *3 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-329 (-400 (-549)) *4 *5 *6))
- (-4 *4 (-1201 (-400 (-549)))) (-4 *5 (-1201 (-400 *4)))
- (-4 *6 (-335 (-400 (-549)) *4 *5))
- (-5 *2 (-2 (|:| -2078 (-747)) (|:| -3567 *6)))
- (-5 *1 (-883 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-665 (-219))) (-5 *6 (-112)) (-5 *7 (-665 (-549)))
- (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))
- (-5 *3 (-549)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6))
- (-5 *2 (-621 (-2 (|:| -2680 *1) (|:| -1358 (-621 *7)))))
- (-5 *3 (-621 *7)) (-4 *1 (-1172 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-343)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 *3))
+ (-5 *2
+ (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3))))
+ (-5 *1 (-1234 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5)))))
(((*1 *2)
- (-12 (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4)))
- (-5 *2 (-1225 *1)) (-4 *1 (-335 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1157)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-948 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1192 *3)) (-4 *3 (-1179)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1179))
- (-4 *2 (-1066)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1201 *6))
- (-4 *6 (-13 (-356) (-145) (-1009 *4))) (-5 *4 (-549))
+ (-12 (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4)))
+ (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $)))))
+ (-4 *4 (-1200 *3))
(-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -2650
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-986 *6 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-534))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-549)))))
- (-4 *2 (-13 (-823) (-21))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1225 (-309 (-219))))
+ (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3))))
+ (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1200 (-535)))
(-5 *2
- (-2 (|:| |additions| (-549)) (|:| |multiplications| (-549))
- (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))))
- (-5 *1 (-298)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-387))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1159)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1138 *4)) (-4 *4 (-342))
- (-5 *2 (-1225 (-621 (-2 (|:| -4160 *4) (|:| -3491 (-1086))))))
- (-5 *1 (-339 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-732)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-549))) (-5 *1 (-241 *3 *4))
- (-14 *3 (-621 (-1142))) (-4 *4 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-549))) (-14 *3 (-621 (-1142)))
- (-5 *1 (-446 *3 *4 *5)) (-4 *4 (-1018))
- (-4 *5 (-232 (-3774 *3) (-747)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-549))) (-5 *1 (-473 *3 *4))
- (-14 *3 (-621 (-1142))) (-4 *4 (-1018)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
- (-4 *3 (-1032 *6 *7 *8))
- (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4))))
- (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1980 *9))))
- (-5 *5 (-112)) (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8))
- (-4 *6 (-444)) (-4 *7 (-769)) (-4 *4 (-823))
- (-5 *2 (-621 (-2 (|:| |val| *8) (|:| -1980 *9))))
- (-5 *1 (-1074 *6 *7 *4 *8 *9)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *2 (-541)) (-5 *1 (-940 *2 *4))
- (-4 *4 (-1201 *2)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-621 (-1142))) (-4 *4 (-1066))
- (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4))))
- (-5 *1 (-1042 *4 *5 *2))
- (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1066))
- (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3))))
- (-5 *1 (-1042 *3 *4 *2))
- (-4 *2 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *2 (-1032 *4 *5 *6)) (-5 *1 (-752 *4 *5 *6 *2 *3))
- (-4 *3 (-1038 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1138 (-923 *6))) (-4 *6 (-541))
- (-4 *2 (-920 (-400 (-923 *6)) *5 *4)) (-5 *1 (-709 *5 *4 *6 *2))
- (-4 *5 (-769))
- (-4 *4 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-892)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-256)))))
-(((*1 *2)
- (-12 (-4 *4 (-356)) (-5 *2 (-892)) (-5 *1 (-321 *3 *4))
- (-4 *3 (-322 *4))))
+ (-2 (|:| -2123 (-665 (-535))) (|:| |basisDen| (-535))
+ (|:| |basisInv| (-665 (-535)))))
+ (-5 *1 (-744 *3 *4)) (-4 *4 (-403 (-535) *3))))
((*1 *2)
- (-12 (-4 *4 (-356)) (-5 *2 (-809 (-892))) (-5 *1 (-321 *3 *4))
- (-4 *3 (-322 *4))))
- ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-892))))
+ (-12 (-4 *3 (-343)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 *4))
+ (-5 *2
+ (-2 (|:| -2123 (-665 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-665 *4))))
+ (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-701 *4 *5))))
((*1 *2)
- (-12 (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-5 *2 (-809 (-892))))))
-(((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
- ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
- ((*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1172 *2 *3 *4 *5)) (-4 *2 (-541))
- (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1179))))
- ((*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 *2)))
- (-5 *2 (-863 *3)) (-5 *1 (-1042 *3 *4 *5))
- (-4 *5 (-13 (-423 *4) (-857 *3) (-594 *2))))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-541) (-823) (-1009 (-549))))
- (-4 *5 (-423 *4)) (-5 *2 (-411 (-1138 (-400 (-549)))))
- (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1201 *5)))))
-(((*1 *2)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-665 (-400 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-880)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-411 (-1138 *7)))
- (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-1138 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-880)) (-4 *5 (-1201 *4)) (-5 *2 (-411 (-1138 *5)))
- (-5 *1 (-878 *4 *5)) (-5 *3 (-1138 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-834)))))
-(((*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018))))
- ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300))
- (-5 *2 (-621 (-747))) (-5 *1 (-754 *3 *4 *5 *6 *7))
- (-4 *3 (-1201 *6)) (-4 *7 (-920 *6 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-549)) (|has| *1 (-6 -4327)) (-4 *1 (-397))
- (-5 *2 (-892)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-584 *3 *2)) (-4 *3 (-1066)) (-4 *3 (-823))
- (-4 *2 (-1179))))
- ((*1 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
- ((*1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1179)) (-5 *1 (-844 *2 *3)) (-4 *3 (-1179))))
- ((*1 *2 *1) (-12 (-5 *2 (-648 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1179))))
- ((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
+ (-12 (-4 *3 (-343)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 *4))
(-5 *2
- (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549))
- (|:| |success| (-112))))
- (-5 *1 (-765)) (-5 *5 (-549)))))
+ (-2 (|:| -2123 (-665 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-665 *4))))
+ (-5 *1 (-1234 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-923 (-400 (-549)))) (-5 *4 (-1142))
- (-5 *5 (-1060 (-816 (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-293)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-923 (-549))) (-5 *3 (-1142))
- (-5 *4 (-1060 (-400 (-549)))) (-5 *1 (-30)))))
-(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
+ (-12 (-5 *3 (-747)) (-4 *6 (-356)) (-5 *4 (-1171 *6))
+ (-5 *2 (-1 (-1119 *4) (-1119 *4))) (-5 *1 (-1233 *6)) (-5 *5 (-1119 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142))
- (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-567 *3)) (-5 *1 (-419 *5 *3))
- (-4 *3 (-13 (-1164) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-541) (-1009 (-549)) (-145)))
- (-5 *2 (-567 (-400 (-923 *5)))) (-5 *1 (-555 *5))
- (-5 *3 (-400 (-923 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1027)) (-4 *3 (-1164))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-549)) (|has| *1 (-6 -4337)) (-4 *1 (-1213 *3))
- (-4 *3 (-1179)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1066))
- (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3))))
- (-5 *2 (-621 (-1042 *3 *4 *5))) (-5 *1 (-1043 *3 *4 *5))
- (-4 *5 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-356)) (-5 *2 (-621 *3)) (-5 *1 (-916 *4 *3))
- (-4 *3 (-1201 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1225 (-309 (-219)))) (-5 *4 (-621 (-1142)))
- (-5 *2 (-665 (-309 (-219)))) (-5 *1 (-199))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1066)) (-4 *6 (-871 *5)) (-5 *2 (-665 *6))
- (-5 *1 (-668 *5 *6 *3 *4)) (-4 *3 (-366 *6))
- (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4336)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1179)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2))
- (-4 *2 (-1201 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *1) (-4 *1 (-277)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-411 *4)) (-4 *4 (-541))
- (-5 *2 (-621 (-2 (|:| -1569 (-747)) (|:| |logand| *4))))
- (-5 *1 (-313 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-640 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
- (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-549)))))
- (-4 *5 (-823)) (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1246 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4))
- (-4 *4 (-694 (-400 (-549)))) (-4 *3 (-823)) (-4 *4 (-170)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1179)) (-5 *2 (-621 *1)) (-4 *1 (-981 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-400 (-549))) (-5 *1 (-576 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1018)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-300))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4246 *1)))
- (-4 *1 (-300)))))
+ (-12 (-5 *3 (-1142)) (-4 *5 (-356)) (-5 *2 (-618 (-1171 *5)))
+ (-5 *1 (-1233 *5)) (-5 *4 (-1171 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-549)) (-5 *1 (-478 *4))
- (-4 *4 (-1201 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892))
- (-4 *4 (-1018)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-665 *3))
- (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $)))))
- (-4 *4 (-1201 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-665 *3))
- (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $)))))
- (-4 *4 (-1201 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-977)))))
+ (-12 (-5 *3 (-1142)) (-5 *2 (-1 (-1136 (-917 *4)) (-917 *4)))
+ (-5 *1 (-1233 *4)) (-4 *4 (-356)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4))))
- (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-219))
- (-5 *7 (-665 (-549))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-729)))))
+ (-12 (-5 *3 (-1142)) (-4 *5 (-356)) (-5 *2 (-1119 (-1119 (-917 *5))))
+ (-5 *1 (-1233 *5)) (-5 *4 (-1119 (-917 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
- (-5 *2 (-621 (-923 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-621 (-923 *4))) (-5 *1 (-409 *3 *4))
- (-4 *3 (-410 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-621 (-923 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-621 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1225 (-445 *4 *5 *6 *7))) (-5 *2 (-621 (-923 *4)))
- (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-541)) (-4 *4 (-170))
- (-14 *5 (-892)) (-14 *6 (-621 (-1142))) (-14 *7 (-1225 (-665 *4))))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1119 (-917 *4)) (-1119 (-917 *4))))
+ (-5 *1 (-1233 *4)) (-4 *4 (-356)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
- (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
- (|:| |abserr| (-219)) (|:| |relerr| (-219))))
- (-5 *2 (-372)) (-5 *1 (-199)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1225 *5)) (-4 *5 (-768)) (-5 *2 (-112))
- (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-96)))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1119 (-917 *4)) (-1119 (-917 *4))))
+ (-5 *1 (-1233 *4)) (-4 *4 (-356)))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1179)) (-5 *2 (-747))
- (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-130))
- (-5 *2 (-747))))
- ((*1 *2)
- (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4))
- (-4 *3 (-322 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-354 *3)) (-4 *3 (-1066))))
- ((*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-379 *3)) (-4 *3 (-1066))))
+ (-12 (-14 *4 (-747)) (-4 *5 (-1178)) (-5 *2 (-133)) (-5 *1 (-231 *3 *4 *5))
+ (-4 *3 (-232 *4 *5))))
((*1 *2)
- (-12 (-4 *4 (-1066)) (-5 *2 (-747)) (-5 *1 (-417 *3 *4))
- (-4 *3 (-418 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-747)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-23)) (-14 *5 *4)))
+ (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4))))
((*1 *2)
- (-12 (-4 *4 (-170)) (-4 *5 (-1201 *4)) (-5 *2 (-747))
- (-5 *1 (-700 *3 *4 *5)) (-4 *3 (-701 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823))))
- ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-170))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3))
- (-4 *3 (-1201 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-891)) (-5 *2 (-2 (|:| -1569 (-621 *1)) (|:| -4246 *1)))
- (-5 *3 (-621 *1)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
- (-5 *2
- (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549))
- (|:| |success| (-112))))
- (-5 *1 (-765)) (-5 *5 (-549)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219))
- (-5 *7 (-665 (-549)))
- (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))
- (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-730)))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-535))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769))
+ (-5 *2 (-535)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1018)) (-5 *2 (-890))))
+ ((*1 *2) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-356)) (-5 *2 (-133)))))
+(((*1 *1) (-5 *1 (-1230))))
+(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-1229))))
+ ((*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1229)))))
+(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229))))
+ ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-618 (-747))) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-618 (-747))) (-5 *1 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))))
+(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228))))
+ ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))))
+(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228))))
+ ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))))
+(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228))))
+ ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))))
+(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228))))
+ ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))))
+(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228))))
+ ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1228)))))
+(((*1 *1) (-5 *1 (-1228))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-618 (-254))) (-5 *1 (-1228))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-1124)) (-5 *1 (-1228))))
+ ((*1 *1 *1) (-5 *1 (-1228))))
+(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-1130 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1228))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1228)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-747)) (-5 *3 (-914 *4)) (-4 *1 (-1100 *4)) (-4 *4 (-1018))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-747)) (-5 *4 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1227))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1227))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1228))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-254))) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-254))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-618 (-254))) (-5 *1 (-255))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-747)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-747)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-4 *1 (-367 *3 *4))
- (-4 *4 (-170)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1201 (-549)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))
- (-5 *2 (-1138 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))
- (-5 *2 (-1138 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-779)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-534)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1027))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)) (-4 *2 (-1027))))
- ((*1 *1 *1) (-4 *1 (-821)))
- ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)) (-4 *2 (-1027))))
- ((*1 *1 *1) (-4 *1 (-1027))) ((*1 *1 *1) (-4 *1 (-1105))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))))
-(((*1 *2 *3 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219))
+ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219))
(|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219))
(|:| |deltaX| (-219)) (|:| |deltaY| (-219))))
- (-5 *3 (-621 (-256))) (-5 *1 (-254))))
- ((*1 *1 *2)
+ (-5 *1 (-254))))
+ ((*1 *2 *3 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219))
+ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219))
(|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219))
(|:| |deltaX| (-219)) (|:| |deltaY| (-219))))
- (-5 *1 (-256))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227))))
+ (-5 *3 (-618 (-254))) (-5 *1 (-255))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228))))
((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-549)) (-5 *4 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227))))
+ (-12 (-5 *3 (-535)) (-5 *4 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228))))
((*1 *2 *1 *3)
(-12
(-5 *3
- (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219))
+ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219))
(|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219))
(|:| |deltaX| (-219)) (|:| |deltaY| (-219))))
- (-5 *2 (-1230)) (-5 *1 (-1227))))
+ (-5 *2 (-1230)) (-5 *1 (-1228))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4018 (-219))
+ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4190 (-219))
(|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219))
(|:| |deltaX| (-219)) (|:| |deltaY| (-219))))
- (-5 *1 (-1227))))
+ (-5 *1 (-1228))))
((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-621 (-621 *4)))) (-5 *2 (-621 (-621 *4)))
- (-5 *1 (-1150 *4)) (-4 *4 (-823)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-155)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-890)) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-1228))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896))))
+ ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1230)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1227))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1124)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1124)) (-5 *1 (-1228))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1228))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1227))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1228)))))
+(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-460))))
+ ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1227))))
+ ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1228)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-914 (-219)))) (-5 *1 (-1227)))))
+(((*1 *1) (-5 *1 (-1227))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-618 (-254))) (-5 *1 (-1227))))
+ ((*1 *1 *1) (-5 *1 (-1227))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-890)) (-5 *4 (-219)) (-5 *5 (-535)) (-5 *6 (-845))
+ (-5 *2 (-1230)) (-5 *1 (-1227)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-621
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-747)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-769)) (-4 *6 (-920 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-823))
- (-5 *1 (-441 *4 *3 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-411 *3)) (-4 *3 (-541))))
+ (-1224
+ (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219))
+ (|:| |deltaY| (-219)) (|:| -4193 (-535)) (|:| -4191 (-535))
+ (|:| |spline| (-535)) (|:| -4222 (-535)) (|:| |axesColor| (-845))
+ (|:| -4194 (-535)) (|:| |unitsColor| (-845)) (|:| |showing| (-535)))))
+ (-5 *1 (-1227)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1224 (-3 (-460) "undefined"))) (-5 *1 (-1227)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-460)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-5 *2 (-460)) (-5 *1 (-1227)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-618 (-371))) (-5 *3 (-618 (-254))) (-5 *1 (-255))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-371))) (-5 *1 (-460))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-371))) (-5 *1 (-460))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-890)) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-890)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-460)) (-5 *4 (-890)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-845)) (-5 *5 (-890))
+ (-5 *6 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-1226))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-618 (-254)))
+ (-5 *2 (-1227)) (-5 *1 (-1226)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-845)) (-5 *5 (-890))
+ (-5 *6 (-618 (-254))) (-5 *2 (-460)) (-5 *1 (-1226))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-2 (|:| -2120 *4) (|:| -3068 (-549)))))
- (-4 *4 (-1201 (-549))) (-5 *2 (-747)) (-5 *1 (-434 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-621 (-621 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-621 (-621 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-621 (-621 *3))) (-5 *1 (-1151 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-914 *4)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892))
- (-4 *4 (-1018)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-624 *5)) (-4 *5 (-1018))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-825 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-665 *3)) (-4 *1 (-410 *3)) (-4 *3 (-170))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018))))
- ((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1018))
- (-5 *1 (-826 *2 *3)) (-4 *3 (-825 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 *4)) (-5 *1 (-1107 *3 *4))
- (-4 *3 (-13 (-1066) (-34))) (-4 *4 (-13 (-1066) (-34))))))
-(((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1179)) (-5 *2 (-621 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769))
- (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *2 (-460)) (-5 *1 (-1226))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769))
- (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-410 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1142)) (-5 *4 (-923 (-549))) (-5 *2 (-323))
- (-5 *1 (-325)))))
+ (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-618 (-254))) (-5 *2 (-460))
+ (-5 *1 (-1226)))))
+(((*1 *1 *1) (-5 *1 (-48)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1178)) (-4 *2 (-1178))
+ (-5 *1 (-58 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1067)) (|has| *1 (-6 -4336))
+ (-4 *1 (-149 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2))
+ (-4 *2 (-1178))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2))
+ (-4 *2 (-1178))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-5 *2 (-2 (|:| -2115 (-1136 *4)) (|:| |deg| (-890))))
+ (-5 *1 (-215 *4 *5)) (-5 *3 (-1136 *4)) (-4 *5 (-13 (-542) (-823)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-233 *5 *6)) (-14 *5 (-747))
+ (-4 *6 (-1178)) (-4 *2 (-1178)) (-5 *1 (-234 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1200 *4))
+ (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-542)) (-4 *2 (-823))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1200 *2))
+ (-4 *4 (-1200 (-400 *3))) (-4 *5 (-335 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1178)) (-4 *2 (-1178))
+ (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-365 *5)) (-4 *6 (-365 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1067)) (-4 *2 (-1067))
+ (-5 *1 (-420 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2))))
+ ((*1 *1 *1) (-5 *1 (-486)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-618 *5)) (-4 *5 (-1178)) (-4 *2 (-1178))
+ (-5 *1 (-619 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1018)) (-4 *2 (-1018)) (-4 *6 (-365 *5))
+ (-4 *7 (-365 *5)) (-4 *8 (-365 *2)) (-4 *9 (-365 *2))
+ (-5 *1 (-663 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-662 *5 *6 *7))
+ (-4 *10 (-662 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1200 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-356))
+ (-4 *3 (-170)) (-4 *1 (-701 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1200 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-929 *5)) (-4 *5 (-1178)) (-4 *2 (-1178))
+ (-5 *1 (-930 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-921 *3 *4 *5)) (-14 *6 (-618 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1018)) (-4 *2 (-1018)) (-14 *5 (-747))
+ (-14 *6 (-747)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7))
+ (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2))
+ (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *12 (-1021 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1119 *5)) (-4 *5 (-1178)) (-4 *2 (-1178))
+ (-5 *1 (-1121 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
+ (-4 *1 (-1173 *5 *6 *7 *2)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *2 (-1032 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1224 *5)) (-4 *5 (-1178)) (-4 *2 (-1178))
+ (-5 *1 (-1225 *5 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1178)) (-4 *5 (-1178))
+ (-5 *2 (-57 *5)) (-5 *1 (-58 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-233 *6 *7)) (-14 *6 (-747))
+ (-4 *7 (-1178)) (-4 *5 (-1178)) (-5 *2 (-233 *6 *5))
+ (-5 *1 (-234 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1178)) (-4 *5 (-1178)) (-4 *2 (-365 *5))
+ (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-365 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1067)) (-4 *5 (-1067)) (-4 *2 (-419 *5))
+ (-5 *1 (-420 *6 *4 *5 *2)) (-4 *4 (-419 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-618 *6)) (-4 *6 (-1178)) (-4 *5 (-1178))
+ (-5 *2 (-618 *5)) (-5 *1 (-619 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-929 *6)) (-4 *6 (-1178)) (-4 *5 (-1178))
+ (-5 *2 (-929 *5)) (-5 *1 (-930 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1119 *6)) (-4 *6 (-1178)) (-4 *3 (-1178))
+ (-5 *2 (-1119 *3)) (-5 *1 (-1121 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1224 *6)) (-4 *6 (-1178)) (-4 *5 (-1178))
+ (-5 *2 (-1224 *5)) (-5 *1 (-1225 *6 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1224 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-208 *2))
+ (-4 *2
+ (-13 (-823)
+ (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $))
+ (-15 -2082 ((-1230) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1178))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1178))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-130))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) (-4 *2 (-1200 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5))
+ (-4 *5 (-921 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-524)))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-25)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-1223 *3)) (-4 *3 (-23)) (-4 *3 (-1178)))))
+(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-133)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-208 *2))
+ (-4 *2
+ (-13 (-823)
+ (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $))
+ (-15 -2082 ((-1230) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2))))
+ ((*1 *1 *1) (-5 *1 (-835))) ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-21)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1178)) (-4 *2 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-835))))
+ ((*1 *1 *1) (-5 *1 (-835)))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-219)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-1018)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1178)) (-4 *3 (-1018)) (-5 *2 (-665 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1018))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-1018)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1124))
- (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1164) (-29 *4))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-549))) (-4 *3 (-1018)) (-5 *1 (-98 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-621 *2)) (-4 *2 (-1066)) (-4 *2 (-1179)))))
-(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-863 *4)) (-4 *4 (-1066)) (-5 *1 (-861 *4 *3))
- (-4 *3 (-1179))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 (-621 (-621 *4)))) (-5 *2 (-621 (-621 *4)))
- (-4 *4 (-823)) (-5 *1 (-1150 *4)))))
+ (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))
+ (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4))))
+ ((*1 *1 *1) (-4 *1 (-534)))
+ ((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-864 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-1178)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1176 *3)) (-4 *3 (-1178))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-973)) (-4 *2 (-1018)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1210 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5))
- (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-549))))
- ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-411 *3)) (-4 *3 (-541))))
- ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-675))))
+ (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1178)) (-4 *2 (-973)) (-4 *2 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-836 *3)) (-14 *3 (-618 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-937 *3)) (-4 *3 (-938))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-960))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1058 *3)) (-4 *3 (-1178))))
((*1 *2 *1)
- (-12 (-4 *2 (-1066)) (-5 *1 (-690 *3 *2 *4)) (-4 *3 (-823))
- (-14 *4
- (-1 (-112) (-2 (|:| -3491 *3) (|:| -3577 *2))
- (-2 (|:| -3491 *3) (|:| -3577 *2)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-372))))
- ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-372)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-549))) (-5 *1 (-185)) (-5 *3 (-549))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-170))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))))
-(((*1 *1)
- (-12 (-4 *1 (-397)) (-4007 (|has| *1 (-6 -4327)))
- (-4007 (|has| *1 (-6 -4319)))))
- ((*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1066)) (-4 *2 (-823))))
- ((*1 *1 *1 *1) (-4 *1 (-823)))
- ((*1 *2 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823))))
- ((*1 *1) (-5 *1 (-1086))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-2 (|:| -4160 *4) (|:| -1996 (-549)))))
- (-4 *4 (-1066)) (-5 *2 (-1 *4)) (-5 *1 (-988 *4)))))
-(((*1 *2 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-534)))))
-(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130))
- (-4 *2 (-1066))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-354 *2)) (-4 *2 (-1066))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-379 *2)) (-4 *2 (-1066))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *2 (-1066)) (-5 *1 (-625 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-795 *2)) (-4 *2 (-823)))))
+ (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-1142))))
+ ((*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1221 *3)) (-14 *3 *2))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 *4)) (-4 *4 (-1066)) (-5 *2 (-1230))
- (-5 *1 (-1180 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *4)) (-4 *4 (-1066)) (-5 *2 (-1230))
- (-5 *1 (-1180 *4)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-621 *2)) (-4 *2 (-1066)) (-4 *2 (-1179)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-1142)) (-5 *1 (-525))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525)))))
- ((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525)))))
- ((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-621 (-1142))) (-5 *2 (-1142)) (-5 *1 (-681 *3))
- (-4 *3 (-594 (-525))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *1 (-655 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1066)))))
+ (-12 (-5 *3 (-400 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-542)) (-4 *4 (-1018))
+ (-4 *2 (-1217 *4)) (-5 *1 (-1219 *4 *5 *6 *2)) (-4 *6 (-634 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-837 *4 *5 *6 *7))
- (-4 *4 (-1018)) (-14 *5 (-621 (-1142))) (-14 *6 (-621 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-4 *5 (-823)) (-4 *6 (-769))
- (-14 *8 (-621 *5)) (-5 *2 (-1230))
- (-5 *1 (-1237 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-920 *4 *6 *5))
- (-14 *9 (-621 *3)) (-14 *10 *3))))
+ (-12 (-4 *4 (-1018)) (-4 *5 (-1200 *4)) (-5 *2 (-1 *6 (-618 *6)))
+ (-5 *1 (-1219 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-1217 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-356))
- (-4 *7 (-1201 (-400 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -3050 *3)))
- (-5 *1 (-547 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-356))
- (-5 *2
- (-2 (|:| |answer| (-400 *6)) (|:| -3050 (-400 *6))
- (|:| |specpart| (-400 *6)) (|:| |polypart| *6)))
- (-5 *1 (-548 *5 *6)) (-5 *3 (-400 *6)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
+ (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-4 *2 (-1200 *5))
+ (-5 *1 (-1219 *5 *2 *6 *3)) (-4 *6 (-634 *2)) (-4 *3 (-1217 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-823)) (-5 *2 (-1151 (-621 *4))) (-5 *1 (-1150 *4))
- (-5 *3 (-621 *4)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-736)))))
+ (-12 (-4 *4 (-1018)) (-4 *3 (-1200 *4)) (-4 *2 (-1217 *4))
+ (-5 *1 (-1219 *4 *3 *5 *2)) (-4 *5 (-634 *3)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1225 *4)) (-4 *4 (-617 (-549)))
- (-5 *2 (-1225 (-400 (-549)))) (-5 *1 (-1252 *4)))))
-(((*1 *1 *1) (-4 *1 (-171)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-219)))
- (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-621 *2)) (-4 *2 (-1066)) (-4 *2 (-1179)))))
-(((*1 *2 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-534)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1009 (-48)))
- (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4))
- (-5 *2 (-411 (-1138 (-48)))) (-5 *1 (-428 *4 *5 *3))
- (-4 *3 (-1201 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-621 (-1142))) (-5 *2 (-1142)) (-5 *1 (-323)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-655 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))))
-(((*1 *2)
- (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
- (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230))
- (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
- (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230))
- (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 (-1 *6 (-618 *6))))
+ (-4 *5 (-38 (-400 (-535)))) (-4 *6 (-1217 *5)) (-5 *2 (-618 *6))
+ (-5 *1 (-1218 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 *5)) (-4 *5 (-1201 *3)) (-4 *3 (-300))
- (-5 *2 (-112)) (-5 *1 (-447 *3 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1142))
- (-4 *4 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-542 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1066) (-34)))
- (-4 *3 (-13 (-1066) (-34))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-525))) (-5 *2 (-1142)) (-5 *1 (-525)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-621 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-621 (-1112 *5 *6 *7 *8))) (-5 *1 (-1112 *5 *6 *7 *8)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1069 *2 *3 *4 *5 *6)) (-4 *2 (-1066)) (-4 *3 (-1066))
- (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)))))
+ (-12 (-5 *3 (-1 *2 (-618 *2))) (-5 *4 (-618 *5)) (-4 *5 (-38 (-400 (-535))))
+ (-4 *2 (-1217 *5)) (-5 *1 (-1218 *5 *2)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-1218 *4 *2))
+ (-4 *4 (-38 (-400 (-535)))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-300)) (-4 *6 (-366 *5)) (-4 *4 (-366 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4))))
- (-5 *1 (-1090 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-769))
- (-4 *3 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))) (-4 *5 (-541))
- (-5 *1 (-709 *4 *3 *5 *2)) (-4 *2 (-920 (-400 (-923 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1018)) (-4 *5 (-769))
- (-4 *3
- (-13 (-823)
- (-10 -8 (-15 -2844 ((-1142) $))
- (-15 -3010 ((-3 $ "failed") (-1142))))))
- (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-920 (-923 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 *6))
- (-4 *6
- (-13 (-823)
- (-10 -8 (-15 -2844 ((-1142) $))
- (-15 -3010 ((-3 $ "failed") (-1142))))))
- (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2))
- (-4 *2 (-920 (-923 *4) *5 *6)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-1218 *4 *2))
+ (-4 *4 (-38 (-400 (-535)))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1217 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
- (-5 *2 (-1122 (-219))) (-5 *1 (-186))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 (-219))) (-5 *4 (-621 (-1142)))
- (-5 *5 (-1060 (-816 (-219)))) (-5 *2 (-1122 (-219))) (-5 *1 (-293))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1225 (-309 (-219)))) (-5 *4 (-621 (-1142)))
- (-5 *5 (-1060 (-816 (-219)))) (-5 *2 (-1122 (-219))) (-5 *1 (-293)))))
-(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1124)) (-5 *1 (-687)))))
+ (-12 (-5 *3 (-1 *5 (-618 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-535))))
+ (-5 *2 (-1 (-1119 *4) (-618 (-1119 *4)))) (-5 *1 (-1218 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230))
- (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *3 (-541)) (-5 *2 (-621 (-665 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-410 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1142))
- (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-4 *4 (-13 (-29 *6) (-1164) (-930)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -3420 (-621 *4))))
- (-5 *1 (-777 *6 *4 *3)) (-4 *3 (-632 *4)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1249 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823))
- (-4 *4 (-170))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-795 *3)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-823))
- (-4 *4 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-863 *4)) (-4 *4 (-1066)) (-5 *2 (-112))
- (-5 *1 (-860 *4 *5)) (-4 *5 (-1066))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-863 *5)) (-4 *5 (-1066)) (-5 *2 (-112))
- (-5 *1 (-861 *5 *3)) (-4 *3 (-1179))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *6)) (-5 *4 (-863 *5)) (-4 *5 (-1066))
- (-4 *6 (-1179)) (-5 *2 (-112)) (-5 *1 (-861 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-621 (-1198 *5 *4)))
- (-5 *1 (-1080 *4 *5)) (-5 *3 (-1198 *5 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1069 *2 *3 *4 *5 *6)) (-4 *2 (-1066)) (-4 *3 (-1066))
- (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)))))
-(((*1 *2)
- (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4))
- (-4 *4 (-1201 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1066)) (-4 *2 (-361)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-309 *3)) (-4 *3 (-541)) (-4 *3 (-823)))))
-(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-747)) (-5 *4 (-549)) (-5 *1 (-437 *2)) (-4 *2 (-1018)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1179)) (-4 *3 (-1179)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-354 (-114))) (-4 *2 (-1018)) (-5 *1 (-691 *2 *4))
- (-4 *4 (-624 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-354 (-114))) (-5 *1 (-810 *2)) (-4 *2 (-1018)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1066))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-549)) (-5 *2 (-1122 *3)) (-5 *1 (-1126 *3))
- (-4 *3 (-1018))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-795 *4)) (-4 *4 (-823)) (-4 *1 (-1242 *4 *3))
- (-4 *3 (-1018)))))
-(((*1 *1 *2) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-1142)))))
-(((*1 *2)
- (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
- (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230))
- (-5 *1 (-959 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
- (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230))
- (-5 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3))
- (-4 *3 (-624 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-460)))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-535))))
+ (-5 *2 (-1 (-1119 *4) (-1119 *4) (-1119 *4))) (-5 *1 (-1218 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-665 (-309 (-219))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))))
- (-5 *1 (-199)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-747)) (-5 *1 (-114)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-535))))
+ (-5 *2 (-1 (-1119 *4) (-1119 *4))) (-5 *1 (-1218 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-823) (-541))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1142)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-763)) (-5 *2 (-1006))
- (-5 *3
- (-2 (|:| |fn| (-309 (-219)))
- (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-763)) (-5 *2 (-1006))
- (-5 *3
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219)))))))
-(((*1 *2)
- (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-410 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-543 *3)) (-4 *3 (-534))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-411 *3))
- (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-920 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300))
- (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-411 (-1138 *7)))
- (-5 *1 (-719 *4 *5 *6 *7)) (-5 *3 (-1138 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-444)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *2 (-411 *1)) (-4 *1 (-920 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-444)) (-5 *2 (-411 *3))
- (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-920 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444))
- (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-411 (-1138 (-400 *7))))
- (-5 *1 (-1137 *4 *5 *6 *7)) (-5 *3 (-1138 (-400 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1183))))
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-411 *3)) (-5 *1 (-1204 *4 *3))
- (-4 *3 (-13 (-1201 *4) (-541) (-10 -8 (-15 -3726 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993)))
- (-14 *5 (-621 (-1142)))
- (-5 *2
- (-621 (-1112 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6)))))
- (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-621 (-1142))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *4)) (-4 *4 (-1018)) (-5 *2 (-1225 *4))
- (-5 *1 (-1143 *4))))
+ (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-892)) (-5 *2 (-1225 *3)) (-5 *1 (-1143 *3))
- (-4 *3 (-1018)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-323)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-621 (-256))) (-5 *4 (-1142))
- (-5 *1 (-255 *2)) (-4 *2 (-1179))))
+ (-12 (-5 *4 (-400 (-535)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-621 (-256))) (-5 *4 (-1142)) (-5 *2 (-52))
- (-5 *1 (-256)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-1225
- (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219))
- (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -3215 (-549))
- (|:| -2467 (-549)) (|:| |spline| (-549)) (|:| -2261 (-549))
- (|:| |axesColor| (-845)) (|:| -2035 (-549))
- (|:| |unitsColor| (-845)) (|:| |showing| (-549)))))
- (-5 *1 (-1226)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823))
- (-5 *2 (-2 (|:| -1569 (-549)) (|:| |var| (-592 *1))))
- (-4 *1 (-423 *3)))))
-(((*1 *1 *1) (-4 *1 (-840 *2))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
- (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-602 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *2 (-1075 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1106 *3 *2)) (-4 *3 (-13 (-1066) (-34)))
- (-4 *2 (-13 (-1066) (-34))))))
+ (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-535)))
+ (-4 *3 (-13 (-27) (-1164) (-414 *6)))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-535))) (-5 *4 (-286 *6))
+ (-4 *6 (-13 (-27) (-1164) (-414 *5)))
+ (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6)))
+ (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-535))) (-5 *4 (-286 *7)) (-5 *5 (-1191 (-535)))
+ (-4 *7 (-13 (-27) (-1164) (-414 *6)))
+ (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-535)))
+ (-4 *3 (-13 (-27) (-1164) (-414 *7)))
+ (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-400 (-535)))) (-5 *4 (-286 *8))
+ (-5 *5 (-1191 (-400 (-535)))) (-5 *6 (-400 (-535)))
+ (-4 *8 (-13 (-27) (-1164) (-414 *7)))
+ (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-400 (-535))))
+ (-5 *7 (-400 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *8)))
+ (-4 *8 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *3)))) (-4 *3 (-1018))
+ (-5 *1 (-576 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-577 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *3)))) (-4 *3 (-1018))
+ (-4 *1 (-1186 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-747)) (-5 *3 (-1119 (-2 (|:| |k| (-400 (-535))) (|:| |c| *4))))
+ (-4 *4 (-1018)) (-4 *1 (-1207 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-4 *1 (-1217 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1119 (-2 (|:| |k| (-747)) (|:| |c| *3)))) (-4 *3 (-1018))
+ (-4 *1 (-1217 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-834)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747))
- (-14 *4 (-747)) (-4 *5 (-170)))))
-(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *2 (-747))
- (-5 *1 (-1130 *4 *5)) (-14 *4 (-892))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-747))) (-5 *3 (-747)) (-5 *1 (-1130 *4 *5))
- (-14 *4 (-892)) (-4 *5 (-1018))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018))
- (-5 *1 (-1130 *4 *5)) (-14 *4 (-892)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-747)) (-4 *6 (-1066)) (-4 *3 (-871 *6))
- (-5 *2 (-665 *3)) (-5 *1 (-668 *6 *3 *7 *4)) (-4 *7 (-366 *3))
- (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4336)))))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-549)) (-14 *4 (-747)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1122 *4)) (-5 *3 (-549)) (-4 *4 (-1018))
- (-5 *1 (-1126 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-549)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1018))
- (-14 *4 (-1142)) (-14 *5 *3))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993)))
- (-14 *5 (-621 (-1142)))
- (-5 *2
- (-621 (-2 (|:| -2136 (-1138 *4)) (|:| -4163 (-621 (-923 *4))))))
- (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-621 (-1142)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2
- (-621 (-2 (|:| -2136 (-1138 *5)) (|:| -4163 (-621 (-923 *5))))))
- (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-621 (-923 *5)))
- (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2
- (-621 (-2 (|:| -2136 (-1138 *5)) (|:| -4163 (-621 (-923 *5))))))
- (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-621 (-923 *5)))
- (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2
- (-621 (-2 (|:| -2136 (-1138 *5)) (|:| -4163 (-621 (-923 *5))))))
- (-5 *1 (-1251 *5 *6 *7)) (-5 *3 (-621 (-923 *5)))
- (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2
- (-621 (-2 (|:| -2136 (-1138 *4)) (|:| -4163 (-621 (-923 *4))))))
- (-5 *1 (-1251 *4 *5 *6)) (-5 *3 (-621 (-923 *4)))
- (-14 *5 (-621 (-1142))) (-14 *6 (-621 (-1142))))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-621 (-112))) (-5 *7 (-665 (-219)))
- (-5 *8 (-665 (-549))) (-5 *3 (-549)) (-5 *4 (-219)) (-5 *5 (-112))
- (-5 *2 (-1006)) (-5 *1 (-731)))))
-(((*1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-361))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1225 *4)) (-5 *1 (-519 *4))
- (-4 *4 (-342))))
+ (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-618 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-823)) (-5 *1 (-690 *2 *3 *4)) (-4 *3 (-1066))
- (-14 *4
- (-1 (-112) (-2 (|:| -3491 *2) (|:| -3577 *3))
- (-2 (|:| -3491 *2) (|:| -3577 *3)))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-219) (-219) (-219)))
- (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined"))
- (-5 *5 (-1060 (-219))) (-5 *6 (-621 (-256))) (-5 *2 (-1099 (-219)))
- (-5 *1 (-673)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1066)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1142)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-724)))))
-(((*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-211)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1179)) (-4 *2 (-1066))
- (-4 *2 (-823)))))
-(((*1 *1 *1) (-4 *1 (-1110))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1018))
- (-5 *1 (-826 *5 *2)) (-4 *2 (-825 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *2 (-621 *4)) (-5 *1 (-755 *4))
- (-4 *4 (-13 (-356) (-821))))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
- (-5 *2 (-2 (|:| -1569 *1) (|:| |gap| (-747)) (|:| -3249 *1)))
- (-4 *1 (-1032 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *2 (-2 (|:| -1569 *1) (|:| |gap| (-747)) (|:| -3249 *1)))
- (-4 *1 (-1032 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1178))) (-5 *1 (-515)))))
-(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-235)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6)
- (|:| |c1| (-400 *6)) (|:| |c2| (-400 *6)) (|:| -2630 *6)))
- (-5 *1 (-987 *5 *6)) (-5 *3 (-400 *6)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-728)))))
-(((*1 *2 *3) (-12 (-5 *3 (-923 (-219))) (-5 *2 (-219)) (-5 *1 (-298)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-541)) (-4 *7 (-769))
- (-4 *8 (-823)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2316 (-621 *9))))
- (-5 *3 (-621 *9)) (-4 *1 (-1172 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -2316 (-621 *8))))
- (-5 *3 (-621 *8)) (-4 *1 (-1172 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3)))
- (-5 *1 (-664 *3 *4 *5 *6)) (-4 *6 (-663 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-676 *3))
- (-4 *3 (-300)))))
+ (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-618 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-618 *3)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-618 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1018)) (-5 *2 (-1119 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-535))) (-4 *3 (-1018)) (-5 *1 (-576 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-535))) (-4 *1 (-1186 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-535))) (-4 *1 (-1217 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823))
+ (-5 *2 (-917 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823))
+ (-5 *2 (-917 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-747)) (-4 *1 (-1217 *4)) (-4 *4 (-1018)) (-5 *2 (-917 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-4 *1 (-1217 *4)) (-4 *4 (-1018)) (-5 *2 (-917 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-400 (-535))) (-4 *4 (-1009 (-535))) (-4 *4 (-13 (-823) (-542)))
+ (-5 *1 (-32 *4 *2)) (-4 *2 (-414 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-133)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-219)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-535))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-400 (-535))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1217 *4))
+ (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1188 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-400 (-535))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1186 *4))
+ (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1209 *4 *5)) (-4 *6 (-954 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-277)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-354 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *1) (-5 *1 (-371)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-414 *3)) (-4 *3 (-823)) (-4 *3 (-1078))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-535))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1224 *4)) (-5 *3 (-535)) (-4 *4 (-343)) (-5 *1 (-519 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-524))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-524))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *4 (-1067)) (-5 *1 (-658 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-4 *3 (-356))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-666 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-535)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)) (-4 *4 (-624 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *5))
+ (-4 *5 (-624 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-890))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-747))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-810 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-535)) (-5 *1 (-810 *4)) (-4 *4 (-1018))))
+ ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-861 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-400 (-535)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1078)) (-5 *2 (-890))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-535)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-836 *5))) (-14 *5 (-621 (-1142))) (-4 *6 (-444))
- (-5 *2 (-621 (-621 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7))
- (-5 *3 (-621 (-241 *5 *6))) (-4 *7 (-444)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-1076)))))
-(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-745))
+ (-12 (-5 *4 (-1058 (-815 *3))) (-4 *3 (-13 (-1164) (-931) (-29 *5)))
+ (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
(-5 *2
- (-2 (|:| -3467 (-372)) (|:| -2480 (-1124))
- (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006))))
- (-5 *1 (-550))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-745)) (-5 *4 (-1030))
+ (-3 (|:| |f1| (-815 *3)) (|:| |f2| (-618 (-815 *3)))
+ (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")))
+ (-5 *1 (-213 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1058 (-815 *3))) (-5 *5 (-1124))
+ (-4 *3 (-13 (-1164) (-931) (-29 *6)))
+ (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
(-5 *2
- (-2 (|:| -3467 (-372)) (|:| -2480 (-1124))
- (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006))))
- (-5 *1 (-550))))
+ (-3 (|:| |f1| (-815 *3)) (|:| |f2| (-618 (-815 *3))) (|:| |fail| #1#)
+ (|:| |pole| #2#)))
+ (-5 *1 (-213 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-763)) (-5 *3 (-1030))
- (-5 *4
- (-2 (|:| |fn| (-309 (-219)))
- (|:| -2062 (-621 (-1060 (-816 (-219))))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
+ (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1058 (-815 (-307 *5))))
+ (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
(-5 *2
- (-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))
- (|:| |extra| (-1006))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-763)) (-5 *3 (-1030))
- (-5 *4
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
+ (-3 (|:| |f1| (-815 (-307 *5))) (|:| |f2| (-618 (-815 (-307 *5))))
+ (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole")))
+ (-5 *1 (-214 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-400 (-917 *6))) (-5 *4 (-1058 (-815 (-307 *6))))
+ (-5 *5 (-1124))
+ (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
(-5 *2
- (-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))
- (|:| |extra| (-1006))))))
+ (-3 (|:| |f1| (-815 (-307 *6))) (|:| |f2| (-618 (-815 (-307 *6))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (-5 *1 (-214 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-776)) (-5 *3 (-1030))
- (-5 *4
- (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
- (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
- (|:| |abserr| (-219)) (|:| |relerr| (-219))))
- (-5 *2 (-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-784))
+ (-12 (-5 *4 (-1058 (-815 (-400 (-917 *5))))) (-5 *3 (-400 (-917 *5)))
+ (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
(-5 *2
- (-2 (|:| -3467 (-372)) (|:| -2480 (-1124))
- (|:| |explanations| (-621 (-1124)))))
- (-5 *1 (-781))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-784)) (-5 *4 (-1030))
+ (-3 (|:| |f1| (-815 (-307 *5))) (|:| |f2| (-618 (-815 (-307 *5))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (-5 *1 (-214 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1058 (-815 (-400 (-917 *6))))) (-5 *5 (-1124))
+ (-5 *3 (-400 (-917 *6)))
+ (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
(-5 *2
- (-2 (|:| -3467 (-372)) (|:| -2480 (-1124))
- (|:| |explanations| (-621 (-1124)))))
- (-5 *1 (-781))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-812)) (-5 *3 (-1030))
- (-5 *4
- (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))
- (-5 *2 (-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))))))
+ (-3 (|:| |f1| (-815 (-307 *6))) (|:| |f2| (-618 (-815 (-307 *6))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (-5 *1 (-214 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-812)) (-5 *3 (-1030))
- (-5 *4
- (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
- (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219))))
- (|:| |ub| (-621 (-816 (-219))))))
- (-5 *2 (-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-814))
- (-5 *2
- (-2 (|:| -3467 (-372)) (|:| -2480 (-1124))
- (|:| |explanations| (-621 (-1124)))))
- (-5 *1 (-813))))
+ (-12 (-5 *4 (-1142))
+ (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-3 *3 (-618 *3))) (-5 *1 (-423 *5 *3))
+ (-4 *3 (-13 (-1164) (-931) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *5 (-371))
+ (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *5 (-371))
+ (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *5 (-371))
+ (-5 *2 (-1006)) (-5 *1 (-550))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-814)) (-5 *4 (-1030))
- (-5 *2
- (-2 (|:| -3467 (-372)) (|:| -2480 (-1124))
- (|:| |explanations| (-621 (-1124)))))
- (-5 *1 (-813))))
+ (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1055 (-815 (-371)))) (-5 *2 (-1006))
+ (-5 *1 (-550))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-866)) (-5 *3 (-1030))
- (-5 *4
- (-2 (|:| |pde| (-621 (-309 (-219))))
- (|:| |constraints|
- (-621
- (-2 (|:| |start| (-219)) (|:| |finish| (-219))
- (|:| |grid| (-747)) (|:| |boundaryType| (-549))
- (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219))))))
- (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124))
- (|:| |tol| (-219))))
- (-5 *2 (-2 (|:| -3467 (-372)) (|:| |explanations| (-1124))))))
+ (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371)))))
+ (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371)))))
+ (-5 *5 (-371)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371)))))
+ (-5 *5 (-371)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-1055 (-815 (-371)))))
+ (-5 *5 (-371)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1058 (-815 (-371))))
+ (-5 *5 (-1124)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1058 (-815 (-371))))
+ (-5 *5 (-1142)) (-5 *2 (-1006)) (-5 *1 (-550))))
((*1 *2 *3)
- (-12 (-5 *3 (-869))
- (-5 *2
- (-2 (|:| -3467 (-372)) (|:| -2480 (-1124))
- (|:| |explanations| (-621 (-1124)))))
- (-5 *1 (-868))))
+ (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4))
+ (-5 *2 (-565 (-400 *5))) (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-869)) (-5 *4 (-1030))
- (-5 *2
- (-2 (|:| -3467 (-372)) (|:| -2480 (-1124))
- (|:| |explanations| (-621 (-1124)))))
- (-5 *1 (-868)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142))
- (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-567 *3)) (-5 *1 (-542 *5 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *5))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
-(((*1 *1) (-5 *1 (-284))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-441 *4 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-410 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1018)) (-4 *3 (-1201 *4)) (-4 *2 (-1216 *4))
- (-5 *1 (-1219 *4 *3 *5 *2)) (-4 *5 (-632 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-621 (-400 *6))) (-5 *3 (-400 *6))
- (-4 *6 (-1201 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-553 *5 *6)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4))
- (-4 *4 (-1018))))
+ (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-145))
+ (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535))))
+ (-5 *2 (-3 (-307 *5) (-618 (-307 *5)))) (-5 *1 (-570 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-717 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823))
+ (-4 *3 (-38 (-400 (-535))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1142)) (-5 *1 (-917 *3)) (-4 *3 (-38 (-400 (-535))))
+ (-4 *3 (-1018))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-4 *2 (-823))
+ (-5 *1 (-1092 *3 *2 *4)) (-4 *4 (-921 *3 (-521 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018))
+ (-5 *1 (-1126 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *1 (-1171 *3)) (-4 *3 (-38 (-400 (-535))))
+ (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1184 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3874
+ (-12 (-5 *2 (-1142)) (-4 *1 (-1186 *3)) (-4 *3 (-1018))
+ (-12 (-4 *3 (-29 (-535))) (-4 *3 (-931)) (-4 *3 (-1164))
+ (-4 *3 (-38 (-400 (-535))))))
+ (-12 (-5 *2 (-1142)) (-4 *1 (-1186 *3)) (-4 *3 (-1018))
+ (-12 (|has| *3 (-15 -3405 ((-618 *2) *3)))
+ (|has| *3 (-15 -4155 (*3 *3 *2))) (-4 *3 (-38 (-400 (-535))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1186 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1205 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018))))
+ (-3874
+ (-12 (-5 *2 (-1142)) (-4 *1 (-1207 *3)) (-4 *3 (-1018))
+ (-12 (-4 *3 (-29 (-535))) (-4 *3 (-931)) (-4 *3 (-1164))
+ (-4 *3 (-38 (-400 (-535))))))
+ (-12 (-5 *2 (-1142)) (-4 *1 (-1207 *3)) (-4 *3 (-1018))
+ (-12 (|has| *3 (-15 -3405 ((-618 *2) *3)))
+ (|has| *3 (-15 -4155 (*3 *3 *2))) (-4 *3 (-38 (-400 (-535))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1214 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3874
+ (-12 (-5 *2 (-1142)) (-4 *1 (-1217 *3)) (-4 *3 (-1018))
+ (-12 (-4 *3 (-29 (-535))) (-4 *3 (-931)) (-4 *3 (-1164))
+ (-4 *3 (-38 (-400 (-535))))))
+ (-12 (-5 *2 (-1142)) (-4 *1 (-1217 *3)) (-4 *3 (-1018))
+ (-12 (|has| *3 (-15 -3405 ((-618 *2) *3)))
+ (|has| *3 (-15 -4155 (*3 *3 *2))) (-4 *3 (-38 (-400 (-535))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-535)))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-1193 *5 *4)) (-5 *1 (-1140 *4 *5 *6))
+ (-4 *4 (-1018)) (-14 *5 (-1142)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-1193 *5 *4)) (-5 *1 (-1214 *4 *5 *6))
+ (-4 *4 (-1018)) (-14 *5 (-1142)) (-14 *6 *4))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4)) (-4 *4 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018))))
((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747))))
((*1 *1 *1) (-4 *1 (-227)))
((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-259 *3)) (-4 *3 (-823))))
((*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183))
- (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4)))))
+ (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4)))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4))
- (-4 *4 (-1201 *3))))
+ (-4 *4 (-1200 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3))
- (-4 *3 (-1201 *2))))
+ (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1200 *2))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5))
(-4 *3 (-1018)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-356)) (-4 *2 (-871 *3)) (-5 *1 (-567 *2))
- (-5 *3 (-1142))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-567 *2)) (-4 *2 (-356))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-834))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 (-747))) (-4 *1 (-871 *4))
- (-4 *4 (-1066))))
+ (-12 (-4 *2 (-356)) (-4 *2 (-871 *3)) (-5 *1 (-565 *2)) (-5 *3 (-1142))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-565 *2)) (-4 *2 (-356))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-835))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1066))))
+ (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 (-747))) (-4 *1 (-871 *4))
+ (-4 *4 (-1067))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1067))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5))
(-4 *3 (-1018)) (-14 *5 *3)))
@@ -4820,5099 +2392,4581 @@
(-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5))
(-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1189 *3 *4 *5))
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1184 *3 *4 *5))
(-4 *3 (-1018)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1201 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1200 *3)) (-4 *3 (-1018))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1210 *3 *4 *5))
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1205 *3 *4 *5))
(-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1217 *3 *4 *5))
+ (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1214 *3 *4 *5))
(-4 *3 (-1018)) (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
- (-5 *2 (-747))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1066))
- (-5 *2 (-747))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-747)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-703)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -2886 (-621 (-2 (|:| |irr| *10) (|:| -3533 (-549)))))))
- (-5 *6 (-621 *3)) (-5 *7 (-621 *8)) (-4 *8 (-823)) (-4 *3 (-300))
- (-4 *10 (-920 *3 *9 *8)) (-4 *9 (-769))
- (-5 *2
- (-2 (|:| |polfac| (-621 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-621 (-1138 *3)))))
- (-5 *1 (-603 *8 *9 *3 *10)) (-5 *4 (-621 (-1138 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1138 *5)) (-4 *5 (-444)) (-5 *2 (-621 *6))
- (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-923 *5)) (-4 *5 (-444)) (-5 *2 (-621 *6))
- (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-892)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-256)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-621
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219)))))
- (-5 *1 (-544))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-5 *2 (-621 *3))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-621
- (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
- (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
- (|:| |abserr| (-219)) (|:| |relerr| (-219)))))
- (-5 *1 (-779)))))
-(((*1 *1) (-5 *1 (-430))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823))
- (-4 *4 (-170))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1246 *3 *4)) (-4 *3 (-823))
- (-4 *4 (-1018)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1060 (-219)))
- (-5 *5 (-112)) (-5 *2 (-1227)) (-5 *1 (-250)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1225 (-1225 (-549)))) (-5 *1 (-458)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-1225 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-350 *3)) (-4 *3 (-342)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-651 *2)) (-4 *2 (-1018)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-549)))
- (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-734)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2460 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-356)) (-4 *7 (-1201 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6))
- (-2 (|:| -2460 (-400 *7)) (|:| |coeff| (-400 *7))) "failed"))
- (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2))
- (-4 *2 (-423 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1142))
- (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-5 *1 (-1145)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-1030))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1249 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823))
- (-4 *4 (-170))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-795 *3)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-823))
- (-4 *4 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))))
-(((*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-309 (-372)))) (-5 *4 (-621 (-372)))
- (-5 *2 (-1006)) (-5 *1 (-813)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1230)) (-5 *1 (-208 *4))
- (-4 *4
- (-13 (-823)
- (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 (*2 $))
- (-15 -3431 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1230)) (-5 *1 (-208 *3))
- (-4 *3
- (-13 (-823)
- (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 (*2 $))
- (-15 -3431 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-493)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-936))) (-5 *1 (-284)))))
-(((*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-400 (-549))))
- (-5 *2 (-2 (|:| -1485 (-1122 *4)) (|:| -1500 (-1122 *4))))
- (-5 *1 (-1128 *4)) (-5 *3 (-1122 *4)))))
-(((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1011)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-621
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-549)))))
- (-4 *2 (-541)) (-5 *1 (-411 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-549))
- (|:| -2886 (-621 (-2 (|:| |irr| *4) (|:| -3533 (-549)))))))
- (-4 *4 (-1201 (-549))) (-5 *2 (-411 *4)) (-5 *1 (-434 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-747)) (-4 *5 (-541))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-940 *5 *3)) (-4 *3 (-1201 *5)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219)))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))))
- (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219))
- (-5 *2 (-1006)) (-5 *1 (-732))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219)))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))))
- (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381))
- (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-323)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-372)) (-5 *1 (-1030)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1225 *4)) (-4 *4 (-410 *3)) (-4 *3 (-300))
- (-4 *3 (-541)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-892)) (-4 *4 (-356)) (-5 *2 (-1225 *1))
- (-4 *1 (-322 *4))))
- ((*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1225 *1)) (-4 *1 (-322 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-170)) (-4 *4 (-1201 *3)) (-5 *2 (-1225 *1))
- (-4 *1 (-402 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1201 *4))
- (-5 *2 (-1225 *6)) (-5 *1 (-406 *3 *4 *5 *6))
- (-4 *6 (-13 (-402 *4 *5) (-1009 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1201 *4))
- (-5 *2 (-1225 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7))
- (-4 *6 (-402 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1225 *1)) (-4 *1 (-410 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-1126 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-535)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142))
+ (-14 *5 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1214 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142)) (-14 *4 *2))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-1126 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-535)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142))
+ (-14 *5 *3))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-1018)) (-5 *1 (-1126 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-535)) (-5 *1 (-1214 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1142))
+ (-14 *5 *3))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1006)) (-5 *1 (-296))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-1006))) (-5 *2 (-1006)) (-5 *1 (-296))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-627 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1 *1) (-5 *1 (-1030)))
((*1 *2 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1225 (-1225 *4))) (-5 *1 (-519 *4))
- (-4 *4 (-342)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1066)) (-4 *4 (-1066))
- (-4 *6 (-1066)) (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *5 *4 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-549)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1018))
- (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-920 *2 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2))
- (-4 *2 (-1201 (-167 *3))))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -3726 (-758 *3)) (|:| |coef1| (-758 *3))
- (|:| |coef2| (-758 *3))))
- (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *2 (-2 (|:| -3726 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1032 *3 *4 *5)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-799)) (-5 *1 (-798)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-729)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-256))) (-5 *4 (-1142)) (-5 *2 (-112))
- (-5 *1 (-256)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
- (-4 *3 (-1032 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-621 *4))
- (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))))
- (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-621 *4))
- (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))))
- (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
- (-4 *3 (-1032 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-621 *4))
- (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))))
- (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-621 *4))
- (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))))
- (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1084)) (-5 *1 (-1081)))))
-(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-342)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-880)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-621 *4)) (-4 *4 (-356)) (-5 *2 (-1225 *4))
- (-5 *1 (-790 *4 *3)) (-4 *3 (-632 *4)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-948 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4))
- (-4 *4 (-342)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-549)) (-4 *5 (-342)) (-5 *2 (-411 (-1138 (-1138 *5))))
- (-5 *1 (-1177 *5)) (-5 *3 (-1138 (-1138 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-621 *8))) (-5 *3 (-621 *8))
- (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769))
- (-4 *7 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *5 *6 *7 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-621 (-52))) (-5 *2 (-1230)) (-5 *1 (-835)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-780 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1164) (-930))))))
-(((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372)))
- (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141))))
- (-5 *1 (-1141)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1142)) (-5 *6 (-621 (-592 *3)))
- (-5 *5 (-592 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *7)))
- (-4 *7 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-2 (|:| -2460 *3) (|:| |coeff| *3)))
- (-5 *1 (-542 *7 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4)
- (-241 *4 (-400 (-549)))))
- (-14 *4 (-621 (-1142))) (-14 *5 (-747)) (-5 *2 (-112))
- (-5 *1 (-496 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-541)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1201 *6))
- (-4 *6 (-13 (-27) (-423 *5)))
- (-4 *5 (-13 (-823) (-541) (-1009 (-549)))) (-4 *8 (-1201 (-400 *7)))
- (-5 *2 (-567 *3)) (-5 *1 (-537 *5 *6 *7 *8 *3))
- (-4 *3 (-335 *6 *7 *8)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-747))) (-5 *3 (-112)) (-5 *1 (-1130 *4 *5))
- (-14 *4 (-892)) (-4 *5 (-1018)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3086 *4)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-295))))
- ((*1 *1 *1) (-4 *1 (-295)))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
- ((*1 *1 *1) (-5 *1 (-834))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227))))
- ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372)))
- (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141))))
- (-5 *1 (-1141)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-549)) (-5 *4 (-411 *2)) (-4 *2 (-920 *7 *5 *6))
- (-5 *1 (-719 *5 *6 *7 *2)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-300)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-309 (-372))) (-5 *2 (-309 (-219))) (-5 *1 (-298)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
- (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1124)) (-5 *2 (-621 (-1147))) (-5 *1 (-1102)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-665 *7)) (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *6 *5))
- (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
- (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 (-473 *3 *4))) (-14 *3 (-621 (-1142)))
- (-4 *4 (-444)) (-5 *1 (-609 *3 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1179)) (-5 *1 (-368 *4 *2))
- (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4337)))))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-323)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1179)) (-5 *2 (-747)) (-5 *1 (-180 *4 *3))
- (-4 *3 (-650 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-750)) (-5 *1 (-52)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372)))
- (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141))))
- (-5 *1 (-1141)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1179)) (-5 *1 (-1098 *4 *2))
- (-4 *2 (-13 (-584 (-549) *4) (-10 -7 (-6 -4336) (-6 -4337))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-823)) (-4 *3 (-1179)) (-5 *1 (-1098 *3 *2))
- (-4 *2 (-13 (-584 (-549) *3) (-10 -7 (-6 -4336) (-6 -4337)))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-834))))
- ((*1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-929 *3)) (-5 *1 (-1129 *4 *3))
- (-4 *3 (-1201 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1201 *3)))))
+ (-12 (-5 *3 (-1119 (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1120 *4))
+ (-4 *4 (-1178))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1138 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-295)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372)))
- (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141))))
- (-5 *1 (-1141)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-592 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1142))) (-5 *5 (-1138 *2))
- (-4 *2 (-13 (-423 *6) (-27) (-1164)))
- (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *1 (-545 *6 *2 *7)) (-4 *7 (-1066))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-592 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1142)))
- (-5 *5 (-400 (-1138 *2))) (-4 *2 (-13 (-423 *6) (-27) (-1164)))
- (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *1 (-545 *6 *2 *7)) (-4 *7 (-1066)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-549)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1201 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854))
- (-5 *3 (-621 (-549)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854))
- (-5 *3 (-621 (-549))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-665 *6)) (-5 *5 (-1 (-411 (-1138 *6)) (-1138 *6)))
- (-4 *6 (-356))
- (-5 *2
- (-621
- (-2 (|:| |outval| *7) (|:| |outmult| (-549))
- (|:| |outvect| (-621 (-665 *7))))))
- (-5 *1 (-522 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-821))))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-544)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1142)) (-5 *4 (-923 (-549))) (-5 *2 (-323))
- (-5 *1 (-325)))))
-(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1179)) (-5 *2 (-747)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-592 *3)) (-5 *5 (-1138 *3))
- (-4 *3 (-13 (-423 *6) (-27) (-1164)))
- (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2 (-567 *3)) (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1066))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-592 *3)) (-5 *5 (-400 (-1138 *3)))
- (-4 *3 (-13 (-423 *6) (-27) (-1164)))
- (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2 (-567 *3)) (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-945)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-594 (-863 (-549))))
- (-4 *5 (-857 (-549)))
- (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-552 *5 *3)) (-4 *3 (-607))
- (-4 *3 (-13 (-27) (-1164) (-423 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1142)) (-5 *4 (-816 *2)) (-4 *2 (-1105))
- (-4 *2 (-13 (-27) (-1164) (-423 *5)))
- (-4 *5 (-594 (-863 (-549)))) (-4 *5 (-857 (-549)))
- (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549))))
- (-5 *1 (-552 *5 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1142)))))
-(((*1 *1) (-5 *1 (-430))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-665 *2)) (-5 *4 (-549))
- (-4 *2 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $)))))
- (-4 *5 (-1201 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1124)) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-892)) (-5 *1 (-762)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
- (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-920 *4 *3 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1179)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-444))
- (-5 *2
- (-621
- (-2 (|:| |eigval| (-3 (-400 (-923 *4)) (-1131 (-1142) (-923 *4))))
- (|:| |geneigvec| (-621 (-665 (-400 (-923 *4))))))))
- (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-923 *4)))))))
+ (-12 (-4 *1 (-584 *3 *2)) (-4 *3 (-1067)) (-4 *3 (-823)) (-4 *2 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
+ ((*1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1178)) (-5 *1 (-844 *2 *3)) (-4 *3 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-648 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1178))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1179))
- (-4 *4 (-366 *2)) (-4 *5 (-366 *2))))
+ (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1178)) (-4 *4 (-365 *2))
+ (-4 *5 (-365 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2))
- (-4 *5 (-366 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1179))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1179))))
+ (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2))
+ (-4 *5 (-365 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1178))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 (-549))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 (-549)) (-14 *5 (-747))))
+ (-12 (-5 *3 (-618 (-535))) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2))
+ (-14 *4 (-535)) (-14 *5 (-747))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-747))))
+ (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-747))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-747))))
+ (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-747))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-747))))
+ (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-747))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-747))))
+ (-12 (-5 *3 (-535)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-747))))
((*1 *2 *1)
- (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-549))
- (-14 *4 (-747))))
+ (-12 (-4 *2 (-170)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-535)) (-14 *4 (-747))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-4 *2 (-1066)) (-5 *1 (-207 *4 *2))
- (-14 *4 (-892))))
+ (-12 (-5 *3 (-747)) (-4 *2 (-1067)) (-5 *1 (-207 *4 *2)) (-14 *4 (-890))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-1142)) (-5 *2 (-239 (-1124))) (-5 *1 (-208 *4))
(-4 *4
(-13 (-823)
- (-10 -8 (-15 -3340 ((-1124) $ *3)) (-15 -2697 ((-1230) $))
- (-15 -3431 ((-1230) $)))))))
+ (-10 -8 (-15 -4142 ((-1124) $ *3)) (-15 -3963 ((-1230) $))
+ (-15 -2082 ((-1230) $)))))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-960)) (-5 *1 (-208 *3))
(-4 *3
(-13 (-823)
- (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 ((-1230) $))
- (-15 -3431 ((-1230) $)))))))
+ (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 ((-1230) $))
+ (-15 -2082 ((-1230) $)))))))
((*1 *2 *1 *3)
(-12 (-5 *3 "count") (-5 *2 (-747)) (-5 *1 (-239 *4)) (-4 *4 (-823))))
((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-823))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-823))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1179))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1179))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178))))
+ ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178))))
((*1 *2 *1 *2)
- (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1201 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1200 *3))
+ (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-621 *1)) (-4 *1 (-295))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-618 *1)) (-4 *1 (-291))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-1201 *2))
- (-4 *4 (-1201 (-400 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-410 *2)) (-4 *2 (-170))))
+ (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-1200 *2))
+ (-4 *4 (-1200 (-400 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-411 *2)) (-4 *2 (-170))))
((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1124)) (-5 *1 (-493))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-52)) (-5 *1 (-610))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1192 (-549))) (-4 *1 (-627 *3)) (-4 *3 (-1179))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1066))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-51)) (-5 *1 (-610))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1191 (-535))) (-4 *1 (-627 *3)) (-4 *3 (-1178))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1067))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-621 (-549))) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
+ (-12 (-5 *2 (-618 (-535))) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-621 (-863 *4))) (-5 *1 (-863 *4))
- (-4 *4 (-1066))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1066))))
+ (-12 (-5 *2 (-113)) (-5 *3 (-618 (-861 *4))) (-5 *1 (-861 *4))
+ (-4 *4 (-1067))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1067))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-876 *4)) (-5 *1 (-875 *4))
- (-4 *4 (-1066))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-873 *4)) (-5 *1 (-876 *4)) (-4 *4 (-1067))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-234 *4 *2)) (-14 *4 (-892)) (-4 *2 (-356))
+ (-12 (-5 *3 (-233 *4 *2)) (-14 *4 (-890)) (-4 *2 (-356))
(-5 *1 (-964 *4 *2))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-981 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1179))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-981 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *2 (-1018))
+ (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *2 (-1018))
(-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *2 *6 *7))
- (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1018))))
+ (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2))
+ (-4 *7 (-232 *4 *2)) (-4 *2 (-1018))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-892)) (-4 *4 (-1066))
- (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4))))
- (-5 *1 (-1042 *4 *5 *2))
- (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4))))))
+ (-12 (-5 *3 (-890)) (-4 *4 (-1067))
+ (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4))))
+ (-5 *1 (-1041 *4 *5 *2))
+ (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-892)) (-4 *4 (-1066))
- (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4))))
+ (-12 (-5 *3 (-890)) (-4 *4 (-1067))
+ (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4))))
(-5 *1 (-1043 *4 *5 *2))
- (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4))))))
+ (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-549))) (-4 *1 (-1069 *3 *4 *5 *6 *7))
- (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066))
- (-4 *7 (-1066))))
+ (-12 (-5 *2 (-618 (-535))) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-549)) (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066))
- (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066))))
+ (-12 (-5 *2 (-535)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067))))
((*1 *1 *1 *1) (-4 *1 (-1110)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1142))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-400 *1)) (-4 *1 (-1201 *2)) (-4 *2 (-1018))
- (-4 *2 (-356))))
+ (-12 (-5 *3 (-400 *1)) (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-400 *1)) (-4 *1 (-1201 *3)) (-4 *3 (-1018))
- (-4 *3 (-541))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1213 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1213 *3)) (-4 *3 (-1179))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-892)) (-5 *1 (-675))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-665 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-356)) (-5 *1 (-949 *5)))))
-(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228))))
- ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228)))))
-(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-460))))
- ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1226))))
- ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1227)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-665 (-549))) (-5 *3 (-621 (-549))) (-5 *1 (-1076)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1066)) (-5 *1 (-935 *3 *2)) (-4 *3 (-1066)))))
-(((*1 *1) (-5 *1 (-1051))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1142)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *3 *5 *6 *7))
- (-4 *3 (-594 (-525))) (-4 *5 (-1179)) (-4 *6 (-1179))
- (-4 *7 (-1179))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *3 *5 *6))
- (-4 *3 (-594 (-525))) (-4 *5 (-1179)) (-4 *6 (-1179)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-660 *4 *5 *6)) (-4 *4 (-1066)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3))
- (-4 *3 (-1201 (-167 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3))
- (-4 *3 (-1201 (-167 *2))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
- (-5 *2 (-621 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1066))
- (-5 *2 (-621 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1122 *3)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
+ (-12 (-5 *2 (-400 *1)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-4 *3 (-542))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1213 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1213 *3)) (-4 *3 (-1178))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1173 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1062))))
((*1 *2 *1)
- (-12 (-5 *2 (-621 *3)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-703))))
- ((*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-621 *3))))
+ (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1213 *3)) (-4 *3 (-1178))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1178)) (-5 *1 (-844 *3 *2)) (-4 *3 (-1178))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1213 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1178)) (-4 *4 (-365 *2))
+ (-4 *5 (-365 *2))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4337)) (-4 *1 (-119 *3))
+ (-4 *3 (-1178))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4337)) (-4 *1 (-119 *3)) (-4 *3 (-1178))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-747)) (-5 *1 (-207 *4 *2)) (-14 *4 (-890)) (-4 *2 (-1067))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1067))
+ (-4 *2 (-1178))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1142)) (-5 *1 (-610))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-1191 (-535))) (|has| *1 (-6 -4337)) (-4 *1 (-627 *2))
+ (-4 *2 (-1178))))
+ ((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-618 (-535))) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4337)) (-4 *1 (-981 *2))
+ (-4 *2 (-1178))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2))
+ (-4 *2 (-1178))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *3))
+ (-4 *3 (-1178))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2))
+ (-4 *2 (-1178)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1119 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-535)) (|has| *1 (-6 -4337)) (-4 *1 (-1213 *3))
+ (-4 *3 (-1178)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444)))
+ (-5 *2 (-815 *4)) (-5 *1 (-306 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1164) (-414 *3))) (-14 *5 (-1142)) (-14 *6 *4)))
((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3)) (-4 *3 (-1018)) (-5 *2 (-1122 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1178))) (-5 *1 (-586)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-564)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4338 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2))
- (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1201 *2))
- (-4 *4 (-663 *2 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3)))
- (-5 *1 (-743 *3 *4)) (-4 *3 (-685 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-356)) (-4 *3 (-1018))
- (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-825 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018))
- (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-826 *5 *3))
- (-4 *3 (-825 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
- (-5 *2 (-1006)) (-5 *1 (-727)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086)) (-5 *1 (-109))))
- ((*1 *2 *1) (|partial| -12 (-5 *1 (-358 *2)) (-4 *2 (-1066))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-1160)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-897))))
- ((*1 *2 *1) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-898)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1066)) (-4 *6 (-1066))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-660 *4 *5 *6)) (-4 *5 (-1066)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-541) (-823))) (-5 *2 (-167 *5))
- (-5 *1 (-580 *4 *5 *3)) (-4 *5 (-13 (-423 *4) (-973) (-1164)))
- (-4 *3 (-13 (-423 (-167 *4)) (-973) (-1164))))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-592 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1142)))
- (-4 *2 (-13 (-423 *5) (-27) (-1164)))
- (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *1 (-551 *5 *2 *6)) (-4 *6 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1225 (-621 (-2 (|:| -4160 *4) (|:| -3491 (-1086))))))
- (-4 *4 (-342)) (-5 *2 (-747)) (-5 *1 (-339 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-344 *3 *4)) (-14 *3 (-892))
- (-14 *4 (-892))))
- ((*1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342))
- (-14 *4
- (-3 (-1138 *3)
- (-1225 (-621 (-2 (|:| -4160 *3) (|:| -3491 (-1086)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342))
- (-14 *4 (-892)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-4 *3 (-13 (-27) (-1164) (-423 *6) (-10 -8 (-15 -3845 ($ *7)))))
- (-4 *7 (-821))
- (-4 *8
- (-13 (-1203 *3 *7) (-356) (-1164)
- (-10 -8 (-15 -3455 ($ $)) (-15 -1531 ($ $)))))
+ (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444)))
+ (-5 *2 (-815 *4)) (-5 *1 (-1211 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1164) (-414 *3))) (-14 *5 (-1142)) (-14 *6 *4))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-535)) (-617 (-535)) (-444)))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))))
- (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1124)) (-4 *9 (-954 *8))
- (-14 *10 (-1142)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1217 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142))
- (-14 *4 *2))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-61 *3)) (-14 *3 (-1142))))
- ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-68 *3)) (-14 *3 (-1142))))
- ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-71 *3)) (-14 *3 (-1142))))
- ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1230))))
- ((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1230)) (-5 *1 (-390))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1124)) (-5 *4 (-834)) (-5 *2 (-1230)) (-5 *1 (-1104))))
- ((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1230)) (-5 *1 (-1104))))
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1205 *4 *5 *6)) (|:| |%expon| (-312 *4 *5 *6))
+ (|:| |%expTerms| (-618 (-2 (|:| |k| (-400 (-535))) (|:| |c| *4))))))
+ (|:| |%type| (-1124))))
+ (-5 *1 (-1211 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1164) (-414 *3)))
+ (-14 *5 (-1142)) (-14 *6 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-400 (-535)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-535)))
+ (-4 *3 (-13 (-27) (-1164) (-414 *6)))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-400 (-535)))) (-5 *4 (-286 *8))
+ (-5 *5 (-1191 (-400 (-535)))) (-5 *6 (-400 (-535)))
+ (-4 *8 (-13 (-27) (-1164) (-414 *7)))
+ (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-400 (-535))))
+ (-5 *7 (-400 (-535))) (-4 *3 (-13 (-27) (-1164) (-414 *8)))
+ (-4 *8 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-400 (-535))) (-4 *4 (-1018)) (-4 *1 (-1209 *4 *3))
+ (-4 *3 (-1186 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1186 *3))
+ (-5 *2 (-400 (-535))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-834))) (-5 *2 (-1230)) (-5 *1 (-1104)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-747)) (-5 *1 (-758 *3)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-934 *3 *2)) (-4 *2 (-130)) (-4 *3 (-541))
- (-4 *3 (-1018)) (-4 *2 (-768))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-747)) (-5 *1 (-1138 *3)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-942)) (-4 *2 (-130)) (-5 *1 (-1144 *3)) (-4 *3 (-541))
- (-4 *3 (-1018))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-747)) (-5 *1 (-1198 *4 *3)) (-14 *4 (-1142))
- (-4 *3 (-1018)))))
+ (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-535)) (-4 *5 (-13 (-444) (-823) (-1009 *4) (-617 *4)))
+ (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6)))
+ (-4 *6 (-13 (-444) (-823) (-1009 *5) (-617 *5))) (-5 *5 (-535))
+ (-5 *2 (-51)) (-5 *1 (-309 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-535))) (-5 *4 (-286 *7)) (-5 *5 (-1191 (-535)))
+ (-4 *7 (-13 (-27) (-1164) (-414 *6)))
+ (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-535)))
+ (-4 *3 (-13 (-27) (-1164) (-414 *7)))
+ (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-535)) (-4 *4 (-1018)) (-4 *1 (-1188 *4 *3))
+ (-4 *3 (-1217 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
- (-5 *2 (-2 (|:| |k| (-795 *3)) (|:| |c| *4))))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1066)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
- (-5 *2 (-1006)) (-5 *1 (-728)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-621 *7)) (-5 *3 (-549)) (-4 *7 (-920 *4 *5 *6))
- (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-5 *1 (-441 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1142)) (-5 *6 (-112))
- (-4 *7 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-4 *3 (-13 (-1164) (-930) (-29 *7)))
+ (|partial| -12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-890)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-4 *1 (-1207 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *2)
+ (-12
(-5 *2
- (-3 (|:| |f1| (-816 *3)) (|:| |f2| (-621 (-816 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-213 *7 *3)) (-5 *5 (-816 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *1) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1164))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-747)) (-5 *2 (-621 (-1142))) (-5 *1 (-204))
- (-5 *3 (-1142))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 (-219))) (-5 *4 (-747)) (-5 *2 (-621 (-1142)))
- (-5 *1 (-260))))
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-535))))
+ (-4 *4 (-13 (-1200 *3) (-542) (-10 -8 (-15 -3478 ($ $ $))))) (-4 *3 (-542))
+ (-5 *1 (-1204 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-921 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-444))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))
+ (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *1))))
+ (-4 *1 (-1038 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1183)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-542)) (-5 *1 (-1204 *3 *2))
+ (-4 *2 (-13 (-1200 *3) (-542) (-10 -8 (-15 -3478 ($ $ $))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130))
+ (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 *4))))))
((*1 *2 *1)
- (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))
- (-5 *2 (-621 *3))))
+ (-12 (-5 *2 (-618 (-2 (|:| -4296 *3) (|:| -4281 *4)))) (-5 *1 (-712 *3 *4))
+ (-4 *3 (-1018)) (-4 *4 (-703))))
((*1 *2 *1)
- (-12 (-5 *2 (-621 *3)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
- (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-795 *3)) (-4 *3 (-823))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823))))
+ (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
+ (-5 *2 (-1119 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-535)) (-5 *1 (-235))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-618 (-1124))) (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *1 (-235))))
+ ((*1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
+ (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823))
+ (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-890))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-326 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356)))
+ (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-4 *7 (-335 *4 *5 *6))
+ (-5 *2 (-747)) (-5 *1 (-385 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-808 (-890)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-535))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
- (-5 *2 (-621 *3)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-384)))))
+ (-12 (-4 *3 (-542)) (-5 *2 (-535)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1200 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-873 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4))
+ (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7))
+ (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-747))
+ (-5 *1 (-882 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-326 (-400 (-535)) *4 *5 *6))
+ (-4 *4 (-1200 (-400 (-535)))) (-4 *5 (-1200 (-400 *4)))
+ (-4 *6 (-335 (-400 (-535)) *4 *5)) (-5 *2 (-747)) (-5 *1 (-883 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356))
+ (-4 *7 (-1200 *6)) (-4 *4 (-1200 (-400 *7))) (-4 *8 (-335 *6 *7 *4))
+ (-4 *9 (-13 (-361) (-356))) (-5 *2 (-747)) (-5 *1 (-989 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-4 *3 (-542)) (-5 *2 (-747))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))))
+(((*1 *1 *1) (-4 *1 (-1027)))
+ ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1066))
- (-4 *2 (-130)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-372)) (-5 *1 (-1030)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-114)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *2))
- (-4 *2 (-624 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-810 *2)) (-4 *2 (-1018)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1016)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1201 *4))
- (-4 *5 (-1201 (-400 *3))) (-5 *2 (-112))))
+ (-12 (-5 *2 (-400 (-535))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-535))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-400 (-535))) (-5 *1 (-842 *4)) (-14 *4 *3) (-5 *3 (-535))))
+ ((*1 *2 *1 *3)
+ (-12 (-14 *4 *3) (-5 *2 (-400 (-535))) (-5 *1 (-843 *4 *5)) (-5 *3 (-535))
+ (-4 *5 (-841 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-983)) (-5 *2 (-400 (-535)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356))) (-4 *3 (-1200 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (|has| *2 (-15 ** (*2 *2 *3)))
+ (|has| *2 (-15 -4300 (*2 (-1142)))) (-4 *2 (-1018)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-172 *3)) (-4 *3 (-300))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-650 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-717 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-823))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-951 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-618 *1)) (-5 *3 (-618 *7)) (-4 *1 (-1038 *4 *5 *6 *7))
+ (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))
+ (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *2 (-1032 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-400 *5)) (-4 *4 (-1183)) (-4 *5 (-1200 *4))
+ (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1200 *3))))
((*1 *2 *3)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1230)) (-5 *1 (-384))))
- ((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-384)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1216 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))))
-(((*1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-361)) (-4 *2 (-1066)))))
+ (-12 (-5 *3 (-1144 (-400 (-535)))) (-5 *2 (-400 (-535))) (-5 *1 (-184))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-665 (-307 (-219)))) (-5 *3 (-618 (-1142)))
+ (-5 *4 (-1224 (-307 (-219)))) (-5 *1 (-199))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-286 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1067))
+ (-4 *3 (-1178)) (-5 *1 (-286 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-302 *2)) (-4 *2 (-1067)) (-4 *2 (-1178)) (-5 *1 (-286 *2))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-618 *1))) (-4 *1 (-291))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-113))) (-5 *3 (-618 (-1 *1 (-618 *1)))) (-4 *1 (-291))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-113))) (-5 *3 (-618 (-1 *1 *1))) (-4 *1 (-291))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-1 *1 (-618 *1))) (-4 *1 (-291))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-1 *1 (-618 *1)))) (-4 *1 (-291))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-1 *1 *1))) (-4 *1 (-291))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-286 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-535))) (-5 *4 (-1144 (-400 (-535)))) (-5 *1 (-303 *2))
+ (-4 *2 (-38 (-400 (-535))))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 *1)) (-4 *1 (-367 *4 *5)) (-4 *4 (-823))
+ (-4 *5 (-170))))
+ ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *4 (-1 *1 *1)) (-4 *1 (-414 *5))
+ (-4 *5 (-823)) (-4 *5 (-1018))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *4 (-1 *1 (-618 *1)))
+ (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-1018))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-747)))
+ (-5 *4 (-618 (-1 *1 (-618 *1)))) (-4 *1 (-414 *5)) (-4 *5 (-823))
+ (-4 *5 (-1018))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-618 (-747))) (-5 *4 (-618 (-1 *1 *1)))
+ (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-1018))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-618 (-113))) (-5 *3 (-618 *1)) (-5 *4 (-1142))
+ (-4 *1 (-414 *5)) (-4 *5 (-823)) (-4 *5 (-594 (-524)))))
+ ((*1 *1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1142)) (-4 *1 (-414 *4)) (-4 *4 (-823))
+ (-4 *4 (-594 (-524)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)) (-4 *2 (-594 (-524)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-1142))) (-4 *1 (-414 *3)) (-4 *3 (-823))
+ (-4 *3 (-594 (-524)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)) (-4 *3 (-594 (-524)))))
+ ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1178))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 *5)) (-4 *1 (-505 *4 *5)) (-4 *4 (-1067))
+ (-4 *5 (-1178))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-808 *3)) (-4 *3 (-356)) (-5 *1 (-695 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-400 (-917 *4))) (-5 *3 (-1142)) (-4 *4 (-542))
+ (-5 *1 (-1011 *4))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-1142))) (-5 *4 (-618 (-400 (-917 *5))))
+ (-5 *2 (-400 (-917 *5))) (-4 *5 (-542)) (-5 *1 (-1011 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-286 (-400 (-917 *4)))) (-5 *2 (-400 (-917 *4))) (-4 *4 (-542))
+ (-5 *1 (-1011 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-618 (-286 (-400 (-917 *4))))) (-5 *2 (-400 (-917 *4)))
+ (-4 *4 (-542)) (-5 *1 (-1011 *4))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1119 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-4 *1 (-1200 *4)) (-4 *4 (-1018)) (-5 *2 (-1224 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1200 *3)) (-4 *3 (-1018)) (-5 *2 (-1136 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1136 *3)) (-4 *3 (-1018)) (-4 *1 (-1200 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3))
- (-4 *3 (-356)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-621 (-167 *4))) (-5 *1 (-153 *3 *4))
- (-4 *3 (-1201 (-167 (-549)))) (-4 *4 (-13 (-356) (-821)))))
+ (|partial| -12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
+ (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-921 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1018)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1)))
+ (-4 *1 (-1200 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-1018))
+ (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1200 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1200 *3)) (-4 *3 (-1018)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)))))
+(((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-621 (-167 *4)))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-621 (-167 *4)))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))))
-(((*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-525))) ((*1 *1) (-4 *1 (-699)))
- ((*1 *1) (-4 *1 (-703)))
- ((*1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066))))
- ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1230) (-1225 *5) (-1225 *5) (-372)))
- (-5 *3 (-1225 (-372))) (-5 *5 (-372)) (-5 *2 (-1230))
- (-5 *1 (-764))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1230) (-1225 *5) (-1225 *5) (-372)))
- (-5 *3 (-1225 (-372))) (-5 *5 (-372)) (-5 *2 (-1230))
- (-5 *1 (-764)))))
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1200 *2))
+ (-4 *2 (-170))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1200 *2)) (-4 *2 (-170)) (-5 *1 (-402 *3 *2 *4))
+ (-4 *3 (-403 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1200 *2)) (-4 *2 (-170))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1200 *2)) (-5 *2 (-535)) (-5 *1 (-744 *3 *4))
+ (-4 *4 (-403 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))
+ (-4 *3 (-170))))
+ ((*1 *2 *3) (-12 (-4 *2 (-542)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))
+ (-4 *3 (-170))))
+ ((*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-542))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-542))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-542)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1200 *3)) (-4 *3 (-1018))
+ (-4 *3 (-542))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-542)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1018)) (-4 *2 (-542)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541))
- (-5 *2 (-2 (|:| -1569 *4) (|:| -2112 *3) (|:| -3249 *3)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4))))
+ (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -4296 *4) (|:| -2091 *3) (|:| -3223 *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4))))
((*1 *2 *1 *1)
(-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-1032 *3 *4 *5))))
+ (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-1032 *3 *4 *5))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-541)) (-4 *3 (-1018))
- (-5 *2 (-2 (|:| -1569 *3) (|:| -2112 *1) (|:| -3249 *1)))
- (-4 *1 (-1201 *3)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-923 *6)) (-5 *4 (-1142))
- (-5 *5 (-816 *7))
- (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-4 *7 (-13 (-1164) (-29 *6))) (-5 *1 (-218 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1138 *6)) (-5 *4 (-816 *6))
- (-4 *6 (-13 (-1164) (-29 *5)))
- (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-218 *5 *6)))))
-(((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747))
- (-4 *4 (-170)))))
-(((*1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1201 (-549)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-5 *1 (-1153 *2)) (-4 *2 (-356)))))
+ (-12 (-4 *3 (-542)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| -4296 *3) (|:| -2091 *1) (|:| -3223 *1)))
+ (-4 *1 (-1200 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-356)) (-4 *4 (-542)) (-4 *5 (-1200 *4))
+ (-5 *2 (-2 (|:| -1879 (-601 *4 *5)) (|:| -1878 (-400 *5))))
+ (-5 *1 (-601 *4 *5)) (-5 *3 (-400 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-618 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890))
+ (-4 *4 (-1018))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-444)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1200 *3)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-1198 *4 *2))
+ (-4 *2 (-1200 *4)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1200 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1200 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3726 *3)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1142)) (-4 *5 (-356)) (-5 *2 (-1122 (-1122 (-923 *5))))
- (-5 *1 (-1233 *5)) (-5 *4 (-1122 (-923 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769))
- (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7))
- (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769))
- (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-632 *3)) (-4 *3 (-1018)) (-4 *3 (-356))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-747)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356))
- (-5 *1 (-635 *5 *2)) (-4 *2 (-632 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-605 *2 *3 *4)) (-4 *2 (-823))
- (-4 *3 (-13 (-170) (-694 (-400 (-549))))) (-14 *4 (-892))))
- ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
- ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-525)))
- ((*1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066)))))
-(((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1011)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))))
-(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
- ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *1 *1) (-4 *1 (-1105))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 (-430)))))
- (-5 *1 (-1146)))))
+ (|partial| -12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3)))
+ (-5 *1 (-1197 *4 *3)) (-4 *3 (-1200 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-235)) (-5 *3 (-1124))))
- ((*1 *2 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-235))))
- ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+ (-12 (-4 *4 (-13 (-542) (-145))) (-5 *2 (-618 *3)) (-5 *1 (-1196 *4 *3))
+ (-4 *3 (-1200 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1090 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-629 *4)) (-4 *4 (-335 *5 *6 *7))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-4 *6 (-1201 *5)) (-4 *7 (-1201 (-400 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4))))
- (-5 *1 (-782 *5 *6 *7 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-287 (-400 (-923 *5)))) (-5 *4 (-1142))
- (-4 *5 (-13 (-300) (-823) (-145)))
- (-5 *2 (-1131 (-621 (-309 *5)) (-621 (-287 (-309 *5)))))
- (-5 *1 (-1095 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1142))
- (-4 *5 (-13 (-300) (-823) (-145)))
- (-5 *2 (-1131 (-621 (-309 *5)) (-621 (-287 (-309 *5)))))
- (-5 *1 (-1095 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3))
- (-4 *3 (-938)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1809)) (-5 *2 (-112)) (-5 *1 (-596))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1747)) (-5 *2 (-112)) (-5 *1 (-596))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3736)) (-5 *2 (-112)) (-5 *1 (-596))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -4095)) (-5 *2 (-112)) (-5 *1 (-667 *4))
- (-4 *4 (-593 (-834)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-593 (-834))) (-5 *2 (-112))
- (-5 *1 (-667 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1132))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-941))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-304))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-647))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1236))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-657))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1235))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-652))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)) (-5 *1 (-1147))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1142))) (-5 *2 (-112)) (-5 *1 (-1147))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1147))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)) (-5 *1 (-1147)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-732)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1124))
- (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-219)))
- (-5 *2 (-1006)) (-5 *1 (-731)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-621 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *6)))
- (-4 *6 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-542 *6 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-797)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549))
- (-5 *2 (-1006)) (-5 *1 (-733)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-525)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-621 *3)) (-4 *3 (-1179)))))
-(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1138 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
- (-5 *2 (-1006)) (-5 *1 (-729)))))
+ (|partial| -12 (-4 *4 (-13 (-542) (-145)))
+ (-5 *2 (-2 (|:| -3456 *3) (|:| -3455 *3))) (-5 *1 (-1196 *4 *3))
+ (-4 *3 (-1200 *4)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-1200 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-542) (-145)))
+ (-5 *1 (-1196 *4 *2)) (-4 *2 (-1200 *4)))))
(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-621 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-423 *4) (-973))) (-4 *4 (-13 (-823) (-541)))
- (-5 *1 (-269 *4 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-52)) (-5 *1 (-805)))))
-(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769))
- (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-541))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-541))
- (-4 *8 (-920 *7 *5 *6))
- (-5 *2 (-2 (|:| -3577 (-747)) (|:| -1569 *3) (|:| |radicand| *3)))
- (-5 *1 (-924 *5 *6 *7 *8 *3)) (-5 *4 (-747))
- (-4 *3
- (-13 (-356)
- (-10 -8 (-15 -1393 (*8 $)) (-15 -1404 (*8 $)) (-15 -3845 ($ *8))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
- (-4 *6 (-769)) (-5 *2 (-621 *3)) (-5 *1 (-895 *4 *5 *6 *3))
- (-4 *3 (-920 *4 *6 *5)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
- (-5 *2 (-1006)) (-5 *1 (-729)))))
-(((*1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1228))))
- ((*1 *2 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1228)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
+ (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-542) (-145)))
+ (-5 *1 (-1196 *4 *2)) (-4 *2 (-1200 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-823))
- (-5 *2
- (-2 (|:| |f1| (-621 *4)) (|:| |f2| (-621 (-621 (-621 *4))))
- (|:| |f3| (-621 (-621 *4))) (|:| |f4| (-621 (-621 (-621 *4))))))
- (-5 *1 (-1150 *4)) (-5 *3 (-621 (-621 (-621 *4)))))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1124)) (-5 *3 (-549)) (-5 *1 (-1030)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4))
- (-4 *4 (-342))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4))
- (-4 *4 (-342))))
- ((*1 *1) (-4 *1 (-361)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1225 *4)) (-5 *1 (-519 *4))
- (-4 *4 (-342))))
- ((*1 *1 *1) (-4 *1 (-534))) ((*1 *1) (-4 *1 (-534)))
- ((*1 *1 *1) (-5 *1 (-549))) ((*1 *1 *1) (-5 *1 (-747)))
- ((*1 *2 *1) (-12 (-5 *2 (-876 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-5 *2 (-876 *4)) (-5 *1 (-875 *4))
- (-4 *4 (-1066))))
- ((*1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-534)) (-4 *2 (-541)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549))))
+ (-12 (-4 *4 (-542)) (-4 *5 (-962 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3))
+ (-4 *3 (-365 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1201 *4)) (-5 *1 (-785 *4 *2 *3 *5))
- (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2))
- (-4 *5 (-632 (-400 *2))))))
-(((*1 *2 *2) (-12 (-5 *2 (-892)) (|has| *1 (-6 -4327)) (-4 *1 (-397))))
- ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892))))
- ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675))))
- ((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112))
- (-5 *1 (-32 *4 *5)) (-4 *5 (-423 *4))))
+ (-12 (-4 *4 (-542)) (-4 *5 (-962 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-494 *4 *5 *6 *3))
+ (-4 *6 (-365 *4)) (-4 *3 (-365 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112))
- (-5 *1 (-156 *4 *5)) (-4 *5 (-423 *4))))
+ (-12 (-5 *3 (-665 *5)) (-4 *5 (-962 *4)) (-4 *4 (-542))
+ (-5 *2 (-2 (|:| |num| (-665 *4)) (|:| |den| *4))) (-5 *1 (-669 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5))
+ (-5 *2 (-2 (|:| -3600 *7) (|:| |rh| (-618 (-400 *6)))))
+ (-5 *1 (-783 *5 *6 *7 *3)) (-5 *4 (-618 (-400 *6))) (-4 *7 (-634 *6))
+ (-4 *3 (-634 (-400 *6)))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112))
- (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-423 *4) (-973)))))
+ (-12 (-4 *4 (-542)) (-4 *5 (-962 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1195 *4 *5 *3))
+ (-4 *3 (-1200 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-542)) (-4 *4 (-962 *3)) (-5 *1 (-140 *3 *4 *2))
+ (-4 *2 (-365 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-294 *4)) (-4 *4 (-295))))
- ((*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112))))
+ (-12 (-4 *4 (-542)) (-4 *5 (-962 *4)) (-4 *2 (-365 *4))
+ (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-365 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *5 (-823)) (-5 *2 (-112))
- (-5 *1 (-422 *4 *5)) (-4 *4 (-423 *5))))
+ (-12 (-5 *3 (-665 *5)) (-4 *5 (-962 *4)) (-4 *4 (-542)) (-5 *2 (-665 *4))
+ (-5 *1 (-669 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-542)) (-4 *4 (-962 *3)) (-5 *1 (-1195 *3 *4 *2))
+ (-4 *2 (-1200 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-140 *2 *4 *3))
+ (-4 *3 (-365 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112))
- (-5 *1 (-424 *4 *5)) (-4 *5 (-423 *4))))
+ (-12 (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-494 *2 *4 *5 *3))
+ (-4 *5 (-365 *2)) (-4 *3 (-365 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112))
- (-5 *1 (-608 *4 *5)) (-4 *5 (-13 (-423 *4) (-973) (-1164))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1105))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-411 *3)) (-4 *3 (-534)) (-4 *3 (-541))))
- ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-773 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-809 *3)) (-4 *3 (-534)) (-4 *3 (-1066))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-534)) (-4 *3 (-1066))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-968 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-665 *4)) (-4 *4 (-962 *2)) (-4 *2 (-542))
+ (-5 *1 (-669 *2 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-979 *3)) (-4 *3 (-1009 (-400 (-549)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1225 (-309 (-219)))) (-5 *2 (-1225 (-309 (-372))))
- (-5 *1 (-298)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1076)))))
-(((*1 *1 *1) (-5 *1 (-1030))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-273))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-549) (-219) (-1142) (-1124) (-1147)))
- (-5 *1 (-1147)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-747))))
- ((*1 *1 *1) (-4 *1 (-395))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1178))) (-5 *1 (-657))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-1147))) (-5 *1 (-1084)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1067 *3 *4)) (-14 *3 (-892))
- (-14 *4 (-892)))))
-(((*1 *2 *3 *4 *5)
+ (-12 (-4 *4 (-962 *2)) (-4 *2 (-542)) (-5 *1 (-1195 *2 *4 *3))
+ (-4 *3 (-1200 *4)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-757 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-927 *3 *2)) (-4 *2 (-130)) (-4 *3 (-542)) (-4 *3 (-1018))
+ (-4 *2 (-768))))
+ ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1136 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-942)) (-4 *2 (-130)) (-5 *1 (-1144 *3)) (-4 *3 (-542))
+ (-4 *3 (-1018))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1193 *4 *3)) (-14 *4 (-1142)) (-4 *3 (-1018)))))
+(((*1 *1 *1) (-5 *1 (-835))) ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1178)))))
+(((*1 *2 *3 *4)
(-12 (-5 *4 (-112))
- (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-4 *3 (-13 (-27) (-1164) (-423 *6) (-10 -8 (-15 -3845 ($ *7)))))
- (-4 *7 (-821))
- (-4 *8
- (-13 (-1203 *3 *7) (-356) (-1164)
- (-10 -8 (-15 -3455 ($ $)) (-15 -1531 ($ $)))))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))))
- (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1124)) (-4 *9 (-954 *8))
- (-14 *10 (-1142)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2460 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-621 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1201 *7))
- (-5 *3 (-400 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-559 *7 *8)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
+ (-2 (|:| |contp| (-535))
+ (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535)))))))
+ (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1980 *4))))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *5)) (-4 *5 (-423 *4)) (-4 *4 (-13 (-823) (-541)))
- (-5 *2 (-834)) (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-423 *5) (-27) (-1164)))
- (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2 (-567 *3)) (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1066)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-892)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1122 *4)) (-5 *3 (-549)) (-4 *4 (-1018))
- (-5 *1 (-1126 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-549)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1018))
- (-14 *4 (-1142)) (-14 *5 *3))))
-(((*1 *2 *2 *3)
- (-12
+ (-12 (-5 *4 (-112))
(-5 *2
- (-2 (|:| |partsol| (-1225 (-400 (-923 *4))))
- (|:| -3420 (-621 (-1225 (-400 (-923 *4)))))))
- (-5 *3 (-621 *7)) (-4 *4 (-13 (-300) (-145)))
- (-4 *7 (-920 *4 *6 *5)) (-4 *5 (-13 (-823) (-594 (-1142))))
- (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-90 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227))))
- ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-356))
- (-5 *2 (-2 (|:| -2460 (-400 *6)) (|:| |coeff| (-400 *6))))
- (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-1146)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018))
- (-5 *2 (-621 (-621 (-914 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-621 (-621 (-914 *4)))) (-5 *3 (-112)) (-4 *4 (-1018))
- (-4 *1 (-1100 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 (-621 (-914 *3)))) (-4 *3 (-1018))
- (-4 *1 (-1100 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-621 (-621 (-621 *4)))) (-5 *3 (-112))
- (-4 *1 (-1100 *4)) (-4 *4 (-1018))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-621 (-621 (-914 *4)))) (-5 *3 (-112))
- (-4 *1 (-1100 *4)) (-4 *4 (-1018))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-621 (-621 (-621 *5)))) (-5 *3 (-621 (-169)))
- (-5 *4 (-169)) (-4 *1 (-1100 *5)) (-4 *5 (-1018))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-621 (-621 (-914 *5)))) (-5 *3 (-621 (-169)))
- (-5 *4 (-169)) (-4 *1 (-1100 *5)) (-4 *5 (-1018)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-635 *4 *2))
- (-4 *2 (-632 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1225 *4)) (-4 *4 (-1018)) (-4 *2 (-1201 *4))
- (-5 *1 (-436 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-400 (-1138 (-309 *5)))) (-5 *3 (-1225 (-309 *5)))
- (-5 *4 (-549)) (-4 *5 (-13 (-541) (-823))) (-5 *1 (-1096 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-920 *3 *5 *4)) (-5 *1 (-958 *3 *4 *5 *2))
- (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)))))
-(((*1 *2)
- (-12 (-4 *1 (-342))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+ (-2 (|:| |contp| (-535))
+ (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535)))))))
+ (-5 *1 (-1190 *3)) (-4 *3 (-1200 (-535))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-112))
- (-5 *1 (-648 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-1153 *2)) (-4 *2 (-356)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
- (-4 *3 (-1032 *6 *7 *8))
- (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4))))
- (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1980 *9))))
- (-5 *5 (-112)) (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8))
- (-4 *6 (-444)) (-4 *7 (-769)) (-4 *4 (-823))
- (-5 *2 (-621 (-2 (|:| |val| *8) (|:| -1980 *9))))
- (-5 *1 (-1039 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1201 *4))
- (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-747))))
- (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1201 (-400 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1066))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-892)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1018))
- (-4 *4 (-1179))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-621 (-1142))) (-4 *4 (-170))
- (-4 *5 (-232 (-3774 *3) (-747)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3491 *2) (|:| -3577 *5))
- (-2 (|:| -3491 *2) (|:| -3577 *5))))
- (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-823))
- (-4 *7 (-920 *4 *5 (-836 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-621 (-621 *7)))
- (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-621 *7))))
+ (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3))
+ (-4 *3 (-1200 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769))
- (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-621 (-621 *8)))
- (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-621 *8)))))
-(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1179)) (-4 *2 (-823))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1179))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
- (-4 *6 (-1032 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -4060 *1) (|:| |upper| *1)))
- (-4 *1 (-947 *4 *5 *3 *6)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1142))
- (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-560 *4 *2))
- (-4 *2 (-13 (-1164) (-930) (-1105) (-29 *4))))))
-(((*1 *1) (-4 *1 (-342))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *1 (-1094 *3 *2)) (-4 *3 (-1201 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1217 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142))
- (-14 *4 *2))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747))
- (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1122 (-1122 *4))) (-5 *2 (-1122 *4)) (-5 *1 (-1126 *4))
- (-4 *4 (-38 (-400 (-549)))) (-4 *4 (-1018)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-300))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-439 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-621 *7)) (-5 *3 (-1124)) (-4 *7 (-920 *4 *5 *6))
- (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823))
- (-5 *1 (-439 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-621 *7)) (-5 *3 (-1124)) (-4 *7 (-920 *4 *5 *6))
- (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823))
- (-5 *1 (-439 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *2) (-12 (-5 *2 (-621 (-309 (-219)))) (-5 *1 (-260)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1066)) (-5 *2 (-860 *3 *5)) (-5 *1 (-856 *3 *4 *5))
- (-4 *3 (-1066)) (-4 *5 (-642 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
-(((*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
-(((*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018))
- (-5 *1 (-666 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1066)) (-5 *1 (-1151 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1179)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
- ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *1 *1) (-4 *1 (-1105))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1179))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1179)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-621
- (-2
- (|:| -3337
- (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219))))
- (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219)))
- (|:| |g| (-309 (-219))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
- (|:| -1792
- (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372))
- (|:| |expense| (-372)) (|:| |accuracy| (-372))
- (|:| |intermediateResults| (-372)))))))
- (-5 *1 (-779)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1142))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-621 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2460 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1164) (-27) (-423 *8)))
- (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3)))
- (-5 *3 (-549))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3847 *4) (|:| |sol?| (-112))))
- (-5 *1 (-984 *8 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1201 *4)) (-4 *4 (-1183))
- (-4 *6 (-1201 (-400 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-335 *4 *5 *6)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-805)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-923 (-549)))) (-5 *1 (-430))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1142)) (-5 *4 (-665 (-219))) (-5 *2 (-1070))
- (-5 *1 (-736))))
+ (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1200 (-535)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1142)) (-5 *4 (-665 (-549))) (-5 *2 (-1070))
- (-5 *1 (-736)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
- (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356)))
- (-4 *3 (-1201 *4)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 (-923 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4))
- (-14 *4 (-621 (-1142)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-621 *7)) (-5 *3 (-1124)) (-4 *7 (-920 *4 *5 *6))
- (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-5 *1 (-442 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-621 *7)) (-5 *3 (-1124)) (-4 *7 (-920 *4 *5 *6))
- (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-5 *1 (-442 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823))
- (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-621 (-756 *3 (-836 *4)))) (-4 *3 (-444))
- (-14 *4 (-621 (-1142))) (-5 *1 (-606 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1142))
- (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-2 (|:| -2460 *3) (|:| |coeff| *3))) (-5 *1 (-542 *5 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *5))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1179)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *3 *2)) (-4 *3 (-1066))
- (-4 *2 (-1179)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-898))
- (-5 *2
- (-2 (|:| |brans| (-621 (-621 (-914 (-219)))))
- (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))))
- (-5 *1 (-151))))
+ (-12 (-5 *4 (-618 (-747))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1200 (-535)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-618 (-747))) (-5 *5 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1200 (-535)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-898)) (-5 *4 (-400 (-549)))
- (-5 *2
- (-2 (|:| |brans| (-621 (-621 (-914 (-219)))))
- (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))))
- (-5 *1 (-151))))
+ (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1200 (-535)))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-621 (-621 (-914 (-219)))))
- (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))))
- (-5 *1 (-151)) (-5 *3 (-621 (-914 (-219))))))
+ (-12 (-5 *2 (-398 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1200 (-400 (-535))))))
+ ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-48))) (-5 *2 (-398 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1200 (-48)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-48))) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *2 (-398 *3))
+ (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-921 (-48) *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-48))) (-4 *5 (-823)) (-4 *6 (-769))
+ (-4 *7 (-921 (-48) *6 *5)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-42 *5 *6 *7))
+ (-5 *3 (-1136 *7))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-621 (-621 (-914 (-219)))))
- (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))))
- (-5 *1 (-151)) (-5 *3 (-621 (-621 (-914 (-219)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-1060 (-372)))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534))
- (-5 *2 (-400 (-549)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-411 *3)) (-4 *3 (-534))
- (-4 *3 (-541))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-534)) (-5 *2 (-400 (-549)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-773 *3)) (-4 *3 (-170)) (-4 *3 (-534))
- (-5 *2 (-400 (-549)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-809 *3)) (-4 *3 (-534))
- (-4 *3 (-1066))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-816 *3)) (-4 *3 (-534))
- (-4 *3 (-1066))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-968 *3)) (-4 *3 (-170)) (-4 *3 (-534))
- (-5 *2 (-400 (-549)))))
+ (-12 (-4 *4 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-165 *4 *3))
+ (-4 *3 (-1200 (-166 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3))
+ (-4 *3 (-1200 (-166 *4)))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-979 *3))
- (-4 *3 (-1009 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768))
- (-4 *5 (-823)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372))
- (|:| |expense| (-372)) (|:| |accuracy| (-372))
- (|:| |intermediateResults| (-372))))
- (-5 *2 (-1006)) (-5 *1 (-298)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-387))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1159)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-305)) (-5 *1 (-805)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1179)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546))))
+ (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3))
+ (-4 *3 (-1200 (-166 *4)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-400 (-549)))) (-5 *1 (-913)) (-5 *3 (-549)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1018)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3))
- (-4 *3 (-1201 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-923 *5)) (-4 *5 (-1018)) (-5 *2 (-473 *4 *5))
- (-5 *1 (-915 *4 *5)) (-14 *4 (-621 (-1142))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
- ((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1018)) (-5 *1 (-1197 *3 *2)) (-4 *2 (-1201 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-665 (-219)))
- (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))))
-(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-621 (-747))) (-5 *1 (-940 *4 *3))
- (-4 *3 (-1201 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-621 (-592 *5))) (-5 *3 (-1142)) (-4 *5 (-423 *4))
- (-4 *4 (-823)) (-5 *1 (-558 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-621 (-923 *4))) (-5 *3 (-621 (-1142))) (-4 *4 (-444))
- (-5 *1 (-889 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-309 *4)) (-4 *4 (-13 (-804) (-823) (-1018)))
- (-5 *2 (-1124)) (-5 *1 (-802 *4))))
+ (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3))
+ (-4 *3 (-1200 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 *5)) (-5 *4 (-112))
- (-4 *5 (-13 (-804) (-823) (-1018))) (-5 *2 (-1124))
- (-5 *1 (-802 *5))))
+ (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1200 (-535)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-798)) (-5 *4 (-309 *5))
- (-4 *5 (-13 (-804) (-823) (-1018))) (-5 *2 (-1230))
- (-5 *1 (-802 *5))))
+ (-12 (-5 *4 (-618 (-747))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1200 (-535)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-798)) (-5 *4 (-309 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-804) (-823) (-1018))) (-5 *2 (-1230))
- (-5 *1 (-802 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-804)) (-5 *2 (-1124))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-804)) (-5 *3 (-112)) (-5 *2 (-1124))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-804)) (-5 *3 (-798)) (-5 *2 (-1230))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-804)) (-5 *3 (-798)) (-5 *4 (-112)) (-5 *2 (-1230)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1066)) (-5 *1 (-1156 *3 *2)) (-4 *3 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1122 (-549))) (-5 *1 (-1126 *4)) (-4 *4 (-1018))
- (-5 *3 (-549)))))
-(((*1 *2 *3 *1)
+ (-12 (-5 *4 (-618 (-747))) (-5 *5 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1200 (-535)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-747)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1200 (-535)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-398 (-166 (-535)))) (-5 *1 (-438)) (-5 *3 (-166 (-535)))))
+ ((*1 *2 *3)
(-12
- (-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -1887 (-747)) (|:| |period| (-747))))
- (-5 *1 (-1122 *4)) (-4 *4 (-1179)) (-5 *3 (-747)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1172 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769))
- (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1060 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-1179))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179))))
- ((*1 *1 *2) (-12 (-5 *1 (-1192 *2)) (-4 *2 (-1179)))))
-(((*1 *2)
- (-12 (-14 *4 (-747)) (-4 *5 (-1179)) (-5 *2 (-133))
- (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4))
- (-4 *3 (-322 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-170))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-549))
- (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769))
- (-5 *2 (-549)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1018)) (-5 *2 (-892))))
- ((*1 *2) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-356)) (-5 *2 (-133)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *1 (-1094 *3 *2)) (-4 *3 (-1201 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1122 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-732)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-747)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549))
- (-14 *4 *2) (-4 *5 (-170))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-892)) (-5 *1 (-163 *3 *4))
- (-4 *3 (-164 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-892))))
- ((*1 *2)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1201 *3))
- (-5 *2 (-892))))
+ (-4 *4
+ (-13 (-823)
+ (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142))))))
+ (-4 *5 (-769)) (-4 *7 (-542)) (-5 *2 (-398 *3))
+ (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-542)) (-4 *3 (-921 *7 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))
- (-5 *2 (-747)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6))))
+ (-12 (-4 *4 (-300)) (-5 *2 (-398 (-1136 *4))) (-5 *1 (-450 *4))
+ (-5 *3 (-1136 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *5)) (-5 *4 (-1225 *5)) (-4 *5 (-356))
- (-5 *2 (-747)) (-5 *1 (-643 *5))))
+ (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356))
+ (-4 *7 (-13 (-356) (-145) (-701 *5 *6))) (-5 *2 (-398 *3))
+ (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1200 *7))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4337))))
- (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-747))
- (-5 *1 (-644 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-4 *3 (-541)) (-5 *2 (-747))))
+ (-12 (-5 *4 (-1 (-398 (-1136 *7)) (-1136 *7))) (-4 *7 (-13 (-300) (-145)))
+ (-4 *5 (-823)) (-4 *6 (-769)) (-5 *2 (-398 *3)) (-5 *1 (-529 *5 *6 *7 *3))
+ (-4 *3 (-921 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-398 (-1136 *7)) (-1136 *7))) (-4 *7 (-13 (-300) (-145)))
+ (-4 *5 (-823)) (-4 *6 (-769)) (-4 *8 (-921 *7 *6 *5))
+ (-5 *2 (-398 (-1136 *8))) (-5 *1 (-529 *5 *6 *7 *8)) (-5 *3 (-1136 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-544 *3)) (-4 *3 (-534))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-618 *5) *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-4 *6 (-1200 *5)) (-5 *2 (-618 (-631 (-400 *6)))) (-5 *1 (-635 *5 *6))
+ (-5 *3 (-631 (-400 *6)))))
((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4))
- (-4 *6 (-366 *4)) (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3))
- (-4 *3 (-663 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-541))
- (-5 *2 (-747)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1179)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-342)) (-5 *2 (-1225 *1))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-4 *5 (-1200 *4)) (-5 *2 (-618 (-631 (-400 *5)))) (-5 *1 (-635 *4 *5))
+ (-5 *3 (-631 (-400 *5)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-143)) (-4 *1 (-880))
- (-5 *2 (-1225 *1)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *3 (-541)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1201 *5))
- (-5 *2 (-621 *3)) (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1201 *6))
- (-14 *7 (-892)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-549))) (-5 *1 (-913)) (-5 *3 (-549))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
- (-5 *1 (-1090 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1138 *9)) (-5 *4 (-621 *7)) (-4 *7 (-823))
- (-4 *9 (-920 *8 *6 *7)) (-4 *6 (-769)) (-4 *8 (-300))
- (-5 *2 (-621 (-747))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *5 (-747)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-256)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-112))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 (-167 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))
+ (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-618 (-648 *4)))
+ (-5 *1 (-648 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-535)) (-5 *2 (-618 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1200 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-112)) (-5 *1 (-1168 *4 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *4))))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-429)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *4 *3 *5))
- (-4 *3 (-1201 *4))
- (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219)))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219))
- (-5 *2 (-1006)) (-5 *1 (-733)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-729)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1225 *4)) (-4 *4 (-617 (-549))) (-5 *2 (-112))
- (-5 *1 (-1252 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-356)) (-4 *7 (-1201 *5)) (-4 *4 (-701 *5 *7))
- (-5 *2 (-2 (|:| -1859 (-665 *6)) (|:| |vec| (-1225 *5))))
- (-5 *1 (-787 *5 *6 *7 *4 *3)) (-4 *6 (-632 *5)) (-4 *3 (-632 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1201 *4)) (-5 *2 (-665 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-4 *5 (-1201 *4)) (-5 *2 (-665 *4))
- (-5 *1 (-401 *3 *4 *5)) (-4 *3 (-402 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1201 *3))
- (-5 *2 (-665 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-1122 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1164)))))
- ((*1 *1 *1 *1) (-4 *1 (-769))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-534)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-845)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-356))
- (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-663 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2))
- (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018))))
+ (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-343)) (-5 *2 (-398 *3))
+ (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-921 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170))
- (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-663 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2))
- (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1142))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-621 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2460 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1164) (-27) (-423 *8)))
- (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3)))
- (-5 *3 (-549)) (-5 *2 (-621 *4)) (-5 *1 (-985 *8 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-400 (-923 (-167 (-549))))))
- (-5 *2 (-621 (-621 (-287 (-923 (-167 *4)))))) (-5 *1 (-371 *4))
- (-4 *4 (-13 (-356) (-821)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-287 (-400 (-923 (-167 (-549)))))))
- (-5 *2 (-621 (-621 (-287 (-923 (-167 *4)))))) (-5 *1 (-371 *4))
- (-4 *4 (-13 (-356) (-821)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 (-167 (-549)))))
- (-5 *2 (-621 (-287 (-923 (-167 *4))))) (-5 *1 (-371 *4))
- (-4 *4 (-13 (-356) (-821)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-287 (-400 (-923 (-167 (-549))))))
- (-5 *2 (-621 (-287 (-923 (-167 *4))))) (-5 *1 (-371 *4))
- (-4 *4 (-13 (-356) (-821))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-356)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4)))
- (-5 *2 (-1225 *6)) (-5 *1 (-329 *3 *4 *5 *6))
- (-4 *6 (-335 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1))
- (-4 *1 (-1032 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1124)) (-5 *2 (-621 (-1147))) (-5 *1 (-851)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1009 *4)) (-4 *3 (-300))
- (-4 *4 (-963 *3)) (-4 *5 (-1201 *4)) (-4 *6 (-402 *4 *5))
- (-14 *7 (-1225 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1225 *6)) (-4 *6 (-402 *4 *5)) (-4 *4 (-963 *3))
- (-4 *5 (-1201 *4)) (-4 *3 (-300)) (-5 *1 (-407 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-762)))))
-(((*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1145)))))
-(((*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-621 (-621 (-914 (-219)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-621 (-621 (-914 (-219))))))))
-(((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2))))
+ (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-343)) (-4 *7 (-921 *6 *5 *4))
+ (-5 *2 (-398 (-1136 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1136 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1201 *2))
- (-4 *2 (-170))))
- ((*1 *2)
- (-12 (-4 *4 (-1201 *2)) (-4 *2 (-170)) (-5 *1 (-401 *3 *2 *4))
- (-4 *3 (-402 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-402 *2 *3)) (-4 *3 (-1201 *2)) (-4 *2 (-170))))
- ((*1 *2)
- (-12 (-4 *3 (-1201 *2)) (-5 *2 (-549)) (-5 *1 (-744 *3 *4))
- (-4 *4 (-402 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823)) (-4 *3 (-170))))
+ (-12 (-4 *4 (-769))
+ (-4 *5
+ (-13 (-823)
+ (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ "failed") (-1142))))))
+ (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-707 *4 *5 *6 *3))
+ (-4 *3 (-921 (-917 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *2 (-541)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1201 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-541) (-823)))
- (-4 *2 (-13 (-423 *4) (-973) (-1164))) (-5 *1 (-580 *4 *2 *3))
- (-4 *3 (-13 (-423 (-167 *4)) (-973) (-1164))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-534))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-219))
- (-5 *7 (-665 (-549))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-729)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-863 *4)) (-4 *4 (-1066)) (-5 *2 (-621 *5))
- (-5 *1 (-861 *4 *5)) (-4 *5 (-1179)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356)))
- (-4 *3 (-1201 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-621 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-410 *4)))))
+ (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)))))
+ (-4 *6 (-542)) (-5 *2 (-398 *3)) (-5 *1 (-709 *4 *5 *6 *3))
+ (-4 *3 (-921 (-400 (-917 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-13 (-300) (-145)))
+ (-5 *2 (-398 *3)) (-5 *1 (-710 *4 *5 *6 *3))
+ (-4 *3 (-921 (-400 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145)))
+ (-5 *2 (-398 *3)) (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-921 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145)))
+ (-4 *7 (-921 *6 *5 *4)) (-5 *2 (-398 (-1136 *7))) (-5 *1 (-718 *4 *5 *6 *7))
+ (-5 *3 (-1136 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-398 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1200 (-400 (-535))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-398 *3)) (-5 *1 (-1013 *3))
+ (-4 *3 (-1200 (-400 (-917 (-535)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1200 (-400 (-535))))
+ (-4 *5 (-13 (-356) (-145) (-701 (-400 (-535)) *4))) (-5 *2 (-398 *3))
+ (-5 *1 (-1046 *4 *5 *3)) (-4 *3 (-1200 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1200 (-400 (-917 (-535)))))
+ (-4 *5 (-13 (-356) (-145) (-701 (-400 (-917 (-535))) *4))) (-5 *2 (-398 *3))
+ (-5 *1 (-1047 *4 *5 *3)) (-4 *3 (-1200 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444)) (-4 *7 (-921 *6 *4 *5))
+ (-5 *2 (-398 (-1136 (-400 *7)))) (-5 *1 (-1138 *4 *5 *6 *7))
+ (-5 *3 (-1136 (-400 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1183))))
+ ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-535))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-842 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-14 *2 (-535))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-535)) (-14 *3 *2) (-5 *1 (-843 *3 *4)) (-4 *4 (-841 *3))))
+ ((*1 *1 *1) (-12 (-14 *2 (-535)) (-5 *1 (-843 *2 *3)) (-4 *3 (-841 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-535)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-1217 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1217 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
- ((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1179))
- (-4 *5 (-1179)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-234 *6 *7)) (-14 *6 (-747))
- (-4 *7 (-1179)) (-4 *5 (-1179)) (-5 *2 (-234 *6 *5))
- (-5 *1 (-233 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1179)) (-4 *5 (-1179))
- (-4 *2 (-366 *5)) (-5 *1 (-364 *6 *4 *5 *2)) (-4 *4 (-366 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1066)) (-4 *5 (-1066))
- (-4 *2 (-418 *5)) (-5 *1 (-416 *6 *4 *5 *2)) (-4 *4 (-418 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-621 *6)) (-4 *6 (-1179))
- (-4 *5 (-1179)) (-5 *2 (-621 *5)) (-5 *1 (-619 *6 *5))))
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1164) (-414 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-747)) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-929 *6)) (-4 *6 (-1179))
- (-4 *5 (-1179)) (-5 *2 (-929 *5)) (-5 *1 (-928 *6 *5))))
+ (-12 (-5 *4 (-286 *3)) (-5 *5 (-747)) (-4 *3 (-13 (-27) (-1164) (-414 *6)))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-309 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-535))) (-5 *4 (-286 *6))
+ (-4 *6 (-13 (-27) (-1164) (-414 *5)))
+ (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1122 *6)) (-4 *6 (-1179))
- (-4 *3 (-1179)) (-5 *2 (-1122 *3)) (-5 *1 (-1120 *6 *3))))
+ (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6)))
+ (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1225 *6)) (-4 *6 (-1179))
- (-4 *5 (-1179)) (-5 *2 (-1225 *5)) (-5 *1 (-1224 *6 *5)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-108)) (-5 *1 (-173))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-108)) (-5 *1 (-1051)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-621 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1172 *5 *6 *7 *8)) (-4 *5 (-541))
- (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-863 *4)) (-4 *4 (-1066)) (-5 *1 (-860 *4 *3))
- (-4 *3 (-1066)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-541)) (-4 *3 (-1018))
- (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-825 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-98 *5)) (-4 *5 (-541)) (-4 *5 (-1018))
- (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-826 *5 *3))
- (-4 *3 (-825 *5)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-229 *3))
- (-4 *3 (-1066))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1179)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
- (-14 *4 (-621 (-1142)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-549)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
- (-14 *4 (-621 (-1142)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823))
- (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-268))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1138 *8)) (-5 *4 (-621 *6)) (-4 *6 (-823))
- (-4 *8 (-920 *7 *5 *6)) (-4 *5 (-769)) (-4 *7 (-1018))
- (-5 *2 (-621 (-747))) (-5 *1 (-314 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-892))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))
- (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-541)) (-5 *2 (-549)) (-5 *1 (-601 *3 *4))
- (-4 *4 (-1201 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-875 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 *6)) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 (-747)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-920 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769))
- (-4 *3 (-823)) (-5 *2 (-747))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-944 *3 *2 *4)) (-4 *3 (-1018)) (-4 *4 (-823))
- (-4 *2 (-768))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-747))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1216 *3))
- (-5 *2 (-549))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1185 *3))
- (-5 *2 (-400 (-549)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-5 *2 (-809 (-892)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
- (-5 *2 (-747)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-936))) (-5 *1 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-797)) (-5 *4 (-52)) (-5 *2 (-1230)) (-5 *1 (-807)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-1124)) (-5 *5 (-665 (-219)))
- (-5 *2 (-1006)) (-5 *1 (-724)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1124))
- (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1179))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1201 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444))
- (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-948 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1009 (-549))) (-4 *1 (-295)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823))))
- ((*1 *1) (-4 *1 (-1117))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(((*1 *2) (-12 (-5 *2 (-816 (-549))) (-5 *1 (-523))))
- ((*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-541) (-823)))
- (-4 *2 (-13 (-423 (-167 *4)) (-973) (-1164)))
- (-5 *1 (-580 *4 *3 *2)) (-4 *3 (-13 (-423 *4) (-973) (-1164))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-52)) (-5 *1 (-805)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-973))
- (-4 *2 (-1018)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-4 *5 (-1201 *4)) (-5 *2 (-1230))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1201 (-400 *5))) (-14 *7 *6))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-114))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1124)) (-4 *4 (-823)) (-5 *1 (-900 *4 *2))
- (-4 *2 (-423 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1142)) (-5 *4 (-1124)) (-5 *2 (-309 (-549)))
- (-5 *1 (-901)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
+ (-12 (-5 *3 (-1 *7 (-535))) (-5 *4 (-286 *7)) (-5 *5 (-1191 (-747)))
+ (-4 *7 (-13 (-27) (-1164) (-414 *6)))
+ (-4 *6 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1142)) (-5 *5 (-286 *3)) (-5 *6 (-1191 (-747)))
+ (-4 *3 (-13 (-27) (-1164) (-414 *7)))
+ (-4 *7 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-51))
+ (-5 *1 (-451 *7 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))))
(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-535)) (-4 *1 (-1186 *4)) (-4 *4 (-1018)) (-4 *4 (-542))
+ (-5 *2 (-400 (-917 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-535)) (-4 *1 (-1186 *4)) (-4 *4 (-1018)) (-4 *4 (-542))
+ (-5 *2 (-400 (-917 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-166 (-535))) (-5 *2 (-112)) (-5 *1 (-438))))
+ ((*1 *2 *3)
(-12
- (-5 *2
- (-621
- (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1138 *3))
- (|:| |logand| (-1138 *3)))))
- (-5 *1 (-567 *3)) (-4 *3 (-356)))))
-(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1216 *4)) (-5 *1 (-1218 *4 *2))
- (-4 *4 (-38 (-400 (-549)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1068 *4)) (-4 *4 (-1066)) (-5 *2 (-1 *4))
- (-5 *1 (-988 *4))))
+ (-5 *3
+ (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535)))))
+ (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-112))
+ (-5 *1 (-496 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-534))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1183)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1181)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -3562 (-618 (-1142))) (|:| -3563 (-618 (-1142)))))
+ (-5 *1 (-1181)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1181))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1181)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1011)) (-5 *3 (-372))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1060 (-549))) (-5 *2 (-1 (-549))) (-5 *1 (-1016)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179)))))
-(((*1 *2) (-12 (-5 *2 (-816 (-549))) (-5 *1 (-523))))
- ((*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219)))
- (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))
- (-5 *2 (-1006)) (-5 *1 (-730)))))
-(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-305)) (-5 *1 (-289))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-823)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1180 *2))
+ (-4 *2 (-1067))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-1124))) (-5 *2 (-305)) (-5 *1 (-289))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-305)) (-5 *1 (-289))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-1124))) (-5 *3 (-1124)) (-5 *2 (-305))
- (-5 *1 (-289)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1183)) (-4 *5 (-1201 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5))
- (|:| |c2| (-400 *5)) (|:| |deg| (-747))))
- (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1201 (-400 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-216 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-4 *1 (-247 *3))))
- ((*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1122 (-549))) (-5 *1 (-1126 *4)) (-4 *4 (-1018))
- (-5 *3 (-549)))))
-(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459))))
- ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459))))
- ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1228)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-621 (-287 *4))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
- (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-621 *3))
- (-4 *3 (-13 (-423 *6) (-27) (-1164)))
- (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-551 *6 *3 *7)) (-4 *7 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-1124))) (-5 *2 (-1124)) (-5 *1 (-186))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1018)) (-4 *2 (-663 *4 *5 *6))
- (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1201 *4)) (-4 *5 (-366 *4))
- (-4 *6 (-366 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-549)))
- (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3))
- (-4 *2
- (-13 (-356) (-295)
- (-10 -8 (-15 -1393 ((-1091 *3 (-592 $)) $))
- (-15 -1404 ((-1091 *3 (-592 $)) $))
- (-15 -3845 ($ (-1091 *3 (-592 $))))))))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-621 *11))
- (|:| |todo| (-621 (-2 (|:| |val| *3) (|:| -1980 *11))))))
- (-5 *6 (-747))
- (-5 *2 (-621 (-2 (|:| |val| (-621 *10)) (|:| -1980 *11))))
- (-5 *3 (-621 *10)) (-5 *4 (-621 *11)) (-4 *10 (-1032 *7 *8 *9))
- (-4 *11 (-1038 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769))
- (-4 *9 (-823)) (-5 *1 (-1036 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-621 *11))
- (|:| |todo| (-621 (-2 (|:| |val| *3) (|:| -1980 *11))))))
- (-5 *6 (-747))
- (-5 *2 (-621 (-2 (|:| |val| (-621 *10)) (|:| -1980 *11))))
- (-5 *3 (-621 *10)) (-5 *4 (-621 *11)) (-4 *10 (-1032 *7 *8 *9))
- (-4 *11 (-1075 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769))
- (-4 *9 (-823)) (-5 *1 (-1111 *7 *8 *9 *10 *11)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-323)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-747)) (-5 *3 (-914 *5)) (-4 *5 (-1018))
- (-5 *1 (-1130 *4 *5)) (-14 *4 (-892))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-747))) (-5 *3 (-747)) (-5 *1 (-1130 *4 *5))
- (-14 *4 (-892)) (-4 *5 (-1018))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018))
- (-5 *1 (-1130 *4 *5)) (-14 *4 (-892)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-823) (-541))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-390)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
- (-14 *4 (-621 (-1142)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
- (-14 *4 (-621 (-1142))))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-152))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-1033)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1149)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1179)) (-4 *2 (-823))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1179))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-145) (-27) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-4 *5 (-1201 *4)) (-5 *2 (-1138 (-400 *5))) (-5 *1 (-595 *4 *5))
- (-5 *3 (-400 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1201 *5))
- (-4 *5 (-13 (-145) (-27) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-5 *2 (-1138 (-400 *6))) (-5 *1 (-595 *5 *6)) (-5 *3 (-400 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-823)) (-5 *1 (-1180 *2)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1180 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1067)) (-5 *2 (-112))
+ (-5 *1 (-1180 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -3563 (-618 *3)) (|:| -3562 (-618 *3))))
+ (-5 *1 (-1180 *3)) (-4 *3 (-1067)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-776))
- (-5 *3
- (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
- (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
- (|:| |abserr| (-219)) (|:| |relerr| (-219))))
- (-5 *2 (-1006)))))
+ (-12 (-5 *3 (-618 *4)) (-4 *4 (-1067)) (-5 *2 (-1230)) (-5 *1 (-1180 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 *4)) (-4 *4 (-1067)) (-5 *2 (-1230)) (-5 *1 (-1180 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 (-167 (-400 (-549)))))
- (-5 *2
- (-621
- (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-549))
- (|:| |outvect| (-621 (-665 (-167 *4)))))))
- (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-295)) (-4 *2 (-1179))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-592 *1))) (-5 *3 (-621 *1)) (-4 *1 (-295))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-287 *1))) (-4 *1 (-295))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-287 *1)) (-4 *1 (-295)))))
+ (-12 (-5 *4 (-535)) (-4 *5 (-343)) (-5 *2 (-398 (-1136 (-1136 *5))))
+ (-5 *1 (-1177 *5)) (-5 *3 (-1136 (-1136 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *2 (-621 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1201 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *2 (-621 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1201 *3)))))
+ (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1136 (-1136 *4)))) (-5 *1 (-1177 *4))
+ (-5 *3 (-1136 (-1136 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1124)) (-5 *2 (-208 (-493))) (-5 *1 (-811)))))
-(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
-(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823))))
+ (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1136 (-1136 *4)))) (-5 *1 (-1177 *4))
+ (-5 *3 (-1136 (-1136 *4))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *3))
+ (-4 *3 (-1178))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1178))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1173 *4 *5 *3 *2)) (-4 *4 (-542)) (-4 *5 (-769))
+ (-4 *3 (-823)) (-4 *2 (-1032 *4 *5 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-1176 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-618 (-618 (-219)))) (-5 *4 (-219)) (-5 *2 (-618 (-914 *4)))
+ (-5 *1 (-1175)) (-5 *3 (-914 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *2 (-618 (-618 (-219)))) (-5 *1 (-1175)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-890)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1018)) (-4 *4 (-1178))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-836 *3)) (-14 *3 (-621 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-937 *3)) (-4 *3 (-938))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-960))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1058 *3)) (-4 *3 (-1179))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
- (-5 *2 (-1142))))
- ((*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1221 *3)) (-14 *3 *2))))
-(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-96)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1225 *4)) (-4 *4 (-617 *5)) (-4 *5 (-356))
- (-4 *5 (-541)) (-5 *2 (-1225 *5)) (-5 *1 (-616 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1225 *4)) (-4 *4 (-617 *5))
- (-4007 (-4 *5 (-356))) (-4 *5 (-541)) (-5 *2 (-1225 (-400 *5)))
- (-5 *1 (-616 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-142)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769))
- (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2650 (-621 *9)) (|:| -1980 *4) (|:| |ineq| (-621 *9))))
- (-5 *1 (-959 *6 *7 *8 *9 *4)) (-5 *3 (-621 *9))
- (-4 *4 (-1038 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769))
- (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2650 (-621 *9)) (|:| -1980 *4) (|:| |ineq| (-621 *9))))
- (-5 *1 (-1073 *6 *7 *8 *9 *4)) (-5 *3 (-621 *9))
- (-4 *4 (-1038 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-2 (|:| -2120 (-1138 *6)) (|:| -3577 (-549)))))
- (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-549))
- (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-665 (-1138 *8))) (-4 *5 (-1018)) (-4 *8 (-1018))
- (-4 *6 (-1201 *5)) (-5 *2 (-665 *6)) (-5 *1 (-492 *5 *6 *7 *8))
- (-4 *7 (-1201 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-1130 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1227))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1227)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-621 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
- (-4 *3 (-541)))))
-(((*1 *2)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-665 (-400 *4))))))
+ (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *5 (-232 (-4299 *3) (-747)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *5))
+ (-2 (|:| -2483 *2) (|:| -2484 *5))))
+ (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-823))
+ (-4 *7 (-921 *4 *5 (-836 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-460))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-914 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-1018)) (-4 *1 (-1100 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)) (-5 *3 (-219)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-219)) (-5 *5 (-535)) (-5 *2 (-1174 *3)) (-5 *1 (-766 *3))
+ (-4 *3 (-945))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *4 (-112)) (-5 *1 (-1174 *2))
+ (-4 *2 (-945)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-541)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1201 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-444))
- (-5 *2
- (-621
- (-2 (|:| |eigval| (-3 (-400 (-923 *4)) (-1131 (-1142) (-923 *4))))
- (|:| |eigmult| (-747))
- (|:| |eigvec| (-621 (-665 (-400 (-923 *4))))))))
- (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-923 *4)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7))))
- (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
+ (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-1174 *3)) (-4 *3 (-945)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-945)))))
(((*1 *2 *3 *3)
- (-12 (-4 *2 (-541)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1201 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1225 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183))
- (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))))))
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1201 *9)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-300))
- (-4 *10 (-920 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-621 (-1138 *10)))
- (|:| |dterm|
- (-621 (-621 (-2 (|:| -1815 (-747)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-621 *6)) (|:| |nlead| (-621 *10))))
- (-5 *1 (-754 *6 *7 *8 *9 *10)) (-5 *3 (-1138 *10)) (-5 *4 (-621 *6))
- (-5 *5 (-621 *10)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1201 *5))
- (-5 *1 (-704 *5 *2)) (-4 *5 (-356)))))
-(((*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1179)) (-4 *2 (-1066))))
- ((*1 *1 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -2902 "void")))
- (-5 *2 (-1230)) (-5 *1 (-1145))))
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3666 (-618 *9)))) (-5 *3 (-618 *9))
+ (-4 *1 (-1173 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1142))
- (-5 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-5 *2 (-1230))
- (-5 *1 (-1145))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1142))
- (-5 *4 (-3 (|:| |fst| (-427)) (|:| -2902 "void"))) (-5 *2 (-1230))
- (-5 *1 (-1145)))))
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3666 (-618 *8)))) (-5 *3 (-618 *8))
+ (-4 *1 (-1173 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-621 *3))))
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5))
+ (-5 *2 (-2 (|:| -4204 (-618 *6)) (|:| -1813 (-618 *6)))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1179))
- (-5 *2 (-621 *3)))))
-(((*1 *1) (-5 *1 (-779))))
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170))
- (-4 *5 (-1201 *4)) (-5 *2 (-665 *4))))
+ (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1173 *5 *6 *7 *3)) (-4 *5 (-542))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1201 *3))
- (-5 *2 (-665 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1106 *4 *5)) (-4 *4 (-13 (-1066) (-34)))
- (-4 *5 (-13 (-1066) (-34))) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1124)) (-5 *4 (-167 (-219))) (-5 *5 (-549))
- (-5 *2 (-1006)) (-5 *1 (-735)))))
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-1198 *5 *4)) (-5 *1 (-1140 *4 *5 *6))
- (-4 *4 (-1018)) (-14 *5 (-1142)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-1198 *5 *4)) (-5 *1 (-1217 *4 *5 *6))
- (-4 *4 (-1018)) (-14 *5 (-1142)) (-14 *6 *4))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-541)) (-4 *3 (-170))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -3420 (-621 *1))))
- (-4 *1 (-360 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-445 *3 *4 *5 *6))
- (|:| -3420 (-621 (-445 *3 *4 *5 *6)))))
- (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-892))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+ (-12 (-5 *3 (-618 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-618 *7))) (-4 *1 (-1173 *4 *5 *6 *7))
+ (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-618 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8))
+ (-4 *1 (-1173 *5 *6 *7 *8)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *8 (-1032 *5 *6 *7)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *2 (-1032 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *2 (-1032 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *2 (-1032 *3 *4 *5)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *2 (-1032 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1173 *2 *3 *4 *5)) (-4 *2 (-542)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *5 (-1032 *2 *3 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *2 (-1032 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769))
- (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-621 *3))
- (-5 *1 (-572 *5 *6 *7 *8 *3)) (-4 *3 (-1075 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 *10))
+ (-5 *1 (-602 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1038 *5 *6 *7 *8))
+ (-4 *10 (-1075 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145)))
- (-5 *2
- (-621 (-2 (|:| -2136 (-1138 *5)) (|:| -4163 (-621 (-923 *5))))))
- (-5 *1 (-1044 *5 *6)) (-5 *3 (-621 (-923 *5)))
- (-14 *6 (-621 (-1142)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-300) (-145)))
- (-5 *2
- (-621 (-2 (|:| -2136 (-1138 *4)) (|:| -4163 (-621 (-923 *4))))))
- (-5 *1 (-1044 *4 *5)) (-5 *3 (-621 (-923 *4)))
- (-14 *5 (-621 (-1142)))))
+ (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
+ (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-606 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
+ (-14 *6 (-618 (-1142)))
+ (-5 *2 (-618 (-1112 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6)))))
+ (-5 *1 (-606 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *8)))
+ (-5 *1 (-998 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145)))
- (-5 *2
- (-621 (-2 (|:| -2136 (-1138 *5)) (|:| -4163 (-621 (-923 *5))))))
- (-5 *1 (-1044 *5 *6)) (-5 *3 (-621 (-923 *5)))
- (-14 *6 (-621 (-1142))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))))
-(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *2)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-172 *3)) (-4 *3 (-300))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-650 *3)) (-4 *3 (-1179))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-717 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-823))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *1 (-951 *3)) (-4 *3 (-1018))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-621 *1)) (-5 *3 (-621 *7)) (-4 *1 (-1038 *4 *5 *6 *7))
- (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1))
- (-4 *1 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1))
- (-4 *1 (-1038 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
- (-5 *2
- (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549))
- (|:| |success| (-112))))
- (-5 *1 (-765)) (-5 *5 (-549)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
- (-5 *2
- (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549))
- (|:| |success| (-112))))
- (-5 *1 (-765)) (-5 *5 (-549)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-356)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-473 *4 *5))) (-14 *4 (-621 (-1142)))
- (-4 *5 (-444))
- (-5 *2
- (-2 (|:| |gblist| (-621 (-241 *4 *5)))
- (|:| |gvlist| (-621 (-549)))))
- (-5 *1 (-609 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-567 *3)) (-4 *3 (-356)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-2 (|:| -2120 *4) (|:| -3068 (-549)))))
- (-4 *4 (-1201 (-549))) (-5 *2 (-714 (-747))) (-5 *1 (-434 *4))))
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *8)))
+ (-5 *1 (-998 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
+ (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-1015 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 *1))
+ (-4 *1 (-1038 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *8)))
+ (-5 *1 (-1112 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *8)))
+ (-5 *1 (-1112 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-411 *5)) (-4 *5 (-1201 *4)) (-4 *4 (-1018))
- (-5 *2 (-714 (-747))) (-5 *1 (-436 *4 *5)))))
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1173 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-618 (-2 (|:| -4204 *1) (|:| -1813 (-618 *7))))) (-5 *3 (-618 *7))
+ (-4 *1 (-1173 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1201 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-688 *3 *2 *4 *5 *6)) (-4 *3 (-170))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1201 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-219))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1006))
- (-5 *1 (-726)))))
-(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-320 *3)) (-4 *3 (-1179))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-747)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1179))
- (-14 *4 (-549)))))
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *5)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-542)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-227)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4))
- (-4 *6 (-769)) (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769))
- (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-259 *2)) (-4 *2 (-823)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-821)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -2886 (-411 *3))))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-892)) (-5 *1 (-1067 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1198 *4 *5)) (-5 *3 (-621 *5)) (-14 *4 (-1142))
- (-4 *5 (-356)) (-5 *1 (-894 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *5)) (-4 *5 (-356)) (-5 *2 (-1138 *5))
- (-5 *1 (-894 *4 *5)) (-14 *4 (-1142))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-621 *6)) (-5 *4 (-747)) (-4 *6 (-356))
- (-5 *2 (-400 (-923 *6))) (-5 *1 (-1019 *5 *6)) (-14 *5 (-1142)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-549)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-300))
- (-4 *9 (-920 *8 *6 *7))
- (-5 *2 (-2 (|:| -4267 (-1138 *9)) (|:| |polval| (-1138 *8))))
- (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1138 *9)) (-5 *4 (-1138 *8)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-970 *3)) (-4 *3 (-170)) (-5 *1 (-775 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1179))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-850 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-621 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018))
- (-4 *6 (-1201 *5)) (-5 *2 (-1138 (-1138 *7)))
- (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1201 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-423 *4) (-973) (-1164)))
- (-4 *4 (-13 (-541) (-823)))
- (-4 *2 (-13 (-423 (-167 *4)) (-973) (-1164)))
- (-5 *1 (-580 *4 *5 *2)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6))
- (|:| -2630 *6)))
- (-5 *1 (-986 *5 *6)) (-5 *3 (-400 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-594 (-863 *3))) (-4 *3 (-857 *3))
- (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-594 (-863 *3))) (-4 *2 (-857 *3))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-121 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-665 (-167 (-219))))
- (-5 *2 (-1006)) (-5 *1 (-732)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-4 *5 (-361)) (-5 *2 (-747)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))
((*1 *2 *1 *1)
- (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-621 (-1142)))))
+ (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-618 (-1142)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 (-892))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5))
- (-14 *4 (-892)) (-14 *5 (-964 *4 *2))))
+ (-12 (-5 *3 (-618 (-890))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5))
+ (-14 *4 (-890)) (-14 *5 (-964 *4 *2))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4))
- (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1142)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-130))))
+ (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
+ (-14 *4 (-618 (-1142)))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-130))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1018))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1066)) (-4 *2 (-1018))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *2 (-541)) (-5 *1 (-601 *2 *4))
- (-4 *4 (-1201 *2))))
+ (-12 (-5 *3 (-535)) (-4 *2 (-542)) (-5 *1 (-601 *2 *4)) (-4 *4 (-1200 *2))))
((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-703))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-703))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 *5)) (-5 *3 (-621 (-747))) (-4 *1 (-717 *4 *5))
+ (-12 (-5 *2 (-618 *5)) (-5 *3 (-618 (-747))) (-4 *1 (-717 *4 *5))
(-4 *4 (-1018)) (-4 *5 (-823))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018))
- (-4 *2 (-823))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-823))))
((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 *6)) (-5 *3 (-621 (-747))) (-4 *1 (-920 *4 *5 *6))
+ (-12 (-5 *2 (-618 *6)) (-5 *3 (-618 (-747))) (-4 *1 (-921 *4 *5 *6))
(-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *1 (-920 *4 *5 *2)) (-4 *4 (-1018))
- (-4 *5 (-769)) (-4 *2 (-823))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-921 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *2 (-823))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-4 *2 (-920 *4 (-521 *5) *5))
- (-5 *1 (-1092 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-823))))
+ (-12 (-5 *3 (-747)) (-4 *2 (-921 *4 (-521 *5) *5)) (-5 *1 (-1092 *4 *5 *2))
+ (-4 *4 (-1018)) (-4 *5 (-823))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-923 *4)) (-5 *1 (-1173 *4))
- (-4 *4 (-1018)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142))
- (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-567 *3)) (-5 *1 (-419 *5 *3))
- (-4 *3 (-13 (-1164) (-29 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *8)) (-4 *8 (-920 *5 *7 *6))
- (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142))))
- (-4 *7 (-769))
- (-5 *2
- (-621
- (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8))
- (|:| |wcond| (-621 (-923 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1225 (-400 (-923 *5))))
- (|:| -3420 (-621 (-1225 (-400 (-923 *5))))))))))
- (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-621 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *8)) (-5 *4 (-621 (-1142))) (-4 *8 (-920 *5 *7 *6))
- (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142))))
- (-4 *7 (-769))
- (-5 *2
- (-621
- (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8))
- (|:| |wcond| (-621 (-923 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1225 (-400 (-923 *5))))
- (|:| -3420 (-621 (-1225 (-400 (-923 *5))))))))))
- (-5 *1 (-895 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-665 *7)) (-4 *7 (-920 *4 *6 *5))
- (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
- (-4 *6 (-769))
- (-5 *2
- (-621
- (-2 (|:| |eqzro| (-621 *7)) (|:| |neqzro| (-621 *7))
- (|:| |wcond| (-621 (-923 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1225 (-400 (-923 *4))))
- (|:| -3420 (-621 (-1225 (-400 (-923 *4))))))))))
- (-5 *1 (-895 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-665 *9)) (-5 *5 (-892)) (-4 *9 (-920 *6 *8 *7))
- (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142))))
- (-4 *8 (-769))
- (-5 *2
- (-621
- (-2 (|:| |eqzro| (-621 *9)) (|:| |neqzro| (-621 *9))
- (|:| |wcond| (-621 (-923 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1225 (-400 (-923 *6))))
- (|:| -3420 (-621 (-1225 (-400 (-923 *6))))))))))
- (-5 *1 (-895 *6 *7 *8 *9)) (-5 *4 (-621 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-665 *9)) (-5 *4 (-621 (-1142))) (-5 *5 (-892))
- (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145)))
- (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769))
- (-5 *2
- (-621
- (-2 (|:| |eqzro| (-621 *9)) (|:| |neqzro| (-621 *9))
- (|:| |wcond| (-621 (-923 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1225 (-400 (-923 *6))))
- (|:| -3420 (-621 (-1225 (-400 (-923 *6))))))))))
- (-5 *1 (-895 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *8)) (-5 *4 (-892)) (-4 *8 (-920 *5 *7 *6))
- (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142))))
- (-4 *7 (-769))
- (-5 *2
- (-621
- (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8))
- (|:| |wcond| (-621 (-923 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1225 (-400 (-923 *5))))
- (|:| -3420 (-621 (-1225 (-400 (-923 *5))))))))))
- (-5 *1 (-895 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-665 *9)) (-5 *4 (-621 *9)) (-5 *5 (-1124))
- (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145)))
- (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-549))
- (-5 *1 (-895 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-665 *9)) (-5 *4 (-621 (-1142))) (-5 *5 (-1124))
- (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145)))
- (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-549))
- (-5 *1 (-895 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *8)) (-5 *4 (-1124)) (-4 *8 (-920 *5 *7 *6))
- (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142))))
- (-4 *7 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-665 *10)) (-5 *4 (-621 *10)) (-5 *5 (-892))
- (-5 *6 (-1124)) (-4 *10 (-920 *7 *9 *8)) (-4 *7 (-13 (-300) (-145)))
- (-4 *8 (-13 (-823) (-594 (-1142)))) (-4 *9 (-769)) (-5 *2 (-549))
- (-5 *1 (-895 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-665 *10)) (-5 *4 (-621 (-1142))) (-5 *5 (-892))
- (-5 *6 (-1124)) (-4 *10 (-920 *7 *9 *8)) (-4 *7 (-13 (-300) (-145)))
- (-4 *8 (-13 (-823) (-594 (-1142)))) (-4 *9 (-769)) (-5 *2 (-549))
- (-5 *1 (-895 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-665 *9)) (-5 *4 (-892)) (-5 *5 (-1124))
- (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145)))
- (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-549))
- (-5 *1 (-895 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1183)) (-4 *5 (-1201 *4))
- (-5 *2 (-2 (|:| -1569 (-400 *5)) (|:| |poly| *3)))
- (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1201 (-400 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-219)))
- (-5 *2 (-1006)) (-5 *1 (-734)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-981 *3)) (-4 *3 (-1179)) (-4 *3 (-1066))
- (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1066)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
-(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1138 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1179)) (-5 *2 (-1230)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 *3)) (-4 *3 (-1201 *5)) (-4 *5 (-300))
- (-5 *2 (-747)) (-5 *1 (-447 *5 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3726 *3)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-1106 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1066) (-34))) (-4 *5 (-13 (-1066) (-34)))
- (-5 *1 (-1107 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-1106 *3 *4))) (-4 *3 (-13 (-1066) (-34)))
- (-4 *4 (-13 (-1066) (-34))) (-5 *1 (-1107 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
- ((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
-(((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-534))))
- ((*1 *1 *1) (-4 *1 (-1027))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-320 *3)) (-4 *3 (-1179))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-549)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1179)) (-14 *4 *2))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))
- (-5 *2 (-372)) (-5 *1 (-260))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1225 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-298)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1172 *4 *5 *3 *6)) (-4 *4 (-541)) (-4 *5 (-769))
- (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-621 (-400 (-923 (-549))))) (-5 *4 (-621 (-1142)))
- (-5 *2 (-621 (-621 *5))) (-5 *1 (-373 *5))
- (-4 *5 (-13 (-821) (-356)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 (-549)))) (-5 *2 (-621 *4)) (-5 *1 (-373 *4))
- (-4 *4 (-13 (-821) (-356))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-549)))) (-4 *5 (-1201 *4))
- (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-986 *4 *5)) (-5 *3 (-400 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-411 *4)) (-4 *4 (-541)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-629 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1201 *5))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4))))
- (-5 *1 (-786 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-629 (-400 *6))) (-4 *6 (-1201 *5))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-5 *2 (-2 (|:| -3420 (-621 (-400 *6))) (|:| -1859 (-665 *5))))
- (-5 *1 (-786 *5 *6)) (-5 *4 (-621 (-400 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1201 *5))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4))))
- (-5 *1 (-786 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *6 (-400 *6))) (-4 *6 (-1201 *5))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-5 *2 (-2 (|:| -3420 (-621 (-400 *6))) (|:| -1859 (-665 *5))))
- (-5 *1 (-786 *5 *6)) (-5 *4 (-621 (-400 *6))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-219)) (-5 *5 (-549)) (-5 *2 (-1174 *3))
- (-5 *1 (-766 *3)) (-4 *3 (-945))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-917 *4)) (-5 *1 (-1171 *4)) (-4 *4 (-1018)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1092 *4 *3 *5))) (-4 *4 (-38 (-400 (-535))))
+ (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *1 (-1092 *4 *3 *5))
+ (-4 *5 (-921 *4 (-521 *3) *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-112))
- (-5 *1 (-1174 *2)) (-4 *2 (-945)))))
+ (-12 (-5 *2 (-1 (-1171 *4))) (-5 *3 (-1142)) (-5 *1 (-1171 *4))
+ (-4 *4 (-38 (-400 (-535)))) (-4 *4 (-1018)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3))
- (-4 *3 (-1201 (-167 *2))))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-733)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-473 *4 *5))) (-14 *4 (-621 (-1142)))
- (-4 *5 (-444)) (-5 *2 (-621 (-241 *4 *5))) (-5 *1 (-609 *4 *5)))))
+ (-12 (-4 *3 (-594 (-861 *3))) (-4 *3 (-857 *3)) (-4 *3 (-13 (-823) (-444)))
+ (-5 *1 (-1170 *3 *2)) (-4 *2 (-594 (-861 *3))) (-4 *2 (-857 *3))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-444)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1201 *3)) (-4 *3 (-1018)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-947 *4 *5 *3 *6)) (-4 *4 (-1018)) (-4 *5 (-769))
- (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-897)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
- ((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-621 (-473 *4 *5))) (-5 *3 (-836 *4))
- (-14 *4 (-621 (-1142))) (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-4 *2 (-1201 *5))
- (-5 *1 (-1219 *5 *2 *6 *3)) (-4 *6 (-632 *2)) (-4 *3 (-1216 *5)))))
+ (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-823))
+ (-4 *4 (-769)) (-5 *1 (-957 *2 *3 *4 *5)) (-4 *5 (-921 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-307 (-535))) (-5 *1 (-1085))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-1164))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-542)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))
+ (-5 *1 (-1169 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-542)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))
+ (-5 *1 (-1169 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-892)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))))
- ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1201 *2)) (-4 *2 (-170))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1225 *4)) (-5 *3 (-892)) (-4 *4 (-342))
- (-5 *1 (-519 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2))
- (-4 *5 (-232 *3 *2)) (-4 *2 (-1018)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1018))
- (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))
- (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1201 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-497))) (-5 *1 (-475)))))
-(((*1 *1) (-5 *1 (-1230))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-166 (-307 *4)))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-166 *3)) (-5 *1 (-1168 *4 *3))
+ (-4 *3 (-13 (-27) (-1164) (-414 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-292 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1060 (-816 (-219)))) (-5 *3 (-219)) (-5 *2 (-112))
- (-5 *1 (-298))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
- (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1138 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-823) (-541)))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1201 *5)) (-4 *5 (-356))
- (-5 *2
- (-2 (|:| |ir| (-567 (-400 *6))) (|:| |specpart| (-400 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-665 *3)) (|:| |invmval| (-665 *3))
- (|:| |genIdeal| (-495 *3 *4 *5 *6))))
- (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-621 (-621 (-621 *4)))) (-5 *3 (-621 *4)) (-4 *4 (-823))
- (-5 *1 (-1150 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3)) (-4 *3 (-1066))
- (-4 *3 (-1179)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-621 (-621 *7)))
- (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-621 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769))
- (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-621 (-621 *8)))
- (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-621 *8))))
+ (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-112))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-621 (-621 *7)))
- (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-621 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769))
- (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-621 (-621 *8)))
- (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-621 *8)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-219)) (-5 *4 (-549))
- (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))
- (-5 *2 (-1006)) (-5 *1 (-725)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1058 (-923 (-549)))) (-5 *3 (-923 (-549)))
- (-5 *1 (-323))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1058 (-923 (-549)))) (-5 *1 (-323)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1145))))
- ((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-342)) (-4 *2 (-1018)) (-5 *1 (-689 *2 *3))
- (-4 *3 (-1201 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-971 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2718 (-549)))))
- (-5 *1 (-354 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2718 (-747)))))
- (-5 *1 (-379 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| -2120 *3) (|:| -3577 (-549)))))
- (-5 *1 (-411 *3)) (-4 *3 (-541))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2718 (-747)))))
- (-5 *1 (-795 *3)) (-4 *3 (-823)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-892)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823))
- (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-747))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-549)) (-4 *1 (-366 *3)) (-4 *3 (-1179))
- (-4 *3 (-1066))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-366 *3)) (-4 *3 (-1179)) (-4 *3 (-1066))
- (-5 *2 (-549))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-366 *4)) (-4 *4 (-1179))
- (-5 *2 (-549))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-549)) (-5 *3 (-139))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-549)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-892))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))))
+ (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-112))
+ (-5 *1 (-1168 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-307 *4))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-307 *4))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 (-166 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-526 *3 *2))
- (-4 *2 (-1216 *3))))
+ (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-13 (-27) (-1164) (-414 (-166 *3))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-4 *4 (-1201 *3))
- (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1216 *5))))
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-13 (-27) (-1164) (-414 (-166 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535))))
+ (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-5 *1 (-531 *3 *2))
- (-4 *2 (-1216 *3))))
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)))) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-13 (-27) (-1164) (-414 (-166 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535))))
+ (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 (-166 *4))))))
((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-13 (-541) (-145)))
- (-5 *1 (-1118 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-323)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-592 *4)) (-4 *4 (-823)) (-4 *2 (-823))
- (-5 *1 (-591 *2 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1142)) (-5 *2 (-525)) (-5 *1 (-524 *4))
- (-4 *4 (-1179)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-1251 *5 *6 *7))
- (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-1251 *5 *6 *7))
- (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-923 *4)))
- (-4 *4 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2 (-621 (-1015 *4 *5))) (-5 *1 (-1251 *4 *5 *6))
- (-14 *5 (-621 (-1142))) (-14 *6 (-621 (-1142))))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219)))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP))))
- (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-400 (-549)))
- (-5 *1 (-426 *4 *3)) (-4 *3 (-423 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-423 *5))
- (-4 *5 (-13 (-823) (-541) (-1009 (-549))))
- (-5 *2 (-1138 (-400 (-549)))) (-5 *1 (-426 *5 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1147))) (-5 *1 (-181)))))
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-1217 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142))
- (-14 *4 *2))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))
- (-5 *2 (-1006)) (-5 *1 (-725)))))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))
+ ((*1 *1 *1) (-4 *1 (-1167))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823))))
((*1 *1 *1)
- (-12 (-5 *1 (-1217 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142))
- (-14 *4 *2))))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))
+ ((*1 *1 *1) (-4 *1 (-1167))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-356) (-1164) (-973))))))
-(((*1 *2)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-665 (-400 *4))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
- (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
- (|:| |abserr| (-219)) (|:| |relerr| (-219))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))))
- (-5 *1 (-199)))))
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))
+ ((*1 *1 *1) (-4 *1 (-1167))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *1)
- (-12 (-4 *1 (-397)) (-4007 (|has| *1 (-6 -4327)))
- (-4007 (|has| *1 (-6 -4319)))))
- ((*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1066)) (-4 *2 (-823))))
- ((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-823))))
- ((*1 *1 *1 *1) (-4 *1 (-823))) ((*1 *1) (-5 *1 (-1086))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-524 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-525)))))
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))
+ ((*1 *1 *1) (-4 *1 (-1167))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-413 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1164) (-423 *3)))
- (-14 *4 (-1142)) (-14 *5 *2)))
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-4 *2 (-13 (-27) (-1164) (-423 *3) (-10 -8 (-15 -3845 ($ *4)))))
- (-4 *4 (-821))
- (-4 *5
- (-13 (-1203 *2 *4) (-356) (-1164)
- (-10 -8 (-15 -3455 ($ $)) (-15 -1531 ($ $)))))
- (-5 *1 (-415 *3 *2 *4 *5 *6 *7)) (-4 *6 (-954 *5)) (-14 *7 (-1142)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-621 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6))
- (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
- (-5 *1 (-948 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))
- ((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 *6)) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 (-747)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-920 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769))
- (-4 *3 (-823)) (-5 *2 (-747)))))
-(((*1 *1 *1) (-5 *1 (-1030))))
-(((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-798)))))
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))
+ ((*1 *1 *1) (-4 *1 (-1167))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3))))
+ ((*1 *1 *1) (-4 *1 (-1167))))
+(((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-1165 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-618 (-1165 *2))) (-5 *1 (-1165 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1067)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-621 (-1142))) (-4 *4 (-170))
- (-14 *6
- (-1 (-112) (-2 (|:| -3491 *5) (|:| -3577 *2))
- (-2 (|:| -3491 *5) (|:| -3577 *2))))
- (-4 *2 (-232 (-3774 *3) (-747))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-823)) (-4 *7 (-920 *4 *2 (-836 *3))))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-732)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-728)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-629 (-400 *6))) (-5 *4 (-1 (-621 *5) *6))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-4 *6 (-1201 *5)) (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-629 (-400 *7))) (-5 *4 (-1 (-621 *6) *7))
- (-5 *5 (-1 (-411 *7) *7))
- (-4 *6 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-4 *7 (-1201 *6)) (-5 *2 (-621 (-400 *7))) (-5 *1 (-788 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *6 (-400 *6))) (-5 *4 (-1 (-621 *5) *6))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-4 *6 (-1201 *5)) (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *7 (-400 *7))) (-5 *4 (-1 (-621 *6) *7))
- (-5 *5 (-1 (-411 *7) *7))
- (-4 *6 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-4 *7 (-1201 *6)) (-5 *2 (-621 (-400 *7))) (-5 *1 (-788 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-629 (-400 *5))) (-4 *5 (-1201 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-5 *2 (-621 (-400 *5))) (-5 *1 (-788 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-629 (-400 *6))) (-5 *4 (-1 (-411 *6) *6))
- (-4 *6 (-1201 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-630 *5 (-400 *5))) (-4 *5 (-1201 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-5 *2 (-621 (-400 *5))) (-5 *1 (-788 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *6 (-400 *6))) (-5 *4 (-1 (-411 *6) *6))
- (-4 *6 (-1201 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018)))))
+ (-12 (-5 *2 (-618 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1067)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356)))
- (-4 *3 (-1201 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219)))
- (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))
- (-5 *2 (-1006)) (-5 *1 (-730)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))))
+ (-12 (-5 *2 (-618 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1067)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-414 *3) (-973))) (-5 *1 (-269 *3 *2))
+ (-4 *3 (-13 (-823) (-542)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *1) (-5 *1 (-469))) ((*1 *1) (-4 *1 (-1164))))
+(((*1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-1162)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-594 *2) (-170))) (-5 *2 (-863 *4))
- (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1066)) (-4 *3 (-164 *5))))
+ (-12 (-5 *3 (-1124)) (-5 *2 (-535)) (-5 *1 (-1161 *4)) (-4 *4 (-1018)))))
+(((*1 *2 *3) (|partial| -12 (-5 *2 (-535)) (-5 *1 (-1161 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-535))))
+ ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-873 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4))
+ (-5 *2 (-535))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-1060 (-816 (-372)))))
- (-5 *2 (-621 (-1060 (-816 (-219))))) (-5 *1 (-298))))
- ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-372))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-549)) (-5 *1 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1225 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4))
- (-4 *4 (-1201 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1201 *3))
- (-5 *2 (-1225 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1225 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-411 *1)) (-4 *1 (-423 *3)) (-4 *3 (-541))
- (-4 *3 (-823))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-455 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-525))))
- ((*1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1179))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1201 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1066))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1029))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-923 *3)) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5))
- (-4 *5 (-594 (-1142))) (-4 *4 (-769)) (-4 *5 (-823))))
- ((*1 *1 *2)
- (-1536
- (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5))
- (-12 (-4007 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549)))
- (-4 *5 (-594 (-1142))))
- (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))
- (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5))
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142))))
- (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-923 (-400 (-549)))) (-4 *1 (-1032 *3 *4 *5))
- (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018))
- (-4 *4 (-769)) (-4 *5 (-823))))
+ (|partial| -12 (-4 *4 (-13 (-542) (-823) (-1009 *2) (-617 *2) (-444)))
+ (-5 *2 (-535)) (-5 *1 (-1083 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-815 *3))
+ (-4 *3 (-13 (-27) (-1164) (-414 *6)))
+ (-4 *6 (-13 (-542) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-535))
+ (-5 *1 (-1083 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-1124))
+ (-4 *6 (-13 (-542) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-535))
+ (-5 *1 (-1083 *6 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *6)))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1980 *8)))
- (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1124))
- (-5 *1 (-1036 *4 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1048))))
- ((*1 *1 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *2)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1069 *3 *4 *5 *2 *6)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *2 (-1066)) (-4 *6 (-1066))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1069 *3 *4 *2 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *2 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1069 *3 *2 *4 *5 *6)) (-4 *3 (-1066)) (-4 *2 (-1066))
- (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066))))
+ (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-444)) (-5 *2 (-535))
+ (-5 *1 (-1084 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-815 (-400 (-917 *6))))
+ (-5 *3 (-400 (-917 *6))) (-4 *6 (-444)) (-5 *2 (-535)) (-5 *1 (-1084 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-400 (-917 *6))) (-5 *4 (-1142)) (-5 *5 (-1124))
+ (-4 *6 (-444)) (-5 *2 (-535)) (-5 *1 (-1084 *6))))
+ ((*1 *2 *3) (|partial| -12 (-5 *2 (-535)) (-5 *1 (-1161 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1160))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-1160)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086)) (-5 *1 (-109))))
+ ((*1 *2 *1) (|partial| -12 (-5 *1 (-357 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-1160)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1160)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-835) (-835))) (-5 *1 (-113))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-835) (-618 (-835)))) (-5 *1 (-113))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-835) (-618 (-835)))) (-5 *1 (-113))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1230)) (-5 *1 (-208 *3))
+ (-4 *3
+ (-13 (-823)
+ (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 (*2 $))
+ (-15 -2082 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-386))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-386))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-493))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-687))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1158))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-1158)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-747)) (-4 *3 (-1178)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3))))
+ ((*1 *1) (-5 *1 (-169)))
+ ((*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1067))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382))))
+ ((*1 *1) (-5 *1 (-386)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-4 *1 (-627 *3)) (-4 *3 (-1178))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1067)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1067))
+ (-4 *4 (-642 *3))))
+ ((*1 *1) (-12 (-5 *1 (-859 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1108 *3 *2)) (-14 *3 (-747)) (-4 *2 (-1018))))
+ ((*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018))))
+ ((*1 *1 *1) (-5 *1 (-1142))) ((*1 *1) (-5 *1 (-1142)))
+ ((*1 *1) (-5 *1 (-1158))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1158)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1157)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-51)) (-5 *1 (-1157)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-275 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-275 *2)) (-4 *2 (-1178))))
((*1 *1 *2)
- (-12 (-4 *1 (-1069 *2 *3 *4 *5 *6)) (-4 *2 (-1066)) (-4 *3 (-1066))
- (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066))))
+ (-12
+ (-5 *2
+ (-2
+ (|:| -4203
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (|:| -2184
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1119 (-219)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1556
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-545))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-671 *2)) (-4 *2 (-1067))))
((*1 *1 *2)
- (-12 (-5 *2 (-621 *1)) (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066))
- (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1980 *8)))
- (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1075 *4 *5 *6 *7)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1124))
- (-5 *1 (-1111 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1147))))
- ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1147))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-834)) (-5 *3 (-549)) (-5 *1 (-1159))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-549)) (-5 *1 (-1159))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-756 *4 (-836 *5)))
- (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *5 (-621 (-1142)))
- (-5 *2 (-756 *4 (-836 *6))) (-5 *1 (-1251 *4 *5 *6))
- (-14 *6 (-621 (-1142)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-923 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2 (-923 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6))
- (-14 *5 (-621 (-1142))) (-14 *6 (-621 (-1142)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-756 *4 (-836 *6)))
- (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *6 (-621 (-1142)))
- (-5 *2 (-923 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6))
- (-14 *5 (-621 (-1142)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1138 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2 (-1138 (-995 (-400 *4)))) (-5 *1 (-1251 *4 *5 *6))
- (-14 *5 (-621 (-1142))) (-14 *6 (-621 (-1142)))))
- ((*1 *2 *3)
(-12
- (-5 *3 (-1112 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6))))
- (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *6 (-621 (-1142)))
- (-5 *2 (-621 (-756 *4 (-836 *6)))) (-5 *1 (-1251 *4 *5 *6))
- (-14 *5 (-621 (-1142))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-892)) (-4 *5 (-541)) (-5 *2 (-665 *5))
- (-5 *1 (-927 *5 *3)) (-4 *3 (-632 *5)))))
+ (-5 *2
+ (-2
+ (|:| -4203
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (|:| -2184
+ (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371))
+ (|:| |expense| (-371)) (|:| |accuracy| (-371))
+ (|:| |intermediateResults| (-371))))))
+ (-5 *1 (-779))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230))
- (-5 *1 (-441 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-298)))))
+ (|partial| -12 (-4 *2 (-1067)) (-5 *1 (-1156 *3 *2)) (-4 *3 (-1067)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-963 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3))
- (-4 *3 (-366 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-963 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-494 *4 *5 *6 *3)) (-4 *6 (-366 *4)) (-4 *3 (-366 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-665 *5)) (-4 *5 (-963 *4)) (-4 *4 (-541))
- (-5 *2 (-2 (|:| |num| (-665 *4)) (|:| |den| *4)))
- (-5 *1 (-669 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549)))))
- (-4 *6 (-1201 *5))
- (-5 *2 (-2 (|:| -2650 *7) (|:| |rh| (-621 (-400 *6)))))
- (-5 *1 (-783 *5 *6 *7 *3)) (-5 *4 (-621 (-400 *6)))
- (-4 *7 (-632 *6)) (-4 *3 (-632 (-400 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-963 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1194 *4 *5 *3))
- (-4 *3 (-1201 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *6)) (-5 *4 (-1142)) (-4 *6 (-423 *5))
- (-4 *5 (-823)) (-5 *2 (-621 (-592 *6))) (-5 *1 (-558 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
+ (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-1067))
+ (-4 *5 (-1067)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-1067))
+ (-4 *5 (-1067)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-618 (-2 (|:| -4203 *3) (|:| -2184 *4)))) (-4 *3 (-1067))
+ (-4 *4 (-1067)) (-4 *1 (-1155 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1155 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-1153 *2)) (-4 *2 (-356)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))))
-(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-372)))))
-(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977))))
- ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977)))))
-(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+ (-12 (-5 *4 (-890)) (-5 *2 (-1136 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-356)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-1153 *2)) (-4 *2 (-356)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *2 (-618 (-618 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-5 *2 (-618 (-618 *5)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-618 *3))) (-5 *1 (-1152 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-1152 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1124)) (-4 *4 (-13 (-300) (-145)))
- (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769))
+ (-12 (-4 *4 (-823))
(-5 *2
- (-621
- (-2 (|:| |eqzro| (-621 *7)) (|:| |neqzro| (-621 *7))
- (|:| |wcond| (-621 (-923 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1225 (-400 (-923 *4))))
- (|:| -3420 (-621 (-1225 (-400 (-923 *4))))))))))
- (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))))
+ (-2 (|:| |f1| (-618 *4)) (|:| |f2| (-618 (-618 (-618 *4))))
+ (|:| |f3| (-618 (-618 *4))) (|:| |f4| (-618 (-618 (-618 *4))))))
+ (-5 *1 (-1150 *4)) (-5 *3 (-618 (-618 (-618 *4)))))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-823)) (-5 *3 (-618 *6)) (-5 *5 (-618 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-618 *5)) (|:| |f3| *5) (|:| |f4| (-618 *5))))
+ (-5 *1 (-1150 *6)) (-5 *4 (-618 *5)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))
+ (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-542)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))
+ (-4 *7 (-962 *4)) (-4 *2 (-662 *7 *8 *9))
+ (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-662 *4 *5 *6))
+ (-4 *8 (-365 *7)) (-4 *9 (-365 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2)) (-4 *2 (-356))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))
+ ((*1 *1 *1) (|partial| -12 (-5 *1 (-665 *2)) (-4 *2 (-356)) (-4 *2 (-1018))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1089 *2 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356))))
+ ((*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-1150 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-665 *4)) (-4 *4 (-356)) (-5 *2 (-1138 *4))
- (-5 *1 (-522 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-821))))))
+ (-12 (-4 *4 (-823)) (-5 *2 (-618 (-618 *4))) (-5 *1 (-1150 *4))
+ (-5 *3 (-618 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-823)) (-5 *1 (-1150 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-549)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-5 *2 (-1230)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-845))
- (-5 *5 (-892)) (-5 *6 (-621 (-256))) (-5 *2 (-1226))
- (-5 *1 (-1229))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-621 (-256)))
- (-5 *2 (-1226)) (-5 *1 (-1229)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1179)) (-5 *1 (-844 *3 *2)) (-4 *3 (-1179))))
- ((*1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-155)))))
+ (-12 (-4 *4 (-823)) (-5 *2 (-1152 (-618 *4))) (-5 *1 (-1150 *4))
+ (-5 *3 (-618 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-410 *4)))))
+ (-12 (-4 *4 (-823)) (-5 *2 (-618 (-618 (-618 *4)))) (-5 *1 (-1150 *4))
+ (-5 *3 (-618 (-618 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *4 *5))
- (-4 *5 (-13 (-27) (-1164) (-423 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *4 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-400 (-549)))
- (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *5 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5)))
- (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-549)))
- (-4 *3 (-13 (-27) (-1164) (-423 *6)))
- (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-287 *6))
- (-4 *6 (-13 (-27) (-1164) (-423 *5)))
- (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *6)))
- (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-287 *7)) (-5 *5 (-1192 (-549)))
- (-4 *7 (-13 (-27) (-1164) (-423 *6)))
- (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3)) (-5 *6 (-1192 (-549)))
- (-4 *3 (-13 (-27) (-1164) (-423 *7)))
- (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-400 (-549)))) (-5 *4 (-287 *8))
- (-5 *5 (-1192 (-400 (-549)))) (-5 *6 (-400 (-549)))
- (-4 *8 (-13 (-27) (-1164) (-423 *7)))
- (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3)) (-5 *6 (-1192 (-400 (-549))))
- (-5 *7 (-400 (-549))) (-4 *3 (-13 (-27) (-1164) (-423 *8)))
- (-4 *8 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1122 (-2 (|:| |k| (-549)) (|:| |c| *3))))
- (-4 *3 (-1018)) (-5 *1 (-576 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-577 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1122 (-2 (|:| |k| (-549)) (|:| |c| *3))))
- (-4 *3 (-1018)) (-4 *1 (-1185 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-747))
- (-5 *3 (-1122 (-2 (|:| |k| (-400 (-549))) (|:| |c| *4))))
- (-4 *4 (-1018)) (-4 *1 (-1206 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-4 *1 (-1216 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1122 (-2 (|:| |k| (-747)) (|:| |c| *3))))
- (-4 *3 (-1018)) (-4 *1 (-1216 *3)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-460)) (-5 *4 (-892)) (-5 *2 (-1230)) (-5 *1 (-1226)))))
+ (-12 (-5 *3 (-1152 (-618 *4))) (-4 *4 (-823)) (-5 *2 (-618 (-618 *4)))
+ (-5 *1 (-1150 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-863 *4)) (-4 *4 (-1066)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-861 *4 *5)) (-4 *5 (-1179))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1132)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-538)))))
+ (-12 (-5 *3 (-618 (-618 (-618 *4)))) (-5 *2 (-618 (-618 *4)))
+ (-5 *1 (-1150 *4)) (-4 *4 (-823)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-618 (-618 (-618 *4)))) (-5 *2 (-618 (-618 *4))) (-4 *4 (-823))
+ (-5 *1 (-1150 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-618 (-618 (-618 *4)))) (-5 *3 (-618 *4)) (-4 *4 (-823))
+ (-5 *1 (-1150 *4)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-618 (-618 (-618 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-618 *5)) (-4 *5 (-823)) (-5 *1 (-1150 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1060 *3)) (-4 *3 (-920 *7 *6 *4)) (-4 *6 (-769))
- (-4 *4 (-823)) (-4 *7 (-541))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549))))
- (-5 *1 (-575 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-541))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549))))
- (-5 *1 (-575 *5 *4 *6 *3)) (-4 *3 (-920 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-834))) ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1) (-5 *1 (-834)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1164)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1058 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1164)))
- (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-1134 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-541) (-823) (-1009 (-549))))
- (-5 *2 (-400 (-923 *5))) (-5 *1 (-1135 *5)) (-5 *3 (-923 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-541) (-823) (-1009 (-549))))
- (-5 *2 (-3 (-400 (-923 *5)) (-309 *5))) (-5 *1 (-1135 *5))
- (-5 *3 (-400 (-923 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1058 (-923 *5))) (-5 *3 (-923 *5))
- (-4 *5 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-400 *3))
- (-5 *1 (-1135 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1058 (-400 (-923 *5)))) (-5 *3 (-400 (-923 *5)))
- (-4 *5 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-3 *3 (-309 *5)))
- (-5 *1 (-1135 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
- (-5 *2 (-1225 (-665 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-1225 (-665 *4))) (-5 *1 (-409 *3 *4))
- (-4 *3 (-410 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1225 (-665 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-1142))) (-4 *5 (-356))
- (-5 *2 (-1225 (-665 (-400 (-923 *5))))) (-5 *1 (-1052 *5))
- (-5 *4 (-665 (-400 (-923 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-1142))) (-4 *5 (-356))
- (-5 *2 (-1225 (-665 (-923 *5)))) (-5 *1 (-1052 *5))
- (-5 *4 (-665 (-923 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-665 *4))) (-4 *4 (-356))
- (-5 *2 (-1225 (-665 *4))) (-5 *1 (-1052 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-384)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-923 (-167 *4))) (-4 *4 (-170))
- (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-923 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-170))
- (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-923 *4)) (-4 *4 (-1018))
- (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018))
- (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541))
- (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541))
- (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-400 (-923 (-167 *4)))) (-4 *4 (-541))
- (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-400 (-923 (-167 *5)))) (-5 *4 (-892))
- (-4 *5 (-541)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372)))
- (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823))
- (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541))
- (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372)))
- (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-541)) (-4 *4 (-823))
- (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-541))
- (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372)))
- (-5 *1 (-761 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1138 *4)) (-4 *4 (-342)) (-5 *2 (-112))
- (-5 *1 (-350 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1225 *4)) (-4 *4 (-342)) (-5 *2 (-112))
- (-5 *1 (-519 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-665 (-219))) (-5 *6 (-665 (-549))) (-5 *3 (-549))
- (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-387)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
- (-5 *2 (-665 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))))
-(((*1 *1) (-5 *1 (-799))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1122 (-2 (|:| |k| (-549)) (|:| |c| *3))))
- (-5 *1 (-576 *3)) (-4 *3 (-1018)))))
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-823)) (-5 *4 (-618 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-618 *4))))
+ (-5 *1 (-1150 *6)) (-5 *5 (-618 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1149)))))
+(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))))
+(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))))
+(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) (-4 *5 (-542))
+ (-5 *2 (-618 (-618 (-917 *5)))) (-5 *1 (-1148 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-400 (-923 (-549)))))
- (-5 *2 (-621 (-621 (-287 (-923 *4))))) (-5 *1 (-373 *4))
+ (-12 (-5 *3 (-618 (-400 (-917 (-535)))))
+ (-5 *2 (-618 (-618 (-286 (-917 *4))))) (-5 *1 (-373 *4))
(-4 *4 (-13 (-821) (-356)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-287 (-400 (-923 (-549))))))
- (-5 *2 (-621 (-621 (-287 (-923 *4))))) (-5 *1 (-373 *4))
+ (-12 (-5 *3 (-618 (-286 (-400 (-917 (-535))))))
+ (-5 *2 (-618 (-618 (-286 (-917 *4))))) (-5 *1 (-373 *4))
(-4 *4 (-13 (-821) (-356)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 (-549)))) (-5 *2 (-621 (-287 (-923 *4))))
+ (-12 (-5 *3 (-400 (-917 (-535)))) (-5 *2 (-618 (-286 (-917 *4))))
(-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-287 (-400 (-923 (-549)))))
- (-5 *2 (-621 (-287 (-923 *4)))) (-5 *1 (-373 *4))
- (-4 *4 (-13 (-821) (-356)))))
+ (-12 (-5 *3 (-286 (-400 (-917 (-535))))) (-5 *2 (-618 (-286 (-917 *4))))
+ (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356)))))
((*1 *2 *3 *4 *5)
(|partial| -12 (-5 *5 (-1142))
- (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-4 *4 (-13 (-29 *6) (-1164) (-930)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -3420 (-621 *4))))
- (-5 *1 (-628 *6 *4 *3)) (-4 *3 (-632 *4))))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-4 *4 (-13 (-29 *6) (-1164) (-931)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-618 *4))))
+ (-5 *1 (-629 *6 *4 *3)) (-4 *3 (-634 *4))))
((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-621 *2))
- (-4 *2 (-13 (-29 *6) (-1164) (-930)))
- (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *1 (-628 *6 *2 *3)) (-4 *3 (-632 *2))))
+ (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-618 *2))
+ (-4 *2 (-13 (-29 *6) (-1164) (-931)))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *1 (-629 *6 *2 *3)) (-4 *3 (-634 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *5)) (-4 *5 (-356))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1225 *5) "failed"))
- (|:| -3420 (-621 (-1225 *5)))))
- (-5 *1 (-643 *5)) (-5 *4 (-1225 *5))))
+ (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337))))
+ (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4337))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-618 *4))))
+ (-5 *1 (-643 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-621 *5))) (-4 *5 (-356))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1225 *5) "failed"))
- (|:| -3420 (-621 (-1225 *5)))))
- (-5 *1 (-643 *5)) (-5 *4 (-1225 *5))))
+ (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337))))
+ (-4 *7 (-13 (-365 *5) (-10 -7 (-6 -4337))))
+ (-5 *2 (-618 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2123 (-618 *7)))))
+ (-5 *1 (-643 *5 *6 *7 *3)) (-5 *4 (-618 *7)) (-4 *3 (-662 *5 *6 *7))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-665 *5)) (-4 *5 (-356))
(-5 *2
- (-621
- (-2 (|:| |particular| (-3 (-1225 *5) "failed"))
- (|:| -3420 (-621 (-1225 *5))))))
- (-5 *1 (-643 *5)) (-5 *4 (-621 (-1225 *5)))))
+ (-2 (|:| |particular| (-3 (-1224 *5) #2="failed"))
+ (|:| -2123 (-618 (-1224 *5)))))
+ (-5 *1 (-644 *5)) (-5 *4 (-1224 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-621 *5))) (-4 *5 (-356))
+ (-12 (-5 *3 (-618 (-618 *5))) (-4 *5 (-356))
(-5 *2
- (-621
- (-2 (|:| |particular| (-3 (-1225 *5) "failed"))
- (|:| -3420 (-621 (-1225 *5))))))
- (-5 *1 (-643 *5)) (-5 *4 (-621 (-1225 *5)))))
+ (-2 (|:| |particular| (-3 (-1224 *5) #2#)) (|:| -2123 (-618 (-1224 *5)))))
+ (-5 *1 (-644 *5)) (-5 *4 (-1224 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4337))))
- (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337))))
+ (-12 (-5 *3 (-665 *5)) (-4 *5 (-356))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4))))
- (-5 *1 (-644 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4))))
+ (-618
+ (-2 (|:| |particular| (-3 (-1224 *5) #2#))
+ (|:| -2123 (-618 (-1224 *5))))))
+ (-5 *1 (-644 *5)) (-5 *4 (-618 (-1224 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4337))))
- (-4 *7 (-13 (-366 *5) (-10 -7 (-6 -4337))))
+ (-12 (-5 *3 (-618 (-618 *5))) (-4 *5 (-356))
(-5 *2
- (-621
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3420 (-621 *7)))))
- (-5 *1 (-644 *5 *6 *7 *3)) (-5 *4 (-621 *7))
- (-4 *3 (-663 *5 *6 *7))))
+ (-618
+ (-2 (|:| |particular| (-3 (-1224 *5) #2#))
+ (|:| -2123 (-618 (-1224 *5))))))
+ (-5 *1 (-644 *5)) (-5 *4 (-618 (-1224 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-621 (-1142))) (-4 *5 (-541))
- (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-746 *5))))
+ (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-618 (-1142))) (-4 *5 (-542))
+ (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-746 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-541))
- (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-746 *4))))
+ (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-542))
+ (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-746 *4))))
((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1142))
- (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *1 (-748 *5 *2)) (-4 *2 (-13 (-29 *5) (-1164) (-930)))))
+ (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1142))
+ (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *1 (-748 *5 *2)) (-4 *2 (-13 (-29 *5) (-1164) (-931)))))
((*1 *2 *3 *4 *5)
(|partial| -12 (-5 *3 (-665 *7)) (-5 *5 (-1142))
- (-4 *7 (-13 (-29 *6) (-1164) (-930)))
- (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *2
- (-2 (|:| |particular| (-1225 *7)) (|:| -3420 (-621 (-1225 *7)))))
- (-5 *1 (-778 *6 *7)) (-5 *4 (-1225 *7))))
+ (-4 *7 (-13 (-29 *6) (-1164) (-931)))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *2 (-2 (|:| |particular| (-1224 *7)) (|:| -2123 (-618 (-1224 *7)))))
+ (-5 *1 (-778 *6 *7)) (-5 *4 (-1224 *7))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-665 *6)) (-5 *4 (-1142))
- (-4 *6 (-13 (-29 *5) (-1164) (-930)))
- (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *2 (-621 (-1225 *6))) (-5 *1 (-778 *5 *6))))
+ (-4 *6 (-13 (-29 *5) (-1164) (-931)))
+ (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *2 (-618 (-1224 *6))) (-5 *1 (-778 *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-621 (-287 *7))) (-5 *4 (-621 (-114)))
- (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-930)))
- (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *2
- (-2 (|:| |particular| (-1225 *7)) (|:| -3420 (-621 (-1225 *7)))))
- (-5 *1 (-778 *6 *7))))
+ (|partial| -12 (-5 *3 (-618 (-286 *7))) (-5 *4 (-618 (-113))) (-5 *5 (-1142))
+ (-4 *7 (-13 (-29 *6) (-1164) (-931)))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *2 (-2 (|:| |particular| (-1224 *7)) (|:| -2123 (-618 (-1224 *7)))))
+ (-5 *1 (-778 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-621 *7)) (-5 *4 (-621 (-114)))
- (-5 *5 (-1142)) (-4 *7 (-13 (-29 *6) (-1164) (-930)))
- (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *2
- (-2 (|:| |particular| (-1225 *7)) (|:| -3420 (-621 (-1225 *7)))))
- (-5 *1 (-778 *6 *7))))
+ (|partial| -12 (-5 *3 (-618 *7)) (-5 *4 (-618 (-113))) (-5 *5 (-1142))
+ (-4 *7 (-13 (-29 *6) (-1164) (-931)))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *2 (-2 (|:| |particular| (-1224 *7)) (|:| -2123 (-618 (-1224 *7)))))
+ (-5 *1 (-778 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-1142))
- (-4 *7 (-13 (-29 *6) (-1164) (-930)))
- (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -3420 (-621 *7))) *7 "failed"))
+ (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-1142))
+ (-4 *7 (-13 (-29 *6) (-1164) (-931)))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2123 (-618 *7))) *7 #3="failed"))
(-5 *1 (-778 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-1142))
- (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -3420 (-621 *3))) *3 "failed"))
- (-5 *1 (-778 *6 *3)) (-4 *3 (-13 (-29 *6) (-1164) (-930)))))
+ (-12 (-5 *4 (-113)) (-5 *5 (-1142))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2123 (-618 *3))) *3 #3#))
+ (-5 *1 (-778 *6 *3)) (-4 *3 (-13 (-29 *6) (-1164) (-931)))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-287 *2)) (-5 *4 (-114)) (-5 *5 (-621 *2))
- (-4 *2 (-13 (-29 *6) (-1164) (-930))) (-5 *1 (-778 *6 *2))
- (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))))
+ (|partial| -12 (-5 *3 (-286 *2)) (-5 *4 (-113)) (-5 *5 (-618 *2))
+ (-4 *2 (-13 (-29 *6) (-1164) (-931))) (-5 *1 (-778 *6 *2))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))))
((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-287 *2)) (-5 *5 (-621 *2))
- (-4 *2 (-13 (-29 *6) (-1164) (-930)))
- (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *1 (-778 *6 *2))))
+ (|partial| -12 (-5 *3 (-113)) (-5 *4 (-286 *2)) (-5 *5 (-618 *2))
+ (-4 *2 (-13 (-29 *6) (-1164) (-931)))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *1 (-778 *6 *2))))
((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1006)) (-5 *1 (-781))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-784)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-781))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1225 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-621 *4))
+ (-12 (-5 *3 (-1224 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-618 *4))
(-5 *2 (-1006)) (-5 *1 (-781))))
((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1225 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-621 *4))
+ (-12 (-5 *3 (-1224 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-618 *4))
(-5 *2 (-1006)) (-5 *1 (-781))))
((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1225 (-309 *4))) (-5 *5 (-621 (-372)))
- (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1006)) (-5 *1 (-781))))
+ (-12 (-5 *3 (-1224 (-307 *4))) (-5 *5 (-618 (-371))) (-5 *6 (-307 (-371)))
+ (-5 *4 (-371)) (-5 *2 (-1006)) (-5 *1 (-781))))
((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1225 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-621 *4))
+ (-12 (-5 *3 (-1224 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-618 *4))
(-5 *2 (-1006)) (-5 *1 (-781))))
((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1225 (-309 *4))) (-5 *5 (-621 (-372)))
- (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1006)) (-5 *1 (-781))))
+ (-12 (-5 *3 (-1224 (-307 *4))) (-5 *5 (-618 (-371))) (-5 *6 (-307 (-371)))
+ (-5 *4 (-371)) (-5 *2 (-1006)) (-5 *1 (-781))))
((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1225 (-309 *4))) (-5 *5 (-621 (-372)))
- (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1006)) (-5 *1 (-781))))
+ (-12 (-5 *3 (-1224 (-307 *4))) (-5 *5 (-618 (-371))) (-5 *6 (-307 (-371)))
+ (-5 *4 (-371)) (-5 *2 (-1006)) (-5 *1 (-781))))
((*1 *2 *3 *4 *5)
(|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -3420 (-621 *6))) "failed")
- *7 *6))
- (-4 *6 (-356)) (-4 *7 (-632 *6))
- (-5 *2 (-2 (|:| |particular| (-1225 *6)) (|:| -3420 (-665 *6))))
- (-5 *1 (-789 *6 *7)) (-5 *3 (-665 *6)) (-5 *4 (-1225 *6))))
+ (-5 *5
+ (-1 (-3 (-2 (|:| |particular| *6) (|:| -2123 (-618 *6))) "failed") *7 *6))
+ (-4 *6 (-356)) (-4 *7 (-634 *6))
+ (-5 *2 (-2 (|:| |particular| (-1224 *6)) (|:| -2123 (-665 *6))))
+ (-5 *1 (-789 *6 *7)) (-5 *3 (-665 *6)) (-5 *4 (-1224 *6))))
((*1 *2 *3) (-12 (-5 *3 (-869)) (-5 *2 (-1006)) (-5 *1 (-868))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-869)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-868))))
((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-747)) (-5 *6 (-621 (-621 (-309 *3)))) (-5 *7 (-1124))
- (-5 *8 (-219)) (-5 *5 (-621 (-309 (-372)))) (-5 *3 (-372))
- (-5 *2 (-1006)) (-5 *1 (-868))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-747)) (-5 *6 (-621 (-621 (-309 *3)))) (-5 *7 (-1124))
- (-5 *5 (-621 (-309 (-372)))) (-5 *3 (-372)) (-5 *2 (-1006))
+ (-12 (-5 *4 (-747)) (-5 *6 (-618 (-618 (-307 *3)))) (-5 *7 (-1124))
+ (-5 *8 (-219)) (-5 *5 (-618 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1006))
(-5 *1 (-868))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-747)) (-5 *6 (-618 (-618 (-307 *3)))) (-5 *7 (-1124))
+ (-5 *5 (-618 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1006)) (-5 *1 (-868))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-923 (-400 (-549)))) (-5 *2 (-621 (-372)))
- (-5 *1 (-994)) (-5 *4 (-372))))
+ (-12 (-5 *3 (-917 (-400 (-535)))) (-5 *2 (-618 (-371))) (-5 *1 (-994))
+ (-5 *4 (-371))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-923 (-549))) (-5 *2 (-621 (-372))) (-5 *1 (-994))
- (-5 *4 (-372))))
+ (-12 (-5 *3 (-917 (-535))) (-5 *2 (-618 (-371))) (-5 *1 (-994))
+ (-5 *4 (-371))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *2 (-621 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1201 *4))))
+ (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1097 *4))
- (-5 *3 (-309 *4))))
+ (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1097 *4)) (-5 *3 (-307 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1097 *4))
- (-5 *3 (-287 (-309 *4)))))
+ (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1097 *4))
+ (-5 *3 (-286 (-307 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-1142))
- (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *2 (-621 (-287 (-309 *5)))) (-5 *1 (-1097 *5))
- (-5 *3 (-287 (-309 *5)))))
+ (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *2 (-618 (-286 (-307 *5)))) (-5 *1 (-1097 *5))
+ (-5 *3 (-286 (-307 *5)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-1142))
- (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *2 (-621 (-287 (-309 *5)))) (-5 *1 (-1097 *5))
- (-5 *3 (-309 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-1142)))
- (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *2 (-621 (-621 (-287 (-309 *5))))) (-5 *1 (-1097 *5))
- (-5 *3 (-621 (-287 (-309 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1142)))
- (-4 *5 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *5))))))
- (-5 *1 (-1148 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-1142))) (-4 *5 (-541))
- (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-1148 *5))
- (-5 *3 (-621 (-287 (-400 (-923 *5)))))))
+ (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *2 (-618 (-286 (-307 *5)))) (-5 *1 (-1097 *5)) (-5 *3 (-307 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-1142)))
+ (-4 *5 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *2 (-618 (-618 (-286 (-307 *5))))) (-5 *1 (-1097 *5))
+ (-5 *3 (-618 (-286 (-307 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142))) (-4 *5 (-542))
+ (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-1148 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-1142))) (-4 *5 (-542))
+ (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-1148 *5))
+ (-5 *3 (-618 (-286 (-400 (-917 *5)))))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-400 (-923 *4)))) (-4 *4 (-541))
- (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-1148 *4))))
+ (-12 (-5 *3 (-618 (-400 (-917 *4)))) (-4 *4 (-542))
+ (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-1148 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *4))))))
- (-5 *1 (-1148 *4)) (-5 *3 (-621 (-287 (-400 (-923 *4)))))))
+ (-12 (-4 *4 (-542)) (-5 *2 (-618 (-618 (-286 (-400 (-917 *4))))))
+ (-5 *1 (-1148 *4)) (-5 *3 (-618 (-286 (-400 (-917 *4)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142)) (-4 *5 (-541))
- (-5 *2 (-621 (-287 (-400 (-923 *5))))) (-5 *1 (-1148 *5))
- (-5 *3 (-400 (-923 *5)))))
+ (-12 (-5 *4 (-1142)) (-4 *5 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *5)))))
+ (-5 *1 (-1148 *5)) (-5 *3 (-400 (-917 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142)) (-4 *5 (-541))
- (-5 *2 (-621 (-287 (-400 (-923 *5))))) (-5 *1 (-1148 *5))
- (-5 *3 (-287 (-400 (-923 *5))))))
+ (-12 (-5 *4 (-1142)) (-4 *5 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *5)))))
+ (-5 *1 (-1148 *5)) (-5 *3 (-286 (-400 (-917 *5))))))
((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-621 (-287 (-400 (-923 *4)))))
- (-5 *1 (-1148 *4)) (-5 *3 (-400 (-923 *4)))))
+ (-12 (-4 *4 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *4))))) (-5 *1 (-1148 *4))
+ (-5 *3 (-400 (-917 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-621 (-287 (-400 (-923 *4)))))
- (-5 *1 (-1148 *4)) (-5 *3 (-287 (-400 (-923 *4)))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-4 *4 (-541)) (-4 *5 (-1201 *4))
- (-5 *2 (-2 (|:| -3814 (-601 *4 *5)) (|:| -2488 (-400 *5))))
- (-5 *1 (-601 *4 *5)) (-5 *3 (-400 *5))))
+ (-12 (-4 *4 (-542)) (-5 *2 (-618 (-286 (-400 (-917 *4))))) (-5 *1 (-1148 *4))
+ (-5 *3 (-286 (-400 (-917 *4)))))))
+(((*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-535))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1124))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-497))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-573))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-470))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-136))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1132))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-604))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1062))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1057))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1040))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-941))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-178))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1007))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-305))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-647))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-152))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-516))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1236))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1033))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-508))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-657))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-95))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1082))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-132))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1235))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-652))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-212))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-515))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1147))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1147))))
+ ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1147))))
+ ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-1147)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-1147))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-1147))) (-5 *1 (-1147)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-273))))
((*1 *2 *1)
- (-12 (-5 *2 (-621 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4))
- (-14 *3 (-892)) (-4 *4 (-1018))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-444)) (-4 *3 (-1018))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1201 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-549)) (-5 *1 (-235)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-126 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-897)))))
+ (-12 (-5 *2 (-3 (-535) (-219) (-1142) (-1124) (-1147))) (-5 *1 (-1147)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-618 (-273))) (-5 *1 (-273))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-1147)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2313)) (-5 *2 (-112)) (-5 *1 (-596))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2314)) (-5 *2 (-112)) (-5 *1 (-596))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2315)) (-5 *2 (-112)) (-5 *1 (-596))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -2437)) (-5 *2 (-112)) (-5 *1 (-667 *4))
+ (-4 *4 (-593 (-835)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-593 (-835))) (-5 *2 (-112))
+ (-5 *1 (-667 *4))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1132))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-941))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-647))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1236))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-657))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-1235))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-652))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1103)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)) (-5 *1 (-1147))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1142))) (-5 *2 (-112)) (-5 *1 (-1147))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1147))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)) (-5 *1 (-1147)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-284))) ((*1 *1) (-5 *1 (-835)))
+ ((*1 *1)
+ (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-957 *2 *3 *4 *5))
+ (-4 *5 (-921 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1051)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34)))))
+ ((*1 *1) (-5 *1 (-1145))) ((*1 *1) (-5 *1 (-1146))))
+(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1145))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1145))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-429)) (-5 *3 (-618 (-1142))) (-5 *4 (-1142)) (-5 *1 (-1145))))
+ ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1145))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1142)) (-5 *1 (-1146))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-618 (-1142))) (-5 *1 (-1146)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-429)) (-5 *1 (-1146)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1146)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-427))
+ (-5 *2
+ (-618
+ (-3 (|:| -3888 (-1142))
+ (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535)))))))))
+ (-5 *1 (-1146)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-5 *1 (-1030))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-621 *7)) (-5 *5 (-621 (-621 *8))) (-4 *7 (-823))
- (-4 *8 (-300)) (-4 *6 (-769)) (-4 *9 (-920 *8 *6 *7))
+ (-12
(-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-621 (-2 (|:| -2120 (-1138 *9)) (|:| -3577 (-549)))))))
- (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1138 *9)))))
+ (-618
+ (-618
+ (-3 (|:| -3888 (-1142))
+ (|:| -3559 (-618 (-3 (|:| S (-1142)) (|:| P (-917 (-535))))))))))
+ (-5 *1 (-1146)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-1146)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1146)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 (-429)))))
+ (-5 *1 (-1146)))))
+(((*1 *1) (-5 *1 (-1145))))
+(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145))))
+ ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1145)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))))
+(((*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1145)))))
+(((*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1145)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1145))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1060 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-186))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1060 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-293))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1060 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-298)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -4253 #1="void"))) (-5 *2 (-1230))
+ (-5 *1 (-1145))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1142)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#)))
+ (-5 *2 (-1230)) (-5 *1 (-1145))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1142)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4253 #1#)))
+ (-5 *2 (-1230)) (-5 *1 (-1145)))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1145))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1142)) (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 "void")))
+ (-5 *1 (-1145)))))
+(((*1 *2 *3 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1145)) (-5 *3 (-1142)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-1146)) (-5 *1 (-1145)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 *4)) (-4 *4 (-1018)) (-5 *2 (-1224 *4))
+ (-5 *1 (-1143 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-890)) (-5 *2 (-1224 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1018)))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1142)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-95))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-113))))
+ ((*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-431 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-591 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-936))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1042 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1082)))) ((*1 *1 *1) (-5 *1 (-1142))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))
((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *2 (-1230))
- (-5 *1 (-460))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3))))
+ (-12
+ (-5 *2
+ (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835)))
+ (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835)))
+ (|:| |args| (-618 (-835)))))
+ (-5 *1 (-1142)))))
+(((*1 *1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -2903 (-618 (-835))) (|:| -2724 (-618 (-835)))
+ (|:| |presup| (-618 (-835))) (|:| -2901 (-618 (-835)))
+ (|:| |args| (-618 (-835)))))
+ (-5 *1 (-1142))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-618 (-835)))) (-5 *1 (-1142)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-1142)))))
+(((*1 *1 *1) (-5 *1 (-835)))
((*1 *2 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-914 *3))))
+ (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1123))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1142)))))
+(((*1 *1 *2) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-1142)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1)
+ (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170))))
+ ((*1 *1) (-4 *1 (-703))) ((*1 *1) (-5 *1 (-1142))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371)))
+ (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141))))
+ (-5 *1 (-1141)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371)))
+ (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141))))
+ (-5 *1 (-1141)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371)))
+ (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141))))
+ (-5 *1 (-1141)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371)))
+ (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141))))
+ (-5 *1 (-1141)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371)))
+ (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141))))
+ (-5 *1 (-1141)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371)))
+ (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141))))
+ (-5 *1 (-1141)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371)))
+ (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141))))
+ (-5 *1 (-1141)))))
+(((*1 *1 *1) (-5 *1 (-1141)))
((*1 *1 *2)
- (-12 (-5 *2 (-914 *3)) (-4 *3 (-1018)) (-4 *1 (-1100 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-914 *3)) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175)) (-5 *3 (-219)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-768))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-621 (-1142)))))
- ((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
+ (-12
+ (-5 *2
+ (-3 (|:| I (-307 (-535))) (|:| -3416 (-307 (-371)))
+ (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1141))))
+ (-5 *1 (-1141)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-835) (-835) (-835))) (-5 *4 (-535)) (-5 *2 (-835))
+ (-5 *1 (-625 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-835)) (-5 *1 (-827 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-98 *3))
+ (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-835))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-835))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-835))))
+ ((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-835)) (-5 *1 (-1136 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1055 *3)) (-4 *3 (-921 *7 *6 *4)) (-4 *6 (-769)) (-4 *4 (-823))
+ (-4 *7 (-542)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-535))))
+ (-5 *1 (-575 *6 *4 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6))))
+ (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-542))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-535)))) (-5 *1 (-575 *5 *4 *6 *3))
+ (-4 *3 (-921 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-835))) ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1) (-5 *1 (-835)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1164)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1058 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1164)))
+ (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-1134 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549))
- (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170))
- (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-823) (-1009 (-535))))
+ (-5 *2 (-400 (-917 *5))) (-5 *1 (-1135 *5)) (-5 *3 (-917 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170))
- (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-309 *3) (-309 *3))) (-4 *3 (-13 (-1018) (-823)))
- (-5 *1 (-217 *3 *4)) (-14 *4 (-621 (-1142)))))
+ (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-823) (-1009 (-535))))
+ (-5 *2 (-3 (-400 (-917 *5)) (-307 *5))) (-5 *1 (-1135 *5))
+ (-5 *3 (-400 (-917 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-234 *5 *6)) (-14 *5 (-747))
- (-4 *6 (-1179)) (-4 *7 (-1179)) (-5 *2 (-234 *5 *7))
- (-5 *1 (-233 *5 *6 *7))))
+ (-12 (-5 *4 (-1058 (-917 *5))) (-5 *3 (-917 *5))
+ (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-400 *3))
+ (-5 *1 (-1135 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-287 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-287 *6)) (-5 *1 (-286 *5 *6))))
+ (-12 (-5 *4 (-1058 (-400 (-917 *5)))) (-5 *3 (-400 (-917 *5)))
+ (-4 *5 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-3 *3 (-307 *5)))
+ (-5 *1 (-1135 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-862 *4 *5)) (-4 *5 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1132)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-4 *1 (-149 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-618 (-2 (|:| -2484 (-747)) (|:| -4115 *4) (|:| |num| *4))))
+ (-4 *4 (-1200 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 #1="void")))
+ (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-112)) (-5 *1 (-429))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 #1#))) (-5 *3 (-618 (-1142)))
+ (-5 *4 (-112)) (-5 *1 (-429))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-170))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1179)) (-5 *1 (-287 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1124)) (-5 *5 (-592 *6))
- (-4 *6 (-295)) (-4 *2 (-1179)) (-5 *1 (-290 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-592 *5)) (-4 *5 (-295))
- (-4 *2 (-295)) (-5 *1 (-291 *5 *2))))
+ (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-618 (-618 (-618 *3)))) (-4 *3 (-1067)) (-5 *1 (-651 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-592 *1)) (-4 *1 (-295))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-665 *5)) (-4 *5 (-1018))
- (-4 *6 (-1018)) (-5 *2 (-665 *6)) (-5 *1 (-297 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-309 *5)) (-4 *5 (-823))
- (-4 *6 (-823)) (-5 *2 (-309 *6)) (-5 *1 (-307 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-329 *5 *6 *7 *8)) (-4 *5 (-356))
- (-4 *6 (-1201 *5)) (-4 *7 (-1201 (-400 *6))) (-4 *8 (-335 *5 *6 *7))
- (-4 *9 (-356)) (-4 *10 (-1201 *9)) (-4 *11 (-1201 (-400 *10)))
- (-5 *2 (-329 *9 *10 *11 *12))
- (-5 *1 (-326 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-335 *9 *10 *11))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1066))))
+ (-12 (-5 *1 (-690 *2 *3 *4)) (-4 *2 (-823)) (-4 *3 (-1067))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *3))
+ (-2 (|:| -2483 *2) (|:| -2484 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1178)) (-4 *3 (-1178))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 *4)))) (-4 *4 (-1067))
+ (-5 *1 (-859 *3 *4)) (-4 *3 (-1067))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1183)) (-4 *8 (-1183))
- (-4 *6 (-1201 *5)) (-4 *7 (-1201 (-400 *6))) (-4 *9 (-1201 *8))
- (-4 *2 (-335 *8 *9 *10)) (-5 *1 (-333 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-335 *5 *6 *7)) (-4 *10 (-1201 (-400 *9)))))
+ (-12 (-5 *4 (-618 *5)) (-4 *5 (-13 (-1067) (-34)))
+ (-5 *2 (-618 (-1106 *3 *5))) (-5 *1 (-1106 *3 *5))
+ (-4 *3 (-13 (-1067) (-34)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-2 (|:| |val| *4) (|:| -1655 *5))))
+ (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34)))
+ (-5 *2 (-618 (-1106 *4 *5))) (-5 *1 (-1106 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1655 *4))) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1106 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34)))))
+ ((*1 *1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-1067) (-34))) (-5 *1 (-1107 *2 *3))
+ (-4 *2 (-13 (-1067) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-1106 *2 *3))) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34))) (-5 *1 (-1107 *2 *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-1107 *2 *3))) (-5 *1 (-1107 *2 *3))
+ (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-470))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-573))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-604))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1067)) (-4 *2 (-13 (-414 *4) (-857 *3) (-594 (-861 *3))))
+ (-5 *1 (-1041 *3 *4 *2))
+ (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-1131 *2 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-470))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-573))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-604))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1067)) (-4 *2 (-13 (-414 *4) (-857 *3) (-594 (-861 *3))))
+ (-5 *1 (-1041 *3 *4 *2))
+ (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1178)) (-5 *2 (-618 *1)) (-4 *1 (-981 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-618 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890))
+ (-4 *4 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1178)) (-4 *2 (-823))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-618 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890))
+ (-4 *4 (-1018))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *2 (-747)) (-5 *1 (-1130 *4 *5))
+ (-14 *4 (-890))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-747))) (-5 *3 (-747)) (-5 *1 (-1130 *4 *5))
+ (-14 *4 (-890)) (-4 *5 (-1018))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018))
+ (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-914 *4)) (-4 *4 (-1018)) (-5 *1 (-1130 *3 *4))
+ (-14 *3 (-890)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-914 *5)) (-5 *3 (-747)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5))
+ (-14 *4 (-890)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-747)) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1130 *4 *5))
+ (-14 *4 (-890))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-747))) (-5 *3 (-747)) (-5 *1 (-1130 *4 *5))
+ (-14 *4 (-890)) (-4 *5 (-1018))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018))
+ (-5 *1 (-1130 *4 *5)) (-14 *4 (-890)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-747))) (-5 *3 (-112)) (-5 *1 (-1130 *4 *5))
+ (-14 *4 (-890)) (-4 *5 (-1018)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-747))) (-5 *3 (-169)) (-5 *1 (-1130 *4 *5))
+ (-14 *4 (-890)) (-4 *5 (-1018)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-747))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890))
+ (-4 *4 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-914 *4)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890))
+ (-4 *4 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-169)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))))
+(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-305))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1018)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-618 (-914 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-890))
+ (-4 *4 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-444))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-1200 *2))
+ (-4 *4 (-1200 (-400 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))
+ (-4 *3 (-444))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-921 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-444))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-300)) (-4 *3 (-542)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-1200 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-929 *3)) (-5 *1 (-1129 *4 *3))
+ (-4 *3 (-1200 *4)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1) (-4 *1 (-484)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1) (-4 *1 (-484)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1) (-4 *1 (-484)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *1 *1) (-4 *1 (-484)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *1 *1) (-4 *1 (-484)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *1 *1) (-4 *1 (-484)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *1 *1) (-4 *1 (-94)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *1 *1) (-4 *1 (-94)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *1 *1) (-4 *1 (-94)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-219)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *1 *1 *1) (-5 *1 (-371)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *1 *1) (-4 *1 (-94)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *1 *1) (-4 *1 (-94)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2))
+ (-4 *2 (-1188 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-38 (-400 (-535)))) (-5 *1 (-1128 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-400 (-535))))
+ (-5 *2 (-2 (|:| -3827 (-1119 *4)) (|:| -3828 (-1119 *4))))
+ (-5 *1 (-1127 *4)) (-5 *3 (-1119 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-400 (-535))))
+ (-5 *2 (-2 (|:| -3984 (-1119 *4)) (|:| -3980 (-1119 *4))))
+ (-5 *1 (-1127 *4)) (-5 *3 (-1119 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-535))) (-5 *5 (-1 (-1119 *4))) (-4 *4 (-356))
+ (-4 *4 (-1018)) (-5 *2 (-1119 *4)) (-5 *1 (-1126 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1119 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1018))
+ (-5 *3 (-400 (-535))) (-5 *1 (-1126 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1119 (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1126 *4))
+ (-4 *4 (-38 (-400 (-535)))) (-4 *4 (-1018)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1119 *3))) (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3))
+ (-4 *3 (-38 (-400 (-535)))) (-4 *3 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1119 (-1119 *4))) (-5 *2 (-1119 *4)) (-5 *1 (-1126 *4))
+ (-4 *4 (-1018)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-865 *2 *3)) (-4 *2 (-1200 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1119 *4)) (-5 *3 (-1 *4 (-535))) (-4 *4 (-1018))
+ (-5 *1 (-1126 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142))
+ (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1164) (-931)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-835))) ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1) (-5 *1 (-835)))
+ ((*1 *2 *3) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1119 (-535))) (-5 *1 (-1126 *4)) (-4 *4 (-1018))
+ (-5 *3 (-535)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1119 (-535))) (-5 *1 (-1126 *4)) (-4 *4 (-1018))
+ (-5 *3 (-535)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-890)) (-4 *3 (-356))
+ (-14 *4 (-964 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1200 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *1 *1) (|partial| -4 *1 (-699))) ((*1 *1 *1) (|partial| -4 *1 (-703)))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1179)) (-4 *6 (-1179))
- (-4 *2 (-366 *6)) (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-366 *5))))
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-752 *5 *6 *7 *3 *4))
+ (-4 *4 (-1038 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356)))
+ (-4 *2 (-1200 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-542))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))
+ (-4 *2 (-542))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-542)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2)) (-4 *2 (-542))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-747)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-542))))
+ ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1224 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-542))
+ (-5 *1 (-940 *3 *4))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018))
+ (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-542))))
+ ((*1 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1119 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-618 *4)) (-4 *4 (-1067)) (-4 *4 (-1178)) (-5 *2 (-112))
+ (-5 *1 (-1119 *4)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2914 (-747)) (|:| |period| (-747))))
+ (-5 *1 (-1119 *4)) (-4 *4 (-1178)) (-5 *3 (-747)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-1119 *3))) (-5 *1 (-1119 *3)) (-4 *3 (-1178)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1119 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-832))))
+ ((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-832))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1124)) (-5 *4 (-835)) (-5 *2 (-1230)) (-5 *1 (-832))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-1119 *4)) (-4 *4 (-1067))
+ (-4 *4 (-1178)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-835)) (-5 *1 (-1119 *3)) (-4 *3 (-1067)) (-4 *3 (-1178)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1119 *3)) (-4 *3 (-1067)) (-4 *3 (-1178)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-1224 (-618 (-535)))) (-5 *1 (-472))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-1066))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-411 *5)) (-4 *5 (-541))
- (-4 *6 (-541)) (-5 *2 (-411 *6)) (-5 *1 (-398 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-541))
- (-4 *6 (-541)) (-5 *2 (-400 *6)) (-5 *1 (-399 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300))
- (-4 *6 (-963 *5)) (-4 *7 (-1201 *6))
- (-4 *8 (-13 (-402 *6 *7) (-1009 *6))) (-4 *9 (-300))
- (-4 *10 (-963 *9)) (-4 *11 (-1201 *10))
- (-5 *2 (-406 *9 *10 *11 *12))
- (-5 *1 (-405 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-402 *10 *11) (-1009 *10)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170))
- (-4 *2 (-410 *6)) (-5 *1 (-408 *4 *5 *2 *6)) (-4 *4 (-410 *5))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-581 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-541)) (-5 *1 (-411 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1018) (-823)))
- (-4 *6 (-13 (-1018) (-823))) (-4 *2 (-423 *6))
- (-5 *1 (-414 *5 *4 *6 *2)) (-4 *4 (-423 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066))
- (-4 *2 (-418 *6)) (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-418 *5))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1178)) (-5 *1 (-1119 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-535)) (-4 *4 (-13 (-542) (-145))) (-5 *1 (-526 *4 *2))
+ (-4 *2 (-1217 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-535)) (-4 *4 (-13 (-356) (-361) (-594 *3))) (-4 *5 (-1200 *4))
+ (-4 *6 (-701 *4 *5)) (-5 *1 (-530 *4 *5 *6 *2)) (-4 *2 (-1217 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-535)) (-4 *4 (-13 (-356) (-361) (-594 *3)))
+ (-5 *1 (-531 *4 *2)) (-4 *2 (-1217 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1119 *4)) (-5 *3 (-535)) (-4 *4 (-13 (-542) (-145)))
+ (-5 *1 (-1118 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-4 *4 (-1200 *3))
+ (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-5 *1 (-531 *3 *2))
+ (-4 *2 (-1217 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1118 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-4 *4 (-1200 *3))
+ (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-5 *1 (-531 *3 *2))
+ (-4 *2 (-1217 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1118 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-542) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-4 *4 (-1200 *3))
+ (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-361) (-594 (-535)))) (-5 *1 (-531 *3 *2))
+ (-4 *2 (-1217 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1119 *3)) (-4 *3 (-13 (-542) (-145))) (-5 *1 (-1118 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))))
+ ((*1 *1) (-4 *1 (-1117))))
+(((*1 *1 *1) (|partial| -4 *1 (-1117))))
+(((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-1113 *3)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-618 (-998 *5 *6 *7 *3))) (-5 *1 (-998 *5 *6 *7 *3))
+ (-4 *3 (-1032 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1179))))
+ (-12 (-5 *2 (-618 *6)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-823))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-567 *5)) (-4 *5 (-356))
- (-4 *6 (-356)) (-5 *2 (-567 *6)) (-5 *1 (-566 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2460 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-356)) (-4 *6 (-356))
- (-5 *2 (-2 (|:| -2460 *6) (|:| |coeff| *6)))
- (-5 *1 (-566 *5 *6))))
+ (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *2 (-1032 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-618 (-1112 *5 *6 *7 *3))) (-5 *1 (-1112 *5 *6 *7 *3))
+ (-4 *3 (-1032 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-998 *5 *6 *7 *8)))
+ (-5 *1 (-998 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-618 (-1112 *5 *6 *7 *8)))
+ (-5 *1 (-1112 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *8 (-1032 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-618 *8)) (|:| |towers| (-618 (-998 *5 *6 *7 *8)))))
+ (-5 *1 (-998 *5 *6 *7 *8)) (-5 *3 (-618 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *8 (-1032 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-618 *8)) (|:| |towers| (-618 (-1112 *5 *6 *7 *8)))))
+ (-5 *1 (-1112 *5 *6 *7 *8)) (-5 *3 (-618 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *4 (-747))
+ (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1230))
+ (-5 *1 (-1036 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-356)) (-4 *2 (-356)) (-5 *1 (-566 *5 *2))))
+ (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *4 (-747))
+ (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1230))
+ (-5 *1 (-1111 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-618 *11))
+ (|:| |todo| (-618 (-2 (|:| |val| *3) (|:| -1655 *11))))))
+ (-5 *6 (-747)) (-5 *2 (-618 (-2 (|:| |val| (-618 *10)) (|:| -1655 *11))))
+ (-5 *3 (-618 *10)) (-5 *4 (-618 *11)) (-4 *10 (-1032 *7 *8 *9))
+ (-4 *11 (-1038 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823))
+ (-5 *1 (-1036 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-618 *11))
+ (|:| |todo| (-618 (-2 (|:| |val| *3) (|:| -1655 *11))))))
+ (-5 *6 (-747)) (-5 *2 (-618 (-2 (|:| |val| (-618 *10)) (|:| -1655 *11))))
+ (-5 *3 (-618 *10)) (-5 *4 (-618 *11)) (-4 *10 (-1032 *7 *8 *9))
+ (-4 *11 (-1075 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823))
+ (-5 *1 (-1111 *7 *8 *9 *10 *11)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -2408 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4
- (-3
- (-2 (|:| |mainpart| *5)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
- "failed"))
- (-4 *5 (-356)) (-4 *6 (-356))
- (-5 *2
- (-2 (|:| |mainpart| *6)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-566 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-581 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-581 *6)) (-5 *1 (-578 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-581 *7))
- (-4 *6 (-1179)) (-4 *7 (-1179)) (-4 *8 (-1179)) (-5 *2 (-581 *8))
- (-5 *1 (-579 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1122 *6)) (-5 *5 (-581 *7))
- (-4 *6 (-1179)) (-4 *7 (-1179)) (-4 *8 (-1179)) (-5 *2 (-1122 *8))
- (-5 *1 (-579 *6 *7 *8))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356))
+ (-5 *2 (-2 (|:| |poly| *6) (|:| -3413 (-400 *6)) (|:| |special| (-400 *6))))
+ (-5 *1 (-704 *5 *6)) (-5 *3 (-400 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-356)) (-5 *2 (-618 *3)) (-5 *1 (-867 *3 *4))
+ (-4 *3 (-1200 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-747)) (-4 *5 (-356))
+ (-5 *2 (-2 (|:| -3456 *3) (|:| -3455 *3))) (-5 *1 (-867 *3 *5))
+ (-4 *3 (-1200 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112))
+ (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112))
+ (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112))
+ (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1111 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-618 *9)) (-5 *3 (-618 *8)) (-5 *4 (-112))
+ (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769))
+ (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-618 *4))
+ (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))))
+ (-5 *1 (-1036 *7 *8 *9 *3 *4)) (-4 *4 (-1038 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-1122 *7))
- (-4 *6 (-1179)) (-4 *7 (-1179)) (-4 *8 (-1179)) (-5 *2 (-1122 *8))
- (-5 *1 (-579 *6 *7 *8))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1179)) (-5 *1 (-581 *3))))
+ (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-618 *4))
+ (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))))
+ (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-621 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-621 *6)) (-5 *1 (-619 *5 *6))))
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-618 *4))
+ (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))))
+ (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769))
+ (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-618 *4))
+ (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))))
+ (-5 *1 (-1111 *7 *8 *9 *3 *4)) (-4 *4 (-1075 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-621 *6)) (-5 *5 (-621 *7))
- (-4 *6 (-1179)) (-4 *7 (-1179)) (-4 *8 (-1179)) (-5 *2 (-621 *8))
- (-5 *1 (-620 *6 *7 *8))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-627 *3)) (-4 *3 (-1179))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1018)) (-4 *8 (-1018))
- (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *2 (-663 *8 *9 *10))
- (-5 *1 (-661 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-663 *5 *6 *7))
- (-4 *9 (-366 *8)) (-4 *10 (-366 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1018))
- (-4 *8 (-1018)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5))
- (-4 *2 (-663 *8 *9 *10)) (-5 *1 (-661 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-663 *5 *6 *7)) (-4 *9 (-366 *8)) (-4 *10 (-366 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-541)) (-4 *7 (-541))
- (-4 *6 (-1201 *5)) (-4 *2 (-1201 (-400 *8)))
- (-5 *1 (-686 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1201 (-400 *6)))
- (-4 *8 (-1201 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1018)) (-4 *9 (-1018))
- (-4 *5 (-823)) (-4 *6 (-769)) (-4 *2 (-920 *9 *7 *5))
- (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-769))
- (-4 *4 (-920 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-823)) (-4 *6 (-823)) (-4 *7 (-769))
- (-4 *9 (-1018)) (-4 *2 (-920 *9 *8 *6))
- (-5 *1 (-706 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-769))
- (-4 *4 (-920 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-712 *5 *7)) (-4 *5 (-1018))
- (-4 *6 (-1018)) (-4 *7 (-703)) (-5 *2 (-712 *6 *7))
- (-5 *1 (-711 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-712 *3 *4))
- (-4 *4 (-703))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-758 *5)) (-4 *5 (-1018))
- (-4 *6 (-1018)) (-5 *2 (-758 *6)) (-5 *1 (-757 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170))
- (-4 *2 (-773 *6)) (-5 *1 (-774 *4 *5 *2 *6)) (-4 *4 (-773 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-809 *5)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-5 *2 (-809 *6)) (-5 *1 (-808 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-809 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-809 *5))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *1 (-808 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6))))
- ((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-816 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *1 (-815 *5 *6))))
+ (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-618 *4))
+ (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))))
+ (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6))))
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-618 *4))
+ (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))))
+ (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-618 *4))
+ (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))))
+ (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-850 *6)) (-5 *1 (-849 *5 *6))))
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-618 *4))
+ (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))))
+ (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-618 *4))
+ (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))))
+ (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1075 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-618 *4))
+ (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))))
+ (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-618 *4))
+ (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))))
+ (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-860 *5 *6)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-860 *5 *7))
- (-5 *1 (-859 *5 *6 *7))))
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-618 *4))
+ (|:| |todo| (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))))
+ (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-863 *5)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-5 *2 (-863 *6)) (-5 *1 (-862 *5 *6))))
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-747)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-923 *5)) (-4 *5 (-1018))
- (-4 *6 (-1018)) (-5 *2 (-923 *6)) (-5 *1 (-917 *5 *6))))
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *9)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *9 (-1075 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-747)) (-5 *1 (-1111 *5 *6 *7 *8 *9)))))
+(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
+ ((*1 *1 *1) (-4 *1 (-1110))))
+(((*1 *1 *1) (-4 *1 (-1110))))
+(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
+ ((*1 *1 *1) (-4 *1 (-1110))))
+(((*1 *1 *1) (-4 *1 (-1110))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-535)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *6)) (-4 *5 (-1067)) (-4 *6 (-1178))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-823))
- (-4 *8 (-1018)) (-4 *6 (-769))
- (-4 *2
- (-13 (-1066)
- (-10 -8 (-15 -2485 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747))))))
- (-5 *1 (-922 *6 *7 *8 *5 *2)) (-4 *5 (-920 *8 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-929 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-929 *6)) (-5 *1 (-928 *5 *6))))
+ (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *2)) (-4 *5 (-1067)) (-4 *2 (-1178))
+ (-5 *1 (-620 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 *5)) (-4 *6 (-1067)) (-4 *5 (-1178))
+ (-5 *2 (-1 *5 *6)) (-5 *1 (-620 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *2)) (-4 *5 (-1067)) (-4 *2 (-1178))
+ (-5 *1 (-620 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-618 *5)) (-5 *4 (-618 *6)) (-4 *5 (-1067))
+ (-4 *6 (-1178)) (-5 *1 (-620 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-618 *5)) (-5 *4 (-618 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1067))
+ (-4 *2 (-1178)) (-5 *1 (-620 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-142)) (-5 *2 (-747)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-142)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1191 (-535))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-747))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-535)) (-4 *1 (-365 *3)) (-4 *3 (-1178)) (-4 *3 (-1067))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-365 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-535))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-365 *4)) (-4 *4 (-1178))
+ (-5 *2 (-535))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-535)) (-5 *3 (-139))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-535)))))
+(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-823))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-565 *4)) (-4 *4 (-13 (-29 *3) (-1164)))
+ (-4 *3 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535))))
+ (-5 *1 (-567 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-565 (-400 (-917 *3))))
+ (-4 *3 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *1 (-570 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-914 *5)) (-4 *5 (-1018))
- (-4 *6 (-1018)) (-5 *2 (-914 *6)) (-5 *1 (-952 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-923 *4))) (-4 *4 (-1018))
- (-4 *2 (-920 (-923 *4) *5 *6)) (-4 *5 (-769))
- (-4 *6
- (-13 (-823)
- (-10 -8 (-15 -2844 ((-1142) $))
- (-15 -3010 ((-3 $ "failed") (-1142))))))
- (-5 *1 (-955 *4 *5 *6 *2))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-356))
+ (-5 *2 (-2 (|:| -3413 *3) (|:| |special| *3))) (-5 *1 (-704 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-541)) (-4 *6 (-541))
- (-4 *2 (-963 *6)) (-5 *1 (-961 *5 *6 *4 *2)) (-4 *4 (-963 *5))))
+ (-12 (-5 *4 (-1224 *5)) (-4 *5 (-356)) (-4 *5 (-1018))
+ (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5))
+ (-5 *3 (-618 (-665 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170))
- (-4 *2 (-968 *6)) (-5 *1 (-969 *4 *5 *2 *6)) (-4 *4 (-968 *5))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7))
- (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5))))
+ (-12 (-5 *4 (-1224 (-1224 *5))) (-4 *5 (-356)) (-4 *5 (-1018))
+ (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5))
+ (-5 *3 (-618 (-665 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-618 *1)) (-4 *1 (-1110))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-618 *1)) (-4 *1 (-1110)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-535)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747))
+ (-4 *5 (-170))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1018)) (-4 *1 (-662 *3 *2 *4)) (-4 *2 (-365 *3))
+ (-4 *4 (-365 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1108 *2 *3)) (-14 *2 (-747)) (-4 *3 (-1018)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-665 *4)) (-4 *4 (-1018)) (-5 *1 (-1108 *3 *4))
+ (-14 *3 (-747)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-618 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1107 *3 *4))
+ (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1106 *4 *5)) (-4 *4 (-13 (-1067) (-34)))
+ (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1106 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1067) (-34))) (-4 *6 (-13 (-1067) (-34))) (-5 *2 (-112))
+ (-5 *1 (-1107 *5 *6)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178))
+ (-4 *2 (-1067))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7))
- (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1018)) (-4 *10 (-1018))
- (-14 *5 (-747)) (-14 *6 (-747)) (-4 *8 (-232 *6 *7))
- (-4 *9 (-232 *5 *7)) (-4 *2 (-1021 *5 *6 *10 *11 *12))
- (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10))
- (-4 *12 (-232 *5 *10))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-1060 *6)) (-5 *1 (-1055 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-821))
- (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-621 *6))
- (-5 *1 (-1055 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-1058 *6)) (-5 *1 (-1057 *5 *6))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *3))
+ (-4 *3 (-1178))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-535)) (-4 *4 (-1067))
+ (-5 *1 (-713 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-713 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-229 *3))
+ (-4 *3 (-1067))))
+ ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4336)) (-4 *1 (-229 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1178))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1061 *4 *2)) (-4 *4 (-821))
- (-4 *2 (-1115 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-1122 *6)) (-5 *1 (-1120 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1122 *6)) (-5 *5 (-1122 *7))
- (-4 *6 (-1179)) (-4 *7 (-1179)) (-4 *8 (-1179)) (-5 *2 (-1122 *8))
- (-5 *1 (-1121 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5)) (-4 *5 (-1018))
- (-4 *6 (-1018)) (-5 *2 (-1138 *6)) (-5 *1 (-1136 *5 *6))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1155 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1066))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1189 *5 *7 *9)) (-4 *5 (-1018))
- (-4 *6 (-1018)) (-14 *7 (-1142)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1189 *6 *8 *10)) (-5 *1 (-1184 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1142))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-1192 *6)) (-5 *1 (-1191 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5)) (-4 *5 (-821))
- (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-1122 *6))
- (-5 *1 (-1191 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1198 *5 *6)) (-14 *5 (-1142))
- (-4 *6 (-1018)) (-4 *8 (-1018)) (-5 *2 (-1198 *7 *8))
- (-5 *1 (-1193 *5 *6 *7 *8)) (-14 *7 (-1142))))
+ (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-535)) (-4 *4 (-1067))
+ (-5 *1 (-713 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-713 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-1106 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34)))
+ (-5 *1 (-1107 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-1106 *3 *4))) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112))
+ (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))))))
+(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-831))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-936))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-960))))
+ ((*1 *2 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1067) (-34))) (-5 *1 (-1106 *2 *3))
+ (-4 *3 (-13 (-1067) (-34))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112))
+ (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113)))
+ ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-534)))
+ ((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1106 *3 *2)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *2 (-13 (-1067) (-34))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34))))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1067) (-34))) (-4 *6 (-13 (-1067) (-34))) (-5 *2 (-112))
+ (-5 *1 (-1106 *5 *6)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-112))
+ (-5 *1 (-1106 *4 *5)) (-4 *4 (-13 (-1067) (-34))))))
+(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *1 *1) (-4 *1 (-1105))))
+(((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *1 *1) (-4 *1 (-1105))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1105))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1105))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1105))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1105))))
+(((*1 *1 *1) (-5 *1 (-219))) ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *1 *1) (-4 *1 (-1105))) ((*1 *1 *1 *1) (-4 *1 (-1105))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-747)) (-5 *1 (-220))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-166 (-219))) (-5 *3 (-747)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1105))))
+(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *1 *1) (-4 *1 (-1105))))
+(((*1 *1 *1 *1) (-5 *1 (-219)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012))))
+ ((*1 *1 *1 *1) (-4 *1 (-1105))))
+(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1027))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)) (-4 *2 (-1027))))
+ ((*1 *1 *1) (-4 *1 (-821)))
+ ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)) (-4 *2 (-1027))))
+ ((*1 *1 *1) (-4 *1 (-1027))) ((*1 *1 *1) (-4 *1 (-1105))))
+(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-835))) (-5 *2 (-1230)) (-5 *1 (-1104)))))
+(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-835))) (-5 *2 (-1230)) (-5 *1 (-1104)))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-62 *3)) (-14 *3 (-1142))))
+ ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-68 *3)) (-14 *3 (-1142))))
+ ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-71 *3)) (-14 *3 (-1142))))
+ ((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1230)) (-5 *1 (-388))))
+ ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1230))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1124)) (-5 *4 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104))))
+ ((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-1104))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-835))) (-5 *2 (-1230)) (-5 *1 (-1104)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-618 (-1147))) (-5 *1 (-1102)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1130 3 *3)) (-4 *3 (-1018)) (-4 *1 (-1100 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5)))
+ (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-618 *1)) (-4 *1 (-1100 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-618 (-914 *4))) (-4 *1 (-1100 *4)) (-4 *4 (-1018))
+ (-5 *2 (-747)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-850 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-618 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-618 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-618 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-914 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-618 (-618 (-914 *4)))) (-5 *3 (-112)) (-4 *4 (-1018))
+ (-4 *1 (-1100 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-618 (-618 (-914 *3)))) (-4 *3 (-1018)) (-4 *1 (-1100 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-618 (-618 (-618 *4)))) (-5 *3 (-112)) (-4 *1 (-1100 *4))
+ (-4 *4 (-1018))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-618 (-618 (-914 *4)))) (-5 *3 (-112)) (-4 *1 (-1100 *4))
+ (-4 *4 (-1018))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-618 (-618 (-618 *5)))) (-5 *3 (-618 (-169))) (-5 *4 (-169))
+ (-4 *1 (-1100 *5)) (-4 *5 (-1018))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-618 (-618 (-914 *5)))) (-5 *3 (-618 (-169))) (-5 *4 (-169))
+ (-4 *1 (-1100 *5)) (-4 *5 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-914 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-618 (-747))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018))
+ (-5 *2 (-618 (-618 (-618 (-914 *3))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-618 (-169)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-618 (-169))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018))
+ (-5 *2
+ (-2 (|:| -4193 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747))
+ (|:| |constructs| (-747)))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 (-2 (|:| -4075 (-1136 *6)) (|:| -2484 (-535)))))
+ (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-1098 *4 *2))
+ (-4 *2 (-13 (-584 (-535) *4) (-10 -7 (-6 -4336) (-6 -4337))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-823)) (-4 *3 (-1178)) (-5 *1 (-1098 *3 *2))
+ (-4 *2 (-13 (-584 (-535) *3) (-10 -7 (-6 -4336) (-6 -4337)))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-1098 *4 *2))
+ (-4 *2 (-13 (-584 (-535) *4) (-10 -7 (-6 -4336) (-6 -4337))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-823)) (-4 *3 (-1178)) (-5 *1 (-1098 *3 *2))
+ (-4 *2 (-13 (-584 (-535) *3) (-10 -7 (-6 -4336) (-6 -4337)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1224 *4)) (-4 *4 (-1018)) (-4 *2 (-1200 *4))
+ (-5 *1 (-436 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-400 (-1136 (-307 *5)))) (-5 *3 (-1224 (-307 *5)))
+ (-5 *4 (-535)) (-4 *5 (-13 (-542) (-823))) (-5 *1 (-1096 *5)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-400 (-1136 (-307 *3)))) (-4 *3 (-13 (-542) (-823)))
+ (-5 *1 (-1096 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-286 (-400 (-917 *5)))) (-5 *4 (-1142))
+ (-4 *5 (-13 (-300) (-823) (-145)))
+ (-5 *2 (-1131 (-618 (-307 *5)) (-618 (-286 (-307 *5)))))
+ (-5 *1 (-1095 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018))
- (-4 *2 (-1201 *6)) (-5 *1 (-1199 *5 *4 *6 *2)) (-4 *4 (-1201 *5))))
+ (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142))
+ (-4 *5 (-13 (-300) (-823) (-145)))
+ (-5 *2 (-1131 (-618 (-307 *5)) (-618 (-286 (-307 *5)))))
+ (-5 *1 (-1095 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142))
+ (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-307 *5)))
+ (-5 *1 (-1095 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5 *7 *9)) (-4 *5 (-1018))
- (-4 *6 (-1018)) (-14 *7 (-1142)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1210 *6 *8 *10)) (-5 *1 (-1205 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1142))))
+ (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142)))
+ (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-307 *5))))
+ (-5 *1 (-1095 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142))
+ (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-286 (-307 *5))))
+ (-5 *1 (-1095 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-13 (-300) (-823) (-145)))
+ (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1095 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018))
- (-4 *2 (-1216 *6)) (-5 *1 (-1214 *5 *6 *4 *2)) (-4 *4 (-1216 *5))))
+ (-12 (-5 *3 (-286 (-400 (-917 *5)))) (-5 *4 (-1142))
+ (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-286 (-307 *5))))
+ (-5 *1 (-1095 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-286 (-400 (-917 *4)))) (-4 *4 (-13 (-300) (-823) (-145)))
+ (-5 *2 (-618 (-286 (-307 *4)))) (-5 *1 (-1095 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1225 *5)) (-4 *5 (-1179))
- (-4 *6 (-1179)) (-5 *2 (-1225 *6)) (-5 *1 (-1224 *5 *6))))
+ (-12 (-5 *3 (-618 (-400 (-917 *5)))) (-5 *4 (-618 (-1142)))
+ (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *5)))))
+ (-5 *1 (-1095 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-400 (-917 *4)))) (-4 *4 (-13 (-300) (-823) (-145)))
+ (-5 *2 (-618 (-618 (-286 (-307 *4))))) (-5 *1 (-1095 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1225 *5))
- (-4 *5 (-1179)) (-4 *6 (-1179)) (-5 *2 (-1225 *6))
- (-5 *1 (-1224 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-823))
- (-4 *4 (-1018))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-1248 *3 *4))
- (-4 *4 (-819)))))
+ (-12 (-5 *3 (-618 (-286 (-400 (-917 *5))))) (-5 *4 (-618 (-1142)))
+ (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *5)))))
+ (-5 *1 (-1095 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-286 (-400 (-917 *4)))))
+ (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-618 (-618 (-286 (-307 *4)))))
+ (-5 *1 (-1095 *4)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1138 (-1138 *4))))
- (-5 *1 (-1177 *4)) (-5 *3 (-1138 (-1138 *4))))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-549))
- (-5 *6
- (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3042 (-372))))
- (-5 *7 (-1 (-1230) (-1225 *5) (-1225 *5) (-372)))
- (-5 *3 (-1225 (-372))) (-5 *5 (-372)) (-5 *2 (-1230))
- (-5 *1 (-764))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-549))
- (-5 *6
- (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3042 (-372))))
- (-5 *7 (-1 (-1230) (-1225 *5) (-1225 *5) (-372)))
- (-5 *3 (-1225 (-372))) (-5 *5 (-372)) (-5 *2 (-1230))
- (-5 *1 (-764)))))
+ (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
- (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
- (|:| |abserr| (-219)) (|:| |relerr| (-219))))
- (-5 *2 (-372)) (-5 *1 (-199)))))
+ (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-356)) (-4 *2 (-821)) (-5 *1 (-916 *2 *3))
- (-4 *3 (-1201 *2)))))
+ (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-665 (-400 (-923 *4)))) (-4 *4 (-444))
- (-5 *2 (-621 (-3 (-400 (-923 *4)) (-1131 (-1142) (-923 *4)))))
- (-5 *1 (-285 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3))))))
+ (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *2 (-618 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1200 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *2 (-618 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1200 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-618 *5))
+ (|:| |maps| (-618 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1094 *3 *5)) (-4 *3 (-1200 *5)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-356)) (-4 *5 (-13 (-365 *4) (-10 -7 (-6 -4337))))
+ (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337)))) (-5 *1 (-643 *4 *5 *2 *3))
+ (-4 *3 (-662 *4 *5 *2))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1224 *4)) (-5 *3 (-665 *4)) (-4 *4 (-356))
+ (-5 *1 (-644 *4))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-618 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356))
+ (-5 *1 (-790 *2 *3)) (-4 *3 (-634 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-535)))))))
+ (-5 *1 (-1094 *3 *2)) (-4 *3 (-1200 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 (-1119 *7))) (-4 *6 (-823))
+ (-4 *7 (-921 *5 (-521 *6) *6)) (-4 *5 (-1018)) (-5 *2 (-1 (-1119 *7) *7))
+ (-5 *1 (-1092 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-300)) (-4 *6 (-365 *5)) (-4 *4 (-365 *5))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-618 *4))))
+ (-5 *1 (-1090 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))
+ (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1090 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
- (-5 *1 (-959 *3 *4 *5 *6 *7))))
+ (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))
+ (-5 *1 (-1090 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1090 *4 *5 *6 *3))
+ (-4 *3 (-662 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535))))
((*1 *2 *2)
- (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
- (-5 *1 (-1073 *3 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-4 *1 (-938))))
+ (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))
+ (-5 *1 (-1090 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1018)) (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2))
+ (-4 *5 (-232 *3 *2)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-4 *1 (-1064 *3))))
- ((*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))))
+ (-12 (-5 *2 (-618 *1)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5))
+ (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-618 *3)) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5))
+ (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1018)) (-5 *1 (-665 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-618 *4)) (-4 *4 (-1018)) (-4 *1 (-1089 *3 *4 *5 *6))
+ (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1089 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4))
+ (-4 *2 (-232 *3 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-890)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356))))
+ ((*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1200 *2)) (-4 *2 (-170))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1224 *4)) (-5 *3 (-890)) (-4 *4 (-343)) (-5 *1 (-519 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2))
+ (-4 *2 (-1018)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260))))
- ((*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260))))
+ (-12 (-5 *3 (-665 *2)) (-4 *4 (-1200 *2))
+ (-4 *2 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $)))))
+ (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-403 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2))
+ (-4 *2 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-356))
+ (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-662 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2))
+ (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018))))
((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -4109 (-621 (-1142))) (|:| -3046 (-621 (-1142)))))
- (-5 *1 (-1181)))))
-(((*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-892)) (-5 *4 (-372)) (-5 *2 (-1230)) (-5 *1 (-1226))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
+ (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170))
+ (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-662 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2))
+ (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2))
+ (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170))
+ (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-662 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2))
+ (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-861 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))))
+(((*1 *1 *1 *1) (-4 *1 (-638))) ((*1 *1 *1 *1) (-5 *1 (-1086))))
+(((*1 *1 *1 *1) (-4 *1 (-638))) ((*1 *1 *1 *1) (-5 *1 (-1086))))
+(((*1 *1 *1) (-4 *1 (-638))) ((*1 *1 *1) (-5 *1 (-1086))))
+(((*1 *1)
+ (-12 (-4 *1 (-397)) (-3659 (|has| *1 (-6 -4327)))
+ (-3659 (|has| *1 (-6 -4319)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1067)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (-4 *1 (-823)))
+ ((*1 *2 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))) ((*1 *1) (-5 *1 (-1086))))
+(((*1 *1)
+ (-12 (-4 *1 (-397)) (-3659 (|has| *1 (-6 -4327)))
+ (-3659 (|has| *1 (-6 -4319)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1067)) (-4 *2 (-823))))
+ ((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (-4 *1 (-823))) ((*1 *1) (-5 *1 (-1086))))
+(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1) (-4 *1 (-938))) ((*1 *1 *1) (-5 *1 (-1086))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
+ ((*1 *1 *1 *1) (-5 *1 (-1086))))
+(((*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-535))))
+ ((*1 *1 *1) (-5 *1 (-1086))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-535))))
+ ((*1 *1 *1 *1) (-5 *1 (-1086))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-535))))
+ ((*1 *1 *1 *1) (-5 *1 (-1086))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1081)) (-5 *1 (-1082)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-212))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-618 (-1147))) (-5 *3 (-1147)) (-5 *1 (-1081))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1082)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-657))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-941))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1040))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1081)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-657))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-1081)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796)) (-14 *5 (-1142))
+ (-5 *2 (-535)) (-5 *1 (-1080 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796)) (-14 *5 (-1142))
+ (-5 *2 (-535)) (-5 *1 (-1080 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-805)) (-5 *3 (-1124)))))
-(((*1 *1) (-5 *1 (-139))))
+ (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-535))
+ (-5 *1 (-1080 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-535))
+ (-5 *1 (-1080 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1193 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-618 *4))
+ (-5 *1 (-1080 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *4)) (-4 *4 (-356)) (-4 *2 (-1201 *4))
- (-5 *1 (-893 *4 *2)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1066))))
- ((*1 *1 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1066)))))
+ (-12 (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-618 (-1193 *5 *4)))
+ (-5 *1 (-1080 *4 *5)) (-5 *3 (-1193 *5 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-796)) (-14 *5 (-1142)) (-5 *2 (-618 (-1193 *5 *4)))
+ (-5 *1 (-1080 *4 *5)) (-5 *3 (-1193 *5 *4)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-1076)) (-5 *3 (-535)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-1076)) (-5 *3 (-535)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-1076)) (-5 *3 (-535)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1076)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1224 (-535))) (-5 *3 (-535)) (-5 *1 (-1076))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1224 (-535))) (-5 *3 (-618 (-535))) (-5 *4 (-535))
+ (-5 *1 (-1076)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *3 (-112)) (-5 *1 (-1076)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-665 (-535))) (-5 *3 (-618 (-535))) (-5 *1 (-1076)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-1076)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-621 (-1142))) (-4 *5 (-444))
- (-5 *2 (-473 *4 *5)) (-5 *1 (-609 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-621 (-497))) (-5 *2 (-497)) (-5 *1 (-475)))))
+ (-12 (-5 *3 (-618 (-535))) (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-1076)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-618 (-535))) (-5 *3 (-665 (-535))) (-5 *1 (-1076)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-618 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-1076)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4))))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4))
+ (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4))))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4))
+ (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4))))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4))
+ (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4))))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4))))
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4))))
(-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-482)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-936))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1124) (-750))) (-5 *1 (-114)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2252 *4)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-621 *7) *7 (-1138 *7))) (-5 *5 (-1 (-411 *7) *7))
- (-4 *7 (-1201 *6)) (-4 *6 (-13 (-356) (-145) (-1009 (-400 (-549)))))
- (-5 *2 (-621 (-2 (|:| |frac| (-400 *7)) (|:| -2650 *3))))
- (-5 *1 (-785 *6 *7 *3 *8)) (-4 *3 (-632 *7))
- (-4 *8 (-632 (-400 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1201 *5))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4))))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4))))
+ (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *5 (-112))
+ (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8)) (-4 *6 (-444))
+ (-4 *7 (-769)) (-4 *4 (-823))
+ (-5 *2 (-618 (-2 (|:| |val| *8) (|:| -1655 *9))))
+ (-5 *1 (-1074 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))
+ (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *2 (-1230)) (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *2 (-1230)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1039 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1074 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *2 (-1230)) (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *2 (-1230)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1039 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1074 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *9 (-1032 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *4) (|:| |ineq| (-618 *9))))
+ (-5 *1 (-959 *6 *7 *8 *9 *4)) (-5 *3 (-618 *9))
+ (-4 *4 (-1038 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *9 (-1032 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *4) (|:| |ineq| (-618 *9))))
+ (-5 *1 (-1073 *6 *7 *8 *9 *4)) (-5 *3 (-618 *9))
+ (-4 *4 (-1038 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-618 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9))
+ (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8))
(-5 *2
- (-621 (-2 (|:| |frac| (-400 *6)) (|:| -2650 (-630 *6 (-400 *6))))))
- (-5 *1 (-788 *5 *6)) (-5 *3 (-630 *6 (-400 *6))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1201 *3)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-892)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-768))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-400 (-549))) (-4 *1 (-1206 *3)) (-4 *3 (-1018)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))))
- (-4 *4 (-1201 (-400 *2))) (-5 *2 (-549)) (-5 *1 (-884 *4 *5))
- (-4 *5 (-1201 (-400 *4))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1138 *1)) (-5 *3 (-1142)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1138 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-923 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1142)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-541)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-541))))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-729)))))
+ (-618 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *10) (|:| |ineq| (-618 *9)))))
+ (-5 *1 (-959 *6 *7 *8 *9 *10)) (-5 *3 (-618 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-618 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9))
+ (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8))
+ (-5 *2
+ (-618 (-2 (|:| -3600 (-618 *9)) (|:| -1655 *10) (|:| |ineq| (-618 *9)))))
+ (-5 *1 (-1073 *6 *7 *8 *9 *10)) (-5 *3 (-618 *9)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1018)) (-4 *4 (-1201 *3)) (-5 *1 (-162 *3 *4 *2))
- (-4 *2 (-1201 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1179)))))
-(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1122 (-219)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2062
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-544)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-665 (-219)))
- (-5 *2 (-1006)) (-5 *1 (-732)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1018)) (-5 *2 (-1225 *3)) (-5 *1 (-689 *3 *4))
- (-4 *4 (-1201 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-621 (-112))) (-5 *5 (-665 (-219)))
- (-5 *6 (-665 (-549))) (-5 *7 (-219)) (-5 *3 (-549)) (-5 *2 (-1006))
- (-5 *1 (-731)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-665 (-923 *4))) (-5 *1 (-999 *4))
- (-4 *4 (-1018)))))
+ (-12 (-5 *2 (-618 (-2 (|:| |val| (-618 *6)) (|:| -1655 *7))))
+ (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-959 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-618 (-2 (|:| |val| (-618 *6)) (|:| -1655 *7))))
+ (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1073 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8)))
+ (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-618 *7)) (|:| -1655 *8)))
+ (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-1073 *4 *5 *6 *7 *8)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4)))))
- ((*1 *1 *1) (-5 *1 (-372)))
+ (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *1 (-959 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *1 (-1073 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4))))
- (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-658 *2)) (-4 *2 (-1066))))
+ (-12 (-5 *4 (-618 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-959 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-621 *5) (-621 *5))) (-5 *4 (-549))
- (-5 *2 (-621 *5)) (-5 *1 (-658 *5)) (-4 *5 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-798)))))
+ (-12 (-5 *4 (-618 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1073 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3))
+ (-4 *3 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3))
+ (-4 *3 (-1038 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1108 *3 *4)) (-14 *3 (-892)) (-4 *4 (-356))
- (-5 *1 (-964 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-665 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))))
-(((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-610)))))
-(((*1 *1) (-5 *1 (-430))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-300))
- (-5 *2 (-400 (-411 (-923 *4)))) (-5 *1 (-1013 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
+ (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *1 (-959 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-618 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *1 (-1073 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-112)) (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *2 (-1230)) (-5 *1 (-959 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *2 (-1230)) (-5 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-959 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230)) (-5 *1 (-1073 *4 *5 *6 *7 *8))
+ (-4 *8 (-1038 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-427)) (-4 *5 (-823)) (-5 *1 (-1072 *5 *4))
+ (-4 *4 (-414 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
- (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-242)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-356) (-1164) (-973))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-823)) (-5 *2 (-621 (-621 (-621 *4))))
- (-5 *1 (-1150 *4)) (-5 *3 (-621 (-621 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170))))
- ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2))))
- ((*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-525) (-621 (-525)))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-525) (-621 (-525)))) (-5 *1 (-114)))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1181)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-1178))) (-5 *3 (-1178)) (-5 *1 (-657)))))
-(((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-133)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-219)) (-5 *4 (-549))
- (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006))
- (-5 *1 (-725)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-356) (-1164) (-973))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1122 (-1122 *4))) (-5 *2 (-1122 *4)) (-5 *1 (-1126 *4))
- (-4 *4 (-1018)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-526 *3 *2))
- (-4 *2 (-1216 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-4 *4 (-1201 *3))
- (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1216 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-5 *1 (-531 *3 *2))
- (-4 *2 (-1216 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-13 (-541) (-145)))
- (-5 *1 (-1118 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-342)) (-4 *4 (-322 *3)) (-4 *5 (-1201 *4))
- (-5 *1 (-753 *3 *4 *5 *2 *6)) (-4 *2 (-1201 *5)) (-14 *6 (-892))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-4 *3 (-361))))
- ((*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-356)) (-4 *2 (-361)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1105))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1066))
- (-5 *2 (-621 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| |k| (-864 *3)) (|:| |c| *4))))
- (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
- (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-554 *3)) (-4 *3 (-1009 (-535)))))
((*1 *2 *1)
- (-12 (-5 *2 (-621 (-648 *3))) (-5 *1 (-864 *3)) (-4 *3 (-823)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)))))
-(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-356)) (-4 *3 (-1018))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4246 *1)))
- (-4 *1 (-825 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-525)))))
-(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-892))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1225 *4)) (-4 *4 (-342)) (-5 *2 (-892))
- (-5 *1 (-519 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1050 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-549) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1050 *2)))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
- (-5 *2 (-795 *3))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-618 (-2 (|:| -4203 (-1142)) (|:| -2184 *4))))
+ (-5 *1 (-859 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-4 *7 (-1067)) (-5 *2 (-618 *1)) (-4 *1 (-1070 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1070 *3 *2 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *2 (-535)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2))))
((*1 *2 *1)
- (-12 (-4 *2 (-819)) (-5 *1 (-1248 *3 *2)) (-4 *3 (-1018)))))
+ (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-535)) (-5 *3 (-890)) (-4 *1 (-397))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-535)) (-4 *1 (-397))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1070 *3 *4 *5 *2 *6)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *2)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1068 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1068 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-647))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-890))
+ (-14 *4 (-890)))))
(((*1 *1 *2)
- (-12 (-4 *3 (-1018)) (-5 *1 (-803 *2 *3)) (-4 *2 (-685 *3)))))
+ (-12 (-5 *2 (-618 (-890))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-890))
+ (-14 *4 (-890)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1224 (-1068 *3 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-890))
+ (-14 *4 (-890)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) (-4 *3 (-1067))
+ (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-873 *4)) (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-876 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-890)) (-5 *2 (-112)) (-5 *1 (-1068 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-747)) (-5 *1 (-1068 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-574 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1086)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1124)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))
+ ((*1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-1065 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-1065 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-549))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
- (-14 *4 (-621 (-1142)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *1) (-4 *1 (-277)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823))
- (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-5 *1 (-605 *3 *4 *5))
- (-14 *5 (-892))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-549)))))
- (-4 *5 (-823)) (-5 *1 (-1241 *4 *5 *2)) (-4 *2 (-1246 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4))
- (-4 *4 (-694 (-400 (-549)))) (-4 *3 (-823)) (-4 *4 (-170)))))
+ (-12 (-5 *2 (-618 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5))
+ (-4 *5 (-921 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-618 *1)) (-5 *3 (-618 *7)) (-4 *1 (-1038 *4 *5 *6 *7))
+ (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))
+ (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-618 (-591 *4))) (-4 *4 (-414 *3)) (-4 *3 (-823))
+ (-5 *1 (-558 *3 *4))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-859 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-132))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-152))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-160))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-652))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-990))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1033))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-1062)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-1060 *3)) (-4 *3 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-1178)) (-5 *2 (-535)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1124)) (-5 *1 (-960))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-1055 *4)) (-4 *4 (-1178)) (-5 *1 (-1058 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-1057)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-254))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1224 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1224 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1200 *4)) (-5 *2 (-665 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1200 *4)) (-5 *2 (-1224 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1200 *4)) (-5 *2 (-665 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3))
+ (-5 *2 (-1224 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-411 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1224 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-665 *5))) (-5 *3 (-665 *5)) (-4 *5 (-356))
+ (-5 *2 (-1224 *5)) (-5 *1 (-1052 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-549)) (|has| *1 (-6 -4327)) (-4 *1 (-397))
- (-5 *2 (-892)))))
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
+ (-5 *2 (-1224 (-665 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-1224 (-665 *4))) (-5 *1 (-410 *3 *4))
+ (-4 *3 (-411 *4))))
+ ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1224 (-665 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-1142))) (-4 *5 (-356))
+ (-5 *2 (-1224 (-665 (-400 (-917 *5))))) (-5 *1 (-1052 *5))
+ (-5 *4 (-665 (-400 (-917 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-1142))) (-4 *5 (-356)) (-5 *2 (-1224 (-665 (-917 *5))))
+ (-5 *1 (-1052 *5)) (-5 *4 (-665 (-917 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-665 *4))) (-4 *4 (-356)) (-5 *2 (-1224 (-665 *4)))
+ (-5 *1 (-1052 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-173))) (-5 *1 (-1051)))))
+(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-108)) (-5 *1 (-173))))
+ ((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-108)) (-5 *1 (-1051)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1051)))))
+(((*1 *1) (-5 *1 (-1051))))
+(((*1 *1) (-5 *1 (-1051))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1050 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-535) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1050 *2)))))
+(((*1 *2) (-12 (-5 *2 (-618 *3)) (-5 *1 (-1050 *3)) (-4 *3 (-131)))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1050 *3)) (-4 *3 (-131)))))
+(((*1 *1) (-5 *1 (-1048))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-618 *3)) (-5 *1 (-572 *5 *6 *7 *8 *3))
+ (-4 *3 (-1075 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145)))
+ (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5))))))
+ (-5 *1 (-1044 *5 *6)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-300) (-145)))
+ (-5 *2 (-618 (-2 (|:| -1858 (-1136 *4)) (|:| -3558 (-618 (-917 *4))))))
+ (-5 *1 (-1044 *4 *5)) (-5 *3 (-618 (-917 *4))) (-14 *5 (-618 (-1142)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145)))
+ (-5 *2 (-618 (-2 (|:| -1858 (-1136 *5)) (|:| -3558 (-618 (-917 *5))))))
+ (-5 *1 (-1044 *5 *6)) (-5 *3 (-618 (-917 *5))) (-14 *6 (-618 (-1142))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-618 (-1041 *3 *4 *5))) (-4 *3 (-1067))
+ (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3))))
+ (-4 *5 (-13 (-414 *4) (-857 *3) (-594 (-861 *3))))
+ (-5 *1 (-1043 *3 *4 *5)))))
(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444)))
- (-5 *2 (-816 *4)) (-5 *1 (-306 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1164) (-423 *3))) (-14 *5 (-1142))
- (-14 *6 *4)))
+ (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3))))
+ (-5 *2 (-618 (-1041 *3 *4 *5))) (-5 *1 (-1043 *3 *4 *5))
+ (-4 *5 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-618 (-1142))) (-4 *4 (-1067))
+ (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4))))
+ (-5 *1 (-1041 *4 *5 *2))
+ (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3))))
+ (-5 *1 (-1041 *3 *4 *2))
+ (-4 *2 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-861 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1067)) (-4 *5 (-1178))
+ (-5 *1 (-862 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-861 *4)) (-5 *3 (-618 (-1 (-112) *5))) (-4 *4 (-1067))
+ (-4 *5 (-1178)) (-5 *1 (-862 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-861 *5)) (-5 *3 (-618 (-1142))) (-5 *4 (-1 (-112) (-618 *6)))
+ (-4 *5 (-1067)) (-4 *6 (-1178)) (-5 *1 (-862 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1142)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1178))
+ (-5 *2 (-307 (-535))) (-5 *1 (-908 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1142)) (-5 *4 (-618 (-1 (-112) *5))) (-4 *5 (-1178))
+ (-5 *2 (-307 (-535))) (-5 *1 (-908 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1178)) (-4 *4 (-823))
+ (-5 *1 (-909 *4 *2 *5)) (-4 *2 (-414 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-618 (-1 (-112) *5))) (-4 *5 (-1178)) (-4 *4 (-823))
+ (-5 *1 (-909 *4 *2 *5)) (-4 *2 (-414 *4))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-1 (-112) (-618 *6)))
+ (-4 *6 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))) (-4 *4 (-1067))
+ (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4))))
+ (-5 *1 (-1041 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 *2)))
+ (-5 *2 (-861 *3)) (-5 *1 (-1041 *3 *4 *5))
+ (-4 *5 (-13 (-414 *4) (-857 *3) (-594 *2))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-861 *3))))
+ (-5 *2 (-618 (-1142))) (-5 *1 (-1041 *3 *4 *5))
+ (-4 *5 (-13 (-414 *4) (-857 *3) (-594 (-861 *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-305))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-941))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-965))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1007))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1040)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4))))
+ (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 *4)) (-5 *1 (-1039 *5 *6 *7 *3 *4))
+ (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4))))
+ (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4))))
+ (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4))))
+ (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4))))
+ (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-618 (-2 (|:| |val| (-618 *8)) (|:| -1655 *9)))) (-5 *5 (-112))
+ (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8)) (-4 *6 (-444))
+ (-4 *7 (-769)) (-4 *4 (-823))
+ (-5 *2 (-618 (-2 (|:| |val| *8) (|:| -1655 *9))))
+ (-5 *1 (-1039 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| (-618 *3)) (|:| -1655 *4))))
+ (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))
+ (-5 *2 (-3 (-112) (-618 *1))) (-4 *1 (-1038 *4 *5 *6 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))
+ (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *1))))
+ (-4 *1 (-1038 *4 *5 *6 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))
+ (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))
+ (-5 *2 (-3 *3 (-618 *1))) (-4 *1 (-1038 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-542)) (-4 *2 (-1018))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-542))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))
+ (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *1))))
+ (-4 *1 (-1038 *4 *5 *6 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-618 *1)) (-5 *3 (-618 *7)) (-4 *1 (-1038 *4 *5 *6 *7))
+ (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))
+ (-5 *2 (-618 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444)))
- (-5 *2 (-816 *4)) (-5 *1 (-1211 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1164) (-423 *3))) (-14 *5 (-1142))
- (-14 *6 *4))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4))
+ (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4))
+ (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4))
+ (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-541)) (-4 *4 (-963 *3)) (-5 *1 (-140 *3 *4 *2))
- (-4 *2 (-366 *4))))
+ (-12 (-4 *3 (-1009 (-535))) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-414 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-1136 *4)) (-5 *1 (-163 *3 *4))
+ (-4 *3 (-164 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1018)) (-4 *1 (-291))))
+ ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1136 *3))))
+ ((*1 *2) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1200 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356))) (-4 *2 (-1200 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-917 (-535))) (-5 *2 (-618 *1)) (-4 *1 (-983))))
((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-963 *4)) (-4 *2 (-366 *4))
- (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-366 *5))))
+ (-12 (-5 *3 (-917 (-400 (-535)))) (-5 *2 (-618 *1)) (-4 *1 (-983))))
+ ((*1 *2 *3) (-12 (-5 *3 (-917 *1)) (-4 *1 (-983)) (-5 *2 (-618 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1136 (-535))) (-5 *2 (-618 *1)) (-4 *1 (-983))))
((*1 *2 *3)
- (-12 (-5 *3 (-665 *5)) (-4 *5 (-963 *4)) (-4 *4 (-541))
- (-5 *2 (-665 *4)) (-5 *1 (-669 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-541)) (-4 *4 (-963 *3)) (-5 *1 (-1194 *3 *4 *2))
- (-4 *2 (-1201 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 (-621 *6))) (-4 *6 (-920 *3 *5 *4))
- (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1142))))
- (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-1136 (-400 (-535)))) (-5 *2 (-618 *1)) (-4 *1 (-983))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1136 *1)) (-4 *1 (-983)) (-5 *2 (-618 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1200 *4)) (-5 *2 (-618 *1))
+ (-4 *1 (-1035 *4 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1136 *1)) (-5 *3 (-1142)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-917 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1142)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-542)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-542)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1136 *2)) (-5 *4 (-1142)) (-4 *2 (-414 *5)) (-5 *1 (-32 *5 *2))
+ (-4 *5 (-13 (-823) (-542)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1136 *1)) (-5 *3 (-890)) (-4 *1 (-983))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1136 *1)) (-5 *3 (-890)) (-5 *4 (-835))
+ (-4 *1 (-983))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-890)) (-4 *4 (-13 (-821) (-356)))
+ (-4 *1 (-1035 *4 *2)) (-4 *2 (-1200 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-400 (-535))) (-5 *1 (-995 *3))
+ (-4 *3 (-13 (-821) (-356) (-991)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356))) (-4 *3 (-1200 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-152))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-1101))) (-5 *1 (-1033)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-1032 *3 *4 *2)) (-4 *2 (-823))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-747)))))
+(((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212))))
+ ((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-652))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-618 (-1142)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
+ (-14 *4 (-618 (-1142)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1018))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-618 (-1142))) (-4 *5 (-232 (-4299 *3) (-747)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2483 *4) (|:| -2484 *5))
+ (-2 (|:| -2483 *4) (|:| -2484 *5))))
+ (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-823))
+ (-4 *7 (-921 *2 *5 (-836 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *2 (-542)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1200 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *3 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *3 (-768)) (-4 *4 (-823)) (-4 *2 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1179))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-923 (-372))) (-5 *1 (-332 *3 *4 *5))
- (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-400 (-923 (-372)))) (-5 *1 (-332 *3 *4 *5))
- (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5))
- (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-923 (-549))) (-5 *1 (-332 *3 *4 *5))
- (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-400 (-923 (-549)))) (-5 *1 (-332 *3 *4 *5))
- (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-309 (-549))) (-5 *1 (-332 *3 *4 *5))
- (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-332 *3 *4 *5))
- (-14 *3 (-621 *2)) (-14 *4 (-621 *2)) (-4 *5 (-380))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-309 *5)) (-4 *5 (-380))
- (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-665 (-400 (-923 (-549))))) (-4 *1 (-377))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-665 (-400 (-923 (-372))))) (-4 *1 (-377))))
+ (-12 (-4 *4 (-1018)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) (-4 *3 (-1200 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
+ (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -3223 *1)))
+ (-4 *1 (-1032 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -3223 *1)))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -4296 *3) (|:| |gap| (-747)) (|:| -2091 (-757 *3))
+ (|:| -3223 (-757 *3))))
+ (-5 *1 (-757 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
+ (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -2091 *1) (|:| -3223 *1)))
+ (-4 *1 (-1032 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-2 (|:| -4296 *1) (|:| |gap| (-747)) (|:| -2091 *1) (|:| -3223 *1)))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2 (-2 (|:| |polnum| (-757 *3)) (|:| |polden| *3) (|:| -3818 (-747))))
+ (-5 *1 (-757 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3818 (-747))))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1178))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-665 (-923 (-549)))) (-4 *1 (-377))))
+ (|partial| -12 (-5 *2 (-917 (-371))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142)))
+ (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-665 (-923 (-372)))) (-4 *1 (-377))))
+ (|partial| -12 (-5 *2 (-400 (-917 (-371)))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142)))
+ (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-665 (-309 (-549)))) (-4 *1 (-377))))
+ (|partial| -12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142)))
+ (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-665 (-309 (-372)))) (-4 *1 (-377))))
+ (|partial| -12 (-5 *2 (-917 (-535))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142)))
+ (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-400 (-923 (-549)))) (-4 *1 (-389))))
+ (|partial| -12 (-5 *2 (-400 (-917 (-535)))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142)))
+ (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-400 (-923 (-372)))) (-4 *1 (-389))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-549))) (-4 *1 (-389))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-372))) (-4 *1 (-389))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-549))) (-4 *1 (-389))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-372))) (-4 *1 (-389))))
+ (|partial| -12 (-5 *2 (-307 (-535))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142)))
+ (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1225 (-400 (-923 (-549))))) (-4 *1 (-433))))
+ (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 *2))
+ (-14 *4 (-618 *2)) (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1225 (-400 (-923 (-372))))) (-4 *1 (-433))))
+ (|partial| -12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5))
+ (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1225 (-923 (-549)))) (-4 *1 (-433))))
+ (|partial| -12 (-5 *2 (-665 (-400 (-917 (-535))))) (-4 *1 (-378))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1225 (-923 (-372)))) (-4 *1 (-433))))
+ (|partial| -12 (-5 *2 (-665 (-400 (-917 (-371))))) (-4 *1 (-378))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-917 (-535)))) (-4 *1 (-378))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-917 (-371)))) (-4 *1 (-378))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-307 (-535)))) (-4 *1 (-378))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-307 (-371)))) (-4 *1 (-378))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-917 (-535)))) (-4 *1 (-390))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-917 (-371)))) (-4 *1 (-390))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-535))) (-4 *1 (-390))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-917 (-371))) (-4 *1 (-390))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-535))) (-4 *1 (-390))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-371))) (-4 *1 (-390))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1225 (-309 (-549)))) (-4 *1 (-433))))
+ (|partial| -12 (-5 *2 (-1224 (-400 (-917 (-535))))) (-4 *1 (-433))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1225 (-309 (-372)))) (-4 *1 (-433))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1201 *5))
- (-5 *2 (-1138 (-1138 *4))) (-5 *1 (-753 *4 *5 *6 *3 *7))
- (-4 *3 (-1201 *6)) (-14 *7 (-892))))
+ (|partial| -12 (-5 *2 (-1224 (-400 (-917 (-371))))) (-4 *1 (-433))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-917 (-535)))) (-4 *1 (-433))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-917 (-371)))) (-4 *1 (-433))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-307 (-535)))) (-4 *1 (-433))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1224 (-307 (-371)))) (-4 *1 (-433))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1200 *5))
+ (-5 *2 (-1136 (-1136 *4))) (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1200 *6))
+ (-14 *7 (-890))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5))
- (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
- (-4 *1 (-947 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1009 *2)) (-4 *2 (-1179))))
+ (|partial| -12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1009 *2)) (-4 *2 (-1178))))
((*1 *1 *2)
- (|partial| -1536
- (-12 (-5 *2 (-923 *3))
- (-12 (-4007 (-4 *3 (-38 (-400 (-549)))))
- (-4007 (-4 *3 (-38 (-549)))) (-4 *5 (-594 (-1142))))
- (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769))
- (-4 *5 (-823)))
- (-12 (-5 *2 (-923 *3))
- (-12 (-4007 (-4 *3 (-534))) (-4007 (-4 *3 (-38 (-400 (-549)))))
- (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1142))))
- (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769))
- (-4 *5 (-823)))
- (-12 (-5 *2 (-923 *3))
- (-12 (-4007 (-4 *3 (-963 (-549)))) (-4 *3 (-38 (-400 (-549))))
- (-4 *5 (-594 (-1142))))
- (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769))
- (-4 *5 (-823)))))
+ (|partial| -3874
+ (-12 (-5 *2 (-917 *3))
+ (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-3659 (-4 *3 (-38 (-535))))
+ (-4 *5 (-594 (-1142))))
+ (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)))
+ (-12 (-5 *2 (-917 *3))
+ (-12 (-3659 (-4 *3 (-534))) (-3659 (-4 *3 (-38 (-400 (-535)))))
+ (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142))))
+ (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)))
+ (-12 (-5 *2 (-917 *3))
+ (-12 (-3659 (-4 *3 (-962 (-535)))) (-4 *3 (-38 (-400 (-535))))
+ (-4 *5 (-594 (-1142))))
+ (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)))))
((*1 *1 *2)
- (|partial| -1536
- (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5))
- (-12 (-4007 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549)))
- (-4 *5 (-594 (-1142))))
- (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))
- (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5))
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142))))
- (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))))
+ (|partial| -3874
+ (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5))
+ (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535)))
+ (-4 *5 (-594 (-1142))))
+ (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))
+ (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-923 (-400 (-549)))) (-4 *1 (-1032 *3 *4 *5))
- (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142)))
- (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *5 (-892))
- (-5 *2 (-1230)) (-5 *1 (-460))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-460))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-621 (-914 (-219)))) (-5 *4 (-845)) (-5 *5 (-892))
- (-5 *2 (-1230)) (-5 *1 (-460)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-800)) (-5 *3 (-621 (-1142))) (-5 *1 (-801)))))
-(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-137)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *2
- (-2 (|:| |solns| (-621 *5))
- (|:| |maps| (-621 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1094 *3 *5)) (-4 *3 (-1201 *5)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-621 (-1142))) (-4 *4 (-170))
- (-4 *5 (-232 (-3774 *3) (-747)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3491 *2) (|:| -3577 *5))
- (-2 (|:| -3491 *2) (|:| -3577 *5))))
- (-4 *2 (-823)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-920 *4 *5 (-836 *3))))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-356)) (-5 *1 (-867 *2 *3))
- (-4 *2 (-1201 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-323))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-549))) (-5 *1 (-323))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-323))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-670))) (-5 *1 (-323))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-677))) (-5 *1 (-323))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-675))) (-5 *1 (-323))))
- ((*1 *1) (-5 *1 (-323))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
- (-5 *2 (-1006)) (-5 *1 (-729)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-880)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-411 (-1138 *7)))
- (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-1138 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-880)) (-4 *5 (-1201 *4)) (-5 *2 (-411 (-1138 *5)))
- (-5 *1 (-878 *4 *5)) (-5 *3 (-1138 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-372))) (-5 *1 (-256))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-541)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-541)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1216 *4)) (-5 *1 (-1218 *4 *2))
- (-4 *4 (-38 (-400 (-549)))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-834) (-834))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-834) (-621 (-834)))) (-5 *1 (-114))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-834) (-621 (-834)))) (-5 *1 (-114))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1230)) (-5 *1 (-208 *3))
- (-4 *3
- (-13 (-823)
- (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 (*2 $))
- (-15 -3431 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-387))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-387))))
- ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-493))))
- ((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-687))))
- ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1159))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-1159)))))
-(((*1 *2 *2) (-12 (-5 *2 (-621 (-309 (-219)))) (-5 *1 (-260)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 *6)) (-4 *5 (-1183)) (-4 *6 (-1201 *5))
- (-5 *2 (-2 (|:| -3577 (-747)) (|:| -1569 *3) (|:| |radicand| *6)))
- (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-747)) (-4 *7 (-1201 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *5)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-733)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
- (-4 *6 (-769)) (-5 *2 (-621 (-621 (-549))))
- (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-549)) (-4 *7 (-920 *4 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1181))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1181)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1122 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1018))
- (-5 *3 (-400 (-549))) (-5 *1 (-1126 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1225 (-621 (-2 (|:| -4160 *4) (|:| -3491 (-1086))))))
- (-4 *4 (-342)) (-5 *2 (-1230)) (-5 *1 (-519 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-400 *5)) (-4 *4 (-1183)) (-4 *5 (-1201 *4))
- (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1201 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1144 (-400 (-549)))) (-5 *2 (-400 (-549)))
- (-5 *1 (-184))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-665 (-309 (-219)))) (-5 *3 (-621 (-1142)))
- (-5 *4 (-1225 (-309 (-219)))) (-5 *1 (-199))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-287 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1066))
- (-4 *3 (-1179)) (-5 *1 (-287 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-302 *2)) (-4 *2 (-1066)) (-4 *2 (-1179))
- (-5 *1 (-287 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-621 *1))) (-4 *1 (-295))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-114))) (-5 *3 (-621 (-1 *1 (-621 *1))))
- (-4 *1 (-295))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-114))) (-5 *3 (-621 (-1 *1 *1))) (-4 *1 (-295))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1 *1 (-621 *1))) (-4 *1 (-295))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-621 (-1 *1 (-621 *1))))
- (-4 *1 (-295))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-621 (-1 *1 *1))) (-4 *1 (-295))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-287 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-287 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1066))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-549))) (-5 *4 (-1144 (-400 (-549))))
- (-5 *1 (-303 *2)) (-4 *2 (-38 (-400 (-549))))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 *1)) (-4 *1 (-367 *4 *5))
- (-4 *4 (-823)) (-4 *5 (-170))))
- ((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-1018))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *4 (-1 *1 (-621 *1)))
- (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-1018))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-621 (-747)))
- (-5 *4 (-621 (-1 *1 (-621 *1)))) (-4 *1 (-423 *5)) (-4 *5 (-823))
- (-4 *5 (-1018))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-621 (-747)))
- (-5 *4 (-621 (-1 *1 *1))) (-4 *1 (-423 *5)) (-4 *5 (-823))
- (-4 *5 (-1018))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-621 (-114))) (-5 *3 (-621 *1)) (-5 *4 (-1142))
- (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-594 (-525)))))
- ((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1142)) (-4 *1 (-423 *4)) (-4 *4 (-823))
- (-4 *4 (-594 (-525)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)) (-4 *2 (-594 (-525)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-1142))) (-4 *1 (-423 *3)) (-4 *3 (-823))
- (-4 *3 (-594 (-525)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1142)) (-4 *1 (-423 *3)) (-4 *3 (-823))
- (-4 *3 (-594 (-525)))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1179))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 *5)) (-4 *1 (-505 *4 *5))
- (-4 *4 (-1066)) (-4 *5 (-1179))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-809 *3)) (-4 *3 (-356)) (-5 *1 (-695 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1066))))
- ((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-400 (-923 *4))) (-5 *3 (-1142)) (-4 *4 (-541))
- (-5 *1 (-1014 *4))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-621 (-1142))) (-5 *4 (-621 (-400 (-923 *5))))
- (-5 *2 (-400 (-923 *5))) (-4 *5 (-541)) (-5 *1 (-1014 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-287 (-400 (-923 *4)))) (-5 *2 (-400 (-923 *4)))
- (-4 *4 (-541)) (-5 *1 (-1014 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 (-287 (-400 (-923 *4))))) (-5 *2 (-400 (-923 *4)))
- (-4 *4 (-541)) (-5 *1 (-1014 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1122 *3)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-823)) (-4 *5 (-769))
- (-4 *6 (-541)) (-4 *7 (-920 *6 *5 *3))
- (-5 *1 (-454 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1009 (-400 (-549))) (-356)
- (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $))
- (-15 -1404 (*7 $))))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
- (-5 *2 (-2 (|:| -2719 (-114)) (|:| |w| (-219)))) (-5 *1 (-198)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-898))
- (-5 *2
- (-2 (|:| |brans| (-621 (-621 (-914 (-219)))))
- (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))))
- (-5 *1 (-151))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-898)) (-5 *4 (-400 (-549)))
- (-5 *2
- (-2 (|:| |brans| (-621 (-621 (-914 (-219)))))
- (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))))
- (-5 *1 (-151)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))
- ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1226))))
- ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142))
- (-5 *2 (-621 *4)) (-5 *1 (-1080 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1142)) (-4 *5 (-356)) (-5 *2 (-621 (-1173 *5)))
- (-5 *1 (-1233 *5)) (-5 *4 (-1173 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1066)) (-5 *2 (-1124)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $)))))
- (-4 *4 (-1201 *3))
- (-5 *2
- (-2 (|:| -3420 (-665 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-665 *3))))
- (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-549)) (-4 *4 (-1201 *3))
- (-5 *2
- (-2 (|:| -3420 (-665 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-665 *3))))
- (-5 *1 (-744 *4 *5)) (-4 *5 (-402 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-342)) (-4 *3 (-1201 *4)) (-4 *5 (-1201 *3))
- (-5 *2
- (-2 (|:| -3420 (-665 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-665 *3))))
- (-5 *1 (-956 *4 *3 *5 *6)) (-4 *6 (-701 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-342)) (-4 *3 (-1201 *4)) (-4 *5 (-1201 *3))
- (-5 *2
- (-2 (|:| -3420 (-665 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-665 *3))))
- (-5 *1 (-1234 *4 *3 *5 *6)) (-4 *6 (-402 *3 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1089 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4))
- (-4 *2 (-232 *3 *4)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-747)) (-5 *3 (-914 *4)) (-4 *1 (-1100 *4))
- (-4 *4 (-1018))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-747)) (-5 *4 (-914 (-219))) (-5 *2 (-1230))
- (-5 *1 (-1227)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
- ((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-728)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3368 (-549)) (|:| -2886 (-621 *3))))
- (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-823)) (-5 *3 (-621 *6)) (-5 *5 (-621 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-621 *5)) (|:| |f3| *5)
- (|:| |f4| (-621 *5))))
- (-5 *1 (-1150 *6)) (-5 *4 (-621 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-805)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1018)) (-5 *2 (-1225 *3)) (-5 *1 (-689 *3 *4))
- (-4 *4 (-1201 *3)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-747)) (-4 *2 (-1066))
- (-5 *1 (-654 *2)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-1124)) (-5 *5 (-665 (-219)))
- (-5 *2 (-1006)) (-5 *1 (-724)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1122 *4) (-1122 *4))) (-5 *2 (-1122 *4))
- (-5 *1 (-1250 *4)) (-4 *4 (-1179))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-621 (-1122 *5)) (-621 (-1122 *5)))) (-5 *4 (-549))
- (-5 *2 (-621 (-1122 *5))) (-5 *1 (-1250 *5)) (-4 *5 (-1179)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
- (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-959 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
- (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1073 *5 *6 *7 *8 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-400 (-549))) (-5 *1 (-117 *4)) (-14 *4 *3)
- (-5 *3 (-549))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-400 (-549))) (-5 *1 (-842 *4)) (-14 *4 *3)
- (-5 *3 (-549))))
- ((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-400 (-549))) (-5 *1 (-843 *4 *5))
- (-5 *3 (-549)) (-4 *5 (-840 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-983)) (-5 *2 (-400 (-549)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356)))
- (-4 *3 (-1201 *2))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3845 (*2 (-1142))))
- (-4 *2 (-1018)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-914 *4))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892))
- (-4 *4 (-1018)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1179))))
+ (|partial| -12 (-5 *2 (-917 (-400 (-535)))) (-4 *1 (-1032 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1178))))
((*1 *1 *2)
- (-12 (-5 *2 (-923 (-372))) (-5 *1 (-332 *3 *4 *5))
- (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
+ (-12 (-5 *2 (-917 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371)))
+ (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-400 (-923 (-372)))) (-5 *1 (-332 *3 *4 *5))
- (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
+ (-12 (-5 *2 (-400 (-917 (-371)))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-371))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142)))
+ (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5))
- (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
+ (-12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-371)))
+ (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-923 (-549))) (-5 *1 (-332 *3 *4 *5))
- (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
+ (-12 (-5 *2 (-917 (-535))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535)))
+ (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-400 (-923 (-549)))) (-5 *1 (-332 *3 *4 *5))
- (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
+ (-12 (-5 *2 (-400 (-917 (-535)))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-535))) (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142)))
+ (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 (-549))) (-5 *1 (-332 *3 *4 *5))
- (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1142)))
- (-14 *4 (-621 (-1142))) (-4 *5 (-380))))
+ (-12 (-5 *2 (-307 (-535))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-535)))
+ (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142))) (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-1142)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 *2))
- (-14 *4 (-621 *2)) (-4 *5 (-380))))
+ (-12 (-5 *2 (-1142)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 *2))
+ (-14 *4 (-618 *2)) (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-309 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5))
- (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-1142)))))
- ((*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-923 (-549))))) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-923 (-372))))) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-665 (-923 (-549)))) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-665 (-923 (-372)))) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-665 (-309 (-549)))) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-665 (-309 (-372)))) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-549)))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-372)))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-923 (-549))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-923 (-372))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-549))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-1225 (-400 (-923 (-549))))) (-4 *1 (-433))))
- ((*1 *1 *2) (-12 (-5 *2 (-1225 (-400 (-923 (-372))))) (-4 *1 (-433))))
- ((*1 *1 *2) (-12 (-5 *2 (-1225 (-923 (-549)))) (-4 *1 (-433))))
- ((*1 *1 *2) (-12 (-5 *2 (-1225 (-923 (-372)))) (-4 *1 (-433))))
- ((*1 *1 *2) (-12 (-5 *2 (-1225 (-309 (-549)))) (-4 *1 (-433))))
- ((*1 *1 *2) (-12 (-5 *2 (-1225 (-309 (-372)))) (-4 *1 (-433))))
+ (-12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5))
+ (-14 *3 (-618 (-1142))) (-14 *4 (-618 (-1142)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-917 (-535))))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-917 (-371))))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-917 (-535)))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-917 (-371)))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-307 (-535)))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-307 (-371)))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-535)))) (-4 *1 (-390))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400 (-917 (-371)))) (-4 *1 (-390))))
+ ((*1 *1 *2) (-12 (-5 *2 (-917 (-535))) (-4 *1 (-390))))
+ ((*1 *1 *2) (-12 (-5 *2 (-917 (-371))) (-4 *1 (-390))))
+ ((*1 *1 *2) (-12 (-5 *2 (-307 (-535))) (-4 *1 (-390))))
+ ((*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-4 *1 (-390))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1224 (-400 (-917 (-535))))) (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1224 (-400 (-917 (-371))))) (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1224 (-917 (-535)))) (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1224 (-917 (-371)))) (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1224 (-307 (-535)))) (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1224 (-307 (-371)))) (-4 *1 (-433))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
(|:| |relerr| (-219))))
(|:| |mdnia|
- (-2 (|:| |fn| (-309 (-219)))
- (|:| -2062 (-621 (-1060 (-816 (-219)))))
+ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219)))))
(|:| |abserr| (-219)) (|:| |relerr| (-219))))))
(-5 *1 (-745))))
((*1 *2 *1)
(-12
(-5 *2
(-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
- (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
(|:| |abserr| (-219)) (|:| |relerr| (-219))))
(-5 *1 (-784))))
((*1 *2 *1)
@@ -9920,4340 +6974,5511 @@
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
- (|:| |lb| (-621 (-816 (-219))))
- (|:| |cf| (-621 (-309 (-219))))
- (|:| |ub| (-621 (-816 (-219))))))
+ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219)))
+ (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219))))
+ (|:| |ub| (-618 (-815 (-219))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-621 (-309 (-219))))
- (|:| -3060 (-621 (-219)))))))
+ (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))))
(-5 *1 (-814))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-621 (-309 (-219))))
+ (-2 (|:| |pde| (-618 (-307 (-219))))
(|:| |constraints|
- (-621
- (-2 (|:| |start| (-219)) (|:| |finish| (-219))
- (|:| |grid| (-747)) (|:| |boundaryType| (-549))
- (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219))))))
- (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124))
+ (-618
+ (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747))
+ (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219)))
+ (|:| |dFinish| (-665 (-219))))))
+ (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124))
(|:| |tol| (-219))))
(-5 *1 (-869))))
((*1 *1 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018))
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018))
(-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1179))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1178))))
((*1 *1 *2)
- (-1536
- (-12 (-5 *2 (-923 *3))
- (-12 (-4007 (-4 *3 (-38 (-400 (-549)))))
- (-4007 (-4 *3 (-38 (-549)))) (-4 *5 (-594 (-1142))))
- (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769))
- (-4 *5 (-823)))
- (-12 (-5 *2 (-923 *3))
- (-12 (-4007 (-4 *3 (-534))) (-4007 (-4 *3 (-38 (-400 (-549)))))
- (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1142))))
- (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769))
- (-4 *5 (-823)))
- (-12 (-5 *2 (-923 *3))
- (-12 (-4007 (-4 *3 (-963 (-549)))) (-4 *3 (-38 (-400 (-549))))
+ (-3874
+ (-12 (-5 *2 (-917 *3))
+ (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-3659 (-4 *3 (-38 (-535))))
+ (-4 *5 (-594 (-1142))))
+ (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)))
+ (-12 (-5 *2 (-917 *3))
+ (-12 (-3659 (-4 *3 (-534))) (-3659 (-4 *3 (-38 (-400 (-535)))))
+ (-4 *3 (-38 (-535))) (-4 *5 (-594 (-1142))))
+ (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)))
+ (-12 (-5 *2 (-917 *3))
+ (-12 (-3659 (-4 *3 (-962 (-535)))) (-4 *3 (-38 (-400 (-535))))
(-4 *5 (-594 (-1142))))
- (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769))
- (-4 *5 (-823)))))
+ (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)))))
((*1 *1 *2)
- (-1536
- (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5))
- (-12 (-4007 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549)))
+ (-3874
+ (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5))
+ (-12 (-3659 (-4 *3 (-38 (-400 (-535))))) (-4 *3 (-38 (-535)))
(-4 *5 (-594 (-1142))))
(-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))
- (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5))
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142))))
- (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))))
+ (-12 (-5 *2 (-917 (-535))) (-4 *1 (-1032 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142)))) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)))))
((*1 *1 *2)
- (-12 (-5 *2 (-923 (-400 (-549)))) (-4 *1 (-1032 *3 *4 *5))
- (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018))
+ (-12 (-5 *2 (-917 (-400 (-535)))) (-4 *1 (-1032 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-535)))) (-4 *5 (-594 (-1142))) (-4 *3 (-1018))
(-4 *4 (-769)) (-4 *5 (-823)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-747)) (-5 *1 (-1067 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1124)) (|:| -2480 (-1124))))
- (-5 *1 (-798)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-320 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-507 *3 *4))
- (-14 *4 (-549)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-410 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1159)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1201 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1225 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183))
- (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-747)) (-4 *1 (-1201 *3)) (-4 *3 (-1018)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1142))
- (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *5))))
- (-5 *1 (-1095 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-13 (-300) (-823) (-145)))
- (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1095 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-287 (-400 (-923 *5)))) (-5 *4 (-1142))
- (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *5))))
- (-5 *1 (-1095 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-287 (-400 (-923 *4))))
- (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *4))))
- (-5 *1 (-1095 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1142)))
- (-4 *5 (-13 (-300) (-823) (-145)))
- (-5 *2 (-621 (-621 (-287 (-309 *5))))) (-5 *1 (-1095 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-400 (-923 *4))))
- (-4 *4 (-13 (-300) (-823) (-145)))
- (-5 *2 (-621 (-621 (-287 (-309 *4))))) (-5 *1 (-1095 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-287 (-400 (-923 *5))))) (-5 *4 (-621 (-1142)))
- (-4 *5 (-13 (-300) (-823) (-145)))
- (-5 *2 (-621 (-621 (-287 (-309 *5))))) (-5 *1 (-1095 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-287 (-400 (-923 *4)))))
- (-4 *4 (-13 (-300) (-823) (-145)))
- (-5 *2 (-621 (-621 (-287 (-309 *4))))) (-5 *1 (-1095 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2
- (-3 (|:| |%expansion| (-306 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))))
- (-5 *1 (-413 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1164) (-423 *5)))
- (-14 *6 (-1142)) (-14 *7 *3))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-621 (-621 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-621 (-3 (|:| |array| (-621 *3)) (|:| |scalar| (-1142)))))
- (-5 *6 (-621 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1070))
- (-5 *1 (-390))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-621 (-621 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-621 (-3 (|:| |array| (-621 *3)) (|:| |scalar| (-1142)))))
- (-5 *6 (-621 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1070))
- (-5 *1 (-390))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-621 (-1142))) (-5 *5 (-1145)) (-5 *3 (-1142))
- (-5 *2 (-1070)) (-5 *1 (-390)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-444)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-541) (-145)))
- (-5 *2 (-2 (|:| -3837 *3) (|:| -3847 *3))) (-5 *1 (-1195 *4 *3))
- (-4 *3 (-1201 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-665 (-549))) (-5 *5 (-112)) (-5 *7 (-665 (-219)))
- (-5 *3 (-549)) (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-731)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1068 (-747))) (-5 *6 (-747))
- (-5 *2
- (-2 (|:| |contp| (-549))
- (|:| -2886 (-621 (-2 (|:| |irr| *3) (|:| -3533 (-549)))))))
- (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-665 *5)) (-4 *5 (-1018)) (-5 *1 (-1022 *3 *4 *5))
- (-14 *3 (-747)) (-14 *4 (-747)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-836 *5))) (-14 *5 (-621 (-1142))) (-4 *6 (-444))
- (-5 *2
- (-2 (|:| |dpolys| (-621 (-241 *5 *6)))
- (|:| |coords| (-621 (-549)))))
- (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-621 (-241 *5 *6))) (-4 *7 (-444)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-140 *2 *4 *3))
- (-4 *3 (-366 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-494 *2 *4 *5 *3))
- (-4 *5 (-366 *2)) (-4 *3 (-366 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-665 *4)) (-4 *4 (-963 *2)) (-4 *2 (-541))
- (-5 *1 (-669 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-1194 *2 *4 *3))
- (-4 *3 (-1201 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1050 *3)) (-4 *3 (-131)))))
-(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))))
-(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-549))) (-5 *5 (-1 (-1122 *4))) (-4 *4 (-356))
- (-4 *4 (-1018)) (-5 *2 (-1122 *4)) (-5 *1 (-1126 *4)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-797)))))
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-542)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-444)))))
-(((*1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-542)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-542))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-542)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-542))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-542)))))
+(((*1 *2 *1 *1)
(-12
- (-5 *3
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
- (-5 *2 (-372)) (-5 *1 (-186)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-665 *4)) (-5 *3 (-892)) (|has| *4 (-6 (-4338 "*")))
- (-4 *4 (-1018)) (-5 *1 (-999 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-621 (-665 *4))) (-5 *3 (-892))
- (|has| *4 (-6 (-4338 "*"))) (-4 *4 (-1018)) (-5 *1 (-999 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-372))))
- ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-372)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2460 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-356)) (-4 *7 (-1201 *6))
- (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6)))
- (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-834)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-549)) (-5 *2 (-621 (-2 (|:| -2120 *3) (|:| -3068 *4))))
- (-5 *1 (-672 *3)) (-4 *3 (-1201 *4)))))
+ (-5 *2
+ (-2 (|:| -3478 (-757 *3)) (|:| |coef1| (-757 *3)) (|:| |coef2| (-757 *3))))
+ (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-2 (|:| -3478 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3478 (-757 *3)) (|:| |coef1| (-757 *3))))
+ (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-2 (|:| -3478 *1) (|:| |coef1| *1))) (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3478 (-757 *3)) (|:| |coef2| (-757 *3))))
+ (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-2 (|:| -3478 *1) (|:| |coef2| *1))) (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-542)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-618 *1)) (-4 *1 (-1032 *3 *4 *5)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-549)) (-4 *1 (-627 *3)) (-4 *3 (-1179))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-627 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1))
- (-4 *1 (-1038 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-444)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
- (-5 *2 (-621 *3)) (-5 *1 (-948 *4 *5 *6 *3))
- (-4 *3 (-1032 *4 *5 *6)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-621 *2) *2 *2 *2)) (-4 *2 (-1066))
- (-5 *1 (-102 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1066)) (-5 *1 (-102 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-1032 *4 *5 *6)) (-4 *4 (-541))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *3 (-542)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *3 (-542)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-542)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-444))))
+ ((*1 *1 *1 *1) (-4 *1 (-444)))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1200 (-535)))))
+ ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-672 *2)) (-4 *2 (-1200 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-747)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *2))
+ (-4 *2 (-921 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4))
- (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3))
- (-4 *3 (-624 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3))
- (-4 *3 (-624 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018))))
- ((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-621 *3)) (-5 *1 (-932 *3)) (-4 *3 (-534)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1201 *3)) (-4 *3 (-1018)) (-5 *2 (-1138 *3)))))
-(((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747))
- (-4 *4 (-170)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2252 *4)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-411 *3))
- (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-920 *6 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2252 *3) (|:| |coef2| (-758 *3))))
- (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-411 *3))
- (-5 *1 (-99 *4 *3)) (-4 *3 (-1201 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 *3)) (-4 *3 (-1201 *5)) (-4 *5 (-13 (-444) (-145)))
- (-5 *2 (-411 *3)) (-5 *1 (-99 *5 *3)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-621 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9))
- (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
- (-4 *9 (-1032 *6 *7 *8))
- (-5 *2
- (-621
- (-2 (|:| -2650 (-621 *9)) (|:| -1980 *10) (|:| |ineq| (-621 *9)))))
- (-5 *1 (-959 *6 *7 *8 *9 *10)) (-5 *3 (-621 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-621 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9))
- (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
- (-4 *9 (-1032 *6 *7 *8))
- (-5 *2
- (-621
- (-2 (|:| -2650 (-621 *9)) (|:| -1980 *10) (|:| |ineq| (-621 *9)))))
- (-5 *1 (-1073 *6 *7 *8 *9 *10)) (-5 *3 (-621 *9)))))
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *6 *4 *5)) (-5 *1 (-887 *4 *5 *6 *2))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1136 *6)) (-4 *6 (-921 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-1136 *7))) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300))
+ (-5 *2 (-1136 *7)) (-5 *1 (-887 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-890)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-444)) (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-444)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-549)) (-5 *1 (-235))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-621 (-1124))) (-5 *3 (-549)) (-5 *4 (-1124))
- (-5 *1 (-235))))
- ((*1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1203 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018))
- (-4 *3 (-1066)))))
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-444)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-300)) (-4 *3 (-963 *2)) (-4 *4 (-1201 *3))
- (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1009 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796))
- (-14 *5 (-1142)) (-5 *2 (-549)) (-5 *1 (-1080 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-621 (-621 *4))) (-5 *2 (-621 *4)) (-4 *4 (-300))
- (-5 *1 (-177 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-621 *8))
- (-5 *4
- (-621
- (-2 (|:| -3420 (-665 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-665 *7)))))
- (-5 *5 (-747)) (-4 *8 (-1201 *7)) (-4 *7 (-1201 *6)) (-4 *6 (-342))
- (-5 *2
- (-2 (|:| -3420 (-665 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-665 *7))))
- (-5 *1 (-489 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1018)) (-4 *5 (-1201 *4)) (-5 *2 (-1 *6 (-621 *6)))
- (-5 *1 (-1219 *4 *5 *3 *6)) (-4 *3 (-632 *5)) (-4 *6 (-1216 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-747))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-747)))))
-(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1179)) (-5 *1 (-368 *4 *2))
- (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4337)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1066)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-659 *4 *5)) (-4 *4 (-1066))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-823)) (-5 *1 (-900 *3 *2)) (-4 *2 (-423 *3))))
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-444)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-444)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *2 (-444)))))
+(((*1 *1) (-5 *1 (-1030))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-371)) (-5 *1 (-1030)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-371)) (-5 *1 (-1030)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-371)) (-5 *1 (-1030)))))
+(((*1 *2 *1 *3) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-1030)) (-5 *3 (-1124)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1030)))))
+(((*1 *1) (-5 *1 (-1030))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1124)) (-5 *3 (-535)) (-5 *1 (-1030)))))
+(((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1029))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1029)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1178)) (-5 *2 (-747)) (-5 *1 (-231 *3 *4 *5))
+ (-4 *3 (-232 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)) (-5 *2 (-747))))
+ ((*1 *2)
+ (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-354 *3)) (-4 *3 (-1067))))
+ ((*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-379 *3)) (-4 *3 (-1067))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-747)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23))
+ (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-747)) (-5 *1 (-700 *3 *4 *5))
+ (-4 *3 (-701 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823))))
+ ((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-398 *4) *4)) (-4 *4 (-542)) (-5 *2 (-398 *4))
+ (-5 *1 (-412 *4))))
+ ((*1 *1 *1) (-5 *1 (-896)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896))))
+ ((*1 *1 *1) (-5 *1 (-898)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))
+ (-5 *4 (-400 (-535))) (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))
+ (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))
+ (-5 *4 (-400 (-535))) (-5 *1 (-993 *3)) (-4 *3 (-1200 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))
+ (-5 *1 (-993 *3)) (-4 *3 (-1200 (-400 (-535))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1200 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-821) (-356))) (-5 *2 (-112)) (-5 *1 (-1028 *4 *3))
+ (-4 *3 (-1200 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-591 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1136 (-48))) (-5 *3 (-618 (-591 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1136 (-48))) (-5 *3 (-591 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
((*1 *2 *3)
- (-12 (-5 *3 (-1142)) (-5 *2 (-309 (-549))) (-5 *1 (-901))))
+ (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3))
+ (-4 *3 (-1200 (-166 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-890)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356))))
+ ((*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1200 *2)) (-4 *2 (-170))))
((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018))))
+ (-12 (-4 *4 (-1200 *2)) (-4 *2 (-962 *3)) (-5 *1 (-406 *3 *2 *4 *5))
+ (-4 *3 (-300)) (-4 *5 (-13 (-403 *2 *4) (-1009 *2)))))
((*1 *2 *1)
- (-12 (-4 *2 (-1018)) (-5 *1 (-1248 *2 *3)) (-4 *3 (-819)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-541)) (-4 *2 (-1018))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1201 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-541))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *3 (-1032 *4 *5 *6))
- (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *1))))
- (-4 *1 (-1038 *4 *5 *6 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-541) (-145)))
- (-5 *1 (-1195 *4 *2)) (-4 *2 (-1201 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-621 *3)) (-5 *5 (-892)) (-4 *3 (-1201 *4))
- (-4 *4 (-300)) (-5 *1 (-452 *4 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-356) (-1164) (-973))))))
+ (-12 (-4 *4 (-1200 *2)) (-4 *2 (-962 *3)) (-5 *1 (-408 *3 *2 *4 *5 *6))
+ (-4 *3 (-300)) (-4 *5 (-403 *2 *4)) (-14 *6 (-1224 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-890)) (-4 *5 (-1018))
+ (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1164) (-277)))
+ (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1200 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-591 (-486)))) (-5 *1 (-486))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-486))) (-5 *1 (-486))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1136 (-486))) (-5 *3 (-618 (-591 (-486)))) (-5 *1 (-486))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1136 (-486))) (-5 *3 (-591 (-486))) (-5 *1 (-486))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1224 *4)) (-5 *3 (-890)) (-4 *4 (-343)) (-5 *1 (-519 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-701 *4 *2)) (-4 *2 (-1200 *4))
+ (-5 *1 (-751 *4 *2 *5 *3)) (-4 *3 (-1200 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170))))
+ ((*1 *1 *1) (-4 *1 (-1027))))
+(((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-534))))
+ ((*1 *1 *1) (-4 *1 (-1027))))
+(((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-534))))
+ ((*1 *1 *1) (-4 *1 (-1027))))
+(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))
+ ((*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300))))
+ ((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-300))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-535)))))
+(((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-211))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-479))))
+ ((*1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)) (-4 *2 (-300))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535))))
+ ((*1 *1 *1) (-4 *1 (-1027))))
+(((*1 *1 *1) (-4 *1 (-1027))))
(((*1 *2)
- (-12 (-4 *3 (-1183)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4)))
- (-5 *2 (-1225 *1)) (-4 *1 (-335 *3 *4 *5))))
+ (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))
((*1 *2)
- (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $)))))
- (-4 *4 (-1201 *3))
- (-5 *2
- (-2 (|:| -3420 (-665 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-665 *3))))
- (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4))))
+ (-12 (-14 *4 *2) (-4 *5 (-1178)) (-5 *2 (-747)) (-5 *1 (-231 *3 *4 *5))
+ (-4 *3 (-232 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-1201 (-549)))
- (-5 *2
- (-2 (|:| -3420 (-665 (-549))) (|:| |basisDen| (-549))
- (|:| |basisInv| (-665 (-549)))))
- (-5 *1 (-744 *3 *4)) (-4 *4 (-402 (-549) *3))))
+ (-12 (-4 *4 (-823)) (-5 *2 (-747)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4))))
+ ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-533 *3)) (-4 *3 (-534))))
+ ((*1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-747))))
((*1 *2)
- (-12 (-4 *3 (-342)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 *4))
- (-5 *2
- (-2 (|:| -3420 (-665 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-665 *4))))
- (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-701 *4 *5))))
+ (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-771 *3 *4)) (-4 *3 (-772 *4))))
((*1 *2)
- (-12 (-4 *3 (-342)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 *4))
- (-5 *2
- (-2 (|:| -3420 (-665 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-665 *4))))
- (-5 *1 (-1234 *3 *4 *5 *6)) (-4 *6 (-402 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
- (-5 *2 (-1006)) (-5 *1 (-732)))))
-(((*1 *2)
- (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
- (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230))
- (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6))))
+ (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-961 *3 *4)) (-4 *3 (-962 *4))))
((*1 *2)
- (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
- (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1230))
- (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-805)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-621 (-1142))) (-4 *2 (-170))
- (-4 *3 (-232 (-3774 *4) (-747)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3491 *5) (|:| -3577 *3))
- (-2 (|:| -3491 *5) (|:| -3577 *3))))
- (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-823))
- (-4 *7 (-920 *2 *3 (-836 *4))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-549)))))
- (-4 *2 (-13 (-823) (-21))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1060 (-816 (-372)))) (-5 *2 (-1060 (-816 (-219))))
- (-5 *1 (-298)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-342)) (-5 *3 (-549)) (-5 *2 (-1152 (-892) (-747))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4))
- (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1138 *9)) (-5 *4 (-621 *7)) (-5 *5 (-621 *8))
- (-4 *7 (-823)) (-4 *8 (-1018)) (-4 *9 (-920 *8 *6 *7))
- (-4 *6 (-769)) (-5 *2 (-1138 *8)) (-5 *1 (-314 *6 *7 *8 *9)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1106 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1066) (-34))) (-4 *6 (-13 (-1066) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1107 *5 *6)))))
+ (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-968 *3 *4)) (-4 *3 (-969 *4))))
+ ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-982 *3)) (-4 *3 (-983))))
+ ((*1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-747))))
+ ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1026 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-665 *5)) (-4 *5 (-1018)) (-5 *1 (-1022 *3 *4 *5))
+ (-14 *3 (-747)) (-14 *4 (-747)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1018)) (-4 *1 (-662 *3 *4 *5))
+ (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-835)))) (-5 *1 (-835))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1108 *3 *4)) (-5 *1 (-964 *3 *4)) (-14 *3 (-890))
+ (-4 *4 (-356))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-618 (-618 *5))) (-4 *5 (-1018)) (-4 *1 (-1021 *3 *4 *5 *6 *7))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-541))
- (-5 *2 (-1138 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219)))))
-(((*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))))
-(((*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-204)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-549)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-411 *2)) (-4 *2 (-541)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-287 (-809 *3)))
- (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-809 *3)) (-5 *1 (-614 *5 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-287 (-809 (-923 *5)))) (-4 *5 (-444))
- (-5 *2 (-809 (-400 (-923 *5)))) (-5 *1 (-615 *5))
- (-5 *3 (-400 (-923 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-287 (-400 (-923 *5)))) (-5 *3 (-400 (-923 *5)))
- (-4 *5 (-444)) (-5 *2 (-809 *3)) (-5 *1 (-615 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-476 *3)))))
+ (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769))
- (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
- (-14 *6 (-621 (-1142)))
- (-5 *2
- (-621 (-1112 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6)))))
- (-5 *1 (-606 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-48)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1179))
- (-4 *2 (-1179)) (-5 *1 (-57 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1066)) (|has| *1 (-6 -4336))
- (-4 *1 (-149 *2)) (-4 *2 (-1179))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2))
- (-4 *2 (-1179))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *2))
- (-4 *2 (-1179))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1018))
- (-5 *2 (-2 (|:| -4267 (-1138 *4)) (|:| |deg| (-892))))
- (-5 *1 (-215 *4 *5)) (-5 *3 (-1138 *4)) (-4 *5 (-13 (-541) (-823)))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-234 *5 *6)) (-14 *5 (-747))
- (-4 *6 (-1179)) (-4 *2 (-1179)) (-5 *1 (-233 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1201 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-541)) (-4 *2 (-823))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-328 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1201 *2))
- (-4 *4 (-1201 (-400 *3))) (-4 *5 (-335 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1179)) (-4 *2 (-1179))
- (-5 *1 (-364 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1066)) (-4 *2 (-1066))
- (-5 *1 (-416 *5 *4 *2 *6)) (-4 *4 (-418 *5)) (-4 *6 (-418 *2))))
- ((*1 *1 *1) (-5 *1 (-486)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-621 *5)) (-4 *5 (-1179))
- (-4 *2 (-1179)) (-5 *1 (-619 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1018)) (-4 *2 (-1018))
- (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *8 (-366 *2))
- (-4 *9 (-366 *2)) (-5 *1 (-661 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-663 *5 *6 *7)) (-4 *10 (-663 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1201 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1201 *3)) (-4 *3 (-356))
- (-4 *3 (-170)) (-4 *1 (-701 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1201 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-929 *5)) (-4 *5 (-1179))
- (-4 *2 (-1179)) (-5 *1 (-928 *5 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-920 *3 *4 *5))
- (-14 *6 (-621 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1018)) (-4 *2 (-1018))
- (-14 *5 (-747)) (-14 *6 (-747)) (-4 *8 (-232 *6 *7))
- (-4 *9 (-232 *5 *7)) (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2))
- (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *12 (-1021 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1122 *5)) (-4 *5 (-1179))
- (-4 *2 (-1179)) (-5 *1 (-1120 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1172 *5 *6 *7 *2)) (-4 *5 (-541)) (-4 *6 (-769))
- (-4 *7 (-823)) (-4 *2 (-1032 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1225 *5)) (-4 *5 (-1179))
- (-4 *2 (-1179)) (-5 *1 (-1224 *5 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 (-167 (-400 (-549))))) (-5 *2 (-621 (-167 *4)))
- (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-892)) (-5 *1 (-762)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-130))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-354 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-379 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-625 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-52)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1124))
- (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1066)) (-4 *2 (-823))
- (-5 *1 (-113 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541))
- (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-2 (|:| |goodPols| (-621 *8)) (|:| |badPols| (-621 *8))))
- (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-621 *8)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3847 *6) (|:| |sol?| (-112))) (-549)
- *6))
- (-4 *6 (-356)) (-4 *7 (-1201 *6))
- (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6)))
- (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *6)) (-4 *6 (-13 (-423 *5) (-27) (-1164)))
- (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2 (-1138 (-400 (-1138 *6)))) (-5 *1 (-545 *5 *6 *7))
- (-5 *3 (-1138 *6)) (-4 *7 (-1066))))
+ (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *2 (-1201 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018))))
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1201 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1138 *11)) (-5 *6 (-621 *10))
- (-5 *7 (-621 (-747))) (-5 *8 (-621 *11)) (-4 *10 (-823))
- (-4 *11 (-300)) (-4 *9 (-769)) (-4 *5 (-920 *11 *9 *10))
- (-5 *2 (-621 (-1138 *5))) (-5 *1 (-719 *9 *10 *11 *5))
- (-5 *3 (-1138 *5))))
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *2 (-920 *3 *4 *5)) (-5 *1 (-1005 *3 *4 *5 *2 *6))
- (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-14 *6 (-621 *2)))))
-(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
- (-5 *2 (-1006)) (-5 *1 (-729)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
- (-4 *3 (-1032 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-621 *4))
- (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))))
- (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-621 *4))
- (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))))
- (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1075 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-549)) (-4 *3 (-170)) (-4 *5 (-366 *3))
- (-4 *6 (-366 *3)) (-5 *1 (-664 *3 *5 *6 *2))
- (-4 *2 (-663 *3 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
- (-5 *2 (-1006)) (-5 *1 (-729)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1009 (-549))) (-4 *3 (-13 (-823) (-541)))
- (-5 *1 (-32 *3 *2)) (-4 *2 (-423 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-1138 *4)) (-5 *1 (-163 *3 *4))
- (-4 *3 (-164 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1018)) (-4 *1 (-295))))
- ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1138 *3))))
- ((*1 *2) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1201 *3))))
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *2 (-535))))
((*1 *2 *1)
- (-12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356)))
- (-4 *2 (-1201 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
- ((*1 *1 *1 *1) (-4 *1 (-465)))
- ((*1 *1 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
- ((*1 *2 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-854))))
- ((*1 *1 *1) (-5 *1 (-942)))
- ((*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))))
-(((*1 *1) (-5 *1 (-323))))
-(((*1 *1) (-5 *1 (-155))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-541)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-356) (-295)
- (-10 -8 (-15 -1393 ((-1091 *3 (-592 $)) $))
- (-15 -1404 ((-1091 *3 (-592 $)) $))
- (-15 -3845 ($ (-1091 *3 (-592 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-541)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-356) (-295)
- (-10 -8 (-15 -1393 ((-1091 *3 (-592 $)) $))
- (-15 -1404 ((-1091 *3 (-592 $)) $))
- (-15 -3845 ($ (-1091 *3 (-592 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 *2))
- (-4 *2
- (-13 (-356) (-295)
- (-10 -8 (-15 -1393 ((-1091 *4 (-592 $)) $))
- (-15 -1404 ((-1091 *4 (-592 $)) $))
- (-15 -3845 ($ (-1091 *4 (-592 $)))))))
- (-4 *4 (-541)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 (-592 *2)))
- (-4 *2
- (-13 (-356) (-295)
- (-10 -8 (-15 -1393 ((-1091 *4 (-592 $)) $))
- (-15 -1404 ((-1091 *4 (-592 $)) $))
- (-15 -3845 ($ (-1091 *4 (-592 $)))))))
- (-4 *4 (-541)) (-5 *1 (-41 *4 *2)))))
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-5 *2 (-535)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1018)) (-5 *2 (-621 *1)) (-4 *1 (-1100 *3)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1164))))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219)))
- (-5 *5 (-1060 (-219))) (-5 *6 (-621 (-256))) (-5 *2 (-1099 (-219)))
- (-5 *1 (-673)))))
-(((*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1179)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4))
- (-4 *4 (-342)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-387))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1159)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1138 *1)) (-4 *1 (-983)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1225 (-549))) (-5 *3 (-549)) (-5 *1 (-1076))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1225 (-549))) (-5 *3 (-621 (-549))) (-5 *4 (-549))
- (-5 *1 (-1076)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1124)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
- (-4 *4 (-1032 *6 *7 *8)) (-5 *2 (-1230))
- (-5 *1 (-752 *6 *7 *8 *4 *5)) (-4 *5 (-1038 *6 *7 *8 *4)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-621 (-1124))) (-5 *2 (-1124)) (-5 *1 (-1226))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1226))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1226))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-621 (-1124))) (-5 *2 (-1124)) (-5 *1 (-1227))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1227))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1227)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))))
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *2 (-535))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-5 *2 (-535)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *2 (-535))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-5 *2 (-535)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *2 (-535))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-5 *2 (-535)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *2 (-747))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *2 (-747))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-219))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-219))))
+ (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2))
+ (-4 *5 (-365 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1178))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-372))))
+ (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2))
+ (-4 *7 (-232 *4 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-535)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1178)) (-4 *5 (-365 *4))
+ (-4 *2 (-365 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-372)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-732)))))
-(((*1 *2 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-438)) (-5 *3 (-549)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-569 *4))
- (-4 *4 (-342)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-181)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
- (-5 *2
- (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549))
- (|:| |success| (-112))))
- (-5 *1 (-765)) (-5 *5 (-549)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))
- (-4 *2 (-356))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-219))))
- ((*1 *1 *1 *1)
- (-1536 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1179)))
- (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1179)))))
- ((*1 *1 *1 *1) (-4 *1 (-356)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-372))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1091 *3 (-592 *1))) (-4 *3 (-541)) (-4 *3 (-823))
- (-4 *1 (-423 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-465)))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1225 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-525)))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-170)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-703) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *4 (-170)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-703) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-170)) (-4 *2 (-356))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-170)) (-5 *1 (-638 *2 *4 *3)) (-4 *2 (-694 *4))
- (-4 *3 (|SubsetCategory| (-703) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *4 (-170)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-694 *4))
- (-4 *2 (|SubsetCategory| (-703) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2)) (-4 *2 (-356))))
- ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-837 *2 *3 *4 *5)) (-4 *2 (-356))
- (-4 *2 (-1018)) (-14 *3 (-621 (-1142))) (-14 *4 (-621 (-747)))
- (-14 *5 (-747))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018))
- (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-356))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-356))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-823))
- (-4 *4 (-769)) (-14 *6 (-621 *3))
- (-5 *1 (-1237 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-920 *2 *4 *3))
- (-14 *7 (-621 (-747))) (-14 *8 (-747))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1018))
- (-4 *3 (-819)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-541))
- (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3))) (-5 *1 (-1196 *4 *3))
- (-4 *3 (-1201 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-411 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1066))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1066)))))
-(((*1 *2)
- (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-410 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-823))
- (-4 *4 (-1018)) (-4 *4 (-170))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))
- (-4 *3 (-170)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1225 *5)) (-4 *5 (-768)) (-5 *2 (-112))
- (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
+ (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *6 *2 *7)) (-4 *6 (-1018))
+ (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-535)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1178)) (-4 *5 (-365 *4))
+ (-4 *2 (-365 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-535)) (-4 *1 (-1021 *4 *5 *6 *7 *2)) (-4 *6 (-1018))
+ (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-816 (-372))) (-5 *2 (-816 (-219))) (-5 *1 (-298)))))
-(((*1 *2) (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1228))))
- ((*1 *2 *2) (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1228)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-923 (-549))) (-5 *2 (-621 *1)) (-4 *1 (-983))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))
+ (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-923 (-400 (-549)))) (-5 *2 (-621 *1)) (-4 *1 (-983))))
- ((*1 *2 *3) (-12 (-5 *3 (-923 *1)) (-4 *1 (-983)) (-5 *2 (-621 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1138 (-549))) (-5 *2 (-621 *1)) (-4 *1 (-983))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1138 (-400 (-549)))) (-5 *2 (-621 *1)) (-4 *1 (-983))))
- ((*1 *2 *3) (-12 (-5 *3 (-1138 *1)) (-4 *1 (-983)) (-5 *2 (-621 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1201 *4)) (-5 *2 (-621 *1))
- (-4 *1 (-1035 *4 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-133)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-208 *2))
- (-4 *2
- (-13 (-823)
- (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 ((-1230) $))
- (-15 -3431 ((-1230) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1179))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1179))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ (-12 (-4 *4 (-542)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-962 *4))
+ (-4 *2 (-662 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2))
+ (-4 *3 (-662 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7))))
((*1 *1 *1)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2))))
- ((*1 *1 *1) (-5 *1 (-834))) ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2)) (-4 *2 (-300))))
((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-21)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
- (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1226))))
- ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
- ((*1 *1 *1) (-4 *1 (-1110))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2))
- (-4 *2 (-1201 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-549)) (-5 *1 (-672 *2)) (-4 *2 (-1201 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-132))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-152))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-159))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-212))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-652))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-990))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1033))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-1062)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7))))
- (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1018))
- (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))
- (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1201 *4)))))
+ (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))
+ (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4))
+ (-4 *6 (-232 *2 *4)) (-4 *4 (-300)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-356) (-145)))
- (-5 *2 (-621 (-2 (|:| -3577 (-747)) (|:| -2597 *4) (|:| |num| *4))))
- (-5 *1 (-392 *3 *4)) (-4 *4 (-1201 *3)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-541)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
-(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-208 *2))
- (-4 *2
- (-13 (-823)
- (-10 -8 (-15 -3340 ((-1124) $ (-1142))) (-15 -2697 ((-1230) $))
- (-15 -3431 ((-1230) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1179))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1179))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-130))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2))
- (-4 *2 (-1201 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823))
- (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-525)))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-25)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-665 (-400 (-923 (-549)))))
- (-5 *2 (-665 (-309 (-549)))) (-5 *1 (-1002)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-541))
- (-4 *7 (-920 *3 *5 *6))
- (-5 *2 (-2 (|:| -3577 (-747)) (|:| -1569 *8) (|:| |radicand| *8)))
- (-5 *1 (-924 *5 *6 *3 *7 *8)) (-5 *4 (-747))
- (-4 *8
- (-13 (-356)
- (-10 -8 (-15 -1393 (*7 $)) (-15 -1404 (*7 $)) (-15 -3845 ($ *7))))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
- (-5 *2
- (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549))
- (|:| |success| (-112))))
- (-5 *1 (-765)) (-5 *5 (-549)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-1144 (-400 (-549))))
- (-5 *1 (-184)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-95))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-114))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1066)) (-4 *2 (-1066))))
- ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-431 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-592 *3)) (-4 *3 (-823))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-936))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1041 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1081))))
- ((*1 *1 *1) (-5 *1 (-1142))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1183)) (-4 *5 (-1201 *3)) (-4 *6 (-1201 (-400 *5)))
- (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-444)) (-4 *4 (-541))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3829 *4)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-747))
- (-4 *3 (-13 (-703) (-361) (-10 -7 (-15 ** (*3 *3 (-549))))))
- (-5 *1 (-240 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-129)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *6)) (-4 *5 (-1066))
- (-4 *6 (-1179)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *2)) (-4 *5 (-1066))
- (-4 *2 (-1179)) (-5 *1 (-618 *5 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 *5)) (-4 *6 (-1066))
- (-4 *5 (-1179)) (-5 *2 (-1 *5 *6)) (-5 *1 (-618 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *2)) (-4 *5 (-1066))
- (-4 *2 (-1179)) (-5 *1 (-618 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-621 *5)) (-5 *4 (-621 *6))
- (-4 *5 (-1066)) (-4 *6 (-1179)) (-5 *1 (-618 *5 *6))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1066)) (-4 *2 (-1179)) (-5 *1 (-618 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-142)) (-5 *2 (-747)))))
-(((*1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1145)))))
-(((*1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1228)))))
-(((*1 *2 *3) (-12 (-5 *3 (-167 (-549))) (-5 *2 (-112)) (-5 *1 (-438))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535)) (-14 *4 *2)
+ (-4 *5 (-170))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-890)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-890))))
+ ((*1 *2)
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-890))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4)
- (-241 *4 (-400 (-549)))))
- (-14 *4 (-621 (-1142))) (-14 *5 (-747)) (-5 *2 (-112))
- (-5 *1 (-496 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-932 *3)) (-4 *3 (-534))))
- ((*1 *2 *1) (-12 (-4 *1 (-1183)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4))
- (-4 *4 (-1179)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-460)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-309 *3)) (-4 *3 (-13 (-1018) (-823)))
- (-5 *1 (-217 *3 *4)) (-14 *4 (-621 (-1142))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-892)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-549)) (-5 *1 (-235))))
+ (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-747))
+ (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337))))
+ (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-747))
+ (-5 *1 (-643 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-356)) (-5 *2 (-747))
+ (-5 *1 (-644 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-4 *3 (-542)) (-5 *2 (-747))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-1124))) (-5 *2 (-549)) (-5 *1 (-235)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142))
- (-5 *2 (-549)) (-5 *1 (-1080 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1086))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1066)))))
+ (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))
+ (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-747)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-411 (-1138 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1138 *1))
- (-4 *4 (-444)) (-4 *4 (-541)) (-4 *4 (-823))))
+ (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-747))
+ (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-4 *3 (-542)) (-5 *2 (-747))))
((*1 *2 *3)
- (-12 (-4 *1 (-880)) (-5 *2 (-411 (-1138 *1))) (-5 *3 (-1138 *1)))))
-(((*1 *2 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1201 *5))
- (-4 *5 (-13 (-27) (-423 *4)))
- (-4 *4 (-13 (-823) (-541) (-1009 (-549))))
- (-4 *7 (-1201 (-400 *6))) (-5 *1 (-537 *4 *5 *6 *7 *2))
- (-4 *2 (-335 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1066)) (-4 *1 (-874 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1179)) (-5 *2 (-112))))
+ (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))
+ (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892))
- (-4 *4 (-1018)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2252 *4)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3))
- (-4 *3 (-1066)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1179)) (-5 *1 (-368 *4 *2))
- (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4337)))))))
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-747)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1859 (-665 (-400 (-923 *4))))
- (|:| |vec| (-621 (-400 (-923 *4)))) (|:| -3122 (-747))
- (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))
- (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
- (-4 *6 (-769))
- (-5 *2
- (-2 (|:| |partsol| (-1225 (-400 (-923 *4))))
- (|:| -3420 (-621 (-1225 (-400 (-923 *4)))))))
- (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-219)) (-5 *4 (-549))
- (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006))
- (-5 *1 (-725)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1216 *4))
- (-4 *4 (-38 (-400 (-549)))) (-5 *2 (-1 (-1122 *4) (-1122 *4)))
- (-5 *1 (-1218 *4 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-863 *4)) (-4 *4 (-1066)) (-4 *2 (-1066))
- (-5 *1 (-860 *4 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-621 (-747)))) (-5 *1 (-875 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-342))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -2886 (-621 (-2 (|:| |irr| *3) (|:| -3533 (-549)))))))
- (-5 *1 (-210 *5 *3)) (-4 *3 (-1201 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))))
-(((*1 *1 *1 *1) (-4 *1 (-938))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-1195 *3 *2))
- (-4 *2 (-1201 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-250)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-549))))
+ (-12 (|has| *6 (-6 -4337)) (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))
+ (-5 *2 (-618 *6)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4337)) (-4 *4 (-542)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))
+ (-4 *7 (-962 *4)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)) (-5 *2 (-618 *6))
+ (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-662 *4 *5 *6))
+ (-4 *10 (-662 *7 *8 *9))))
((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))))
+ (-12 (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-4 *3 (-542)) (-5 *2 (-618 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))
+ (-5 *2 (-618 *6)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-662 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)) (-4 *5 (-542)) (-5 *2 (-618 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1193 *4 *5)) (-5 *3 (-618 *5)) (-14 *4 (-1142)) (-4 *5 (-356))
+ (-5 *1 (-893 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 *5)) (-4 *5 (-356)) (-5 *2 (-1136 *5)) (-5 *1 (-893 *4 *5))
+ (-14 *4 (-1142))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-618 *6)) (-5 *4 (-747)) (-4 *6 (-356)) (-5 *2 (-400 (-917 *6)))
+ (-5 *1 (-1019 *5 *6)) (-14 *5 (-1142)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-1016)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-621 (-309 (-219))))
- (|:| |constraints|
- (-621
- (-2 (|:| |start| (-219)) (|:| |finish| (-219))
- (|:| |grid| (-747)) (|:| |boundaryType| (-549))
- (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219))))))
- (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124))
- (|:| |tol| (-219))))
- (-5 *2 (-112)) (-5 *1 (-204)))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-535))) (-5 *1 (-1016)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-823) (-541))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-535))) (-5 *1 (-1016)))))
+(((*1 *1 *1 *1) (-4 *1 (-141)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534))))
+ ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-535))) (-5 *1 (-1016))
+ (-5 *3 (-535)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-541) (-145))) (-5 *2 (-621 *3))
- (-5 *1 (-1195 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-747)) (-4 *5 (-170))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747))
- (-4 *4 (-170))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1018)) (-4 *1 (-663 *3 *2 *4)) (-4 *2 (-366 *3))
- (-4 *4 (-366 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1108 *2 *3)) (-14 *2 (-747)) (-4 *3 (-1018)))))
-(((*1 *1 *1) (-4 *1 (-534))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1066))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-541)) (-5 *2 (-112)) (-5 *1 (-601 *3 *4))
- (-4 *4 (-1201 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-703))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1142)) (-5 *5 (-1060 (-219))) (-5 *2 (-898))
- (-5 *1 (-896 *3)) (-4 *3 (-594 (-525)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1142)) (-5 *5 (-1060 (-219))) (-5 *2 (-898))
- (-5 *1 (-896 *3)) (-4 *3 (-594 (-525)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-897))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-897))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-897))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-898))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-898))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-898))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-621 (-1 (-219) (-219)))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-898))))
+ (-12 (-5 *3 (-1063 *4)) (-4 *4 (-1067)) (-5 *2 (-1 *4)) (-5 *1 (-988 *4))))
+ ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1012)) (-5 *3 (-371))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1055 (-535))) (-5 *2 (-1 (-535))) (-5 *1 (-1016)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-300)) (-5 *2 (-400 (-398 (-917 *4))))
+ (-5 *1 (-1014 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012)))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-371))) (-5 *1 (-1012)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1205 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142))
+ (-14 *5 *3) (-5 *1 (-312 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1012)) (-5 *3 (-371)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1012)) (-5 *3 (-371)))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-371)) (-5 *1 (-1012)))))
+(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1012)))))
+(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1012)))))
+(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1012)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1136 (-400 (-1136 *2)))) (-5 *4 (-591 *2))
+ (-4 *2 (-13 (-414 *5) (-27) (-1164)))
+ (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *1 (-546 *5 *2 *6)) (-4 *6 (-1067))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-1 (-219) (-219)))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-898))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-898))))
+ (-12 (-5 *2 (-1136 *1)) (-4 *1 (-921 *4 *5 *3)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *3 (-823))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-898)))))
+ (-12 (-5 *2 (-1136 *4)) (-4 *4 (-1018)) (-4 *1 (-921 *4 *5 *3))
+ (-4 *5 (-769)) (-4 *3 (-823))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-1136 *2))) (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018))
+ (-4 *2
+ (-13 (-356)
+ (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $)))))
+ (-5 *1 (-922 *5 *4 *6 *7 *2)) (-4 *7 (-921 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-1136 (-400 (-917 *5))))) (-5 *4 (-1142))
+ (-5 *2 (-400 (-917 *5))) (-5 *1 (-1011 *5)) (-4 *5 (-542)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-591 *1)) (-4 *1 (-414 *4)) (-4 *4 (-823)) (-4 *4 (-542))
+ (-5 *2 (-400 (-1136 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1164)))
+ (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2 (-1136 (-400 (-1136 *3)))) (-5 *1 (-546 *6 *3 *7)) (-5 *5 (-1136 *3))
+ (-4 *7 (-1067))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1221 *5)) (-14 *5 (-1142)) (-4 *6 (-1018))
+ (-5 *2 (-1193 *5 (-917 *6))) (-5 *1 (-919 *5 *6)) (-5 *3 (-917 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-1136 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-1136 *1))
+ (-4 *1 (-921 *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *5 *4))
+ (-5 *2 (-400 (-1136 *3))) (-5 *1 (-922 *5 *4 *6 *7 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1136 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $)))))
+ (-4 *7 (-921 *6 *5 *4)) (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018))
+ (-5 *1 (-922 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1142)) (-4 *5 (-542)) (-5 *2 (-400 (-1136 (-400 (-917 *5)))))
+ (-5 *1 (-1011 *5)) (-5 *3 (-400 (-917 *5))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-1146)) (-5 *1 (-1145)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-235))))
+ (|partial| -12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-1124))) (-5 *2 (-1230)) (-5 *1 (-235)))))
-(((*1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-441 *3 *4 *5 *6)))))
+ (|partial| -12 (-4 *4 (-769)) (-4 *5 (-1018)) (-4 *6 (-921 *5 *4 *2))
+ (-4 *2 (-823)) (-5 *1 (-922 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -4300 ($ *6)) (-15 -3319 (*6 $)) (-15 -3318 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-5 *2 (-1142))
+ (-5 *1 (-1011 *4)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1201 (-400 (-549))))
- (-5 *2 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))))
- (-5 *1 (-884 *3 *4)) (-4 *4 (-1201 (-400 *3)))))
+ (-12 (-5 *3 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))
+ (-5 *2 (-618 (-1142))) (-5 *1 (-260))))
((*1 *2 *3)
- (-12 (-4 *4 (-1201 (-400 *2))) (-5 *2 (-549)) (-5 *1 (-884 *4 *3))
- (-4 *3 (-1201 (-400 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-621 (-114))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-823)) (-5 *1 (-900 *3 *2)) (-4 *2 (-423 *3))))
+ (-12 (-5 *3 (-1136 *7)) (-4 *7 (-921 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1018)) (-5 *2 (-618 *5)) (-5 *1 (-314 *4 *5 *6 *7))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-380))))
+ ((*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-823)) (-5 *2 (-618 (-1142)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-618 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1142)) (-5 *2 (-309 (-549))) (-5 *1 (-901)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1179))
- (-4 *5 (-366 *4)) (-4 *2 (-366 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *6 *2 *7)) (-4 *6 (-1018))
- (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-172 *6))
- (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1216 *5)) (-4 *6 (-1201 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-874 *3)) (-4 *3 (-1066)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-621 (-1142))) (-4 *5 (-1018))
- (-5 *2 (-923 *5)) (-5 *1 (-915 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-541))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-728)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *6 (-219))
- (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-728)))))
-(((*1 *2)
- (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1225 *4)) (-5 *3 (-747)) (-4 *4 (-342))
- (-5 *1 (-519 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1016)))))
-(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1179)))))
-(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))))
-(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-823) (-541))))))
-(((*1 *2)
- (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1066)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-356)) (-4 *5 (-541))
- (-5 *2
- (-2 (|:| |minor| (-621 (-892))) (|:| -2650 *3)
- (|:| |minors| (-621 (-621 (-892)))) (|:| |ops| (-621 *3))))
- (-5 *1 (-89 *5 *3)) (-5 *4 (-892)) (-4 *3 (-632 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-1185 *4)) (-4 *4 (-1018)) (-4 *4 (-541))
- (-5 *2 (-400 (-923 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-1185 *4)) (-4 *4 (-1018)) (-4 *4 (-541))
- (-5 *2 (-400 (-923 *4))))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1179))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1124)) (-5 *1 (-960))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-1060 *4)) (-4 *4 (-1179))
- (-5 *1 (-1058 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))
- ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-997 *3)) (-4 *3 (-1179)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-734)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1068 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1066))))
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-921 *6 *4 *5))
+ (-5 *2 (-618 *5)) (-5 *1 (-922 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1063 (-1142))) (-5 *1 (-937 *3)) (-4 *3 (-938))))
((*1 *2 *1)
- (-12 (-5 *2 (-1068 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-747))
- (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $)))))
- (-4 *4 (-1201 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-130))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170))))
+ (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *5 (-823))
+ (-5 *2 (-618 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))))
+ (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-5 *2 (-618 (-1142)))
+ (-5 *1 (-1011 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4))))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1201 *4))
- (-4 *5 (-1201 (-400 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-618 (-917 *6))) (-5 *4 (-618 (-1142)))
+ (-4 *6 (-13 (-542) (-1009 *5))) (-4 *5 (-542))
+ (-5 *2 (-618 (-618 (-286 (-400 (-917 *6)))))) (-5 *1 (-1010 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1138 *1)) (-5 *4 (-1142)) (-4 *1 (-27))
- (-5 *2 (-621 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1138 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-923 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-621 *1))
- (-4 *1 (-29 *4))))
+ (-12 (-5 *4 (-591 *6)) (-4 *6 (-13 (-414 *5) (-27) (-1164)))
+ (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2 (-1136 (-400 (-1136 *6)))) (-5 *1 (-546 *5 *6 *7)) (-5 *3 (-1136 *6))
+ (-4 *7 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1200 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018))))
+ ((*1 *2 *1) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1200 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1136 *11)) (-5 *6 (-618 *10)) (-5 *7 (-618 (-747)))
+ (-5 *8 (-618 *11)) (-4 *10 (-823)) (-4 *11 (-300)) (-4 *9 (-769))
+ (-4 *5 (-921 *11 *9 *10)) (-5 *2 (-618 (-1136 *5)))
+ (-5 *1 (-719 *9 *10 *11 *5)) (-5 *3 (-1136 *5))))
((*1 *2 *1)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *2 (-621 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 (-219))) (-5 *4 (-621 (-1142)))
- (-5 *5 (-1060 (-816 (-219)))) (-5 *2 (-1122 (-219))) (-5 *1 (-293)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-721 *3)) (-4 *3 (-170)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1122 (-219))) (-5 *2 (-621 (-1124))) (-5 *1 (-186))))
+ (-12 (-4 *2 (-921 *3 *4 *5)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *3 (-356))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-14 *6 (-618 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-890)) (-5 *1 (-1003 *2))
+ (-4 *2 (-13 (-1067) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-890)) (-5 *1 (-1002 *2))
+ (-4 *2 (-13 (-1067) (-10 -8 (-15 -4182 ($ $ $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-1224 *5))) (-5 *4 (-535)) (-5 *2 (-1224 *5))
+ (-5 *1 (-1001 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-535)) (-4 *6 (-356)) (-4 *6 (-361))
+ (-4 *6 (-1018)) (-5 *2 (-618 (-618 (-665 *6)))) (-5 *1 (-1001 *6))
+ (-5 *3 (-618 (-665 *6)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1122 (-219))) (-5 *2 (-621 (-1124))) (-5 *1 (-293))))
+ (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1018))
+ (-5 *2 (-618 (-618 (-665 *4)))) (-5 *1 (-1001 *4))
+ (-5 *3 (-618 (-665 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018))
+ (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5))
+ (-5 *3 (-618 (-665 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-890)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018))
+ (-5 *2 (-618 (-618 (-665 *5)))) (-5 *1 (-1001 *5))
+ (-5 *3 (-618 (-665 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-665 *5))) (-5 *4 (-535)) (-4 *5 (-356)) (-4 *5 (-1018))
+ (-5 *2 (-112)) (-5 *1 (-1001 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1122 (-219))) (-5 *2 (-621 (-1124))) (-5 *1 (-298)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-1160)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-823) (-541))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-997 (-816 (-549)))) (-5 *1 (-576 *3)) (-4 *3 (-1018)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-549)) (-5 *5 (-167 (-219))) (-5 *6 (-1124))
- (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+ (-12 (-5 *3 (-618 (-665 *4))) (-4 *4 (-356)) (-4 *4 (-1018)) (-5 *2 (-112))
+ (-5 *1 (-1001 *4)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-618 (-665 *6))) (-5 *4 (-112)) (-5 *5 (-535)) (-5 *2 (-665 *6))
+ (-5 *1 (-1001 *6)) (-4 *6 (-356)) (-4 *6 (-1018))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 (-665 *4))) (-5 *2 (-665 *4)) (-5 *1 (-1001 *4))
+ (-4 *4 (-356)) (-4 *4 (-1018))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-618 (-665 *5))) (-5 *4 (-535)) (-5 *2 (-665 *5))
+ (-5 *1 (-1001 *5)) (-4 *5 (-356)) (-4 *5 (-1018)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *7)) (-4 *7 (-823))
- (-4 *8 (-920 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1225 (-400 *8)) "failed"))
- (|:| -3420 (-621 (-1225 (-400 *8))))))
- (-5 *1 (-645 *5 *6 *7 *8)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-273)))))
+ (-12 (-5 *3 (-618 (-665 *5))) (-5 *4 (-1224 *5)) (-4 *5 (-300))
+ (-4 *5 (-1018)) (-5 *2 (-665 *5)) (-5 *1 (-1001 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-665 *5))) (-4 *5 (-300)) (-4 *5 (-1018))
+ (-5 *2 (-1224 (-1224 *5))) (-5 *1 (-1001 *5)) (-5 *4 (-1224 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-845)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))))
+ (-12 (-5 *3 (-618 (-665 *4))) (-5 *2 (-665 *4)) (-4 *4 (-1018))
+ (-5 *1 (-1001 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *4 *5))
- (-4 *5 (-13 (-27) (-1164) (-423 *4)))))
+ (-12 (-5 *3 (-1224 (-1224 *4))) (-4 *4 (-1018)) (-5 *2 (-665 *4))
+ (-5 *1 (-1001 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-873 (-535))) (-5 *4 (-535)) (-5 *2 (-665 *4))
+ (-5 *1 (-1000 *5)) (-4 *5 (-1018))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *4 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-400 (-549)))
- (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *5 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5)))
- (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-549)))
- (-4 *3 (-13 (-27) (-1164) (-423 *6)))
- (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-400 (-549)))) (-5 *4 (-287 *8))
- (-5 *5 (-1192 (-400 (-549)))) (-5 *6 (-400 (-549)))
- (-4 *8 (-13 (-27) (-1164) (-423 *7)))
- (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3)) (-5 *6 (-1192 (-400 (-549))))
- (-5 *7 (-400 (-549))) (-4 *3 (-13 (-27) (-1164) (-423 *8)))
- (-4 *8 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-400 (-549))) (-4 *4 (-1018)) (-4 *1 (-1208 *4 *3))
- (-4 *3 (-1185 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
- (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-920 *4 *3 *5)))))
-(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))
- ((*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300))))
- ((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-300))))
- ((*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-549)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-549))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))))
+ (-12 (-5 *3 (-618 (-535))) (-5 *2 (-665 (-535))) (-5 *1 (-1000 *4))
+ (-4 *4 (-1018))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-873 (-535)))) (-5 *4 (-535)) (-5 *2 (-618 (-665 *4)))
+ (-5 *1 (-1000 *5)) (-4 *5 (-1018))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-618 (-535)))) (-5 *2 (-618 (-665 (-535))))
+ (-5 *1 (-1000 *4)) (-4 *4 (-1018)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-1000 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-618 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-1000 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-1000 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-618 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-1000 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-665 *4)) (-5 *3 (-890)) (-4 *4 (-1018)) (-5 *1 (-1000 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-618 (-665 *4))) (-5 *3 (-890)) (-4 *4 (-1018))
+ (-5 *1 (-1000 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1201 (-48))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-4 *1 (-1110))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-747)) (|:| -4267 *4))) (-5 *5 (-747))
- (-4 *4 (-920 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-441 *6 *7 *8 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-400 *4)) (-4 *4 (-1201 *3)) (-4 *3 (-13 (-356) (-145)))
- (-5 *1 (-392 *3 *4)))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-665 (-917 *4))) (-5 *1 (-1000 *4))
+ (-4 *4 (-1018)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-665 *4)) (-5 *3 (-890)) (|has| *4 (-6 (-4338 "*")))
+ (-4 *4 (-1018)) (-5 *1 (-1000 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-618 (-665 *4))) (-5 *3 (-890)) (|has| *4 (-6 (-4338 "*")))
+ (-4 *4 (-1018)) (-5 *1 (-1000 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))))
-(((*1 *2)
- (-12 (-4 *3 (-541)) (-5 *2 (-621 (-665 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-410 *3)))))
+ (-12 (-5 *3 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-665 (-307 (-535)))))
+ (-5 *1 (-999)))))
+(((*1 *2 *2) (-12 (-5 *2 (-618 (-665 (-307 (-535))))) (-5 *1 (-999)))))
+(((*1 *2 *2) (-12 (-5 *2 (-665 (-307 (-535)))) (-5 *1 (-999)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *4 *5))
- (-4 *5 (-13 (-27) (-1164) (-423 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *4 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-549)) (-4 *5 (-13 (-444) (-823) (-1009 *4) (-617 *4)))
- (-5 *2 (-52)) (-5 *1 (-308 *5 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5)))
- (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *6)))
- (-4 *6 (-13 (-444) (-823) (-1009 *5) (-617 *5))) (-5 *5 (-549))
- (-5 *2 (-52)) (-5 *1 (-308 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-287 *7)) (-5 *5 (-1192 (-549)))
- (-4 *7 (-13 (-27) (-1164) (-423 *6)))
- (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3)) (-5 *6 (-1192 (-549)))
- (-4 *3 (-13 (-27) (-1164) (-423 *7)))
- (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-549)) (-4 *4 (-1018)) (-4 *1 (-1187 *4 *3))
- (-4 *3 (-1216 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1185 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-892))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))))
-(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-797)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170))))
- ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2))))
- ((*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1))
- (-4 *1 (-1032 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-728)))))
+ (|partial| -12 (-5 *3 (-665 (-400 (-917 (-535)))))
+ (-5 *2 (-665 (-307 (-535)))) (-5 *1 (-999)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-307 (-535))))
+ (-5 *1 (-999)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *5)) (-5 *4 (-892)) (-4 *5 (-823))
- (-5 *2 (-58 (-621 (-648 *5)))) (-5 *1 (-648 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-621 (-923 *3))) (-4 *3 (-444))
- (-5 *1 (-353 *3 *4)) (-14 *4 (-621 (-1142)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-621 (-756 *3 (-836 *4)))) (-4 *3 (-444))
- (-14 *4 (-621 (-1142))) (-5 *1 (-606 *3 *4)))))
+ (-12 (-5 *4 (-665 (-400 (-917 (-535))))) (-5 *2 (-618 (-665 (-307 (-535)))))
+ (-5 *1 (-999)) (-5 *3 (-307 (-535))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-400 (-917 (-535)))))
+ (-5 *2
+ (-618
+ (-2 (|:| |radval| (-307 (-535))) (|:| |radmult| (-535))
+ (|:| |radvect| (-618 (-665 (-307 (-535))))))))
+ (-5 *1 (-999)))))
+(((*1 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))
+ ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-997 *3)) (-4 *3 (-1178)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-996 *3 *2)) (-4 *2 (-634 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -3600 *3) (|:| -2827 (-618 *5))))
+ (-5 *1 (-996 *5 *3)) (-5 *4 (-618 *5)) (-4 *3 (-634 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1028 (-995 *4) (-1136 (-995 *4)))) (-5 *3 (-835))
+ (-5 *1 (-995 *4)) (-4 *4 (-13 (-821) (-356) (-991))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1172 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769))
- (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-1066)) (-5 *2 (-747)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1164)))))
- ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834))))
- ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2252 *4)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
+ (|partial| -12 (-5 *2 (-1028 (-995 *3) (-1136 (-995 *3)))) (-5 *1 (-995 *3))
+ (-4 *3 (-13 (-821) (-356) (-991))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *4 *5))
- (-4 *5 (-13 (-27) (-1164) (-423 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *4 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-747))
- (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *5 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5)))
- (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-287 *3)) (-5 *5 (-747))
- (-4 *3 (-13 (-27) (-1164) (-423 *6)))
- (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-308 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-287 *6))
- (-4 *6 (-13 (-27) (-1164) (-423 *5)))
- (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *5 *6))))
+ (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))
+ (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))
+ (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535)))
+ (-5 *4 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))
+ (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535))) (-5 *4 (-400 (-535)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *6)))
- (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *6 *3))))
+ (-12 (-5 *5 (-400 (-535))) (-5 *2 (-618 (-2 (|:| -3456 *5) (|:| -3455 *5))))
+ (-5 *1 (-992 *3)) (-4 *3 (-1200 (-535)))
+ (-5 *4 (-2 (|:| -3456 *5) (|:| -3455 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))
+ (-5 *1 (-993 *3)) (-4 *3 (-1200 (-400 (-535))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))
+ (-5 *1 (-993 *3)) (-4 *3 (-1200 (-400 (-535))))
+ (-5 *4 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-400 (-535))) (-5 *2 (-618 (-2 (|:| -3456 *4) (|:| -3455 *4))))
+ (-5 *1 (-993 *3)) (-4 *3 (-1200 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-287 *7)) (-5 *5 (-1192 (-747)))
- (-4 *7 (-13 (-27) (-1164) (-423 *6)))
- (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1142)) (-5 *5 (-287 *3)) (-5 *6 (-1192 (-747)))
- (-4 *3 (-13 (-27) (-1164) (-423 *7)))
- (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-52)) (-5 *1 (-451 *7 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1216 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1018))
- (-4 *2 (-1185 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3726 (-758 *3)) (|:| |coef1| (-758 *3))))
- (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *2 (-2 (|:| -3726 *1) (|:| |coef1| *1)))
- (-4 *1 (-1032 *3 *4 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3))
- (-4 *3 (-1066)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-549))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-769)) (-4 *4 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823))
- (-5 *1 (-441 *5 *6 *7 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-716 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-546)) (-5 *3 (-549)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1142)) (-5 *1 (-260)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))))
-(((*1 *1) (-5 *1 (-155))))
-(((*1 *1 *1 *1) (-5 *1 (-129))))
+ (-12 (-5 *5 (-400 (-535))) (-5 *2 (-618 (-2 (|:| -3456 *5) (|:| -3455 *5))))
+ (-5 *1 (-993 *3)) (-4 *3 (-1200 *5))
+ (-5 *4 (-2 (|:| -3456 *5) (|:| -3455 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1122 (-923 *4)) (-1122 (-923 *4))))
- (-5 *1 (-1233 *4)) (-4 *4 (-356)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1068 *3)) (-5 *1 (-876 *3)) (-4 *3 (-361))
- (-4 *3 (-1066)))))
-(((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
-(((*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-549))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1124))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-497))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-573))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-470))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-136))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-154))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1132))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-604))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1062))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1056))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1040))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-941))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-178))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1007))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-304))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-647))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-152))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-516))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1236))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1033))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-508))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-657))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-95))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1081))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-132))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-1235))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-652))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-212))))
- ((*1 *2 *1) (-12 (-4 *1 (-1103)) (-5 *2 (-515))))
- ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1147))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-1147))))
- ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1147))))
- ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1147)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-876 *4)) (-4 *4 (-1066)) (-5 *2 (-621 (-747)))
- (-5 *1 (-875 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+ (-12 (-5 *3 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))
+ (-5 *2 (-618 (-400 (-535)))) (-5 *1 (-992 *4)) (-4 *4 (-1200 (-535))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535)))))
+ (-5 *2 (-400 (-535))) (-5 *1 (-992 *4)) (-4 *4 (-1200 (-535))))))
(((*1 *2 *2)
- (-12
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-414 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *1 (-113))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-113))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *4))
+ (-4 *4 (-414 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-113)) (-5 *1 (-161))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *4))
+ (-4 *4 (-13 (-414 *3) (-973)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-290 *3)) (-4 *3 (-291))))
+ ((*1 *2 *2) (-12 (-4 *1 (-291)) (-5 *2 (-113))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *4 (-823)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *4))
+ (-4 *4 (-414 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-591 *3)) (-4 *3 (-823))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-113)) (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *4))
+ (-4 *4 (-13 (-414 *3) (-973) (-1164)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-990)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1224 *6)) (-5 *4 (-1224 (-535))) (-5 *5 (-535)) (-4 *6 (-1067))
+ (-5 *2 (-1 *6)) (-5 *1 (-988 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-2 (|:| -3744 *4) (|:| -1572 (-535))))) (-4 *4 (-1067))
+ (-5 *2 (-1 *4)) (-5 *1 (-988 *4)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4))
+ (-5 *2 (-618 (-400 *5))) (-5 *1 (-987 *4 *5)) (-5 *3 (-400 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535))))
(-5 *2
- (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
- (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219))))
- (|:| |ub| (-621 (-816 (-219))))))
- (-5 *1 (-260)))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *1 *1 *1) (-5 *1 (-129))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-142)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977)))))
-(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))))
-(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1225 *4)) (-5 *1 (-519 *4))
- (-4 *4 (-342)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-525)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1060 (-219)))
- (-5 *2 (-1227)) (-5 *1 (-250)))))
-(((*1 *1 *1) (-4 *1 (-1027)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-892)) (-5 *2 (-460)) (-5 *1 (-1226)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-549))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))))
-(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
+ (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) (|:| |c1| (-400 *6))
+ (|:| |c2| (-400 *6)) (|:| -3417 *6)))
+ (-5 *1 (-987 *5 *6)) (-5 *3 (-400 *6)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1200 *6))
+ (-4 *6 (-13 (-356) (-145) (-1009 *4))) (-5 *4 (-535))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -3600
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-986 *6 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4))
+ (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) (-5 *1 (-986 *4 *5))
+ (-5 *3 (-400 *5)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-747)) (-4 *5 (-541))
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535))))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-940 *5 *3)) (-4 *3 (-1201 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(((*1 *1 *1) (-5 *1 (-219)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *1 *1) (-5 *1 (-372))) ((*1 *1) (-5 *1 (-372))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1142)) (-5 *2 (-430)) (-5 *1 (-1146)))))
+ (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) (|:| -3417 *6)))
+ (-5 *1 (-986 *5 *6)) (-5 *3 (-400 *6)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1142))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-618 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2242 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1164) (-27) (-414 *8)))
+ (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3))) (-5 *3 (-535))
+ (-5 *2 (-618 *4)) (-5 *1 (-985 *8 *4)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1142))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-618 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2242 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1164) (-27) (-414 *8)))
+ (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3))) (-5 *3 (-535))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3455 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-984 *8 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535))))
+ ((*1 *1 *1) (-4 *1 (-973))) ((*1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-983))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-4 *1 (-983))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-890))))
+ ((*1 *1 *1) (-4 *1 (-983))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-983)) (-5 *2 (-835)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1136 *1)) (-4 *1 (-983)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1136 *1)) (-4 *1 (-983)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-835)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-835)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1178)) (-5 *2 (-618 *1)) (-4 *1 (-981 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-618 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-5 *2 (-535)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-58 *3)) (-4 *3 (-1179))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-5 *1 (-58 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1230)) (-5 *1 (-1104))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-834))) (-5 *2 (-1230)) (-5 *1 (-1104)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (-549)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-1051))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *6 (-219))
- (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-729)))))
-(((*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1124)) (-5 *1 (-762)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *4)) (-4 *4 (-823)) (-5 *2 (-621 (-640 *4 *5)))
- (-5 *1 (-605 *4 *5 *6)) (-4 *5 (-13 (-170) (-694 (-400 (-549)))))
- (-14 *6 (-892)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-665 *3))
- (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $)))))
- (-4 *4 (-1201 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1066)) (-5 *2 (-860 *3 *4)) (-5 *1 (-856 *3 *4 *5))
- (-4 *3 (-1066)) (-4 *5 (-642 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-300))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *2)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1225 *6)) (-5 *4 (-1225 (-549))) (-5 *5 (-549))
- (-4 *6 (-1066)) (-5 *2 (-1 *6)) (-5 *1 (-988 *6)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1124)) (-5 *4 (-1086)) (-5 *2 (-112)) (-5 *1 (-797)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
- ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-534)))
- ((*1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1066) (-34)))
- (-4 *3 (-13 (-1066) (-34))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *2 (-621 (-219)))
- (-5 *1 (-460)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1138 *4)) (-5 *1 (-350 *4))
- (-4 *4 (-342)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
+ (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-981 *3)) (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-549))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549))
- (-14 *4 (-747)) (-4 *5 (-170)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1179)) (-5 *1 (-1098 *4 *2))
- (-4 *2 (-13 (-584 (-549) *4) (-10 -7 (-6 -4336) (-6 -4337))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-823)) (-4 *3 (-1179)) (-5 *1 (-1098 *3 *2))
- (-4 *2 (-13 (-584 (-549) *3) (-10 -7 (-6 -4336) (-6 -4337)))))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1179))
- (-4 *3 (-1066)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-876 *4)) (-4 *4 (-1066)) (-5 *2 (-112))
- (-5 *1 (-875 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-892)) (-5 *2 (-112)) (-5 *1 (-1067 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7))
- (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-2 (|:| |goodPols| (-621 *8)) (|:| |badPols| (-621 *8))))
- (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-621 *8)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))
- (-5 *2 (-621 (-1142))) (-5 *1 (-260))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1138 *7)) (-4 *7 (-920 *6 *4 *5)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *2 (-621 *5))
- (-5 *1 (-314 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-618 *1)) (|has| *1 (-6 -4337)) (-4 *1 (-981 *3))
+ (-4 *3 (-1178)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-981 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534))
+ (-5 *2 (-400 (-535)))))
((*1 *2 *1)
- (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-380))))
+ (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-398 *3)) (-4 *3 (-534))
+ (-4 *3 (-542))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-534)) (-5 *2 (-400 (-535)))))
((*1 *2 *1)
- (-12 (-4 *1 (-423 *3)) (-4 *3 (-823)) (-5 *2 (-621 (-1142)))))
+ (|partial| -12 (-4 *1 (-772 *3)) (-4 *3 (-170)) (-4 *3 (-534))
+ (-5 *2 (-400 (-535)))))
((*1 *2 *1)
- (-12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1066))))
+ (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-808 *3)) (-4 *3 (-534))
+ (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-621 *5))))
+ (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-815 *3)) (-4 *3 (-534))
+ (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-969 *3)) (-4 *3 (-170)) (-4 *3 (-534))
+ (-5 *2 (-400 (-535)))))
((*1 *2 *3)
- (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
- (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-621 *5))
- (-5 *1 (-921 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-356)
- (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $)))))))
+ (|partial| -12 (-5 *2 (-400 (-535))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-398 *3)) (-4 *3 (-534)) (-4 *3 (-542))))
+ ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-772 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-1068 (-1142))) (-5 *1 (-937 *3)) (-4 *3 (-938))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-808 *3)) (-4 *3 (-534)) (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768))
- (-4 *5 (-823)) (-5 *2 (-621 *5))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-534)) (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *5))))
+ (-12 (-4 *1 (-969 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-5 *2 (-621 (-1142)))
- (-5 *1 (-1014 *4)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-979 *3)) (-4 *3 (-1009 (-400 (-535)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-535))) (-5 *1 (-398 *3)) (-4 *3 (-534)) (-4 *3 (-542))))
+ ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-400 (-535)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-772 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-535))) (-5 *1 (-808 *3)) (-4 *3 (-534)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-535))) (-5 *1 (-815 *3)) (-4 *3 (-534)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-535)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2)))))
+(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977)))))
+(((*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-977)))))
+(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977))))
+ ((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-977)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-594 (-863 (-549))))
- (-4 *5 (-857 (-549)))
- (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-552 *5 *3)) (-4 *3 (-607))
- (-4 *3 (-13 (-27) (-1164) (-423 *5))))))
-(((*1 *2)
- (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-410 *3)))))
+ (-12 (-5 *3 (-400 (-535))) (-5 *4 (-535)) (-5 *2 (-51)) (-5 *1 (-976)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1119 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-975 *3)) (-14 *3 (-535)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-1225 *5))) (-5 *4 (-549)) (-5 *2 (-1225 *5))
- (-5 *1 (-1000 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1124))
- (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+ (-12 (-5 *3 (-398 *5)) (-4 *5 (-542))
+ (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *5) (|:| |radicand| (-618 *5))))
+ (-5 *1 (-313 *5)) (-5 *4 (-747))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-535)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-971 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ ((*1 *1 *1 *1) (-4 *1 (-465)))
+ ((*1 *1 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170))))
+ ((*1 *2 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-854))))
+ ((*1 *1 *1) (-5 *1 (-942)))
+ ((*1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-969 *2)) (-4 *2 (-170)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1108 *3 *4)) (-14 *3 (-890)) (-4 *4 (-356))
+ (-5 *1 (-964 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *6))
+ (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1009 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1018)) (-4 *3 (-823)) (-5 *2 (-1091 *3 (-591 *1)))
+ (-4 *1 (-414 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-486)))) (-5 *1 (-486))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-597 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-703) *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-170)) (-4 *2 (-694 *3)) (-5 *1 (-628 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-703) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-962 *2)) (-4 *4 (-1200 *3)) (-4 *2 (-300))
+ (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1009 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-542)) (-4 *3 (-823)) (-5 *2 (-1091 *3 (-591 *1)))
+ (-4 *1 (-414 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091 (-535) (-591 (-486)))) (-5 *1 (-486))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4))
+ (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4))
+ (-5 *1 (-628 *3 *4 *2)) (-4 *3 (-694 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))))
+(((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)) (-4 *2 (-1018))))
+ ((*1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))))
+(((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)) (-4 *2 (-542))))
+ ((*1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-542)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))
+ ((*1 *1) (-4 *1 (-361)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1224 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343))))
+ ((*1 *1 *1) (-4 *1 (-534))) ((*1 *1) (-4 *1 (-534)))
+ ((*1 *1 *1) (-5 *1 (-535))) ((*1 *1 *1) (-5 *1 (-747)))
+ ((*1 *2 *1) (-12 (-5 *2 (-873 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-535)) (-5 *2 (-873 *4)) (-5 *1 (-876 *4)) (-4 *4 (-1067))))
+ ((*1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-534)) (-4 *2 (-542)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-957 (-400 (-535)) (-836 *3) (-233 *4 (-747)) (-241 *3 (-400 (-535)))))
+ (-14 *3 (-618 (-1142))) (-14 *4 (-747)) (-5 *1 (-958 *3 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-618 *3)) (-4 *3 (-921 *4 *6 *5)) (-4 *4 (-444)) (-4 *5 (-823))
+ (-4 *6 (-769)) (-5 *1 (-957 *4 *5 *6 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-823))
+ (-4 *5 (-769)) (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1))
- (-4 *1 (-1032 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1225 (-1225 *4))) (-4 *4 (-1018)) (-5 *2 (-665 *4))
- (-5 *1 (-1000 *4)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-724)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1066)) (-4 *2 (-871 *5)) (-5 *1 (-668 *5 *2 *3 *4))
- (-4 *3 (-366 *2)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4336)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-52)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-892)) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-1226))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-892)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
+ (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-618 *6))
+ (-5 *1 (-957 *3 *4 *5 *6)) (-4 *6 (-921 *3 *5 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-621 *3)) (|:| |image| (-621 *3))))
- (-5 *1 (-876 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1138 (-400 (-1138 *2)))) (-5 *4 (-592 *2))
- (-4 *2 (-13 (-423 *5) (-27) (-1164)))
- (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *1 (-545 *5 *2 *6)) (-4 *6 (-1066))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1138 *1)) (-4 *1 (-920 *4 *5 *3)) (-4 *4 (-1018))
- (-4 *5 (-769)) (-4 *3 (-823))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1138 *4)) (-4 *4 (-1018)) (-4 *1 (-920 *4 *5 *3))
- (-4 *5 (-769)) (-4 *3 (-823))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-1138 *2))) (-4 *5 (-769)) (-4 *4 (-823))
- (-4 *6 (-1018))
- (-4 *2
- (-13 (-356)
- (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $)))))
- (-5 *1 (-921 *5 *4 *6 *7 *2)) (-4 *7 (-920 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-1138 (-400 (-923 *5))))) (-5 *4 (-1142))
- (-5 *2 (-400 (-923 *5))) (-5 *1 (-1014 *5)) (-4 *5 (-541)))))
+ (-12 (-4 *2 (-921 *3 *5 *4)) (-5 *1 (-957 *3 *4 *5 *2)) (-4 *3 (-444))
+ (-4 *4 (-823)) (-4 *5 (-769)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823))
- (-4 *4 (-259 *3)) (-4 *5 (-769)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-199))))
+ (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-957 *2 *3 *4 *5))
+ (-4 *5 (-921 *2 *4 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1200 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-956 *4 *2 *3 *5))
+ (-4 *4 (-343)) (-4 *5 (-701 *2 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)))))
+ (-4 *5 (-542)) (-5 *1 (-709 *4 *3 *5 *2))
+ (-4 *2 (-921 (-400 (-917 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *3
+ (-13 (-823)
+ (-10 -8 (-15 -4313 ((-1142) $))
+ (-15 -4174 ((-3 $ #1="failed") (-1142))))))
+ (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-921 (-917 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-618 *6))
+ (-4 *6
+ (-13 (-823)
+ (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1#) (-1142))))))
+ (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2))
+ (-4 *2 (-921 (-917 *4) *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)))))
+ (-4 *5 (-542)) (-5 *1 (-709 *4 *3 *5 *2))
+ (-4 *2 (-921 (-400 (-917 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *3
+ (-13 (-823)
+ (-10 -8 (-15 -4313 ((-1142) $))
+ (-15 -4174 ((-3 $ #1="failed") (-1142))))))
+ (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-921 (-917 *4) *5 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 (-372))) (-5 *2 (-372)) (-5 *1 (-199)))))
+ (-12 (-5 *3 (-618 *6))
+ (-4 *6
+ (-13 (-823)
+ (-10 -8 (-15 -4313 ((-1142) $)) (-15 -4174 ((-3 $ #1#) (-1142))))))
+ (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2))
+ (-4 *2 (-921 (-917 *4) *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-747)) (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-845))))
+ ((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-845))))
+ ((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-155))))
+ ((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356))
+ (-5 *2 (-618 (-2 (|:| C (-665 *5)) (|:| |g| (-1224 *5))))) (-5 *1 (-949 *5))
+ (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-535)) (-5 *3 (-890)) (-5 *1 (-675))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-665 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356))
+ (-5 *1 (-949 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-356)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356))
+ (-5 *2 (-2 (|:| R (-665 *6)) (|:| A (-665 *6)) (|:| |Ainv| (-665 *6))))
+ (-5 *1 (-949 *6)) (-5 *3 (-665 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300))
+ (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300))
+ (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3)))))
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300))
+ (-4 *3 (-542)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-542))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4))))))
+ (-12 (-5 *2 (-618 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-356) (-1164) (-973))))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1179))
- (-4 *4 (-366 *2)) (-4 *5 (-366 *2))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4337)) (-4 *1 (-119 *3))
- (-4 *3 (-1179))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4337)) (-4 *1 (-119 *3))
- (-4 *3 (-1179))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-747)) (-5 *1 (-207 *4 *2)) (-14 *4 (-892))
- (-4 *2 (-1066))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1066))
- (-4 *2 (-1179))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1142)) (-5 *1 (-610))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1192 (-549))) (|has| *1 (-6 -4337)) (-4 *1 (-627 *2))
- (-4 *2 (-1179))))
- ((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-621 (-549))) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4337)) (-4 *1 (-981 *2))
- (-4 *2 (-1179))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1066))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2))
- (-4 *2 (-1179))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *3))
- (-4 *3 (-1179))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2))
- (-4 *2 (-1179)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823)) (-4 *3 (-170))))
+ (-12 (-4 *4 (-444)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *2 (-618 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-618 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8))
+ (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *1 (-948 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-618 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-542)) (-4 *7 (-769))
+ (-4 *8 (-823)) (-5 *1 (-948 *6 *7 *8 *9)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -3666 (-618 *7))))
+ (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-618 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7))))
+ (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7))))
+ (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260))))
+ ((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7))))
+ (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-618 *7)) (|:| |badPols| (-618 *7))))
+ (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-618 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542))
+ (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-2 (|:| |goodPols| (-618 *8)) (|:| |badPols| (-618 *8))))
+ (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-618 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542))
+ (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-2 (|:| |goodPols| (-618 *8)) (|:| |badPols| (-618 *8))))
+ (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-618 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-542))
+ (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-2 (|:| |goodPols| (-618 *8)) (|:| |badPols| (-618 *8))))
+ (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-618 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-618 *8))) (-5 *3 (-618 *8)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-542)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-112))
+ (-5 *1 (-948 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))
((*1 *2 *3 *3)
- (-12 (-4 *2 (-541)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1201 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-541))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))))
+ (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *3))
+ (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-618 *3)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-618 *7) (-618 *7))) (-5 *2 (-618 *7))
+ (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *1 (-948 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-618 *3))
+ (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892))
- (-4 *4 (-1018)))))
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-618 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-947 *4 *5 *3 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
+ (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))
+ (-4 *5 (-1032 *3 *4 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))
+ (-4 *5 (-1032 *3 *4 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))
+ (-4 *5 (-1032 *3 *4 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1178)) (-4 *2 (-823))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1178))))
+ ((*1 *2 *2) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3448 *1) (|:| |upper| *1)))
+ (-4 *1 (-947 *4 *5 *3 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1201 (-400 (-549)))) (-5 *1 (-884 *3 *2))
- (-4 *2 (-1201 (-400 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
- (-14 *6 (-621 (-1142))) (-5 *2 (-621 (-1015 *5 *6)))
- (-5 *1 (-606 *5 *6)))))
-(((*1 *1) (-5 *1 (-430))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-108))) (-5 *1 (-173)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-621 *1)) (-4 *1 (-891)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))))
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-542))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-542))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-618 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-618 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-542)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-618 (-618 (-914 (-219)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-618 (-618 (-914 (-219))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1055 (-219)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1055 (-219))))))
+(((*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1055 (-219)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1055 (-219))))))
+(((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1055 (-219))))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))))
+ ((*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *6 (-232 (-4299 *3) (-747)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *6))
+ (-2 (|:| -2483 *5) (|:| -2484 *6))))
+ (-5 *2 (-690 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) (-4 *5 (-823))
+ (-4 *8 (-921 *4 *6 (-836 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-703)) (-4 *2 (-823)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1018))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *4 (-823)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-621 (-892))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-892))
+ (-12 (-5 *3 (-618 (-890))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890))
(-4 *2 (-356)) (-14 *5 (-964 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-690 *5 *6 *7)) (-4 *5 (-823))
- (-4 *6 (-232 (-3774 *4) (-747)))
+ (-12 (-5 *3 (-690 *5 *6 *7)) (-4 *5 (-823)) (-4 *6 (-232 (-4299 *4) (-747)))
(-14 *7
- (-1 (-112) (-2 (|:| -3491 *5) (|:| -3577 *6))
- (-2 (|:| -3491 *5) (|:| -3577 *6))))
- (-14 *4 (-621 (-1142))) (-4 *2 (-170))
- (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) (-4 *8 (-920 *2 *6 (-836 *4)))))
+ (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *6))
+ (-2 (|:| -2483 *5) (|:| -2484 *6))))
+ (-14 *4 (-618 (-1142))) (-4 *2 (-170)) (-5 *1 (-453 *4 *2 *5 *6 *7 *8))
+ (-4 *8 (-921 *2 *6 (-836 *4)))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-823))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-823))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-549)) (-4 *2 (-541)) (-5 *1 (-601 *2 *4))
- (-4 *4 (-1201 *2))))
+ (-12 (-5 *3 (-535)) (-4 *2 (-542)) (-5 *1 (-601 *2 *4)) (-4 *4 (-1200 *2))))
((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-712 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-703))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-703))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 *5)) (-5 *3 (-621 (-747))) (-4 *1 (-717 *4 *5))
+ (-12 (-5 *2 (-618 *5)) (-5 *3 (-618 (-747))) (-4 *1 (-717 *4 *5))
(-4 *4 (-1018)) (-4 *5 (-823))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018))
- (-4 *2 (-823))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-823))))
((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 *6)) (-5 *3 (-621 (-747))) (-4 *1 (-920 *4 *5 *6))
+ (-12 (-5 *2 (-618 *6)) (-5 *3 (-618 (-747))) (-4 *1 (-921 *4 *5 *6))
(-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *1 (-920 *4 *5 *2)) (-4 *4 (-1018))
- (-4 *5 (-769)) (-4 *2 (-823))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-921 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *2 (-823))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 *6)) (-5 *3 (-621 *5)) (-4 *1 (-944 *4 *5 *6))
+ (-12 (-5 *2 (-618 *6)) (-5 *3 (-618 *5)) (-4 *1 (-944 *4 *5 *6))
(-4 *4 (-1018)) (-4 *5 (-768)) (-4 *6 (-823))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-944 *4 *3 *2)) (-4 *4 (-1018)) (-4 *3 (-768))
- (-4 *2 (-823)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1122 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-96))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-96)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-892)) (-4 *5 (-300)) (-4 *3 (-1201 *5))
- (-5 *2 (-2 (|:| |plist| (-621 *3)) (|:| |modulo| *5)))
- (-5 *1 (-452 *5 *3)) (-5 *4 (-621 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 (-1142))) (-4 *4 (-1066))
- (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-823))
- (-4 *4 (-769)) (-5 *1 (-958 *2 *3 *4 *5)) (-4 *5 (-920 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-309 (-549))) (-5 *1 (-1085))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-621 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541))
- (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-948 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
- (-5 *2 (-2 (|:| -2680 (-621 *6)) (|:| -1358 (-621 *6)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-52)) (-5 *1 (-1157)))))
+ (-12 (-4 *1 (-944 *4 *3 *2)) (-4 *4 (-1018)) (-4 *3 (-768)) (-4 *2 (-823)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *5 (-823))
+ (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535))))
+ ((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1) (-4 *1 (-841 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *4 (-823)))))
+(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-942)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-621
- (-2 (|:| -3122 (-747))
- (|:| |eqns|
- (-621
- (-2 (|:| |det| *7) (|:| |rows| (-621 (-549)))
- (|:| |cols| (-621 (-549))))))
- (|:| |fgb| (-621 *7)))))
- (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145)))
- (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-747))
- (-5 *1 (-895 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-534))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-549))
- (|:| -2886 (-621 (-2 (|:| |irr| *3) (|:| -3533 (-549)))))))
- (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-549))
- (|:| -2886 (-621 (-2 (|:| |irr| *3) (|:| -3533 (-549)))))))
- (-5 *1 (-1190 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-538)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-823))
- (-4 *5 (-769)) (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-549)) (-4 *3 (-170)) (-4 *5 (-366 *3))
- (-4 *6 (-366 *3)) (-5 *1 (-664 *3 *5 *6 *2))
- (-4 *2 (-663 *3 *5 *6)))))
+ (-12 (-5 *2 (-618 (-618 (-535)))) (-5 *1 (-942)) (-5 *3 (-618 (-535))))))
+(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-942)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4099 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4099 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *2 (-542)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-747)) (-4 *3 (-542)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1200 *3)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-621 (-549))) (-5 *3 (-112)) (-5 *1 (-1076)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
- (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))
- (-4 *7 (-963 *4)) (-4 *2 (-663 *7 *8 *9))
- (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-663 *4 *5 *6))
- (-4 *8 (-366 *7)) (-4 *9 (-366 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2)) (-4 *2 (-300))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2))
- (-4 *2 (-663 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *4 (-1018))
- (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *2 *4)) (-4 *4 (-300)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-429)))))
-(((*1 *1 *1 *1) (-4 *1 (-141)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534))))
- ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1016))
- (-5 *3 (-549)))))
+ (-12 (-5 *3 (-747)) (-4 *2 (-542)) (-5 *1 (-940 *2 *4)) (-4 *4 (-1200 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-300))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3))))
+ (-5 *1 (-379 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2091 (-747)) (|:| -3223 (-747)))) (-5 *1 (-747))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *4 (-542))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -3199 *4))) (-5 *1 (-940 *4 *3))
+ (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *4 (-542))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3199 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-542)) (-4 *2 (-444)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1200 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-618 (-747))) (-5 *1 (-940 *4 *3))
+ (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-618 *3)) (-5 *1 (-940 *4 *3))
+ (-4 *3 (-1200 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-923 *5)) (-4 *5 (-1018)) (-5 *2 (-241 *4 *5))
- (-5 *1 (-915 *4 *5)) (-14 *4 (-621 (-1142))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-747)) (-4 *4 (-300)) (-4 *6 (-1201 *4))
- (-5 *2 (-1225 (-621 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-621 *6)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4100 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4100 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3478 *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3478 *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3478 *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-747)) (-4 *5 (-542))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3))
+ (-4 *3 (-1200 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-747)) (-4 *5 (-542))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-940 *5 *3)) (-4 *3 (-1200 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-542)) (-5 *1 (-940 *4 *2)) (-4 *2 (-1200 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-747)) (-4 *5 (-542))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3))
+ (-4 *3 (-1200 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-747)) (-4 *5 (-542))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-940 *5 *3)) (-4 *3 (-1200 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-542)) (-5 *1 (-940 *4 *2)) (-4 *2 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4099 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4099 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-542))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4099 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)) (-4 *2 (-823))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1 *1) (-4 *1 (-938))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1 *1) (-4 *1 (-938))))
+(((*1 *1 *1 *1) (-4 *1 (-938))))
+(((*1 *1 *1 *1) (-4 *1 (-938))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-169)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892))
- (-4 *4 (-1018)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-621 *5) *6))
- (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *6 (-1201 *5))
- (-5 *2 (-621 (-2 (|:| |poly| *6) (|:| -2650 *3))))
- (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-632 *6))
- (-4 *7 (-632 (-400 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-621 *5) *6))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-4 *6 (-1201 *5))
- (-5 *2 (-621 (-2 (|:| |poly| *6) (|:| -2650 (-630 *6 (-400 *6))))))
- (-5 *1 (-788 *5 *6)) (-5 *3 (-630 *6 (-400 *6))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-747))) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892))
- (-4 *4 (-1018)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-747)) (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1225 *4)) (-5 *3 (-665 *4)) (-4 *4 (-356))
- (-5 *1 (-643 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-356))
- (-4 *5 (-13 (-366 *4) (-10 -7 (-6 -4337))))
- (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4337))))
- (-5 *1 (-644 *4 *5 *2 *3)) (-4 *3 (-663 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-621 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356))
- (-5 *1 (-790 *2 *3)) (-4 *3 (-632 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *1 (-1094 *3 *2)) (-4 *3 (-1201 *2)))))
+ (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2718 *4))))
- (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-541)))))
-(((*1 *1 *1) (-5 *1 (-1030))))
+ (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1225 (-747))) (-5 *1 (-651 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-219))
+ (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1124)) (-5 *2 (-749)) (-5 *1 (-113))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1069)) (-5 *1 (-936)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-935 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-935 *3 *2)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-835))))
+ ((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1230)) (-5 *1 (-934)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-618 *3)) (-5 *1 (-933 *3)) (-4 *3 (-534)))))
+(((*1 *2 *2) (-12 (-5 *1 (-933 *2)) (-4 *2 (-534)))))
+(((*1 *2 *2) (-12 (-5 *1 (-933 *2)) (-4 *2 (-534)))))
+(((*1 *1) (-4 *1 (-343)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-542) (-823) (-145)))
(-5 *2
- (-2 (|:| |brans| (-621 (-621 (-914 *4))))
- (|:| |xValues| (-1060 *4)) (|:| |yValues| (-1060 *4))))
- (-5 *1 (-151)) (-5 *3 (-621 (-621 (-914 *4)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-52)) (-5 *1 (-807)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-769))
- (-4 *5 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))) (-4 *6 (-541))
- (-5 *2 (-2 (|:| -3100 (-923 *6)) (|:| -3304 (-923 *6))))
- (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-920 (-400 (-923 *6)) *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-96))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-96)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769))
- (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-541))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5)))
- (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-747)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-470))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-573))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-604))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1066))
- (-4 *2 (-13 (-423 *4) (-857 *3) (-594 (-863 *3))))
- (-5 *1 (-1042 *3 *4 *2))
- (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1066)) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1066)))))
-(((*1 *2 *3)
- (-12
+ (-2 (|:| |primelt| *5) (|:| |poly| (-618 (-1136 *5)))
+ (|:| |prim| (-1136 *5))))
+ (-5 *1 (-425 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-542) (-823) (-145)))
(-5 *2
- (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))
- (-5 *1 (-991 *3)) (-4 *3 (-1201 (-549)))))
- ((*1 *2 *3 *4)
- (-12
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1136 *3)) (|:| |pol2| (-1136 *3))
+ (|:| |prim| (-1136 *3))))
+ (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-414 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-917 *5)) (-5 *4 (-1142)) (-4 *5 (-13 (-356) (-145)))
(-5 *2
- (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))
- (-5 *1 (-991 *3)) (-4 *3 (-1201 (-549)))
- (-5 *4 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))))
+ (-2 (|:| |coef1| (-535)) (|:| |coef2| (-535)) (|:| |prim| (-1136 *5))))
+ (-5 *1 (-932 *5))))
((*1 *2 *3 *4)
- (-12
+ (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-618 (-1142)))
+ (-4 *5 (-13 (-356) (-145)))
(-5 *2
- (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))
- (-5 *1 (-991 *3)) (-4 *3 (-1201 (-549))) (-5 *4 (-400 (-549)))))
+ (-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 *5)))
+ (|:| |prim| (-1136 *5))))
+ (-5 *1 (-932 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-400 (-549)))
- (-5 *2 (-621 (-2 (|:| -3837 *5) (|:| -3847 *5)))) (-5 *1 (-991 *3))
- (-4 *3 (-1201 (-549))) (-5 *4 (-2 (|:| -3837 *5) (|:| -3847 *5)))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))
- (-5 *1 (-992 *3)) (-4 *3 (-1201 (-400 (-549))))))
- ((*1 *2 *3 *4)
- (-12
+ (-12 (-5 *3 (-618 (-917 *6))) (-5 *4 (-618 (-1142))) (-5 *5 (-1142))
+ (-4 *6 (-13 (-356) (-145)))
(-5 *2
- (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))
- (-5 *1 (-992 *3)) (-4 *3 (-1201 (-400 (-549))))
- (-5 *4 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-400 (-549)))
- (-5 *2 (-621 (-2 (|:| -3837 *4) (|:| -3847 *4)))) (-5 *1 (-992 *3))
- (-4 *3 (-1201 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-400 (-549)))
- (-5 *2 (-621 (-2 (|:| -3837 *5) (|:| -3847 *5)))) (-5 *1 (-992 *3))
- (-4 *3 (-1201 *5)) (-5 *4 (-2 (|:| -3837 *5) (|:| -3847 *5))))))
-(((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))))
-(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-549))) (-5 *1 (-298)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-823)) (-4 *3 (-1066)))))
+ (-2 (|:| -4296 (-618 (-535))) (|:| |poly| (-618 (-1136 *6)))
+ (|:| |prim| (-1136 *6))))
+ (-5 *1 (-932 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1142)) (-5 *1 (-565 *2)) (-4 *2 (-1009 *3)) (-4 *2 (-356))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-565 *2)) (-4 *2 (-356))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-607 *4 *2))
+ (-4 *2 (-13 (-414 *4) (-973) (-1164)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1058 *2)) (-4 *2 (-13 (-414 *4) (-973) (-1164)))
+ (-4 *4 (-13 (-823) (-542))) (-5 *1 (-607 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-1142))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-931)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-890)) (-4 *5 (-542)) (-5 *2 (-665 *5))
+ (-5 *1 (-928 *5 *3)) (-4 *3 (-634 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-925)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-542)) (-4 *3 (-921 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *3) (|:| |radicand| (-618 *3))))
+ (-5 *1 (-924 *5 *6 *7 *3 *8)) (-5 *4 (-747))
+ (-4 *8
+ (-13 (-356)
+ (-10 -8 (-15 -3319 (*3 $)) (-15 -3318 (*3 $)) (-15 -4300 ($ *3))))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-542))
+ (-4 *8 (-921 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *3) (|:| |radicand| *3)))
+ (-5 *1 (-924 *5 *6 *7 *8 *3)) (-5 *4 (-747))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -3319 (*8 $)) (-15 -3318 (*8 $)) (-15 -4300 ($ *8))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-535))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-542))
+ (-4 *8 (-921 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *9) (|:| |radicand| *9)))
+ (-5 *1 (-924 *5 *6 *7 *8 *9)) (-5 *4 (-747))
+ (-4 *9
+ (-13 (-356)
+ (-10 -8 (-15 -3319 (*8 $)) (-15 -3318 (*8 $)) (-15 -4300 ($ *8))))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-542)) (-4 *7 (-921 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *8) (|:| |radicand| *8)))
+ (-5 *1 (-924 *5 *6 *3 *7 *8)) (-5 *4 (-747))
+ (-4 *8
+ (-13 (-356)
+ (-10 -8 (-15 -3319 (*7 $)) (-15 -3318 (*7 $)) (-15 -4300 ($ *7))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-823))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2484 (-535)))) (-4 *1 (-414 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -2484 (-861 *3))))
+ (-5 *1 (-861 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
+ (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2484 (-535))))
+ (-5 *1 (-922 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-621 *7))) (-4 *1 (-1172 *4 *5 *6 *7))
- (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *3 (-1142)) (-4 *4 (-1018)) (-4 *4 (-823))
+ (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -2484 (-535)))) (-4 *1 (-414 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1018)) (-4 *4 (-823))
+ (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -2484 (-535)))) (-4 *1 (-414 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1078)) (-4 *3 (-823))
+ (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -2484 (-535)))) (-4 *1 (-414 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -2484 (-747))))
+ (-5 *1 (-861 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-2 (|:| |var| *5) (|:| -2484 (-747))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
+ (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2484 (-535))))
+ (-5 *1 (-922 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| -3337 (-1142)) (|:| -1792 *4))))
- (-5 *1 (-860 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1066))))
+ (|partial| -12 (-4 *3 (-1078)) (-4 *3 (-823)) (-5 *2 (-618 *1))
+ (-4 *1 (-414 *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-1066)) (-4 *5 (-1066)) (-4 *6 (-1066))
- (-4 *7 (-1066)) (-5 *2 (-621 *1)) (-4 *1 (-1069 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1225 *5)) (-5 *3 (-747)) (-5 *4 (-1086)) (-4 *5 (-342))
- (-5 *1 (-519 *5)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-541))))
- ((*1 *1 *1) (|partial| -4 *1 (-699))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
+ (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-618 *1)) (-4 *1 (-921 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
+ (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-618 *3)) (-5 *1 (-922 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-621 *6))
- (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-470))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-573))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-604))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) (-5 *2 (-618 *1))
+ (-4 *1 (-414 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-618 *1)) (-4 *1 (-921 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
+ (-4 *7 (-921 *6 *4 *5)) (-5 *2 (-618 *3)) (-5 *1 (-922 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-618 *1)) (-4 *1 (-377 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-1066))
- (-4 *2 (-13 (-423 *4) (-857 *3) (-594 (-863 *3))))
- (-5 *1 (-1042 *3 *4 *2))
- (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3))))))
+ (-12 (-5 *2 (-618 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-703))))
((*1 *2 *1)
- (-12 (-4 *2 (-1066)) (-5 *1 (-1131 *2 *3)) (-4 *3 (-1066)))))
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1))
+ (-4 *1 (-921 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))
+ ((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-618 *6)) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-618 (-747)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-921 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
+ (-5 *2 (-747)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-618 *6)) (-4 *1 (-921 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-747))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-921 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-747)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *1))
+ (-4 *1 (-921 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)) (-4 *2 (-444))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 *4)) (-4 *4 (-1200 (-535))) (-5 *2 (-618 (-535)))
+ (-5 *1 (-478 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-921 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823))
+ (-4 *3 (-444)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-618 *5)) (-5 *4 (-535)) (-4 *5 (-821)) (-4 *5 (-356))
+ (-5 *2 (-747)) (-5 *1 (-916 *5 *6)) (-4 *6 (-1200 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1066)) (-4 *5 (-1066))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-659 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))))
-(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228))))
- ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
+ (-12 (-5 *3 (-618 *4)) (-4 *4 (-821)) (-4 *4 (-356)) (-5 *2 (-747))
+ (-5 *1 (-916 *4 *5)) (-4 *5 (-1200 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-1201 *4)) (-5 *1 (-528 *4 *2 *5 *6))
- (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))))
+ (-12 (-4 *2 (-356)) (-4 *2 (-821)) (-5 *1 (-916 *2 *3)) (-4 *3 (-1200 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-621 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-410 *4)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-621 (-592 *2))) (-5 *4 (-1142))
- (-4 *2 (-13 (-27) (-1164) (-423 *5)))
- (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-270 *5 *2)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-747)) (-5 *5 (-621 *3)) (-4 *3 (-300)) (-4 *6 (-823))
- (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-603 *6 *7 *3 *8))
- (-4 *8 (-920 *3 *7 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-549))) (-5 *4 (-876 (-549)))
- (-5 *2 (-665 (-549))) (-5 *1 (-571))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-621 (-665 (-549))))
- (-5 *1 (-571))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-549))) (-5 *4 (-621 (-876 (-549))))
- (-5 *2 (-621 (-665 (-549)))) (-5 *1 (-571)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-621 (-473 *5 *6))) (-5 *4 (-836 *5))
- (-14 *5 (-621 (-1142))) (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6))
- (-4 *6 (-444))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-473 *5 *6))) (-5 *4 (-836 *5))
- (-14 *5 (-621 (-1142))) (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6))
- (-4 *6 (-444)))))
+ (-12 (-4 *4 (-356)) (-5 *2 (-618 *3)) (-5 *1 (-916 *4 *3))
+ (-4 *3 (-1200 *4)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-549))))
- (-4 *5 (-1201 *4))
- (-5 *2 (-2 (|:| -2460 (-400 *5)) (|:| |coeff| (-400 *5))))
- (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-549) "failed") *5)) (-4 *5 (-1018))
- (-5 *2 (-549)) (-5 *1 (-532 *5 *3)) (-4 *3 (-1201 *5))))
+ (-12 (-4 *4 (-356)) (-5 *2 (-618 *3)) (-5 *1 (-916 *4 *3))
+ (-4 *3 (-1200 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-917 *5)) (-4 *5 (-1018)) (-5 *2 (-241 *4 *5))
+ (-5 *1 (-915 *4 *5)) (-14 *4 (-618 (-1142))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018))
+ (-5 *2 (-917 *5)) (-5 *1 (-915 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018))
+ (-5 *2 (-917 *5)) (-5 *1 (-915 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-917 *5)) (-4 *5 (-1018)) (-5 *2 (-473 *4 *5))
+ (-5 *1 (-915 *4 *5)) (-14 *4 (-618 (-1142))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018))
+ (-5 *2 (-241 *4 *5)) (-5 *1 (-915 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-1018))
+ (-5 *2 (-473 *4 *5)) (-5 *1 (-915 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-913)) (-5 *3 (-535)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1136 (-535))) (-5 *2 (-535)) (-5 *1 (-913)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-913)) (-5 *3 (-535)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-185)) (-5 *3 (-535))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *1 (-913)) (-5 *3 (-535)))))
+(((*1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-547)) (-5 *3 (-535))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1136 (-400 (-535)))) (-5 *1 (-913)) (-5 *3 (-535)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 (-861 *6)))
+ (-5 *5 (-1 (-859 *6 *8) *8 (-861 *6) (-859 *6 *8))) (-4 *6 (-1067))
+ (-4 *8 (-13 (-1018) (-594 (-861 *6)) (-1009 *7))) (-5 *2 (-859 *6 *8))
+ (-4 *7 (-13 (-1018) (-823))) (-5 *1 (-912 *6 *7 *8)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-859 *5 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *3 (-164 *6))
+ (-4 (-917 *6) (-857 *5)) (-4 *6 (-13 (-857 *5) (-170)))
+ (-5 *1 (-176 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-859 *4 *1)) (-5 *3 (-861 *4)) (-4 *1 (-857 *4))
+ (-4 *4 (-1067))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-859 *5 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1067))
+ (-4 *6 (-13 (-1067) (-1009 *3))) (-4 *3 (-857 *5)) (-5 *1 (-902 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-859 *5 *3)) (-4 *5 (-1067))
+ (-4 *3 (-13 (-414 *6) (-594 *4) (-857 *5) (-1009 (-591 $))))
+ (-5 *4 (-861 *5)) (-4 *6 (-13 (-542) (-823) (-857 *5)))
+ (-5 *1 (-903 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-859 (-535) *3)) (-5 *4 (-861 (-535))) (-4 *3 (-534))
+ (-5 *1 (-904 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-859 *5 *6)) (-5 *3 (-591 *6)) (-4 *5 (-1067))
+ (-4 *6 (-13 (-823) (-1009 (-591 $)) (-594 *4) (-857 *5))) (-5 *4 (-861 *5))
+ (-5 *1 (-905 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-856 *5 *6 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1067))
+ (-4 *6 (-857 *5)) (-4 *3 (-642 *6)) (-5 *1 (-906 *5 *6 *3))))
((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-549) "failed") *4)) (-4 *4 (-1018))
- (-5 *2 (-549)) (-5 *1 (-532 *4 *3)) (-4 *3 (-1201 *4))))
+ (-12 (-5 *5 (-1 (-859 *6 *3) *8 (-861 *6) (-859 *6 *3))) (-4 *8 (-823))
+ (-5 *2 (-859 *6 *3)) (-5 *4 (-861 *6)) (-4 *6 (-1067))
+ (-4 *3 (-13 (-921 *9 *7 *8) (-594 *4))) (-4 *7 (-769))
+ (-4 *9 (-13 (-1018) (-823) (-857 *6))) (-5 *1 (-907 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-859 *5 *3)) (-4 *5 (-1067))
+ (-4 *3 (-13 (-921 *8 *6 *7) (-594 *4))) (-5 *4 (-861 *5)) (-4 *7 (-857 *5))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-13 (-1018) (-823) (-857 *5)))
+ (-5 *1 (-907 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-859 *5 *3)) (-4 *5 (-1067)) (-4 *3 (-962 *6))
+ (-4 *6 (-13 (-542) (-857 *5) (-594 *4))) (-5 *4 (-861 *5))
+ (-5 *1 (-910 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-859 *5 (-1142))) (-5 *3 (-1142)) (-5 *4 (-861 *5))
+ (-4 *5 (-1067)) (-5 *1 (-911 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-618 (-861 *7))) (-5 *5 (-1 *9 (-618 *9)))
+ (-5 *6 (-1 (-859 *7 *9) *9 (-861 *7) (-859 *7 *9))) (-4 *7 (-1067))
+ (-4 *9 (-13 (-1018) (-594 (-861 *7)) (-1009 *8))) (-5 *2 (-859 *7 *9))
+ (-5 *3 (-618 *9)) (-4 *8 (-13 (-1018) (-823))) (-5 *1 (-912 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1067) (-1009 *5)))
+ (-4 *5 (-857 *4)) (-4 *4 (-1067)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-902 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-307 (-535))) (-5 *1 (-900))))
+ ((*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-901 *3 *2)) (-4 *2 (-414 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-307 (-535))) (-5 *1 (-900))))
+ ((*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-901 *3 *2)) (-4 *2 (-414 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-113))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1142)) (-5 *4 (-1124)) (-5 *2 (-307 (-535))) (-5 *1 (-900))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1124)) (-4 *4 (-823)) (-5 *1 (-901 *4 *2)) (-4 *2 (-414 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *2 (-618 (-1055 (-219))))
+ (-5 *1 (-899)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219)))
+ (-5 *1 (-896))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219)))
+ (-5 *1 (-896))))
+ ((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219)))
+ (-5 *1 (-898))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1055 (-219)))
+ (-5 *1 (-898)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-618 (-1 (-219) (-219)))) (-5 *3 (-1055 (-219)))
+ (-5 *1 (-896))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-1 (-219) (-219)))) (-5 *3 (-1055 (-219)))
+ (-5 *1 (-896))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-549) "failed") *4)) (-4 *4 (-1018))
- (-5 *2 (-549)) (-5 *1 (-532 *4 *3)) (-4 *3 (-1201 *4)))))
+ (-12 (-5 *4 (-1142)) (-5 *5 (-1055 (-219))) (-5 *2 (-896)) (-5 *1 (-897 *3))
+ (-4 *3 (-594 (-524)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1142)) (-5 *5 (-1055 (-219))) (-5 *2 (-896)) (-5 *1 (-897 *3))
+ (-4 *3 (-594 (-524)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-898))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-898)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-896))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1055 (-219))) (-5 *1 (-898)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-219)))) (-5 *1 (-898)))))
+(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))))
+(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))))
+(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
+(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-898)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-896))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1055 (-219))) (-5 *1 (-896))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1142)) (-5 *5 (-1055 (-219))) (-5 *2 (-896)) (-5 *1 (-897 *3))
+ (-4 *3 (-594 (-524)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1142)) (-5 *2 (-896)) (-5 *1 (-897 *3)) (-4 *3 (-594 (-524))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896)))))
+(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459))))
+ ((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459))))
+ ((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))))
+(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459))))
+ ((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459))))
+ ((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))))
+(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459))))
+ ((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-459))))
+ ((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))))
+(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-896)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-112))
+ (-5 *1 (-895 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-112))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-541)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-356) (-295)
- (-10 -8 (-15 -1393 ((-1091 *3 (-592 $)) $))
- (-15 -1404 ((-1091 *3 (-592 $)) $))
- (-15 -3845 ($ (-1091 *3 (-592 $))))))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-300)) (-5 *2 (-411 *3))
- (-5 *1 (-719 *5 *4 *6 *3)) (-4 *3 (-920 *6 *5 *4)))))
-(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1142))))
+ (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-921 *3 *5 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-769)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823))
- (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1980 *4))))
- (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1124)) (-5 *1 (-687)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1225 *4)) (-4 *4 (-1179)) (-4 *1 (-232 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1142)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *4 *5 *6))
- (-4 *4 (-594 (-525))) (-4 *5 (-1179)) (-4 *6 (-1179)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1192 (-549))) (-4 *1 (-627 *3)) (-4 *3 (-1179))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-627 *3)) (-4 *3 (-1179)))))
-(((*1 *2 *1)
- (-12
+ (-2 (|:| |det| *12) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))
+ (-5 *4 (-665 *12)) (-5 *5 (-618 (-400 (-917 *9)))) (-5 *6 (-618 (-618 *12)))
+ (-5 *7 (-747)) (-5 *8 (-535)) (-4 *9 (-13 (-300) (-145)))
+ (-4 *12 (-921 *9 *11 *10)) (-4 *10 (-13 (-823) (-594 (-1142))))
+ (-4 *11 (-769))
(-5 *2
- (-621
- (-621
- (-3 (|:| -2480 (-1142))
- (|:| -4206 (-621 (-3 (|:| S (-1142)) (|:| P (-923 (-549))))))))))
- (-5 *1 (-1146)))))
-(((*1 *2)
- (-12 (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5)))
- (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-750)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-309 *4))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 (-167 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3))))))
+ (-2 (|:| |eqzro| (-618 *12)) (|:| |neqzro| (-618 *12))
+ (|:| |wcond| (-618 (-917 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1224 (-400 (-917 *9))))
+ (|:| -2123 (-618 (-1224 (-400 (-917 *9)))))))))
+ (-5 *1 (-895 *9 *10 *11 *12)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-419 *4 *2)) (-4 *2 (-13 (-1164) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1142)) (-4 *5 (-145))
- (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
- (-5 *2 (-309 *5)) (-5 *1 (-570 *5)))))
+ (-12 (-5 *2 (-665 *7)) (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *6 *5))
+ (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
+ (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-621 *2))) (-5 *4 (-621 *5))
- (-4 *5 (-38 (-400 (-549)))) (-4 *2 (-1216 *5))
- (-5 *1 (-1218 *5 *2)))))
+ (-12 (-5 *3 (-665 *8)) (-5 *4 (-747)) (-4 *8 (-921 *5 *7 *6))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142))))
+ (-4 *7 (-769))
+ (-5 *2
+ (-618
+ (-2 (|:| |det| *8) (|:| |rows| (-618 (-535)))
+ (|:| |cols| (-618 (-535))))))
+ (-5 *1 (-895 *5 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142))
- (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549))))
- (-5 *2 (-2 (|:| -4098 *3) (|:| |nconst| *3))) (-5 *1 (-552 *5 *3))
- (-4 *3 (-13 (-27) (-1164) (-423 *5))))))
+ (-12 (-5 *4 (-618 (-618 *8))) (-5 *3 (-618 *8)) (-4 *8 (-921 *5 *7 *6))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142))))
+ (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
+ (-4 *6 (-769)) (-5 *2 (-618 (-618 (-535)))) (-5 *1 (-895 *4 *5 *6 *7))
+ (-5 *3 (-535)) (-4 *7 (-921 *4 *6 *5)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-747))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))))
+ (-12 (-5 *2 (-618 (-618 *6))) (-4 *6 (-921 *3 *5 *4))
+ (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1142))))
+ (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993)))
- (-14 *5 (-621 (-1142))) (-5 *2 (-621 (-621 (-995 (-400 *4)))))
- (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-621 (-1142)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7))
- (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7))
- (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-923 *4)))
- (-4 *4 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2 (-621 (-621 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6))
- (-14 *5 (-621 (-1142))) (-14 *6 (-621 (-1142))))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-1138 *3))
- (-4 *3 (-13 (-423 *6) (-27) (-1164)))
- (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2 (-2 (|:| -2460 *3) (|:| |coeff| *3)))
- (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1066))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-400 (-1138 *3)))
- (-4 *3 (-13 (-423 *6) (-27) (-1164)))
- (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2 (-2 (|:| -2460 *3) (|:| |coeff| *3)))
- (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1066)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-621 (-1138 *13))) (-5 *3 (-1138 *13))
- (-5 *4 (-621 *12)) (-5 *5 (-621 *10)) (-5 *6 (-621 *13))
- (-5 *7 (-621 (-621 (-2 (|:| -1815 (-747)) (|:| |pcoef| *13)))))
- (-5 *8 (-621 (-747))) (-5 *9 (-1225 (-621 (-1138 *10))))
- (-4 *12 (-823)) (-4 *10 (-300)) (-4 *13 (-920 *10 *11 *12))
- (-4 *11 (-769)) (-5 *1 (-684 *11 *12 *10 *13)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4))
- (-4 *4 (-1179)) (-5 *2 (-112)))))
+ (-12
+ (-5 *3
+ (-618
+ (-2 (|:| -3427 (-747))
+ (|:| |eqns|
+ (-618
+ (-2 (|:| |det| *7) (|:| |rows| (-618 (-535)))
+ (|:| |cols| (-618 (-535))))))
+ (|:| |fgb| (-618 *7)))))
+ (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-747))
+ (-5 *1 (-895 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7))))
- (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
-(((*1 *2 *3 *2)
(-12
+ (-5 *3
+ (-618
+ (-2 (|:| -3427 (-747))
+ (|:| |eqns|
+ (-618
+ (-2 (|:| |det| *7) (|:| |rows| (-618 (-535)))
+ (|:| |cols| (-618 (-535))))))
+ (|:| |fgb| (-618 *7)))))
+ (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-747))
+ (-5 *1 (-895 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
+ (-4 *6 (-769)) (-5 *2 (-618 *3)) (-5 *1 (-895 *4 *5 *6 *3))
+ (-4 *3 (-921 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1695 (-665 (-400 (-917 *4)))) (|:| |vec| (-618 (-400 (-917 *4))))
+ (|:| -3427 (-747)) (|:| |rows| (-618 (-535))) (|:| |cols| (-618 (-535)))))
+ (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
+ (-4 *6 (-769))
(-5 *2
- (-621
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-769)) (-4 *3 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823))
- (-5 *1 (-441 *4 *5 *6 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-309 *4))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1164) (-423 (-167 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
- ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-541)) (-4 *2 (-920 *3 *5 *4))
- (-5 *1 (-709 *5 *4 *6 *2)) (-5 *3 (-400 (-923 *6))) (-4 *5 (-769))
- (-4 *4 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145))
- (-4 *3 (-300)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-948 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-747))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2699 *1) (|:| -4323 *1) (|:| |associate| *1)))
- (-4 *1 (-541)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+ (-2 (|:| |partsol| (-1224 (-400 (-917 *4))))
+ (|:| -2123 (-618 (-1224 (-400 (-917 *4)))))))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1224 (-400 (-917 *4))))
+ (|:| -2123 (-618 (-1224 (-400 (-917 *4)))))))
+ (-5 *3 (-618 *7)) (-4 *4 (-13 (-300) (-145))) (-4 *7 (-921 *4 *6 *5))
+ (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769))
+ (-5 *1 (-895 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 (-167 (-549))))) (-5 *2 (-621 (-167 *4)))
- (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-821)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-621 (-400 (-923 (-167 (-549))))))
- (-5 *4 (-621 (-1142))) (-5 *2 (-621 (-621 (-167 *5))))
- (-5 *1 (-371 *5)) (-4 *5 (-13 (-356) (-821))))))
+ (-12 (-5 *3 (-665 *8)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145)))
+ (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769))
+ (-5 *2
+ (-618
+ (-2 (|:| -3427 (-747))
+ (|:| |eqns|
+ (-618
+ (-2 (|:| |det| *8) (|:| |rows| (-618 (-535)))
+ (|:| |cols| (-618 (-535))))))
+ (|:| |fgb| (-618 *8)))))
+ (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-747)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1201 *2)) (-4 *2 (-1183)) (-5 *1 (-146 *2 *4 *3))
- (-4 *3 (-1201 (-400 *4))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549))))
- ((*1 *1 *1) (-4 *1 (-973)))
- ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-983))))
- ((*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-4 *1 (-983))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-892))))
- ((*1 *1 *1) (-4 *1 (-983))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227))))
- ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-621 (-592 *6))) (-5 *4 (-1142)) (-5 *2 (-592 *6))
- (-4 *6 (-423 *5)) (-4 *5 (-823)) (-5 *1 (-558 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1160))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1160)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1225 *3)) (-4 *3 (-1201 *4)) (-4 *4 (-1183))
- (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1201 (-400 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1225 *4)) (-5 *3 (-1225 *1)) (-4 *4 (-170))
- (-4 *1 (-360 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1225 *4)) (-5 *3 (-1225 *1)) (-4 *4 (-170))
- (-4 *1 (-363 *4 *5)) (-4 *5 (-1201 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1225 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4))
- (-4 *4 (-1201 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3)))))
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
+ (-4 *6 (-769)) (-4 *7 (-921 *4 *6 *5))
+ (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-618 *7)) (|:| |n0| (-618 *7))))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-618 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-923 *4)) (-4 *4 (-13 (-300) (-145)))
- (-4 *2 (-920 *4 *6 *5)) (-5 *1 (-895 *4 *5 *6 *2))
- (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)))))
+ (-12 (-5 *3 (-917 *4)) (-4 *4 (-13 (-300) (-145))) (-4 *2 (-921 *4 *6 *5))
+ (-5 *1 (-895 *4 *5 *6 *2)) (-4 *5 (-13 (-823) (-594 (-1142))))
+ (-4 *6 (-769)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1138 *6)) (-4 *6 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *2 (-1138 *7)) (-5 *1 (-314 *4 *5 *6 *7))
- (-4 *7 (-920 *6 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-167 (-219))) (-5 *4 (-549)) (-5 *2 (-1006))
- (-5 *1 (-735)))))
+ (-12 (-5 *3 (-618 (-1142))) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769))
+ (-5 *2 (-618 (-400 (-917 *4)))) (-5 *1 (-895 *4 *5 *6 *7))
+ (-4 *7 (-921 *4 *6 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3467 (-372)) (|:| -2480 (-1124))
- (|:| |explanations| (-621 (-1124)))))
- (-5 *2 (-1006)) (-5 *1 (-298))))
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
+ (-4 *6 (-769)) (-5 *2 (-400 (-917 *4))) (-5 *1 (-895 *4 *5 *6 *3))
+ (-4 *3 (-921 *4 *6 *5))))
((*1 *2 *3)
+ (-12 (-5 *3 (-665 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769))
+ (-5 *2 (-665 (-400 (-917 *4)))) (-5 *1 (-895 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769))
+ (-5 *2 (-618 (-400 (-917 *4)))) (-5 *1 (-895 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-665 *11)) (-5 *4 (-618 (-400 (-917 *8)))) (-5 *5 (-747))
+ (-5 *6 (-1124)) (-4 *8 (-13 (-300) (-145))) (-4 *11 (-921 *8 *10 *9))
+ (-4 *9 (-13 (-823) (-594 (-1142)))) (-4 *10 (-769))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-618
+ (-2 (|:| |eqzro| (-618 *11)) (|:| |neqzro| (-618 *11))
+ (|:| |wcond| (-618 (-917 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1224 (-400 (-917 *8))))
+ (|:| -2123 (-618 (-1224 (-400 (-917 *8))))))))))
+ (|:| |rgsz| (-535))))
+ (-5 *1 (-895 *8 *9 *10 *11)) (-5 *7 (-535)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1124)) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769))
+ (-5 *2
+ (-618
+ (-2 (|:| |eqzro| (-618 *7)) (|:| |neqzro| (-618 *7))
+ (|:| |wcond| (-618 (-917 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1224 (-400 (-917 *4))))
+ (|:| -2123 (-618 (-1224 (-400 (-917 *4))))))))))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-921 *4 *6 *5)))))
+(((*1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| -3467 (-372)) (|:| -2480 (-1124))
- (|:| |explanations| (-621 (-1124))) (|:| |extra| (-1006))))
- (-5 *2 (-1006)) (-5 *1 (-298)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-549)) (-4 *1 (-1059 *3)) (-4 *3 (-1179)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
+ (-618
+ (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8))
+ (|:| |wcond| (-618 (-917 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1224 (-400 (-917 *5))))
+ (|:| -2123 (-618 (-1224 (-400 (-917 *5))))))))))
+ (-5 *4 (-1124)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-921 *5 *7 *6))
+ (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769)) (-5 *2 (-535))
+ (-5 *1 (-895 *5 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-48))) (-5 *2 (-411 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1201 (-48)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1201 (-48)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-48))) (-4 *5 (-823)) (-4 *6 (-769))
- (-5 *2 (-411 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-920 (-48) *6 *5))))
+ (-12 (-5 *3 (-665 *8)) (-4 *8 (-921 *5 *7 *6)) (-4 *5 (-13 (-300) (-145)))
+ (-4 *6 (-13 (-823) (-594 (-1142)))) (-4 *7 (-769))
+ (-5 *2
+ (-618
+ (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8))
+ (|:| |wcond| (-618 (-917 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1224 (-400 (-917 *5))))
+ (|:| -2123 (-618 (-1224 (-400 (-917 *5))))))))))
+ (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-618 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-48))) (-4 *5 (-823)) (-4 *6 (-769))
- (-4 *7 (-920 (-48) *6 *5)) (-5 *2 (-411 (-1138 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1138 *7))))
+ (-12 (-5 *3 (-665 *8)) (-5 *4 (-618 (-1142))) (-4 *8 (-921 *5 *7 *6))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142))))
+ (-4 *7 (-769))
+ (-5 *2
+ (-618
+ (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8))
+ (|:| |wcond| (-618 (-917 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1224 (-400 (-917 *5))))
+ (|:| -2123 (-618 (-1224 (-400 (-917 *5))))))))))
+ (-5 *1 (-895 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-165 *4 *3))
- (-4 *3 (-1201 (-167 *4)))))
+ (-12 (-5 *3 (-665 *7)) (-4 *7 (-921 *4 *6 *5)) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769))
+ (-5 *2
+ (-618
+ (-2 (|:| |eqzro| (-618 *7)) (|:| |neqzro| (-618 *7))
+ (|:| |wcond| (-618 (-917 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1224 (-400 (-917 *4))))
+ (|:| -2123 (-618 (-1224 (-400 (-917 *4))))))))))
+ (-5 *1 (-895 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3))
- (-4 *3 (-1201 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549)))))
+ (-12 (-5 *3 (-665 *9)) (-5 *5 (-890)) (-4 *9 (-921 *6 *8 *7))
+ (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142))))
+ (-4 *8 (-769))
+ (-5 *2
+ (-618
+ (-2 (|:| |eqzro| (-618 *9)) (|:| |neqzro| (-618 *9))
+ (|:| |wcond| (-618 (-917 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1224 (-400 (-917 *6))))
+ (|:| -2123 (-618 (-1224 (-400 (-917 *6))))))))))
+ (-5 *1 (-895 *6 *7 *8 *9)) (-5 *4 (-618 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-665 *9)) (-5 *4 (-618 (-1142))) (-5 *5 (-890))
+ (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145)))
+ (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769))
+ (-5 *2
+ (-618
+ (-2 (|:| |eqzro| (-618 *9)) (|:| |neqzro| (-618 *9))
+ (|:| |wcond| (-618 (-917 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1224 (-400 (-917 *6))))
+ (|:| -2123 (-618 (-1224 (-400 (-917 *6))))))))))
+ (-5 *1 (-895 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3))
- (-4 *3 (-1201 (-549)))))
+ (-12 (-5 *3 (-665 *8)) (-5 *4 (-890)) (-4 *8 (-921 *5 *7 *6))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142))))
+ (-4 *7 (-769))
+ (-5 *2
+ (-618
+ (-2 (|:| |eqzro| (-618 *8)) (|:| |neqzro| (-618 *8))
+ (|:| |wcond| (-618 (-917 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1224 (-400 (-917 *5))))
+ (|:| -2123 (-618 (-1224 (-400 (-917 *5))))))))))
+ (-5 *1 (-895 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-665 *9)) (-5 *4 (-618 *9)) (-5 *5 (-1124))
+ (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145)))
+ (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-535))
+ (-5 *1 (-895 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-665 *9)) (-5 *4 (-618 (-1142))) (-5 *5 (-1124))
+ (-4 *9 (-921 *6 *8 *7)) (-4 *6 (-13 (-300) (-145)))
+ (-4 *7 (-13 (-823) (-594 (-1142)))) (-4 *8 (-769)) (-5 *2 (-535))
+ (-5 *1 (-895 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-747))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3))
- (-4 *3 (-1201 (-549)))))
+ (-12 (-5 *3 (-665 *8)) (-5 *4 (-1124)) (-4 *8 (-921 *5 *7 *6))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1142))))
+ (-4 *7 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-665 *10)) (-5 *4 (-618 *10)) (-5 *5 (-890)) (-5 *6 (-1124))
+ (-4 *10 (-921 *7 *9 *8)) (-4 *7 (-13 (-300) (-145)))
+ (-4 *8 (-13 (-823) (-594 (-1142)))) (-4 *9 (-769)) (-5 *2 (-535))
+ (-5 *1 (-895 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-665 *10)) (-5 *4 (-618 (-1142))) (-5 *5 (-890)) (-5 *6 (-1124))
+ (-4 *10 (-921 *7 *9 *8)) (-4 *7 (-13 (-300) (-145)))
+ (-4 *8 (-13 (-823) (-594 (-1142)))) (-4 *9 (-769)) (-5 *2 (-535))
+ (-5 *1 (-895 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-621 (-747))) (-5 *5 (-747)) (-5 *2 (-411 *3))
- (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3))
- (-4 *3 (-1201 (-549)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-411 (-167 (-549)))) (-5 *1 (-438))
- (-5 *3 (-167 (-549)))))
- ((*1 *2 *3)
- (-12
- (-4 *4
- (-13 (-823)
- (-10 -8 (-15 -2844 ((-1142) $))
- (-15 -3010 ((-3 $ "failed") (-1142))))))
- (-4 *5 (-769)) (-4 *7 (-541)) (-5 *2 (-411 *3))
- (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-541))
- (-4 *3 (-920 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-300)) (-5 *2 (-411 (-1138 *4))) (-5 *1 (-450 *4))
- (-5 *3 (-1138 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1201 *5)) (-4 *5 (-356))
- (-4 *7 (-13 (-356) (-145) (-701 *5 *6))) (-5 *2 (-411 *3))
- (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1201 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-411 (-1138 *7)) (-1138 *7)))
- (-4 *7 (-13 (-300) (-145))) (-4 *5 (-823)) (-4 *6 (-769))
- (-5 *2 (-411 *3)) (-5 *1 (-529 *5 *6 *7 *3))
- (-4 *3 (-920 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-411 (-1138 *7)) (-1138 *7)))
- (-4 *7 (-13 (-300) (-145))) (-4 *5 (-823)) (-4 *6 (-769))
- (-4 *8 (-920 *7 *6 *5)) (-5 *2 (-411 (-1138 *8)))
- (-5 *1 (-529 *5 *6 *7 *8)) (-5 *3 (-1138 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-543 *3)) (-4 *3 (-534))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-621 *5) *6))
- (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-4 *6 (-1201 *5)) (-5 *2 (-621 (-629 (-400 *6))))
- (-5 *1 (-633 *5 *6)) (-5 *3 (-629 (-400 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-4 *5 (-1201 *4)) (-5 *2 (-621 (-629 (-400 *5))))
- (-5 *1 (-633 *4 *5)) (-5 *3 (-629 (-400 *5)))))
+ (-12 (-5 *3 (-665 *9)) (-5 *4 (-890)) (-5 *5 (-1124)) (-4 *9 (-921 *6 *8 *7))
+ (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1142))))
+ (-4 *8 (-769)) (-5 *2 (-535)) (-5 *1 (-895 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-618 *4)) (-4 *4 (-356)) (-4 *2 (-1200 *4))
+ (-5 *1 (-894 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-892)) (-5 *2 (-2 (|:| -4296 (-618 *1)) (|:| -2492 *1)))
+ (-5 *3 (-618 *1)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-618 *1)) (-4 *1 (-892)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-618 (-917 *4))) (-5 *3 (-618 (-1142))) (-4 *4 (-444))
+ (-5 *1 (-889 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-618 (-917 *4))) (-5 *3 (-618 (-1142))) (-4 *4 (-444))
+ (-5 *1 (-889 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888))))
+ ((*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888))))
+ ((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888))))
+ ((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888))))
+ ((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888))))
+ ((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888))))
+ ((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888))))
+ ((*1 *2) (-12 (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-890))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-876 (-535))) (-5 *1 (-888))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-876 (-535))) (-5 *1 (-888)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *2))
+ (-4 *2 (-921 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1136 *6)) (-4 *6 (-921 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-621 (-648 *4)))
- (-5 *1 (-648 *4))))
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *6 *4 *5)) (-5 *1 (-887 *4 *5 *6 *2))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-398 *2)) (-4 *2 (-300)) (-5 *1 (-885 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-549)) (-5 *2 (-621 *3)) (-5 *1 (-672 *3))
- (-4 *3 (-1201 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-342)) (-5 *2 (-411 *3))
- (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-920 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-342))
- (-4 *7 (-920 *6 *5 *4)) (-5 *2 (-411 (-1138 *7)))
- (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1138 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-769))
- (-4 *5
- (-13 (-823)
- (-10 -8 (-15 -2844 ((-1142) $))
- (-15 -3010 ((-3 $ "failed") (-1142))))))
- (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-707 *4 *5 *6 *3))
- (-4 *3 (-920 (-923 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-769))
- (-4 *5 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))) (-4 *6 (-541))
- (-5 *2 (-411 *3)) (-5 *1 (-709 *4 *5 *6 *3))
- (-4 *3 (-920 (-400 (-923 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-13 (-300) (-145)))
- (-5 *2 (-411 *3)) (-5 *1 (-710 *4 *5 *6 *3))
- (-4 *3 (-920 (-400 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145)))
- (-5 *2 (-411 *3)) (-5 *1 (-718 *4 *5 *6 *3))
- (-4 *3 (-920 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145)))
- (-4 *7 (-920 *6 *5 *4)) (-5 *2 (-411 (-1138 *7)))
- (-5 *1 (-718 *4 *5 *6 *7)) (-5 *3 (-1138 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-411 *3)) (-5 *1 (-978 *3))
- (-4 *3 (-1201 (-400 (-549))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-411 *3)) (-5 *1 (-1012 *3))
- (-4 *3 (-1201 (-400 (-923 (-549)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1201 (-400 (-549))))
- (-4 *5 (-13 (-356) (-145) (-701 (-400 (-549)) *4)))
- (-5 *2 (-411 *3)) (-5 *1 (-1045 *4 *5 *3)) (-4 *3 (-1201 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1201 (-400 (-923 (-549)))))
- (-4 *5 (-13 (-356) (-145) (-701 (-400 (-923 (-549))) *4)))
- (-5 *2 (-411 *3)) (-5 *1 (-1047 *4 *5 *3)) (-4 *3 (-1201 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444))
- (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-411 (-1138 (-400 *7))))
- (-5 *1 (-1137 *4 *5 *6 *7)) (-5 *3 (-1138 (-400 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1183))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-411 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1201 (-549))))))
+ (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-13 (-300) (-145)))
+ (-5 *2 (-51)) (-5 *1 (-886 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-398 (-917 *6))) (-5 *5 (-1142)) (-5 *3 (-917 *6))
+ (-4 *6 (-13 (-300) (-145))) (-5 *2 (-51)) (-5 *1 (-886 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))))
+(((*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-885 *3)) (-4 *3 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-885 *3)) (-4 *3 (-300)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1136 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))))
+(((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444))
- (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-948 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-621 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6))
- (-4 *4 (-444)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
- (-5 *1 (-948 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+ (-12 (-4 *3 (-1200 (-400 (-535)))) (-5 *1 (-884 *3 *2))
+ (-4 *2 (-1200 (-400 *3))))))
(((*1 *2 *3)
- (-12 (-14 *4 (-621 (-1142))) (-4 *5 (-444))
- (-5 *2
- (-2 (|:| |glbase| (-621 (-241 *4 *5))) (|:| |glval| (-621 (-549)))))
- (-5 *1 (-609 *4 *5)) (-5 *3 (-621 (-241 *4 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-372))))
- ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-372)))))
+ (-12 (-4 *4 (-1200 (-400 *2))) (-5 *2 (-535)) (-5 *1 (-884 *4 *3))
+ (-4 *3 (-1200 (-400 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-665 (-400 (-923 (-549))))) (-5 *2 (-621 (-309 (-549))))
- (-5 *1 (-1002)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-999 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-621 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-999 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-999 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-621 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-999 *3)))))
+ (-12 (-5 *3 (-618 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535)))))
+ (-4 *4 (-1200 (-400 *2))) (-5 *2 (-535)) (-5 *1 (-884 *4 *5))
+ (-4 *5 (-1200 (-400 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-621 (-665 (-549))))
- (-5 *1 (-1076)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-920 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823))
- (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))))
+ (-12 (-4 *3 (-1200 (-400 (-535))))
+ (-5 *2 (-2 (|:| |den| (-535)) (|:| |gcdnum| (-535)))) (-5 *1 (-884 *3 *4))
+ (-4 *4 (-1200 (-400 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1200 (-400 *2))) (-5 *2 (-535)) (-5 *1 (-884 *4 *3))
+ (-4 *3 (-1200 (-400 *4))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-769)) (-4 *2 (-920 *4 *5 *6)) (-5 *1 (-441 *4 *5 *6 *2))
- (-4 *4 (-444)) (-4 *6 (-823)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-287 *6)) (-5 *4 (-114)) (-4 *6 (-423 *5))
- (-4 *5 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52))
- (-5 *1 (-310 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-621 *7))
- (-4 *7 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525))))
- (-5 *2 (-52)) (-5 *1 (-310 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-621 (-287 *7))) (-5 *4 (-621 (-114))) (-5 *5 (-287 *7))
- (-4 *7 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525))))
- (-5 *2 (-52)) (-5 *1 (-310 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-621 (-287 *8))) (-5 *4 (-621 (-114))) (-5 *5 (-287 *8))
- (-5 *6 (-621 *8)) (-4 *8 (-423 *7))
- (-4 *7 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52))
- (-5 *1 (-310 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-621 *7)) (-5 *4 (-621 (-114))) (-5 *5 (-287 *7))
- (-4 *7 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525))))
- (-5 *2 (-52)) (-5 *1 (-310 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 (-114))) (-5 *6 (-621 (-287 *8)))
- (-4 *8 (-423 *7)) (-5 *5 (-287 *8))
- (-4 *7 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52))
- (-5 *1 (-310 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-287 *5)) (-5 *4 (-114)) (-4 *5 (-423 *6))
- (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52))
- (-5 *1 (-310 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6))
- (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52))
- (-5 *1 (-310 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6))
- (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52))
- (-5 *1 (-310 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-5 *6 (-621 *3))
- (-4 *3 (-423 *7)) (-4 *7 (-13 (-823) (-541) (-594 (-525))))
- (-5 *2 (-52)) (-5 *1 (-310 *7 *3)))))
+ (-12 (-5 *3 (-535)) (-4 *4 (-1200 (-400 *3))) (-5 *2 (-890))
+ (-5 *1 (-884 *4 *5)) (-4 *5 (-1200 (-400 *4))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4))
+ (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7))
+ (-4 *4 (-13 (-823) (-542) (-1009 (-535))))
+ (-5 *2 (-2 (|:| -4114 (-747)) (|:| -2466 *8)))
+ (-5 *1 (-882 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-326 (-400 (-535)) *4 *5 *6))
+ (-4 *4 (-1200 (-400 (-535)))) (-4 *5 (-1200 (-400 *4)))
+ (-4 *6 (-335 (-400 (-535)) *4 *5))
+ (-5 *2 (-2 (|:| -4114 (-747)) (|:| -2466 *6))) (-5 *1 (-883 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1200 *5))
+ (-4 *7 (-1200 (-400 *6))) (-4 *8 (-335 *5 *6 *7))
+ (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-112))
+ (-5 *1 (-882 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-326 (-400 (-535)) *4 *5 *6)) (-4 *4 (-1200 (-400 (-535))))
+ (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 (-400 (-535)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-883 *4 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-444))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1136 *6)) (-4 *6 (-921 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-4 *5 (-881)) (-5 *1 (-449 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-881)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-398 (-1136 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1136 *1))
+ (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-823))))
+ ((*1 *2 *3) (-12 (-4 *1 (-881)) (-5 *2 (-398 (-1136 *1))) (-5 *3 (-1136 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-398 (-1136 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1136 *1))
+ (-4 *4 (-444)) (-4 *4 (-542)) (-4 *4 (-823))))
+ ((*1 *2 *3) (-12 (-4 *1 (-881)) (-5 *2 (-398 (-1136 *1))) (-5 *3 (-1136 *1)))))
+(((*1 *2 *3) (-12 (-4 *1 (-881)) (-5 *2 (-398 (-1136 *1))) (-5 *3 (-1136 *1)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-356)) (-5 *1 (-996 *3 *2)) (-4 *2 (-632 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -2650 *3) (|:| -2719 (-621 *5))))
- (-5 *1 (-996 *5 *3)) (-5 *4 (-621 *5)) (-4 *3 (-632 *5)))))
+ (|partial| -12 (-5 *2 (-618 (-1136 *5))) (-5 *3 (-1136 *5)) (-4 *5 (-164 *4))
+ (-4 *4 (-534)) (-5 *1 (-147 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-618 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-1200 *4))
+ (-4 *4 (-343)) (-5 *1 (-351 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-618 (-1136 (-535)))) (-5 *3 (-1136 (-535)))
+ (-5 *1 (-557))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-618 (-1136 *1))) (-5 *3 (-1136 *1)) (-4 *1 (-881)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-1138 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-356) (-295)
- (-10 -8 (-15 -1393 ((-1091 *4 (-592 $)) $))
- (-15 -1404 ((-1091 *4 (-592 $)) $))
- (-15 -3845 ($ (-1091 *4 (-592 $))))))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1018)) (-5 *1 (-1197 *3 *2)) (-4 *2 (-1201 *3)))))
+ (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-343)) (-5 *2 (-1224 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-143)) (-4 *1 (-881))
+ (-5 *2 (-1224 *1)))))
+(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-343)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-881)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-823)) (-4 *5 (-881)) (-4 *6 (-769))
+ (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-398 (-1136 *8))) (-5 *1 (-878 *5 *6 *7 *8))
+ (-5 *4 (-1136 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-881)) (-4 *5 (-1200 *4)) (-5 *2 (-398 (-1136 *5)))
+ (-5 *1 (-879 *4 *5)) (-5 *3 (-1136 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-881)) (-5 *1 (-449 *3 *4 *2 *5))
+ (-4 *5 (-921 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-881)) (-5 *1 (-878 *2 *3 *4 *5))
+ (-4 *5 (-921 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-881)) (-5 *1 (-879 *2 *3)) (-4 *3 (-1200 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-881)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6))
+ (-5 *2 (-398 (-1136 *7))) (-5 *1 (-878 *4 *5 *6 *7)) (-5 *3 (-1136 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-881)) (-4 *5 (-1200 *4)) (-5 *2 (-398 (-1136 *5)))
+ (-5 *1 (-879 *4 *5)) (-5 *3 (-1136 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-881)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-921 *4 *5 *6))
+ (-5 *2 (-398 (-1136 *7))) (-5 *1 (-878 *4 *5 *6 *7)) (-5 *3 (-1136 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-881)) (-4 *5 (-1200 *4)) (-5 *2 (-398 (-1136 *5)))
+ (-5 *1 (-879 *4 *5)) (-5 *3 (-1136 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2))
- (-4 *2 (-423 *4))))
+ (|partial| -12 (-5 *2 (-618 (-1136 *7))) (-5 *3 (-1136 *7))
+ (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-881)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *1 (-878 *4 *5 *6 *7))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1058 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-823) (-541)))
- (-5 *1 (-156 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-158))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))))
-(((*1 *2 *2) (-12 (-5 *2 (-665 (-309 (-549)))) (-5 *1 (-1002)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
+ (|partial| -12 (-5 *2 (-618 (-1136 *5))) (-5 *3 (-1136 *5))
+ (-4 *5 (-1200 *4)) (-4 *4 (-881)) (-5 *1 (-879 *4 *5)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-618 (-1136 *7))) (-5 *3 (-1136 *7))
+ (-4 *7 (-921 *5 *6 *4)) (-4 *5 (-881)) (-4 *6 (-769)) (-4 *4 (-823))
+ (-5 *1 (-878 *5 *6 *4 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-549))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-732)))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-618 *6))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))) ((*1 *1) (-4 *1 (-534)))
+ ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-873 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |nullBranch| "null")
- (|:| |assignmentBranch|
- (-2 (|:| |var| (-1142))
- (|:| |arrayIndex| (-621 (-923 (-549))))
- (|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -2976 (-834))))))
- (|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1142)) (|:| |rand| (-834))
- (|:| |ints2Floats?| (-112))))
- (|:| |conditionalBranch|
- (-2 (|:| |switch| (-1141)) (|:| |thenClause| (-323))
- (|:| |elseClause| (-323))))
- (|:| |returnBranch|
- (-2 (|:| -1807 (-112))
- (|:| -4160
- (-2 (|:| |ints2Floats?| (-112)) (|:| -2976 (-834))))))
- (|:| |blockBranch| (-621 (-323)))
- (|:| |commentBranch| (-621 (-1124))) (|:| |callBranch| (-1124))
- (|:| |forBranch|
- (-2 (|:| -2062 (-1058 (-923 (-549))))
- (|:| |span| (-923 (-549))) (|:| -2493 (-323))))
- (|:| |labelBranch| (-1086))
- (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -2493 (-323))))
- (|:| |commonBranch|
- (-2 (|:| -2480 (-1142)) (|:| |contents| (-621 (-1142)))))
- (|:| |printBranch| (-621 (-834)))))
- (-5 *1 (-323)))))
-(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-309 (-372))) (-5 *1 (-298)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-178))))
- ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-657))))
- ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-941))))
- ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1040))))
- ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1084)))))
+ (-12 (-5 *2 (-618 (-618 (-747)))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-873 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1067)) (-5 *2 (-1063 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-1063 (-618 *4))) (-5 *1 (-876 *4))
+ (-5 *3 (-618 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-1063 (-1063 *4))) (-5 *1 (-876 *4))
+ (-5 *3 (-1063 *4))))
+ ((*1 *2 *1 *3) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4)))
- (-5 *2 (-2 (|:| |num| (-1225 *4)) (|:| |den| *4))))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-5 *2 (-1063 (-1063 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-873 *4)) (-4 *4 (-1067)) (-5 *2 (-618 (-747)))
+ (-5 *1 (-876 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-873 *4)) (-4 *4 (-1067)) (-5 *2 (-618 (-747)))
+ (-5 *1 (-876 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1067)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-876 *4)) (-4 *4 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-875 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-4 *1 (-875 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1108 *4 *2)) (-14 *4 (-890))
+ (-4 *2 (-13 (-1018) (-10 -7 (-6 (-4338 "*"))))) (-5 *1 (-874 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-618 *3)) (|:| |image| (-618 *3))))
+ (-5 *1 (-873 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-873 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-618 *3))) (-4 *3 (-1067)) (-5 *1 (-873 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-942)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1009 (-535))) (-4 *1 (-291)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1009 (-535))) (-4 *1 (-291)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1063 *3)) (-5 *1 (-873 *3)) (-4 *3 (-361)) (-4 *3 (-1067)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-873 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4)) (-4 *4 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747))))
+ ((*1 *1 *1) (-4 *1 (-227)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4))
+ (-4 *4 (-1200 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1200 *2))))
+ ((*1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 *4)) (-5 *3 (-618 (-747))) (-4 *1 (-871 *4))
+ (-4 *4 (-1067))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-745))
(-5 *2
- (-2 (|:| -1569 *3) (|:| |gap| (-747)) (|:| -2112 (-758 *3))
- (|:| -3249 (-758 *3))))
- (-5 *1 (-758 *3)) (-4 *3 (-1018))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
+ (-2 (|:| -2989 (-371)) (|:| -3888 (-1124))
+ (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))))
+ (-5 *1 (-550))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-745)) (-5 *4 (-1030))
(-5 *2
- (-2 (|:| -1569 *1) (|:| |gap| (-747)) (|:| -2112 *1)
- (|:| -3249 *1)))
- (-4 *1 (-1032 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-2 (|:| -2989 (-371)) (|:| -3888 (-1124))
+ (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))))
+ (-5 *1 (-550))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-763)) (-5 *3 (-1030))
+ (-5 *4
+ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219)))))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
(-5 *2
- (-2 (|:| -1569 *1) (|:| |gap| (-747)) (|:| -2112 *1)
- (|:| -3249 *1)))
- (-4 *1 (-1032 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459))))
- ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459))))
- ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
-(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-747)))
- ((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-892)) (-5 *4 (-219)) (-5 *5 (-549)) (-5 *6 (-845))
- (-5 *2 (-1230)) (-5 *1 (-1226)))))
-(((*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
+ (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))
+ (|:| |extra| (-1006))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-763)) (-5 *3 (-1030))
+ (-5 *4
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2
+ (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))
+ (|:| |extra| (-1006))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-776)) (-5 *3 (-1030))
+ (-5 *4
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-525))) (-5 *1 (-525)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-139))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1110)) (-5 *2 (-142)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-534))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-460)) (-5 *4 (-892)) (-5 *2 (-1230)) (-5 *1 (-1226)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-387)))))
-(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
- ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-173))) (-5 *1 (-1051)))))
-(((*1 *1) (-5 *1 (-1030))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *1)) (-4 *1 (-423 *4)) (-4 *4 (-823))
- (-4 *4 (-541)) (-5 *2 (-400 (-1138 *1)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1164)))
- (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2 (-1138 (-400 (-1138 *3)))) (-5 *1 (-545 *6 *3 *7))
- (-5 *5 (-1138 *3)) (-4 *7 (-1066))))
+ (-12 (-5 *3 (-784))
+ (-5 *2
+ (-2 (|:| -2989 (-371)) (|:| -3888 (-1124))
+ (|:| |explanations| (-618 (-1124)))))
+ (-5 *1 (-781))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1221 *5)) (-14 *5 (-1142)) (-4 *6 (-1018))
- (-5 *2 (-1198 *5 (-923 *6))) (-5 *1 (-918 *5 *6)) (-5 *3 (-923 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-1138 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-1138 *1))
- (-4 *1 (-920 *4 *5 *3))))
+ (-12 (-5 *3 (-784)) (-5 *4 (-1030))
+ (-5 *2
+ (-2 (|:| -2989 (-371)) (|:| -3888 (-1124))
+ (|:| |explanations| (-618 (-1124)))))
+ (-5 *1 (-781))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018))
- (-4 *7 (-920 *6 *5 *4)) (-5 *2 (-400 (-1138 *3)))
- (-5 *1 (-921 *5 *4 *6 *7 *3))
- (-4 *3
- (-13 (-356)
- (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $)))))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1138 *3))
- (-4 *3
- (-13 (-356)
- (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $)) (-15 -1404 (*7 $)))))
- (-4 *7 (-920 *6 *5 *4)) (-4 *5 (-769)) (-4 *4 (-823))
- (-4 *6 (-1018)) (-5 *1 (-921 *5 *4 *6 *7 *3))))
+ (-12 (-4 *1 (-812)) (-5 *3 (-1030))
+ (-5 *4 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))
+ (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142)) (-4 *5 (-541))
- (-5 *2 (-400 (-1138 (-400 (-923 *5))))) (-5 *1 (-1014 *5))
- (-5 *3 (-400 (-923 *5))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-350 *3)) (-4 *3 (-342)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
- (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823))
- (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-892))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-329 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356)))
- (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5))) (-4 *7 (-335 *4 *5 *6))
- (-5 *2 (-747)) (-5 *1 (-385 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-809 (-892)))))
- ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-549))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-541)) (-5 *2 (-549)) (-5 *1 (-601 *3 *4))
- (-4 *4 (-1201 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-717 *4 *3)) (-4 *4 (-1018))
- (-4 *3 (-823))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823))
- (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-875 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1066))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4))
- (-4 *6 (-1201 *5)) (-4 *7 (-1201 (-400 *6)))
- (-4 *8 (-335 *5 *6 *7))
- (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-747))
- (-5 *1 (-882 *4 *5 *6 *7 *8))))
+ (-12 (-4 *1 (-812)) (-5 *3 (-1030))
+ (-5 *4
+ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219)))
+ (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219))))
+ (|:| |ub| (-618 (-815 (-219))))))
+ (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-329 (-400 (-549)) *4 *5 *6))
- (-4 *4 (-1201 (-400 (-549)))) (-4 *5 (-1201 (-400 *4)))
- (-4 *6 (-335 (-400 (-549)) *4 *5)) (-5 *2 (-747))
- (-5 *1 (-883 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-329 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356))
- (-4 *7 (-1201 *6)) (-4 *4 (-1201 (-400 *7))) (-4 *8 (-335 *6 *7 *4))
- (-4 *9 (-13 (-361) (-356))) (-5 *2 (-747))
- (-5 *1 (-989 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1201 *3)) (-4 *3 (-1018)) (-4 *3 (-541))
- (-5 *2 (-747))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-592 *4)) (-5 *1 (-591 *3 *4)) (-4 *3 (-823))
- (-4 *4 (-823)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-835))))
- ((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1230)) (-5 *1 (-835))))
+ (-12 (-5 *3 (-814))
+ (-5 *2
+ (-2 (|:| -2989 (-371)) (|:| -3888 (-1124))
+ (|:| |explanations| (-618 (-1124)))))
+ (-5 *1 (-813))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1124)) (-5 *4 (-834)) (-5 *2 (-1230)) (-5 *1 (-835))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-1122 *4))
- (-4 *4 (-1066)) (-4 *4 (-1179)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-665 *5))) (-5 *4 (-549)) (-4 *5 (-356))
- (-4 *5 (-1018)) (-5 *2 (-112)) (-5 *1 (-1000 *5))))
+ (-12 (-5 *3 (-814)) (-5 *4 (-1030))
+ (-5 *2
+ (-2 (|:| -2989 (-371)) (|:| -3888 (-1124))
+ (|:| |explanations| (-618 (-1124)))))
+ (-5 *1 (-813))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-866)) (-5 *3 (-1030))
+ (-5 *4
+ (-2 (|:| |pde| (-618 (-307 (-219))))
+ (|:| |constraints|
+ (-618
+ (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747))
+ (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219)))
+ (|:| |dFinish| (-665 (-219))))))
+ (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124))
+ (|:| |tol| (-219))))
+ (-5 *2 (-2 (|:| -2989 (-371)) (|:| |explanations| (-1124))))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-665 *4))) (-4 *4 (-356)) (-4 *4 (-1018))
- (-5 *2 (-112)) (-5 *1 (-1000 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3))
- (-4 *3 (-938)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-809 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-621 (-1142)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823)))
- (-14 *3 (-621 (-1142)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1066))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-621 (-1142))) (-4 *3 (-170))
- (-4 *5 (-232 (-3774 *2) (-747)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3491 *4) (|:| -3577 *5))
- (-2 (|:| -3491 *4) (|:| -3577 *5))))
- (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-823))
- (-4 *7 (-920 *3 *5 (-836 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-823))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-541)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1201 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1018))
- (-4 *3 (-703))))
- ((*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))))
+ (-12 (-5 *3 (-869))
+ (-5 *2
+ (-2 (|:| -2989 (-371)) (|:| -3888 (-1124))
+ (|:| |explanations| (-618 (-1124)))))
+ (-5 *1 (-868))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-869)) (-5 *4 (-1030))
+ (-5 *2
+ (-2 (|:| -2989 (-371)) (|:| -3888 (-1124))
+ (|:| |explanations| (-618 (-1124)))))
+ (-5 *1 (-868)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-5 *1 (-867 *2 *4)) (-4 *2 (-1200 *4)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-356)) (-5 *1 (-867 *2 *3)) (-4 *2 (-1200 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1156 *4 *5))
- (-4 *4 (-1066)) (-4 *5 (-1066)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-541)))))
-(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-747)))
- ((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1201 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1201 *5))
- (-5 *1 (-783 *5 *2 *3 *6))
- (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549)))))
- (-4 *3 (-632 *2)) (-4 *6 (-632 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-400 *2))) (-4 *2 (-1201 *5))
- (-5 *1 (-783 *5 *2 *3 *6))
- (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2))
- (-4 *6 (-632 (-400 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-592 *1))) (-4 *1 (-295)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-1060 (-400 (-549))))) (-5 *1 (-256))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-1060 (-372)))) (-5 *1 (-256)))))
+ (-12 (-4 *1 (-866))
+ (-5 *3
+ (-2 (|:| |pde| (-618 (-307 (-219))))
+ (|:| |constraints|
+ (-618
+ (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747))
+ (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219)))
+ (|:| |dFinish| (-665 (-219))))))
+ (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124))
+ (|:| |tol| (-219))))
+ (-5 *2 (-1006)))))
+(((*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-524))) ((*1 *1) (-4 *1 (-699))) ((*1 *1) (-4 *1 (-703)))
+ ((*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067))))
+ ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067))
+ (-5 *2 (-618 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-618 (-2 (|:| |k| (-864 *3)) (|:| |c| *4))))
+ (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-648 *3))) (-5 *1 (-864 *3)) (-4 *3 (-823)))))
(((*1 *2 *1)
(-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
- (-14 *4 (-621 (-1142)))))
+ (-14 *4 (-618 (-1142)))))
((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1179))))
+ (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1178))))
((*1 *2 *1)
(-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
- (-14 *4 (-621 (-1142)))))
+ (-14 *4 (-618 (-1142)))))
((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-823)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -3420 (-665 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-665 *3))))
- (-4 *3 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $)))))
- (-4 *4 (-1201 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-549)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1179))
- (-4 *5 (-366 *4)) (-4 *3 (-366 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1))
- (-4 *1 (-920 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549)))))
- (-4 *5 (-1201 *4))
- (-5 *2 (-621 (-2 (|:| |deg| (-747)) (|:| -2650 *5))))
- (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-632 *5))
- (-4 *6 (-632 (-400 *5))))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |rm| (-795 *3))))
- (-5 *1 (-795 *3)) (-4 *3 (-823))))
- ((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-621 (-936))) (-5 *1 (-284)))))
-(((*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)) (-4 *2 (-1018))))
- ((*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3))
- (-4 *3 (-13 (-423 *4) (-973))))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-621 (-1138 *11))) (-5 *3 (-1138 *11))
- (-5 *4 (-621 *10)) (-5 *5 (-621 *8)) (-5 *6 (-621 (-747)))
- (-5 *7 (-1225 (-621 (-1138 *8)))) (-4 *10 (-823))
- (-4 *8 (-300)) (-4 *11 (-920 *8 *9 *10)) (-4 *9 (-769))
- (-5 *1 (-684 *9 *10 *8 *11)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-823)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1105))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-102 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-167 (-372))) (-5 *1 (-761 *3)) (-4 *3 (-594 (-372)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-892)) (-5 *2 (-167 (-372))) (-5 *1 (-761 *3))
- (-4 *3 (-594 (-372)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-594 (-372)))
- (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-167 *5)) (-5 *4 (-892)) (-4 *5 (-170))
- (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-923 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-372)))
- (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-923 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-170))
- (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-372)))
- (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
+ (-12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-5 *2 (-618 *5)) (-5 *1 (-862 *4 *5))
+ (-4 *5 (-1178)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-861 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1178)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-5 *2 (-112))
+ (-5 *1 (-859 *4 *5)) (-4 *5 (-1067))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018))
- (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-4 *4 (-594 (-372)))
- (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
+ (-12 (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-862 *5 *3))
+ (-4 *3 (-1178))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541))
- (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-400 (-923 (-167 *4)))) (-4 *4 (-541))
- (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
+ (-12 (-5 *3 (-618 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1067)) (-4 *6 (-1178))
+ (-5 *2 (-112)) (-5 *1 (-862 *5 *6)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-524))) ((*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| -2827 (-113)) (|:| |arg| (-618 (-861 *3)))))
+ (-5 *1 (-861 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-113)) (-5 *2 (-618 (-861 *4))) (-5 *1 (-861 *4))
+ (-4 *4 (-1067)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-296))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |num| (-861 *3)) (|:| |den| (-861 *3))))
+ (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-112)) (-5 *1 (-861 *4)) (-4 *4 (-1067)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-51)) (-5 *1 (-861 *4)) (-4 *4 (-1067)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-618 (-1142))) (|:| |pred| (-51))))
+ (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-51))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-618 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *5 (-642 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-859 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1067)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1067))
+ (-4 *4 (-642 *3))))
+ ((*1 *1) (-12 (-5 *1 (-859 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1067)) (-4 *2 (-1067))
+ (-5 *1 (-859 *4 *2)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-861 *4)) (-4 *4 (-1067)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1067)) (-4 *6 (-857 *5)) (-5 *2 (-856 *5 *6 (-618 *6)))
+ (-5 *1 (-858 *5 *6 *4)) (-5 *3 (-618 *6)) (-4 *4 (-594 (-861 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1067)) (-5 *2 (-618 (-286 *3))) (-5 *1 (-858 *5 *3 *4))
+ (-4 *3 (-1009 (-1142))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-861 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1067)) (-5 *2 (-618 (-286 (-917 *3)))) (-5 *1 (-858 *5 *3 *4))
+ (-4 *3 (-1018)) (-3659 (-4 *3 (-1009 (-1142)))) (-4 *3 (-857 *5))
+ (-4 *4 (-594 (-861 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1067)) (-5 *2 (-859 *5 *3)) (-5 *1 (-858 *5 *3 *4))
+ (-3659 (-4 *3 (-1009 (-1142)))) (-3659 (-4 *3 (-1018))) (-4 *3 (-857 *5))
+ (-4 *4 (-594 (-861 *5))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-113))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1142)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-823))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-823))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 (-167 *5)))) (-5 *4 (-892)) (-4 *5 (-541))
- (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823))
- (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
+ (-12 (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-857 *5))
+ (-4 *4 (-594 (-861 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823))
- (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
+ (-12 (-5 *3 (-618 *6)) (-4 *6 (-857 *5)) (-4 *5 (-1067)) (-5 *2 (-112))
+ (-5 *1 (-858 *5 *6 *4)) (-4 *4 (-594 (-861 *5))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-859 *4 *5)) (-5 *3 (-859 *4 *6)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-642 *5)) (-5 *1 (-856 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-859 *3 *4)) (-5 *1 (-856 *3 *4 *5))
+ (-4 *3 (-1067)) (-4 *5 (-642 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-859 *3 *5)) (-5 *1 (-856 *3 *4 *5))
+ (-4 *3 (-1067)) (-4 *5 (-642 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-618 (-535)))))
((*1 *2 *3)
- (-12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-541)) (-4 *4 (-823))
- (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-541))
- (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372)))
- (-5 *1 (-761 *5)))))
+ (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-618 (-535))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *3 (-618 (-535))) (-5 *1 (-854)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-618 (-535))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1119 (-618 (-535)))) (-5 *1 (-854)) (-5 *3 (-535)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-848 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-850 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-853 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-618 (-1147))) (-5 *1 (-851)))))
+(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+(((*1 *2 *3) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-235)) (-5 *3 (-1124))))
+ ((*1 *2 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-235))))
+ ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1178)) (-4 *3 (-1178)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-621 (-1142)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4))
- (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1142)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1066)) (-4 *2 (-1018))))
+ (-12 (-5 *2 (-172 (-400 (-535)))) (-5 *1 (-117 *3)) (-14 *3 (-535))))
+ ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1119 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3))))
+ ((*1 *2 *3) (-12 (-5 *2 (-172 (-535))) (-5 *1 (-742 *3)) (-4 *3 (-397))))
((*1 *2 *1)
- (-12 (-14 *3 (-621 (-1142))) (-4 *5 (-232 (-3774 *3) (-747)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3491 *4) (|:| -3577 *5))
- (-2 (|:| -3491 *4) (|:| -3577 *5))))
- (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-823))
- (-4 *7 (-920 *2 *5 (-836 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1066))))
+ (-12 (-5 *2 (-172 (-400 (-535)))) (-5 *1 (-842 *3)) (-14 *3 (-535))))
((*1 *2 *1)
- (-12 (-4 *2 (-541)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1201 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018))))
+ (-12 (-14 *3 (-535)) (-5 *2 (-172 (-400 (-535)))) (-5 *1 (-843 *3 *4))
+ (-4 *4 (-841 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-396 *3)) (-4 *3 (-397))))
+ ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-396 *3)) (-4 *3 (-397))))
+ ((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4327)) (-4 *1 (-397))))
+ ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890))))
+ ((*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-5 *2 (-1119 (-535))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1200 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
((*1 *2 *1)
- (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-823))
- (-4 *3 (-703))))
- ((*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-688 *3 *2 *4 *5 *6)) (-4 *3 (-170))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *2 (-1200 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018))))
((*1 *2 *1)
- (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *3 (-768)) (-4 *4 (-823))
- (-4 *2 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1213 *3)) (-4 *3 (-1179)) (-5 *2 (-747)))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))))
+(((*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-5 *2 (-535)))))
+(((*1 *1 *1) (-4 *1 (-841 *2))))
+(((*1 *1 *1 *1) (-5 *1 (-835))) ((*1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1136 (-535))) (-5 *3 (-535)) (-4 *1 (-841 *4)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-400 *6))
+ (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1217 *5)) (-4 *6 (-1200 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1214 *5 *6 *7)) (-4 *5 (-356))
+ (-14 *6 (-1142)) (-14 *7 *5) (-5 *2 (-400 (-1193 *6 *5)))
+ (-5 *1 (-839 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1214 *5 *6 *7)) (-4 *5 (-356))
+ (-14 *6 (-1142)) (-14 *7 *5) (-5 *2 (-400 (-1193 *6 *5)))
+ (-5 *1 (-839 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-172 *6))
+ (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1217 *5)) (-4 *6 (-1200 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-835)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-835)))))
+(((*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164)))))
+ ((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835))))
+ ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835)))))
+(((*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1178)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-747))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))
+ (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-591 *3)) (-4 *3 (-823))))
+ ((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835))))
+ ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835)))))
+(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835)))))
+(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-835)))))
+(((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))))
+(((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-835)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))
+ ((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))
+ ((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))))
+(((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))))
+(((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-291))))
+ ((*1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535))))
+ (-5 *4 (-307 (-166 (-371)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-371)))
+ (-5 *1 (-323))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-535)))
+ (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-166 (-371))))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-371)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-535)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-166 (-371))))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-371)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-535)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-166 (-371)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-371))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-535))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-670)))
+ (-5 *1 (-323))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-675)))
+ (-5 *1 (-323))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-917 (-535)))) (-5 *4 (-307 (-677)))
+ (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-670)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-675)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-307 (-677)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-670)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-675)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-307 (-677)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-670))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-675))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-677))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-670))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-675))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-665 (-677))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-670))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-675))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-307 (-677))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1124)) (-5 *1 (-323))))
+ ((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))))
+(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-835))))
+ ((*1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-835))) ((*1 *1 *1 *1) (-5 *1 (-835)))
+ ((*1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))
+ ((*1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-291))))
+ ((*1 *1 *1) (-4 *1 (-291)))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835))))
+ ((*1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1124)) (-5 *1 (-186))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-835)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |rm| (-795 *3))))
+ (-5 *1 (-795 *3)) (-4 *3 (-823))))
+ ((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-747)))
+ ((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-747)))
+ ((*1 *1 *1 *1) (-5 *1 (-835))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-834)) (-5 *3 (-128)) (-5 *2 (-1086)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-834)) (-5 *3 (-129)) (-5 *2 (-1086)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-51))) (-5 *2 (-1230)) (-5 *1 (-832)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-38 (-400 (-535))))
+ (-4 *2 (-170)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-356)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018))
+ (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3))
+ (-4 *3 (-825 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3)))
+ (-5 *1 (-743 *3 *4)) (-4 *3 (-685 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-356)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018))
+ (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3))
+ (-4 *3 (-825 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-542)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1018))
+ (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3))
+ (-4 *3 (-825 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-542)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| -2091 *1) (|:| -3223 *1))) (-4 *1 (-825 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-98 *5)) (-4 *5 (-542)) (-4 *5 (-1018))
+ (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-826 *5 *3))
+ (-4 *3 (-825 *5)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-624 *5)) (-4 *5 (-1018))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-825 *5))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-665 *3)) (-4 *1 (-411 *3)) (-4 *3 (-170))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1018)) (-5 *1 (-826 *2 *3))
+ (-4 *3 (-825 *2)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1018)) (-5 *1 (-826 *5 *2))
+ (-4 *2 (-825 *5)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-356)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2492 *1)))
+ (-4 *1 (-825 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-356)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2492 *1)))
+ (-4 *1 (-825 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1224 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5))
+ (-14 *4 (-747)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1224 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5))
+ (-14 *4 (-747)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1224 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5))
+ (-14 *4 (-747)))))
+(((*1 *2) (-12 (-5 *2 (-815 (-535))) (-5 *1 (-523))))
+ ((*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1067)))))
+(((*1 *2) (-12 (-5 *2 (-815 (-535))) (-5 *1 (-523))))
+ ((*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-808 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-808 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-815 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-307 (-371)))) (-5 *4 (-618 (-371))) (-5 *2 (-1006))
+ (-5 *1 (-813)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-814)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-813))))
+ ((*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-618 (-371))) (-5 *5 (-618 (-815 (-371))))
+ (-5 *6 (-618 (-307 (-371)))) (-5 *3 (-307 (-371))) (-5 *2 (-1006))
+ (-5 *1 (-813))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-371))) (-5 *5 (-618 (-815 (-371))))
+ (-5 *2 (-1006)) (-5 *1 (-813))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-307 (-371))) (-5 *4 (-618 (-371))) (-5 *2 (-1006))
+ (-5 *1 (-813))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-307 (-371)))) (-5 *4 (-618 (-371))) (-5 *2 (-1006))
+ (-5 *1 (-813)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1201 (-400 *2))) (-5 *2 (-549)) (-5 *1 (-884 *4 *3))
- (-4 *3 (-1201 (-400 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-541)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
- (-5 *1 (-1169 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-541))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))
- (-4 *2 (-541))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-541)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018))
- (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-541))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-747)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-541))))
- ((*1 *1 *1 *1) (-5 *1 (-834)))
+ (-12 (-4 *1 (-812))
+ (-5 *3
+ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219)))
+ (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219))))
+ (|:| |ub| (-618 (-815 (-219))))))
+ (-5 *2 (-1006))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-812))
+ (-5 *3 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))
+ (-5 *2 (-1006)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-208 (-493))) (-5 *1 (-811)))))
+(((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))
+ (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-664 *4 *5 *6 *3))
+ (-4 *3 (-662 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018))))
+ ((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-113)) (-5 *4 (-618 *2)) (-5 *1 (-114 *2))
+ (-4 *2 (-1067))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1225 *4)) (-4 *4 (-1201 *3)) (-4 *3 (-541))
- (-5 *1 (-940 *3 *4))))
+ (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-618 *4))) (-4 *4 (-1067))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1067)) (-5 *1 (-114 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-618 *4))) (-5 *1 (-114 *4))
+ (-4 *4 (-1067))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018))
- (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-541))))
- ((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018))
+ (-5 *1 (-691 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018))
+ (-5 *1 (-691 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-621 (-372))) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-372))) (-5 *1 (-460))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-372))) (-5 *1 (-460))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-892)) (-5 *4 (-845)) (-5 *2 (-1230)) (-5 *1 (-1226))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-892)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))))
-(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1149)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *6 *5))
- (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
- (-4 *6 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-113)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *2)) (-4 *2 (-624 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-810 *2)) (-4 *2 (-1018)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-354 (-113))) (-4 *2 (-1018)) (-5 *1 (-691 *2 *4))
+ (-4 *4 (-624 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-354 (-113))) (-5 *1 (-810 *2)) (-4 *2 (-1018)))))
+(((*1 *2) (-12 (-5 *2 (-808 (-535))) (-5 *1 (-523))))
+ ((*1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-1230)) (-5 *1 (-807)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-798)) (-5 *4 (-51)) (-5 *2 (-1230)) (-5 *1 (-807)))))
+(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-51)) (-5 *1 (-807)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-805)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-805)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-805)))))
+(((*1 *2 *3) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-805)) (-5 *3 (-1124)))))
+(((*1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-805)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-51)) (-5 *1 (-805)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-51)) (-5 *1 (-805)))))
+(((*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-51)) (-5 *1 (-805)))))
+(((*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-804 *2 *3)) (-4 *2 (-685 *3)))))
+(((*1 *2 *1) (-12 (-4 *2 (-685 *3)) (-5 *1 (-804 *2 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-797)) (-5 *2 (-1124))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-797)) (-5 *3 (-112)) (-5 *2 (-1124))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-797)) (-5 *3 (-799)) (-5 *2 (-1230))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-797)) (-5 *3 (-799)) (-5 *4 (-112)) (-5 *2 (-1230))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-13 (-300) (-145)))
- (-4 *5 (-13 (-823) (-594 (-1142)))) (-4 *6 (-769)) (-5 *2 (-112))
- (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1179)))))
-(((*1 *2)
- (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1066)))))
+ (-12 (-5 *3 (-307 *4)) (-4 *4 (-13 (-797) (-823) (-1018))) (-5 *2 (-1124))
+ (-5 *1 (-803 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-307 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-797) (-823) (-1018)))
+ (-5 *2 (-1124)) (-5 *1 (-803 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-799)) (-5 *4 (-307 *5)) (-4 *5 (-13 (-797) (-823) (-1018)))
+ (-5 *2 (-1230)) (-5 *1 (-803 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-799)) (-5 *4 (-307 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-797) (-823) (-1018))) (-5 *2 (-1230)) (-5 *1 (-803 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-802)))))
+(((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-801)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-801)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-802)) (-5 *3 (-618 (-1142))) (-5 *1 (-801)))))
+(((*1 *1) (-5 *1 (-800))))
+(((*1 *1) (-5 *1 (-800))))
+(((*1 *1) (-5 *1 (-800))))
+(((*1 *1) (-5 *1 (-800))))
+(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-799)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1066)))))
+ (-12 (-5 *2 (-2 (|:| |cd| (-1124)) (|:| -3888 (-1124)))) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-800)) (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-799)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-800)) (-5 *1 (-799)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-800)) (-5 *1 (-799)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-112)) (-5 *1 (-798)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1124)) (-5 *4 (-1086)) (-5 *2 (-112)) (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-5 *2 (-799)) (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-5 *2 (-799)) (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-798)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-795 *3)) (-4 *3 (-823)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2252 *3) (|:| |coef1| (-758 *3))))
- (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1066) (-34))) (-4 *6 (-13 (-1066) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1106 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1066))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-621 (-1142))) (-4 *4 (-170))
- (-4 *6 (-232 (-3774 *3) (-747)))
- (-14 *7
- (-1 (-112) (-2 (|:| -3491 *5) (|:| -3577 *6))
- (-2 (|:| -3491 *5) (|:| -3577 *6))))
- (-5 *2 (-690 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-823)) (-4 *8 (-920 *4 *6 (-836 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-703)) (-4 *2 (-823)) (-5 *1 (-712 *3 *2))
- (-4 *3 (-1018))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768))
- (-4 *4 (-823)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-549))) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-541)) (-4 *8 (-920 *7 *5 *6))
- (-5 *2 (-2 (|:| -3577 (-747)) (|:| -1569 *9) (|:| |radicand| *9)))
- (-5 *1 (-924 *5 *6 *7 *8 *9)) (-5 *4 (-747))
- (-4 *9
- (-13 (-356)
- (-10 -8 (-15 -1393 (*8 $)) (-15 -1404 (*8 $)) (-15 -3845 ($ *8))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
- (-5 *1 (-1090 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1124)) (-5 *1 (-96))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1124)) (-5 *1 (-96)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-444)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1066) (-34)))
- (-4 *4 (-13 (-1066) (-34))))))
+ (-12
+ (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3))))
+ (-5 *1 (-379 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |mm| (-795 *3)) (|:| |rm| (-795 *3))))
+ (-5 *1 (-795 *3)) (-4 *3 (-823)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-354 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-535)) (-5 *2 (-747)) (-5 *1 (-379 *4)) (-4 *4 (-1067))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-535)) (-4 *2 (-23)) (-5 *1 (-625 *4 *2 *5)) (-4 *4 (-1067))
+ (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-535)) (-5 *2 (-747)) (-5 *1 (-795 *4)) (-4 *4 (-823)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-535)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1067))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-354 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-535)) (-4 *2 (-1067)) (-5 *1 (-625 *2 *4 *5)) (-4 *4 (-23))
+ (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-535)) (-5 *1 (-795 *2)) (-4 *2 (-823)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-172 (-400 (-549)))) (-5 *1 (-117 *3)) (-14 *3 (-549))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1122 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-172 (-549))) (-5 *1 (-742 *3)) (-4 *3 (-397))))
+ (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 (-535))))) (-5 *1 (-354 *3))
+ (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-5 *2 (-172 (-400 (-549)))) (-5 *1 (-842 *3)) (-14 *3 (-549))))
+ (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 (-747))))) (-5 *1 (-379 *3))
+ (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-14 *3 (-549)) (-5 *2 (-172 (-400 (-549))))
- (-5 *1 (-843 *3 *4)) (-4 *4 (-840 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-460)) (-5 *3 (-621 (-256))) (-5 *1 (-1226))))
- ((*1 *1 *1) (-5 *1 (-1226))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-621 (-1138 *7))) (-5 *3 (-1138 *7))
- (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-880)) (-4 *5 (-769))
- (-4 *6 (-823)) (-5 *1 (-877 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-621 (-1138 *5))) (-5 *3 (-1138 *5))
- (-4 *5 (-1201 *4)) (-4 *4 (-880)) (-5 *1 (-878 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1122 (-2 (|:| |k| (-549)) (|:| |c| *6))))
- (-5 *4 (-997 (-816 (-549)))) (-5 *5 (-1142)) (-5 *7 (-400 (-549)))
- (-4 *6 (-1018)) (-5 *2 (-834)) (-5 *1 (-576 *6)))))
-(((*1 *2)
- (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-410 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-32 *3 *4))
- (-4 *4 (-423 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-747)) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *4))
- (-4 *4 (-423 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-114)) (-5 *1 (-161))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *4))
- (-4 *4 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-294 *3)) (-4 *3 (-295))))
- ((*1 *2 *2) (-12 (-4 *1 (-295)) (-5 *2 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *4 (-823)) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *4))
- (-4 *4 (-423 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-592 *3)) (-4 *3 (-823))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *4))
- (-4 *4 (-13 (-423 *3) (-973) (-1164)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-990)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-1138 (-923 *4))) (-5 *1 (-409 *3 *4))
- (-4 *3 (-410 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356))
- (-5 *2 (-1138 (-923 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1138 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))))
-(((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))
- ((*1 *2 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1156 *4 *5))
- (-4 *4 (-1066)) (-4 *5 (-1066)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-1073 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
- (-5 *1 (-174 *3)))))
+ (-12 (-5 *2 (-618 (-2 (|:| -4075 *3) (|:| -2484 (-535))))) (-5 *1 (-398 *3))
+ (-4 *3 (-542))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 (-747))))) (-5 *1 (-795 *3))
+ (-4 *3 (-823)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1225 (-621 *3))) (-4 *4 (-300))
- (-5 *2 (-621 *3)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-549)) (-4 *4 (-13 (-541) (-145))) (-5 *1 (-526 *4 *2))
- (-4 *2 (-1216 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-549)) (-4 *4 (-13 (-356) (-361) (-594 *3)))
- (-4 *5 (-1201 *4)) (-4 *6 (-701 *4 *5)) (-5 *1 (-530 *4 *5 *6 *2))
- (-4 *2 (-1216 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-549)) (-4 *4 (-13 (-356) (-361) (-594 *3)))
- (-5 *1 (-531 *4 *2)) (-4 *2 (-1216 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1122 *4)) (-5 *3 (-549)) (-4 *4 (-13 (-541) (-145)))
- (-5 *1 (-1118 *4)))))
+ (|partial| -12 (-5 *5 (-618 *4)) (-4 *4 (-356)) (-5 *2 (-1224 *4))
+ (-5 *1 (-790 *4 *3)) (-4 *3 (-634 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1018)) (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2))
- (-4 *5 (-232 *3 *2)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-733)))))
-(((*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-747)) (-5 *1 (-571)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-823)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-1147))) (-5 *1 (-1147))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-621 (-1147))) (-5 *1 (-1147)))))
+ (-12 (-5 *3 (-618 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4)) (-5 *1 (-790 *4 *5))
+ (-4 *5 (-634 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *5)) (-5 *4 (-747)) (-4 *5 (-356)) (-5 *2 (-665 *5))
+ (-5 *1 (-790 *5 *6)) (-4 *6 (-634 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-287 (-816 *3))) (-4 *3 (-13 (-27) (-1164) (-423 *5)))
- (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2
- (-3 (-816 *3)
- (-2 (|:| |leftHandLimit| (-3 (-816 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-816 *3) "failed")))
- "failed"))
- (-5 *1 (-614 *5 *3))))
+ (-12 (-5 *3 (-618 (-917 *5))) (-5 *4 (-618 (-1142))) (-4 *5 (-542))
+ (-5 *2 (-618 (-618 (-286 (-400 (-917 *5)))))) (-5 *1 (-746 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-542))
+ (-5 *2 (-618 (-618 (-286 (-400 (-917 *4)))))) (-5 *1 (-746 *4))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-287 *3)) (-5 *5 (-1124))
- (-4 *3 (-13 (-27) (-1164) (-423 *6)))
- (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-816 *3)) (-5 *1 (-614 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-287 (-816 (-923 *5)))) (-4 *5 (-444))
+ (-12 (-5 *3 (-665 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2123 (-618 *6))) *7 *6))
+ (-4 *6 (-356)) (-4 *7 (-634 *6))
(-5 *2
- (-3 (-816 (-400 (-923 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-816 (-400 (-923 *5))) "failed")))
- "failed"))
- (-5 *1 (-615 *5)) (-5 *3 (-400 (-923 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-287 (-400 (-923 *5)))) (-5 *3 (-400 (-923 *5)))
- (-4 *5 (-444))
+ (-2 (|:| |particular| (-3 (-1224 *6) "failed"))
+ (|:| -2123 (-618 (-1224 *6)))))
+ (-5 *1 (-789 *6 *7)) (-5 *4 (-1224 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356))
(-5 *2
- (-3 (-816 *3)
- (-2 (|:| |leftHandLimit| (-3 (-816 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-816 *3) "failed")))
- "failed"))
- (-5 *1 (-615 *5))))
+ (-2 (|:| A (-665 *5))
+ (|:| |eqs|
+ (-618
+ (-2 (|:| C (-665 *5)) (|:| |g| (-1224 *5)) (|:| -3600 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *5)) (-5 *4 (-1224 *5))
+ (-4 *6 (-634 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356)) (-4 *6 (-634 *5))
+ (-5 *2 (-2 (|:| -1695 (-665 *6)) (|:| |vec| (-1224 *5))))
+ (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *6)) (-5 *4 (-1224 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-618 *5) *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-4 *6 (-1200 *5)) (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-287 (-400 (-923 *6)))) (-5 *5 (-1124))
- (-5 *3 (-400 (-923 *6))) (-4 *6 (-444)) (-5 *2 (-816 *3))
- (-5 *1 (-615 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+ (-12 (-5 *3 (-631 (-400 *7))) (-5 *4 (-1 (-618 *6) *7))
+ (-5 *5 (-1 (-398 *7) *7))
+ (-4 *6 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-4 *7 (-1200 *6)) (-5 *2 (-618 (-400 *7))) (-5 *1 (-788 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-618 *5) *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-4 *6 (-1200 *5)) (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-632 *7 (-400 *7))) (-5 *4 (-1 (-618 *6) *7))
+ (-5 *5 (-1 (-398 *7) *7))
+ (-4 *6 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-4 *7 (-1200 *6)) (-5 *2 (-618 (-400 *7))) (-5 *1 (-788 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-631 (-400 *5))) (-4 *5 (-1200 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-5 *2 (-618 (-400 *5))) (-5 *1 (-788 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5))
+ (-4 *5 (-27))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 *5 (-400 *5))) (-4 *5 (-1200 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-5 *2 (-618 (-400 *5))) (-5 *1 (-788 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5))
+ (-4 *5 (-27))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-5 *2 (-618 (-400 *6))) (-5 *1 (-788 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-618 *5) *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5))
+ (-5 *2 (-618 (-2 (|:| |poly| *6) (|:| -3600 *3))))
+ (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-634 *6)) (-4 *7 (-634 (-400 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-618 *5) *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-4 *6 (-1200 *5))
+ (-5 *2 (-618 (-2 (|:| |poly| *6) (|:| -3600 (-632 *6 (-400 *6))))))
+ (-5 *1 (-788 *5 *6)) (-5 *3 (-632 *6 (-400 *6))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-618 *7) *7 (-1136 *7))) (-5 *5 (-1 (-398 *7) *7))
+ (-4 *7 (-1200 *6)) (-4 *6 (-13 (-356) (-145) (-1009 (-400 (-535)))))
+ (-5 *2 (-618 (-2 (|:| |frac| (-400 *7)) (|:| -3600 *3))))
+ (-5 *1 (-785 *6 *7 *3 *8)) (-4 *3 (-634 *7)) (-4 *8 (-634 (-400 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-5 *2 (-618 (-2 (|:| |frac| (-400 *6)) (|:| -3600 (-632 *6 (-400 *6))))))
+ (-5 *1 (-788 *5 *6)) (-5 *3 (-632 *6 (-400 *6))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356)) (-4 *7 (-1200 *5)) (-4 *4 (-701 *5 *7))
+ (-5 *2 (-2 (|:| -1695 (-665 *6)) (|:| |vec| (-1224 *5))))
+ (-5 *1 (-787 *5 *6 *7 *4 *3)) (-4 *6 (-634 *5)) (-4 *3 (-634 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-631 (-400 *2))) (-4 *2 (-1200 *4)) (-5 *1 (-786 *4 *2))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 *2 (-400 *2))) (-4 *2 (-1200 *4)) (-5 *1 (-786 *4 *2))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1200 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-618 *4))))
+ (-5 *1 (-786 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 (-400 *6))) (-4 *6 (-1200 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-5 *2 (-2 (|:| -2123 (-618 (-400 *6))) (|:| -1695 (-665 *5))))
+ (-5 *1 (-786 *5 *6)) (-5 *4 (-618 (-400 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1200 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-618 *4))))
+ (-5 *1 (-786 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *6 (-400 *6))) (-4 *6 (-1200 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-5 *2 (-2 (|:| -2123 (-618 (-400 *6))) (|:| -1695 (-665 *5))))
+ (-5 *1 (-786 *5 *6)) (-5 *4 (-618 (-400 *6))))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1201 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1201 *3))))
+ (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-1200 *4))
+ (-5 *1 (-785 *4 *3 *2 *5)) (-4 *2 (-634 *3)) (-4 *5 (-634 (-400 *3)))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-747)))
- (-5 *1 (-528 *3 *2 *4 *5)) (-4 *2 (-1201 *3)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1124)) (-5 *2 (-750)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-1070)) (-5 *1 (-936)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823))
- (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
- (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747)))))
+ (-12 (-5 *3 (-400 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535)))))
+ (-4 *5 (-1200 *4)) (-5 *1 (-785 *4 *5 *2 *6)) (-4 *2 (-634 *5))
+ (-4 *6 (-634 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-618 *5) *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *6 (-1200 *5))
+ (-5 *2 (-618 (-2 (|:| -4294 *5) (|:| -3600 *3)))) (-5 *1 (-785 *5 *6 *3 *7))
+ (-4 *3 (-634 *6)) (-4 *7 (-634 (-400 *6))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4))
+ (-5 *2 (-618 (-2 (|:| |deg| (-747)) (|:| -3600 *5))))
+ (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-634 *5)) (-4 *6 (-634 (-400 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1200 *4)) (-5 *1 (-785 *4 *2 *3 *5))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2))
+ (-4 *5 (-634 (-400 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1200 *4)) (-5 *1 (-783 *4 *2 *3 *5))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2))
+ (-4 *5 (-634 (-400 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1200 *4)) (-5 *1 (-783 *4 *2 *5 *3))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-634 *2))
+ (-4 *3 (-634 (-400 *2))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-2 (|:| |deg| (-747)) (|:| -3825 *5))))
- (-4 *5 (-1201 *4)) (-4 *4 (-342)) (-5 *2 (-621 *5))
- (-5 *1 (-210 *4 *5))))
+ (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4))
+ (-5 *2 (-618 (-2 (|:| -4115 *5) (|:| -3560 *5)))) (-5 *1 (-783 *4 *5 *3 *6))
+ (-4 *3 (-634 *5)) (-4 *6 (-634 (-400 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-2 (|:| -2120 *5) (|:| -3068 (-549)))))
- (-5 *4 (-549)) (-4 *5 (-1201 *4)) (-5 *2 (-621 *5))
- (-5 *1 (-672 *5)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *1 (-1094 *3 *2)) (-4 *3 (-1201 *2)))))
+ (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *4 (-1200 *5))
+ (-5 *2 (-618 (-2 (|:| -4115 *4) (|:| -3560 *4)))) (-5 *1 (-783 *5 *4 *3 *6))
+ (-4 *3 (-634 *4)) (-4 *6 (-634 (-400 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *5 (-1200 *4))
+ (-5 *2 (-618 (-2 (|:| -4115 *5) (|:| -3560 *5)))) (-5 *1 (-783 *4 *5 *6 *3))
+ (-4 *6 (-634 *5)) (-4 *3 (-634 (-400 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *4 (-1200 *5))
+ (-5 *2 (-618 (-2 (|:| -4115 *4) (|:| -3560 *4)))) (-5 *1 (-783 *5 *4 *6 *3))
+ (-4 *6 (-634 *4)) (-4 *3 (-634 (-400 *4))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1200 *5))
+ (-5 *1 (-783 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535)))))
+ (-4 *3 (-634 *2)) (-4 *6 (-634 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-400 *2))) (-4 *2 (-1200 *5)) (-5 *1 (-783 *5 *2 *3 *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-535))))) (-4 *3 (-634 *2))
+ (-4 *6 (-634 (-400 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 *4)) (-4 *4 (-335 *5 *6 *7))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-4 *6 (-1200 *5)) (-4 *7 (-1200 (-400 *6)))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-618 *4))))
+ (-5 *1 (-782 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1142))
+ (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-780 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1164) (-931))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142))
+ (-4 *4 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1164) (-931))))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371))
+ (|:| |expense| (-371)) (|:| |accuracy| (-371))
+ (|:| |intermediateResults| (-371))))
+ (-5 *1 (-779)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-618
+ (-2
+ (|:| -4203
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (|:| -2184
+ (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371))
+ (|:| |expense| (-371)) (|:| |accuracy| (-371))
+ (|:| |intermediateResults| (-371)))))))
+ (-5 *1 (-779)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-366 *3)) (-4 *3 (-1179)) (-4 *3 (-823)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-366 *4)) (-4 *4 (-1179))
- (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228))))
- ((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228)))))
+ (-12
+ (-5 *2
+ (-618
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219)))))
+ (-5 *1 (-545))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-618 *3))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-618
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219)))))
+ (-5 *1 (-779)))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-779)))))
+(((*1 *1) (-5 *1 (-779))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1142))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-535)) (-617 (-535)) (-145)))
+ (-4 *4 (-13 (-29 *6) (-1164) (-931)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-618 *4))))
+ (-5 *1 (-777 *6 *4 *3)) (-4 *3 (-634 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-776))
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-1006)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-967 *3)) (-4 *3 (-170)) (-5 *1 (-774 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)))))
(((*1 *1 *1) (-4 *1 (-237)))
((*1 *1 *1)
- (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1201 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1200 *2))
+ (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-1536 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1179)))
- (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1179)))))
+ (-3874 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1178)))
+ (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1178)))))
((*1 *1 *1) (-4 *1 (-465)))
- ((*1 *2 *2) (-12 (-5 *2 (-1225 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3))))
((*1 *1 *1)
(-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)) (-4 *2 (-356)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219)))
- (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2))))
- (-5 *2 (-1006)) (-5 *1 (-730)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-621 (-1142))) (-4 *5 (-1018))
- (-5 *2 (-241 *4 *5)) (-5 *1 (-915 *4 *5)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-170)) (-4 *2 (-356)))))
+(((*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164)))))
+ ((*1 *1 *1 *1) (-4 *1 (-769))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371))
+ (-5 *2
+ (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-535)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371))
+ (-5 *2
+ (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-535)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371))
+ (-5 *2
+ (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-535)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371))
+ (-5 *2
+ (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-535)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371))
+ (-5 *2
+ (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-535)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371))
+ (-5 *2
+ (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-535)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371))
+ (-5 *2
+ (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-535)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371))
+ (-5 *2
+ (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-535)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371))
+ (-5 *2
+ (-2 (|:| -3744 *4) (|:| -1651 *4) (|:| |totalpts| (-535))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-535)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371)))
+ (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-535))
+ (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))))
+ (-5 *7 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371)))
+ (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-535))
+ (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))))
+ (-5 *7 (-1 (-1230) (-1224 *5) (-1224 *5) (-371))) (-5 *3 (-1224 (-371)))
+ (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371)))
+ (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371)))
+ (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-535)) (-5 *6 (-1 (-1230) (-1224 *5) (-1224 *5) (-371)))
+ (-5 *3 (-1224 (-371))) (-5 *5 (-371)) (-5 *2 (-1230)) (-5 *1 (-764)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-763)) (-5 *2 (-1006))
+ (-5 *3
+ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-618 (-1055 (-815 (-219)))))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-763)) (-5 *2 (-1006))
+ (-5 *3
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219)))))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-762)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-762)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-890)) (-5 *1 (-762)))))
+(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1124)) (-5 *1 (-762)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-890)) (-5 *1 (-762)))))
+(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1124)) (-5 *1 (-762)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3))
- (-4 *3 (-1201 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170))))
+ (|partial| -12 (-5 *3 (-917 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-371)))
+ (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-917 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-170))
+ (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
- ((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-621 (-549))) (-5 *1 (-1076)) (-5 *3 (-549)))))
-(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675))))
- ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-592 *1))) (-4 *1 (-295)))))
-(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-387))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1159)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1146)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-635 *4 *2))
- (-4 *2 (-632 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3726 *3)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1018))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769))
- (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-112))
- (-5 *2 (-1006)) (-5 *1 (-722)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1144 (-400 (-549)))) (-5 *2 (-400 (-549)))
- (-5 *1 (-184)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-1076)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-371)))
+ (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018))
+ (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 (-371)))
+ (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542))
+ (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-400 (-917 (-166 *4)))) (-4 *4 (-542))
+ (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-400 (-917 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-542))
+ (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823))
+ (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823))
+ (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-542)) (-4 *4 (-823))
+ (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-542))
+ (-4 *5 (-823)) (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371)))
+ (-5 *1 (-761 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-5 *2 (-621 *3)) (-5 *1 (-916 *4 *3))
- (-4 *3 (-1201 *4)))))
-(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
- ((*1 *1 *1) (-4 *1 (-1110))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
- (-5 *2 (-1006)) (-5 *1 (-728)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1164) (-930)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-834))) ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1) (-5 *1 (-834)))
+ (|partial| -12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2))
+ (-5 *2 (-371)) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018))
+ (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-1122 *3)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-372)) (-5 *1 (-1030)))))
+ (|partial| -12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 *2))
+ (-5 *2 (-371)) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542))
+ (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823))
+ (-4 *4 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823))
+ (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3))
- (-4 *3 (-1201 *4))))
+ (-12 (-5 *2 (-166 (-371))) (-5 *1 (-761 *3)) (-4 *3 (-594 (-371)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-890)) (-5 *2 (-166 (-371))) (-5 *1 (-761 *3))
+ (-4 *3 (-594 (-371)))))
((*1 *2 *3)
- (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549)))))
+ (-12 (-5 *3 (-166 *4)) (-4 *4 (-170)) (-4 *4 (-594 (-371)))
+ (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3))
- (-4 *3 (-1201 (-549)))))
+ (-12 (-5 *3 (-166 *5)) (-5 *4 (-890)) (-4 *5 (-170)) (-4 *5 (-594 (-371)))
+ (-5 *2 (-166 (-371))) (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-917 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-371)))
+ (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-747))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3))
- (-4 *3 (-1201 (-549)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-621 (-747))) (-5 *5 (-747)) (-5 *2 (-411 *3))
- (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3))
- (-4 *3 (-1201 (-549)))))
+ (-12 (-5 *3 (-917 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-170))
+ (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-411 *3)) (-5 *1 (-978 *3))
- (-4 *3 (-1201 (-400 (-549))))))
+ (-12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-371)))
+ (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *5 (-594 (-371)))
+ (-5 *2 (-166 (-371))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-411 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-621 (-1142))) (-4 *5 (-1018))
- (-5 *2 (-923 *5)) (-5 *1 (-915 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-629 (-400 *2))) (-4 *2 (-1201 *4)) (-5 *1 (-786 *4 *2))
- (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))))
+ (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 (-371)))
+ (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542))
+ (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 *2 (-400 *2))) (-4 *2 (-1201 *4))
- (-5 *1 (-786 *4 *2))
- (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1179))
- (-5 *2 (-621 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-714 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1142))
- (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-309 *5)))
- (-5 *1 (-1095 *5))))
+ (-12 (-5 *3 (-400 (-917 (-166 *4)))) (-4 *4 (-542)) (-4 *4 (-594 (-371)))
+ (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1142)))
- (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-621 (-309 *5))))
- (-5 *1 (-1095 *5)))))
-(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1225 *1)) (-4 *1 (-360 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-823)) (-5 *4 (-621 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-621 *4))))
- (-5 *1 (-1150 *6)) (-5 *5 (-621 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1179)) (-5 *2 (-549)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3))
- (-4 *3 (-1201 *2)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1006)) (-5 *1 (-298))))
+ (-12 (-5 *3 (-400 (-917 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-542))
+ (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-621 (-1006))) (-5 *2 (-1006)) (-5 *1 (-298))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-627 *3)) (-4 *3 (-1179))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1179))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1 *1) (-5 *1 (-1030)))
+ (-12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 (-371)))
+ (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823))
+ (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1122 (-1122 *4))) (-5 *2 (-1122 *4)) (-5 *1 (-1119 *4))
- (-4 *4 (-1179))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *4 (-541)) (-5 *1 (-940 *4 *2))
- (-4 *2 (-1201 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1980 *4))))
- (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1201 (-549))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2))
- (-5 *2 (-372)) (-5 *1 (-761 *4))))
+ (-12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-542)) (-4 *4 (-823))
+ (-4 *4 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018))
- (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5))))
+ (-12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823))
+ (-4 *5 (-594 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-761 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-371)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-890)) (-5 *2 (-371)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541))
- (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4))))
+ (-12 (-5 *3 (-917 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2)) (-5 *2 (-371))
+ (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541))
- (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5))))
+ (-12 (-5 *3 (-917 *5)) (-5 *4 (-890)) (-4 *5 (-1018)) (-4 *5 (-594 *2))
+ (-5 *2 (-371)) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823))
- (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4))))
+ (-12 (-5 *3 (-400 (-917 *4))) (-4 *4 (-542)) (-4 *4 (-594 *2)) (-5 *2 (-371))
+ (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541))
- (-4 *5 (-823)) (-4 *5 (-594 *2)) (-5 *2 (-372))
- (-5 *1 (-761 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1201 *5))
- (-4 *7 (-1201 (-400 *6))) (-4 *8 (-335 *5 *6 *7))
- (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-112))
- (-5 *1 (-882 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-594 *2))
+ (-5 *2 (-371)) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-329 (-400 (-549)) *4 *5 *6))
- (-4 *4 (-1201 (-400 (-549)))) (-4 *5 (-1201 (-400 *4)))
- (-4 *6 (-335 (-400 (-549)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-883 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1201 *4))
- (-4 *5 (-1201 (-400 *3))) (-5 *2 (-112))))
+ (-12 (-5 *3 (-307 *4)) (-4 *4 (-542)) (-4 *4 (-823)) (-4 *4 (-594 *2))
+ (-5 *2 (-371)) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-542)) (-4 *5 (-823))
+ (-4 *5 (-594 *2)) (-5 *2 (-371)) (-5 *1 (-761 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-535))))
+ (-4 *2 (-170)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-535))))
+ (-4 *2 (-170)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-1018)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-757 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-618 (-757 *3))) (-5 *1 (-757 *3)) (-4 *3 (-542))
+ (-4 *3 (-1018)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2 (-2 (|:| -4099 *3) (|:| |coef1| (-757 *3)) (|:| |coef2| (-757 *3))))
+ (-5 *1 (-757 *3)) (-4 *3 (-542)) (-4 *3 (-1018)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4099 *3) (|:| |coef1| (-757 *3)))) (-5 *1 (-757 *3))
+ (-4 *3 (-542)) (-4 *3 (-1018)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4099 *3) (|:| |coef2| (-757 *3)))) (-5 *1 (-757 *3))
+ (-4 *3 (-542)) (-4 *3 (-1018)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-400 (-535))))
+ (-5 *2
+ (-618
+ (-2 (|:| |outval| *4) (|:| |outmult| (-535))
+ (|:| |outvect| (-618 (-665 *4))))))
+ (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *2 (-618 *4)) (-5 *1 (-755 *4))
+ (-4 *4 (-13 (-356) (-821))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-665 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))
((*1 *2 *3)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-170)) (-4 *2 (-1200 *4)) (-5 *1 (-175 *4 *2 *3))
+ (-4 *3 (-701 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-400 (-917 *5)))) (-5 *4 (-1142)) (-5 *2 (-917 *5))
+ (-5 *1 (-285 *5)) (-4 *5 (-444))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-400 (-917 *4)))) (-5 *2 (-917 *4)) (-5 *1 (-285 *4))
+ (-4 *4 (-444))))
+ ((*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1200 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *2 (-917 (-166 (-400 (-535)))))
+ (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *4 (-1142))
+ (-5 *2 (-917 (-166 (-400 (-535))))) (-5 *1 (-741 *5))
+ (-4 *5 (-13 (-356) (-821)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *2 (-917 (-400 (-535))))
+ (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-400 (-535)))) (-5 *4 (-1142))
+ (-5 *2 (-917 (-400 (-535)))) (-5 *1 (-755 *5)) (-4 *5 (-13 (-356) (-821))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-866))
- (-5 *3
- (-2 (|:| |pde| (-621 (-309 (-219))))
- (|:| |constraints|
- (-621
- (-2 (|:| |start| (-219)) (|:| |finish| (-219))
- (|:| |grid| (-747)) (|:| |boundaryType| (-549))
- (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219))))))
- (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1124))
- (|:| |tol| (-219))))
- (-5 *2 (-1006)))))
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-618 (-747)))
+ (-5 *1 (-754 *3 *4 *5 *6 *7)) (-4 *3 (-1200 *6)) (-4 *7 (-921 *6 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1200 *9)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-300))
+ (-4 *10 (-921 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-618 (-1136 *10)))
+ (|:| |dterm| (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-618 *6)) (|:| |nlead| (-618 *10))))
+ (-5 *1 (-754 *6 *7 *8 *9 *10)) (-5 *3 (-1136 *10)) (-5 *4 (-618 *6))
+ (-5 *5 (-618 *10)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1200 *5)) (-5 *2 (-618 *3))
+ (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1200 *6)) (-14 *7 (-890)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| (-112)) (|:| -1655 *4))))
+ (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1124)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *4 (-1032 *6 *7 *8)) (-5 *2 (-1230)) (-5 *1 (-752 *6 *7 *8 *4 *5))
+ (-4 *5 (-1038 *6 *7 *8 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4)))))
+ ((*1 *1 *1) (-5 *1 (-371)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-618 (-2 (|:| |val| *3) (|:| -1655 *4))))
+ (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *2 (-1032 *4 *5 *6))
+ (-5 *1 (-752 *4 *5 *6 *2 *3)) (-4 *3 (-1038 *4 *5 *6 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-371))))
+ ((*1 *1 *1 *1) (-4 *1 (-534)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-747)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-166 (-400 (-535)))))
+ (-5 *2
+ (-618
+ (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-535))
+ (|:| |outvect| (-618 (-665 (-166 *4)))))))
+ (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-166 (-400 (-535))))) (-5 *2 (-618 (-166 *4)))
+ (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-738))))
+(((*1 *1 *1 *1) (-4 *1 (-465))) ((*1 *1 *1 *1) (-4 *1 (-738))))
+(((*1 *1 *1 *1) (-4 *1 (-738))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-736)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-736)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-917 (-535)))) (-5 *1 (-429))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1142)) (-5 *4 (-665 (-219))) (-5 *2 (-1069)) (-5 *1 (-736))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1142)) (-5 *4 (-665 (-535))) (-5 *2 (-1069)) (-5 *1 (-736)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))))
+(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))))
+(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-736)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-535)) (-5 *5 (-166 (-219))) (-5 *6 (-1124)) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1124)) (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *2 (-1006))
+ (-5 *1 (-735)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1124)) (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *2 (-1006))
+ (-5 *1 (-735)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-166 (-219))) (-5 *5 (-535)) (-5 *6 (-1124)) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-166 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-734)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-734)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-535)))
+ (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-734)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-733)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535))
+ (-5 *2 (-1006)) (-5 *1 (-733)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1006))
+ (-5 *1 (-733)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535))
+ (-5 *2 (-1006)) (-5 *1 (-733)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-733)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535))
+ (-5 *2 (-1006)) (-5 *1 (-733)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-733)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-166 (-219)))) (-5 *2 (-1006))
+ (-5 *1 (-733)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-112)) (-5 *5 (-665 (-166 (-219))))
+ (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-112)) (-5 *5 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-732)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-732))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381))
+ (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-535)) (-5 *5 (-112)) (-5 *6 (-665 (-219))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-732)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-166 (-219))))
+ (-5 *2 (-1006)) (-5 *1 (-731)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-166 (-219))))
+ (-5 *2 (-1006)) (-5 *1 (-731)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-166 (-219)))) (-5 *2 (-1006))
+ (-5 *1 (-731)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-731)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-731)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *3 (-535))
+ (-5 *2 (-1006)) (-5 *1 (-731)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-618 (-112))) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-535)))
+ (-5 *7 (-219)) (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-731)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-665 (-535))) (-5 *5 (-112)) (-5 *7 (-665 (-219)))
+ (-5 *3 (-535)) (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-731)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-618 (-112))) (-5 *7 (-665 (-219))) (-5 *8 (-665 (-535)))
+ (-5 *3 (-535)) (-5 *4 (-219)) (-5 *5 (-112)) (-5 *2 (-1006))
+ (-5 *1 (-731)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-730)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3
+ *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219))
+ (-5 *7 (-665 (-535))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-535))
+ (-5 *2 (-1006)) (-5 *1 (-730)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3
+ *8)
+ (-12 (-5 *5 (-665 (-219))) (-5 *6 (-112)) (-5 *7 (-665 (-535)))
+ (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-535))
+ (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *2 (-1006))
+ (-5 *1 (-730)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219)))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1006))
+ (-5 *1 (-730)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219)))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1006))
+ (-5 *1 (-730)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219)))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1006))
+ (-5 *1 (-730)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-535)) (-5 *5 (-112)) (-5 *6 (-665 (-219)))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-730)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1124)) (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-219))
+ (-5 *7 (-665 (-535))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *6 (-219))
+ (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1124)) (-5 *5 (-665 (-219))) (-5 *6 (-219))
+ (-5 *7 (-665 (-535))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-665 (-219))) (-5 *6 (-665 (-535))) (-5 *3 (-535))
+ (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-535))) (-5 *6 (-219))
+ (-5 *3 (-535)) (-5 *2 (-1006)) (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6
+ *4)
+ (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219))) (-5 *6 (-651 (-219)))
+ (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-727)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *5 (-1124))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1006))
+ (-5 *1 (-727)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006))
+ (-5 *1 (-727)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-535)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1006))
+ (-5 *1 (-726))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-381))
+ (-5 *2 (-1006)) (-5 *1 (-726)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-726)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1006))
+ (-5 *1 (-726)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-535)) (-5 *5 (-1124)) (-5 *6 (-665 (-219)))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))))
+ (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-726)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-535)) (-5 *5 (-1124)) (-5 *6 (-665 (-219)))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))))
+ (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-726)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-726)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-726)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-725)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535)) (-5 *2 (-1006)) (-5 *1 (-725)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-219)) (-5 *4 (-549))
- (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006))
+ (-12 (-5 *3 (-219)) (-5 *4 (-535))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1006))
(-5 *1 (-725)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1105))))
-(((*1 *2 *2) (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1230) (-1225 *5) (-1225 *5) (-372)))
- (-5 *3 (-1225 (-372))) (-5 *5 (-372)) (-5 *2 (-1230))
- (-5 *1 (-764)))))
-(((*1 *1) (-5 *1 (-155))))
-(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1179)) (-5 *2 (-621 *1)) (-4 *1 (-981 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-621 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4))
- (-14 *3 (-892)) (-4 *4 (-1018)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
- (-4 *3 (-13 (-356) (-1164) (-973))))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-535)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-725)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-724)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-724)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-724)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-1124)) (-5 *5 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-724)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1006))
+ (-5 *1 (-723)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-535)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1006))
+ (-5 *1 (-723)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-535))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3416)))) (-5 *2 (-1006))
+ (-5 *1 (-723)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-112)) (-5 *2 (-1006))
+ (-5 *1 (-722)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-535)) (-5 *5 (-112)) (-5 *2 (-1006))
+ (-5 *1 (-722)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-721 *3)) (-4 *3 (-170)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1136 *6)) (-5 *3 (-535)) (-4 *6 (-300)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1136 *9)) (-5 *4 (-618 *7)) (-4 *7 (-823))
+ (-4 *9 (-921 *8 *6 *7)) (-4 *6 (-769)) (-4 *8 (-300)) (-5 *2 (-618 (-747)))
+ (-5 *1 (-719 *6 *7 *8 *9)) (-5 *5 (-747)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-535)) (-5 *4 (-398 *2)) (-4 *2 (-921 *7 *5 *6))
+ (-5 *1 (-719 *5 *6 *7 *2)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-300)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1136 *9)) (-5 *4 (-618 *7)) (-5 *5 (-618 (-618 *8)))
+ (-4 *7 (-823)) (-4 *8 (-300)) (-4 *9 (-921 *8 *6 *7)) (-4 *6 (-769))
+ (-5 *2
+ (-2 (|:| |upol| (-1136 *8)) (|:| |Lval| (-618 *8))
+ (|:| |Lfact| (-618 (-2 (|:| -4075 (-1136 *8)) (|:| -2484 (-535)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-719 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-618 *7)) (-5 *5 (-618 (-618 *8))) (-4 *7 (-823)) (-4 *8 (-300))
+ (-4 *6 (-769)) (-4 *9 (-921 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart| (-618 (-2 (|:| -4075 (-1136 *9)) (|:| -2484 (-535)))))))
+ (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1136 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-535)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-300))
+ (-4 *9 (-921 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2115 (-1136 *9)) (|:| |polval| (-1136 *8))))
+ (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1136 *9)) (-5 *4 (-1136 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-300)) (-5 *2 (-398 *3))
+ (-5 *1 (-719 *5 *4 *6 *3)) (-4 *3 (-921 *6 *5 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-2 (|:| -4075 (-1136 *6)) (|:| -2484 (-535)))))
+ (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-535))
+ (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-398 *3))
+ (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-921 *6 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-716 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-715)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-713 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-1067))))
+ ((*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-1067)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-621 (-169)))))))
+ (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178))
+ (-5 *2 (-618 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-713 *3)) (-4 *3 (-1067)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))
- (-4 *2 (-444))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 *4)) (-4 *4 (-1201 (-549))) (-5 *2 (-621 (-549)))
- (-5 *1 (-478 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823)) (-4 *3 (-444)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-1226))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-747)) (-5 *4 (-892)) (-5 *2 (-1230)) (-5 *1 (-1226))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-747)) (-5 *4 (-892)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
+ (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-747))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-747))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-542)) (-4 *2 (-921 *3 *5 *4)) (-5 *1 (-709 *5 *4 *6 *2))
+ (-5 *3 (-400 (-917 *6))) (-4 *5 (-769))
+ (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1136 (-917 *6))) (-4 *6 (-542))
+ (-4 *2 (-921 (-400 (-917 *6)) *5 *4)) (-5 *1 (-709 *5 *4 *6 *2))
+ (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1136 *2)) (-4 *2 (-921 (-400 (-917 *6)) *5 *4))
+ (-5 *1 (-709 *5 *4 *6 *2)) (-4 *5 (-769))
+ (-4 *4 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $))))) (-4 *6 (-542)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *2 (-621 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1201 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *2 (-621 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1201 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508))))
+ (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -4313 ((-1142) $)))))
+ (-4 *6 (-542)) (-5 *2 (-2 (|:| -2724 (-917 *6)) (|:| -2166 (-917 *6))))
+ (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-921 (-400 (-917 *6)) *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-535))
+ (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8))
+ (-5 *1 (-135 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *9)) (-4 *9 (-1018)) (-4 *5 (-823)) (-4 *6 (-769))
+ (-4 *8 (-1018)) (-4 *2 (-921 *9 *7 *5)) (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-769)) (-4 *4 (-921 *8 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1200 *5))
+ (-5 *1 (-704 *5 *2)) (-4 *5 (-356)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-356))
+ (-5 *2 (-2 (|:| -3413 (-398 *3)) (|:| |special| (-398 *3))))
+ (-5 *1 (-704 *5 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-699)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
+ (-14 *4 (-618 (-1142)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
+ (-14 *4 (-618 (-1142)))))
+ ((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1066) (-34))) (-5 *1 (-1106 *3 *2))
- (-4 *3 (-13 (-1066) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1236)))))
+ (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-356)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-4 *2 (-335 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-170))))
+ ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-701 *2 *3)) (-4 *3 (-1200 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1224 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356))
+ (-4 *1 (-701 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1200 *5)) (-5 *2 (-665 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-890))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-890))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542))))
+ ((*1 *1 *1) (|partial| -4 *1 (-699))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-542))))
+ ((*1 *1 *1) (|partial| -4 *1 (-699))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1200 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018))
- (-5 *2 (-621 (-621 (-621 (-914 *3))))))))
-(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228))))
- ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1228)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))))
-(((*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-821)) (-5 *1 (-296 *3)))))
-(((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))))
+ (-12 (-5 *2 (-1205 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5))
+ (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-535))))
+ ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-398 *3)) (-4 *3 (-542))))
+ ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-675))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1067)) (-5 *1 (-690 *3 *2 *4)) (-4 *3 (-823))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2483 *3) (|:| -2484 *2))
+ (-2 (|:| -2483 *3) (|:| -2484 *2)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-361))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1224 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-823)) (-5 *1 (-690 *2 *3 *4)) (-4 *3 (-1067))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *3))
+ (-2 (|:| -2483 *2) (|:| -2484 *3)))))))
+(((*1 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1200 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1122 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2))
- (-4 *2 (-1179)))))
+ (-12 (-4 *3 (-1018)) (-5 *2 (-1224 *3)) (-5 *1 (-689 *3 *4))
+ (-4 *4 (-1200 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1018)) (-4 *1 (-1201 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-549)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1179))
- (-4 *3 (-366 *4)) (-4 *5 (-366 *4)))))
+ (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1018)) (-5 *1 (-689 *3 *4))
+ (-4 *4 (-1200 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *6))
- (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1179)))))
+ (-12 (-4 *3 (-1018)) (-5 *2 (-1224 *3)) (-5 *1 (-689 *3 *4))
+ (-4 *4 (-1200 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4))
+ (-4 *4 (-1200 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4))
+ (-4 *4 (-1200 *3)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-920 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *2 (-444))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *3 (-1032 *4 *5 *6))
- (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *1))))
- (-4 *1 (-1038 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1183)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-541)) (-5 *1 (-1204 *3 *2))
- (-4 *2 (-13 (-1201 *3) (-541) (-10 -8 (-15 -3726 ($ $ $))))))))
-(((*1 *1 *1 *1) (-4 *1 (-465))) ((*1 *1 *1 *1) (-4 *1 (-738))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-273)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-400 (-549)))
- (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-356)) (-4 *3 (-1018))
- (-5 *1 (-1126 *3)))))
-(((*1 *1 *1) (-5 *1 (-1030))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-1018))
- (-4 *2 (-1216 *3)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-549))))
- (-4 *5 (-1201 *4)) (-5 *2 (-621 (-400 *5))) (-5 *1 (-987 *4 *5))
- (-5 *3 (-400 *5)))))
+ (-12 (-4 *2 (-343)) (-4 *2 (-1018)) (-5 *1 (-689 *2 *3)) (-4 *3 (-1200 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687)))))
+(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687)))))
+(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1124)) (-5 *1 (-687)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-618 (-1136 *13))) (-5 *3 (-1136 *13))
+ (-5 *4 (-618 *12)) (-5 *5 (-618 *10)) (-5 *6 (-618 *13))
+ (-5 *7 (-618 (-618 (-2 (|:| -3400 (-747)) (|:| |pcoef| *13)))))
+ (-5 *8 (-618 (-747))) (-5 *9 (-1224 (-618 (-1136 *10)))) (-4 *12 (-823))
+ (-4 *10 (-300)) (-4 *13 (-921 *10 *11 *12)) (-4 *11 (-769))
+ (-5 *1 (-684 *11 *12 *10 *13)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-618 *11)) (-5 *5 (-618 (-1136 *9))) (-5 *6 (-618 *9))
+ (-5 *7 (-618 *12)) (-5 *8 (-618 (-747))) (-4 *11 (-823)) (-4 *9 (-300))
+ (-4 *12 (-921 *9 *10 *11)) (-4 *10 (-769)) (-5 *2 (-618 (-1136 *12)))
+ (-5 *1 (-684 *10 *11 *9 *12)) (-5 *3 (-1136 *12)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-618 (-1136 *11))) (-5 *3 (-1136 *11))
+ (-5 *4 (-618 *10)) (-5 *5 (-618 *8)) (-5 *6 (-618 (-747)))
+ (-5 *7 (-1224 (-618 (-1136 *8)))) (-4 *10 (-823)) (-4 *8 (-300))
+ (-4 *11 (-921 *8 *9 *10)) (-4 *9 (-769)) (-5 *1 (-684 *9 *10 *8 *11)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1142)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *3 *5 *6 *7))
+ (-4 *3 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)) (-4 *7 (-1178))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1142)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *3 *5 *6))
+ (-4 *3 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
- ((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-400 (-549)))) (-5 *1 (-913)) (-5 *3 (-549)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
- (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1164) (-930))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 *1)) (|has| *1 (-6 -4337)) (-4 *1 (-981 *3))
- (-4 *3 (-1179)))))
-(((*1 *1) (-5 *1 (-799))))
-(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-155))))
- ((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
-(((*1 *1 *1) (-4 *1 (-534))))
+ (-12 (-5 *3 (-1142)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *4 *5 *6))
+ (-4 *4 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-682 *3 *4))
+ (-4 *3 (-1178)) (-4 *4 (-1178)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-618 (-1142))) (-5 *3 (-1142)) (-5 *1 (-524))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1142)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-524)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-618 (-1142))) (-5 *2 (-1142)) (-5 *1 (-681 *3))
+ (-4 *3 (-594 (-524))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1142)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-680 *3))
+ (-4 *3 (-594 (-524)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1142)) (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-680 *3))
+ (-4 *3 (-594 (-524))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1142)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *4 *5 *6 *7))
+ (-4 *4 (-594 (-524))) (-4 *5 (-1178)) (-4 *6 (-1178)) (-4 *7 (-1178)))))
+(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-677))))
+ ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-677)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))
+ (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-664 *3 *4 *5 *6))
+ (-4 *6 (-662 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -2091 *3) (|:| -3223 *3))) (-5 *1 (-676 *3))
+ (-4 *3 (-300)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-535))))
+ ((*1 *2 *1) (-12 (-5 *2 (-535)) (-5 *1 (-675)))))
+(((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4327)) (-4 *1 (-397))))
+ ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890))))
+ ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675))))
+ ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))))
+(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675))))
+ ((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675)))))
+(((*1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675))))
+ ((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-675)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-219) (-219) (-219)))
+ (-5 *4 (-1 (-219) (-219) (-219) (-219)))
+ (-5 *2 (-1 (-914 (-219)) (-219) (-219))) (-5 *1 (-673)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219)))
+ (-5 *6 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-673)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-219) (-219) (-219)))
+ (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined"))
+ (-5 *5 (-1055 (-219))) (-5 *6 (-618 (-254))) (-5 *2 (-1099 (-219)))
+ (-5 *1 (-673)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-219) (-219) (-219)))
+ (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined"))
+ (-5 *5 (-1055 (-219))) (-5 *6 (-618 (-254))) (-5 *2 (-1099 (-219)))
+ (-5 *1 (-673))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-219)))
+ (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-673))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1099 (-219))) (-5 *3 (-1 (-914 (-219)) (-219) (-219)))
+ (-5 *4 (-1055 (-219))) (-5 *5 (-618 (-254))) (-5 *1 (-673)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1200 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-535)) (-5 *1 (-672 *2)) (-4 *2 (-1200 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-2 (|:| |deg| (-747)) (|:| -2894 *5)))) (-4 *5 (-1200 *4))
+ (-4 *4 (-343)) (-5 *2 (-618 *5)) (-5 *1 (-210 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-2 (|:| -4075 *5) (|:| -4290 (-535))))) (-5 *4 (-535))
+ (-4 *5 (-1200 *4)) (-5 *2 (-618 *5)) (-5 *1 (-672 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-535)) (-5 *2 (-618 (-2 (|:| -4075 *3) (|:| -4290 *4))))
+ (-5 *1 (-672 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-672 *2)) (-4 *2 (-1200 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1178)) (-4 *2 (-1067))))
+ ((*1 *1 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1067)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-685 *3)) (-5 *1 (-803 *2 *3)) (-4 *3 (-1018)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-724)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))))
+ (-12 (-4 *1 (-671 *3)) (-4 *3 (-1067))
+ (-5 *2 (-618 (-2 (|:| -2184 *3) (|:| -2064 (-747))))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-747)) (-4 *6 (-1067)) (-4 *7 (-871 *6)) (-5 *2 (-665 *7))
+ (-5 *1 (-668 *6 *7 *3 *4)) (-4 *3 (-365 *7))
+ (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4336)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *4 (-618 (-1142)))
+ (-5 *2 (-665 (-307 (-219)))) (-5 *1 (-199))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1067)) (-4 *6 (-871 *5)) (-5 *2 (-665 *6))
+ (-5 *1 (-668 *5 *6 *3 *4)) (-4 *3 (-365 *6))
+ (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-747)) (-4 *6 (-1067)) (-4 *3 (-871 *6)) (-5 *2 (-665 *3))
+ (-5 *1 (-668 *6 *3 *7 *4)) (-4 *7 (-365 *3))
+ (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4336)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1067)) (-4 *3 (-871 *5)) (-5 *2 (-665 *3))
+ (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-365 *3))
+ (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336)))))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-914 (-219)) (-219) (-219)))
- (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-248)))))
-(((*1 *1 *1 *1) (-4 *1 (-738))))
+ (-12 (-4 *4 (-1067)) (-4 *2 (-871 *4)) (-5 *1 (-668 *4 *2 *5 *3))
+ (-4 *5 (-365 *2)) (-4 *3 (-13 (-365 *4) (-10 -7 (-6 -4336)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-1201 *4)) (-5 *1 (-528 *4 *2 *5 *6))
- (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))))
-(((*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-107))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-525))) (-5 *1 (-525)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
+ (-12 (-4 *5 (-1067)) (-4 *2 (-871 *5)) (-5 *1 (-668 *5 *2 *3 *4))
+ (-4 *3 (-365 *2)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1067)) (-4 *3 (-871 *5)) (-5 *2 (-1224 *3))
+ (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-365 *3))
+ (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4336)))))))
+(((*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-835))))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-666 *4)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3))))
+ ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1201 (-549))) (-5 *1 (-478 *3)))))
+ (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-542)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))
+ (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-535)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3))
+ (-5 *1 (-664 *3 *5 *6 *2)) (-4 *2 (-662 *3 *5 *6)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-535)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3))
+ (-5 *1 (-664 *3 *5 *6 *2)) (-4 *2 (-662 *3 *5 *6)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-535)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))
+ (-5 *1 (-664 *4 *5 *6 *2)) (-4 *2 (-662 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2)))))
(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-119 *2)) (-4 *2 (-1179)))))
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-662 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-535)) (-4 *1 (-662 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-400 (-549))))
- (-5 *2 (-2 (|:| -1639 (-1122 *4)) (|:| -1649 (-1122 *4))))
- (-5 *1 (-1128 *4)) (-5 *3 (-1122 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145))
- (-4 *3 (-300)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-948 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-186))))
- ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-293))))
- ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-298)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 (-241 *5 *6))) (-4 *6 (-444))
- (-5 *2 (-241 *5 *6)) (-14 *5 (-621 (-1142))) (-5 *1 (-609 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4)))
- (-5 *2 (-2 (|:| |num| (-1225 *4)) (|:| |den| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1235)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1179))
- (-4 *4 (-366 *2)) (-4 *5 (-366 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1066))
- (-4 *2 (-1179)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-660 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4))
- (-5 *2
- (-3 (|:| |overq| (-1138 (-400 (-549))))
- (|:| |overan| (-1138 (-48))) (|:| -4150 (-112))))
- (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1201 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1192 (-549))) (-4 *1 (-275 *3)) (-4 *3 (-1179))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-275 *3)) (-4 *3 (-1179)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-660 *4 *5 *6)) (-4 *4 (-1067)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-880)) (-5 *2 (-411 (-1138 *1))) (-5 *3 (-1138 *1)))))
-(((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1179)))))
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-660 *4 *5 *6)) (-4 *5 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1067)) (-4 *4 (-1067)) (-4 *6 (-1067))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *5 *4 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2))
- (-4 *4 (-13 (-823) (-541))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-52)) (-5 *1 (-863 *4))
- (-4 *4 (-1066)))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-659 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-5 *2 (-1 *5))
+ (-5 *1 (-659 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1225 (-621 (-2 (|:| -4160 *4) (|:| -3491 (-1086))))))
- (-4 *4 (-342)) (-5 *2 (-665 *4)) (-5 *1 (-339 *4)))))
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-659 *4 *3)) (-4 *4 (-1067))
+ (-4 *3 (-1067)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-747) *2)) (-5 *4 (-747)) (-4 *2 (-1067))
+ (-5 *1 (-654 *2))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-747) *3)) (-4 *3 (-1067)) (-5 *1 (-658 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-658 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-618 *5) (-618 *5))) (-5 *4 (-535)) (-5 *2 (-618 *5))
+ (-5 *1 (-658 *5)) (-4 *5 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-618 (-1179))) (-5 *3 (-1179)) (-5 *1 (-657)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-4 *2 (-1067)) (-5 *1 (-656 *5 *6 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *1 (-655 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))))
+(((*1 *2 *2 *3) (-12 (-5 *1 (-655 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-747)) (-4 *2 (-1067)) (-5 *1 (-654 *2)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1142)) (-5 *4 (-1058 (-917 (-535)))) (-5 *2 (-323))
+ (-5 *1 (-325))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018)) (-4 *3 (-1067)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-714 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-1066))))
- ((*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-724)))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018)) (-4 *3 (-1067)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-1018)) (-4 *2 (-1067)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-651 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1224 (-747))) (-5 *1 (-651 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1178)) (-5 *2 (-747)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-112)) (-5 *1 (-648 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *5)) (-5 *4 (-890)) (-4 *5 (-823))
+ (-5 *2 (-57 (-618 (-648 *5)))) (-5 *1 (-648 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *5)) (-5 *4 (-890)) (-4 *5 (-823)) (-5 *2 (-618 (-648 *5)))
+ (-5 *1 (-648 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 *7)) (-4 *7 (-823))
+ (-4 *8 (-921 *5 *6 *7)) (-4 *5 (-542)) (-4 *6 (-769))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1224 (-400 *8)) "failed"))
+ (|:| -2123 (-618 (-1224 (-400 *8))))))
+ (-5 *1 (-645 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4337))))
+ (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-112))
+ (-5 *1 (-643 *5 *6 *4 *3)) (-4 *3 (-662 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-356)) (-5 *2 (-112))
+ (-5 *1 (-644 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-618 (-1136 *4))) (-5 *3 (-1136 *4)) (-4 *4 (-881))
+ (-5 *1 (-639 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-636 *4 *2))
+ (-4 *2 (-634 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-634 *3)) (-4 *3 (-1018)) (-4 *3 (-356))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-747)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-636 *5 *2))
+ (-4 *2 (-634 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-636 *4 *2))
+ (-4 *2 (-634 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-4 *5 (-1200 *4)) (-5 *2 (-618 (-631 (-400 *5)))) (-5 *1 (-635 *4 *5))
+ (-5 *3 (-631 (-400 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1191 (-535))) (-4 *1 (-627 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-627 *3)) (-4 *3 (-1178)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-627 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-535)) (-4 *1 (-627 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 *4))))
+ (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-618 (-2 (|:| |gen| *3) (|:| -4286 *4)))) (-4 *3 (-1067))
+ (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1178))))
+ ((*1 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1200 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-365 *2)) (-4 *2 (-1178))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1179))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4337)) (-4 *1 (-481 *3))
- (-4 *3 (-1179)))))
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-356)) (-4 *3 (-1018))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4246 *1)))
- (-4 *1 (-825 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892)))) ((*1 *1) (-4 *1 (-534)))
- ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23))
+ (-14 *5 *4))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-535) (-535))) (-5 *1 (-354 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-747) (-747))) (-5 *1 (-379 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5))
+ (-4 *3 (-1067)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-354 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-379 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-625 *3 *4 *5)) (-4 *4 (-23))
+ (-14 *5 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1067)))))
+(((*1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-618 *3)) (-4 *3 (-1178)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-1178)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-1178)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1067)) (-4 *2 (-1178)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 *1)) (-5 *4 (-1224 *1)) (-4 *1 (-617 *5)) (-4 *5 (-1018))
+ (-5 *2 (-2 (|:| -1695 (-665 *5)) (|:| |vec| (-1224 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-665 *1)) (-4 *1 (-617 *4)) (-4 *4 (-1018)) (-5 *2 (-665 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 *5)) (-4 *5 (-356))
+ (-4 *5 (-542)) (-5 *2 (-1224 *5)) (-5 *1 (-616 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1224 *4)) (-4 *4 (-617 *5)) (-3659 (-4 *5 (-356)))
+ (-4 *5 (-542)) (-5 *2 (-1224 (-400 *5))) (-5 *1 (-616 *5 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1224 *5)) (-4 *5 (-617 *4)) (-4 *4 (-542))
+ (-5 *2 (-1224 *4)) (-5 *1 (-616 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1224 *5)) (-4 *5 (-617 *4)) (-4 *4 (-542)) (-5 *2 (-112))
+ (-5 *1 (-616 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-286 (-815 *3))) (-4 *3 (-13 (-27) (-1164) (-414 *5)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *2
+ (-3 (-815 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-815 *3) #1="failed"))
+ (|:| |rightHandLimit| (-3 (-815 *3) #1#)))
+ "failed"))
+ (-5 *1 (-614 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-286 *3)) (-5 *5 (-1124))
+ (-4 *3 (-13 (-27) (-1164) (-414 *6)))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-815 *3))
+ (-5 *1 (-614 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-286 (-815 (-917 *5)))) (-4 *5 (-444))
+ (-5 *2
+ (-3 (-815 (-400 (-917 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-815 (-400 (-917 *5))) #2="failed"))
+ (|:| |rightHandLimit| (-3 (-815 (-400 (-917 *5))) #2#)))
+ #3="failed"))
+ (-5 *1 (-615 *5)) (-5 *3 (-400 (-917 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-286 (-400 (-917 *5)))) (-5 *3 (-400 (-917 *5))) (-4 *5 (-444))
+ (-5 *2
+ (-3 (-815 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-815 *3) #2#))
+ (|:| |rightHandLimit| (-3 (-815 *3) #2#)))
+ #3#))
+ (-5 *1 (-615 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-286 (-400 (-917 *6)))) (-5 *5 (-1124))
+ (-5 *3 (-400 (-917 *6))) (-4 *6 (-444)) (-5 *2 (-815 *3))
+ (-5 *1 (-615 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-286 (-808 *3)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535)))) (-5 *2 (-808 *3))
+ (-5 *1 (-614 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-286 (-808 (-917 *5)))) (-4 *5 (-444))
+ (-5 *2 (-808 (-400 (-917 *5)))) (-5 *1 (-615 *5)) (-5 *3 (-400 (-917 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-286 (-400 (-917 *5)))) (-5 *3 (-400 (-917 *5))) (-4 *5 (-444))
+ (-5 *2 (-808 *3)) (-5 *1 (-615 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-610)))))
+(((*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1) (-5 *1 (-610))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-618 (-1142))) (-4 *5 (-444))
+ (-5 *2 (-473 *4 *5)) (-5 *1 (-609 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-863 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1066))
- (-4 *5 (-1179)) (-5 *1 (-861 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-863 *4)) (-5 *3 (-621 (-1 (-112) *5))) (-4 *4 (-1066))
- (-4 *5 (-1179)) (-5 *1 (-861 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-863 *5)) (-5 *3 (-621 (-1142)))
- (-5 *4 (-1 (-112) (-621 *6))) (-4 *5 (-1066)) (-4 *6 (-1179))
- (-5 *1 (-861 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1179)) (-4 *4 (-823))
- (-5 *1 (-908 *4 *2 *5)) (-4 *2 (-423 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 (-1 (-112) *5))) (-4 *5 (-1179)) (-4 *4 (-823))
- (-5 *1 (-908 *4 *2 *5)) (-4 *2 (-423 *4))))
+ (-12 (-5 *3 (-618 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) (-14 *4 (-618 (-1142)))
+ (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-618 (-473 *4 *5))) (-5 *3 (-836 *4)) (-14 *4 (-618 (-1142)))
+ (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 (-241 *5 *6))) (-4 *6 (-444))
+ (-5 *2 (-241 *5 *6)) (-14 *5 (-618 (-1142))) (-5 *1 (-609 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-254))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *3 (-618 (-254)))
+ (-5 *1 (-255))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1142)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1179))
- (-5 *2 (-309 (-549))) (-5 *1 (-909 *5))))
+ (-12 (-5 *4 (-618 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) (-14 *5 (-618 (-1142)))
+ (-4 *6 (-444)) (-5 *2 (-1224 *6)) (-5 *1 (-609 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-618 (-473 *3 *4))) (-14 *3 (-618 (-1142))) (-4 *4 (-444))
+ (-5 *1 (-609 *3 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-618 (-473 *5 *6))) (-5 *4 (-836 *5)) (-14 *5 (-618 (-1142)))
+ (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6)) (-4 *6 (-444))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1142)) (-5 *4 (-621 (-1 (-112) *5))) (-4 *5 (-1179))
- (-5 *2 (-309 (-549))) (-5 *1 (-909 *5))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-1142))) (-5 *3 (-1 (-112) (-621 *6)))
- (-4 *6 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))) (-4 *4 (-1066))
- (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4))))
- (-5 *1 (-1042 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1124)) (-5 *1 (-762)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1225 *5)) (-4 *5 (-617 *4)) (-4 *4 (-541))
- (-5 *2 (-112)) (-5 *1 (-616 *4 *5)))))
+ (-12 (-5 *3 (-618 (-473 *5 *6))) (-5 *4 (-836 *5)) (-14 *5 (-618 (-1142)))
+ (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6)) (-4 *6 (-444)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-473 *4 *5))) (-14 *4 (-618 (-1142))) (-4 *5 (-444))
+ (-5 *2 (-618 (-241 *4 *5))) (-5 *1 (-609 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-618 (-1142))) (-4 *5 (-444))
+ (-5 *2 (-2 (|:| |glbase| (-618 (-241 *4 *5))) (|:| |glval| (-618 (-535)))))
+ (-5 *1 (-609 *4 *5)) (-5 *3 (-618 (-241 *4 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-473 *4 *5))) (-14 *4 (-618 (-1142))) (-4 *5 (-444))
+ (-5 *2 (-2 (|:| |gblist| (-618 (-241 *4 *5))) (|:| |gvlist| (-618 (-535)))))
+ (-5 *1 (-609 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973) (-1164)))))
+ ((*1 *1 *1) (-4 *1 (-608))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973) (-1164)))))
+ ((*1 *1 *1) (-4 *1 (-608))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973) (-1164)))))
+ ((*1 *1 *1) (-4 *1 (-608))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973) (-1164)))))
+ ((*1 *1 *1) (-4 *1 (-608))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973) (-1164)))))
+ ((*1 *1 *1) (-4 *1 (-608))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-607 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973) (-1164)))))
+ ((*1 *1 *1) (-4 *1 (-608))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112))
+ (-5 *1 (-32 *4 *5)) (-4 *5 (-414 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112))
+ (-5 *1 (-156 *4 *5)) (-4 *5 (-414 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112))
+ (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-414 *4) (-973)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-290 *4)) (-4 *4 (-291))))
+ ((*1 *2 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-113)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-413 *4 *5))
+ (-4 *4 (-414 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112))
+ (-5 *1 (-424 *4 *5)) (-4 *5 (-414 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-113)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112))
+ (-5 *1 (-607 *4 *5)) (-4 *5 (-13 (-414 *4) (-973) (-1164))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-219))) (-5 *4 (-747)) (-5 *2 (-665 (-219)))
- (-5 *1 (-298)))))
-(((*1 *2)
- (-12 (-4 *3 (-541)) (-5 *2 (-621 (-665 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-410 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-1227))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *1 *1) (-5 *1 (-834))) ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179))))
- ((*1 *1 *2) (-12 (-5 *1 (-1192 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1060 (-219))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-621 (-273))) (-5 *1 (-273))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-1147))) (-5 *1 (-1147)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-945)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-809 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-219)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011))))
- ((*1 *1 *1 *1) (-4 *1 (-1105))))
+ (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
+ (-14 *6 (-618 (-1142)))
+ (-5 *2 (-618 (-1112 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6)))))
+ (-5 *1 (-606 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
+ (-14 *6 (-618 (-1142))) (-5 *2 (-618 (-1015 *5 *6))) (-5 *1 (-606 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-618 (-917 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4))
+ (-14 *4 (-618 (-1142)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-439 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5))
+ (-4 *5 (-921 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-618 (-756 *3 (-836 *4)))) (-4 *3 (-444))
+ (-14 *4 (-618 (-1142))) (-5 *1 (-606 *3 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-618 (-917 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4))
+ (-14 *4 (-618 (-1142)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-618 (-756 *3 (-836 *4)))) (-4 *3 (-444))
+ (-14 *4 (-618 (-1142))) (-5 *1 (-606 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-917 *4))) (-4 *4 (-444)) (-5 *2 (-112))
+ (-5 *1 (-353 *4 *5)) (-14 *5 (-618 (-1142)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-756 *4 (-836 *5)))) (-4 *4 (-444))
+ (-14 *5 (-618 (-1142))) (-5 *2 (-112)) (-5 *1 (-606 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 *4)) (-4 *4 (-823)) (-5 *2 (-618 (-640 *4 *5)))
+ (-5 *1 (-605 *4 *5 *6)) (-4 *5 (-13 (-170) (-694 (-400 (-535)))))
+ (-14 *6 (-890)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018))
+ (-12 (-5 *2 (-618 (-2 (|:| |k| (-648 *3)) (|:| |c| *4))))
+ (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-618 (-286 *4))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-535))))) (-14 *5 (-890)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2758 (-618 (-2 (|:| |irr| *10) (|:| -2478 (-535)))))))
+ (-5 *6 (-618 *3)) (-5 *7 (-618 *8)) (-4 *8 (-823)) (-4 *3 (-300))
+ (-4 *10 (-921 *3 *9 *8)) (-4 *9 (-769))
(-5 *2
- (-2 (|:| -3215 (-747)) (|:| |curves| (-747))
- (|:| |polygons| (-747)) (|:| |constructs| (-747)))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796))
- (-14 *5 (-1142)) (-5 *2 (-549)) (-5 *1 (-1080 *4 *5)))))
+ (-2 (|:| |polfac| (-618 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-618 (-1136 *3)))))
+ (-5 *1 (-603 *8 *9 *3 *10)) (-5 *4 (-618 (-1136 *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-747)) (-5 *5 (-618 *3)) (-4 *3 (-300)) (-4 *6 (-823))
+ (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-603 *6 *7 *3 *8))
+ (-4 *8 (-921 *3 *7 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *1 (-602 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1038 *3 *4 *5 *6))
+ (-4 *2 (-1075 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *2 (-542)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1200 *2)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1142))
+ (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-600 *4 *2)) (-4 *2 (-13 (-1164) (-931) (-29 *4))))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-596))))
+(((*1 *1) (-5 *1 (-596))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-596))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-145) (-27) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-4 *5 (-1200 *4)) (-5 *2 (-1136 (-400 *5))) (-5 *1 (-595 *4 *5))
+ (-5 *3 (-400 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1200 *5))
+ (-4 *5 (-13 (-145) (-27) (-1009 (-535)) (-1009 (-400 (-535)))))
+ (-5 *2 (-1136 (-400 *6))) (-5 *1 (-595 *5 *6)) (-5 *3 (-400 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-621 (-1142))) (-4 *5 (-1018))
- (-5 *2 (-473 *4 *5)) (-5 *1 (-915 *4 *5)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1201 *6))
- (-4 *6 (-13 (-27) (-423 *5)))
- (-4 *5 (-13 (-823) (-541) (-1009 (-549)))) (-4 *8 (-1201 (-400 *7)))
- (-5 *2 (-567 *3)) (-5 *1 (-537 *5 *6 *7 *8 *3))
- (-4 *3 (-335 *6 *7 *8)))))
+ (|partial| -12 (-5 *3 (-591 *4)) (-4 *4 (-823)) (-4 *2 (-823))
+ (-5 *1 (-592 *2 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1016)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145))
- (-4 *3 (-300)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-948 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1060 (-219)))))
- ((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1060 (-219))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1006))
- (-5 *1 (-723)))))
+ (-12 (-5 *2 (-591 *4)) (-5 *1 (-592 *3 *4)) (-4 *3 (-823)) (-4 *4 (-823)))))
+(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1164))))
+ ((*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-591 *3)) (-4 *3 (-823)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-618 *1)) (-4 *1 (-291))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-591 *3)) (-4 *3 (-823))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-113)) (-5 *3 (-618 *5)) (-5 *4 (-747)) (-4 *5 (-823))
+ (-5 *1 (-591 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-591 *3)) (-4 *3 (-823)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-586)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-618
+ (-2
+ (|:| -4203
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (|:| -2184
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1119 (-219)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1556
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-545))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-618 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1178)) (-5 *2 (-618 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4336)) (-4 *1 (-584 *4 *3)) (-4 *4 (-1067))
+ (-4 *3 (-1178)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1178)) (-4 *2 (-1067)) (-4 *2 (-823)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1178)) (-4 *2 (-1067)) (-4 *2 (-823)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1178)) (-4 *3 (-365 *2))
+ (-4 *4 (-365 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *3 *2)) (-4 *3 (-1067))
+ (-4 *2 (-1178)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1178)) (-5 *2 (-1230)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-591 *2))) (-5 *4 (-618 (-1142)))
+ (-4 *2 (-13 (-414 (-166 *5)) (-973) (-1164))) (-4 *5 (-13 (-542) (-823)))
+ (-5 *1 (-580 *5 *6 *2)) (-4 *6 (-13 (-414 *5) (-973) (-1164))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-1009 (-400 *2)))) (-5 *2 (-549))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-621 (-621 (-219)))) (-5 *4 (-219))
- (-5 *2 (-621 (-914 *4))) (-5 *1 (-1175)) (-5 *3 (-914 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-38 (-400 (-549))))
- (-4 *2 (-170)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-731)))))
-(((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1011)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-892)) (-5 *2 (-1138 *3)) (-5 *1 (-1153 *3))
- (-4 *3 (-356)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769))
- (-5 *1 (-958 *2 *3 *4 *5)) (-4 *5 (-920 *2 *4 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1060 (-219)))))
- ((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1060 (-219))))))
+ (-12 (-4 *4 (-13 (-542) (-823))) (-5 *2 (-166 *5)) (-5 *1 (-580 *4 *5 *3))
+ (-4 *5 (-13 (-414 *4) (-973) (-1164)))
+ (-4 *3 (-13 (-414 (-166 *4)) (-973) (-1164))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-542) (-823)))
+ (-4 *2 (-13 (-414 (-166 *4)) (-973) (-1164))) (-5 *1 (-580 *4 *3 *2))
+ (-4 *3 (-13 (-414 *4) (-973) (-1164))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-665 (-400 (-923 (-549)))))
- (-5 *2 (-621 (-665 (-309 (-549))))) (-5 *1 (-1002)))))
+ (-12 (-4 *4 (-13 (-542) (-823))) (-4 *2 (-13 (-414 *4) (-973) (-1164)))
+ (-5 *1 (-580 *4 *2 *3)) (-4 *3 (-13 (-414 (-166 *4)) (-973) (-1164))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-414 *4) (-973) (-1164)))
+ (-4 *4 (-13 (-542) (-823))) (-4 *2 (-13 (-414 (-166 *4)) (-973) (-1164)))
+ (-5 *1 (-580 *4 *5 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-997 (-815 (-535))))
+ (-5 *3 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *4)))) (-4 *4 (-1018))
+ (-5 *1 (-576 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-997 (-815 (-535)))) (-5 *1 (-576 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *3)))) (-5 *1 (-576 *3))
+ (-4 *3 (-1018)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018)))))
+(((*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1119 (-2 (|:| |k| (-535)) (|:| |c| *6))))
+ (-5 *4 (-997 (-815 (-535)))) (-5 *5 (-1142)) (-5 *7 (-400 (-535)))
+ (-4 *6 (-1018)) (-5 *2 (-835)) (-5 *1 (-576 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-400 (-535))) (-5 *1 (-576 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-535)))) (-4 *2 (-1018)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4))))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+ (-12 (-5 *4 (-618 *3)) (-4 *3 (-1075 *5 *6 *7 *8))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-572 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-535))) (-5 *4 (-873 (-535))) (-5 *2 (-665 (-535)))
+ (-5 *1 (-571))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-535))) (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-571))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-535))) (-5 *4 (-618 (-873 (-535))))
+ (-5 *2 (-618 (-665 (-535)))) (-5 *1 (-571)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-535))) (-5 *2 (-747)) (-5 *1 (-571)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142))
+ (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1164) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-917 *5))) (-5 *4 (-1142)) (-4 *5 (-145))
+ (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-307 *5))
+ (-5 *1 (-570 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-29 *4) (-1164))) (-5 *1 (-567 *4 *2))
+ (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-565 (-400 (-917 *4))))
+ (-4 *4 (-13 (-444) (-1009 (-535)) (-823) (-617 (-535)))) (-5 *2 (-307 *4))
+ (-5 *1 (-570 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-569 *4)) (-4 *4 (-343)))))
+(((*1 *2 *2) (-12 (-5 *1 (-568 *2)) (-4 *2 (-534)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-534)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534)))))
(((*1 *2 *2 *3)
(|partial| -12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1863 *3) (|:| -3577 (-747)))) (-5 *1 (-568 *3))
+ (-12 (-5 *2 (-2 (|:| -3015 *3) (|:| -2484 (-747)))) (-5 *1 (-568 *3))
(-4 *3 (-534)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-747)) (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-618
+ (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 *2))
+ (|:| |logand| (-1136 *2)))))
+ (-5 *4 (-618 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-356))
+ (-5 *1 (-565 *2)))))
+(((*1 *2 *1) (-12 (-5 *1 (-565 *2)) (-4 *2 (-356)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1066)))))
+ (-12
+ (-5 *2
+ (-618
+ (-2 (|:| |scalar| (-400 (-535))) (|:| |coeff| (-1136 *3))
+ (|:| |logand| (-1136 *3)))))
+ (-5 *1 (-565 *3)) (-4 *3 (-356)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-618 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-565 *3)) (-4 *3 (-356)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-565 *3)) (-4 *3 (-356)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-564)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1142))
+ (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-1164) (-931) (-1105) (-29 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 (-1142))) (-4 *6 (-356))
- (-5 *2 (-621 (-287 (-923 *6)))) (-5 *1 (-527 *5 *6 *7))
- (-4 *5 (-444)) (-4 *7 (-13 (-356) (-821))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-1042 *3 *4 *5))) (-4 *3 (-1066))
- (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3))))
- (-4 *5 (-13 (-423 *4) (-857 *3) (-594 (-863 *3))))
- (-5 *1 (-1043 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1086)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823)))
- (-14 *3 (-621 (-1142))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1172 *2 *3 *4 *5)) (-4 *2 (-541)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1 *1) (-4 *1 (-938))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-356))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-559 *5 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1180 *2))
- (-4 *2 (-1066))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-1066)) (-4 *2 (-823))
- (-5 *1 (-1180 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-665 *11)) (-5 *4 (-621 (-400 (-923 *8))))
- (-5 *5 (-747)) (-5 *6 (-1124)) (-4 *8 (-13 (-300) (-145)))
- (-4 *11 (-920 *8 *10 *9)) (-4 *9 (-13 (-823) (-594 (-1142))))
- (-4 *10 (-769))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356))
+ (-5 *2
+ (-2 (|:| |ir| (-565 (-400 *6))) (|:| |specpart| (-400 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-601 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3455 *4) (|:| |sol?| (-112))) (-535) *4))
+ (-4 *4 (-356)) (-4 *5 (-1200 *4)) (-5 *1 (-559 *4 *5)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3 (-1 (-3 (-2 (|:| -2242 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-356)) (-5 *1 (-559 *4 *2)) (-4 *2 (-1200 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-618 (-400 *7))) (-4 *7 (-1200 *6))
+ (-5 *3 (-400 *7)) (-4 *6 (-356))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-559 *6 *7)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356))
+ (-5 *2 (-2 (|:| -2242 (-400 *6)) (|:| |coeff| (-400 *6))))
+ (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3455 *7) (|:| |sol?| (-112))) (-535) *7))
+ (-5 *6 (-618 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1200 *7)) (-5 *3 (-400 *8))
(-5 *2
(-2
- (|:| |rgl|
- (-621
- (-2 (|:| |eqzro| (-621 *11)) (|:| |neqzro| (-621 *11))
- (|:| |wcond| (-621 (-923 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1225 (-400 (-923 *8))))
- (|:| -3420 (-621 (-1225 (-400 (-923 *8))))))))))
- (|:| |rgsz| (-549))))
- (-5 *1 (-895 *8 *9 *10 *11)) (-5 *7 (-549)))))
-(((*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))))
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-559 *7 *8)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5 (-1 (-3 (-2 (|:| -2242 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-618 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1200 *7)) (-5 *3 (-400 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-559 *7 *8)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3455 *6) (|:| |sol?| (-112))) (-535) *6))
+ (-4 *6 (-356)) (-4 *7 (-1200 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6))
+ (-2 (|:| -2242 (-400 *7)) (|:| |coeff| (-400 *7))) "failed"))
+ (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2242 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-356)) (-4 *7 (-1200 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6))
+ (-2 (|:| -2242 (-400 *7)) (|:| |coeff| (-400 *7))) "failed"))
+ (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-618 *6) "failed") (-535) *6 *6))
+ (-4 *6 (-356)) (-4 *7 (-1200 *6))
+ (-5 *2 (-2 (|:| |answer| (-565 (-400 *7))) (|:| |a0| *6)))
+ (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3455 *6) (|:| |sol?| (-112))) (-535) *6))
+ (-4 *6 (-356)) (-4 *7 (-1200 *6))
+ (-5 *2 (-2 (|:| |answer| (-565 (-400 *7))) (|:| |a0| *6)))
+ (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2242 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-356)) (-4 *7 (-1200 *6))
+ (-5 *2 (-2 (|:| |answer| (-565 (-400 *7))) (|:| |a0| *6)))
+ (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-565 *3) *3 (-1142)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1142)))
+ (-4 *3 (-277)) (-4 *3 (-608)) (-4 *3 (-1009 *4)) (-4 *3 (-414 *7))
+ (-5 *4 (-1142)) (-4 *7 (-594 (-861 (-535)))) (-4 *7 (-444))
+ (-4 *7 (-857 (-535))) (-4 *7 (-823)) (-5 *2 (-565 *3))
+ (-5 *1 (-558 *7 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-892)) (-5 *1 (-1003 *2))
- (-4 *2 (-13 (-1066) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549))))
- ((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1) (-4 *1 (-840 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768))
- (-4 *4 (-823)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-596))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2))
- (-4 *5 (-366 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1179))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *2 *6 *7))
- (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1018)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112))
- (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1066) (-34)))
- (-4 *4 (-13 (-1066) (-34))))))
-(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534))))
- ((*1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-942)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *3 (-541)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-834))))
- ((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1230)) (-5 *1 (-933)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
- (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769))
- (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4))))
- (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-1142)) (-4 *4 (-444)) (-4 *4 (-823)) (-5 *1 (-558 *4 *2))
+ (-4 *2 (-277)) (-4 *2 (-414 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-542)) (-4 *4 (-823)) (-5 *1 (-558 *4 *2))
+ (-4 *2 (-414 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 *3)) (-4 *3 (-920 *5 *6 *7)) (-4 *5 (-444))
- (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-441 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1179)))))
+ (-12 (-5 *3 (-618 *6)) (-5 *4 (-1142)) (-4 *6 (-414 *5)) (-4 *5 (-823))
+ (-5 *2 (-618 (-591 *6))) (-5 *1 (-558 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-591 *6))) (-5 *4 (-1142)) (-5 *2 (-591 *6))
+ (-4 *6 (-414 *5)) (-4 *5 (-823)) (-5 *1 (-558 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-591 *5))) (-4 *4 (-823)) (-5 *2 (-591 *5))
+ (-5 *1 (-558 *4 *5)) (-4 *5 (-414 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-618 (-591 *5))) (-5 *3 (-1142)) (-4 *5 (-414 *4))
+ (-4 *4 (-823)) (-5 *1 (-558 *4 *5)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-1009 (-535)) (-145)))
+ (-5 *2 (-2 (|:| -2242 (-400 (-917 *5))) (|:| |coeff| (-400 (-917 *5)))))
+ (-5 *1 (-555 *5)) (-5 *3 (-400 (-917 *5))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-618 (-400 (-917 *6))))
+ (-5 *3 (-400 (-917 *6))) (-4 *6 (-13 (-542) (-1009 (-535)) (-145)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-555 *6)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-441 *4 *5 *6 *2)))))
+ (|partial| -12 (-5 *2 (-400 (-917 *4))) (-5 *3 (-1142))
+ (-4 *4 (-13 (-542) (-1009 (-535)) (-145))) (-5 *1 (-555 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1142))
+ (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-565 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1164) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-1009 (-535)) (-145)))
+ (-5 *2 (-565 (-400 (-917 *5)))) (-5 *1 (-555 *5)) (-5 *3 (-400 (-917 *5))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-535)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-618 (-400 *6))) (-5 *3 (-400 *6)) (-4 *6 (-1200 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-535))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-553 *5 *6)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-535)))) (-4 *5 (-1200 *4))
+ (-5 *2 (-2 (|:| -2242 (-400 *5)) (|:| |coeff| (-400 *5))))
+ (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5)))))
(((*1 *2 *2)
- (-12
+ (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1200 *3))
+ (-4 *3 (-13 (-356) (-145) (-1009 (-535)))) (-5 *1 (-553 *3 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-594 (-861 (-535))))
+ (-4 *5 (-857 (-535)))
+ (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-552 *5 *3))
+ (-4 *3 (-608)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1142)) (-5 *4 (-815 *2)) (-4 *2 (-1105))
+ (-4 *2 (-13 (-27) (-1164) (-414 *5))) (-4 *5 (-594 (-861 (-535))))
+ (-4 *5 (-857 (-535)))
+ (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535))))
+ (-5 *1 (-552 *5 *2)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1142)) (-4 *5 (-594 (-861 (-535))))
+ (-4 *5 (-857 (-535)))
+ (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-552 *5 *3))
+ (-4 *3 (-608)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-823) (-1009 (-535)) (-444) (-617 (-535))))
+ (-5 *2 (-2 (|:| -2410 *3) (|:| |nconst| *3))) (-5 *1 (-552 *5 *3))
+ (-4 *3 (-13 (-27) (-1164) (-414 *5))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-591 *4)) (-5 *6 (-1142)) (-4 *4 (-13 (-414 *7) (-27) (-1164)))
+ (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-618 *4))))
+ (-5 *1 (-551 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1067)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1142)))
+ (-4 *2 (-13 (-414 *5) (-27) (-1164)))
+ (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *1 (-551 *5 *2 *6)) (-4 *6 (-1067)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-618 *3))
+ (-4 *3 (-13 (-414 *6) (-27) (-1164)))
+ (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
(-5 *2
- (-621
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-769)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823))
- (-5 *1 (-441 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-799)) (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823))
- (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-551 *6 *3 *7)) (-4 *7 (-1067)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1164)))
+ (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-551 *5 *3 *6))
+ (-4 *6 (-1067)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1164)))
+ (-4 *5 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2 (-565 *3)) (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356))
+ (-4 *7 (-1200 (-400 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2241 *3)))
+ (-5 *1 (-548 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-356))
+ (-5 *2
+ (-2 (|:| |answer| (-400 *6)) (|:| -2241 (-400 *6))
+ (|:| |specpart| (-400 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-549 *5 *6)) (-5 *3 (-400 *6)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-535)) (-5 *3 (-747)) (-5 *1 (-547)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))))
+(((*1 *2 *3) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-547)) (-5 *3 (-535)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))))
+(((*1 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-547)) (-5 *3 (-535)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-621 *1)) (-5 *3 (-621 *7)) (-4 *1 (-1038 *4 *5 *6 *7))
- (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1))
- (-4 *1 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1))
- (-4 *1 (-1038 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-549)) (-5 *5 (-1124)) (-5 *6 (-665 (-219)))
- (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))))
- (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))
- (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))
- (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1030)))))
+ (-12 (-5 *3 (-618 (-618 *4))) (-5 *2 (-618 *4)) (-4 *4 (-300))
+ (-5 *1 (-177 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-618 *8))
+ (-5 *4
+ (-618
+ (-2 (|:| -2123 (-665 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-665 *7)))))
+ (-5 *5 (-747)) (-4 *8 (-1200 *7)) (-4 *7 (-1200 *6)) (-4 *6 (-343))
+ (-5 *2
+ (-2 (|:| -2123 (-665 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-665 *7))))
+ (-5 *1 (-489 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-547)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-591 *4)) (-5 *6 (-1136 *4))
+ (-4 *4 (-13 (-414 *7) (-27) (-1164)))
+ (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-618 *4))))
+ (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1067))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-591 *4)) (-5 *6 (-400 (-1136 *4)))
+ (-4 *4 (-13 (-414 *7) (-27) (-1164)))
+ (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-618 *4))))
+ (-5 *1 (-546 *7 *4 *3)) (-4 *3 (-634 *4)) (-4 *3 (-1067)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-591 *2))
+ (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1142))) (-5 *5 (-1136 *2))
+ (-4 *2 (-13 (-414 *6) (-27) (-1164)))
+ (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1067))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1142)))
+ (-5 *5 (-400 (-1136 *2))) (-4 *2 (-13 (-414 *6) (-27) (-1164)))
+ (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *1 (-546 *6 *2 *7)) (-4 *7 (-1067)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-618 *3)) (-5 *6 (-1136 *3))
+ (-4 *3 (-13 (-414 *7) (-27) (-1164)))
+ (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1067))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-618 *3)) (-5 *6 (-400 (-1136 *3)))
+ (-4 *3 (-13 (-414 *7) (-27) (-1164)))
+ (-4 *7 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-546 *7 *3 *8)) (-4 *8 (-1067)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-1136 *3))
+ (-4 *3 (-13 (-414 *6) (-27) (-1164)))
+ (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-546 *6 *3 *7))
+ (-4 *7 (-1067))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-400 (-1136 *3)))
+ (-4 *3 (-13 (-414 *6) (-27) (-1164)))
+ (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-546 *6 *3 *7))
+ (-4 *7 (-1067)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-591 *3)) (-5 *5 (-1136 *3))
+ (-4 *3 (-13 (-414 *6) (-27) (-1164)))
+ (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2 (-565 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1067))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-591 *3)) (-5 *5 (-400 (-1136 *3)))
+ (-4 *3 (-13 (-414 *6) (-27) (-1164)))
+ (-4 *6 (-13 (-444) (-1009 (-535)) (-823) (-145) (-617 (-535))))
+ (-5 *2 (-565 *3)) (-5 *1 (-546 *6 *3 *7)) (-4 *7 (-1067)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
(|:| |relerr| (-219))))
(-5 *2
(-2
@@ -14263,280 +12488,54 @@
"There is a singularity at the lower end point")
(|:| |upperSingular|
"There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1122 (-219)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2062
+ (-3 (|:| |str| (-1119 (-219)))
+ (|:| |notEvaluated| "Internal singularities not yet evaluated")))
+ (|:| -1556
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-544)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1230)) (-5 *1 (-1145))))
- ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-1145)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-769)) (-4 *5 (-1018)) (-4 *6 (-920 *5 *4 *2))
- (-4 *2 (-823)) (-5 *1 (-921 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-356)
- (-10 -8 (-15 -3845 ($ *6)) (-15 -1393 (*6 $))
- (-15 -1404 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541))
- (-5 *2 (-1142)) (-5 *1 (-1014 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-747)) (-4 *5 (-541))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-940 *5 *3)) (-4 *3 (-1201 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-621 *1)) (-4 *1 (-423 *4))
- (-4 *4 (-823))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1142)) (-4 *1 (-423 *3)) (-4 *3 (-823))))
- ((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1142)) (-4 *1 (-423 *3)) (-4 *3 (-823))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1142)) (-4 *1 (-423 *3)) (-4 *3 (-823))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-423 *3)) (-4 *3 (-823)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1201 (-400 *2)))
- (-4 *2 (-1201 *4)) (-5 *1 (-334 *3 *4 *2 *5))
- (-4 *3 (-335 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1183))
- (-4 *4 (-1201 (-400 *2))) (-4 *2 (-1201 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892))
- (-4 *4 (-1018)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-621 (-1142))) (-4 *2 (-170))
- (-4 *4 (-232 (-3774 *5) (-747)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3491 *3) (|:| -3577 *4))
- (-2 (|:| -3491 *3) (|:| -3577 *4))))
- (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-823))
- (-4 *7 (-920 *2 *4 (-836 *5))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-3 (-112) (-621 *1)))
- (-4 *1 (-1038 *4 *5 *6 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-621 (-758 *3))) (-5 *1 (-758 *3)) (-4 *3 (-541))
- (-4 *3 (-1018)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-747)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1980 *4))))
- (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
- (-5 *2 (-665 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-409 *3 *4))
- (-4 *3 (-410 *4))))
- ((*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 (-1238 *4 *5 *6 *7)))
- (-5 *1 (-1238 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-621 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-541))
- (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-621 (-1238 *6 *7 *8 *9)))
- (-5 *1 (-1238 *6 *7 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-823)) (-5 *1 (-900 *3 *2)) (-4 *2 (-423 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1142)) (-5 *2 (-309 (-549))) (-5 *1 (-901)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1138 *6)) (-5 *3 (-549)) (-4 *6 (-300)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1201 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-897)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-112))
- (-5 *2 (-1006)) (-5 *1 (-722)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1179)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 (-747))) (-5 *3 (-169)) (-5 *1 (-1130 *4 *5))
- (-14 *4 (-892)) (-4 *5 (-1018)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
- (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1179)) (-4 *1 (-106 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1066)) (-5 *1 (-876 *3)))))
-(((*1 *2) (-12 (-5 *2 (-621 (-747))) (-5 *1 (-1228))))
- ((*1 *2 *2) (-12 (-5 *2 (-621 (-747))) (-5 *1 (-1228)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-874 *3)) (-4 *3 (-1066)) (-5 *2 (-1068 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1066)) (-5 *2 (-1068 (-621 *4))) (-5 *1 (-875 *4))
- (-5 *3 (-621 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1066)) (-5 *2 (-1068 (-1068 *4))) (-5 *1 (-875 *4))
- (-5 *3 (-1068 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1068 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *1 *1) (-5 *1 (-219)))
- ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
- ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *1 *1) (-4 *1 (-1105))) ((*1 *1 *1 *1) (-4 *1 (-1105))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-914 *4)) (-4 *4 (-1018)) (-5 *1 (-1130 *3 *4))
- (-14 *3 (-892)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1138 *2)) (-4 *2 (-920 (-400 (-923 *6)) *5 *4))
- (-5 *1 (-709 *5 *4 *6 *2)) (-4 *5 (-769))
- (-4 *4 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $)))))
- (-4 *6 (-541)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-130)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-219)))) (-5 *1 (-897)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-665 *5))) (-4 *5 (-300)) (-4 *5 (-1018))
- (-5 *2 (-1225 (-1225 *5))) (-5 *1 (-1000 *5)) (-5 *4 (-1225 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *1) (-5 *1 (-596))))
+ (-5 *1 (-545)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))
- (-5 *2 (-747)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-4 *3 (-541)) (-5 *2 (-747))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4))
- (-4 *6 (-366 *4)) (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3))
- (-4 *3 (-663 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-541))
- (-5 *2 (-747)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-892))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
(-5 *2
- (-3 (-1138 *4)
- (-1225 (-621 (-2 (|:| -4160 *4) (|:| -3491 (-1086)))))))
- (-5 *1 (-339 *4)) (-4 *4 (-342)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-876 (-549))) (-5 *4 (-549)) (-5 *2 (-665 *4))
- (-5 *1 (-999 *5)) (-4 *5 (-1018))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-999 *4))
- (-4 *4 (-1018))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-876 (-549)))) (-5 *4 (-549))
- (-5 *2 (-621 (-665 *4))) (-5 *1 (-999 *5)) (-4 *5 (-1018))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-621 (-549)))) (-5 *2 (-621 (-665 (-549))))
- (-5 *1 (-999 *4)) (-4 *4 (-1018)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-981 *3)) (-4 *3 (-1179)) (-4 *3 (-1066))
- (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-219))) (-5 *2 (-621 (-1124))) (-5 *1 (-186))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-219))) (-5 *2 (-621 (-1124))) (-5 *1 (-293))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-219))) (-5 *2 (-621 (-1124))) (-5 *1 (-298)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-287 *3))) (-5 *1 (-287 *3)) (-4 *3 (-541))
- (-4 *3 (-1179)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-621 (-665 *4))) (-5 *2 (-665 *4)) (-4 *4 (-1018))
- (-5 *1 (-1000 *4)))))
-(((*1 *2 *1)
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1119 (-219)))
+ (|:| |notEvaluated| "Internal singularities not yet evaluated")))
+ (|:| -1556
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-545)))))
+(((*1 *1 *2)
(-12
(-5 *2
- (-621
+ (-618
(-2
- (|:| -3337
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| -4203
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
(|:| |relerr| (-219))))
- (|:| -1792
+ (|:| -2184
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -14549,1308 +12548,1816 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1122 (-219)))
+ (-3 (|:| |str| (-1119 (-219)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2062
+ (|:| -1556
(-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-544))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1179))
- (-5 *2 (-621 *4)))))
+ (-5 *1 (-545)))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-545)))))
+(((*1 *1) (-5 *1 (-545))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-544 *2)) (-4 *2 (-534)))))
+(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-544 *3)) (-4 *3 (-534)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1142)) (-5 *6 (-618 (-591 *3))) (-5 *5 (-591 *3))
+ (-4 *3 (-13 (-27) (-1164) (-414 *7)))
+ (-4 *7 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-543 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1066)) (-4 *6 (-857 *5)) (-5 *2 (-856 *5 *6 (-621 *6)))
- (-5 *1 (-858 *5 *6 *4)) (-5 *3 (-621 *6)) (-4 *4 (-594 (-863 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1066)) (-5 *2 (-621 (-287 *3))) (-5 *1 (-858 *5 *3 *4))
- (-4 *3 (-1009 (-1142))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1066)) (-5 *2 (-621 (-287 (-923 *3))))
- (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-1018))
- (-4007 (-4 *3 (-1009 (-1142)))) (-4 *3 (-857 *5))
- (-4 *4 (-594 (-863 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1066)) (-5 *2 (-860 *5 *3)) (-5 *1 (-858 *5 *3 *4))
- (-4007 (-4 *3 (-1009 (-1142)))) (-4007 (-4 *3 (-1018)))
- (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-821)))
- (-5 *2 (-621 (-2 (|:| -2886 (-621 *3)) (|:| -3041 *5))))
- (-5 *1 (-179 *5 *3)) (-4 *3 (-1201 (-167 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-356) (-821)))
- (-5 *2 (-621 (-2 (|:| -2886 (-621 *3)) (|:| -3041 *4))))
- (-5 *1 (-179 *4 *3)) (-4 *3 (-1201 (-167 *4))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-411 *3)) (-4 *3 (-541)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-925)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-621 (-1042 *4 *5 *2))) (-4 *4 (-1066))
- (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4))))
- (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-621 (-1042 *5 *6 *2))) (-5 *4 (-892)) (-4 *5 (-1066))
- (-4 *6 (-13 (-1018) (-857 *5) (-823) (-594 (-863 *5))))
- (-4 *2 (-13 (-423 *6) (-857 *5) (-594 (-863 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1066)))))
-(((*1 *2)
- (-12 (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5)))
- (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-747))))
- ((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))))
-(((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1138 *4)) (-4 *4 (-342)) (-5 *2 (-112))
- (-5 *1 (-350 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-219)))
- (-5 *2 (-1006)) (-5 *1 (-731)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
- (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-621 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1122 *4)) (-5 *3 (-1 *4 (-549))) (-4 *4 (-1018))
- (-5 *1 (-1126 *4)))))
+ (-12 (-5 *4 (-1142))
+ (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-565 *3)) (-5 *1 (-543 *5 *3))
+ (-4 *3 (-13 (-27) (-1164) (-414 *5))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 *2)) (-4 *2 (-534)) (-5 *1 (-157 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-1174 *3))
- (-4 *3 (-945)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-163 *3 *4))
- (-4 *3 (-164 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1179)) (-5 *2 (-747))
- (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-823)) (-5 *2 (-747)) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-533 *3)) (-4 *3 (-534))))
- ((*1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-747))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-772 *3 *4))
- (-4 *3 (-773 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-962 *3 *4))
- (-4 *3 (-963 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-967 *3 *4))
- (-4 *3 (-968 *4))))
- ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-982 *3)) (-4 *3 (-983))))
- ((*1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-747))))
- ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1026 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-621 (-549))) (-5 *1 (-1076)) (-5 *3 (-549)))))
-(((*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-219)) (-5 *1 (-298)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-747)) (-5 *2 (-1230)))))
+ (|partial| -12 (-5 *3 (-1142))
+ (-4 *4 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-543 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-618 *3))
+ (-4 *3 (-13 (-27) (-1164) (-414 *6)))
+ (-4 *6 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-618 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-543 *6 *3)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1142))
+ (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-2 (|:| -2242 *3) (|:| |coeff| *3))) (-5 *1 (-543 *5 *3))
+ (-4 *3 (-13 (-27) (-1164) (-414 *5))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1225 *5)) (-4 *5 (-768)) (-5 *2 (-112))
- (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 (-2 (|:| |val| (-621 *6)) (|:| -1980 *7))))
- (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-959 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-621 (-2 (|:| |val| (-621 *6)) (|:| -1980 *7))))
- (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
- (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1073 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-2 (|:| -1887 *1) (|:| -4323 *1) (|:| |associate| *1)))
+ (-4 *1 (-542)))))
+(((*1 *1 *1) (-4 *1 (-542))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-400 (-535))) (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))))
+(((*1 *2 *1) (-12 (-4 *1 (-540 *2)) (-4 *2 (-13 (-397) (-1164))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-540 *3)) (-4 *3 (-13 (-397) (-1164))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-112)) (-5 *1 (-539)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-539)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-539)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1200 *5))
+ (-4 *5 (-13 (-27) (-414 *4))) (-4 *4 (-13 (-823) (-542) (-1009 (-535))))
+ (-4 *7 (-1200 (-400 *6))) (-5 *1 (-538 *4 *5 *6 *7 *2))
+ (-4 *2 (-335 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1200 *6)) (-4 *6 (-13 (-27) (-414 *5)))
+ (-4 *5 (-13 (-823) (-542) (-1009 (-535)))) (-4 *8 (-1200 (-400 *7)))
+ (-5 *2 (-565 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1200 *6)) (-4 *6 (-13 (-27) (-414 *5)))
+ (-4 *5 (-13 (-823) (-542) (-1009 (-535)))) (-4 *8 (-1200 (-400 *7)))
+ (-5 *2 (-565 *3)) (-5 *1 (-538 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-591 *3)) (-5 *5 (-1 (-1136 *3) (-1136 *3)))
+ (-4 *3 (-13 (-27) (-414 *6))) (-4 *6 (-13 (-823) (-542))) (-5 *2 (-565 *3))
+ (-5 *1 (-537 *6 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-4 *1 (-534))))
+(((*1 *1 *1 *1) (-4 *1 (-534))))
+(((*1 *1 *1) (-4 *1 (-534))))
+(((*1 *1 *1) (-4 *1 (-534))))
+(((*1 *1 *1) (-4 *1 (-534))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-534))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-534))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-534))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-534))))
+(((*1 *1 *1 *1) (-4 *1 (-534))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-535) #1="failed") *5)) (-4 *5 (-1018))
+ (-5 *2 (-535)) (-5 *1 (-532 *5 *3)) (-4 *3 (-1200 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-535) #1#) *4)) (-4 *4 (-1018)) (-5 *2 (-535))
+ (-5 *1 (-532 *4 *3)) (-4 *3 (-1200 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-535) #1#) *4)) (-4 *4 (-1018)) (-5 *2 (-535))
+ (-5 *1 (-532 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1200 *3))))
+ ((*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1200 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-747)))
+ (-5 *1 (-528 *3 *2 *4 *5)) (-4 *2 (-1200 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-528 *4 *2 *5 *6))
+ (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-1200 *4)) (-5 *1 (-528 *4 *2 *5 *6))
+ (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 *6)) (-5 *4 (-618 (-1142))) (-4 *6 (-356))
+ (-5 *2 (-618 (-286 (-917 *6)))) (-5 *1 (-527 *5 *6 *7)) (-4 *5 (-444))
+ (-4 *7 (-13 (-356) (-821))))))
(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-621 (-923 *6))) (-5 *4 (-621 (-1142))) (-4 *6 (-444))
- (-5 *2 (-621 (-621 *7))) (-5 *1 (-527 *6 *7 *5)) (-4 *7 (-356))
+ (-12 (-5 *3 (-618 (-917 *6))) (-5 *4 (-618 (-1142))) (-4 *6 (-444))
+ (-5 *2 (-618 (-618 *7))) (-5 *1 (-527 *6 *7 *5)) (-4 *7 (-356))
(-4 *5 (-13 (-356) (-821))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-621 (-914 (-219)))))
- (-5 *2 (-621 (-1060 (-219)))) (-5 *1 (-899)))))
-(((*1 *1 *1) (-4 *1 (-607)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973) (-1164))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1018)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-250)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1179))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-823))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-549)) (-4 *1 (-275 *3)) (-4 *3 (-1179))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-549)) (-4 *1 (-275 *2)) (-4 *2 (-1179))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -3337
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
- (|:| -1792
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1122 (-219)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2062
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-544))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-4 *1 (-671 *2)) (-4 *2 (-1066))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -3337
- (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
- (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
- (|:| |abserr| (-219)) (|:| |relerr| (-219))))
- (|:| -1792
- (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372))
- (|:| |expense| (-372)) (|:| |accuracy| (-372))
- (|:| |intermediateResults| (-372))))))
- (-5 *1 (-779))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1230)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1066)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-400 (-549))) (-4 *1 (-539 *3))
- (-4 *3 (-13 (-397) (-1164)))))
- ((*1 *1 *2) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1164)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1164))))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747))
- (-4 *4 (-170))))
- ((*1 *1) (-4 *1 (-703))) ((*1 *1) (-5 *1 (-1142))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-621 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4))
- (-5 *1 (-790 *4 *5)) (-4 *5 (-632 *4))))
+ (-12 (-5 *3 (-1136 *5)) (-4 *5 (-444)) (-5 *2 (-618 *6))
+ (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *5)) (-5 *4 (-747)) (-4 *5 (-356))
- (-5 *2 (-665 *5)) (-5 *1 (-790 *5 *6)) (-4 *6 (-632 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4))
- (-4 *3 (-322 *4))))
- ((*1 *2) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-356)) (-5 *2 (-747)))))
-(((*1 *2)
- (-12
+ (-12 (-5 *3 (-917 *5)) (-4 *5 (-444)) (-5 *2 (-618 *6))
+ (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))))
+(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-524))))
+ ((*1 *2 *3) (-12 (-5 *3 (-524)) (-5 *1 (-525 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1142)) (-5 *2 (-524)) (-5 *1 (-525 *4)) (-4 *4 (-1178)))))
+(((*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-107))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-524))) (-5 *1 (-524)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-524)))))
+(((*1 *1 *1) (-5 *1 (-524))))
+(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-524)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-524)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-524))) (-5 *2 (-1142)) (-5 *1 (-524)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-524))) (-5 *1 (-524)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-665 *6)) (-5 *5 (-1 (-398 (-1136 *6)) (-1136 *6)))
+ (-4 *6 (-356))
(-5 *2
- (-1225 (-621 (-2 (|:| -4160 (-881 *3)) (|:| -3491 (-1086))))))
- (-5 *1 (-344 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892))))
- ((*1 *2)
- (-12 (-5 *2 (-1225 (-621 (-2 (|:| -4160 *3) (|:| -3491 (-1086))))))
- (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1138 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1225 (-621 (-2 (|:| -4160 *3) (|:| -3491 (-1086))))))
- (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-892)))))
+ (-618
+ (-2 (|:| |outval| *7) (|:| |outmult| (-535))
+ (|:| |outvect| (-618 (-665 *7))))))
+ (-5 *1 (-522 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-821))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1136 *5)) (-4 *5 (-356)) (-5 *2 (-618 *6))
+ (-5 *1 (-522 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))))
(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4337)) (-4 *4 (-356)) (-4 *5 (-366 *4))
- (-4 *6 (-366 *4)) (-5 *2 (-621 *6)) (-5 *1 (-512 *4 *5 *6 *3))
- (-4 *3 (-663 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4337)) (-4 *4 (-541)) (-4 *5 (-366 *4))
- (-4 *6 (-366 *4)) (-4 *7 (-963 *4)) (-4 *8 (-366 *7))
- (-4 *9 (-366 *7)) (-5 *2 (-621 *6))
- (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-663 *4 *5 *6))
- (-4 *10 (-663 *7 *8 *9))))
+ (-12 (-5 *3 (-665 *4)) (-4 *4 (-356)) (-5 *2 (-1136 *4))
+ (-5 *1 (-522 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-821))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-890)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1136 *1))
+ (-4 *1 (-322 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1136 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
- (-4 *5 (-366 *3)) (-4 *3 (-541)) (-5 *2 (-621 *5))))
+ (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) (-4 *2 (-1200 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4))
- (-4 *6 (-366 *4)) (-5 *2 (-621 *6)) (-5 *1 (-664 *4 *5 *6 *3))
- (-4 *3 (-663 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
- (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-541))
- (-5 *2 (-621 *7)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4))
- (-4 *4 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747))))
- ((*1 *1 *1) (-4 *1 (-227)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4))
- (-4 *4 (-1201 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3))
- (-4 *3 (-1201 *2))))
- ((*1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 (-747))) (-4 *1 (-871 *4))
- (-4 *4 (-1066))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-747)) (-4 *6 (-356)) (-5 *4 (-1173 *6))
- (-5 *2 (-1 (-1122 *4) (-1122 *4))) (-5 *1 (-1233 *6))
- (-5 *5 (-1122 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *1)) (-5 *4 (-1225 *1)) (-4 *1 (-617 *5))
- (-4 *5 (-1018))
- (-5 *2 (-2 (|:| -1859 (-665 *5)) (|:| |vec| (-1225 *5))))))
+ (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-1136 *4)) (-5 *1 (-519 *4)))))
+(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356))))
((*1 *2 *3)
- (-12 (-5 *3 (-665 *1)) (-4 *1 (-617 *4)) (-4 *4 (-1018))
- (-5 *2 (-665 *4)))))
+ (-12 (-5 *3 (-890)) (-5 *2 (-1224 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *1) (-4 *1 (-484)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *1) (-5 *1 (-430))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-309 (-219)))) (-5 *4 (-747))
- (-5 *2 (-665 (-219))) (-5 *1 (-260)))))
-(((*1 *1 *1) (-4 *1 (-141)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2))
- (-4 *2 (-423 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-621 *1)) (-5 *3 (-621 *7)) (-4 *1 (-1038 *4 *5 *6 *7))
- (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1))
- (-4 *1 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1))
- (-4 *1 (-1038 *4 *5 *6 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-621 (-1 *4 (-621 *4)))) (-4 *4 (-1066))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1066))
- (-5 *1 (-113 *4))))
+ (-12 (-5 *2 (-1224 *4)) (-4 *4 (-411 *3)) (-4 *3 (-300)) (-4 *3 (-542))
+ (-5 *1 (-43 *3 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-621 (-1 *4 (-621 *4))))
- (-5 *1 (-113 *4)) (-4 *4 (-1066)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 *6)) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747))))
+ (-12 (-5 *3 (-890)) (-4 *4 (-356)) (-5 *2 (-1224 *1)) (-4 *1 (-322 *4))))
+ ((*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1224 *1)) (-4 *1 (-322 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-170)) (-4 *4 (-1200 *3)) (-5 *2 (-1224 *1))
+ (-4 *1 (-403 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-747)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-823)) (-5 *1 (-1150 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1) (-5 *1 (-610))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *1) (-4 *1 (-484)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1101))) (-5 *1 (-647))))
+ (-12 (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *6))
+ (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1009 *4)))))
((*1 *2 *1)
- (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1067 *3 *4)) (-14 *3 (-892))
- (-14 *4 (-892)))))
-(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))))
+ (-12 (-4 *3 (-300)) (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-5 *2 (-1224 *6))
+ (-5 *1 (-408 *3 *4 *5 *6 *7)) (-4 *6 (-403 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1224 *1)) (-4 *1 (-411 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1224 (-1224 *4))) (-5 *1 (-519 *4))
+ (-4 *4 (-343)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-519 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-890))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-890)) (-5 *1 (-519 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1224 *4)) (-5 *3 (-535)) (-4 *4 (-343)) (-5 *1 (-519 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1224 *4)) (-5 *3 (-1086)) (-4 *4 (-343)) (-5 *1 (-519 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1224 *4)) (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-519 *4)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1224 *5)) (-5 *3 (-747)) (-5 *4 (-1086)) (-4 *5 (-343))
+ (-5 *1 (-519 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3))
- (-4 *4 (-13 (-356) (-821))) (-4 *3 (-1201 *2)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1138 *1)) (-5 *3 (-1142)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1138 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-923 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1142)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-541)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-541)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1138 *2)) (-5 *4 (-1142)) (-4 *2 (-423 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-823) (-541)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1138 *1)) (-5 *3 (-892)) (-4 *1 (-983))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1138 *1)) (-5 *3 (-892)) (-5 *4 (-834))
- (-4 *1 (-983))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-892)) (-4 *4 (-13 (-821) (-356)))
- (-4 *1 (-1035 *4 *2)) (-4 *2 (-1201 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444))
- (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-948 *3 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-665 *2)) (-5 *4 (-747))
- (-4 *2 (-13 (-300) (-10 -8 (-15 -3513 ((-411 $) $)))))
- (-4 *5 (-1201 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-112)) (-5 *1 (-797)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-1136 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1224 *4)) (-4 *4 (-343)) (-5 *2 (-1136 *4)) (-5 *1 (-519 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-892)) (-5 *4 (-411 *6)) (-4 *6 (-1201 *5))
- (-4 *5 (-1018)) (-5 *2 (-621 *6)) (-5 *1 (-436 *5 *6)))))
+ (-12 (-5 *3 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086))))))
+ (-4 *4 (-343)) (-5 *2 (-1230)) (-5 *1 (-519 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1086)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-129)) (-5 *2 (-1086)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-516)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-516)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1179))) (-5 *1 (-515)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *1) (-4 *1 (-484)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))
+ (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-662 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-320 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-507 *3 *4)) (-14 *4 (-535)))))
+(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-320 *3)) (-4 *3 (-1178))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1178)) (-14 *4 (-535)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-320 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-535)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1178)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1178))))
((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1142))) (-5 *1 (-801)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1178)) (-14 *4 (-535)))))
+(((*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-823)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-535)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747))
+ (-4 *5 (-170))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-535)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747))
+ (-4 *5 (-170))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535)))))
+ (-5 *3 (-618 (-836 *4))) (-14 *4 (-618 (-1142))) (-14 *5 (-747))
+ (-5 *1 (-496 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-618 (-1142))) (-14 *5 (-747))
+ (-5 *2
+ (-618
+ (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))))
+ (-5 *1 (-496 *4 *5))
+ (-5 *3
+ (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2))
- (-4 *2 (-1201 (-167 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1230)) (-5 *1 (-798)))))
+ (-12
+ (-5 *2
+ (-495 (-400 (-535)) (-233 *4 (-747)) (-836 *3) (-241 *3 (-400 (-535)))))
+ (-14 *3 (-618 (-1142))) (-14 *4 (-747)) (-5 *1 (-496 *3 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535)))))
+ (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-112))
+ (-5 *1 (-496 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-495 (-400 (-535)) (-233 *5 (-747)) (-836 *4) (-241 *4 (-400 (-535)))))
+ (-14 *4 (-618 (-1142))) (-14 *5 (-747)) (-5 *2 (-112))
+ (-5 *1 (-496 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-295 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1055 (-815 (-219)))) (-5 *3 (-219)) (-5 *2 (-112))
+ (-5 *1 (-296))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1185 *3))
- (-5 *2 (-400 (-549))))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-549)) (|has| *1 (-6 -4337)) (-4 *1 (-366 *3))
- (-4 *3 (-1179)))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769))
+ (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-549)) (-5 *1 (-309 *3)) (-4 *3 (-541)) (-4 *3 (-823)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *1 *1) (-4 *1 (-484)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-549))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-747))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-892))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747))
- (-4 *4 (-170))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-892)) (-5 *1 (-155))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164)))
- (-5 *1 (-221 *3))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1179)) (-4 *2 (-703))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1179)) (-4 *2 (-703))))
- ((*1 *1 *2 *1)
- (-12 (-5 *1 (-287 *2)) (-4 *2 (-1078)) (-4 *2 (-1179))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-287 *2)) (-4 *2 (-1078)) (-4 *2 (-1179))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-130))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1066))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1066))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-374 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1066))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1066))))
- ((*1 *1 *2 *1)
- (-12 (-14 *3 (-621 (-1142))) (-4 *4 (-170))
- (-4 *6 (-232 (-3774 *3) (-747)))
- (-14 *7
- (-1 (-112) (-2 (|:| -3491 *5) (|:| -3577 *6))
- (-2 (|:| -3491 *5) (|:| -3577 *6))))
- (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-823))
- (-4 *2 (-920 *4 *6 (-836 *3)))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823))
- (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1225 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-525)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1025))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-4 *7 (-1066)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-660 *5 *6 *7))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-663 *3 *2 *4)) (-4 *3 (-1018)) (-4 *2 (-366 *3))
- (-4 *4 (-366 *3))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-663 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
- (-4 *2 (-366 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *2))
+ (-4 *2 (-921 *3 *4 *5))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
- (-4 *4 (-366 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-697)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
- ((*1 *1 *1 *1) (-5 *1 (-834)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1066))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1225 *4)) (-4 *4 (-1201 *3)) (-4 *3 (-541))
- (-5 *1 (-940 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1025))))
- ((*1 *1 *1 *1) (-4 *1 (-1078)))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1089 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *2 (-232 *3 *4))
- (-4 *5 (-232 *3 *4))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1089 *3 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4))
- (-4 *2 (-232 *3 *4))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1092 *3 *4 *2))
- (-4 *2 (-920 *3 (-521 *4) *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-914 (-219))) (-5 *3 (-219)) (-5 *1 (-1175))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-703))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-703))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-549)) (-4 *1 (-1223 *3)) (-4 *3 (-1179)) (-4 *3 (-21))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1248 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1066))))
+ (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5))
+ (-4 *5 (-921 *2 *3 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769))
+ (-5 *2
+ (-2 (|:| |mval| (-665 *4)) (|:| |invmval| (-665 *4))
+ (|:| |genIdeal| (-495 *4 *5 *6 *7))))
+ (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-665 *3)) (|:| |invmval| (-665 *3))
+ (|:| |genIdeal| (-495 *3 *4 *5 *6))))
+ (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6))
+ (-4 *6 (-921 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5))
+ (-4 *5 (-921 *2 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5))
+ (-5 *2 (-406 *4 (-400 *4) *5 *6))))
((*1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1066)) (-5 *1 (-1165 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-621 (-1165 *2))) (-5 *1 (-1165 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006))
- (-5 *1 (-733)))))
-(((*1 *1 *1) (-4 *1 (-607)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973) (-1164))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-821) (-356))) (-5 *2 (-112)) (-5 *1 (-1028 *4 *3))
- (-4 *3 (-1201 *4)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-795 *3)) (-4 *3 (-823)))))
+ (-12 (-5 *2 (-1224 *6)) (-4 *6 (-13 (-403 *4 *5) (-1009 *4)))
+ (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-4 *3 (-300))
+ (-5 *1 (-406 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-921 *3 *4 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-618 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769))
+ (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-921 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *2))
+ (-4 *2 (-921 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *5 *6)) (-4 *6 (-594 (-1142)))
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *5 *6)) (-4 *6 (-594 (-1142)))
(-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823))
- (-5 *2 (-1131 (-621 (-923 *4)) (-621 (-287 (-923 *4)))))
+ (-5 *2 (-1131 (-618 (-917 *4)) (-618 (-286 (-917 *4)))))
(-5 *1 (-495 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1230)) (-5 *1 (-208 *4))
+ (-4 *4
+ (-13 (-823)
+ (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 (*2 $))
+ (-15 -2082 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1230)) (-5 *1 (-208 *3))
+ (-4 *3
+ (-13 (-823)
+ (-10 -8 (-15 -4142 ((-1124) $ (-1142))) (-15 -3963 (*2 $))
+ (-15 -2082 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-493)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1201 *5)) (-4 *5 (-356))
- (-5 *2 (-2 (|:| -4040 (-411 *3)) (|:| |special| (-411 *3))))
- (-5 *1 (-704 *5 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 (-914 *4))) (-4 *1 (-1100 *4)) (-4 *4 (-1018))
- (-5 *2 (-747)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *1 *1) (-4 *1 (-484)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1142)) (-5 *1 (-651 *3)) (-4 *3 (-1066)))))
-(((*1 *2)
- (-12 (-4 *1 (-342))
- (-5 *2 (-621 (-2 (|:| -2120 (-549)) (|:| -3577 (-549))))))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *6 (-1200 *5))
+ (-5 *2 (-1136 (-1136 *7))) (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1200 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1142)))
- (-4 *5 (-541)) (-5 *2 (-621 (-621 (-923 *5)))) (-5 *1 (-1148 *5)))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-665 (-1136 *8)))
+ (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-1200 *5)) (-5 *2 (-665 *6))
+ (-5 *1 (-492 *5 *6 *7 *8)) (-4 *7 (-1200 *6)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-356))
- (-5 *2 (-621 (-2 (|:| C (-665 *5)) (|:| |g| (-1225 *5)))))
- (-5 *1 (-949 *5)) (-5 *3 (-665 *5)) (-5 *4 (-1225 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 (-863 *6)))
- (-5 *5 (-1 (-860 *6 *8) *8 (-863 *6) (-860 *6 *8))) (-4 *6 (-1066))
- (-4 *8 (-13 (-1018) (-594 (-863 *6)) (-1009 *7)))
- (-5 *2 (-860 *6 *8)) (-4 *7 (-13 (-1018) (-823)))
- (-5 *1 (-912 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-885 *3)) (-4 *3 (-300)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *1 *1) (-4 *1 (-484)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *1 *1) (-5 *1 (-1030))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1136 *7))
+ (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *2 (-1200 *5))
+ (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1200 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1136 *7)) (-4 *5 (-1018)) (-4 *7 (-1018))
+ (-4 *2 (-1200 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1200 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *4 (-1200 *5))
+ (-5 *2 (-1136 *7)) (-5 *1 (-492 *5 *4 *6 *7)) (-4 *6 (-1200 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
-(((*1 *2 *3)
(-12
+ (-5 *2
+ (-2 (|:| -2123 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3))))
+ (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *4 (-1200 *3))
+ (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $)))))
+ (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $)))))
+ (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $)))))
+ (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-747)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $)))))
+ (-4 *4 (-1200 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-665 *2)) (-5 *4 (-535))
+ (-4 *2 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *5 (-1200 *2))
+ (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-665 *2)) (-5 *4 (-747))
+ (-4 *2 (-13 (-300) (-10 -8 (-15 -4312 ((-398 $) $))))) (-4 *5 (-1200 *2))
+ (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-747)) (-4 *5 (-343)) (-4 *6 (-1200 *5))
+ (-5 *2
+ (-618
+ (-2 (|:| -2123 (-665 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-665 *6)))))
+ (-5 *1 (-489 *5 *6 *7))
(-5 *3
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
- (-5 *2 (-112)) (-5 *1 (-293)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-892)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-356)) (-14 *5 (-964 *3 *4)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006))
- (-5 *1 (-732)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-724)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-997 (-816 (-549))))
- (-5 *3 (-1122 (-2 (|:| |k| (-549)) (|:| |c| *4)))) (-4 *4 (-1018))
- (-5 *1 (-576 *4)))))
-(((*1 *2 *2)
+ (-2 (|:| -2123 (-665 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-665 *6))))
+ (-4 *7 (-1200 *6)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-495 (-400 (-549)) (-234 *4 (-747)) (-836 *3)
- (-241 *3 (-400 (-549)))))
- (-14 *3 (-621 (-1142))) (-14 *4 (-747)) (-5 *1 (-496 *3 *4)))))
+ (-618
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-535)))))
+ (-5 *1 (-398 *3)) (-4 *3 (-542))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-747)) (-4 *3 (-343)) (-4 *5 (-1200 *3))
+ (-5 *2 (-618 (-1136 *3))) (-5 *1 (-489 *3 *5 *6)) (-4 *6 (-1200 *5)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-482)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178))
+ (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4337)) (-4 *1 (-481 *3))
+ (-4 *3 (-1178)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4))
+ (-4 *4 (-1178)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4))
+ (-4 *4 (-1178)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178)) (-4 *3 (-1067))
+ (-5 *2 (-747))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4336)) (-4 *1 (-481 *4))
+ (-4 *4 (-1178)) (-5 *2 (-747)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1178)) (-4 *4 (-365 *3))
+ (-4 *5 (-365 *3)) (-5 *2 (-618 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4336)) (-4 *1 (-481 *3)) (-4 *3 (-1178))
+ (-5 *2 (-618 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-479)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-535))) (-5 *2 (-535)) (-5 *1 (-478 *4))
+ (-4 *4 (-1200 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1200 (-535))) (-5 *1 (-478 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1200 (-535))) (-5 *1 (-478 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1200 (-535))))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-476 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-618 (-497))) (-5 *2 (-497)) (-5 *1 (-475)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-497))) (-5 *1 (-475)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-535))) (-5 *1 (-241 *3 *4)) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-535))) (-14 *3 (-618 (-1142))) (-5 *1 (-446 *3 *4 *5))
+ (-4 *4 (-1018)) (-4 *5 (-232 (-4299 *3) (-747)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-535))) (-5 *1 (-473 *3 *4)) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-1018)))))
+(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-535)) (-5 *2 (-112)) (-5 *1 (-472)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-472)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-549)) (-4 *2 (-423 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1009 *4)) (-4 *3 (-13 (-823) (-541))))))
+ (-12 (-5 *4 (-618 (-836 *5))) (-14 *5 (-618 (-1142))) (-4 *6 (-444))
+ (-5 *2 (-2 (|:| |dpolys| (-618 (-241 *5 *6))) (|:| |coords| (-618 (-535)))))
+ (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-618 (-241 *5 *6))) (-4 *7 (-444)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-618 (-473 *4 *5))) (-5 *3 (-618 (-836 *4)))
+ (-14 *4 (-618 (-1142))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6))
+ (-4 *6 (-444)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-836 *5))) (-14 *5 (-618 (-1142))) (-4 *6 (-444))
+ (-5 *2 (-618 (-618 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7))
+ (-5 *3 (-618 (-241 *5 *6))) (-4 *7 (-444)))))
+(((*1 *1) (-5 *1 (-460))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *3 (-618 (-845)))
+ (-5 *4 (-618 (-890))) (-5 *5 (-618 (-254))) (-5 *1 (-460))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *3 (-618 (-845)))
+ (-5 *4 (-618 (-890))) (-5 *1 (-460))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-460))))
+ ((*1 *1 *1) (-5 *1 (-460))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *1 (-460)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-254))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *3 (-618 (-254))) (-5 *1 (-255))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-460))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-460)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *5 (-890)) (-5 *2 (-1230))
+ (-5 *1 (-460))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-460))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-618 (-914 (-219)))) (-5 *4 (-845)) (-5 *5 (-890))
+ (-5 *2 (-1230)) (-5 *1 (-460)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1230)) (-5 *1 (-460)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-618 (-618 (-914 (-219))))) (-5 *3 (-618 (-845)))
+ (-5 *1 (-460)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
- (-4 *6 (-769)) (-5 *2 (-400 (-923 *4))) (-5 *1 (-895 *4 *5 *6 *3))
- (-4 *3 (-920 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-665 *7)) (-4 *7 (-920 *4 *6 *5))
- (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
- (-4 *6 (-769)) (-5 *2 (-665 (-400 (-923 *4))))
- (-5 *1 (-895 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *6 *5))
- (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1142))))
- (-4 *6 (-769)) (-5 *2 (-621 (-400 (-923 *4))))
- (-5 *1 (-895 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-618 (-618 (-914 (-219))))) (-5 *2 (-618 (-219)))
+ (-5 *1 (-460)))))
+(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-618 (-254))) (-5 *1 (-255))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1224 (-1224 (-535)))) (-5 *1 (-458)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1224 (-1224 (-535)))) (-5 *3 (-890)) (-5 *1 (-458)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-823)) (-4 *5 (-769)) (-4 *6 (-542))
+ (-4 *7 (-921 *6 *5 *3)) (-5 *1 (-454 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1009 (-400 (-535))) (-356)
+ (-10 -8 (-15 -4300 ($ *7)) (-15 -3319 (*7 $)) (-15 -3318 (*7 $))))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1068 (-1068 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747))
- (-4 *4 (-170))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2))
- (-4 *2 (-423 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1058 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-823) (-541)))
- (-5 *1 (-156 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-158))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-1245 *3 *4)) (-4 *3 (-823))
- (-4 *4 (-170)))))
-(((*1 *1 *1) (-4 *1 (-94)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4))))
- (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-1124))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1006))
- (-5 *1 (-727)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1060 (-816 (-219)))) (-5 *1 (-298)))))
-(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-845))))
- ((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
-(((*1 *1) (-5 *1 (-155))))
-(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
-(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))))
-(((*1 *1) (-5 *1 (-1227))))
-(((*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-892)) (-5 *2 (-372)) (-5 *1 (-761 *3))
- (-4 *3 (-594 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2))
- (-5 *2 (-372)) (-5 *1 (-761 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018))
- (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-4 *4 (-594 *2))
- (-5 *2 (-372)) (-5 *1 (-761 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541))
- (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823))
- (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823))
- (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))))
+ (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *2))
+ (-2 (|:| -2483 *5) (|:| -2484 *2))))
+ (-4 *2 (-232 (-4299 *3) (-747))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-823)) (-4 *7 (-921 *4 *2 (-836 *3))))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-618 (-1142))) (-4 *4 (-170)) (-4 *5 (-232 (-4299 *3) (-747)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2483 *2) (|:| -2484 *5))
+ (-2 (|:| -2483 *2) (|:| -2484 *5))))
+ (-4 *2 (-823)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-921 *4 *5 (-836 *3))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-618 (-1142))) (-4 *2 (-170)) (-4 *4 (-232 (-4299 *5) (-747)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2483 *3) (|:| -2484 *4))
+ (-2 (|:| -2483 *3) (|:| -2484 *4))))
+ (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-823))
+ (-4 *7 (-921 *2 *4 (-836 *5))))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-618 (-1142))) (-4 *2 (-170)) (-4 *3 (-232 (-4299 *4) (-747)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2483 *5) (|:| -2484 *3))
+ (-2 (|:| -2483 *5) (|:| -2484 *3))))
+ (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-823))
+ (-4 *7 (-921 *2 *3 (-836 *4))))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-618 *3)) (-5 *5 (-890)) (-4 *3 (-1200 *4)) (-4 *4 (-300))
+ (-5 *1 (-452 *4 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-890)) (-4 *5 (-300)) (-4 *3 (-1200 *5))
+ (-5 *2 (-2 (|:| |plist| (-618 *3)) (|:| |modulo| *5))) (-5 *1 (-452 *5 *3))
+ (-5 *4 (-618 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 *5)) (-4 *5 (-1200 *3)) (-4 *3 (-300)) (-5 *2 (-112))
+ (-5 *1 (-447 *3 *5)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1224 (-618 *3))) (-4 *4 (-300)) (-5 *2 (-618 *3))
+ (-5 *1 (-447 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-747)) (-4 *4 (-300)) (-4 *6 (-1200 *4))
+ (-5 *2 (-1224 (-618 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-618 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-300)) (-5 *2 (-747))
+ (-5 *1 (-447 *5 *3)))))
(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
- ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+ (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-618 *1)))) (-4 *1 (-360 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-445 *3 *4 *5 *6))
+ (|:| -2123 (-618 (-445 *3 *4 *5 *6)))))
+ (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890))
+ (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-542)) (-4 *3 (-170))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-618 *1)))) (-4 *1 (-360 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-445 *3 *4 *5 *6))
+ (|:| -2123 (-618 (-445 *3 *4 *5 *6)))))
+ (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-890))
+ (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1224 (-1142))) (-5 *3 (-1224 (-445 *4 *5 *6 *7)))
+ (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-890))
+ (-14 *6 (-618 (-1142))) (-14 *7 (-1224 (-665 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-1224 (-445 *4 *5 *6 *7)))
+ (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-890)) (-14 *6 (-618 *2))
+ (-14 *7 (-1224 (-665 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1224 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1224 (-1142))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170))
+ (-14 *4 (-890)) (-14 *5 (-618 (-1142))) (-14 *6 (-1224 (-665 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1142)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170))
+ (-14 *4 (-890)) (-14 *5 (-618 *2)) (-14 *6 (-1224 (-665 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-890))
+ (-14 *4 (-618 (-1142))) (-14 *5 (-1224 (-665 *2))))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-1136 (-917 *4))) (-5 *1 (-410 *3 *4))
+ (-4 *3 (-411 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356))
+ (-5 *2 (-1136 (-917 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542))
+ (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542))
+ (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-1136 (-917 *4))) (-5 *1 (-410 *3 *4))
+ (-4 *3 (-411 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356))
+ (-5 *2 (-1136 (-917 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1136 (-400 (-917 *3)))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-542)) (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542))
+ (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542))
+ (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542))
+ (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2)
+ (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542))
+ (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542))
+ (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2)
+ (-12 (-5 *2 (-400 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542))
+ (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
+ (-5 *2 (-618 (-917 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-618 (-917 *4))) (-5 *1 (-410 *3 *4))
+ (-4 *3 (-411 *4))))
+ ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-618 (-917 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-618 (-917 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-542))
+ (-4 *3 (-170)) (-14 *4 (-890)) (-14 *5 (-618 (-1142)))
+ (-14 *6 (-1224 (-665 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1224 (-445 *4 *5 *6 *7))) (-5 *2 (-618 (-917 *4)))
+ (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-542)) (-4 *4 (-170)) (-14 *5 (-890))
+ (-14 *6 (-618 (-1142))) (-14 *7 (-1224 (-665 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *1)) (-4 *1 (-444))))
+ ((*1 *1 *1 *1) (-4 *1 (-444))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747))
+ (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-747)) (|:| -2115 *4))) (-5 *5 (-747))
+ (-4 *4 (-921 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4)))
+ (-5 *1 (-442 *6 *7 *8 *4)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-769)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823))
+ (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-535)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *2 (-1230)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-921 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 *7)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *2 (-1230)) (-5 *1 (-442 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-535))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-769)) (-4 *4 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823))
+ (-5 *1 (-442 *5 *6 *7 *4)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-535))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-769)) (-4 *4 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823))
+ (-5 *1 (-442 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1230))
+ (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-535))
+ (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-921 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-526 *3 *2))
- (-4 *2 (-1216 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-4 *4 (-1201 *3))
- (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1216 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-5 *1 (-531 *3 *2))
- (-4 *2 (-1216 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-13 (-541) (-145)))
- (-5 *1 (-1118 *3)))))
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444))
- (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *1 (-948 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-94)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *1 *1) (-5 *1 (-1030))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
+ (-12
+ (-5 *2
+ (-618
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-769)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823))
+ (-5 *1 (-442 *3 *4 *5 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-769)) (-4 *2 (-921 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2))
+ (-4 *4 (-444)) (-4 *6 (-823)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-618 (-2 (|:| |totdeg| (-747)) (|:| -2115 *3)))) (-5 *4 (-747))
+ (-4 *3 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *1 (-442 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *2))
+ (-4 *2 (-921 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 *3)) (-4 *3 (-921 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769))
+ (-4 *7 (-823)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-442 *5 *6 *7 *3)))))
+(((*1 *2 *3 *2)
+ (-12
(-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-186)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-129)) (-5 *2 (-1086)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-219)) (-5 *4 (-549))
- (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))
- (-5 *2 (-1006)) (-5 *1 (-723)))))
+ (-618
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-747)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-769)) (-4 *6 (-921 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-823))
+ (-5 *1 (-442 *4 *3 *5 *6)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-618
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-769)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823))
+ (-5 *1 (-442 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-618
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-769)) (-4 *3 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823))
+ (-5 *1 (-442 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-921 *4 *3 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-921 *4 *3 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-769)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823))
+ (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-618 *7)) (-5 *3 (-535)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-769))
- (-4 *3 (-13 (-823) (-10 -8 (-15 -2844 ((-1142) $))))) (-4 *5 (-541))
- (-5 *1 (-709 *4 *3 *5 *2)) (-4 *2 (-920 (-400 (-923 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1018)) (-4 *5 (-769))
- (-4 *3
- (-13 (-823)
- (-10 -8 (-15 -2844 ((-1142) $))
- (-15 -3010 ((-3 $ "failed") (-1142))))))
- (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-920 (-923 *4) *5 *3))))
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-441 *4 *5 *6 *7))
+ (-5 *3 (-618 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-618 (-618 *8))) (-5 *1 (-441 *5 *6 *7 *8))
+ (-5 *3 (-618 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-441 *4 *5 *6 *7))
+ (-5 *3 (-618 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-618 (-618 *8))) (-5 *1 (-441 *5 *6 *7 *8))
+ (-5 *3 (-618 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-921 *4 *5 *6)) (-5 *2 (-618 (-618 *7))) (-5 *1 (-441 *4 *5 *6 *7))
+ (-5 *3 (-618 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *8 (-921 *5 *6 *7)) (-5 *2 (-618 (-618 *8))) (-5 *1 (-441 *5 *6 *7 *8))
+ (-5 *3 (-618 *8)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-618 *6)) (-4 *6 (-921 *3 *4 *5)) (-4 *3 (-300)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-440 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-621 *6))
- (-4 *6
- (-13 (-823)
- (-10 -8 (-15 -2844 ((-1142) $))
- (-15 -3010 ((-3 $ "failed") (-1142))))))
- (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2))
- (-4 *2 (-920 (-923 *4) *5 *6)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1142)) (-5 *4 (-923 (-549))) (-5 *2 (-323))
- (-5 *1 (-325))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1142)) (-5 *4 (-1058 (-923 (-549)))) (-5 *2 (-323))
- (-5 *1 (-325))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018))
- (-4 *3 (-1066)))))
+ (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-300))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-440 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-618 *7)) (-5 *3 (-1124)) (-4 *7 (-921 *4 *5 *6)) (-4 *4 (-300))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-440 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-921 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *1 (-440 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-438)) (-5 *3 (-535)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-260)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 *1)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5))
- (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1225 *3)) (-4 *3 (-1018)) (-5 *1 (-665 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 *4)) (-4 *4 (-1018)) (-4 *1 (-1089 *3 *4 *5 *6))
- (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-621 (-1225 *4))) (-5 *1 (-359 *3 *4))
- (-4 *3 (-360 *4))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018))))
((*1 *2)
- (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-541))
- (-5 *2 (-621 (-1225 *3))))))
-(((*1 *1 *1) (-4 *1 (-94)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1138 (-549))) (-5 *2 (-549)) (-5 *1 (-913)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-621 (-665 *6))) (-5 *4 (-112)) (-5 *5 (-549))
- (-5 *2 (-665 *6)) (-5 *1 (-1000 *6)) (-4 *6 (-356)) (-4 *6 (-1018))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 (-665 *4))) (-5 *2 (-665 *4)) (-5 *1 (-1000 *4))
- (-4 *4 (-356)) (-4 *4 (-1018))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-621 (-665 *5))) (-5 *4 (-549)) (-5 *2 (-665 *5))
- (-5 *1 (-1000 *5)) (-4 *5 (-356)) (-4 *5 (-1018)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219)))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))
- (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))
- (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))))
+ (-12 (-5 *2 (-535)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-535)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))))
+(((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018))))
+ ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-747)) (-5 *4 (-535)) (-5 *1 (-437 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-890)) (-5 *4 (-398 *6)) (-4 *6 (-1200 *5)) (-4 *5 (-1018))
+ (-5 *2 (-618 *6)) (-5 *1 (-436 *5 *6)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1124)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-256))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
+ (|partial| -12 (-5 *3 (-890)) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-890)) (-5 *4 (-747)) (-5 *1 (-434 *2))
+ (-4 *2 (-1200 (-535)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-890)) (-5 *4 (-618 (-747))) (-5 *1 (-434 *2))
+ (-4 *2 (-1200 (-535)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-890)) (-5 *4 (-618 (-747))) (-5 *5 (-747))
+ (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-890)) (-5 *4 (-618 (-747))) (-5 *5 (-747))
+ (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1200 (-535)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-890)) (-5 *4 (-398 *2)) (-4 *2 (-1200 *5)) (-5 *1 (-436 *5 *2))
+ (-4 *5 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-2 (|:| -4075 *4) (|:| -4290 (-535)))))
+ (-4 *4 (-1200 (-535))) (-5 *2 (-713 (-747))) (-5 *1 (-434 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-398 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-1018))
+ (-5 *2 (-713 (-747))) (-5 *1 (-436 *4 *5)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1200 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1200 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))
+ (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))
+ (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-665 (-400 (-923 (-549)))))
- (-5 *2 (-621 (-665 (-309 (-549))))) (-5 *1 (-1002))
- (-5 *3 (-309 (-549))))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1028 (-995 *3) (-1138 (-995 *3))))
- (-5 *1 (-995 *3)) (-4 *3 (-13 (-821) (-356) (-993))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-747)) (-4 *5 (-342)) (-4 *6 (-1201 *5))
+ (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *5 *3 *6))
+ (-4 *3 (-1200 *5)) (-4 *6 (-13 (-397) (-1009 *5) (-356) (-1164) (-277)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *4 *3 *5))
+ (-4 *3 (-1200 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *4 *3 *5))
+ (-4 *3 (-1200 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1164) (-277)))
+ (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1200 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-890)) (-4 *5 (-1018))
+ (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1164) (-277)))
+ (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1200 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-5 *2 (-535)) (-5 *1 (-435 *4 *3 *5))
+ (-4 *3 (-1200 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1164) (-277))))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1063 (-747))) (-5 *6 (-747))
(-5 *2
- (-621
- (-2 (|:| -3420 (-665 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-665 *6)))))
- (-5 *1 (-489 *5 *6 *7))
+ (-2 (|:| |contp| (-535))
+ (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535)))))))
+ (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2897 (-535)) (|:| -2758 (-618 *3)))) (-5 *1 (-434 *3))
+ (-4 *3 (-1200 (-535))))))
+(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-398 *3)) (-4 *3 (-542))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-2 (|:| -4075 *4) (|:| -4290 (-535)))))
+ (-4 *4 (-1200 (-535))) (-5 *2 (-747)) (-5 *1 (-434 *4)))))
+(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-434 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-618
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-535)))))
+ (-4 *2 (-542)) (-5 *1 (-398 *2))))
+ ((*1 *2 *3)
+ (-12
(-5 *3
- (-2 (|:| -3420 (-665 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-665 *6))))
- (-4 *7 (-1201 *6)))))
+ (-2 (|:| |contp| (-535))
+ (|:| -2758 (-618 (-2 (|:| |irr| *4) (|:| -2478 (-535)))))))
+ (-4 *4 (-1200 (-535))) (-5 *2 (-398 *4)) (-5 *1 (-434 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-430)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-430)))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-430)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4253 "void"))) (-5 *1 (-429)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))))
+(((*1 *1) (-5 *1 (-429))))
+(((*1 *1) (-5 *1 (-429))))
+(((*1 *1) (-5 *1 (-429))))
+(((*1 *1) (-5 *1 (-429))))
+(((*1 *1) (-5 *1 (-429))))
+(((*1 *1) (-5 *1 (-429))))
+(((*1 *1) (-5 *1 (-429))))
(((*1 *2 *3)
- (-12 (-5 *2 (-549)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))))
+ (|partial| -12 (-4 *5 (-1009 (-48)))
+ (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4))
+ (-5 *2 (-398 (-1136 (-48)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-342))
- (-5 *2 (-621 (-2 (|:| |deg| (-747)) (|:| -3825 *3))))
- (-5 *1 (-210 *4 *3)) (-4 *3 (-1201 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+ (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1136 (-400 (-535)))) (|:| |overan| (-1136 (-48)))
+ (|:| -2958 (-112))))
+ (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1138 (-1138 *4))))
- (-5 *1 (-1177 *4)) (-5 *3 (-1138 (-1138 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-396 *3)) (-4 *3 (-397))))
- ((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-396 *3)) (-4 *3 (-397))))
- ((*1 *2 *2) (-12 (-5 *2 (-892)) (|has| *1 (-6 -4327)) (-4 *1 (-397))))
- ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892))))
- ((*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-5 *2 (-1122 (-549))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1179)) (-4 *2 (-823))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1179))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1018))))
+ (|partial| -12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4))
+ (-5 *2 (-398 (-1136 (-400 (-535))))) (-5 *1 (-428 *4 *5 *3))
+ (-4 *3 (-1200 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-542) (-823) (-1009 (-535)))) (-4 *5 (-414 *4))
+ (-5 *2 (-398 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1200 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-1230))
+ (-5 *1 (-426 *3 *4)) (-4 *4 (-414 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-400 (-535)))
+ (-5 *1 (-426 *4 *3)) (-4 *3 (-414 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-591 *3)) (-4 *3 (-414 *5))
+ (-4 *5 (-13 (-823) (-542) (-1009 (-535)))) (-5 *2 (-1136 (-400 (-535))))
+ (-5 *1 (-426 *5 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-535)))))
+ (-4 *2 (-13 (-823) (-21))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-535)))))
+ (-4 *2 (-13 (-823) (-21))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1142))
+ (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-565 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1164) (-29 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1067)) (-5 *2 (-747)))))
+(((*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1067)) (-4 *2 (-361)))))
+(((*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-361)) (-4 *2 (-1067)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-416 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1164) (-414 *3)))
+ (-14 *4 (-1142)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-4 *2 (-13 (-27) (-1164) (-414 *3) (-10 -8 (-15 -4300 ($ *4)))))
+ (-4 *4 (-821))
+ (-4 *5
+ (-13 (-1203 *2 *4) (-356) (-1164)
+ (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $)))))
+ (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-954 *5)) (-14 *7 (-1142)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-4 *3 (-13 (-27) (-1164) (-414 *6) (-10 -8 (-15 -4300 ($ *7)))))
+ (-4 *7 (-821))
+ (-4 *8
+ (-13 (-1203 *3 *7) (-356) (-1164)
+ (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))))
+ (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1124)) (-4 *9 (-954 *8))
+ (-14 *10 (-1142)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-4 *3 (-13 (-27) (-1164) (-414 *6) (-10 -8 (-15 -4300 ($ *7)))))
+ (-4 *7 (-821))
+ (-4 *8
+ (-13 (-1203 *3 *7) (-356) (-1164)
+ (-10 -8 (-15 -4153 ($ $)) (-15 -4155 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))))
+ (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1124)) (-4 *9 (-954 *8))
+ (-14 *10 (-1142)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-306 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1124)) (|:| |prob| (-1124))))))
+ (-5 *1 (-416 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1164) (-414 *5)))
+ (-14 *6 (-1142)) (-14 *7 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-823)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))
+ ((*1 *2 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-823)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1142)) (-5 *3 (-618 *1)) (-4 *1 (-414 *4)) (-4 *4 (-823))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823))))
+ ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1142)) (-4 *1 (-414 *3)) (-4 *3 (-823)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823))
+ (-5 *2 (-2 (|:| -4296 (-535)) (|:| |var| (-591 *1)))) (-4 *1 (-414 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-542)) (-5 *1 (-412 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1200 *4)) (-4 *4 (-1183))
+ (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1200 (-400 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1224 *4)) (-5 *3 (-1224 *1)) (-4 *4 (-170)) (-4 *1 (-360 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1224 *4)) (-5 *3 (-1224 *1)) (-4 *4 (-170))
+ (-4 *1 (-363 *4 *5)) (-4 *5 (-1200 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-621 *1)) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
+ (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4))
+ (-4 *4 (-1200 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1224 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170))))
+ ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2))))
+ ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170))))
+ ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2))))
+ ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-410 *3 *4))
+ (-4 *3 (-411 *4))))
+ ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-410 *3 *4))
+ (-4 *3 (-411 *4))))
+ ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1009 *4)) (-4 *3 (-300))
+ (-4 *4 (-962 *3)) (-4 *5 (-1200 *4)) (-4 *6 (-403 *4 *5))
+ (-14 *7 (-1224 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7))))
((*1 *1 *2)
- (-12 (-5 *2 (-621 (-1130 *3 *4))) (-5 *1 (-1130 *3 *4))
- (-14 *3 (-892)) (-4 *4 (-1018))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1130 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))))
-(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-219)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *1 *1 *1) (-5 *1 (-372)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-880))
- (-5 *1 (-449 *3 *4 *2 *5)) (-4 *5 (-920 *2 *3 *4))))
+ (-12 (-5 *2 (-1224 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-962 *3))
+ (-4 *5 (-1200 *4)) (-4 *3 (-300)) (-5 *1 (-408 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-300)) (-4 *3 (-962 *2)) (-4 *4 (-1200 *3))
+ (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1009 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-747)) (-5 *4 (-1224 *2)) (-4 *5 (-300)) (-4 *6 (-962 *5))
+ (-4 *2 (-13 (-403 *6 *7) (-1009 *6))) (-5 *1 (-406 *5 *6 *7 *2))
+ (-4 *7 (-1200 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1200 *4)) (-5 *2 (-665 *4))))
((*1 *2)
- (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-880))
- (-5 *1 (-877 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-880)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1201 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+ (-12 (-4 *4 (-170)) (-4 *5 (-1200 *4)) (-5 *2 (-665 *4))
+ (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3))
+ (-5 *2 (-665 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *5 (-823)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-1224 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1200 *4)) (-5 *2 (-665 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1172 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769))
- (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-114))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1142)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-592 *4)) (-4 *4 (-823))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-592 *4)) (-4 *4 (-823))))
+ (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1200 *3))
+ (-5 *2 (-665 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-398 *3)) (-4 *3 (-542)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-535)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-398 *4)) (-4 *4 (-542)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-398 *2)) (-4 *2 (-542)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-535)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-398 *2)) (-4 *2 (-542)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-371))) (-5 *1 (-254))))
+ ((*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-542)))))
+(((*1 *1 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-542)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4327)) (-4 *1 (-397))))
+ ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-890)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-535)) (|has| *1 (-6 -4327)) (-4 *1 (-397)) (-5 *2 (-890)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-535)) (|has| *1 (-6 -4327)) (-4 *1 (-397)) (-5 *2 (-890)))))
+(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-747))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-747)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-747))))
+ ((*1 *1 *1) (-4 *1 (-395))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-400 *4)) (-4 *4 (-1200 *3)) (-4 *3 (-13 (-356) (-145)))
+ (-5 *1 (-392 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1200 *3)) (-5 *1 (-392 *3 *2)) (-4 *3 (-13 (-356) (-145))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-356) (-145)))
+ (-5 *2 (-618 (-2 (|:| -2484 (-747)) (|:| -4115 *4) (|:| |num| *4))))
+ (-5 *1 (-392 *3 *4)) (-4 *4 (-1200 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-388)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-618 (-618 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-618 (-3 (|:| |array| (-618 *3)) (|:| |scalar| (-1142)))))
+ (-5 *6 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-388))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-618 (-618 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-618 (-3 (|:| |array| (-618 *3)) (|:| |scalar| (-1142)))))
+ (-5 *6 (-618 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-388))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-618 (-1142))) (-5 *5 (-1145)) (-5 *3 (-1142)) (-5 *2 (-1069))
+ (-5 *1 (-388)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-386)))))
+(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-384)))))
+(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1230)) (-5 *1 (-384))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-384)))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-384)))))
+(((*1 *2) (-12 (-5 *2 (-1113 (-1124))) (-5 *1 (-384)))))
+(((*1 *2) (-12 (-5 *2 (-1113 (-1124))) (-5 *1 (-384)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-835)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747))
+ (-4 *5 (-170)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-835)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747))
+ (-4 *5 (-170)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1124)) (-4 *1 (-382)))))
+(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))))
+(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))))
+(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-618 (-400 (-917 (-535))))) (-5 *4 (-618 (-1142)))
+ (-5 *2 (-618 (-618 *5))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-821) (-356)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1066)) (-5 *2 (-112)) (-5 *1 (-858 *5 *3 *4))
- (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5)))))
+ (-12 (-5 *3 (-400 (-917 (-535)))) (-5 *2 (-618 *4)) (-5 *1 (-373 *4))
+ (-4 *4 (-13 (-821) (-356))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-917 (-166 (-535))))) (-5 *2 (-618 (-166 *4)))
+ (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-618 (-400 (-917 (-166 (-535)))))) (-5 *4 (-618 (-1142)))
+ (-5 *2 (-618 (-618 (-166 *5)))) (-5 *1 (-372 *5))
+ (-4 *5 (-13 (-356) (-821))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-400 (-917 (-166 (-535))))))
+ (-5 *2 (-618 (-618 (-286 (-917 (-166 *4)))))) (-5 *1 (-372 *4))
+ (-4 *4 (-13 (-356) (-821)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *6)) (-4 *6 (-857 *5)) (-4 *5 (-1066))
- (-5 *2 (-112)) (-5 *1 (-858 *5 *6 *4)) (-4 *4 (-594 (-863 *5))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-892))
- (-5 *2 (-1225 (-621 (-2 (|:| -4160 *4) (|:| -3491 (-1086))))))
- (-5 *1 (-339 *4)) (-4 *4 (-342)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-703)) (-4 *2 (-1179)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))))
-(((*1 *1 *1) (-4 *1 (-607)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973) (-1164))))))
-(((*1 *1 *1) (-4 *1 (-94)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
+ (-12 (-5 *3 (-618 (-286 (-400 (-917 (-166 (-535)))))))
+ (-5 *2 (-618 (-618 (-286 (-917 (-166 *4)))))) (-5 *1 (-372 *4))
+ (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-917 (-166 (-535)))))
+ (-5 *2 (-618 (-286 (-917 (-166 *4))))) (-5 *1 (-372 *4))
+ (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-286 (-400 (-917 (-166 (-535))))))
+ (-5 *2 (-618 (-286 (-917 (-166 *4))))) (-5 *1 (-372 *4))
+ (-4 *4 (-13 (-356) (-821))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-535)) (-5 *1 (-371)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-219))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-219))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-371))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-535))) (-5 *1 (-371)))))
+(((*1 *1 *1) (-5 *1 (-219))) ((*1 *1 *1) (-5 *1 (-371)))
+ ((*1 *1) (-5 *1 (-371))))
+(((*1 *1 *1) (-5 *1 (-219)))
((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *8 (-1032 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-621 *8)) (|:| |towers| (-621 (-998 *5 *6 *7 *8)))))
- (-5 *1 (-998 *5 *6 *7 *8)) (-5 *3 (-621 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *8 (-1032 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-621 *8))
- (|:| |towers| (-621 (-1112 *5 *6 *7 *8)))))
- (-5 *1 (-1112 *5 *6 *7 *8)) (-5 *3 (-621 *8)))))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-618 (-1142))) (-14 *3 (-618 (-1142)))
+ (-4 *4 (-380))))
+ ((*1 *1 *1) (-5 *1 (-371))) ((*1 *1) (-5 *1 (-371))))
+(((*1 *1) (-5 *1 (-219))) ((*1 *1) (-5 *1 (-371))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371))))
+ ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-371)))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371))))
+ ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-371)))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371))))
+ ((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-371)))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1230)) (-5 *1 (-371)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-368 *4 *2))
+ (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-368 *4 *2))
+ (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1178)) (-5 *1 (-368 *4 *2))
+ (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4337)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-4 *1 (-367 *3 *4)) (-4 *4 (-170)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-621 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1100 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-621 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-621 (-914 *3))) (-4 *1 (-1100 *3)) (-4 *3 (-1018)))))
+ (-12 (-4 *1 (-365 *3)) (-4 *3 (-1178)) (-4 *3 (-823)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-365 *4)) (-4 *4 (-1178))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-535)) (|has| *1 (-6 -4337)) (-4 *1 (-365 *3)) (-4 *3 (-1178)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-365 *2)) (-4 *2 (-1178)) (-4 *2 (-823))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4337)) (-4 *1 (-365 *3))
+ (-4 *3 (-1178)))))
+(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1224 *1)) (-4 *1 (-360 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1136 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1136 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-618 (-1224 *4))) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542))
+ (-5 *2 (-618 (-1224 *3))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-823))
- (-5 *2 (-2 (|:| |val| *1) (|:| -3577 (-549)))) (-4 *1 (-423 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-863 *3)) (|:| -3577 (-863 *3))))
- (-5 *1 (-863 *3)) (-4 *3 (-1066))))
+ (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-1136 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-1136 *3)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-542)) (-4 *2 (-170)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1124)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1067)) (-4 *4 (-1067))))
+ ((*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1124)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
+(((*1 *1 *1) (-4 *1 (-171)))
+ ((*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-1124)))))
+(((*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))))
+(((*1 *2 *1 *2) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343))
+ (-4 *2
+ (-13 (-395)
+ (-10 -7 (-15 -4300 (*2 *4)) (-15 -2121 ((-890) *2))
+ (-15 -2123 ((-1224 *2) (-890))) (-15 -4271 (*2 *2)))))
+ (-5 *1 (-350 *2 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-343)) (-5 *2 (-929 (-1136 *4))) (-5 *1 (-349 *4))
+ (-5 *3 (-1136 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1136 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-890)) (-5 *2 (-1136 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))))
+(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-343)))))
+(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-343)))))
+(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-343)))))
+(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-112))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
- (-4 *7 (-920 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -3577 (-549))))
- (-5 *1 (-921 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-356)
- (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $))
- (-15 -1404 (*7 $))))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-411 *4) *4)) (-4 *4 (-541)) (-5 *2 (-411 *4))
- (-5 *1 (-412 *4))))
- ((*1 *1 *1) (-5 *1 (-897)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-897))))
- ((*1 *1 *1) (-5 *1 (-898)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-898))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))
- (-5 *4 (-400 (-549))) (-5 *1 (-991 *3)) (-4 *3 (-1201 (-549)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))
- (-5 *1 (-991 *3)) (-4 *3 (-1201 (-549)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))
- (-5 *4 (-400 (-549))) (-5 *1 (-992 *3)) (-4 *3 (-1201 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549)))))
- (-5 *1 (-992 *3)) (-4 *3 (-1201 (-400 (-549))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3))
- (-4 *3 (-1201 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-665 *5))) (-5 *4 (-1225 *5)) (-4 *5 (-300))
- (-4 *5 (-1018)) (-5 *2 (-665 *5)) (-5 *1 (-1000 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1249 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-823))
- (-4 *2 (-170))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-795 *4)) (-4 *1 (-1242 *4 *2)) (-4 *4 (-823))
- (-4 *2 (-1018))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1018)) (-5 *1 (-1248 *2 *3)) (-4 *3 (-819)))))
+ (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1224 (-618 (-2 (|:| -3744 (-877 *3)) (|:| -2483 (-1086))))))
+ (-5 *1 (-345 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086))))))
+ (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1136 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086))))))
+ (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890)))))
+(((*1 *2)
+ (-12 (-5 *2 (-665 (-877 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-890))
+ (-14 *4 (-890))))
+ ((*1 *2)
+ (-12 (-5 *2 (-665 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343))
+ (-14 *4
+ (-3 (-1136 *3) (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-665 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086))))))
+ (-4 *4 (-343)) (-5 *2 (-747)) (-5 *1 (-340 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-345 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890))))
+ ((*1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343))
+ (-14 *4
+ (-3 (-1136 *3) (-1224 (-618 (-2 (|:| -3744 *3) (|:| -2483 (-1086)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-890)))))
(((*1 *2)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-5 *2 (-665 (-400 *4))))))
+ (-12 (-4 *1 (-343))
+ (-5 *2 (-618 (-2 (|:| -4075 (-535)) (|:| -2484 (-535))))))))
+(((*1 *2 *3) (-12 (-4 *1 (-343)) (-5 *3 (-535)) (-5 *2 (-1151 (-890) (-747))))))
+(((*1 *1) (-4 *1 (-343))))
+(((*1 *2)
+ (-12 (-4 *1 (-343)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-890))
+ (-5 *2
+ (-3 (-1136 *4) (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086)))))))
+ (-5 *1 (-340 *4)) (-4 *4 (-343)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-890))
+ (-5 *2 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086))))))
+ (-5 *1 (-340 *4)) (-4 *4 (-343)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086))))))
+ (-4 *4 (-343)) (-5 *2 (-665 *4)) (-5 *1 (-340 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343))
+ (-5 *2 (-1224 (-618 (-2 (|:| -3744 *4) (|:| -2483 (-1086))))))
+ (-5 *1 (-340 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1136 *4)) (-4 *4 (-343)) (-5 *2 (-929 (-1086)))
+ (-5 *1 (-340 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-337 *3 *4)) (-14 *3 (-890))
+ (-14 *4 (-890))))
+ ((*1 *2)
+ (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343))
+ (-14 *4 (-1136 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343))
+ (-14 *4 (-890)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5)))
+ (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-747)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5)))
+ (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2252 *4)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
+ (-12 (-4 *3 (-1183)) (-4 *5 (-1200 *3)) (-4 *6 (-1200 (-400 *5)))
+ (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4))
+ (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4))
+ (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4))
+ (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1183)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4)))
+ (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-1200 *4))
+ (-4 *5 (-1200 (-400 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1066) (-34)))
- (-4 *3 (-13 (-1066) (-34))))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))))
+ (-12 (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183))
+ (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *1 *1) (-4 *1 (-94)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-549)) (-5 *5 (-1124)) (-5 *6 (-665 (-219)))
- (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))))
- (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))
- (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))
- (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-682 *3 *4)) (-4 *3 (-1179)) (-4 *4 (-1179)))))
+ (-12 (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183))
+ (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1224 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183))
+ (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4))))))
(((*1 *2)
- (-12 (-4 *4 (-1183)) (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5)))
- (-5 *2 (-621 (-621 *4))) (-5 *1 (-334 *3 *4 *5 *6))
- (-4 *3 (-335 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1201 *3))
- (-4 *5 (-1201 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-621 (-621 *3))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1216 *3)))))
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4))))))
(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3046 (-621 *3)) (|:| -4109 (-621 *3))))
- (-5 *1 (-1180 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142)) (-4 *4 (-444)) (-4 *4 (-823))
- (-5 *1 (-558 *4 *2)) (-4 *2 (-277)) (-4 *2 (-423 *4)))))
-(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228))))
- ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1228)))))
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-5 *2 (-665 (-400 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4)))
+ (-5 *2 (-2 (|:| |num| (-1224 *4)) (|:| |den| *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4)))
+ (-5 *2 (-2 (|:| |num| (-1224 *4)) (|:| |den| *4))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1028 (-995 *4) (-1138 (-995 *4)))) (-5 *3 (-834))
- (-5 *1 (-995 *4)) (-4 *4 (-13 (-821) (-356) (-993))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7))
- (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-2 (|:| |goodPols| (-621 *8)) (|:| |badPols| (-621 *8))))
- (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-621 *8)))))
+ (-12 (-5 *2 (-1224 *3)) (-4 *3 (-1200 *4)) (-4 *4 (-1183))
+ (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1200 (-400 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1183))
+ (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5)))
+ (-5 *2 (-2 (|:| |num| (-665 *5)) (|:| |den| *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1164) (-973)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1200 (-400 *2))) (-4 *2 (-1200 *4))
+ (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1183))
+ (-4 *4 (-1200 (-400 *2))) (-4 *2 (-1200 *3)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1200 (-400 *2))) (-4 *2 (-1200 *4))
+ (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1183))
+ (-4 *4 (-1200 (-400 *2))) (-4 *2 (-1200 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1200 *4)) (-4 *4 (-1183))
+ (-4 *6 (-1200 (-400 *5)))
+ (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5)))
+ (-4 *1 (-335 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *5 (-1183)) (-4 *6 (-1200 *5))
+ (-4 *7 (-1200 (-400 *6))) (-5 *2 (-618 (-917 *5)))
+ (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1183))
+ (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5))) (-4 *4 (-356))
+ (-5 *2 (-618 (-917 *4))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4)) (-4 *6 (-1200 (-400 *5)))
+ (-5 *2 (-618 (-618 *4))) (-5 *1 (-334 *3 *4 *5 *6))
+ (-4 *3 (-335 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-618 (-618 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3))))
- ((*1 *1 *1) (-4 *1 (-1167))))
-(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675))))
- ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675)))))
-(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142)))
+ (-14 *4 (-618 (-1142))) (-4 *5 (-380))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-618 (-1142)))
+ (-14 *4 (-618 (-1142))) (-4 *5 (-380)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-356)) (-4 *3 (-1200 *4)) (-4 *5 (-1200 (-400 *3)))
+ (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-535)) (-4 *2 (-356)) (-4 *4 (-1200 *2))
+ (-4 *5 (-1200 (-400 *4))) (-4 *1 (-329 *2 *4 *5 *6))
+ (-4 *6 (-335 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-356)) (-4 *3 (-1200 *2)) (-4 *4 (-1200 (-400 *3)))
+ (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4)))
+ (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356))
+ (-4 *1 (-329 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1200 *3))
+ (-4 *5 (-1200 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4)))
+ (-5 *2 (-1224 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-356)) (-4 *4 (-1200 *3)) (-4 *5 (-1200 (-400 *4)))
+ (-5 *2 (-1224 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1142)) (-5 *4 (-917 (-535))) (-5 *2 (-323)) (-5 *1 (-325)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-823)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1058 (-917 (-535)))) (-5 *3 (-917 (-535))) (-5 *1 (-323))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1058 (-917 (-535)))) (-5 *1 (-323)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-1124))) (-5 *1 (-323))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-323)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-323)))))
+(((*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-323))))
+ ((*1 *1 *2) (-12 (-5 *2 (-307 (-535))) (-5 *1 (-323))))
+ ((*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-323))))
+ ((*1 *1 *2) (-12 (-5 *2 (-307 (-670))) (-5 *1 (-323))))
+ ((*1 *1 *2) (-12 (-5 *2 (-307 (-677))) (-5 *1 (-323))))
+ ((*1 *1 *2) (-12 (-5 *2 (-307 (-675))) (-5 *1 (-323))))
+ ((*1 *1) (-5 *1 (-323))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-323))) (-5 *1 (-323)))))
+(((*1 *1) (-5 *1 (-323))))
+(((*1 *1) (-5 *1 (-323))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-835))) (-5 *1 (-323)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-618 (-1142))) (-5 *2 (-1142)) (-5 *1 (-323)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372)))
- (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141))))
- (-5 *1 (-1141)))))
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call")
+ (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat")
+ (|:| |Goto| "goto") (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-323)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1179)) (-4 *2 (-1066))
- (-4 *2 (-823)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1142)) (-5 *5 (-1060 (-219))) (-5 *2 (-898))
- (-5 *1 (-896 *3)) (-4 *3 (-594 (-525)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142)) (-5 *2 (-898)) (-5 *1 (-896 *3))
- (-4 *3 (-594 (-525)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-898))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-898)))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-268)))))
+ (-12
+ (-5 *2
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1142)) (|:| |arrayIndex| (-618 (-917 (-535))))
+ (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1142)) (|:| |rand| (-835))
+ (|:| |ints2Floats?| (-112))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1141)) (|:| |thenClause| (-323))
+ (|:| |elseClause| (-323))))
+ (|:| |returnBranch|
+ (-2 (|:| -3745 (-112))
+ (|:| -3744 (-2 (|:| |ints2Floats?| (-112)) (|:| -3587 (-835))))))
+ (|:| |blockBranch| (-618 (-323))) (|:| |commentBranch| (-618 (-1124)))
+ (|:| |callBranch| (-1124))
+ (|:| |forBranch|
+ (-2 (|:| -1556 (-1058 (-917 (-535)))) (|:| |span| (-917 (-535)))
+ (|:| -3567 (-323))))
+ (|:| |labelBranch| (-1086))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1141)) (|:| -3567 (-323))))
+ (|:| |commonBranch|
+ (-2 (|:| -3888 (-1142)) (|:| |contents| (-618 (-1142)))))
+ (|:| |printBranch| (-618 (-835)))))
+ (-5 *1 (-323)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-323)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-323)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-323)))))
+(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1136 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) (-4 *3 (-356)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1136 *3)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))
+ (-5 *2 (-1136 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1136 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-747)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-768)) (-4 *3 (-170)))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
+ (-4 *3 (-170)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-535)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1067)) (-4 *2 (-130)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-130)) (-4 *3 (-768)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-535)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1018))
+ (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-921 *2 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1136 *7)) (-5 *3 (-535)) (-4 *7 (-921 *6 *4 *5)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *1 (-314 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1136 *6)) (-4 *6 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-1136 *7)) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *7 (-921 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1136 *7)) (-4 *7 (-921 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1018)) (-5 *2 (-1136 *6)) (-5 *1 (-314 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1136 *9)) (-5 *4 (-618 *7)) (-5 *5 (-618 *8)) (-4 *7 (-823))
+ (-4 *8 (-1018)) (-4 *9 (-921 *8 *6 *7)) (-4 *6 (-769)) (-5 *2 (-1136 *8))
+ (-5 *1 (-314 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-535))) (-5 *1 (-312 *3 *4 *5))
+ (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1142)) (-14 *5 *3))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219)))
+ (-5 *6 (-535)) (-5 *2 (-1174 (-898))) (-5 *1 (-311))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219)))
+ (-5 *6 (-535)) (-5 *7 (-1124)) (-5 *2 (-1174 (-898))) (-5 *1 (-311))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219)))
+ (-5 *6 (-219)) (-5 *7 (-535)) (-5 *2 (-1174 (-898))) (-5 *1 (-311))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-307 (-535))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1055 (-219)))
+ (-5 *6 (-219)) (-5 *7 (-535)) (-5 *8 (-1124)) (-5 *2 (-1174 (-898)))
+ (-5 *1 (-311)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-286 *6)) (-5 *4 (-113)) (-4 *6 (-414 *5))
+ (-4 *5 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51))
+ (-5 *1 (-310 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-618 *7)) (-4 *7 (-414 *6))
+ (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51))
+ (-5 *1 (-310 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-618 (-286 *7))) (-5 *4 (-618 (-113))) (-5 *5 (-286 *7))
+ (-4 *7 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51))
+ (-5 *1 (-310 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-618 (-286 *8))) (-5 *4 (-618 (-113))) (-5 *5 (-286 *8))
+ (-5 *6 (-618 *8)) (-4 *8 (-414 *7))
+ (-4 *7 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51))
+ (-5 *1 (-310 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-618 *7)) (-5 *4 (-618 (-113))) (-5 *5 (-286 *7))
+ (-4 *7 (-414 *6)) (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51))
+ (-5 *1 (-310 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-618 *8)) (-5 *4 (-618 (-113))) (-5 *6 (-618 (-286 *8)))
+ (-4 *8 (-414 *7)) (-5 *5 (-286 *8))
+ (-4 *7 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51))
+ (-5 *1 (-310 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-286 *5)) (-5 *4 (-113)) (-4 *5 (-414 *6))
+ (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51))
+ (-5 *1 (-310 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6))
+ (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51))
+ (-5 *1 (-310 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6))
+ (-4 *6 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51))
+ (-5 *1 (-310 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-5 *6 (-618 *3)) (-4 *3 (-414 *7))
+ (-4 *7 (-13 (-823) (-542) (-594 (-524)))) (-5 *2 (-51))
+ (-5 *1 (-310 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-307 *3)) (-4 *3 (-542)) (-4 *3 (-823)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-535)) (-5 *1 (-307 *3)) (-4 *3 (-542)) (-4 *3 (-823)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-747)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-300))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2492 *1)))
+ (-4 *1 (-300)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-618 *1)) (-4 *1 (-300)))))
+(((*1 *2 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-821)) (-5 *1 (-297 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-219))) (-5 *4 (-747)) (-5 *2 (-665 (-219)))
+ (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-400 (-535))) (-5 *2 (-219)) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-307 (-371))) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-219)) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371))
+ (|:| |expense| (-371)) (|:| |accuracy| (-371))
+ (|:| |intermediateResults| (-371))))
+ (-5 *2 (-1006)) (-5 *1 (-296)))))
(((*1 *2 *3)
(-12
(-5 *3
@@ -15861,2543 +14368,2162 @@
"There is a singularity at the lower end point")
(|:| |upperSingular|
"There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1122 (-219)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2062
+ (-3 (|:| |str| (-1119 (-219)))
+ (|:| |notEvaluated| "Internal singularities not yet evaluated")))
+ (|:| -1556
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1006)) (-5 *1 (-298)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2))
- (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170))
- (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-663 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1089 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2))
- (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4338 "*"))) (-4 *2 (-1018)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1060 (-372)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-248))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1060 (-372)))
- (-5 *2 (-1099 (-219))) (-5 *1 (-248))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-248))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *2 (-1099 (-219))) (-5 *1 (-248))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-248))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *2 (-1099 (-219))) (-5 *1 (-248))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-248))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *2 (-1099 (-219))) (-5 *1 (-248))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-372)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1099 (-219))) (-5 *1 (-248))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-372)))
- (-5 *2 (-1099 (-219))) (-5 *1 (-248))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-850 *6)) (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256)))
- (-4 *6 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1099 (-219)))
- (-5 *1 (-252 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-850 *5)) (-5 *4 (-1058 (-372)))
- (-4 *5 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1099 (-219)))
- (-5 *1 (-252 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256)))
- (-5 *2 (-1099 (-219))) (-5 *1 (-252 *3))
- (-4 *3 (-13 (-594 (-525)) (-1066)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1058 (-372))) (-5 *2 (-1099 (-219))) (-5 *1 (-252 *3))
- (-4 *3 (-13 (-594 (-525)) (-1066)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-853 *6)) (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256)))
- (-4 *6 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1099 (-219)))
- (-5 *1 (-252 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-853 *5)) (-5 *4 (-1058 (-372)))
- (-4 *5 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1099 (-219)))
- (-5 *1 (-252 *5)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-897))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-897))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-898))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1060 (-219)))
- (-5 *1 (-898)))))
-(((*1 *1 *2)
+ (-5 *2 (-1006)) (-5 *1 (-296)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-621
- (-2
- (|:| -3337
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
- (|:| -1792
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1122 (-219)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2062
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-544)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3))))
- ((*1 *1 *1) (-4 *1 (-1167))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1122 (-621 (-549)))) (-5 *1 (-854))
- (-5 *3 (-621 (-549))))))
-(((*1 *1 *2 *2)
+ (-5 *3
+ (-2 (|:| -2989 (-371)) (|:| -3888 (-1124))
+ (|:| |explanations| (-618 (-1124)))))
+ (-5 *2 (-1006)) (-5 *1 (-296))))
+ ((*1 *2 *3)
(-12
+ (-5 *3
+ (-2 (|:| -2989 (-371)) (|:| -3888 (-1124))
+ (|:| |explanations| (-618 (-1124))) (|:| |extra| (-1006))))
+ (-5 *2 (-1006)) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1124)) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-186))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-294))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-186))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-294))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1055 (-815 (-219)))) (-5 *2 (-219)) (-5 *1 (-296)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1119 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-186))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1119 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-294))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1119 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-186))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-294))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-618 (-1124))) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1124)) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-186))))
+ ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-294))))
+ ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1124)) (-5 *1 (-296)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *2 (-1224 (-307 (-371))))
+ (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-1224 (-675))) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-675)) (-5 *1 (-296)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 (-2 (|:| -3456 (-400 (-535))) (|:| -3455 (-400 (-535))))))
+ (-5 *2 (-618 (-219))) (-5 *1 (-296)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1055 (-815 (-219)))) (-5 *1 (-296)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-400 (-535)))) (-5 *1 (-296)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1224 (-307 (-219))))
(-5 *2
- (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372)))
- (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141))))
- (-5 *1 (-1141)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-728)))))
-(((*1 *2 *1)
+ (-2 (|:| |additions| (-535)) (|:| |multiplications| (-535))
+ (|:| |exponentiations| (-535)) (|:| |functionCalls| (-535))))
+ (-5 *1 (-296)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))
+ (-5 *2 (-371)) (-5 *1 (-260))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-219)) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-400 (-535))) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-535))) (-5 *1 (-296)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1055 (-815 (-371)))) (-5 *2 (-1055 (-815 (-219))))
+ (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-815 (-371))) (-5 *2 (-815 (-219))) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-307 (-371))) (-5 *2 (-307 (-219))) (-5 *1 (-296)))))
+(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-296)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-917 (-400 (-535)))) (-5 *4 (-1142))
+ (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-618 (-219))) (-5 *1 (-294)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-621
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-549)))))
- (-5 *1 (-411 *3)) (-4 *3 (-541))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-747)) (-4 *3 (-342)) (-4 *5 (-1201 *3))
- (-5 *2 (-621 (-1138 *3))) (-5 *1 (-489 *3 *5 *6))
- (-4 *6 (-1201 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-372)) (-5 *1 (-1011)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1058 (-816 *3))) (-4 *3 (-13 (-1164) (-930) (-29 *5)))
- (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2
- (-3 (|:| |f1| (-816 *3)) (|:| |f2| (-621 (-816 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-213 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1058 (-816 *3))) (-5 *5 (-1124))
- (-4 *3 (-13 (-1164) (-930) (-29 *6)))
- (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2
- (-3 (|:| |f1| (-816 *3)) (|:| |f2| (-621 (-816 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-213 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1058 (-816 (-309 *5))))
- (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2
- (-3 (|:| |f1| (-816 (-309 *5))) (|:| |f2| (-621 (-816 (-309 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-214 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-400 (-923 *6))) (-5 *4 (-1058 (-816 (-309 *6))))
- (-5 *5 (-1124))
- (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2
- (-3 (|:| |f1| (-816 (-309 *6))) (|:| |f2| (-621 (-816 (-309 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-214 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1058 (-816 (-400 (-923 *5))))) (-5 *3 (-400 (-923 *5)))
- (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2
- (-3 (|:| |f1| (-816 (-309 *5))) (|:| |f2| (-621 (-816 (-309 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-214 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1058 (-816 (-400 (-923 *6))))) (-5 *5 (-1124))
- (-5 *3 (-400 (-923 *6)))
- (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2
- (-3 (|:| |f1| (-816 (-309 *6))) (|:| |f2| (-621 (-816 (-309 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-214 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142))
- (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *2 (-3 *3 (-621 *3))) (-5 *1 (-421 *5 *3))
- (-4 *3 (-13 (-1164) (-930) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-466 *3 *4 *5))
- (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1060 (-816 (-372))))
- (-5 *5 (-372)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550))))
- ((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1006)) (-5 *1 (-550))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1060 (-816 (-372))))
- (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ (-5 *3
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2 (-1119 (-219))) (-5 *1 (-186))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1060 (-816 (-372))))
- (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1060 (-816 (-372))))
- (-5 *2 (-1006)) (-5 *1 (-550))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1060 (-816 (-372)))))
- (-5 *2 (-1006)) (-5 *1 (-550))))
+ (-12 (-5 *3 (-307 (-219))) (-5 *4 (-618 (-1142)))
+ (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-294))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1060 (-816 (-372)))))
- (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1060 (-816 (-372)))))
- (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1060 (-816 (-372)))))
- (-5 *5 (-372)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ (-12 (-5 *3 (-1224 (-307 (-219)))) (-5 *4 (-618 (-1142)))
+ (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-294)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1136 *1)) (-5 *4 (-1142)) (-4 *1 (-27)) (-5 *2 (-618 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1136 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-917 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-618 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *2 (-618 *1)) (-4 *1 (-29 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1058 (-816 (-372))))
- (-5 *5 (-1124)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ (-12 (-5 *3 (-307 (-219))) (-5 *4 (-618 (-1142)))
+ (-5 *5 (-1055 (-815 (-219)))) (-5 *2 (-1119 (-219))) (-5 *1 (-294)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1142)) (-5 *5 (-1055 (-815 (-219))))
+ (-5 *2 (-618 (-219))) (-5 *1 (-186))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1058 (-816 (-372))))
- (-5 *5 (-1142)) (-5 *2 (-1006)) (-5 *1 (-550))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-549)))) (-4 *5 (-1201 *4))
- (-5 *2 (-567 (-400 *5))) (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1142)) (-4 *5 (-145))
- (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
- (-5 *2 (-3 (-309 *5) (-621 (-309 *5)))) (-5 *1 (-570 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-717 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823))
- (-4 *3 (-38 (-400 (-549))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1142)) (-5 *1 (-923 *3)) (-4 *3 (-38 (-400 (-549))))
- (-4 *3 (-1018))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-4 *2 (-823))
- (-5 *1 (-1092 *3 *2 *4)) (-4 *4 (-920 *3 (-521 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018))
- (-5 *1 (-1126 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1133 *3 *4 *5))
- (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1139 *3 *4 *5))
- (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1140 *3 *4 *5))
- (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3)))
+ (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1142)) (-5 *5 (-1055 (-815 (-219))))
+ (-5 *2 (-618 (-219))) (-5 *1 (-294)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2 (-112)) (-5 *1 (-294)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-291)) (-4 *2 (-1178))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1142)) (-5 *1 (-1173 *3)) (-4 *3 (-38 (-400 (-549))))
- (-4 *3 (-1018))))
- ((*1 *1 *1 *2)
- (-1536
- (-12 (-5 *2 (-1142)) (-4 *1 (-1185 *3)) (-4 *3 (-1018))
- (-12 (-4 *3 (-29 (-549))) (-4 *3 (-930)) (-4 *3 (-1164))
- (-4 *3 (-38 (-400 (-549))))))
- (-12 (-5 *2 (-1142)) (-4 *1 (-1185 *3)) (-4 *3 (-1018))
- (-12 (|has| *3 (-15 -2271 ((-621 *2) *3)))
- (|has| *3 (-15 -1531 (*3 *3 *2))) (-4 *3 (-38 (-400 (-549))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1185 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1189 *3 *4 *5))
- (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549))))))
- ((*1 *1 *1 *2)
- (-1536
- (-12 (-5 *2 (-1142)) (-4 *1 (-1206 *3)) (-4 *3 (-1018))
- (-12 (-4 *3 (-29 (-549))) (-4 *3 (-930)) (-4 *3 (-1164))
- (-4 *3 (-38 (-400 (-549))))))
- (-12 (-5 *2 (-1142)) (-4 *1 (-1206 *3)) (-4 *3 (-1018))
- (-12 (|has| *3 (-15 -2271 ((-621 *2) *3)))
- (|has| *3 (-15 -1531 (*3 *3 *2))) (-4 *3 (-38 (-400 (-549))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1210 *3 *4 *5))
- (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-1536
- (-12 (-5 *2 (-1142)) (-4 *1 (-1216 *3)) (-4 *3 (-1018))
- (-12 (-4 *3 (-29 (-549))) (-4 *3 (-930)) (-4 *3 (-1164))
- (-4 *3 (-38 (-400 (-549))))))
- (-12 (-5 *2 (-1142)) (-4 *1 (-1216 *3)) (-4 *3 (-1018))
- (-12 (|has| *3 (-15 -2271 ((-621 *2) *3)))
- (|has| *3 (-15 -1531 (*3 *3 *2))) (-4 *3 (-38 (-400 (-549))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1221 *4)) (-14 *4 (-1142)) (-5 *1 (-1217 *3 *4 *5))
- (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
- (-4 *2 (-823))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-52)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-819)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 *7)) (-4 *7 (-823)) (-4 *5 (-880)) (-4 *6 (-769))
- (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-411 (-1138 *8)))
- (-5 *1 (-877 *5 *6 *7 *8)) (-5 *4 (-1138 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-880)) (-4 *5 (-1201 *4)) (-5 *2 (-411 (-1138 *5)))
- (-5 *1 (-878 *4 *5)) (-5 *3 (-1138 *5)))))
+ (-12 (-5 *2 (-618 (-591 *1))) (-5 *3 (-618 *1)) (-4 *1 (-291))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-286 *1))) (-4 *1 (-291))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-286 *1)) (-4 *1 (-291)))))
+(((*1 *1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1) (-4 *1 (-291))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-591 *1)) (-4 *1 (-291)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-591 *1))) (-4 *1 (-291)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-591 *1))) (-4 *1 (-291)))))
+(((*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-618 (-113))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1142)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-591 *5)) (-4 *5 (-414 *4)) (-4 *4 (-1009 (-535)))
+ (-4 *4 (-13 (-823) (-542))) (-5 *2 (-1136 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-591 *1)) (-4 *1 (-1018)) (-4 *1 (-291)) (-5 *2 (-1136 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-289))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-304)) (-5 *1 (-289))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-289))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 (-1124))) (-5 *3 (-1124)) (-5 *2 (-304)) (-5 *1 (-289)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3))))
- ((*1 *1 *1) (-4 *1 (-1167))))
-(((*1 *1 *1) (-5 *1 (-834)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1069 *2 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066))))
- ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1123))))
- ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1142)))))
+ (-12 (-4 *3 (-1018)) (-4 *4 (-1200 *3)) (-5 *1 (-162 *3 *4 *2))
+ (-4 *2 (-1200 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178)))))
+(((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1178)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-703)) (-4 *2 (-1178)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-703)) (-4 *2 (-1178)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-618 (-286 *3))) (-5 *1 (-286 *3)) (-4 *3 (-542))
+ (-4 *3 (-1178)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1124)) (-5 *2 (-372)) (-5 *1 (-762)))))
-(((*1 *1 *1) (-5 *1 (-1141)))
- ((*1 *1 *2)
- (-12
+ (-12 (-4 *4 (-444))
(-5 *2
- (-3 (|:| I (-309 (-549))) (|:| -1421 (-309 (-372)))
- (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1141))))
- (-5 *1 (-1141)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1142))
- (-4 *5 (-13 (-541) (-1009 (-549)) (-145)))
- (-5 *2
- (-2 (|:| -2460 (-400 (-923 *5))) (|:| |coeff| (-400 (-923 *5)))))
- (-5 *1 (-555 *5)) (-5 *3 (-400 (-923 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-516)))))
-(((*1 *1 *1) (-4 *1 (-607)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973) (-1164))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-601 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3847 *4) (|:| |sol?| (-112)))
- (-549) *4))
- (-4 *4 (-356)) (-4 *5 (-1201 *4)) (-5 *1 (-559 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-814)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-813))))
- ((*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-621 (-372))) (-5 *5 (-621 (-816 (-372))))
- (-5 *6 (-621 (-309 (-372)))) (-5 *3 (-309 (-372))) (-5 *2 (-1006))
- (-5 *1 (-813))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-372)))
- (-5 *5 (-621 (-816 (-372)))) (-5 *2 (-1006)) (-5 *1 (-813))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-372))) (-5 *2 (-1006))
- (-5 *1 (-813))))
+ (-618
+ (-2 (|:| |eigval| (-3 (-400 (-917 *4)) (-1131 (-1142) (-917 *4))))
+ (|:| |eigmult| (-747)) (|:| |eigvec| (-618 (-665 (-400 (-917 *4))))))))
+ (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-917 *4)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-444))
+ (-5 *2
+ (-618
+ (-2 (|:| |eigval| (-3 (-400 (-917 *4)) (-1131 (-1142) (-917 *4))))
+ (|:| |geneigvec| (-618 (-665 (-400 (-917 *4))))))))
+ (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-917 *4)))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-400 (-917 *6)) (-1131 (-1142) (-917 *6)))) (-5 *5 (-747))
+ (-4 *6 (-444)) (-5 *2 (-618 (-665 (-400 (-917 *6))))) (-5 *1 (-285 *6))
+ (-5 *4 (-665 (-400 (-917 *6))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-309 (-372)))) (-5 *4 (-621 (-372)))
- (-5 *2 (-1006)) (-5 *1 (-813)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-400 (-917 *5)) (-1131 (-1142) (-917 *5))))
+ (|:| |eigmult| (-747)) (|:| |eigvec| (-618 *4))))
+ (-4 *5 (-444)) (-5 *2 (-618 (-665 (-400 (-917 *5))))) (-5 *1 (-285 *5))
+ (-5 *4 (-665 (-400 (-917 *5)))))))
(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1201 *4)) (-5 *1 (-783 *4 *2 *3 *5))
- (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2))
- (-4 *5 (-632 (-400 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1201 *4)) (-5 *1 (-783 *4 *2 *5 *3))
- (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-632 *2))
- (-4 *3 (-632 (-400 *2))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-621 (-400 *7)))
- (-4 *7 (-1201 *6)) (-5 *3 (-400 *7)) (-4 *6 (-356))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-559 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-356)) (-4 *4 (-1201 *3)) (-4 *5 (-1201 (-400 *4)))
- (-5 *2 (-1225 *6)) (-5 *1 (-329 *3 *4 *5 *6))
- (-4 *6 (-335 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-1018)) (-5 *1 (-1126 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1217 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1142))
- (-14 *4 *2))))
+ (-12 (-5 *3 (-3 (-400 (-917 *5)) (-1131 (-1142) (-917 *5)))) (-4 *5 (-444))
+ (-5 *2 (-618 (-665 (-400 (-917 *5))))) (-5 *1 (-285 *5))
+ (-5 *4 (-665 (-400 (-917 *5)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-400 (-917 *4)))) (-4 *4 (-444))
+ (-5 *2 (-618 (-3 (-400 (-917 *4)) (-1131 (-1142) (-917 *4)))))
+ (-5 *1 (-285 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1051))) (-5 *1 (-284)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-1069)) (-5 *1 (-284)))))
+(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1142)) (-5 *3 (-1069)) (-5 *1 (-284)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1142)) (-5 *2 (-618 (-936))) (-5 *1 (-284)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-936))) (-5 *1 (-284)))))
+(((*1 *1) (-5 *1 (-284))))
+(((*1 *1) (-5 *1 (-284))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-535)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1178)) (-4 *4 (-365 *2))
+ (-4 *5 (-365 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1067))
+ (-4 *2 (-1178)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-356)) (-5 *2 (-618 (-1119 *4))) (-5 *1 (-278 *4 *5))
+ (-5 *3 (-1119 *4)) (-4 *5 (-1217 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1191 (-535))) (-4 *1 (-275 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-535)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-229 *3))
+ (-4 *3 (-1067))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1178)))))
+(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1069)) (-5 *1 (-273)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-273)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-400 (-535)))
+ (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-621 (-1138 *5))) (-5 *3 (-1138 *5))
- (-4 *5 (-164 *4)) (-4 *4 (-534)) (-5 *1 (-147 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-621 *3)) (-4 *3 (-1201 *5))
- (-4 *5 (-1201 *4)) (-4 *4 (-342)) (-5 *1 (-351 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-621 (-1138 (-549)))) (-5 *3 (-1138 (-549)))
- (-5 *1 (-557))))
+ (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4)))
+ (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-270 *4 *2)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-618 (-591 *2))) (-5 *4 (-1142))
+ (-4 *2 (-13 (-27) (-1164) (-414 *5)))
+ (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-270 *5 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *3)))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-621 (-1138 *1))) (-5 *3 (-1138 *1))
- (-4 *1 (-880)))))
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-414 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1142)) (-4 *5 (-13 (-542) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-618 (-591 *3))) (|:| |vals| (-618 *3))))
+ (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-414 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-823) (-542))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3))
+ (-4 *3 (-13 (-414 *4) (-973))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-618 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-414 *4) (-973))) (-4 *4 (-13 (-823) (-542)))
+ (-5 *1 (-269 *4 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3))))
- ((*1 *1 *1) (-4 *1 (-1167))))
-(((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *5 (-361))
- (-5 *2 (-747)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-1230))
- (-5 *1 (-426 *3 *4)) (-4 *4 (-423 *3)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1230)) (-5 *1 (-1226))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-892)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-323)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-549)) (-4 *6 (-356)) (-4 *6 (-361))
- (-4 *6 (-1018)) (-5 *2 (-621 (-621 (-665 *6)))) (-5 *1 (-1000 *6))
- (-5 *3 (-621 (-665 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1018))
- (-5 *2 (-621 (-621 (-665 *4)))) (-5 *1 (-1000 *4))
- (-5 *3 (-621 (-665 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018))
- (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5))
- (-5 *3 (-621 (-665 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-892)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018))
- (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5))
- (-5 *3 (-621 (-665 *5))))))
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-119 *2)) (-4 *2 (-1179)))))
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3))))
- ((*1 *1 *1) (-4 *1 (-1167))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018))
- (-5 *1 (-691 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1980 *4))))
- (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1066) (-34)))
- (-4 *4 (-13 (-1066) (-34))))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-541)) (-4 *2 (-170)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-621 *1)) (-4 *1 (-300)))))
-(((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-414 *3) (-973))))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-414 *3) (-973))) (-5 *1 (-269 *3 *2))
+ (-4 *3 (-13 (-823) (-542))))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-414 *3) (-973))) (-5 *1 (-269 *3 *2))
+ (-4 *3 (-13 (-823) (-542))))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-535))) (-5 *1 (-268)))))
(((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-268)))))
-(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-304))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219)))
+ (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219))))
+ (|:| |ub| (-618 (-815 (-219))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-618 (-307 (-219)))) (|:| -3787 (-618 (-219)))))))
+ (-5 *2 (-618 (-1124))) (-5 *1 (-260)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1142)) (-5 *1 (-260)))))
+(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))))
+(((*1 *2 *2) (-12 (-5 *2 (-618 (-307 (-219)))) (-5 *1 (-260)))))
+(((*1 *2 *2) (-12 (-5 *2 (-618 (-307 (-219)))) (-5 *1 (-260)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-307 (-219)))) (-5 *4 (-747)) (-5 *2 (-665 (-219)))
+ (-5 *1 (-260)))))
+(((*1 *2 *3) (-12 (-5 *3 (-618 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))))
+(((*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-260)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-260)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-307 (-219))) (|:| -3787 (-618 (-219)))
+ (|:| |lb| (-618 (-815 (-219)))) (|:| |cf| (-618 (-307 (-219))))
+ (|:| |ub| (-618 (-815 (-219))))))
+ (-5 *1 (-260)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-815 (-219)))) (-5 *4 (-219)) (-5 *2 (-618 *4))
+ (-5 *1 (-260)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-227)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4))
+ (-4 *6 (-769)) (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769))
+ (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-259 *2)) (-4 *2 (-823)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-113))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-113))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823))
+ (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747))))
((*1 *2 *1)
- (-12 (-5 *2 (-747)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892))
- (-4 *4 (-1018)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-1230)) (-5 *1 (-807)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-5 *1 (-323)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1226)) (-5 *1 (-248))))
+ (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
+ (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-618 (-254))) (-5 *4 (-1142)) (-5 *2 (-51))
+ (-5 *1 (-254))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *2 (-1226)) (-5 *1 (-248))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1060 (-372)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1226)) (-5 *1 (-248))))
+ (|partial| -12 (-5 *3 (-618 (-254))) (-5 *4 (-1142)) (-5 *1 (-256 *2))
+ (-4 *2 (-1178)))))
+(((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))))
+(((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))))
+(((*1 *1) (-5 *1 (-142)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1099 (-219))) (-5 *1 (-254))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-255)))))
+(((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))))
+(((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))))
+(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-254))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-618 (-254))) (-5 *1 (-255)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-896))
+ (-5 *2
+ (-2 (|:| |brans| (-618 (-618 (-914 (-219)))))
+ (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))))
+ (-5 *1 (-151))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-896)) (-5 *4 (-400 (-535)))
+ (-5 *2
+ (-2 (|:| |brans| (-618 (-618 (-914 (-219)))))
+ (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))))
+ (-5 *1 (-151))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-618 (-618 (-914 (-219)))))
+ (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))))
+ (-5 *1 (-151)) (-5 *3 (-618 (-914 (-219))))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-618 (-618 (-914 (-219)))))
+ (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))))
+ (-5 *1 (-151)) (-5 *3 (-618 (-618 (-914 (-219)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))))
+(((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))))
+(((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-254)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-400 (-535))))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 (-1055 (-371)))) (-5 *1 (-254)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-618 (-254))) (-5 *4 (-1142)) (-5 *2 (-112)) (-5 *1 (-254)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1227))
+ (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1060 (-372)))
- (-5 *2 (-1226)) (-5 *1 (-248))))
+ (-12 (-5 *4 (-1058 (-371))) (-5 *2 (-1227)) (-5 *1 (-248 *3))
+ (-4 *3 (-13 (-594 (-524)) (-1067)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1060 (-372)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248))))
+ (-12 (-5 *3 (-848 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254)))
+ (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1227)) (-5 *1 (-248 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1060 (-372)))
- (-5 *2 (-1227)) (-5 *1 (-248))))
+ (-12 (-5 *3 (-848 *5)) (-5 *4 (-1058 (-371)))
+ (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1227)) (-5 *1 (-248 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248))))
+ (-12 (-5 *3 (-850 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254)))
+ (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *2 (-1227)) (-5 *1 (-248))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *2 (-1227)) (-5 *1 (-248))))
+ (-12 (-5 *3 (-850 *5)) (-5 *4 (-1058 (-371)))
+ (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248))))
+ (-12 (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1228))
+ (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1060 (-372)))
- (-5 *2 (-1227)) (-5 *1 (-248))))
+ (-12 (-5 *4 (-1058 (-371))) (-5 *2 (-1228)) (-5 *1 (-248 *3))
+ (-4 *3 (-13 (-594 (-524)) (-1067)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-372)))
- (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248))))
+ (-12 (-5 *3 (-853 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254)))
+ (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-372)))
- (-5 *2 (-1227)) (-5 *1 (-248))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-287 *7)) (-5 *4 (-1142)) (-5 *5 (-621 (-256)))
- (-4 *7 (-423 *6)) (-4 *6 (-13 (-541) (-823) (-1009 (-549))))
- (-5 *2 (-1226)) (-5 *1 (-249 *6 *7))))
+ (-12 (-5 *3 (-853 *5)) (-5 *4 (-1058 (-371)))
+ (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-248 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *5 (-618 (-254)))
+ (-5 *2 (-1227)) (-5 *1 (-249))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1227))
+ (-5 *1 (-249))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1226))
- (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1066)))))
+ (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371)))
+ (-5 *5 (-618 (-254))) (-5 *2 (-1227)) (-5 *1 (-249))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1058 (-372))) (-5 *2 (-1226)) (-5 *1 (-252 *3))
- (-4 *3 (-13 (-594 (-525)) (-1066)))))
+ (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1227))
+ (-5 *1 (-249))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-848 *6)) (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256)))
- (-4 *6 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1226))
- (-5 *1 (-252 *6))))
+ (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371)))
+ (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-848 *5)) (-5 *4 (-1058 (-372)))
- (-4 *5 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1226))
- (-5 *1 (-252 *5))))
+ (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228))
+ (-5 *1 (-249))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-850 *6)) (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256)))
- (-4 *6 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1227))
- (-5 *1 (-252 *6))))
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371)))
+ (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-850 *5)) (-5 *4 (-1058 (-372)))
- (-4 *5 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1227))
- (-5 *1 (-252 *5))))
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228))
+ (-5 *1 (-249))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1227))
- (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1066)))))
+ (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371)))
+ (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1058 (-372))) (-5 *2 (-1227)) (-5 *1 (-252 *3))
- (-4 *3 (-13 (-594 (-525)) (-1066)))))
+ (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371))) (-5 *2 (-1228))
+ (-5 *1 (-249))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-853 *6)) (-5 *4 (-1058 (-372))) (-5 *5 (-621 (-256)))
- (-4 *6 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1227))
- (-5 *1 (-252 *6))))
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371)))
+ (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-853 *5)) (-5 *4 (-1058 (-372)))
- (-4 *5 (-13 (-594 (-525)) (-1066))) (-5 *2 (-1227))
- (-5 *1 (-252 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-621 (-219))) (-5 *2 (-1226)) (-5 *1 (-253))))
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371)))
+ (-5 *2 (-1228)) (-5 *1 (-249))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371)))
+ (-5 *5 (-618 (-254))) (-5 *2 (-1228)) (-5 *1 (-249))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371)))
+ (-5 *2 (-1228)) (-5 *1 (-249))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-286 *7)) (-5 *4 (-1142)) (-5 *5 (-618 (-254)))
+ (-4 *7 (-414 *6)) (-4 *6 (-13 (-542) (-823) (-1009 (-535)))) (-5 *2 (-1227))
+ (-5 *1 (-250 *6 *7))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-1227)) (-5 *1 (-253))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-621 (-219))) (-5 *4 (-621 (-256))) (-5 *2 (-1226))
+ (-12 (-5 *3 (-618 (-219))) (-5 *4 (-618 (-254))) (-5 *2 (-1227))
(-5 *1 (-253))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-914 (-219)))) (-5 *2 (-1226)) (-5 *1 (-253))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-914 (-219)))) (-5 *2 (-1227)) (-5 *1 (-253))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-914 (-219)))) (-5 *4 (-621 (-256)))
- (-5 *2 (-1226)) (-5 *1 (-253))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-621 (-219))) (-5 *2 (-1227)) (-5 *1 (-253))))
+ (-12 (-5 *3 (-618 (-914 (-219)))) (-5 *4 (-618 (-254))) (-5 *2 (-1227))
+ (-5 *1 (-253))))
+ ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-618 (-219))) (-5 *2 (-1228)) (-5 *1 (-253))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-621 (-219))) (-5 *4 (-621 (-256))) (-5 *2 (-1227))
+ (-12 (-5 *3 (-618 (-219))) (-5 *4 (-618 (-254))) (-5 *2 (-1228))
(-5 *1 (-253)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4336)) (-4 *1 (-149 *3))
- (-4 *3 (-1179))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1179)) (-5 *1 (-581 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1179))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1172 *4 *5 *3 *2)) (-4 *4 (-541))
- (-4 *5 (-769)) (-4 *3 (-823)) (-4 *2 (-1032 *4 *5 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-5 *1 (-1176 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1226))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1226))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1227))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1227)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1216 *3))
- (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1187 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1185 *3))
- (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1208 *3 *4)) (-4 *5 (-954 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1127 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1122 *3)) (-4 *3 (-38 (-400 (-549))))
- (-5 *1 (-1128 *3))))
- ((*1 *1 *1) (-4 *1 (-1167))))
-(((*1 *2 *1) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-1159)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2252 *3) (|:| |coef1| (-758 *3)) (|:| |coef2| (-758 *3))))
- (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))))
+(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-251)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-251)))))
+(((*1 *2 *2) (-12 (-5 *2 (-535)) (-5 *1 (-251)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1055 (-219)))
+ (-5 *2 (-1228)) (-5 *1 (-251)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1055 (-219)))
+ (-5 *5 (-112)) (-5 *2 (-1228)) (-5 *1 (-251)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1225 *4)) (-5 *3 (-549)) (-4 *4 (-342))
- (-5 *1 (-519 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
+ (-12 (-5 *2 (-1 (-914 (-219)) (-219) (-219)))
+ (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-249)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-850 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254)))
+ (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219)))
+ (-5 *1 (-248 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-850 *5)) (-5 *4 (-1058 (-371)))
+ (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219)))
+ (-5 *1 (-248 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219)))
+ (-5 *1 (-248 *3)) (-4 *3 (-13 (-594 (-524)) (-1067)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1058 (-371))) (-5 *2 (-1099 (-219))) (-5 *1 (-248 *3))
+ (-4 *3 (-13 (-594 (-524)) (-1067)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-853 *6)) (-5 *4 (-1058 (-371))) (-5 *5 (-618 (-254)))
+ (-4 *6 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219)))
+ (-5 *1 (-248 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-853 *5)) (-5 *4 (-1058 (-371)))
+ (-4 *5 (-13 (-594 (-524)) (-1067))) (-5 *2 (-1099 (-219)))
+ (-5 *1 (-248 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371)))
+ (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1055 (-371)))
+ (-5 *2 (-1099 (-219))) (-5 *1 (-249))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371)))
+ (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1055 (-371)))
+ (-5 *2 (-1099 (-219))) (-5 *1 (-249))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371)))
+ (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1055 (-371)))
+ (-5 *2 (-1099 (-219))) (-5 *1 (-249))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371)))
+ (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1055 (-371)))
+ (-5 *2 (-1099 (-219))) (-5 *1 (-249))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371)))
+ (-5 *5 (-618 (-254))) (-5 *2 (-1099 (-219))) (-5 *1 (-249))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1055 (-371)))
+ (-5 *2 (-1099 (-219))) (-5 *1 (-249)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-216 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-4 *1 (-247 *3))))
+ ((*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1178)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-130))
- (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2718 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-621 (-2 (|:| -1569 *3) (|:| -3525 *4))))
- (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703))))
+ (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
+ (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-618 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823))
+ (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-618 (-747)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
- (-5 *2 (-1122 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
-(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1029))))
- ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-1029)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-621 *1)) (-4 *1 (-295))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-592 *3)) (-4 *3 (-823))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-114)) (-5 *3 (-621 *5)) (-5 *4 (-747)) (-4 *5 (-823))
- (-5 *1 (-592 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227))))
- ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))))
+ (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
+ (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-618 (-747))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
+ (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769))
+ (-4 *2 (-259 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823))
+ (-4 *4 (-259 *3)) (-4 *5 (-769)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823))
+ (-4 *4 (-259 *3)) (-4 *5 (-769)))))
+(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242)))))
+(((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-242)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-747))
+ (-4 *3 (-13 (-703) (-361) (-10 -7 (-15 ** (*3 *3 (-535))))))
+ (-5 *1 (-240 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-238 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-535)) (-5 *1 (-235))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-535)) (-5 *1 (-235)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-1230)) (-5 *1 (-235))))
+ ((*1 *2 *3) (-12 (-5 *3 (-618 (-1124))) (-5 *2 (-1230)) (-5 *1 (-235)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1124)) (-5 *3 (-535)) (-5 *1 (-235)))))
+(((*1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-235)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1224 *4)) (-4 *4 (-1178)) (-4 *1 (-232 *3 *4)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-621 (-1142))) (-14 *5 (-747))
+ (-12 (-5 *3 (-286 (-917 (-535))))
(-5 *2
- (-621
- (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4)
- (-241 *4 (-400 (-549))))))
- (-5 *1 (-496 *4 *5))
- (-5 *3
- (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4)
- (-241 *4 (-400 (-549))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-410 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1179)) (-5 *1 (-581 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1179)) (-5 *1 (-1122 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1018)))))
-(((*1 *1 *1) (-4 *1 (-607)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973) (-1164))))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-729)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1201 *3))
- (-4 *3 (-13 (-356) (-145) (-1009 (-549)))) (-5 *1 (-553 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-400 (-923 *5)) (-1131 (-1142) (-923 *5))))
- (-4 *5 (-444)) (-5 *2 (-621 (-665 (-400 (-923 *5)))))
- (-5 *1 (-285 *5)) (-5 *4 (-665 (-400 (-923 *5)))))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-845))
- (-5 *5 (-892)) (-5 *6 (-621 (-256))) (-5 *2 (-460)) (-5 *1 (-1229))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *2 (-460))
- (-5 *1 (-1229))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-621 (-256)))
- (-5 *2 (-460)) (-5 *1 (-1229)))))
+ (-2 (|:| |varOrder| (-618 (-1142)))
+ (|:| |inhom| (-3 (-618 (-1224 (-747))) "failed"))
+ (|:| |hom| (-618 (-1224 (-747))))))
+ (-5 *1 (-230)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-4 *1 (-229 *3))))
+ ((*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1067)))))
+(((*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))))
+(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))))
+(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))))
+(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1164))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))))
+(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-219)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-917 *6)) (-5 *4 (-1142))
+ (-5 *5 (-815 *7)) (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-4 *7 (-13 (-1164) (-29 *6))) (-5 *1 (-218 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1136 *6)) (-5 *4 (-815 *6))
+ (-4 *6 (-13 (-1164) (-29 *5)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-218 *5 *6)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-815 *4)) (-5 *3 (-591 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1164) (-29 *6)))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *1 (-218 *6 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-549))
- (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1092 *4 *3 *5))) (-4 *4 (-38 (-400 (-549))))
- (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *1 (-1092 *4 *3 *5))
- (-4 *5 (-920 *4 (-521 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1173 *4))) (-5 *3 (-1142)) (-5 *1 (-1173 *4))
- (-4 *4 (-38 (-400 (-549)))) (-4 *4 (-1018)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769))
- (-5 *2 (-112)) (-5 *1 (-958 *3 *4 *5 *6))
- (-4 *6 (-920 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-13 (-1066) (-34)))
- (-4 *4 (-13 (-1066) (-34))))))
+ (-12 (-5 *3 (-1124)) (-4 *4 (-13 (-444) (-823) (-1009 (-535)) (-617 (-535))))
+ (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1164) (-29 *4))))))
+(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-618 (-1142)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823)))
+ (-14 *3 (-618 (-1142))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) (-5 *2 (-621 *1))
- (-4 *1 (-423 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3))
- (-4 *3 (-1066))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
+ (-14 *4 (-618 (-1142)))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *2 (-621 *1)) (-4 *1 (-920 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
- (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-621 *3))
- (-5 *1 (-921 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-356)
- (-10 -8 (-15 -3845 ($ *7)) (-15 -1393 (*7 $))
- (-15 -1404 (*7 $))))))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-284)))
- ((*1 *1) (-5 *1 (-834)))
- ((*1 *1)
- (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769))
- (-5 *1 (-958 *2 *3 *4 *5)) (-4 *5 (-920 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1051)))
- ((*1 *1)
- (-12 (-5 *1 (-1106 *2 *3)) (-4 *2 (-13 (-1066) (-34)))
- (-4 *3 (-13 (-1066) (-34)))))
- ((*1 *1) (-5 *1 (-1145))) ((*1 *1) (-5 *1 (-1146))))
-(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-549))))
- ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-675)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1179)) (-5 *1 (-581 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1179)) (-5 *1 (-1122 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-923 *6))) (-5 *4 (-621 (-1142)))
- (-4 *6 (-13 (-541) (-1009 *5))) (-4 *5 (-541))
- (-5 *2 (-621 (-621 (-287 (-400 (-923 *6)))))) (-5 *1 (-1010 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-14 *3 (-892))
- (-4 *4 (-1018)))))
-(((*1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-600 *4 *2)) (-4 *2 (-13 (-1164) (-930) (-29 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-516)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
+ (-14 *4 (-618 (-1142))))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))))
+ (-12 (-5 *2 (-307 *3)) (-4 *3 (-13 (-1018) (-823))) (-5 *1 (-217 *3 *4))
+ (-14 *4 (-618 (-1142))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823)))
+ (-14 *3 (-618 (-1142))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1142)) (-5 *6 (-112))
+ (-4 *7 (-13 (-300) (-823) (-145) (-1009 (-535)) (-617 (-535))))
+ (-4 *3 (-13 (-1164) (-931) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-815 *3)) (|:| |f2| (-618 (-815 *3))) (|:| |fail| "failed")
+ (|:| |pole| "potentialPole")))
+ (-5 *1 (-213 *7 *3)) (-5 *5 (-815 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-400 (-535))) (-5 *1 (-211)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1200 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-747)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1200 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-343)) (-5 *2 (-618 (-2 (|:| |deg| (-747)) (|:| -2894 *3))))
+ (-5 *1 (-210 *4 *3)) (-4 *3 (-1200 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *4 (-356)) (-5 *2 (-621 (-1122 *4))) (-5 *1 (-278 *4 *5))
- (-5 *3 (-1122 *4)) (-4 *5 (-1216 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *3 *2))
- (-4 *2 (-13 (-27) (-1164) (-423 (-167 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-541) (-823) (-1009 (-549))))
- (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 (-167 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-1168 *3 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1142))
- (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4))))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-621 (-998 *5 *6 *7 *3))) (-5 *1 (-998 *5 *6 *7 *3))
- (-4 *3 (-1032 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-621 *6)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-5 *2 (-621 (-1112 *5 *6 *7 *3))) (-5 *1 (-1112 *5 *6 *7 *3))
- (-4 *3 (-1032 *5 *6 *7)))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-343))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -2758 (-618 (-2 (|:| |irr| *3) (|:| -2478 (-535)))))))
+ (-5 *1 (-210 *5 *3)) (-4 *3 (-1200 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-892)) (-4 *6 (-13 (-541) (-823)))
- (-5 *2 (-621 (-309 *6))) (-5 *1 (-215 *5 *6)) (-5 *3 (-309 *6))
- (-4 *5 (-1018))))
- ((*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-541))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-567 *5)) (-4 *5 (-13 (-29 *4) (-1164)))
- (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
- (-5 *2 (-621 *5)) (-5 *1 (-565 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-567 (-400 (-923 *4))))
- (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
- (-5 *2 (-621 (-309 *4))) (-5 *1 (-570 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1115 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 *1)) (-4 *1 (-1061 *4 *2)) (-4 *4 (-821))
- (-4 *2 (-1115 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1240 (-1142) *3)) (-5 *1 (-1247 *3)) (-4 *3 (-1018))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1240 *3 *4)) (-5 *1 (-1249 *3 *4)) (-4 *3 (-823))
- (-4 *4 (-1018)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769))
- (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1200 (-400 *2)))
+ (-4 *2 (-1200 *5)) (-5 *1 (-209 *5 *2 *6 *3)) (-4 *3 (-335 *5 *2 *6)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-2 (|:| -3161 (-621 (-834))) (|:| -3100 (-621 (-834)))
- (|:| |presup| (-621 (-834))) (|:| -4229 (-621 (-834)))
- (|:| |args| (-621 (-834)))))
- (-5 *1 (-1142))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-621 (-834)))) (-5 *1 (-1142)))))
+ (-5 *3
+ (-2 (|:| |pde| (-618 (-307 (-219))))
+ (|:| |constraints|
+ (-618
+ (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747))
+ (|:| |boundaryType| (-535)) (|:| |dStart| (-665 (-219)))
+ (|:| |dFinish| (-665 (-219))))))
+ (|:| |f| (-618 (-618 (-307 (-219))))) (|:| |st| (-1124))
+ (|:| |tol| (-219))))
+ (-5 *2 (-112)) (-5 *1 (-204)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-618 (-307 (-219)))) (-5 *3 (-219)) (-5 *2 (-112))
+ (-5 *1 (-204)))))
+(((*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-204)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1201 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-823))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-567 *4)) (-4 *4 (-13 (-29 *3) (-1164)))
- (-4 *3 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
- (-5 *1 (-565 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-567 (-400 (-923 *3))))
- (-4 *3 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
- (-5 *1 (-570 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1201 *5)) (-4 *5 (-356))
- (-5 *2 (-2 (|:| -4040 *3) (|:| |special| *3))) (-5 *1 (-704 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1225 *5)) (-4 *5 (-356)) (-4 *5 (-1018))
- (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5))
- (-5 *3 (-621 (-665 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1225 (-1225 *5))) (-4 *5 (-356)) (-4 *5 (-1018))
- (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5))
- (-5 *3 (-621 (-665 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-621 *1)) (-4 *1 (-1110))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-621 *1)) (-4 *1 (-1110)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1980 *8)))
- (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-959 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1980 *8)))
- (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444))
- (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
- (-5 *1 (-1073 *4 *5 *6 *7 *8)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1138 *1)) (-4 *1 (-444))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1138 *6)) (-4 *6 (-920 *5 *3 *4)) (-4 *3 (-769))
- (-4 *4 (-823)) (-4 *5 (-880)) (-5 *1 (-449 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1138 *1)) (-4 *1 (-880)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-371)) (-5 *1 (-199)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1225 *5)) (-4 *5 (-617 *4)) (-4 *4 (-541))
- (-5 *2 (-1225 *4)) (-5 *1 (-616 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1142))
- (-5 *2 (-549)) (-5 *1 (-1080 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-621 (-592 *4))) (-4 *4 (-423 *3)) (-4 *3 (-823))
- (-5 *1 (-558 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-860 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1216 *4))
- (-4 *4 (-38 (-400 (-549))))
- (-5 *2 (-1 (-1122 *4) (-1122 *4) (-1122 *4))) (-5 *1 (-1218 *4 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-747)) (-4 *4 (-541)) (-5 *1 (-940 *4 *2))
- (-4 *2 (-1201 *4)))))
-(((*1 *2) (-12 (-5 *2 (-809 (-549))) (-5 *1 (-523))))
- ((*1 *1) (-12 (-5 *1 (-809 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-621 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018))
- (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
- (-4 *3 (-541)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-798)))))
-(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-371)) (-5 *1 (-199)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))))
-(((*1 *1 *1) (-4 *1 (-607)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973) (-1164))))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-592 *3)) (-5 *5 (-1 (-1138 *3) (-1138 *3)))
- (-4 *3 (-13 (-27) (-423 *6))) (-4 *6 (-13 (-823) (-541)))
- (-5 *2 (-567 *3)) (-5 *1 (-536 *6 *3)))))
-(((*1 *1) (-5 *1 (-1048))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-747)) (-4 *5 (-170))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-747)) (-4 *5 (-170))))
- ((*1 *2 *2 *3)
(-12
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-371)) (-5 *1 (-199)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-371)) (-5 *1 (-199)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1224 (-307 (-219)))) (|:| |yinit| (-618 (-219)))
+ (|:| |intvals| (-618 (-219))) (|:| |g| (-307 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))))
+ (-5 *1 (-199)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-307 (-219))))
+ (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))))
+ (-5 *1 (-199)))))
+(((*1 *2 *3) (-12 (-5 *3 (-665 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-199))))
+ ((*1 *2 *2 *3) (-12 (-5 *3 (-618 (-371))) (-5 *2 (-371)) (-5 *1 (-199)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2 (-535)) (-5 *1 (-198)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2 (-618 (-219))) (-5 *1 (-198)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2 (-2 (|:| -2827 (-113)) (|:| |w| (-219)))) (-5 *1 (-198)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1142)) (-5 *1 (-186)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2 (-371)) (-5 *1 (-186)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
(-5 *2
- (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4)
- (-241 *4 (-400 (-549)))))
- (-5 *3 (-621 (-836 *4))) (-14 *4 (-621 (-1142))) (-14 *5 (-747))
- (-5 *1 (-496 *4 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769))
- (-5 *2
- (-2 (|:| |mval| (-665 *4)) (|:| |invmval| (-665 *4))
- (|:| |genIdeal| (-495 *4 *5 *6 *7))))
- (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular| "There is a singularity at the lower end point")
+ (|:| |upperSingular| "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-186)))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-621 (-549)))
- (|:| |cols| (-621 (-549)))))
- (-5 *4 (-665 *12)) (-5 *5 (-621 (-400 (-923 *9))))
- (-5 *6 (-621 (-621 *12))) (-5 *7 (-747)) (-5 *8 (-549))
- (-4 *9 (-13 (-300) (-145))) (-4 *12 (-920 *9 *11 *10))
- (-4 *10 (-13 (-823) (-594 (-1142)))) (-4 *11 (-769))
+ (-2 (|:| |var| (-1142)) (|:| |fn| (-307 (-219)))
+ (|:| -1556 (-1055 (-815 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
(-5 *2
- (-2 (|:| |eqzro| (-621 *12)) (|:| |neqzro| (-621 *12))
- (|:| |wcond| (-621 (-923 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1225 (-400 (-923 *9))))
- (|:| -3420 (-621 (-1225 (-400 (-923 *9)))))))))
- (-5 *1 (-895 *9 *10 *11 *12)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1138 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-423 *3) (-973))) (-5 *1 (-269 *3 *2))
- (-4 *3 (-13 (-823) (-541)))))
- ((*1 *1)
- (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1142)))
- (-14 *3 (-621 (-1142))) (-4 *4 (-380))))
- ((*1 *1) (-5 *1 (-469))) ((*1 *1) (-4 *1 (-1164))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-423 *3) (-973))) (-5 *1 (-269 *3 *2))
- (-4 *3 (-13 (-823) (-541))))))
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-186)))))
+(((*1 *2 *3) (-12 (-5 *2 (-398 (-1136 (-535)))) (-5 *1 (-185)) (-5 *3 (-535)))))
+(((*1 *2 *3) (-12 (-5 *2 (-618 (-1136 (-535)))) (-5 *1 (-185)) (-5 *3 (-535)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1018))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1175))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1179)) (-4 *2 (-1018)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-621 (-876 *3))) (-4 *3 (-1066)) (-5 *1 (-875 *3)))))
+ (-12 (-5 *3 (-618 (-535))) (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
- (-5 *2 (-665 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-409 *3 *4))
- (-4 *3 (-410 *4))))
- ((*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))))
+ (-12 (-5 *3 (-618 (-535))) (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1144 (-400 (-535)))) (-5 *2 (-400 (-535))) (-5 *1 (-184)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1144 (-400 (-535)))) (-5 *1 (-184)) (-5 *3 (-535)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1224 (-665 *4))) (-4 *4 (-170))
+ (-5 *2 (-1224 (-665 (-917 *4)))) (-5 *1 (-183 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-181)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-1147))) (-5 *1 (-181)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1178)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *5)) (-4 *5 (-423 *4)) (-4 *4 (-1009 (-549)))
- (-4 *4 (-13 (-823) (-541))) (-5 *2 (-1138 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *1)) (-4 *1 (-1018)) (-4 *1 (-295))
- (-5 *2 (-1138 *1)))))
+ (-12 (-4 *4 (-1178)) (-5 *2 (-747)) (-5 *1 (-180 *4 *3)) (-4 *3 (-650 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-549)))
- (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3))
- (-4 *2
- (-13 (-356) (-295)
- (-10 -8 (-15 -1393 ((-1091 *3 (-592 $)) $))
- (-15 -1404 ((-1091 *3 (-592 $)) $))
- (-15 -3845 ($ (-1091 *3 (-592 $))))))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1066)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-546)) (-5 *3 (-549))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-400 (-549)))) (-5 *1 (-913)) (-5 *3 (-549)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018))
- (-4 *5 (-823)) (-5 *2 (-923 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018))
- (-4 *5 (-823)) (-5 *2 (-923 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-747)) (-4 *1 (-1216 *4)) (-4 *4 (-1018))
- (-5 *2 (-923 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-747)) (-4 *1 (-1216 *4)) (-4 *4 (-1018))
- (-5 *2 (-923 *4)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230))
- (-5 *1 (-1039 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230))
- (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-1225 (-621 (-549)))) (-5 *1 (-472))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1179)) (-5 *1 (-581 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1179)) (-5 *1 (-1122 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1179)) (-5 *1 (-1122 *3)))))
+ (|partial| -12 (-4 *3 (-1178)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-821)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2758 (-398 *3)))) (-5 *1 (-179 *4 *3))
+ (-4 *3 (-1200 (-166 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-13 (-423 *3) (-1164))))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *4 *5 *6)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-747) *2)) (-5 *4 (-747)) (-4 *2 (-1066))
- (-5 *1 (-654 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-747) *3)) (-4 *3 (-1066)) (-5 *1 (-658 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-27) (-1164) (-423 *4)))
- (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
- (-5 *1 (-270 *4 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1138 *7)) (-4 *5 (-1018))
- (-4 *7 (-1018)) (-4 *2 (-1201 *5)) (-5 *1 (-492 *5 *2 *6 *7))
- (-4 *6 (-1201 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018))
- (-4 *4 (-1201 *5)) (-5 *2 (-1138 *7)) (-5 *1 (-492 *5 *4 *6 *7))
- (-4 *6 (-1201 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1091 (-549) (-592 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-963 *2)) (-4 *4 (-1201 *3)) (-4 *2 (-300))
- (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1009 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-541)) (-4 *3 (-823)) (-5 *2 (-1091 *3 (-592 *1)))
- (-4 *1 (-423 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1091 (-549) (-592 (-486)))) (-5 *1 (-486))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4))
- (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4))
- (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-694 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219)))
- (-5 *5 (-1060 (-219))) (-5 *6 (-549)) (-5 *2 (-1174 (-897)))
- (-5 *1 (-311))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219)))
- (-5 *5 (-1060 (-219))) (-5 *6 (-549)) (-5 *7 (-1124))
- (-5 *2 (-1174 (-897))) (-5 *1 (-311))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219)))
- (-5 *5 (-1060 (-219))) (-5 *6 (-219)) (-5 *7 (-549))
- (-5 *2 (-1174 (-897))) (-5 *1 (-311))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219)))
- (-5 *5 (-1060 (-219))) (-5 *6 (-219)) (-5 *7 (-549)) (-5 *8 (-1124))
- (-5 *2 (-1174 (-897))) (-5 *1 (-311)))))
+ (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3))
+ (-4 *3 (-1200 (-166 *2))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1161 *3)) (-4 *3 (-1018)))))
+ (-12 (-5 *2 (-166 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-356) (-821)))
+ (-4 *3 (-1200 *2)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3))
+ (-4 *3 (-1200 (-166 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3))
+ (-4 *3 (-1200 (-166 *2))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
- (-5 *1 (-174 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *5)) (-5 *4 (-1225 *5)) (-4 *5 (-356))
- (-5 *2 (-112)) (-5 *1 (-643 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4337))))
- (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))) (-5 *2 (-112))
- (-5 *1 (-644 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4)))))
+ (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2))
+ (-4 *2 (-1200 (-166 *3))))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1142)) (-5 *5 (-621 (-400 (-923 *6))))
- (-5 *3 (-400 (-923 *6)))
- (-4 *6 (-13 (-541) (-1009 (-549)) (-145)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-555 *6)))))
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3))
+ (-4 *3 (-1200 (-166 *4))))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))))
+ (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2))
+ (-4 *2 (-1200 (-166 *3))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-821)))
+ (-5 *2 (-618 (-2 (|:| -2758 (-618 *3)) (|:| -1651 *5))))
+ (-5 *1 (-179 *5 *3)) (-4 *3 (-1200 (-166 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-356) (-821)))
+ (-5 *2 (-618 (-2 (|:| -2758 (-618 *3)) (|:| -1651 *4))))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-618 (-166 *4))) (-5 *1 (-153 *3 *4))
+ (-4 *3 (-1200 (-166 (-535)))) (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-618 (-166 *4)))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-618 (-166 *4)))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1200 (-166 *4))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-618 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1164) (-973))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1225 (-665 *4))) (-4 *4 (-170))
- (-5 *2 (-1225 (-665 (-923 *4)))) (-5 *1 (-183 *4)))))
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1164) (-973))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
- (-4 *5 (-1201 *4)) (-5 *2 (-621 (-629 (-400 *5))))
- (-5 *1 (-633 *4 *5)) (-5 *3 (-629 (-400 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1091 (-549) (-592 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1201 *4))
- (-5 *2 (-1225 *6)) (-5 *1 (-406 *3 *4 *5 *6))
- (-4 *6 (-13 (-402 *4 *5) (-1009 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1018)) (-4 *3 (-823)) (-5 *2 (-1091 *3 (-592 *1)))
- (-4 *1 (-423 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1091 (-549) (-592 (-486)))) (-5 *1 (-486))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-599 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-703) *3))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-170)) (-4 *2 (-694 *3)) (-5 *1 (-638 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-703) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1164) (-973))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *2 (-621 *4)) (-5 *1 (-1094 *3 *4)) (-4 *3 (-1201 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
- (-5 *2 (-621 *3)) (-5 *1 (-1094 *4 *3)) (-4 *4 (-1201 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212))))
- ((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1179))))
- ((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-652))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823)))))
-(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))))
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1164) (-973))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
- ((*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-219)) (-5 *4 (-549))
- (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))
- (-5 *2 (-1006)) (-5 *1 (-725)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3847 *7) (|:| |sol?| (-112)))
- (-549) *7))
- (-5 *6 (-621 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1201 *7))
- (-5 *3 (-400 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-559 *7 *8)))))
-(((*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1179)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549)))))
- (-4 *5 (-1201 *4)) (-5 *2 (-621 (-2 (|:| -2597 *5) (|:| -2389 *5))))
- (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-632 *5))
- (-4 *6 (-632 (-400 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549)))))
- (-4 *4 (-1201 *5)) (-5 *2 (-621 (-2 (|:| -2597 *4) (|:| -2389 *4))))
- (-5 *1 (-783 *5 *4 *3 *6)) (-4 *3 (-632 *4))
- (-4 *6 (-632 (-400 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549)))))
- (-4 *5 (-1201 *4)) (-5 *2 (-621 (-2 (|:| -2597 *5) (|:| -2389 *5))))
- (-5 *1 (-783 *4 *5 *6 *3)) (-4 *6 (-632 *5))
- (-4 *3 (-632 (-400 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549)))))
- (-4 *4 (-1201 *5)) (-5 *2 (-621 (-2 (|:| -2597 *4) (|:| -2389 *4))))
- (-5 *1 (-783 *5 *4 *6 *3)) (-4 *6 (-632 *4))
- (-4 *3 (-632 (-400 *4))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1018)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-549))))
- (-4 *2 (-170)))))
-(((*1 *2)
- (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1201 (-549))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-1235)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1138 *5)) (-4 *5 (-356)) (-5 *2 (-621 *6))
- (-5 *1 (-522 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
- (-5 *2
- (-2 (|:| -4160 *4) (|:| -3041 *4) (|:| |totalpts| (-549))
- (|:| |success| (-112))))
- (-5 *1 (-765)) (-5 *5 (-549)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-724)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-621 (-2 (|:| |totdeg| (-747)) (|:| -4267 *3))))
- (-5 *4 (-747)) (-4 *3 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769))
- (-4 *7 (-823)) (-5 *1 (-441 *5 *6 *7 *3)))))
-(((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-797)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1142)) (-5 *4 (-923 (-549))) (-5 *2 (-323))
- (-5 *1 (-325)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1138 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1225 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356))
- (-4 *1 (-701 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1201 *5))
- (-5 *2 (-665 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-546)) (-5 *3 (-549)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
- (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
- (-14 *5 (-621 (-1142))) (-14 *6 (-1225 (-665 *3))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1164) (-973))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1138 *4)) (-4 *4 (-342)) (-5 *2 (-929 (-1086)))
- (-5 *1 (-339 *4)))))
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1164) (-973))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1164) (-973))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1164) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-108))) (-5 *1 (-173)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1119 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1119 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1119 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))))
+(((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3))
- (-4 *3 (-938)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 (-400 (-549))))
- (-5 *2
- (-621
- (-2 (|:| |outval| *4) (|:| |outmult| (-549))
- (|:| |outvect| (-621 (-665 *4))))))
- (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-549)) (-5 *1 (-1122 *3)) (-4 *3 (-1179))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4337)) (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147)))))
-(((*1 *2) (-12 (-5 *2 (-1113 (-1124))) (-5 *1 (-384)))))
-(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1124)) (-4 *1 (-357 *2 *4)) (-4 *2 (-1066))
- (-4 *4 (-1066))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-845))))
- ((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+ (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1027)) (-4 *3 (-1164))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *1 *1 *1) (-5 *1 (-159)))
+ ((*1 *1 *2) (-12 (-5 *2 (-535)) (-5 *1 (-159)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2))
+ (-4 *2 (-414 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142))))
+ ((*1 *1 *1) (-4 *1 (-158))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *1 (-156 *4 *2))
+ (-4 *2 (-414 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1058 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-823) (-542)))
+ (-5 *1 (-156 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 *1)) (-4 *1 (-158))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1142)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
+(((*1 *1 *1 *1) (-4 *1 (-141)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-534)) (-5 *1 (-157 *2)))))
+(((*1 *1 *1) (-4 *1 (-141)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-549)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))))
-(((*1 *1) (-5 *1 (-430))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-892)) (-4 *1 (-397))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-397))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *2 *6)) (-4 *3 (-1066)) (-4 *4 (-1066))
- (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1066)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1066)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
- ((*1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769))
- (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *3 (-1032 *4 *5 *6))
- (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1980 *1))))
- (-4 *1 (-1038 *4 *5 *6 *3)))))
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-823) (-542))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-621 (-2 (|:| -3837 (-400 (-549))) (|:| -3847 (-400 (-549))))))
- (-5 *2 (-621 (-400 (-549)))) (-5 *1 (-991 *4))
- (-4 *4 (-1201 (-549))))))
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-823) (-542))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-747)) (-5 *2 (-1138 *4)) (-5 *1 (-519 *4))
- (-4 *4 (-342)))))
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-823) (-542))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1142)) (-5 *2 (-1 (-1138 (-923 *4)) (-923 *4)))
- (-5 *1 (-1233 *4)) (-4 *4 (-356)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2112 *1) (|:| -3249 *1))) (-4 *1 (-300))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3))))
- (-5 *1 (-379 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2112 (-747)) (|:| -3249 (-747))))
- (-5 *1 (-747))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| -2112 *3) (|:| -3249 *3)))
- (-5 *1 (-940 *4 *3)) (-4 *3 (-1201 *4)))))
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-823) (-542))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1183))
- (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5)))
- (-5 *2 (-2 (|:| |num| (-665 *5)) (|:| |den| *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1124)))))
-(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1179))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
- (-4 *4 (-823))))
- ((*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-1124)) (-5 *5 (-665 (-219)))
- (-5 *2 (-1006)) (-5 *1 (-724)))))
-(((*1 *1 *1) (-4 *1 (-637))) ((*1 *1 *1) (-5 *1 (-1086))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-541)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
- (-5 *1 (-1169 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-621 (-1142))) (|:| |pred| (-52))))
- (-5 *1 (-863 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-541))
- (-4 *3 (-920 *7 *5 *6))
- (-5 *2
- (-2 (|:| -3577 (-747)) (|:| -1569 *3) (|:| |radicand| (-621 *3))))
- (-5 *1 (-924 *5 *6 *7 *3 *8)) (-5 *4 (-747))
- (-4 *8
- (-13 (-356)
- (-10 -8 (-15 -1393 (*3 $)) (-15 -1404 (*3 $)) (-15 -3845 ($ *3))))))))
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-823) (-542))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))
+ (-12 (-5 *3 (-618 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-823) (-542))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))))
+(((*1 *1) (-5 *1 (-155))))
+(((*1 *1) (-5 *1 (-155))))
+(((*1 *1) (-5 *1 (-155))))
+(((*1 *1) (-5 *1 (-155))))
+(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-155)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-219))
(-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1090 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-350 *3)) (-4 *3 (-342)))))
+ (-2 (|:| |brans| (-618 (-618 (-914 *4)))) (|:| |xValues| (-1055 *4))
+ (|:| |yValues| (-1055 *4))))
+ (-5 *1 (-151)) (-5 *3 (-618 (-618 (-914 *4)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-219)) (-5 *4 (-549))
- (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421))))
- (-5 *2 (-1006)) (-5 *1 (-725)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3847 *6) (|:| |sol?| (-112))) (-549)
- *6))
- (-4 *6 (-356)) (-4 *7 (-1201 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6))
- (-2 (|:| -2460 (-400 *7)) (|:| |coeff| (-400 *7))) "failed"))
- (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-592 *4)) (-5 *6 (-1142))
- (-4 *4 (-13 (-423 *7) (-27) (-1164)))
- (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3420 (-621 *4))))
- (-5 *1 (-551 *7 *4 *3)) (-4 *3 (-632 *4)) (-4 *3 (-1066)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-372)) (-5 *2 (-1230)) (-5 *1 (-1227)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1142)) (-5 *3 (-112)) (-5 *1 (-863 *4))
- (-4 *4 (-1066)))))
-(((*1 *1) (-4 *1 (-342)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 *5)) (-4 *5 (-423 *4))
- (-4 *4 (-13 (-541) (-823) (-145)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-621 (-1138 *5)))
- (|:| |prim| (-1138 *5))))
- (-5 *1 (-425 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-541) (-823) (-145)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1138 *3))
- (|:| |pol2| (-1138 *3)) (|:| |prim| (-1138 *3))))
- (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-423 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-923 *5)) (-5 *4 (-1142)) (-4 *5 (-13 (-356) (-145)))
+ (-12 (-5 *3 (-896))
(-5 *2
- (-2 (|:| |coef1| (-549)) (|:| |coef2| (-549))
- (|:| |prim| (-1138 *5))))
- (-5 *1 (-931 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-621 (-1142)))
- (-4 *5 (-13 (-356) (-145)))
+ (-2 (|:| |brans| (-618 (-618 (-914 (-219)))))
+ (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))))
+ (-5 *1 (-151))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-896)) (-5 *4 (-400 (-535)))
(-5 *2
- (-2 (|:| -1569 (-621 (-549))) (|:| |poly| (-621 (-1138 *5)))
- (|:| |prim| (-1138 *5))))
- (-5 *1 (-931 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-621 (-923 *6))) (-5 *4 (-621 (-1142))) (-5 *5 (-1142))
- (-4 *6 (-13 (-356) (-145)))
+ (-2 (|:| |brans| (-618 (-618 (-914 (-219)))))
+ (|:| |xValues| (-1055 (-219))) (|:| |yValues| (-1055 (-219)))))
+ (-5 *1 (-151)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-890)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-356))
+ (-14 *5 (-964 *3 *4)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4336)) (-4 *1 (-149 *2)) (-4 *2 (-1178))
+ (-4 *2 (-1067)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4))
(-5 *2
- (-2 (|:| -1569 (-621 (-549))) (|:| |poly| (-621 (-1138 *6)))
- (|:| |prim| (-1138 *6))))
- (-5 *1 (-931 *6)))))
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5))
+ (|:| |c2| (-400 *5)) (|:| |deg| (-747))))
+ (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1200 (-400 *5))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1200 *2)) (-4 *2 (-1183)) (-5 *1 (-146 *2 *4 *3))
+ (-4 *3 (-1200 (-400 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 *6)) (-4 *5 (-1183)) (-4 *6 (-1200 *5))
+ (-5 *2 (-2 (|:| -2484 (-747)) (|:| -4296 *3) (|:| |radicand| *6)))
+ (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-747)) (-4 *7 (-1200 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1183)) (-4 *5 (-1200 *4))
+ (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-747))))
+ (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1200 (-400 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1183)) (-4 *5 (-1200 *4))
+ (-5 *2 (-2 (|:| -4296 (-400 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3))
+ (-4 *3 (-1200 (-400 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-142)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-142))))
+ ((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-142)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 (-142))) (-5 *1 (-139))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-139)))))
+(((*1 *1) (-5 *1 (-139))))
+(((*1 *1) (-5 *1 (-139))))
+(((*1 *1) (-5 *1 (-139))))
+(((*1 *1) (-5 *1 (-139))))
+(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-137)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-618 (-535))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535))
+ (-14 *4 (-747)) (-4 *5 (-170)))))
+(((*1 *1)
+ (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))))
+(((*1 *1)
+ (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-535)) (-14 *3 (-747)) (-4 *4 (-170)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-618 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535))
+ (-14 *4 (-747)) (-4 *5 (-170)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-618 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-535))
+ (-14 *4 (-747)))))
+(((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-133)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-747)) (-5 *2 (-1230)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-130))))
+(((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-128)))))
+(((*1 *1 *1 *1) (-5 *1 (-128))))
+(((*1 *1 *1 *1) (-5 *1 (-128))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-126 *3)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-823)) (-5 *1 (-121 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1200 (-535))))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-119 *2)) (-4 *2 (-1178)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-119 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-1009 (-400 *2)))) (-5 *2 (-535))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1200 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1067)) (-4 *2 (-823))
+ (-5 *1 (-114 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-823)) (-4 *3 (-1067)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-621 (-1138 *4))) (-5 *3 (-1138 *4))
- (-4 *4 (-880)) (-5 *1 (-639 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1179)))))
+ (-12 (-5 *2 (-113)) (-5 *3 (-618 (-1 *4 (-618 *4)))) (-4 *4 (-1067))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1067)) (-5 *1 (-114 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-113)) (-5 *2 (-618 (-1 *4 (-618 *4))))
+ (-5 *1 (-114 *4)) (-4 *4 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-618 (-936))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1124) (-749))) (-5 *1 (-113)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-747)) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-524) (-618 (-524)))) (-5 *1 (-113))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-524) (-618 (-524)))) (-5 *1 (-113)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-112)) (-5 *1 (-113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-113)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-749)) (-5 *1 (-113)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1124) (-749))) (-5 *1 (-113)))))
+(((*1 *1 *1) (-5 *1 (-112))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-109)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1142)) (-5 *3 (-618 (-936))) (-5 *1 (-108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-4 *1 (-106 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1178)))))
+(((*1 *2) (-12 (-5 *2 (-618 (-1142))) (-5 *1 (-104)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1142)) (|:| |fn| (-309 (-219)))
- (|:| -2062 (-1060 (-816 (-219)))) (|:| |abserr| (-219))
- (|:| |relerr| (-219))))
+ (-12 (-5 *3 (-1142))
(-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-186)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-128)) (-5 *2 (-1086)))))
+ (-2 (|:| |zeros| (-1119 (-219))) (|:| |ones| (-1119 (-219)))
+ (|:| |singularities| (-1119 (-219)))))
+ (-5 *1 (-104)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1144 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1225 (-3 (-460) "undefined"))) (-5 *1 (-1226)))))
-(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-863 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1179)) (-5 *2 (-747)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1142)) (-5 *3 (-427)) (-4 *5 (-823))
- (-5 *1 (-1072 *5 *4)) (-4 *4 (-423 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-508)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-621 (-1142)))
- (-5 *2 (-621 (-621 (-372)))) (-5 *1 (-994)) (-5 *5 (-372))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993)))
- (-14 *5 (-621 (-1142))) (-5 *2 (-621 (-621 (-995 (-400 *4)))))
- (-5 *1 (-1251 *4 *5 *6)) (-14 *6 (-621 (-1142)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7))
- (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7))
- (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1251 *5 *6 *7))
- (-14 *6 (-621 (-1142))) (-14 *7 (-621 (-1142)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-621 (-923 *4)))
- (-4 *4 (-13 (-821) (-300) (-145) (-993)))
- (-5 *2 (-621 (-621 (-995 (-400 *4))))) (-5 *1 (-1251 *4 *5 *6))
- (-14 *5 (-621 (-1142))) (-14 *6 (-621 (-1142))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1225 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
- (-5 *2 (-665 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-651 (-219)))
- (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-727)))))
+ (-12 (|has| *2 (-6 (-4338 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2))
+ (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1200 *2))
+ (-4 *4 (-662 *2 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4338 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2))
+ (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1200 *2))
+ (-4 *4 (-662 *2 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1018)) (-4 *2 (-662 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6))
+ (-4 *3 (-1200 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1018)) (-4 *2 (-662 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6))
+ (-4 *3 (-1200 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-102 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-102 *3)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-102 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-892)) (-5 *4 (-1124)) (-5 *2 (-1230)) (-5 *1 (-1226)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-549)) (-5 *2 (-621 (-621 (-219)))) (-5 *1 (-1175)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-621 *3)) (-4 *3 (-1201 (-549))) (-5 *1 (-478 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-372))))
- ((*1 *1 *1 *1) (-4 *1 (-534)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
- ((*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-747)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219)))
- (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1421)))) (-5 *3 (-219))
- (-5 *2 (-1006)) (-5 *1 (-725)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-142))))
- ((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-142)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1172 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769))
- (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-543 *3)) (-4 *3 (-534)))))
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-102 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-618 *2) *2 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-102 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-102 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-99 *4 *3))
+ (-4 *3 (-1200 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-618 *3)) (-4 *3 (-1200 *5)) (-4 *5 (-13 (-444) (-145)))
+ (-5 *2 (-398 *3)) (-5 *1 (-99 *5 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-535))) (-4 *3 (-1018)) (-5 *1 (-98 *3))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1124)) (-5 *2 (-371)) (-5 *1 (-96)))))
+(((*1 *2) (-12 (-5 *2 (-1230)) (-5 *1 (-96)))))
+(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-96)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1124)) (-5 *1 (-96))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1124)) (-5 *1 (-96)))))
+(((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1067)) (-5 *1 (-90 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1142))
- (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-12 (-4 *5 (-356)) (-4 *5 (-542))
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-621 (-592 *3)))
- (|:| |vals| (-621 *3))))
- (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1164) (-423 *5))))))
+ (-2 (|:| |minor| (-618 (-890))) (|:| -3600 *3)
+ (|:| |minors| (-618 (-618 (-890)))) (|:| |ops| (-618 *3))))
+ (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-634 *5)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
- (|:| |fn| (-1225 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
- (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
- (|:| |abserr| (-219)) (|:| |relerr| (-219))))
- (-5 *2
- (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372))
- (|:| |expense| (-372)) (|:| |accuracy| (-372))
- (|:| |intermediateResults| (-372))))
- (-5 *1 (-779)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
+ (-12 (-4 *4 (-542)) (-5 *2 (-1224 (-665 *4))) (-5 *1 (-89 *4 *5))
+ (-5 *3 (-665 *4)) (-4 *5 (-634 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-542))
+ (-5 *2 (-2 (|:| -1695 (-665 *5)) (|:| |vec| (-1224 (-618 (-890))))))
+ (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-634 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-57 *3)) (-4 *3 (-1178))))
+ ((*1 *1 *2) (-12 (-5 *2 (-618 *3)) (-4 *3 (-1178)) (-5 *1 (-57 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-535)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1178)) (-4 *3 (-365 *4))
+ (-4 *5 (-365 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-535)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1178)) (-4 *5 (-365 *4))
+ (-4 *3 (-365 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-618 (-1142))) (-4 *4 (-1067))
+ (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4))))
+ (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *3 (-621 (-256)))
- (-5 *1 (-254))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-256))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-473 *5 *6))) (-5 *3 (-473 *5 *6))
- (-14 *5 (-621 (-1142))) (-4 *6 (-444)) (-5 *2 (-1225 *6))
- (-5 *1 (-609 *5 *6)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230))
- (-5 *1 (-1039 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1124)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1230))
- (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1018)) (-4 *4 (-1066)) (-5 *2 (-621 *1))
- (-4 *1 (-375 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-621 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018))
- (-4 *4 (-703))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1))
- (-4 *1 (-920 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-834))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-621 *11)) (-5 *5 (-621 (-1138 *9)))
- (-5 *6 (-621 *9)) (-5 *7 (-621 *12)) (-5 *8 (-621 (-747)))
- (-4 *11 (-823)) (-4 *9 (-300)) (-4 *12 (-920 *9 *10 *11))
- (-4 *10 (-769)) (-5 *2 (-621 (-1138 *12)))
- (-5 *1 (-684 *10 *11 *9 *12)) (-5 *3 (-1138 *12)))))
+ (-12 (-5 *3 (-618 (-1041 *4 *5 *2))) (-4 *4 (-1067))
+ (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-861 *4))))
+ (-4 *2 (-13 (-414 *5) (-857 *4) (-594 (-861 *4)))) (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-618 (-1041 *5 *6 *2))) (-5 *4 (-890)) (-4 *5 (-1067))
+ (-4 *6 (-13 (-1018) (-857 *5) (-823) (-594 (-861 *5))))
+ (-4 *2 (-13 (-414 *6) (-857 *5) (-594 (-861 *5)))) (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1069)) (-5 *3 (-749)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-51)))))
+(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1124)) (-5 *1 (-51)))))
+(((*1 *2)
+ (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-542)) (-5 *2 (-618 (-665 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-411 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-542)) (-5 *2 (-618 (-665 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-411 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-542)) (-5 *2 (-618 (-665 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-411 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-621 (-1142))) (-5 *2 (-1230)) (-5 *1 (-1145))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1230))
- (-5 *1 (-1145))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-621 (-1142))) (-5 *3 (-1142)) (-5 *2 (-1230))
- (-5 *1 (-1145)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-892)) (-5 *1 (-1067 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-621 *3)) (-4 *3 (-1075 *5 *6 *7 *8))
- (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-572 *5 *6 *7 *8 *3)))))
+ (-12 (-4 *4 (-542)) (-5 *2 (-618 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-618 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1066)))))
-(((*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-860 *5 *3)) (-5 *4 (-863 *5)) (-4 *5 (-1066))
- (-4 *3 (-164 *6)) (-4 (-923 *6) (-857 *5))
- (-4 *6 (-13 (-857 *5) (-170))) (-5 *1 (-176 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-860 *4 *1)) (-5 *3 (-863 *4)) (-4 *1 (-857 *4))
- (-4 *4 (-1066))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-860 *5 *6)) (-5 *4 (-863 *5)) (-4 *5 (-1066))
- (-4 *6 (-13 (-1066) (-1009 *3))) (-4 *3 (-857 *5))
- (-5 *1 (-902 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-860 *5 *3)) (-4 *5 (-1066))
- (-4 *3 (-13 (-423 *6) (-594 *4) (-857 *5) (-1009 (-592 $))))
- (-5 *4 (-863 *5)) (-4 *6 (-13 (-541) (-823) (-857 *5)))
- (-5 *1 (-903 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-860 (-549) *3)) (-5 *4 (-863 (-549))) (-4 *3 (-534))
- (-5 *1 (-904 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-860 *5 *6)) (-5 *3 (-592 *6)) (-4 *5 (-1066))
- (-4 *6 (-13 (-823) (-1009 (-592 $)) (-594 *4) (-857 *5)))
- (-5 *4 (-863 *5)) (-5 *1 (-905 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-856 *5 *6 *3)) (-5 *4 (-863 *5)) (-4 *5 (-1066))
- (-4 *6 (-857 *5)) (-4 *3 (-642 *6)) (-5 *1 (-906 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-860 *6 *3) *8 (-863 *6) (-860 *6 *3)))
- (-4 *8 (-823)) (-5 *2 (-860 *6 *3)) (-5 *4 (-863 *6))
- (-4 *6 (-1066)) (-4 *3 (-13 (-920 *9 *7 *8) (-594 *4)))
- (-4 *7 (-769)) (-4 *9 (-13 (-1018) (-823) (-857 *6)))
- (-5 *1 (-907 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-860 *5 *3)) (-4 *5 (-1066))
- (-4 *3 (-13 (-920 *8 *6 *7) (-594 *4))) (-5 *4 (-863 *5))
- (-4 *7 (-857 *5)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *8 (-13 (-1018) (-823) (-857 *5)))
- (-5 *1 (-907 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-860 *5 *3)) (-4 *5 (-1066)) (-4 *3 (-963 *6))
- (-4 *6 (-13 (-541) (-857 *5) (-594 *4))) (-5 *4 (-863 *5))
- (-5 *1 (-910 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-860 *5 (-1142))) (-5 *3 (-1142)) (-5 *4 (-863 *5))
- (-4 *5 (-1066)) (-5 *1 (-911 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-621 (-863 *7))) (-5 *5 (-1 *9 (-621 *9)))
- (-5 *6 (-1 (-860 *7 *9) *9 (-863 *7) (-860 *7 *9))) (-4 *7 (-1066))
- (-4 *9 (-13 (-1018) (-594 (-863 *7)) (-1009 *8)))
- (-5 *2 (-860 *7 *9)) (-5 *3 (-621 *9)) (-4 *8 (-13 (-1018) (-823)))
- (-5 *1 (-912 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1179))
- (-5 *2 (-112)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1142)) (-5 *1 (-592 *3)) (-4 *3 (-823)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
- (-5 *1 (-732)))))
-(((*1 *2) (-12 (-5 *2 (-621 *3)) (-5 *1 (-1050 *3)) (-4 *3 (-131)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1124)) (-5 *4 (-549)) (-5 *5 (-665 (-167 (-219))))
- (-5 *2 (-1006)) (-5 *1 (-731)))))
+ (-12 (-4 *3 (-542)) (-5 *2 (-618 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-541)) (-5 *2 (-1225 (-665 *4))) (-5 *1 (-89 *4 *5))
- (-5 *3 (-665 *4)) (-4 *5 (-632 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
- (-5 *2 (-621 *1)) (-4 *1 (-1032 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *1 *1 *1) (-4 *1 (-534))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
- (-4 *3 (-1032 *5 *6 *7))
- (-5 *2 (-621 (-2 (|:| |val| (-621 *3)) (|:| -1980 *4))))
- (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1066)) (-5 *2 (-112)) (-5 *1 (-856 *3 *4 *5))
- (-4 *3 (-1066)) (-4 *5 (-642 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-860 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1066)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1179)) (-5 *2 (-549)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
-(((*1 *1) (-5 *1 (-799))))
+ (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1142)) (-4 *5 (-1183)) (-4 *6 (-1201 *5))
- (-4 *7 (-1201 (-400 *6))) (-5 *2 (-621 (-923 *5)))
- (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1142)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1183))
- (-4 *5 (-1201 *4)) (-4 *6 (-1201 (-400 *5))) (-4 *4 (-356))
- (-5 *2 (-621 (-923 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
-(((*1 *2 *1) (-12 (-5 *2 (-750)) (-5 *1 (-52)))))
-(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1124)) (-5 *1 (-52)))))
+ (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-113)) (-5 *4 (-747)) (-4 *5 (-444)) (-4 *5 (-823))
+ (-4 *5 (-1009 (-535))) (-4 *5 (-542)) (-5 *1 (-41 *5 *2)) (-4 *2 (-414 *5))
+ (-4 *2
+ (-13 (-356) (-291)
+ (-10 -8 (-15 -3319 ((-1091 *5 (-591 $)) $))
+ (-15 -3318 ((-1091 *5 (-591 $)) $))
+ (-15 -4300 ($ (-1091 *5 (-591 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
- (-4 *2 (-13 (-423 *3) (-973))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1122 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1164)))))
-(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227))))
- ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1227)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1179)))))
-(((*1 *1 *1 *1) (-4 *1 (-534))))
-(((*1 *2)
- (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-336 *3 *4)) (-14 *3 (-892))
- (-14 *4 (-892))))
- ((*1 *2)
- (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-337 *3 *4)) (-4 *3 (-342))
- (-14 *4 (-1138 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-929 (-1086))) (-5 *1 (-338 *3 *4)) (-4 *3 (-342))
- (-14 *4 (-892)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 (-1124))) (-5 *1 (-323))))
- ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-323)))))
-(((*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-211))))
- ((*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-479))))
- ((*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-300))))
+ (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-535))) (-4 *3 (-542))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3))
+ (-4 *2
+ (-13 (-356) (-291)
+ (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $))
+ (-15 -3318 ((-1091 *3 (-591 $)) $))
+ (-15 -4300 ($ (-1091 *3 (-591 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-535))) (-4 *3 (-542))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3))
+ (-4 *2
+ (-13 (-356) (-291)
+ (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $))
+ (-15 -3318 ((-1091 *3 (-591 $)) $))
+ (-15 -4300 ($ (-1091 *3 (-591 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-535))) (-4 *3 (-542))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3))
+ (-4 *2
+ (-13 (-356) (-291)
+ (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $))
+ (-15 -3318 ((-1091 *3 (-591 $)) $))
+ (-15 -4300 ($ (-1091 *3 (-591 $))))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-542)) (-5 *2 (-1136 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-356) (-291)
+ (-10 -8 (-15 -3319 ((-1091 *4 (-591 $)) $))
+ (-15 -3318 ((-1091 *4 (-591 $)) $))
+ (-15 -4300 ($ (-1091 *4 (-591 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-356) (-291)
+ (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $))
+ (-15 -3318 ((-1091 *3 (-591 $)) $))
+ (-15 -4300 ($ (-1091 *3 (-591 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-356) (-291)
+ (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $))
+ (-15 -3318 ((-1091 *3 (-591 $)) $))
+ (-15 -4300 ($ (-1091 *3 (-591 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-618 *2))
+ (-4 *2
+ (-13 (-356) (-291)
+ (-10 -8 (-15 -3319 ((-1091 *4 (-591 $)) $))
+ (-15 -3318 ((-1091 *4 (-591 $)) $))
+ (-15 -4300 ($ (-1091 *4 (-591 $)))))))
+ (-4 *4 (-542)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-618 (-591 *2)))
+ (-4 *2
+ (-13 (-356) (-291)
+ (-10 -8 (-15 -3319 ((-1091 *4 (-591 $)) $))
+ (-15 -3318 ((-1091 *4 (-591 $)) $))
+ (-15 -4300 ($ (-1091 *4 (-591 $)))))))
+ (-4 *4 (-542)) (-5 *1 (-41 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-542)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-356) (-291)
+ (-10 -8 (-15 -3319 ((-1091 *3 (-591 $)) $))
+ (-15 -3318 ((-1091 *3 (-591 $)) $))
+ (-15 -4300 ($ (-1091 *3 (-591 $))))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-4 *5 (-1200 *4)) (-5 *2 (-1230))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1200 (-400 *5))) (-14 *7 *6))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1200 (-48))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-5 *2 (-2 (|:| -4203 *3) (|:| -2184 *4))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-535)) (-4 *2 (-414 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1009 *4))
+ (-4 *3 (-13 (-823) (-542))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-618 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-823) (-542)))
+ (-5 *2 (-835)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1136 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-823) (-542)))
+ (-5 *1 (-32 *4 *2)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-917 (-535))) (-5 *3 (-1142)) (-5 *4 (-1055 (-400 (-535))))
+ (-5 *1 (-30)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1136 *1)) (-5 *4 (-1142)) (-4 *1 (-27)) (-5 *2 (-618 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1136 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-917 *1)) (-4 *1 (-27)) (-5 *2 (-618 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1142)) (-4 *4 (-13 (-823) (-542))) (-5 *2 (-618 *1))
+ (-4 *1 (-29 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-400 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549))))
- ((*1 *1 *1) (-4 *1 (-1027))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
- (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1073 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-128)) (-5 *2 (-1086)))))
-((-1258 . 737621) (-1259 . 737270) (-1260 . 736921) (-1261 . 736810)
- (-1262 . 736512) (-1263 . 736478) (-1264 . 736421) (-1265 . 736320)
- (-1266 . 736254) (-1267 . 736175) (-1268 . 736068) (-1269 . 736001)
- (-1270 . 735950) (-1271 . 735862) (-1272 . 735510) (-1273 . 735482)
- (-1274 . 735396) (-1275 . 735324) (-1276 . 735115) (-1277 . 734890)
- (-1278 . 734856) (-1279 . 734770) (-1280 . 734636) (-1281 . 734512)
- (-1282 . 734364) (-1283 . 734293) (-1284 . 734177) (-1285 . 734094)
- (-1286 . 733996) (-1287 . 733925) (-1288 . 733868) (-1289 . 731605)
- (-1290 . 731550) (-1291 . 731457) (-1292 . 731247) (-1293 . 731195)
- (-1294 . 731091) (-1295 . 730811) (-1296 . 730480) (-1297 . 730446)
- (-1298 . 730130) (-1299 . 729738) (-1300 . 729393) (-1301 . 729327)
- (-1302 . 728848) (-1303 . 728589) (-1304 . 728516) (-1305 . 728388)
- (-1306 . 728285) (-1307 . 728091) (-1308 . 728025) (-1309 . 727776)
- (-1310 . 727693) (-1311 . 727609) (-1312 . 727516) (-1313 . 727343)
- (-1314 . 727136) (-1315 . 726965) (-1316 . 725714) (-1317 . 725661)
- (-1318 . 725542) (-1319 . 725401) (-1320 . 725239) (-1321 . 725168)
- (-1322 . 725111) (-1323 . 725042) (-1324 . 724469) (-1325 . 724413)
- (-1326 . 724292) (-1327 . 723127) (-1328 . 723026) (-1329 . 722946)
- (-1330 . 722629) (-1331 . 722279) (-1332 . 722113) (-1333 . 722030)
- (-1334 . 721960) (-1335 . 721750) (-1336 . 721423) (-1337 . 721303)
- (-1338 . 721170) (-1339 . 721110) (-1340 . 720981) (-1341 . 720928)
- (-1342 . 720721) (-1343 . 720668) (-1344 . 720616) (-1345 . 720432)
- (-1346 . 719997) (-1347 . 719879) (-1348 . 719785) (-1349 . 719606)
- (-1350 . 719277) (-1351 . 719189) (-1352 . 719096) (-1353 . 719019)
- (-1354 . 718757) (-1355 . 718729) (-1356 . 718641) (-1357 . 718517)
- (-1358 . 718343) (-1359 . 718288) (-1360 . 718230) (-1361 . 718177)
- (-1362 . 718015) (-1363 . 717798) (-1364 . 717703) (-1365 . 717601)
- (-1366 . 717535) (-1367 . 717356) (-1368 . 717282) (-1369 . 717123)
- (-1370 . 717044) (-1371 . 716946) (-1372 . 716893) (-1373 . 716826)
- (-1374 . 716622) (-1375 . 716521) (-1376 . 716299) (-1377 . 716247)
- (-1378 . 716098) (-1379 . 716044) (-1380 . 715889) (-1381 . 715783)
- (-1382 . 715724) (-1383 . 714836) (-1384 . 714485) (-1385 . 714415)
- (-1386 . 713929) (-1387 . 713763) (-1388 . 713608) (-1389 . 713553)
- (-1390 . 713301) (-1391 . 713010) (-1392 . 712903) (-1393 . 712202)
- (-1394 . 711993) (-1395 . 711874) (-1396 . 711788) (-1397 . 711462)
- (-1398 . 711147) (-1399 . 711092) (-1400 . 711011) (-1401 . 710912)
- (-1402 . 710828) (-1403 . 710074) (-1404 . 709396) (-1405 . 709062)
- (-1406 . 708895) (-1407 . 708705) (-1408 . 708562) (-1409 . 708387)
- (-1410 . 708278) (-1411 . 707963) (-1412 . 707571) (-1413 . 707145)
- (-1414 . 706989) (-1415 . 706912) (-1416 . 706610) (-1417 . 706364)
- (-1418 . 706105) (-1419 . 706022) (-1420 . 705826) (-1421 . 705748)
- (-1422 . 705644) (-1423 . 705558) (-1424 . 705492) (-1425 . 705227)
- (-1426 . 705040) (-1427 . 704406) (-1428 . 704152) (-1429 . 703712)
- (-1430 . 703683) (-1431 . 703494) (-1432 . 703350) (-1433 . 703262)
- (-1434 . 703213) (-1435 . 703160) (-1436 . 702996) (-1437 . 702889)
- (-1438 . 702786) (-1439 . 702619) (-1440 . 702258) (-1441 . 702137)
- (-1442 . 702005) (-1443 . 701746) (-1444 . 701289) (-1445 . 700180)
- (-1446 . 699902) (-1447 . 699759) (-1448 . 698749) (-1449 . 698091)
- (-1450 . 698011) (-1451 . 697416) (-1452 . 697286) (-1453 . 697201)
- (-1454 . 697148) (-1455 . 696973) (-1456 . 696900) (-1457 . 696804)
- (-1458 . 696608) (-1459 . 696441) (-1460 . 696339) (-1461 . 695963)
- (-1462 . 695356) (-1463 . 695081) (-1464 . 694766) (-1465 . 694628)
- (-1466 . 694261) (-1467 . 694068) (-1468 . 693927) (-1469 . 693808)
- (-1470 . 693664) (-1471 . 693607) (-1472 . 693554) (-1473 . 693387)
- (-1474 . 693292) (-1475 . 693007) (-1476 . 692906) (-1477 . 692599)
- (-1478 . 692494) (-1479 . 692339) (-1480 . 691958) (-1481 . 691900)
- (-1482 . 691803) (-1483 . 691641) (-1484 . 691580) (-1485 . 690839)
- (-1486 . 690599) (-1487 . 690529) (-1488 . 690042) (-1489 . 685979)
- (-1490 . 685920) (-1491 . 685867) (-1492 . 685795) (-1493 . 685649)
- (-1494 . 685597) (-1495 . 685541) (-1496 . 685473) (-1497 . 685394)
- (-1498 . 685236) (-1499 . 685054) (-1500 . 684313) (-1501 . 684230)
- (-1502 . 684123) (-1503 . 683446) (-1504 . 683390) (-1505 . 683238)
- (-1506 . 683164) (-1507 . 683078) (-1508 . 682956) (-1509 . 682798)
- (-1510 . 682726) (-1511 . 682038) (-1512 . 681550) (-1513 . 681377)
- (-1514 . 681217) (-1515 . 680914) (-1516 . 680572) (-1517 . 679893)
- (-1518 . 679675) (-1519 . 679531) (-1520 . 679478) (-1521 . 679238)
- (-1522 . 679039) (-1523 . 678959) (-1524 . 678689) (-1525 . 678113)
- (-1526 . 677796) (-1527 . 677608) (-1528 . 677556) (-1529 . 677483)
- (-1530 . 677280) (-1531 . 670281) (-1532 . 670185) (-1533 . 670117)
- (-1534 . 669782) (-1535 . 669669) (-1536 . 669497) (-1537 . 669400)
- (-1538 . 668824) (-1539 . 667378) (-1540 . 666961) (-1541 . 664616)
- (-1542 . 664219) (-1543 . 663154) (-1544 . 663039) (-1545 . 662980)
- (-1546 . 662599) (-1547 . 662528) (-1548 . 662433) (-12 . 662261)
- (-1550 . 662162) (-1551 . 661586) (-1552 . 661339) (-1553 . 661197)
- (-1554 . 661096) (-1555 . 660966) (-1556 . 660850) (-1557 . 660768)
- (-1558 . 660702) (-1559 . 660391) (-1560 . 660261) (-1561 . 659939)
- (-1562 . 659253) (-1563 . 659144) (-1564 . 659080) (-1565 . 658972)
- (-1566 . 658865) (-1567 . 658735) (-1568 . 658601) (-1569 . 658243)
- (-1570 . 658101) (-1571 . 657035) (-1572 . 656450) (-1573 . 656114)
- (-1574 . 655611) (-1575 . 654925) (-1576 . 654781) (-1577 . 654726)
- (-1578 . 654617) (-1579 . 654534) (-1580 . 654377) (-1581 . 653722)
- (-1582 . 653195) (-1583 . 653121) (-1584 . 652811) (-1585 . 652062)
- (-1586 . 651524) (-1587 . 651209) (-1588 . 651087) (-1589 . 651022)
- (-1590 . 650883) (-1591 . 650795) (-1592 . 650466) (-1593 . 650329)
- (-1594 . 650186) (-1595 . 649913) (-1596 . 649663) (-1597 . 649244)
- (-1598 . 649167) (-1599 . 648593) (-1600 . 648393) (-1601 . 647949)
- (-1602 . 647880) (-1603 . 647773) (-1604 . 647469) (-1605 . 646812)
- (-1606 . 646652) (-1607 . 646581) (-1608 . 646090) (-1609 . 646037)
- (-1610 . 645984) (-1611 . 645952) (-1612 . 645378) (-1613 . 645215)
- (-1614 . 644769) (-1615 . 644611) (-1616 . 643690) (-1617 . 643661)
- (-1618 . 643606) (-1619 . 643554) (-1620 . 643526) (-1621 . 643352)
- (-1622 . 643285) (-1623 . 643039) (-1624 . 642821) (-1625 . 642247)
- (-1626 . 641637) (-1627 . 641552) (-1628 . 640945) (-1629 . 640815)
- (-1630 . 640635) (-1631 . 640488) (-1632 . 640381) (-1633 . 640265)
- (-1634 . 640150) (-1635 . 639940) (-1636 . 639888) (-1637 . 639807)
- (-1638 . 639775) (-1639 . 639088) (-1640 . 639018) (-1641 . 638738)
- (-1642 . 638686) (-1643 . 638620) (-1644 . 638554) (-1645 . 638392)
- (-1646 . 638241) (-1647 . 638144) (-1648 . 638064) (-1649 . 637377)
- (-1650 . 637268) (-1651 . 637140) (-1652 . 637035) (-1653 . 636867)
- (-1654 . 636709) (-1655 . 636482) (-1656 . 636267) (-1657 . 636153)
- (-1658 . 636009) (-1659 . 635899) (-1660 . 635681) (* . 631135)
- (-1662 . 631082) (-1663 . 630395) (-1664 . 630305) (-1665 . 630201)
- (-1666 . 630092) (-1667 . 629965) (-1668 . 629859) (-1669 . 629788)
- (-1670 . 629645) (-1671 . 629543) (-1672 . 629491) (-1673 . 629431)
- (-1674 . 628856) (-1675 . 628719) (-1676 . 628666) (-1677 . 628595)
- (-1678 . 628407) (-1679 . 628326) (-1680 . 628163) (-1681 . 627387)
- (-1682 . 627274) (-1683 . 627205) (-1684 . 627044) (-1685 . 626469)
- (-1686 . 626384) (-1687 . 626301) (-1688 . 626249) (-1689 . 626006)
- (-1690 . 625678) (-1691 . 625055) (-1692 . 624879) (-1693 . 624768)
- (-1694 . 624740) (-1695 . 624598) (-1696 . 624527) (-1697 . 623952)
- (-1698 . 623695) (-1699 . 623537) (-1700 . 622705) (-1701 . 621818)
- (-1702 . 621378) (-1703 . 621219) (-1704 . 620969) (-1705 . 620773)
- (-1706 . 620540) (-1707 . 620452) (-1708 . 619878) (-1709 . 617463)
- (-1710 . 617411) (-1711 . 617352) (-1712 . 617208) (-1713 . 617100)
- (-1714 . 616906) (-1715 . 616477) (-1716 . 616361) (-1717 . 616203)
- (-1718 . 616132) (-1719 . 616058) (-1720 . 615975) (-1721 . 615401)
- (-1722 . 615346) (-1723 . 614487) (-1724 . 614390) (-1725 . 614312)
- (-1726 . 614205) (-1727 . 614069) (-1728 . 613937) (-1729 . 613793)
- (-1730 . 613450) (-1731 . 613365) (-1732 . 612791) (-1733 . 612347)
- (-1734 . 612294) (-1735 . 612221) (-1736 . 611875) (-1737 . 611165)
- (-1738 . 609623) (-1739 . 609515) (-1740 . 609414) (-1741 . 609166)
- (-1742 . 609071) (-1743 . 608601) (-1744 . 608027) (-1745 . 607861)
- (-1746 . 607279) (-1747 . 607251) (-1748 . 607198) (-1749 . 607047)
- (-1750 . 606931) (-1751 . 606854) (-1752 . 606788) (-1753 . 606687)
- (-1754 . 606483) (-1755 . 606381) (-1756 . 605994) (-1757 . 605420)
- (-1758 . 605361) (-1759 . 604989) (-1760 . 604874) (-1761 . 604791)
- (-1762 . 604650) (-1763 . 604535) (-1764 . 604359) (-1765 . 604285)
- (-1766 . 604124) (-1767 . 604000) (-1768 . 603842) (-1769 . 603783)
- (-1770 . 603686) (-1771 . 603528) (-1772 . 603455) (-1773 . 603336)
- (-1774 . 603284) (-1775 . 603201) (-1776 . 603041) (-1777 . 602888)
- (-1778 . 602471) (-1779 . 602212) (-1780 . 601993) (-1781 . 601880)
- (-1782 . 601776) (-1783 . 601615) (-1784 . 601322) (-1785 . 601223)
- (-1786 . 601171) (-1787 . 600896) (-1788 . 600487) (-1789 . 600306)
- (-1790 . 599828) (-1791 . 599709) (-1792 . 598507) (-1793 . 598450)
- (-1794 . 598062) (-1795 . 597102) (-1796 . 597031) (-1797 . 596960)
- (-1798 . 596724) (-1799 . 596580) (-1800 . 596524) (-1801 . 596329)
- (-1802 . 596111) (-1803 . 595816) (-1804 . 595697) (-1805 . 595563)
- (-1806 . 595451) (-1807 . 595146) (-1808 . 594810) (-1809 . 594757)
- (-1810 . 594708) (-1811 . 594651) (-1812 . 594567) (-1813 . 594458)
- (-1814 . 594140) (-1815 . 594029) (-1816 . 593973) (-1817 . 593353)
- (-1818 . 593106) (-1819 . 592904) (-1820 . 592807) (-1821 . 592682)
- (-1822 . 592581) (-1823 . 592495) (-1824 . 592442) (-1825 . 592229)
- (-1826 . 592041) (-1827 . 591956) (-1828 . 591766) (-1829 . 591551)
- (-1830 . 591436) (-1831 . 591318) (-1832 . 591195) (-1833 . 591097)
- (-1834 . 591047) (-1835 . 590940) (-1836 . 590834) (-1837 . 590781)
- (-1838 . 590639) (-1839 . 590518) (-1840 . 590338) (-1841 . 590267)
- (-1842 . 590149) (-1843 . 589974) (-1844 . 589889) (-1845 . 589641)
- (-1846 . 589517) (-1847 . 589387) (-1848 . 589251) (-1849 . 589076)
- (-1850 . 588725) (-1851 . 588651) (-1852 . 588461) (-1853 . 588387)
- (-1854 . 588259) (-1855 . 588199) (-1856 . 588024) (-1857 . 587872)
- (-1858 . 587770) (-1859 . 587666) (-1860 . 587551) (-1861 . 587483)
- (-1862 . 586326) (-1863 . 586080) (-1864 . 585936) (-1865 . 585709)
- (-1866 . 585608) (-1867 . 585429) (-1868 . 585349) (-1869 . 585208)
- (-1870 . 585104) (-1871 . 584992) (-1872 . 584936) (-1873 . 584852)
- (-1874 . 584630) (-1875 . 584521) (-1876 . 584365) (-1877 . 584125)
- (-1878 . 583893) (-1879 . 583839) (-1880 . 583673) (-1881 . 583513)
- (-1882 . 583313) (-1883 . 583135) (-1884 . 582980) (-1885 . 582897)
- (-1886 . 582814) (-1887 . 582752) (-1888 . 582680) (-1889 . 582561)
- (-1890 . 582416) (-1891 . 582328) (-1892 . 582294) (-1893 . 582167)
- (-1894 . 582103) (-1895 . 582002) (-1896 . 581923) (-1897 . 581892)
- (-1898 . 581768) (-1899 . 581740) (-1900 . 581636) (-1901 . 581464)
- (-1902 . 581327) (-1903 . 581190) (-1904 . 581012) (-1905 . 580915)
- (-1906 . 580883) (-1907 . 580784) (-1908 . 580613) (-1909 . 580550)
- (-1910 . 580420) (-1911 . 580355) (-1912 . 579908) (-1913 . 579848)
- (-1914 . 579626) (-1915 . 579503) (-1916 . 579425) (-1917 . 579325)
- (-1918 . 579242) (-1919 . 579190) (-1920 . 579117) (-1921 . 579061)
- (-1922 . 579009) (-1923 . 578910) (-1924 . 578809) (-1925 . 578708)
- (-1926 . 578500) (-1927 . 578203) (-1928 . 578009) (-1929 . 577975)
- (-1930 . 577823) (-1931 . 577441) (-1932 . 577353) (-1933 . 576779)
- (-1934 . 576662) (-1935 . 576480) (-1936 . 576424) (-1937 . 576396)
- (-1938 . 576211) (-1939 . 576144) (-1940 . 575901) (-1941 . 575786)
- (-1942 . 575618) (-1943 . 575189) (-1944 . 574937) (-1945 . 574503)
- (-1946 . 573663) (-1947 . 573580) (-1948 . 573362) (-1949 . 573259)
- (-1950 . 573150) (-1951 . 572520) (-1952 . 572424) (-1953 . 572350)
- (-1954 . 572152) (-1955 . 572081) (-1956 . 571756) (-1957 . 571700)
- (-1958 . 571527) (-1959 . 571209) (-1960 . 571082) (-1961 . 570285)
- (-1962 . 570208) (-1963 . 570180) (-1964 . 569837) (-1965 . 569703)
- (-1966 . 569617) (-1967 . 569517) (-1968 . 569428) (-1969 . 569341)
- (-1970 . 569244) (-1971 . 569125) (-1972 . 568982) (-1973 . 568824)
- (-1974 . 568674) (-1975 . 568565) (-1976 . 568387) (-1977 . 568333)
- (-1978 . 568214) (-1979 . 568158) (-1980 . 568096) (-1981 . 567917)
- (-1982 . 567818) (-1983 . 567735) (-1984 . 567677) (-1985 . 567586)
- (-1986 . 567438) (-1987 . 567341) (-1988 . 567211) (-1989 . 567040)
- (-1990 . 566974) (-1991 . 566238) (-1992 . 566137) (-1993 . 565946)
- (-1994 . 565810) (-1995 . 565498) (-1996 . 565060) (-1997 . 564907)
- (-1998 . 564617) (-1999 . 564551) (-2000 . 563239) (-2001 . 563095)
- (-2002 . 562933) (-2003 . 562859) (-2004 . 562752) (-2005 . 562520)
- (-2006 . 562440) (-2007 . 561915) (-2008 . 561770) (-2009 . 561671)
- (-2010 . 561284) (-2011 . 561168) (-2012 . 561041) (-2013 . 560986)
- (-2014 . 560604) (-2015 . 559517) (-2016 . 559422) (-2017 . 559213)
- (-2018 . 558882) (-2019 . 558772) (-2020 . 558263) (-2021 . 558140)
- (-2022 . 558027) (-2023 . 557886) (-2024 . 557756) (-2025 . 557704)
- (-2026 . 557366) (-2027 . 556722) (-2028 . 556538) (-2029 . 556407)
- (-2030 . 556324) (-2031 . 556230) (-2032 . 556174) (-2033 . 555783)
- (-2034 . 555732) (-2035 . 555348) (-2036 . 555190) (-2037 . 555102)
- (-2038 . 554241) (-2039 . 554108) (-2040 . 553993) (-2041 . 553921)
- (-2042 . 552749) (-2043 . 552596) (-2044 . 550464) (-2045 . 550385)
- (-2046 . 550123) (-2047 . 549880) (-2048 . 549810) (-2049 . 549701)
- (-2050 . 549627) (-2051 . 549282) (-2052 . 549160) (-2053 . 549036)
- (-2054 . 548946) (-2055 . 548783) (-2056 . 548554) (-2057 . 548439)
- (-2058 . 548316) (-2059 . 548264) (-2060 . 548018) (-2061 . 547514)
- (-2062 . 547375) (-2063 . 547313) (-2064 . 546910) (-2065 . 546822)
- (-2066 . 546725) (-2067 . 546612) (-2068 . 546499) (-2069 . 545362)
- (-2070 . 545222) (-2071 . 545127) (-2072 . 545059) (-2073 . 544918)
- (-2074 . 544668) (-2075 . 544336) (-2076 . 544237) (-2077 . 544141)
- (-2078 . 541873) (-2079 . 541803) (-2080 . 541650) (-2081 . 541570)
- (-2082 . 540162) (-2083 . 540133) (-2084 . 540073) (-2085 . 539964)
- (-2086 . 539904) (-2087 . 539812) (-2088 . 539775) (-2089 . 539665)
- (-2090 . 539585) (-2091 . 539499) (-2092 . 539344) (-2093 . 539186)
- (-2094 . 539089) (-2095 . 538969) (-2096 . 538823) (-2097 . 538277)
- (-2098 . 538111) (-2099 . 537852) (-2100 . 537778) (-2101 . 536597)
- (-2102 . 536487) (-2103 . 536241) (-2104 . 536132) (-2105 . 536065)
- (-2106 . 535727) (-2107 . 535643) (-2108 . 535396) (-2109 . 535165)
- (-2110 . 533314) (-2111 . 533091) (-2112 . 532841) (-2113 . 532747)
- (-2114 . 532431) (-2115 . 532323) (-2116 . 532207) (-2117 . 532009)
- (-2118 . 531927) (-2119 . 531591) (-2120 . 526078) (-2121 . 525969)
- (-2122 . 525892) (-2123 . 525556) (-2124 . 525458) (-2125 . 525293)
- (-2126 . 525115) (-2127 . 524518) (-2128 . 524409) (-2129 . 524230)
- (-2130 . 524084) (-2131 . 523985) (-2132 . 523884) (-2133 . 523796)
- (-2134 . 523408) (-2135 . 523293) (-2136 . 522978) (-2137 . 522900)
- (-2138 . 522742) (-2139 . 522636) (-2140 . 522550) (-2141 . 522304)
- (-2142 . 522218) (-2143 . 522043) (-2144 . 521850) (-2145 . 521762)
- (-2146 . 521307) (-2147 . 521241) (-2148 . 521002) (-2149 . 520788)
- (-2150 . 520664) (-2151 . 520243) (-2152 . 519641) (-2153 . 518766)
- (-2154 . 518520) (-2155 . 518418) (-2156 . 518332) (-2157 . 518118)
- (-2158 . 517972) (-2159 . 517627) (-2160 . 517278) (-2161 . 517204)
- (-2162 . 517176) (-2163 . 517052) (-2164 . 516779) (-2165 . 516602)
- (-2166 . 516446) (-2167 . 516306) (-2168 . 516226) (-2169 . 516000)
- (-2170 . 515932) (-2171 . 515538) (-2172 . 515297) (-2173 . 515153)
- (-2174 . 514925) (-2175 . 514464) (-2176 . 514249) (-2177 . 513928)
- (-2178 . 513603) (-2179 . 513423) (-2180 . 513208) (-2181 . 513110)
- (-2182 . 512965) (-2183 . 512856) (-2184 . 512755) (-2185 . 512700)
- (-2186 . 512542) (-2187 . 512454) (-2188 . 512333) (-2189 . 511767)
- (-2190 . 511626) (-2191 . 511517) (-2192 . 511458) (-2193 . 511337)
- (-2194 . 511221) (-2195 . 511165) (-2196 . 510876) (-2197 . 510697)
- (-2198 . 510609) (-2199 . 510535) (-2200 . 510480) (-2201 . 509056)
- (-2202 . 508490) (-2203 . 508217) (-2204 . 508145) (-2205 . 507956)
- (-2206 . 507821) (-2207 . 507787) (-2208 . 507548) (-2209 . 507482)
- (-2210 . 507264) (-2211 . 506913) (-2212 . 506832) (-2213 . 506800)
- (-2214 . 506745) (-2215 . 506602) (-2216 . 506019) (-2217 . 505929)
- (-2218 . 505823) (-2219 . 505304) (-2220 . 505208) (-2221 . 505050)
- (-2222 . 504890) (-2223 . 504763) (-2224 . 504442) (-2225 . 504373)
- (-2226 . 503555) (-2227 . 503472) (-2228 . 503316) (-2229 . 503161)
- (-2230 . 503091) (-2231 . 502712) (-2232 . 502675) (-2233 . 502282)
- (-2234 . 502214) (-2235 . 502029) (-2236 . 501830) (-2237 . 501498)
- (-2238 . 501293) (-2239 . 501111) (-2240 . 500976) (-2241 . 500914)
- (-2242 . 500831) (-2243 . 500732) (-2244 . 499103) (-2245 . 499035)
- (-2246 . 498976) (-2247 . 498948) (-2248 . 498776) (-2249 . 498672)
- (-2250 . 498519) (-2251 . 498423) (-2252 . 498036) (-2253 . 496635)
- (-2254 . 496521) (-2255 . 496215) (-2256 . 496083) (-2257 . 495965)
- (-2258 . 495099) (-2259 . 494974) (-2260 . 494912) (-2261 . 494658)
- (-2262 . 494607) (-2263 . 494454) (-2264 . 494350) (-2265 . 494243)
- (-2266 . 494127) (-2267 . 493989) (-2268 . 493834) (-2269 . 493739)
- (-2270 . 493421) (-2271 . 492047) (-2272 . 491800) (-2273 . 491484)
- (-2274 . 491188) (-2275 . 491136) (-2276 . 491013) (-2277 . 490956)
- (-2278 . 490862) (-2279 . 490762) (-2280 . 490668) (-2281 . 490341)
- (-2282 . 490249) (-2283 . 490109) (-2284 . 490037) (-2285 . 489893)
- (-2286 . 489771) (-2287 . 489601) (-2288 . 489428) (-2289 . 489360)
- (-2290 . 489186) (-2291 . 489157) (-2292 . 489083) (-2293 . 488938)
- (-2294 . 488794) (-2295 . 488612) (-2296 . 488540) (-2297 . 488487)
- (-2298 . 488334) (-2299 . 488137) (-2300 . 487984) (-2301 . 487803)
- (-2302 . 487751) (-2303 . 487505) (-2304 . 487434) (-2305 . 487243)
- (-2306 . 487115) (-2307 . 487062) (-2308 . 486903) (-2309 . 486848)
- (-2310 . 486799) (-2311 . 486725) (-2312 . 486691) (-2313 . 486663)
- (-2314 . 486444) (-2315 . 486378) (-2316 . 486321) (-2317 . 486217)
- (-2318 . 486151) (-2319 . 486095) (-2320 . 484237) (-2321 . 484167)
- (-2322 . 484112) (-2323 . 484056) (-2324 . 483961) (-2325 . 483854)
- (-2326 . 483729) (-2327 . 483695) (-2328 . 483667) (-2329 . 483588)
- (-2330 . 483516) (-2331 . 483463) (-2332 . 483389) (-2333 . 483303)
- (-2334 . 483225) (-2335 . 482972) (-2336 . 482873) (-2337 . 482573)
- (-2338 . 482476) (-2339 . 480638) (-2340 . 480508) (-2341 . 480342)
- (-2342 . 480184) (-2343 . 480113) (-2344 . 479832) (-2345 . 479574)
- (-2346 . 479447) (-2347 . 479340) (-2348 . 479284) (-2349 . 479228)
- (-2350 . 479112) (-2351 . 478917) (-2352 . 478865) (-2353 . 478757)
- (-2354 . 477247) (-2355 . 477145) (-2356 . 477061) (-2357 . 476948)
- (-2358 . 476658) (-2359 . 476626) (-2360 . 476555) (-2361 . 476477)
- (-2362 . 476231) (-2363 . 476132) (-2364 . 475905) (-2365 . 475764)
- (-2366 . 474216) (-2367 . 474137) (-2368 . 474074) (-2369 . 473796)
- (-2370 . 473655) (-2371 . 473568) (-2372 . 473486) (-2373 . 473374)
- (-2374 . 473319) (-2375 . 473255) (-2376 . 473004) (-2377 . 472931)
- (-2378 . 472824) (-2379 . 472250) (-2380 . 471998) (-2381 . 471780)
- (-2382 . 471692) (-2383 . 471544) (-2384 . 471500) (-2385 . 471333)
- (-2386 . 471181) (-2387 . 471077) (-2388 . 470808) (-2389 . 470581)
- (-2390 . 470340) (-2391 . 470101) (-2392 . 470007) (-2393 . 469895)
- (-2394 . 469822) (-2395 . 469773) (-2396 . 469721) (-2397 . 469518)
- (-2398 . 469468) (-2399 . 469411) (-2400 . 469337) (-2401 . 469252)
- (-2402 . 469200) (-2403 . 469103) (-2404 . 468927) (-2405 . 468771)
- (-2406 . 468589) (-2407 . 468476) (-2408 . 468445) (-2409 . 468318)
- (-2410 . 468259) (-2411 . 468028) (-2412 . 467869) (-2413 . 467617)
- (-2414 . 467464) (-2415 . 467405) (-2416 . 467131) (-2417 . 466990)
- (-2418 . 466905) (-2419 . 466853) (-2420 . 466797) (-2421 . 466652)
- (-2422 . 466579) (-2423 . 466526) (-2424 . 466439) (-2425 . 466286)
- (-2426 . 465106) (-2427 . 464571) (-2428 . 464540) (-2429 . 464051)
- (-2430 . 463978) (-2431 . 463864) (-2432 . 463736) (-2433 . 463670)
- (-2434 . 463558) (-2435 . 463130) (-2436 . 462971) (-2437 . 462725)
- (-2438 . 462673) (-2439 . 462561) (-2440 . 462509) (-2441 . 462475)
- (-2442 . 462422) (-2443 . 462370) (-2444 . 462171) (-2445 . 462084)
- (-2446 . 461996) (-2447 . 461882) (-2448 . 461795) (-2449 . 461642)
- (-2450 . 461471) (-2451 . 461023) (-2452 . 460886) (-2453 . 460787)
- (-2454 . 460637) (-2455 . 460522) (-2456 . 460357) (-2457 . 460274)
- (-2458 . 460194) (-2459 . 459942) (-2460 . 459887) (-2461 . 459670)
- (-2462 . 459598) (-2463 . 459500) (-2464 . 459358) (-2465 . 459240)
- (-2466 . 459097) (-2467 . 459004) (-2468 . 458885) (-2469 . 458812)
- (-2470 . 458688) (-2471 . 458299) (-2472 . 458241) (-2473 . 458190)
- (-2474 . 457317) (-2475 . 457265) (-2476 . 457119) (-2477 . 457067)
- (-2478 . 456902) (-2479 . 456617) (-2480 . 455953) (-2481 . 455856)
- (-2482 . 455637) (-2483 . 455321) (-2484 . 455200) (-2485 . 454014)
- (-2486 . 453962) (-2487 . 453840) (-2488 . 453673) (-2489 . 453530)
- (-2490 . 453316) (-2491 . 453243) (-2492 . 453157) (-2493 . 452566)
- (-2494 . 452380) (-2495 . 452294) (-2496 . 452188) (-2497 . 452108)
- (-2498 . 451950) (-2499 . 450768) (-2500 . 450187) (-2501 . 450072)
- (-2502 . 449989) (-2503 . 449890) (-2504 . 449818) (-2505 . 449702)
- (-2506 . 449493) (-2507 . 449398) (-2508 . 449282) (-2509 . 449196)
- (-2510 . 449123) (-2511 . 448975) (-2512 . 446769) (-2513 . 446550)
- (-2514 . 446422) (-2515 . 446369) (-2516 . 446275) (-2517 . 446201)
- (-2518 . 446149) (-2519 . 446075) (-2520 . 445965) (-2521 . 445895)
- (-2522 . 445579) (-2523 . 445526) (-2524 . 445132) (-2525 . 444933)
- (-2526 . 444742) (-2527 . 444676) (-2528 . 444551) (-2529 . 444457)
- (-2530 . 444387) (-2531 . 444210) (-2532 . 444138) (-2533 . 444061)
- (-2534 . 443097) (-2535 . 443069) (-2536 . 443041) (-2537 . 442971)
- (-2538 . 442692) (-2539 . 442195) (-2540 . 442073) (-2541 . 442000)
- (-2542 . 441844) (-2543 . 441284) (-2544 . 441156) (-2545 . 441107)
- (-2546 . 440258) (-2547 . 440160) (-2548 . 440101) (-2549 . 439821)
- (-2550 . 439581) (-2551 . 439477) (-2552 . 439339) (-2553 . 439288)
- (-2554 . 439179) (-2555 . 438809) (-2556 . 438741) (-2557 . 438604)
- (-2558 . 434983) (-2559 . 434760) (-2560 . 434674) (-2561 . 434393)
- (-2562 . 434320) (-2563 . 433817) (-2564 . 433694) (-2565 . 433635)
- (-2566 . 433561) (-2567 . 433480) (-2568 . 433386) (-2569 . 433209)
- (-2570 . 433002) (-2571 . 432822) (-2572 . 432738) (-2573 . 432683)
- (-2574 . 432595) (-2575 . 432493) (-2576 . 432374) (-2577 . 432081)
- (-2578 . 432013) (-2579 . 431671) (-2580 . 431540) (-2581 . 430542)
- (-2582 . 430428) (-2583 . 430304) (-2584 . 430232) (-2585 . 430166)
- (-2586 . 430039) (-2587 . 429586) (-2588 . 429170) (-2589 . 429033)
- (-2590 . 428962) (-2591 . 428847) (-2592 . 428694) (-2593 . 428108)
- (-2594 . 427975) (-2595 . 427831) (-2596 . 427739) (-2597 . 427408)
- (-2598 . 427322) (-2599 . 426689) (-2600 . 426443) (-2601 . 426312)
- (-2602 . 426171) (-2603 . 426041) (-2604 . 425946) (-2605 . 425868)
- (-2606 . 425790) (-2607 . 425696) (-2608 . 425643) (-2609 . 425059)
- (-2610 . 424914) (-2611 . 424731) (-2612 . 424571) (-2613 . 424422)
- (-2614 . 424266) (-2615 . 424134) (-2616 . 424079) (-2617 . 423972)
- (-2618 . 423712) (-2619 . 423615) (-2620 . 423499) (-2621 . 423244)
- (-2622 . 423034) (-2623 . 422981) (-2624 . 422868) (-2625 . 422816)
- (-2626 . 422743) (-2627 . 422659) (-2628 . 422510) (-2629 . 422454)
- (-2630 . 422381) (-2631 . 422312) (-2632 . 421890) (-2633 . 421640)
- (-2634 . 421522) (-2635 . 421288) (-2636 . 421105) (-2637 . 420947)
- (-2638 . 420834) (-2639 . 420763) (-2640 . 420160) (-2641 . 419831)
- (-2642 . 419760) (-2643 . 419704) (-2644 . 418419) (-2645 . 418340)
- (-2646 . 418253) (-2647 . 418198) (-2648 . 418067) (-2649 . 417984)
- (-2650 . 417828) (-2651 . 417775) (-2652 . 417711) (-2653 . 417616)
- (-2654 . 417446) (-2655 . 417352) (-2656 . 417243) (-2657 . 417177)
- (-2658 . 411839) (-2659 . 411733) (-2660 . 411058) (-2661 . 410322)
- (-2662 . 410053) (-2663 . 409927) (-2664 . 409826) (-2665 . 409724)
- (-2666 . 409667) (-2667 . 409614) (-2668 . 409389) (-2669 . 409267)
- (-2670 . 409163) (-2671 . 409002) (-2672 . 408865) (-2673 . 408664)
- (-2674 . 408551) (-2675 . 407672) (-2676 . 407599) (-2677 . 407545)
- (-2678 . 407420) (-2679 . 407296) (-2680 . 407137) (-2681 . 406739)
- (-2682 . 406470) (-2683 . 406387) (-2684 . 406081) (-2685 . 402083)
- (-2686 . 401941) (-2687 . 401818) (-2688 . 401659) (-2689 . 401452)
- (-2690 . 401345) (-2691 . 401202) (-2692 . 401116) (-2693 . 400974)
- (-2694 . 400888) (-2695 . 400677) (-2696 . 400611) (-2697 . 399857)
- (-2698 . 399739) (-2699 . 399550) (-2700 . 399254) (-2701 . 399135)
- (-2702 . 398758) (-2703 . 398660) (-2704 . 398373) (-2705 . 398117)
- (-2706 . 398039) (-2707 . 397986) (-2708 . 397903) (-2709 . 397852)
- (-2710 . 397772) (-2711 . 397445) (-2712 . 397379) (-2713 . 392837)
- (-2714 . 392652) (-2715 . 392212) (-2716 . 391759) (-2717 . 391665)
- (-2718 . 390453) (-2719 . 390374) (-2720 . 390201) (-2721 . 390032)
- (-2722 . 389925) (-2723 . 389781) (-2724 . 389718) (-2725 . 389632)
- (-2726 . 389488) (-2727 . 389436) (-2728 . 389233) (-2729 . 388849)
- (-2730 . 388606) (-2731 . 388304) (-2732 . 388250) (-2733 . 387804)
- (-2734 . 387696) (-2735 . 387582) (-2736 . 387417) (-2737 . 387365)
- (-2738 . 387284) (-2739 . 387233) (-2740 . 387078) (-2741 . 386851)
- (-2742 . 386656) (-2743 . 386538) (-2744 . 386424) (-2745 . 386372)
- (-2746 . 386319) (-2747 . 386186) (-2748 . 386133) (-2749 . 386081)
- (-2750 . 385963) (-2751 . 385935) (-2752 . 385883) (-2753 . 385800)
- (-2754 . 385699) (-2755 . 385592) (-2756 . 385539) (-2757 . 385334)
- (-2758 . 384787) (-2759 . 384686) (-2760 . 384499) (-2761 . 384397)
- (-2762 . 384254) (-2763 . 382958) (-2764 . 382906) (-2765 . 382747)
- (-2766 . 382625) (-2767 . 382295) (-2768 . 382116) (-2769 . 381861)
- (-2770 . 381287) (-2771 . 381137) (-2772 . 381014) (-2773 . 380961)
- (-2774 . 380908) (-2775 . 380690) (-2776 . 380611) (-2777 . 380482)
- (-2778 . 380369) (-2779 . 380266) (-2780 . 380238) (-2781 . 380160)
- (-2782 . 379915) (-2783 . 379863) (-2784 . 379808) (-2785 . 379698)
- (-2786 . 379406) (-2787 . 379277) (-2788 . 379243) (-2789 . 378892)
- (-2790 . 378808) (-2791 . 378650) (-2792 . 378553) (-2793 . 378261)
- (-2794 . 377718) (-2795 . 377596) (-2796 . 363482) (-2797 . 362844)
- (-2798 . 362597) (-2799 . 362349) (-2800 . 362031) (-2801 . 361999)
- (-2802 . 361846) (-2803 . 361794) (-2804 . 361721) (-2805 . 361650)
- (-2806 . 361227) (-2807 . 361172) (-2808 . 351612) (-2809 . 351500)
- (-2810 . 351472) (-2811 . 351301) (-2812 . 351238) (-2813 . 351061)
- (-2814 . 350988) (-2815 . 350717) (-2816 . 348861) (-2817 . 348811)
- (-2818 . 348110) (-2819 . 348003) (-2820 . 346533) (-2821 . 346478)
- (-2822 . 346426) (-2823 . 346253) (-2824 . 346161) (-2825 . 343234)
- (-2826 . 343139) (-2827 . 343090) (-2828 . 342958) (-2829 . 342678)
- (-2830 . 342524) (-2831 . 342378) (-2832 . 341951) (-2833 . 341877)
- (-2834 . 341778) (-2835 . 341710) (-2836 . 341657) (-2837 . 341569)
- (-2838 . 341512) (-2839 . 341369) (-2840 . 340499) (-2841 . 340432)
- (-2842 . 340272) (-2843 . 340142) (-2844 . 335423) (-2845 . 335370)
- (-2846 . 335193) (-2847 . 334945) (-2848 . 334856) (-2849 . 333078)
- (-2850 . 333026) (-2851 . 332916) (-2852 . 332806) (-2853 . 332522)
- (-2854 . 332470) (-2855 . 332438) (-2856 . 331975) (-2857 . 331666)
- (-2858 . 331148) (-2859 . 331028) (-2860 . 330940) (-2861 . 330881)
- (-2862 . 330602) (-2863 . 330495) (-2864 . 330136) (-2865 . 330002)
- (-2866 . 329888) (-2867 . 329781) (-2868 . 329608) (-2869 . 329416)
- (-2870 . 329243) (-2871 . 329183) (-2872 . 329109) (-2873 . 328817)
- (-2874 . 328523) (-2875 . 327882) (-2876 . 327790) (-2877 . 327681)
- (-2878 . 327532) (-2879 . 327479) (-2880 . 327033) (-2881 . 326925)
- (-2882 . 326404) (-2883 . 326281) (-2884 . 326195) (-2885 . 326102)
- (-2886 . 325650) (-2887 . 325576) (-2888 . 325478) (-2889 . 325288)
- (-2890 . 325218) (-2891 . 325050) (-2892 . 324884) (-2893 . 324120)
- (-2894 . 324030) (-2895 . 323977) (-2896 . 323863) (-2897 . 323627)
- (-2898 . 323405) (-2899 . 323290) (-2900 . 322946) (-2901 . 322699)
- (-2902 . 322670) (-2903 . 322554) (-2904 . 322411) (-2905 . 321985)
- (-2906 . 321901) (-2907 . 321756) (-2908 . 321617) (-2909 . 321480)
- (-2910 . 321431) (-2911 . 321288) (-2912 . 321211) (-2913 . 321098)
- (-2914 . 320955) (-2915 . 320845) (-2916 . 320743) (-2917 . 320512)
- (-2918 . 319484) (-2919 . 319364) (-2920 . 319298) (-2921 . 319108)
- (-2922 . 318821) (-2923 . 318609) (-2924 . 318391) (-2925 . 318228)
- (-2926 . 318128) (-2927 . 317991) (-2928 . 317681) (-2929 . 317551)
- (-2930 . 317433) (-2931 . 317337) (-2932 . 317213) (-2933 . 317125)
- (-2934 . 317051) (-2935 . 316999) (-2936 . 316905) (-2937 . 316810)
- (-2938 . 316681) (-2939 . 316628) (-2940 . 316462) (-2941 . 312302)
- (-2942 . 312250) (-2943 . 312064) (-2944 . 310476) (-2945 . 310317)
- (-2946 . 310167) (-2947 . 310094) (-2948 . 309893) (-2949 . 309827)
- (-2950 . 309553) (-2951 . 309365) (-2952 . 309189) (-2953 . 308736)
- (-2954 . 308648) (-2955 . 308494) (-2956 . 308408) (-2957 . 308158)
- (-2958 . 308096) (-2959 . 307706) (-2960 . 307599) (-2961 . 307442)
- (-2962 . 307370) (-2963 . 307004) (-2964 . 306840) (-2965 . 306639)
- (-2966 . 306515) (-2967 . 306132) (-2968 . 305419) (-2969 . 305154)
- (-2970 . 305035) (-2971 . 304828) (-2972 . 304758) (-2973 . 304539)
- (-2974 . 304320) (-2975 . 303122) (-2976 . 302984) (-2977 . 302876)
- (-2978 . 302817) (-2979 . 301953) (-2980 . 301870) (-2981 . 301836)
- (-2982 . 301802) (-2983 . 301394) (-2984 . 301122) (-2985 . 301002)
- (-2986 . 300949) (-2987 . 300804) (-2988 . 300584) (-2989 . 300556)
- (-2990 . 300337) (-2991 . 299964) (-2992 . 299838) (-2993 . 299716)
- (-2994 . 299307) (-2995 . 299176) (-2996 . 299094) (-2997 . 298880)
- (-2998 . 298612) (-2999 . 298533) (-3000 . 298399) (-3001 . 298235)
- (-3002 . 297963) (-3003 . 297734) (-3004 . 297531) (-3005 . 296892)
- (-3006 . 296840) (-3007 . 296521) (-3008 . 296472) (-3009 . 296420)
- (-3010 . 295931) (-3011 . 295879) (-3012 . 295802) (-3013 . 295502)
- (-3014 . 295223) (-3015 . 294985) (-3016 . 294692) (-3017 . 294626)
- (-3018 . 294193) (-3019 . 293975) (-3020 . 293905) (-3021 . 293786)
- (-3022 . 293570) (-3023 . 293510) (-3024 . 293444) (-3025 . 293332)
- (-3026 . 293248) (-3027 . 292881) (-3028 . 292828) (-3029 . 292026)
- (-3030 . 291724) (-3031 . 291566) (-3032 . 291431) (-3033 . 291058)
- (-3034 . 290906) (-3035 . 290855) (-3036 . 290709) (-3037 . 290609)
- (-3038 . 290412) (-3039 . 290179) (-3040 . 290101) (-3041 . 289792)
- (-3042 . 289736) (-3043 . 289565) (-3044 . 289512) (-3045 . 289405)
- (-3046 . 289348) (-3047 . 289095) (-3048 . 288971) (-3049 . 288915)
- (-3050 . 288737) (-3051 . 288688) (-3052 . 288437) (-3053 . 288281)
- (-3054 . 288188) (-3055 . 288030) (-3056 . 287963) (-3057 . 287796)
- (-3058 . 287689) (-3059 . 287615) (-3060 . 287490) (-3061 . 287294)
- (-3062 . 287131) (-3063 . 286906) (-3064 . 286768) (-3065 . 286636)
- (-3066 . 286549) (-3067 . 286469) (-3068 . 284355) (-3069 . 284164)
- (-3070 . 283878) (-3071 . 283774) (-3072 . 283667) (-3073 . 283559)
- (-3074 . 283356) (-3075 . 283191) (-3076 . 282010) (-3077 . 281873)
- (-3078 . 281775) (-3079 . 281527) (-3080 . 281454) (-3081 . 281338)
- (-3082 . 281231) (-3083 . 281047) (-3084 . 281010) (-3085 . 280843)
- (-3086 . 280140) (-3087 . 279996) (-3088 . 279945) (-3089 . 279877)
- (-3090 . 279516) (-3091 . 279155) (-3092 . 279077) (-3093 . 278961)
- (-3094 . 278801) (-3095 . 278149) (-3096 . 277628) (-3097 . 277104)
- (-3098 . 277025) (-3099 . 276960) (-3100 . 276859) (-3101 . 276782)
- (-3102 . 276449) (-3103 . 276237) (-3104 . 276135) (-3105 . 276083)
- (-3106 . 276009) (-3107 . 275898) (-3108 . 275785) (-3109 . 275582)
- (-3110 . 275500) (-3111 . 275342) (-3112 . 275292) (-3113 . 274931)
- (-3114 . 274720) (-3115 . 274514) (-3116 . 274309) (-3117 . 274144)
- (-3118 . 274007) (-3119 . 273816) (-3120 . 273734) (-3121 . 273648)
- (-3122 . 272398) (-3123 . 272294) (-3124 . 272239) (-3125 . 272165)
- (-3126 . 272084) (-3127 . 271954) (-3128 . 271219) (-3129 . 271028)
- (-3130 . 270501) (-3131 . 270338) (-3132 . 270238) (-3133 . 270150)
- (-3134 . 270098) (-3135 . 269285) (-3136 . 269174) (-3137 . 269011)
- (-3138 . 268886) (-3139 . 268779) (-3140 . 268670) (-3141 . 268621)
- (-3142 . 268566) (-3143 . 268417) (-3144 . 268333) (-3145 . 268196)
- (-3146 . 268069) (-3147 . 267860) (-3148 . 267726) (-3149 . 267654)
- (-3150 . 267582) (-3151 . 267529) (-3152 . 267458) (-3153 . 267339)
- (-3154 . 267119) (-3155 . 266938) (-3156 . 266122) (-3157 . 265206)
- (-3158 . 264998) (-3159 . 264929) (-3160 . 264687) (-3161 . 264653)
- (-3162 . 264565) (-3163 . 264467) (-3164 . 263650) (-3165 . 263584)
- (-3166 . 263285) (-3167 . 263025) (-3168 . 262954) (-3169 . 262728)
- (-3170 . 262208) (-3171 . 261662) (-3172 . 261545) (-3173 . 261314)
- (-3174 . 261243) (-3175 . 261136) (-3176 . 261052) (-3177 . 260946)
- (-3178 . 260891) (-3179 . 260736) (-3180 . 260662) (-3181 . 260610)
- (-3182 . 260488) (-3183 . 260360) (-3184 . 260294) (-3185 . 260206)
- (-3186 . 259740) (-3187 . 259604) (-3188 . 259466) (-3189 . 259293)
- (-3190 . 259160) (-3191 . 259132) (-3192 . 258927) (-3193 . 258496)
- (-3194 . 258116) (-3195 . 257678) (-3196 . 257559) (-3197 . 257369)
- (-3198 . 256839) (-3199 . 256765) (-3200 . 256669) (-3201 . 256576)
- (-3202 . 256524) (-3203 . 256433) (-3204 . 256310) (-3205 . 256155)
- (-3206 . 255901) (-3207 . 255723) (-3208 . 254916) (-3209 . 254855)
- (-3210 . 254652) (-3211 . 254551) (-3212 . 254478) (-3213 . 254184)
- (-3214 . 253966) (-3215 . 253873) (-3216 . 253659) (-3217 . 253533)
- (-3218 . 253139) (-3219 . 253053) (-3220 . 252586) (-3221 . 252094)
- (-3222 . 251991) (-3223 . 251872) (-3224 . 251733) (-3225 . 251649)
- (-3226 . 251494) (-3227 . 251462) (-3228 . 251406) (-3229 . 251304)
- (-3230 . 250655) (-3231 . 250502) (-3232 . 250259) (-3233 . 250152)
- (-3234 . 249248) (-3235 . 249030) (-3236 . 248861) (-3237 . 248604)
- (-3238 . 247954) (-3239 . 247880) (-3240 . 247771) (-3241 . 247705)
- (-3242 . 247618) (-3243 . 247381) (-3244 . 247328) (-3245 . 247211)
- (-3246 . 247074) (-3247 . 246896) (-3248 . 246565) (-3249 . 246357)
- (-3250 . 246290) (-3251 . 246223) (-3252 . 246032) (-3253 . 245901)
- (-3254 . 245827) (-3255 . 245756) (-3256 . 245703) (-3257 . 245547)
- (-3258 . 245494) (-3259 . 245145) (-3260 . 245057) (-3261 . 244916)
- (-3262 . 244778) (-3263 . 244668) (-3264 . 241332) (-3265 . 241237)
- (-3266 . 240856) (-3267 . 240776) (-3268 . 240483) (-3269 . 240301)
- (-3270 . 240115) (-3271 . 240013) (-3272 . 239782) (-3273 . 239704)
- (-3274 . 239654) (-3275 . 239483) (-3276 . 239107) (-3277 . 238897)
- (-3278 . 238473) (-3279 . 238333) (-3280 . 238203) (-3281 . 238129)
- (-3282 . 237974) (-3283 . 237879) (-3284 . 237419) (-3285 . 236992)
- (-3286 . 236630) (-3287 . 236383) (-3288 . 235996) (-3289 . 235899)
- (-3290 . 235831) (-3291 . 235707) (-3292 . 235626) (-3293 . 235491)
- (-3294 . 235239) (-3295 . 235115) (-3296 . 235053) (-3297 . 234881)
- (-3298 . 234804) (-3299 . 234707) (-3300 . 234657) (-3301 . 234432)
- (-3302 . 234377) (-3303 . 233561) (-3304 . 233492) (-3305 . 233404)
- (-3306 . 233351) (-3307 . 232964) (-3308 . 232622) (-3309 . 232520)
- (-3310 . 232355) (-3311 . 232221) (-3312 . 232128) (-3313 . 232002)
- (-3314 . 231505) (-3315 . 230954) (-3316 . 230781) (-3317 . 230289)
- (-3318 . 229810) (-3319 . 229533) (-3320 . 229348) (-3321 . 229208)
- (-3322 . 229090) (-3323 . 228901) (-3324 . 228764) (-3325 . 228353)
- (-3326 . 228170) (-3327 . 228101) (-3328 . 228041) (-3329 . 227989)
- (-3330 . 227478) (-3331 . 227273) (-3332 . 227133) (-3333 . 226821)
- (-3334 . 226792) (-3335 . 226715) (-3336 . 226625) (-3337 . 226471)
- (-3338 . 226370) (-3339 . 226176) (-3340 . 220969) (-3341 . 220727)
- (-3342 . 220655) (-3343 . 220508) (-3344 . 220440) (-3345 . 220372)
- (-3346 . 220181) (-3347 . 220153) (-3348 . 220090) (-3349 . 219490)
- (-3350 . 219434) (-3351 . 218942) (-3352 . 218871) (-3353 . 218773)
- (-3354 . 218570) (-3355 . 218511) (-3356 . 218461) (-3357 . 218171)
- (-3358 . 217982) (-3359 . 217322) (-3360 . 217236) (-3361 . 217181)
- (-3362 . 216575) (-3363 . 216403) (-3364 . 216338) (-3365 . 216151)
- (-3366 . 216071) (-3367 . 215967) (-3368 . 215883) (-3369 . 215813)
- (-3370 . 215669) (-3371 . 215641) (-3372 . 215561) (-3373 . 215265)
- (-3374 . 215093) (-3375 . 215023) (-3376 . 214926) (-3377 . 214411)
- (-3378 . 214274) (-3379 . 214159) (-3380 . 214128) (-3381 . 213929)
- (-3382 . 213850) (-3383 . 213743) (-3384 . 213605) (-3385 . 213522)
- (-3386 . 213360) (-3387 . 213188) (-3388 . 213087) (-3389 . 213001)
- (-3390 . 212831) (-3391 . 212704) (-3392 . 212580) (-3393 . 212332)
- (-3394 . 212219) (-3395 . 212021) (-3396 . 211727) (-3397 . 211555)
- (-3398 . 211521) (-3399 . 211330) (-3400 . 211256) (-3401 . 211068)
- (-3402 . 210928) (-3403 . 210834) (-3404 . 210674) (-3405 . 210580)
- (-3406 . 210443) (-3407 . 210314) (-3408 . 210242) (-3409 . 210184)
- (-3410 . 209066) (-3411 . 208992) (-3412 . 208894) (-3413 . 208781)
- (-3414 . 208711) (-3415 . 208637) (-3416 . 208284) (-3417 . 208182)
- (-3418 . 208043) (-3419 . 207900) (-3420 . 207034) (-3421 . 206962)
- (-3422 . 206903) (-3423 . 206365) (-3424 . 206205) (-3425 . 205834)
- (-3426 . 205784) (-3427 . 205629) (-3428 . 205577) (-3429 . 205511)
- (-3430 . 205428) (-3431 . 205006) (-3432 . 204828) (-3433 . 204750)
- (-3434 . 204193) (-3435 . 204164) (-3436 . 204051) (-3437 . 203938)
- (-3438 . 203844) (-3439 . 203514) (-3440 . 203360) (-3441 . 203092)
- (-3442 . 203039) (-3443 . 202969) (-3444 . 202892) (-3445 . 202807)
- (-3446 . 202661) (-3447 . 202469) (-3448 . 202441) (-3449 . 201846)
- (-3450 . 201717) (-3451 . 201422) (-3452 . 200971) (-3453 . 200898)
- (-3454 . 200619) (-3455 . 198457) (-3456 . 198148) (-3457 . 198041)
- (-3458 . 197970) (-3459 . 197843) (-3460 . 197748) (-3461 . 197609)
- (-3462 . 197557) (-3463 . 197413) (-3464 . 197385) (-3465 . 197305)
- (-3466 . 197112) (-3467 . 193813) (-3468 . 193757) (-3469 . 193667)
- (-3470 . 193468) (-3471 . 193171) (-3472 . 192653) (-3473 . 192546)
- (-3474 . 192472) (-3475 . 192362) (-3476 . 192050) (-3477 . 192000)
- (-3478 . 191940) (-3479 . 191852) (-3480 . 191519) (-3481 . 191396)
- (-3482 . 191269) (-3483 . 191216) (-3484 . 191184) (-3485 . 191089)
- (-3486 . 191030) (-3487 . 190929) (-3488 . 190866) (-3489 . 190776)
- (-3490 . 190556) (-3491 . 190229) (-3492 . 190024) (-3493 . 188727)
- (-3494 . 188598) (-3495 . 188380) (-3496 . 188264) (-3497 . 188195)
- (-3498 . 188003) (-3499 . 187639) (-3500 . 187587) (-3501 . 187474)
- (-3502 . 187366) (-3503 . 187177) (-3504 . 187143) (-3505 . 186996)
- (-3506 . 186908) (-3507 . 186799) (-3508 . 186439) (-3509 . 186216)
- (-3510 . 186163) (-3511 . 186084) (-3512 . 185888) (-3513 . 184616)
- (-3514 . 184521) (-3515 . 184114) (-3516 . 184051) (-3517 . 183939)
- (-3518 . 183877) (-3519 . 183770) (-3520 . 183617) (-3521 . 183537)
- (-3522 . 183371) (-3523 . 183030) (-3524 . 182915) (-3525 . 182639)
- (-3526 . 182451) (-3527 . 182371) (-3528 . 182280) (-3529 . 182224)
- (-3530 . 182137) (-3531 . 182085) (-3532 . 182014) (-3533 . 181906)
- (-3534 . 181768) (-3535 . 181633) (-3536 . 181258) (-3537 . 180701)
- (-3538 . 180442) (-3539 . 180340) (-3540 . 180201) (-3541 . 180133)
- (-3542 . 179619) (-3543 . 178962) (-3544 . 178751) (-3545 . 178613)
- (-3546 . 178207) (-3547 . 178130) (-3548 . 178025) (-3549 . 177947)
- (-3550 . 177759) (-3551 . 177641) (-3552 . 177299) (-3553 . 177219)
- (-3554 . 177138) (-3555 . 176931) (-3556 . 176876) (-3557 . 176799)
- (-3558 . 176625) (-3559 . 176519) (-3560 . 176386) (-3561 . 176337)
- (-3562 . 176232) (-3563 . 176149) (-3564 . 175698) (-3565 . 175318)
- (-3566 . 175238) (-3567 . 174792) (-3568 . 174715) (-3569 . 174522)
- (-3570 . 174030) (-3571 . 173956) (-3572 . 173901) (-3573 . 173770)
- (-3574 . 173490) (-3575 . 173267) (-3576 . 173151) (-3577 . 172670)
- (-3578 . 172549) (-3579 . 172450) (-3580 . 172278) (-3581 . 172226)
- (-3582 . 172149) (-3583 . 171917) (-3584 . 171747) (-3585 . 171649)
- (-3586 . 171554) (-3587 . 171130) (-3588 . 171044) (-3589 . 170934)
- (-3590 . 170860) (-3591 . 170737) (-3592 . 170346) (-3593 . 170269)
- (-3594 . 170170) (-3595 . 169821) (-3596 . 169663) (-3597 . 169458)
- (-3598 . 169219) (-3599 . 169142) (-3600 . 169024) (-3601 . 167684)
- (-3602 . 167574) (-3603 . 167073) (-3604 . 166966) (-3605 . 166872)
- (-3606 . 166807) (-3607 . 166757) (-3608 . 166704) (-3609 . 166502)
- (-3610 . 166341) (-3611 . 166245) (-3612 . 165841) (-3613 . 165622)
- (-3614 . 165512) (-3615 . 164509) (-3616 . 164439) (-3617 . 164323)
- (-3618 . 164031) (-3619 . 163363) (-3620 . 163164) (-3621 . 162949)
- (-3622 . 162881) (-3623 . 162795) (-3624 . 162707) (-3625 . 162366)
- (-3626 . 162270) (-3627 . 162169) (-3628 . 161956) (-3629 . 161853)
- (-3630 . 161779) (-3631 . 160541) (-3632 . 160438) (-3633 . 160367)
- (-3634 . 160068) (-3635 . 159965) (-3636 . 159752) (-3637 . 159650)
- (-3638 . 159517) (-3639 . 159408) (-3640 . 159057) (-3641 . 159008)
- (-3642 . 158887) (-3643 . 158742) (-3644 . 158523) (-3645 . 157910)
- (-3646 . 157816) (-3647 . 157743) (-3648 . 157573) (-3649 . 157436)
- (-3650 . 157367) (-3651 . 157071) (-3652 . 156937) (-3653 . 156750)
- (-3654 . 156568) (-3655 . 156141) (-3656 . 155810) (-3657 . 155681)
- (-3658 . 155587) (-3659 . 155376) (-3660 . 155215) (-3661 . 154823)
- (-3662 . 154720) (-3663 . 154190) (-3664 . 153816) (-3665 . 153718)
- (-3666 . 153656) (-3667 . 153543) (-3668 . 153490) (-3669 . 153345)
- (-3670 . 153220) (-3671 . 153007) (-3672 . 152888) (-3673 . 152851)
- (-3674 . 152508) (-3675 . 152409) (-3676 . 152337) (-3677 . 152260)
- (-3678 . 152132) (-3679 . 152054) (-3680 . 151982) (-3681 . 151819)
- (-3682 . 151765) (-3683 . 151637) (-3684 . 151431) (-3685 . 151151)
- (-3686 . 150597) (-3687 . 150305) (-3688 . 149969) (-3689 . 149667)
- (-3690 . 149596) (-3691 . 149538) (-3692 . 149470) (-3693 . 149290)
- (-3694 . 149143) (-3695 . 149077) (-3696 . 148990) (-3697 . 148603)
- (-3698 . 148250) (-3699 . 148195) (-3700 . 148142) (-3701 . 147888)
- (-3702 . 146311) (-3703 . 145768) (-3704 . 145686) (-3705 . 145620)
- (-3706 . 145567) (-3707 . 145533) (-3708 . 145430) (-3709 . 145331)
- (-3710 . 145280) (-3711 . 145173) (-3712 . 145141) (-3713 . 145085)
- (-3714 . 145012) (-3715 . 144919) (-3716 . 144663) (-3717 . 144604)
- (-3718 . 144451) (-3719 . 144383) (-3720 . 144331) (-3721 . 144217)
- (-3722 . 143939) (-3723 . 143802) (-3724 . 143592) (-3725 . 143540)
- (-3726 . 142438) (-3727 . 142047) (-3728 . 141654) (-3729 . 141625)
- (-3730 . 140971) (-3731 . 140880) (-3732 . 140678) (-3733 . 139712)
- (-3734 . 139573) (-3735 . 139309) (-3736 . 139256) (-3737 . 139149)
- (-3738 . 139002) (-3739 . 138360) (-3740 . 138142) (-3741 . 137975)
- (-3742 . 137895) (-3743 . 137201) (-3744 . 137116) (-3745 . 136974)
- (-3746 . 136718) (-3747 . 136600) (-3748 . 136531) (-3749 . 136448)
- (-3750 . 136334) (-3751 . 136251) (-3752 . 135976) (-3753 . 135924)
- (-3754 . 135854) (-3755 . 135794) (-3756 . 135676) (-3757 . 135509)
- (-3758 . 135457) (-3759 . 135337) (-3760 . 135164) (-3761 . 134660)
- (-3762 . 134609) (-3763 . 134578) (-3764 . 134413) (-3765 . 134189)
- (-3766 . 133996) (-3767 . 133725) (-3768 . 133518) (-3769 . 133460)
- (-3770 . 133362) (-3771 . 133219) (-3772 . 133122) (-3773 . 132959)
- (-3774 . 132642) (-3775 . 132283) (-3776 . 132221) (-3777 . 131417)
- (-3778 . 131272) (-3779 . 131201) (-3780 . 131170) (-3781 . 131034)
- (-3782 . 130879) (-3783 . 130776) (-3784 . 130724) (-3785 . 130671)
- (-3786 . 130618) (-3787 . 130560) (-3788 . 130468) (-3789 . 129983)
- (-3790 . 129830) (-3791 . 129559) (-3792 . 129385) (-3793 . 128634)
- (-3794 . 128408) (-3795 . 128355) (-3796 . 128262) (-3797 . 128191)
- (-3798 . 128099) (-3799 . 128003) (-3800 . 127838) (-3801 . 127715)
- (-3802 . 127579) (-3803 . 127436) (-3804 . 127311) (-3805 . 127283)
- (-3806 . 127209) (-3807 . 127010) (-3808 . 126924) (-3809 . 126767)
- (-3810 . 126337) (-3811 . 126229) (-3812 . 125630) (-3813 . 125553)
- (-3814 . 125458) (-3815 . 125170) (-3816 . 124952) (-3817 . 124356)
- (-3818 . 124279) (-3819 . 124200) (-3820 . 124148) (-3821 . 124064)
- (-3822 . 123911) (-3823 . 123780) (-3824 . 123728) (-3825 . 123631)
- (-3826 . 123369) (-3827 . 123155) (-3828 . 122781) (-3829 . 122681)
- (-3830 . 122400) (-3831 . 122323) (-3832 . 122080) (-3833 . 121993)
- (-3834 . 121636) (-3835 . 121550) (-3836 . 121412) (-3837 . 121074)
- (-3838 . 121000) (-3839 . 120898) (-3840 . 118934) (-3841 . 118709)
- (-3842 . 118333) (-3843 . 118062) (-3844 . 117933) (-3845 . 94513)
- (-3846 . 94404) (-3847 . 94066) (-3848 . 93989) (-3849 . 93894)
- (-3850 . 93824) (-3851 . 93706) (-3852 . 93654) (-3853 . 90902)
- (-3854 . 90739) (-3855 . 90362) (-3856 . 90302) (-3857 . 90198)
- (-3858 . 90129) (-3859 . 90001) (-3860 . 89848) (-3861 . 89653)
- (-3862 . 89532) (-3863 . 89392) (-3864 . 89159) (-3865 . 89104)
- (-3866 . 89020) (-3867 . 88308) (-3868 . 87550) (-3869 . 87462)
- (-3870 . 87391) (-3871 . 87297) (-3872 . 87167) (-3873 . 87051)
- (-3874 . 86829) (-3875 . 86537) (-3876 . 86431) (-3877 . 86349)
- (-3878 . 86249) (-3879 . 86143) (-3880 . 85742) (-3881 . 82961)
- (-3882 . 82820) (-3883 . 82734) (-3884 . 82554) (-3885 . 82449)
- (** . 79360) (-3887 . 79283) (-3888 . 79156) (-3889 . 79066)
- (-3890 . 78959) (-3891 . 78830) (-3892 . 78732) (-3893 . 78485)
- (-3894 . 78009) (-3895 . 77445) (-3896 . 77104) (-3897 . 77019)
- (-3898 . 76859) (-3899 . 76730) (-3900 . 76653) (-3901 . 74923)
- (-3902 . 73547) (-3903 . 73432) (-3904 . 73255) (-3905 . 73110)
- (-3906 . 72952) (-3907 . 72780) (-3908 . 72687) (-3909 . 72434)
- (-3910 . 72285) (-3911 . 72115) (-3912 . 72053) (-3913 . 71996)
- (-3914 . 71886) (-3915 . 71758) (-3916 . 71623) (-3917 . 71544)
- (-3918 . 71008) (-3919 . 70813) (-3920 . 70667) (-3921 . 70563)
- (-3922 . 70268) (-3923 . 70147) (-3924 . 69913) (-3925 . 69761)
- (-3926 . 68765) (-3927 . 68667) (-3928 . 68503) (-3929 . 67976)
- (-3930 . 67746) (-3931 . 67643) (-3932 . 67500) (-3933 . 67369)
- (-3934 . 67247) (-3935 . 67143) (-3936 . 67089) (-3937 . 67033)
- (-3938 . 66794) (-3939 . 66763) (-3940 . 66635) (-3941 . 66539)
- (-3942 . 66473) (-3943 . 66335) (-3944 . 66253) (-3945 . 65820)
- (-3946 . 65732) (-3947 . 65362) (-3948 . 65301) (-3949 . 65227)
- (-3950 . 65003) (-3951 . 64896) (-3952 . 64669) (-3953 . 64616)
- (-3954 . 64306) (-3955 . 64207) (-3956 . 64107) (-3957 . 64055)
- (-3958 . 63713) (-3959 . 63661) (-3960 . 63472) (-3961 . 63398)
- (-3962 . 63219) (-3963 . 63146) (-3964 . 62936) (-3965 . 62825)
- (-3966 . 62766) (-3967 . 62686) (-3968 . 62511) (-3969 . 62326)
- (-3970 . 62238) (-3971 . 62097) (-3972 . 61992) (-3973 . 61848)
- (-3974 . 61543) (-3975 . 61233) (-3976 . 60017) (-3977 . 59964)
- (-3978 . 59936) (-3979 . 59828) (-3980 . 59624) (-3981 . 59022)
- (-3982 . 58980) (-3983 . 58673) (-3984 . 58488) (-3985 . 58207)
- (-3986 . 58121) (-3987 . 57883) (-3988 . 57764) (-3989 . 57663)
- (-3990 . 57511) (-3991 . 57330) (-3992 . 57252) (-3993 . 56920)
- (-3994 . 56758) (-3995 . 56600) (-3996 . 56518) (-3997 . 56279)
- (-3998 . 56190) (-3999 . 56107) (-4000 . 56011) (-4001 . 55868)
- (-4002 . 55769) (-4003 . 55224) (-4004 . 55130) (-4005 . 54982)
- (-4006 . 54752) (-4007 . 54635) (-4008 . 54566) (-4009 . 54305)
- (-4010 . 54126) (-4011 . 54052) (-4012 . 54024) (-4013 . 53869)
- (-4014 . 53731) (-4015 . 53665) (-4016 . 53633) (-4017 . 53563)
- (-4018 . 53284) (-4019 . 53183) (-4020 . 53092) (-4021 . 53015)
- (-4022 . 52916) (-4023 . 52745) (-4024 . 52587) (-4025 . 52370)
- (-4026 . 51959) (-4027 . 51844) (-4028 . 51715) (-4029 . 51591)
- (-4030 . 51216) (-4031 . 50992) (-4032 . 50397) (-4033 . 50151)
- (-4034 . 50086) (-4035 . 49659) (-4036 . 49365) (-4037 . 49167)
- (-4038 . 49024) (-4039 . 48900) (-4040 . 48822) (-4041 . 47737)
- (-4042 . 47316) (-4043 . 47200) (-4044 . 47048) (-4045 . 46941)
- (-4046 . 46685) (-4047 . 46577) (-4048 . 46105) (-4049 . 46006)
- (-4050 . 45937) (-4051 . 45819) (-4052 . 45654) (-4053 . 45599)
- (-4054 . 45408) (-4055 . 45324) (-4056 . 45290) (-4057 . 45196)
- (-4058 . 45095) (-4059 . 44961) (-4060 . 44861) (-4061 . 44808)
- (-4062 . 44612) (-4063 . 44535) (-4064 . 44233) (-4065 . 44166)
- (-4066 . 44116) (-4067 . 43765) (-4068 . 43656) (-4069 . 43513)
- (-4070 . 43460) (-4071 . 43317) (-4072 . 43030) (-4073 . 42654)
- (-4074 . 42580) (-4075 . 42510) (-4076 . 42219) (-4077 . 42056)
- (-4078 . 41657) (-4079 . 41553) (-4080 . 41406) (-4081 . 41120)
- (-4082 . 41048) (-4083 . 40974) (-4084 . 40816) (-4085 . 40720)
- (-4086 . 40562) (-4087 . 40476) (-4088 . 40089) (-4089 . 39992)
- (-4090 . 39905) (-4091 . 39853) (-4092 . 39767) (-4093 . 39653)
- (-4094 . 39381) (-4095 . 39322) (-4096 . 39267) (-4097 . 39177)
- (-4098 . 39078) (-4099 . 38592) (-4100 . 38412) (-4101 . 38339)
- (-4102 . 38087) (-4103 . 38031) (-4104 . 37960) (-4105 . 37910)
- (-4106 . 37702) (-4107 . 37625) (-4108 . 37512) (-4109 . 37455)
- (-4110 . 37384) (-4111 . 37301) (-4112 . 37249) (-4113 . 37175)
- (-4114 . 37120) (-4115 . 37025) (-4116 . 36807) (-4117 . 35024)
- (-4118 . 34809) (-4119 . 34701) (-4120 . 34484) (-4121 . 34450)
- (-4122 . 34346) (-4123 . 34262) (-4124 . 34014) (-4125 . 33947)
- (-4126 . 33564) (-4127 . 33512) (-4128 . 33153) (-4129 . 33097)
- (-4130 . 32958) (-4131 . 32835) (-4132 . 32737) (-4133 . 32658)
- (-4134 . 32478) (-4135 . 32371) (-4136 . 32259) (-4137 . 32174)
- (-4138 . 32073) (-4139 . 31964) (-4140 . 31648) (-4141 . 31465)
- (-4142 . 31347) (-4143 . 31252) (-4144 . 31158) (-4145 . 30998)
- (-4146 . 30920) (-4147 . 30891) (-4148 . 30863) (-4149 . 30777)
- (-4150 . 30609) (-4151 . 30575) (-4152 . 30302) (-4153 . 30198)
- (-4154 . 29956) (-4155 . 29761) (-4156 . 29733) (-4157 . 29549)
- (-4158 . 29483) (-4159 . 29315) (-4160 . 29004) (-4161 . 28909)
- (-4162 . 28549) (-4163 . 27357) (-4164 . 27254) (-4165 . 26872)
- (-4166 . 26790) (-4167 . 26717) (-4168 . 26639) (-4169 . 26532)
- (-4170 . 26311) (-4171 . 26227) (-4172 . 26190) (-4173 . 26047)
- (-4174 . 25861) (-4175 . 25738) (-4176 . 25580) (-4177 . 25497)
- (-4178 . 25384) (-4179 . 25271) (-4180 . 25047) (-4181 . 24867)
- (-4182 . 24501) (-4183 . 24429) (-4184 . 24283) (-4185 . 24177)
- (-4186 . 24078) (-4187 . 23937) (-4188 . 23685) (-4189 . 23546)
- (-4190 . 23260) (-4191 . 23156) (-4192 . 22850) (-4193 . 22523)
- (-4194 . 22439) (-4195 . 22208) (-4196 . 22099) (-4197 . 21948)
- (-4198 . 21744) (-4199 . 21540) (-4200 . 21092) (-4201 . 20483)
- (-4202 . 20321) (-4203 . 20083) (-4204 . 19340) (-4205 . 19243)
- (-4206 . 19182) (-4207 . 19154) (-4208 . 19087) (-4209 . 18413)
- (-4210 . 17660) (-4211 . 17128) (-4212 . 16533) (-4213 . 16474)
- (-4214 . 16306) (-4215 . 16076) (-4216 . 15950) (-4217 . 15899)
- (-4218 . 15632) (-4219 . 14557) (-4220 . 14476) (-4221 . 14383)
- (-4222 . 14230) (-4223 . 14159) (-4224 . 13961) (-4225 . 13860)
- (-4226 . 13772) (-4227 . 13472) (-4228 . 13378) (-4229 . 13344)
- (-4230 . 13221) (-4231 . 13089) (-4232 . 12974) (-4233 . 12793)
- (-4234 . 12694) (-4235 . 12565) (-4236 . 12456) (-4237 . 12325)
- (-4238 . 12272) (-4239 . 12086) (-4240 . 12015) (-4241 . 11894)
- (-4242 . 11760) (-4243 . 11532) (-4244 . 11216) (-4245 . 11160)
- (-4246 . 10549) (-4247 . 10419) (-4248 . 10360) (-4249 . 10307)
- (-4250 . 10224) (-4251 . 10104) (-4252 . 9979) (-4253 . 9854)
- (-4254 . 9576) (-4255 . 9495) (-4256 . 9402) (-4257 . 9017)
- (-4258 . 8887) (-4259 . 8835) (-4260 . 8766) (-4261 . 8689)
- (-4262 . 8606) (-4263 . 8198) (-4264 . 8045) (-4265 . 7963)
- (-4266 . 7856) (-4267 . 7758) (-4268 . 7575) (-4269 . 7411)
- (-4270 . 7329) (-4271 . 7158) (-4272 . 7086) (-4273 . 6861)
- (-4274 . 6795) (-4275 . 6729) (-4276 . 6465) (-4277 . 6381)
- (-4278 . 6211) (-4279 . 5797) (-4280 . 5702) (-4281 . 5572)
- (-4282 . 5449) (-4283 . 5376) (-4284 . 5196) (-4285 . 5038)
- (-4286 . 4986) (-4287 . 4926) (-4288 . 4803) (-4289 . 4542)
- (-4290 . 4456) (-4291 . 4221) (-4292 . 4116) (-4293 . 4063)
- (-4294 . 3957) (-4295 . 3883) (-4296 . 3405) (-4297 . 3353)
- (-4298 . 3134) (-4299 . 2884) (-4300 . 2639) (-4301 . 2508)
- (-4302 . 2310) (-4303 . 2254) (-4304 . 2171) (-4305 . 2083)
- (-4306 . 1809) (-4307 . 1587) (-4308 . 1478) (-4309 . 1265)
- (-4310 . 1161) (-4311 . 1057) (-4312 . 453) (-4313 . 308)
- (-4314 . 222) (-4315 . 142) (-4316 . 30)) \ No newline at end of file
+ (-12 (-4 *3 (-13 (-823) (-542))) (-5 *2 (-618 *1)) (-4 *1 (-29 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1136 *1)) (-5 *3 (-1142)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1136 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-917 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1142)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-542)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-542))))))
+((-1258 . 729306) (-1259 . 728879) (-1260 . 728758) (-1261 . 728643)
+ (-1262 . 728517) (-1263 . 728387) (-1264 . 728318) (-1265 . 728264)
+ (-1266 . 728129) (-1267 . 728053) (-1268 . 727897) (-1269 . 727669)
+ (-1270 . 726705) (-1271 . 726458) (-1272 . 726156) (-1273 . 725854)
+ (-1274 . 725552) (-1275 . 725214) (-1276 . 725122) (-1277 . 725030)
+ (-1278 . 724938) (-1279 . 724846) (-1280 . 724754) (-1281 . 724662)
+ (-1282 . 724567) (-1283 . 724472) (-1284 . 724380) (-1285 . 724288)
+ (-1286 . 724196) (-1287 . 724104) (-1288 . 724012) (-1289 . 723910)
+ (-1290 . 723808) (-1291 . 723706) (-1292 . 723614) (-1293 . 723547)
+ (-1294 . 723496) (-1295 . 723444) (-1296 . 723393) (-1297 . 723342)
+ (-1298 . 723272) (-1299 . 722834) (-1300 . 722632) (-1301 . 722509)
+ (-1302 . 722386) (-1303 . 722242) (-1304 . 722072) (-1305 . 721948)
+ (-1306 . 721709) (-1307 . 721636) (-1308 . 721495) (-1309 . 721444)
+ (-1310 . 721395) (-1311 . 721325) (-1312 . 721190) (-1313 . 721055)
+ (-1314 . 720827) (-1315 . 720581) (-1316 . 720401) (-1317 . 720230)
+ (-1318 . 720153) (-1319 . 720079) (-1320 . 719924) (-1321 . 719769)
+ (-1322 . 719583) (-1323 . 719400) (-1324 . 719223) (-1325 . 719166)
+ (-1326 . 719110) (-1327 . 719054) (-1328 . 718980) (-1329 . 718902)
+ (-1330 . 718846) (-1331 . 718815) (-1332 . 718746) (-1333 . 718672)
+ (-1334 . 718616) (-1335 . 718545) (-1336 . 718392) (-1337 . 718318)
+ (-1338 . 718244) (-1339 . 718192) (-1340 . 718140) (-1341 . 718088)
+ (-1342 . 718026) (-1343 . 717903) (-1344 . 717581) (-1345 . 717493)
+ (-1346 . 717392) (-1347 . 717271) (-1348 . 717190) (-1349 . 717109)
+ (-1350 . 716952) (-1351 . 716801) (-1352 . 716723) (-1353 . 716665)
+ (-1354 . 716592) (-1355 . 716527) (-1356 . 716462) (-1357 . 716400)
+ (-1358 . 716327) (-1359 . 716211) (-1360 . 716177) (-1361 . 716143)
+ (-1362 . 716091) (-1363 . 716047) (-1364 . 715976) (-1365 . 715924)
+ (-1366 . 715875) (-1367 . 715823) (-1368 . 715771) (-1369 . 715655)
+ (-1370 . 715539) (-1371 . 715447) (-1372 . 715355) (-1373 . 715232)
+ (-1374 . 715179) (-1375 . 715151) (-1376 . 715123) (-1377 . 715095)
+ (-1378 . 715067) (-1379 . 714957) (-1380 . 714905) (-1381 . 714853)
+ (-1382 . 714801) (-1383 . 714749) (-1384 . 714697) (-1385 . 714645)
+ (-1386 . 714617) (-1387 . 714514) (-1388 . 714462) (-1389 . 714296)
+ (-1390 . 714112) (-1391 . 713901) (-1392 . 713786) (-1393 . 713553)
+ (-1394 . 713454) (-1395 . 713360) (-1396 . 713245) (-1397 . 712847)
+ (-1398 . 712629) (-1399 . 712580) (-1400 . 712552) (-1401 . 712524)
+ (-1402 . 712496) (-1403 . 712468) (-1404 . 712377) (-1405 . 712265)
+ (-1406 . 712153) (-1407 . 712041) (-1408 . 711929) (-1409 . 711817)
+ (-1410 . 711705) (-1411 . 711532) (-1412 . 711456) (-1413 . 711274)
+ (-1414 . 711216) (-1415 . 711158) (-1416 . 710820) (-1417 . 710535)
+ (-1418 . 710451) (-1419 . 710318) (-1420 . 710260) (-1421 . 710208)
+ (-1422 . 710153) (-1423 . 710101) (-1424 . 710027) (-1425 . 709953)
+ (-1426 . 709872) (-1427 . 709791) (-1428 . 709736) (-1429 . 709662)
+ (-1430 . 709588) (-1431 . 709514) (-1432 . 709437) (-1433 . 709382)
+ (-1434 . 709323) (-1435 . 709224) (-1436 . 709125) (-1437 . 709026)
+ (-1438 . 708927) (-1439 . 708828) (-1440 . 708729) (-1441 . 708630)
+ (-1442 . 708516) (-1443 . 708402) (-1444 . 708288) (-1445 . 708174)
+ (-1446 . 708060) (-1447 . 707946) (-1448 . 707829) (-1449 . 707753)
+ (-1450 . 707677) (-1451 . 707290) (-1452 . 706944) (-1453 . 706842)
+ (-1454 . 706580) (-1455 . 706478) (-1456 . 706273) (-1457 . 706160)
+ (-1458 . 706058) (-1459 . 705901) (-1460 . 705812) (-1461 . 705718)
+ (-1462 . 705638) (-1463 . 705578) (-1464 . 705525) (-1465 . 705406)
+ (-1466 . 705324) (-1467 . 705242) (-1468 . 705160) (-1469 . 705078)
+ (-1470 . 704996) (-1471 . 704902) (-1472 . 704832) (-1473 . 704762)
+ (-1474 . 704671) (-1475 . 704577) (-1476 . 704495) (-1477 . 704413)
+ (-1478 . 703922) (-1479 . 703369) (-1480 . 703159) (-1481 . 703084)
+ (-1482 . 702830) (-1483 . 702603) (-1484 . 702393) (-1485 . 702263)
+ (-1486 . 702182) (-1487 . 702033) (-1488 . 701678) (-1489 . 701386)
+ (-1490 . 701094) (-1491 . 700802) (-1492 . 700510) (-1493 . 700451)
+ (-1494 . 700344) (-1495 . 699916) (-1496 . 699756) (-1497 . 699557)
+ (-1498 . 699421) (-1499 . 699321) (-1500 . 699221) (-1501 . 699127)
+ (-1502 . 699068) (-1503 . 698726) (-1504 . 698625) (-1505 . 698506)
+ (-1506 . 698290) (-1507 . 698109) (-1508 . 697942) (-1509 . 697727)
+ (-1510 . 697288) (-1511 . 697235) (-1512 . 697126) (-1513 . 697011)
+ (-1514 . 696942) (-1515 . 696873) (-1516 . 696804) (-1517 . 696738)
+ (-1518 . 696613) (-1519 . 696396) (-1520 . 696318) (-1521 . 696268)
+ (-1522 . 696197) (-1523 . 696054) (-1524 . 695913) (-1525 . 695832)
+ (-1526 . 695751) (-1527 . 695695) (-1528 . 695639) (-1529 . 695566)
+ (-1530 . 695426) (-1531 . 695373) (-1532 . 695321) (-1533 . 695269)
+ (-1534 . 695151) (-1535 . 695033) (-1536 . 694915) (-1537 . 694782)
+ (-1538 . 694501) (-1539 . 694365) (-1540 . 694309) (-1541 . 694253)
+ (-1542 . 694194) (-1543 . 694135) (-1544 . 694079) (-1545 . 694023)
+ (-1546 . 693826) (-1547 . 691484) (-1548 . 691357) (-1549 . 691211)
+ (-1550 . 691083) (-1551 . 691031) (-1552 . 690979) (-1553 . 690927)
+ (-1554 . 686888) (-1555 . 686793) (-1556 . 686654) (-1557 . 686445)
+ (-1558 . 686343) (-1559 . 686241) (-1560 . 685325) (-1561 . 685248)
+ (-1562 . 685119) (-1563 . 684992) (-1564 . 684915) (-1565 . 684838)
+ (-1566 . 684711) (-1567 . 684584) (-1568 . 684418) (-1569 . 684291)
+ (-1570 . 684164) (-1571 . 683947) (-1572 . 683509) (-1573 . 683143)
+ (-1574 . 683036) (-1575 . 682817) (-1576 . 682748) (-1577 . 682689)
+ (-1578 . 682608) (-1579 . 682497) (-1580 . 682431) (-1581 . 682365)
+ (-1582 . 682291) (-1583 . 682219) (-1584 . 681842) (-1585 . 681790)
+ (-1586 . 681731) (-1587 . 681627) (-1588 . 681523) (-1589 . 681416)
+ (-1590 . 681309) (-1591 . 681202) (-1592 . 681095) (-1593 . 680988)
+ (-1594 . 680881) (-1595 . 680774) (-1596 . 680667) (-1597 . 680560)
+ (-1598 . 680453) (-1599 . 680346) (-1600 . 680239) (-1601 . 680132)
+ (-1602 . 680025) (-1603 . 679918) (-1604 . 679811) (-1605 . 679704)
+ (-1606 . 679597) (-1607 . 679490) (-1608 . 679383) (-1609 . 679276)
+ (-1610 . 679169) (-1611 . 679062) (-1612 . 678955) (-1613 . 678848)
+ (-1614 . 678741) (-1615 . 678562) (-1616 . 678440) (-1617 . 678189)
+ (-1618 . 677886) (-1619 . 677680) (-1620 . 677513) (-1621 . 677342)
+ (-1622 . 677290) (-1623 . 677227) (-1624 . 677164) (-1625 . 677112)
+ (-1626 . 676923) (-1627 . 676769) (-1628 . 676689) (-1629 . 676609)
+ (-1630 . 676529) (-1631 . 676399) (-1632 . 676167) (-1633 . 676139)
+ (-1634 . 676111) (-1635 . 676030) (-1636 . 675940) (-1637 . 675862)
+ (-1638 . 675775) (-1639 . 675715) (-1640 . 675557) (-1641 . 675364)
+ (-1642 . 674879) (-1643 . 674637) (-1644 . 674375) (-1645 . 674274)
+ (-1646 . 674193) (-1647 . 674112) (-1648 . 674042) (-1649 . 673972)
+ (-1650 . 673813) (-1651 . 673509) (-1652 . 673266) (-1653 . 673142)
+ (-1654 . 673083) (-1655 . 673021) (-1656 . 672959) (-1657 . 672894)
+ (-1658 . 672832) (-1659 . 672553) (-1660 . 672343) (-1661 . 672069)
+ (-1662 . 671498) (-1663 . 670984) (-1664 . 670839) (-1665 . 670772)
+ (-1666 . 670691) (-1667 . 670610) (-1668 . 670508) (-1669 . 670434)
+ (-1670 . 670353) (-1671 . 670279) (-1672 . 670070) (-1673 . 669857)
+ (-1674 . 669767) (-1675 . 669700) (-1676 . 669564) (-1677 . 669497)
+ (-1678 . 669415) (-1679 . 669334) (-1680 . 669232) (-1681 . 669032)
+ (-1682 . 668964) (-1683 . 668722) (-1684 . 668471) (-1685 . 668229)
+ (-1686 . 667987) (-1687 . 667919) (-1688 . 667583) (-1689 . 666582)
+ (-1690 . 666362) (-1691 . 666281) (-1692 . 666207) (-1693 . 666133)
+ (-1694 . 666059) (-1695 . 665955) (-1696 . 665882) (-1697 . 665814)
+ (-1698 . 665604) (-1699 . 665552) (-1700 . 665497) (-1701 . 665407)
+ (-1702 . 665320) (-1703 . 663469) (-1704 . 663390) (-1705 . 662645)
+ (-1706 . 662515) (-1707 . 662308) (-1708 . 662146) (-1709 . 661984)
+ (-1710 . 661823) (-1711 . 661684) (-1712 . 661590) (-1713 . 661492)
+ (-1714 . 661398) (-1715 . 661283) (-1716 . 661198) (-1717 . 661100)
+ (-1718 . 660904) (-1719 . 660813) (-1720 . 660719) (-1721 . 660652)
+ (-1722 . 660599) (-1723 . 660546) (-1724 . 660493) (-1725 . 659355)
+ (-1726 . 658845) (-1727 . 658766) (-1728 . 658707) (-1729 . 658679)
+ (-1730 . 658651) (-1731 . 658592) (-1732 . 658479) (-1733 . 658102)
+ (-1734 . 658049) (-1735 . 657938) (-1736 . 657885) (-1737 . 657832)
+ (-1738 . 657776) (-1739 . 657720) (-1740 . 657555) (-1741 . 657485)
+ (-1742 . 657390) (-1743 . 657295) (-1744 . 657200) (-1745 . 657043)
+ (-1746 . 656886) (-1747 . 656733) (-1748 . 655975) (-1749 . 655722)
+ (-1750 . 655411) (-1751 . 655059) (-1752 . 654842) (-1753 . 654579)
+ (-1754 . 654204) (-1755 . 654020) (-1756 . 653886) (-1757 . 653720)
+ (-1758 . 653554) (-1759 . 653420) (-1760 . 653286) (-1761 . 653152)
+ (-1762 . 653018) (-1763 . 652887) (-1764 . 652756) (-1765 . 652625)
+ (-1766 . 652242) (-1767 . 652115) (-1768 . 651987) (-1769 . 651735)
+ (-1770 . 651611) (-1771 . 651359) (-1772 . 651235) (-1773 . 650983)
+ (-1774 . 650859) (-1775 . 650574) (-1776 . 650301) (-1777 . 650028)
+ (-1778 . 649730) (-1779 . 649628) (-1780 . 649483) (-1781 . 649342)
+ (-1782 . 649191) (-1783 . 649030) (-1784 . 648942) (-1785 . 648914)
+ (-1786 . 648832) (-1787 . 648735) (-1788 . 648267) (-1789 . 647916)
+ (-1790 . 647483) (-1791 . 647342) (-1792 . 647272) (-1793 . 647202)
+ (-1794 . 647132) (-1795 . 647041) (-1796 . 646950) (-1797 . 646859)
+ (-1798 . 646768) (-1799 . 646677) (-1800 . 646591) (-1801 . 646505)
+ (-1802 . 646419) (-1803 . 646333) (-1804 . 646247) (-1805 . 646173)
+ (-1806 . 646068) (-1807 . 645842) (-1808 . 645764) (-1809 . 645689)
+ (-1810 . 645596) (-1811 . 645492) (-1812 . 645396) (-1813 . 645227)
+ (-1814 . 645150) (-1815 . 645073) (-1816 . 644982) (-1817 . 644891)
+ (-1818 . 644691) (-1819 . 644536) (-1820 . 644381) (-1821 . 644226)
+ (-1822 . 644071) (-1823 . 643916) (-1824 . 643761) (-1825 . 643694)
+ (-1826 . 643539) (-1827 . 643384) (-1828 . 643229) (-1829 . 643074)
+ (-1830 . 642919) (-1831 . 642764) (-1832 . 642609) (-1833 . 642454)
+ (-1834 . 642380) (-1835 . 642306) (-1836 . 642251) (-1837 . 642196)
+ (-1838 . 642141) (-1839 . 642086) (-1840 . 642015) (-1841 . 641810)
+ (-1842 . 641709) (-1843 . 641518) (-1844 . 641425) (-1845 . 641288)
+ (-1846 . 641151) (-1847 . 641014) (-1848 . 640946) (-1849 . 640830)
+ (-1850 . 640714) (-1851 . 640598) (-1852 . 640545) (-1853 . 640348)
+ (-1854 . 640263) (-1855 . 639955) (-1856 . 639900) (-1857 . 639248)
+ (-1858 . 638933) (-1859 . 638649) (-1860 . 638530) (-1861 . 638478)
+ (-1862 . 638426) (-1863 . 638374) (-1864 . 638321) (-1865 . 638268)
+ (-1866 . 638209) (-1867 . 638096) (-1868 . 637983) (-1869 . 637925)
+ (-1870 . 637867) (-1871 . 637817) (-1872 . 637682) (-1873 . 637632)
+ (-1874 . 637569) (-1875 . 637509) (-1876 . 636912) (-1877 . 636852)
+ (-1878 . 636685) (-1879 . 636593) (-1880 . 636480) (-1881 . 636396)
+ (-1882 . 636281) (-1883 . 636190) (-1884 . 636099) (-1885 . 635910)
+ (-1886 . 635855) (-1887 . 635668) (-1888 . 635545) (-1889 . 635472)
+ (-1890 . 635399) (-1891 . 635279) (-1892 . 635206) (-1893 . 635133)
+ (-1894 . 635060) (-1895 . 634840) (-1896 . 634507) (-1897 . 634323)
+ (-1898 . 634179) (-1899 . 633818) (-1900 . 633650) (-1901 . 633482)
+ (-1902 . 633226) (-1903 . 632970) (-1904 . 632775) (-1905 . 632580)
+ (-1906 . 631986) (-1907 . 631910) (-1908 . 631772) (-1909 . 631370)
+ (-1910 . 631243) (-1911 . 631084) (-1912 . 630758) (-1913 . 630269)
+ (-1914 . 629780) (-1915 . 629262) (-1916 . 629194) (-1917 . 629123)
+ (-1918 . 629052) (-1919 . 628869) (-1920 . 628750) (-1921 . 628631)
+ (-1922 . 628540) (-1923 . 628449) (-1924 . 628157) (-1925 . 628035)
+ (-1926 . 627983) (-1927 . 627931) (-1928 . 627879) (-1929 . 627827)
+ (-1930 . 627775) (-1931 . 627626) (-1932 . 627445) (-1933 . 627205)
+ (-1934 . 627010) (-1935 . 626982) (-1936 . 626954) (-1937 . 626926)
+ (-1938 . 626898) (-1939 . 626870) (-1940 . 626842) (-1941 . 626814)
+ (-1942 . 626762) (-1943 . 626672) (-1944 . 626622) (-1945 . 626553)
+ (-1946 . 626484) (-1947 . 626379) (-1948 . 626008) (-1949 . 625857)
+ (-1950 . 625706) (-1951 . 625501) (-1952 . 625379) (-1953 . 625304)
+ (-1954 . 625226) (-1955 . 625151) (-1956 . 625073) (-1957 . 624995)
+ (-1958 . 624920) (-1959 . 624842) (-1960 . 624608) (-1961 . 624453)
+ (-1962 . 624154) (-1963 . 623999) (-1964 . 623673) (-1965 . 623533)
+ (-1966 . 623393) (-1967 . 623312) (-1968 . 623231) (-1969 . 622966)
+ (-1970 . 622233) (-1971 . 622096) (-1972 . 622005) (-1973 . 621868)
+ (-1974 . 621800) (-1975 . 621731) (-1976 . 621643) (-1977 . 621555)
+ (-1978 . 621384) (-1979 . 621310) (-1980 . 621166) (-1981 . 620706)
+ (-1982 . 620326) (-1983 . 619562) (-1984 . 619418) (-1985 . 619274)
+ (-1986 . 619112) (-1987 . 618874) (-1988 . 618733) (-1989 . 618586)
+ (-1990 . 618347) (-1991 . 618111) (-1992 . 617872) (-1993 . 617680)
+ (-1994 . 617557) (-1995 . 617353) (-1996 . 617130) (-1997 . 616891)
+ (-1998 . 616750) (-1999 . 616612) (-2000 . 616473) (-2001 . 616220)
+ (-2002 . 615964) (-2003 . 615807) (-2004 . 615653) (-2005 . 615412)
+ (-2006 . 615127) (-2007 . 614989) (-2008 . 614902) (-2009 . 614236)
+ (-2010 . 614060) (-2011 . 613878) (-2012 . 613702) (-2013 . 613520)
+ (-2014 . 613341) (-2015 . 613162) (-2016 . 612975) (-2017 . 612593)
+ (-2018 . 612414) (-2019 . 612235) (-2020 . 612048) (-2021 . 611666)
+ (-2022 . 610673) (-2023 . 610289) (-2024 . 609905) (-2025 . 609787)
+ (-2026 . 609630) (-2027 . 609488) (-2028 . 609370) (-2029 . 609188)
+ (-2030 . 609064) (-2031 . 608774) (-2032 . 608484) (-2033 . 608200)
+ (-2034 . 607916) (-2035 . 607637) (-2036 . 607549) (-2037 . 607464)
+ (-2038 . 607365) (-2039 . 607266) (-2040 . 607042) (-2041 . 606942)
+ (-2042 . 606839) (-2043 . 606761) (-2044 . 606436) (-2045 . 606144)
+ (-2046 . 606071) (-2047 . 605686) (-2048 . 605658) (-2049 . 605459)
+ (-2050 . 605285) (-2051 . 605044) (-2052 . 604989) (-2053 . 604913)
+ (-2054 . 604542) (-2055 . 604426) (-2056 . 604349) (-2057 . 604276)
+ (-2058 . 604195) (-2059 . 604114) (-2060 . 604033) (-2061 . 603932)
+ (-2062 . 603873) (-2063 . 603654) (-2064 . 603415) (-2065 . 603291)
+ (-2066 . 603167) (-2067 . 602940) (-2068 . 602887) (-2069 . 602832)
+ (-2070 . 602500) (-2071 . 602176) (-2072 . 601988) (-2073 . 601797)
+ (-2074 . 601633) (-2075 . 601298) (-2076 . 601131) (-2077 . 600890)
+ (-2078 . 600562) (-2079 . 600370) (-2080 . 600153) (-2081 . 599980)
+ (-2082 . 599558) (-2083 . 599331) (-2084 . 599060) (-2085 . 598922)
+ (-2086 . 598781) (-2087 . 598303) (-2088 . 598180) (-2089 . 597944)
+ (-2090 . 597690) (-2091 . 597440) (-2092 . 597145) (-2093 . 597004)
+ (-2094 . 596660) (-2095 . 596519) (-2096 . 596326) (-2097 . 596133)
+ (-2098 . 595958) (-2099 . 595684) (-2100 . 595249) (-2101 . 595175)
+ (-2102 . 595014) (-2103 . 594851) (-2104 . 594690) (-2105 . 594523)
+ (-2106 . 594470) (-2107 . 594417) (-2108 . 594288) (-2109 . 594228)
+ (-2110 . 594175) (-2111 . 594122) (-2112 . 594051) (-2113 . 593998)
+ (-2114 . 593856) (-2115 . 593761) (-2116 . 593670) (-2117 . 593554)
+ (-2118 . 593460) (-2119 . 593362) (-2120 . 593268) (-2121 . 593127)
+ (-2122 . 592862) (-2123 . 592005) (-2124 . 591849) (-2125 . 591480)
+ (-2126 . 591395) (-2127 . 591307) (-2128 . 591161) (-2129 . 591012)
+ (-2130 . 590722) (-2131 . 590644) (-2132 . 590569) (-2133 . 590516)
+ (-2134 . 590463) (-2135 . 590432) (-2136 . 590369) (-2137 . 590250)
+ (-2138 . 590161) (-2139 . 590041) (-2140 . 589746) (-2141 . 589552)
+ (-2142 . 589364) (-2143 . 589219) (-2144 . 589074) (-2145 . 588788)
+ (-2146 . 588343) (-2147 . 588309) (-2148 . 588272) (-2149 . 588235)
+ (-2150 . 588198) (-2151 . 588161) (-2152 . 588130) (-2153 . 588099)
+ (-2154 . 588068) (-2155 . 588034) (-2156 . 588000) (-2157 . 587945)
+ (-2158 . 587756) (-2159 . 587514) (-2160 . 587272) (-2161 . 587035)
+ (-2162 . 586983) (-2163 . 586928) (-2164 . 586858) (-2165 . 586769)
+ (-2166 . 586700) (-2167 . 586628) (-2168 . 586398) (-2169 . 586346)
+ (-2170 . 586291) (-2171 . 586260) (-2172 . 586154) (-2173 . 585921)
+ (-2174 . 585603) (-2175 . 585421) (-2176 . 585228) (-2177 . 584949)
+ (-2178 . 584876) (-2179 . 584811) (-2180 . 584783) (-2181 . 584733)
+ (-2182 . 583310) (-2183 . 582162) (-2184 . 581024) (-2185 . 580532)
+ (-2186 . 579954) (-2187 . 579212) (-2188 . 578635) (-2189 . 577991)
+ (-2190 . 577412) (-2191 . 577338) (-2192 . 577286) (-2193 . 577234)
+ (-2194 . 577160) (-2195 . 577105) (-2196 . 577053) (-2197 . 577001)
+ (-2198 . 576949) (-2199 . 576879) (-2200 . 576431) (-2201 . 576217)
+ (-2202 . 575960) (-2203 . 575618) (-2204 . 575356) (-2205 . 575046)
+ (-2206 . 574835) (-2207 . 574535) (-2208 . 573965) (-2209 . 573827)
+ (-2210 . 573624) (-2211 . 573343) (-2212 . 573257) (-2213 . 572912)
+ (-2214 . 572770) (-2215 . 572478) (-2216 . 572257) (-2217 . 572132)
+ (-2218 . 572008) (-2219 . 571862) (-2220 . 571719) (-2221 . 571604)
+ (-2222 . 571474) (-2223 . 571102) (-2224 . 570842) (-2225 . 570567)
+ (-2226 . 570327) (-2227 . 569997) (-2228 . 569652) (-2229 . 569244)
+ (-2230 . 568821) (-2231 . 568624) (-2232 . 568349) (-2233 . 568181)
+ (-2234 . 567980) (-2235 . 567758) (-2236 . 567603) (-2237 . 567410)
+ (-2238 . 567341) (-2239 . 567271) (-2240 . 567152) (-2241 . 566974)
+ (-2242 . 566919) (-2243 . 566673) (-2244 . 566583) (-2245 . 566393)
+ (-2246 . 566320) (-2247 . 566250) (-2248 . 566185) (-2249 . 566130)
+ (-2250 . 566039) (-2251 . 565732) (-2252 . 565387) (-2253 . 565313)
+ (-2254 . 564991) (-2255 . 564784) (-2256 . 564698) (-2257 . 564612)
+ (-2258 . 564526) (-2259 . 564440) (-2260 . 564354) (-2261 . 564268)
+ (-2262 . 564182) (-2263 . 564096) (-2264 . 564010) (-2265 . 563924)
+ (-2266 . 563838) (-2267 . 563752) (-2268 . 563666) (-2269 . 563580)
+ (-2270 . 563494) (-2271 . 563408) (-2272 . 563322) (-2273 . 563236)
+ (-2274 . 563150) (-2275 . 563064) (-2276 . 562978) (-2277 . 562892)
+ (-2278 . 562806) (-2279 . 562720) (-2280 . 562634) (-2281 . 562548)
+ (-2282 . 562445) (-2283 . 562356) (-2284 . 562147) (-2285 . 562088)
+ (-2286 . 562032) (-2287 . 561943) (-2288 . 561831) (-2289 . 561744)
+ (-2290 . 561597) (-2291 . 561412) (-2292 . 561248) (-2293 . 561081)
+ (-2294 . 560896) (-2295 . 560675) (-2296 . 560551) (-2297 . 560343)
+ (-2298 . 560251) (-2299 . 560159) (-2300 . 560023) (-2301 . 559928)
+ (-2302 . 559833) (-2303 . 558317) (-2304 . 558257) (-2305 . 558167)
+ (-2306 . 558072) (-2307 . 557991) (-2308 . 557684) (-2309 . 557489)
+ (-2310 . 557396) (-2311 . 557290) (-2312 . 556872) (-2313 . 556819)
+ (-2314 . 556791) (-2315 . 556738) (-2316 . 556563) (-2317 . 556486)
+ (-2318 . 556297) (-2319 . 556117) (-2320 . 555693) (-2321 . 555541)
+ (-2322 . 555361) (-2323 . 555188) (-2324 . 554926) (-2325 . 554674)
+ (-2326 . 553863) (-2327 . 553694) (-2328 . 553475) (-2329 . 552571)
+ (-2330 . 552427) (-2331 . 552283) (-2332 . 552139) (-2333 . 551995)
+ (-2334 . 551851) (-2335 . 551707) (-2336 . 551512) (-2337 . 551318)
+ (-2338 . 551175) (-2339 . 550860) (-2340 . 550745) (-2341 . 550405)
+ (-2342 . 550245) (-2343 . 550106) (-2344 . 549967) (-2345 . 549838)
+ (-2346 . 549753) (-2347 . 549701) (-2348 . 549213) (-2349 . 547935)
+ (-2350 . 547820) (-2351 . 547691) (-2352 . 547384) (-2353 . 547133)
+ (-2354 . 547058) (-2355 . 546983) (-2356 . 546908) (-2357 . 546849)
+ (-2358 . 546778) (-2359 . 546725) (-2360 . 546663) (-2361 . 546592)
+ (-2362 . 546229) (-2363 . 545942) (-2364 . 545831) (-2365 . 545738)
+ (-2366 . 545645) (-2367 . 545558) (-2368 . 545338) (-2369 . 545118)
+ (-2370 . 544975) (-2371 . 544882) (-2372 . 544739) (-2373 . 544587)
+ (-2374 . 544433) (-2375 . 544362) (-2376 . 544153) (-2377 . 543975)
+ (-2378 . 543765) (-2379 . 543587) (-2380 . 543469) (-2381 . 543154)
+ (-2382 . 542876) (-2383 . 542755) (-2384 . 542628) (-2385 . 542543)
+ (-2386 . 542470) (-2387 . 542380) (-2388 . 542309) (-2389 . 542253)
+ (-2390 . 542197) (-2391 . 542141) (-2392 . 542070) (-2393 . 541999)
+ (-2394 . 541928) (-2395 . 541849) (-2396 . 541771) (-2397 . 541686)
+ (-2398 . 541426) (-2399 . 541337) (-2400 . 541039) (-2401 . 540941)
+ (-2402 . 540863) (-2403 . 540785) (-2404 . 540642) (-2405 . 540563)
+ (-2406 . 540491) (-2407 . 540288) (-2408 . 540232) (-2409 . 540044)
+ (-2410 . 539945) (-2411 . 539827) (-2412 . 539706) (-2413 . 539563)
+ (-2414 . 539420) (-2415 . 539280) (-2416 . 539140) (-2417 . 538997)
+ (-2418 . 538870) (-2419 . 538740) (-2420 . 538616) (-2421 . 538492)
+ (-2422 . 538386) (-2423 . 538280) (-2424 . 538177) (-2425 . 538027)
+ (-2426 . 537874) (-2427 . 537721) (-2428 . 537577) (-2429 . 537423)
+ (-2430 . 537346) (-2431 . 537266) (-2432 . 537111) (-2433 . 537031)
+ (-2434 . 536951) (-2435 . 536871) (-2436 . 536768) (-2437 . 536709)
+ (-2438 . 536534) (-2439 . 536381) (-2440 . 536228) (-2441 . 536054)
+ (-2442 . 535862) (-2443 . 535563) (-2444 . 535368) (-2445 . 535253)
+ (-2446 . 535127) (-2447 . 535050) (-2448 . 534918) (-2449 . 534612)
+ (-2450 . 534429) (-2451 . 533884) (-2452 . 533664) (-2453 . 533490)
+ (-2454 . 533320) (-2455 . 533221) (-2456 . 533122) (-2457 . 532904)
+ (-2458 . 532802) (-2459 . 532729) (-2460 . 532653) (-2461 . 532574)
+ (-2462 . 532277) (-2463 . 532178) (-2464 . 532016) (-2465 . 531782)
+ (-2466 . 531340) (-2467 . 531210) (-2468 . 531070) (-2469 . 530761)
+ (-2470 . 530459) (-2471 . 530143) (-2472 . 529737) (-2473 . 529669)
+ (-2474 . 529601) (-2475 . 529533) (-2476 . 529438) (-2477 . 529330)
+ (-2478 . 529222) (-2479 . 529120) (-2480 . 529018) (-2481 . 528916)
+ (-2482 . 528838) (-2483 . 528514) (-2484 . 528033) (-2485 . 527406)
+ (-2486 . 527342) (-2487 . 527223) (-2488 . 527104) (-2489 . 526996)
+ (-2490 . 526888) (-2491 . 526732) (-2492 . 526130) (-2493 . 525892)
+ (-2494 . 525724) (-2495 . 525602) (-2496 . 525204) (-2497 . 524968)
+ (-2498 . 524767) (-2499 . 524559) (-2500 . 524366) (-2501 . 524096)
+ (-2502 . 523923) (-2503 . 523744) (-2504 . 523675) (-2505 . 523599)
+ (-2506 . 523458) (-2507 . 523255) (-2508 . 523111) (-2509 . 522861)
+ (-2510 . 522553) (-2511 . 522197) (-2512 . 522038) (-2513 . 521832)
+ (-2514 . 521672) (-2515 . 521599) (-2516 . 521480) (-2517 . 521361)
+ (-2518 . 521201) (-2519 . 521021) (-2520 . 520838) (-2521 . 520740)
+ (-2522 . 520642) (-2523 . 520541) (-2524 . 520437) (-2525 . 520311)
+ (-2526 . 520185) (-2527 . 520056) (-2528 . 519924) (-2529 . 519826)
+ (-2530 . 519728) (-2531 . 519627) (-2532 . 519526) (-2533 . 519360)
+ (-2534 . 519194) (-2535 . 519000) (-2536 . 518834) (-2537 . 518666)
+ (-2538 . 518495) (-2539 . 518330) (-2540 . 518165) (-2541 . 518065)
+ (-2542 . 517873) (-2543 . 517772) (-2544 . 517577) (-2545 . 517327)
+ (-2546 . 517082) (-2547 . 516760) (-2548 . 516372) (-2549 . 516171)
+ (-2550 . 515907) (-2551 . 515364) (-2552 . 515070) (-2553 . 514933)
+ (-2554 . 514687) (-2555 . 514483) (-2556 . 514376) (-2557 . 514275)
+ (-2558 . 514165) (-2559 . 514055) (-2560 . 513927) (-2561 . 513820)
+ (-2562 . 513716) (-2563 . 513560) (-2564 . 513426) (-2565 . 513292)
+ (-2566 . 513182) (-2567 . 513063) (-2568 . 512886) (-2569 . 512752)
+ (-2570 . 512615) (-2571 . 512484) (-2572 . 512374) (-2573 . 512252)
+ (-2574 . 512127) (-2575 . 512026) (-2576 . 511842) (-2577 . 511668)
+ (-2578 . 511469) (-2579 . 511295) (-2580 . 511179) (-2581 . 511054)
+ (-2582 . 510926) (-2583 . 510807) (-2584 . 510582) (-2585 . 510411)
+ (-2586 . 510240) (-2587 . 510063) (-2588 . 509911) (-2589 . 509634)
+ (-2590 . 509242) (-2591 . 509111) (-2592 . 508906) (-2593 . 508723)
+ (-2594 . 508539) (-2595 . 508410) (-2596 . 508306) (-2597 . 508165)
+ (-2598 . 508033) (-2599 . 507919) (-2600 . 507771) (-2601 . 507632)
+ (-2602 . 507531) (-2603 . 507427) (-2604 . 507320) (-2605 . 507210)
+ (-2606 . 507109) (-2607 . 507002) (-2608 . 506895) (-2609 . 506782)
+ (-2610 . 506675) (-2611 . 506562) (-2612 . 506431) (-2613 . 506282)
+ (-2614 . 505744) (-2615 . 505601) (-2616 . 505451) (-2617 . 505328)
+ (-2618 . 505224) (-2619 . 505120) (-2620 . 505013) (-2621 . 504875)
+ (-2622 . 504768) (-2623 . 504637) (-2624 . 504481) (-2625 . 504208)
+ (-2626 . 504061) (-2627 . 503858) (-2628 . 503757) (-2629 . 503603)
+ (-2630 . 503483) (-2631 . 503354) (-2632 . 503259) (-2633 . 503171)
+ (-2634 . 503083) (-2635 . 502995) (-2636 . 502907) (-2637 . 502819)
+ (-2638 . 502725) (-2639 . 502637) (-2640 . 502549) (-2641 . 502461)
+ (-2642 . 502373) (-2643 . 502285) (-2644 . 502197) (-2645 . 502109)
+ (-2646 . 502021) (-2647 . 501933) (-2648 . 501845) (-2649 . 501707)
+ (-2650 . 501569) (-2651 . 501449) (-2652 . 501329) (-2653 . 501188)
+ (-2654 . 501100) (-2655 . 501012) (-2656 . 500924) (-2657 . 500836)
+ (-2658 . 500698) (-2659 . 500560) (-2660 . 500472) (-2661 . 500384)
+ (-2662 . 500296) (-2663 . 500208) (-2664 . 500120) (-2665 . 500032)
+ (-2666 . 499941) (-2667 . 499847) (-2668 . 499753) (-2669 . 499656)
+ (-2670 . 499606) (-2671 . 499556) (-2672 . 499503) (-2673 . 499249)
+ (-2674 . 499200) (-2675 . 499150) (-2676 . 499116) (-2677 . 499051)
+ (-2678 . 499014) (-2679 . 498877) (-2680 . 498639) (-2681 . 498390)
+ (-2682 . 498232) (-2683 . 497691) (-2684 . 497492) (-2685 . 497277)
+ (-2686 . 497115) (-2687 . 496716) (-2688 . 496549) (-2689 . 495474)
+ (-2690 . 495351) (-2691 . 495134) (-2692 . 495003) (-2693 . 494872)
+ (-2694 . 494714) (-2695 . 494610) (-2696 . 494551) (-2697 . 494492)
+ (-2698 . 494386) (-2699 . 494280) (-2700 . 493362) (-2701 . 491233)
+ (-2702 . 490417) (-2703 . 488612) (-2704 . 488544) (-2705 . 488476)
+ (-2706 . 488408) (-2707 . 488340) (-2708 . 488272) (-2709 . 488194)
+ (-2710 . 487792) (-2711 . 487436) (-2712 . 487254) (-2713 . 486725)
+ (-2714 . 486549) (-2715 . 486327) (-2716 . 486105) (-2717 . 485883)
+ (-2718 . 485664) (-2719 . 485445) (-2720 . 485226) (-2721 . 485007)
+ (-2722 . 484788) (-2723 . 484569) (-2724 . 484468) (-2725 . 483735)
+ (-2726 . 483680) (-2727 . 483625) (-2728 . 483570) (-2729 . 483515)
+ (-2730 . 483365) (-2731 . 483072) (-2732 . 482813) (-2733 . 482785)
+ (-2734 . 482735) (-2735 . 482143) (-2736 . 481609) (-2737 . 481160)
+ (-2738 . 480988) (-2739 . 480797) (-2740 . 480508) (-2741 . 480120)
+ (-2742 . 479244) (-2743 . 478902) (-2744 . 478733) (-2745 . 478510)
+ (-2746 . 478259) (-2747 . 477909) (-2748 . 476891) (-2749 . 476576)
+ (-2750 . 476364) (-2751 . 475797) (-2752 . 475281) (-2753 . 473503)
+ (-2754 . 473031) (-2755 . 472432) (-2756 . 472182) (-2757 . 472048)
+ (-2758 . 471596) (-2759 . 471107) (-2760 . 470747) (-2761 . 470464)
+ (-2762 . 470349) (-2763 . 470234) (-2764 . 470019) (-2765 . 469966)
+ (-2766 . 469913) (-2767 . 469861) (-2768 . 469809) (-2769 . 469717)
+ (-2770 . 469646) (-2771 . 469572) (-2772 . 469501) (-2773 . 469448)
+ (-2774 . 469377) (-2775 . 469324) (-2776 . 469271) (-2777 . 469218)
+ (-2778 . 469165) (-2779 . 469112) (-2780 . 469059) (-2781 . 469006)
+ (-2782 . 468953) (-2783 . 468900) (-2784 . 468847) (-2785 . 468794)
+ (-2786 . 468741) (-2787 . 468688) (-2788 . 468635) (-2789 . 468564)
+ (-2790 . 468493) (-2791 . 468421) (-2792 . 468349) (-2793 . 468274)
+ (-2794 . 468221) (-2795 . 468168) (-2796 . 468115) (-2797 . 468062)
+ (-2798 . 468009) (-2799 . 467956) (-2800 . 467903) (-2801 . 467850)
+ (-2802 . 467797) (-2803 . 467744) (-2804 . 467691) (-2805 . 467638)
+ (-2806 . 467585) (-2807 . 467532) (-2808 . 467480) (-2809 . 467428)
+ (-2810 . 467375) (-2811 . 467322) (-2812 . 467231) (-2813 . 467178)
+ (-2814 . 467150) (-2815 . 467122) (-2816 . 467094) (-2817 . 467066)
+ (-2818 . 466988) (-2819 . 466928) (-2820 . 466876) (-2821 . 466824)
+ (-2822 . 466772) (-2823 . 466720) (-2824 . 466668) (-2825 . 465864)
+ (-2826 . 465787) (-2827 . 465710) (-2828 . 465644) (-2829 . 465577)
+ (-2830 . 465510) (-2831 . 465453) (-2832 . 465377) (-2833 . 465309)
+ (-2834 . 465238) (-2835 . 465167) (-2836 . 465101) (-2837 . 465014)
+ (-2838 . 464942) (-2839 . 464835) (-2840 . 464649) (-2841 . 464480)
+ (-2842 . 464300) (-2843 . 463709) (-2844 . 463546) (-2845 . 462968)
+ (-2846 . 462893) (-2847 . 462527) (-2848 . 461848) (-2849 . 461670)
+ (-2850 . 461598) (-2851 . 461458) (-2852 . 461268) (-2853 . 461161)
+ (-2854 . 461054) (-2855 . 460938) (-2856 . 460822) (-2857 . 460706)
+ (-2858 . 460555) (-2859 . 460411) (-2860 . 460337) (-2861 . 460251)
+ (-2862 . 460177) (-2863 . 460103) (-2864 . 460029) (-2865 . 459885)
+ (-2866 . 459734) (-2867 . 459559) (-2868 . 459408) (-2869 . 459257)
+ (-2870 . 459130) (-2871 . 458741) (-2872 . 458455) (-2873 . 458169)
+ (-2874 . 457758) (-2875 . 457472) (-2876 . 457399) (-2877 . 457252)
+ (-2878 . 457146) (-2879 . 457072) (-2880 . 457001) (-2881 . 456930)
+ (-2882 . 456833) (-2883 . 456736) (-2884 . 456576) (-2885 . 456489)
+ (-2886 . 456402) (-2887 . 456315) (-2888 . 456256) (-2889 . 456197)
+ (-2890 . 456064) (-2891 . 456005) (-2892 . 455835) (-2893 . 455747)
+ (-2894 . 455650) (-2895 . 455616) (-2896 . 455585) (-2897 . 455501)
+ (-2898 . 455445) (-2899 . 455383) (-2900 . 455349) (-2901 . 455315)
+ (-2902 . 455281) (-2903 . 455247) (-2904 . 455213) (-2905 . 452460)
+ (-2906 . 452426) (-2907 . 452392) (-2908 . 452358) (-2909 . 452246)
+ (-2910 . 452212) (-2911 . 452160) (-2912 . 452126) (-2913 . 452029)
+ (-2914 . 451967) (-2915 . 451876) (-2916 . 451785) (-2917 . 451730)
+ (-2918 . 451678) (-2919 . 451626) (-2920 . 451574) (-2921 . 451522)
+ (-2922 . 451098) (-2923 . 450932) (-2924 . 450863) (-2925 . 450810)
+ (-2926 . 450654) (-2927 . 450133) (-2928 . 449992) (-2929 . 449958)
+ (-2930 . 449903) (-2931 . 449192) (-2932 . 448877) (-2933 . 448372)
+ (-2934 . 448294) (-2935 . 448242) (-2936 . 448190) (-2937 . 448006)
+ (-2938 . 447954) (-2939 . 447902) (-2940 . 447826) (-2941 . 447764)
+ (-2942 . 447546) (-2943 . 447291) (-2944 . 447224) (-2945 . 447130)
+ (-2946 . 447036) (-2947 . 446853) (-2948 . 446771) (-2949 . 446649)
+ (-2950 . 446527) (-2951 . 446381) (-2952 . 445726) (-2953 . 445019)
+ (-2954 . 444915) (-2955 . 444814) (-2956 . 444713) (-2957 . 444602)
+ (-2958 . 444434) (-2959 . 444228) (-2960 . 444135) (-2961 . 444058)
+ (-2962 . 444002) (-2963 . 443931) (-2964 . 443811) (-2965 . 443710)
+ (-2966 . 443612) (-2967 . 443532) (-2968 . 443452) (-2969 . 443375)
+ (-2970 . 443304) (-2971 . 443233) (-2972 . 443162) (-2973 . 443091)
+ (-2974 . 443020) (-2975 . 442949) (-2976 . 442856) (-2977 . 442661)
+ (-2978 . 442417) (-2979 . 442247) (-2980 . 441875) (-2981 . 441706)
+ (-2982 . 441590) (-2983 . 441086) (-2984 . 440704) (-2985 . 440458)
+ (-2986 . 440029) (-2987 . 439937) (-2988 . 439840) (-2989 . 436550)
+ (-2990 . 435730) (-2991 . 435617) (-2992 . 435543) (-2993 . 435451)
+ (-2994 . 435257) (-2995 . 435063) (-2996 . 434992) (-2997 . 434921)
+ (-2998 . 434840) (-2999 . 434759) (-3000 . 434634) (-3001 . 434500)
+ (-3002 . 434419) (-3003 . 434345) (-3004 . 434180) (-3005 . 434021)
+ (-3006 . 433790) (-3007 . 433642) (-3008 . 433538) (-3009 . 433434)
+ (-3010 . 433349) (-3011 . 432981) (-3012 . 432900) (-3013 . 432813)
+ (-3014 . 432732) (-3015 . 432486) (-3016 . 432266) (-3017 . 432079)
+ (-3018 . 431757) (-3019 . 431464) (-3020 . 431171) (-3021 . 430861)
+ (-3022 . 430544) (-3023 . 430415) (-3024 . 430227) (-3025 . 429754)
+ (-3026 . 429672) (-3027 . 429457) (-3028 . 429242) (-3029 . 428983)
+ (-3030 . 428552) (-3031 . 428031) (-3032 . 427901) (-3033 . 427627)
+ (-3034 . 427448) (-3035 . 427333) (-3036 . 427229) (-3037 . 427174)
+ (-3038 . 427097) (-3039 . 427027) (-3040 . 426954) (-3041 . 426899)
+ (-3042 . 426826) (-3043 . 426771) (-3044 . 426416) (-3045 . 426008)
+ (-3046 . 425855) (-3047 . 425702) (-3048 . 425621) (-3049 . 425468)
+ (-3050 . 425315) (-3051 . 425180) (-3052 . 425045) (-3053 . 424910)
+ (-3054 . 424775) (-3055 . 424640) (-3056 . 424505) (-3057 . 424449)
+ (-3058 . 424296) (-3059 . 424185) (-3060 . 424074) (-3061 . 424006)
+ (-3062 . 423896) (-3063 . 423793) (-3064 . 419642) (-3065 . 419194)
+ (-3066 . 418767) (-3067 . 418150) (-3068 . 417549) (-3069 . 417331)
+ (-3070 . 417153) (-3071 . 416893) (-3072 . 416482) (-3073 . 416188)
+ (-3074 . 415745) (-3075 . 415567) (-3076 . 415174) (-3077 . 414781)
+ (-3078 . 414596) (-3079 . 414389) (-3080 . 414168) (-3081 . 413862)
+ (-3082 . 413663) (-3083 . 413034) (-3084 . 412877) (-3085 . 412486)
+ (-3086 . 412434) (-3087 . 412385) (-3088 . 412333) (-3089 . 412284)
+ (-3090 . 412232) (-3091 . 412086) (-3092 . 412034) (-3093 . 411888)
+ (-3094 . 411836) (-3095 . 411690) (-3096 . 411638) (-3097 . 411263)
+ (-3098 . 411211) (-3099 . 411162) (-3100 . 411110) (-3101 . 411061)
+ (-3102 . 411009) (-3103 . 410960) (-3104 . 410908) (-3105 . 410859)
+ (-3106 . 410807) (-3107 . 410758) (-3108 . 410692) (-3109 . 410574)
+ (-3110 . 409412) (-3111 . 408995) (-3112 . 408887) (-3113 . 408642)
+ (-3114 . 408493) (-3115 . 408344) (-3116 . 408177) (-3117 . 405926)
+ (-3118 . 405649) (-3119 . 405495) (-3120 . 405349) (-3121 . 405203)
+ (-3122 . 404984) (-3123 . 404852) (-3124 . 404777) (-3125 . 404702)
+ (-3126 . 404567) (-3127 . 404437) (-3128 . 404307) (-3129 . 404180)
+ (-3130 . 404053) (-3131 . 403926) (-3132 . 403799) (-3133 . 403696)
+ (-3134 . 403596) (-3135 . 403502) (-3136 . 403372) (-3137 . 403221)
+ (-3138 . 402842) (-3139 . 402727) (-3140 . 402484) (-3141 . 402021)
+ (-3142 . 401708) (-3143 . 401140) (-3144 . 400570) (-3145 . 399558)
+ (-3146 . 399015) (-3147 . 398702) (-3148 . 398364) (-3149 . 398033)
+ (-3150 . 397713) (-3151 . 397660) (-3152 . 397533) (-3153 . 397004)
+ (-3154 . 395847) (-3155 . 395792) (-3156 . 395737) (-3157 . 395661)
+ (-3158 . 395542) (-3159 . 395467) (-3160 . 395392) (-3161 . 395314)
+ (-3162 . 395163) (-3163 . 395071) (-3164 . 395001) (-3165 . 394909)
+ (-3166 . 394839) (-3167 . 394747) (-3168 . 394677) (-3169 . 394585)
+ (-3170 . 394515) (-3171 . 394460) (-3172 . 394390) (-3173 . 394270)
+ (-3174 . 394215) (-3175 . 394145) (-3176 . 394111) (-3177 . 394077)
+ (-3178 . 393980) (-3179 . 393883) (-3180 . 393665) (-3181 . 393515)
+ (-3182 . 393385) (-3183 . 393255) (-3184 . 393155) (-3185 . 392978)
+ (-3186 . 392818) (-3187 . 392718) (-3188 . 392541) (-3189 . 392381)
+ (-3190 . 392222) (-3191 . 392083) (-3192 . 391933) (-3193 . 391803)
+ (-3194 . 391673) (-3195 . 391526) (-3196 . 391399) (-3197 . 391296)
+ (-3198 . 391189) (-3199 . 391092) (-3200 . 390927) (-3201 . 390779)
+ (-3202 . 390350) (-3203 . 390250) (-3204 . 390147) (-3205 . 390059)
+ (-3206 . 389979) (-3207 . 389829) (-3208 . 389699) (-3209 . 389647)
+ (-3210 . 389557) (-3211 . 389445) (-3212 . 389132) (-3213 . 388951)
+ (-3214 . 387340) (-3215 . 386707) (-3216 . 386647) (-3217 . 386529)
+ (-3218 . 386411) (-3219 . 386267) (-3220 . 386112) (-3221 . 385951)
+ (-3222 . 385790) (-3223 . 385582) (-3224 . 385393) (-3225 . 385238)
+ (-3226 . 385080) (-3227 . 384922) (-3228 . 384767) (-3229 . 384627)
+ (-3230 . 384201) (-3231 . 384073) (-3232 . 383945) (-3233 . 383817)
+ (-3234 . 383674) (-3235 . 383531) (-3236 . 383389) (-3237 . 383244)
+ (-3238 . 382491) (-3239 . 382331) (-3240 . 382143) (-3241 . 381986)
+ (-3242 . 381746) (-3243 . 381499) (-3244 . 381252) (-3245 . 381041)
+ (-3246 . 380902) (-3247 . 380691) (-3248 . 380401) (-3249 . 380190)
+ (-3250 . 380051) (-3251 . 379840) (-3252 . 379534) (-3253 . 379389)
+ (-3254 . 379247) (-3255 . 379023) (-3256 . 378881) (-3257 . 378656)
+ (-3258 . 378457) (-3259 . 378300) (-3260 . 377970) (-3261 . 377810)
+ (-3262 . 377650) (-3263 . 377490) (-3264 . 377318) (-3265 . 377146)
+ (-3266 . 376971) (-3267 . 376619) (-3268 . 376425) (-3269 . 376263)
+ (-3270 . 376189) (-3271 . 376115) (-3272 . 376041) (-3273 . 375967)
+ (-3274 . 375893) (-3275 . 375819) (-3276 . 375695) (-3277 . 375521)
+ (-3278 . 375397) (-3279 . 375311) (-3280 . 375245) (-3281 . 375179)
+ (-3282 . 375113) (-3283 . 375047) (-3284 . 374981) (-3285 . 374915)
+ (-3286 . 374849) (-3287 . 374783) (-3288 . 374717) (-3289 . 374651)
+ (-3290 . 374585) (-3291 . 374519) (-3292 . 374453) (-3293 . 374387)
+ (-3294 . 374321) (-3295 . 374255) (-3296 . 374189) (-3297 . 374123)
+ (-3298 . 374057) (-3299 . 373991) (-3300 . 373925) (-3301 . 373859)
+ (-3302 . 373793) (-3303 . 373727) (-3304 . 373661) (-3305 . 373595)
+ (-3306 . 372946) (-3307 . 372297) (-3308 . 372169) (-3309 . 372046)
+ (-3310 . 371923) (-3311 . 371782) (-3312 . 371627) (-3313 . 371483)
+ (-3314 . 371308) (-3315 . 370670) (-3316 . 370547) (-3317 . 370423)
+ (-3318 . 369745) (-3319 . 369047) (-3320 . 368946) (-3321 . 368890)
+ (-3322 . 368834) (-3323 . 368778) (-3324 . 368722) (-3325 . 368663)
+ (-3326 . 368599) (-3327 . 368491) (-3328 . 368383) (-3329 . 368275)
+ (-3330 . 367996) (-3331 . 367922) (-3332 . 367696) (-3333 . 367615)
+ (-3334 . 367537) (-3335 . 367459) (-3336 . 367381) (-3337 . 367302)
+ (-3338 . 367224) (-3339 . 367131) (-3340 . 367032) (-3341 . 366964)
+ (-3342 . 366915) (-3343 . 366223) (-3344 . 365574) (-3345 . 364782)
+ (-3346 . 364701) (-3347 . 364597) (-3348 . 364505) (-3349 . 364413)
+ (-3350 . 364339) (-3351 . 364265) (-3352 . 364191) (-3353 . 364136)
+ (-3354 . 364081) (-3355 . 364015) (-3356 . 363949) (-3357 . 363887)
+ (-3358 . 363500) (-3359 . 362999) (-3360 . 362533) (-3361 . 362279)
+ (-3362 . 362089) (-3363 . 361746) (-3364 . 361449) (-3365 . 361280)
+ (-3366 . 361149) (-3367 . 361009) (-3368 . 359925) (-3369 . 359770)
+ (-3370 . 359601) (-3371 . 358215) (-3372 . 358081) (-3373 . 357939)
+ (-3374 . 357710) (-3375 . 357441) (-3376 . 357382) (-3377 . 357326)
+ (-3378 . 357270) (-3379 . 357058) (-3380 . 356919) (-3381 . 356812)
+ (-3382 . 356695) (-3383 . 356629) (-3384 . 356556) (-3385 . 356442)
+ (-3386 . 356185) (-3387 . 356083) (-3388 . 355885) (-3389 . 355569)
+ (-3390 . 355095) (-3391 . 354988) (-3392 . 354880) (-3393 . 354729)
+ (-3394 . 354587) (-3395 . 354168) (-3396 . 353918) (-3397 . 353241)
+ (-3398 . 353086) (-3399 . 352971) (-3400 . 352860) (-3401 . 352030)
+ (-3402 . 351977) (-3403 . 351924) (-3404 . 351728) (-3405 . 350373)
+ (-3406 . 349922) (-3407 . 348520) (-3408 . 347657) (-3409 . 347607)
+ (-3410 . 347557) (-3411 . 347507) (-3412 . 347439) (-3413 . 347363)
+ (-3414 . 347159) (-3415 . 347086) (-3416 . 347010) (-3417 . 346937)
+ (-3418 . 346819) (-3419 . 346573) (-3420 . 346255) (-3421 . 346170)
+ (-3422 . 346085) (-3423 . 346023) (-3424 . 345633) (-3425 . 344758)
+ (-3426 . 344182) (-3427 . 342944) (-3428 . 342134) (-3429 . 341882)
+ (-3430 . 341630) (-3431 . 341296) (-3432 . 341050) (-3433 . 340804)
+ (-3434 . 340558) (-3435 . 340312) (-3436 . 340066) (-3437 . 339820)
+ (-3438 . 339573) (-3439 . 339326) (-3440 . 339079) (-3441 . 338832)
+ (-3442 . 338402) (-3443 . 338284) (-3444 . 337440) (-3445 . 337408)
+ (-3446 . 337061) (-3447 . 336834) (-3448 . 336734) (-3449 . 336634)
+ (-3450 . 334864) (-3451 . 334750) (-3452 . 333699) (-3453 . 333606)
+ (-3454 . 332615) (-3455 . 332280) (-3456 . 331945) (-3457 . 331840)
+ (-3458 . 331753) (-3459 . 331724) (-3460 . 331667) (-3461 . 331587)
+ (-3462 . 331515) (-3463 . 331440) (-3464 . 331365) (-3465 . 331333)
+ (-3466 . 331301) (-3467 . 331269) (-3468 . 331237) (-3469 . 331205)
+ (-3470 . 331173) (-3471 . 331141) (-3472 . 331109) (-3473 . 331080)
+ (-3474 . 330967) (-3475 . 330854) (-3476 . 330741) (-3477 . 330628)
+ (-3478 . 329539) (-3479 . 329417) (-3480 . 329280) (-3481 . 329146)
+ (-3482 . 329012) (-3483 . 328715) (-3484 . 328418) (-3485 . 328070)
+ (-3486 . 327840) (-3487 . 327610) (-3488 . 327497) (-3489 . 327384)
+ (-3490 . 322103) (-3491 . 317730) (-3492 . 317418) (-3493 . 317263)
+ (-3494 . 316735) (-3495 . 316402) (-3496 . 316205) (-3497 . 316008)
+ (-3498 . 315811) (-3499 . 315614) (-3500 . 315498) (-3501 . 315372)
+ (-3502 . 315256) (-3503 . 315140) (-3504 . 315045) (-3505 . 314950)
+ (-3506 . 314837) (-3507 . 314631) (-3508 . 313474) (-3509 . 313379)
+ (-3510 . 313263) (-3511 . 313168) (-3512 . 312919) (-3513 . 312806)
+ (-3514 . 312588) (-3515 . 312469) (-3516 . 312170) (-3517 . 311400)
+ (-3518 . 310823) (-3519 . 310329) (-3520 . 310081) (-3521 . 309833)
+ (-3522 . 309534) (-3523 . 308920) (-3524 . 308472) (-3525 . 308315)
+ (-3526 . 308169) (-3527 . 307843) (-3528 . 307685) (-3529 . 307542)
+ (-3530 . 307399) (-3531 . 307256) (-3532 . 306975) (-3533 . 306753)
+ (-3534 . 306226) (-3535 . 306011) (-3536 . 305796) (-3537 . 305408)
+ (-3538 . 305228) (-3539 . 305016) (-3540 . 304706) (-3541 . 304505)
+ (-3542 . 304323) (-3543 . 303169) (-3544 . 302780) (-3545 . 302570)
+ (-3546 . 302357) (-3547 . 301514) (-3548 . 301485) (-3549 . 301416)
+ (-3550 . 301345) (-3551 . 301178) (-3552 . 301149) (-3553 . 301120)
+ (-3554 . 301064) (-3555 . 300903) (-3556 . 300843) (-3557 . 300147)
+ (-3558 . 298969) (-3559 . 298908) (-3560 . 298684) (-3561 . 298612)
+ (-3562 . 298555) (-3563 . 298498) (-3564 . 298441) (-3565 . 298384)
+ (-3566 . 298309) (-3567 . 297718) (-3568 . 297359) (-3569 . 297284)
+ (-3570 . 297224) (-3571 . 297106) (-3572 . 296155) (-3573 . 296028)
+ (-3574 . 295815) (-3575 . 295740) (-3576 . 295686) (-3577 . 295567)
+ (-3578 . 295458) (-3579 . 295145) (-3580 . 295037) (-3581 . 294934)
+ (-3582 . 294773) (-3583 . 294672) (-3584 . 294574) (-3585 . 294436)
+ (-3586 . 294298) (-3587 . 294160) (-3588 . 293898) (-3589 . 293688)
+ (-3590 . 293550) (-3591 . 293261) (-3592 . 293108) (-3593 . 292829)
+ (-3594 . 292607) (-3595 . 292454) (-3596 . 292301) (-3597 . 292148)
+ (-3598 . 291995) (-3599 . 291842) (-3600 . 291686) (-3601 . 291567)
+ (-3602 . 291176) (-3603 . 290841) (-3604 . 290496) (-3605 . 290145)
+ (-3606 . 289800) (-3607 . 289455) (-3608 . 289068) (-3609 . 288681)
+ (-3610 . 288294) (-3611 . 287923) (-3612 . 287193) (-3613 . 286842)
+ (-3614 . 286388) (-3615 . 285959) (-3616 . 285342) (-3617 . 284741)
+ (-3618 . 284349) (-3619 . 284013) (-3620 . 283621) (-3621 . 283285)
+ (-3622 . 283063) (-3623 . 282536) (-3624 . 282321) (-3625 . 282106)
+ (-3626 . 281890) (-3627 . 281710) (-3628 . 281494) (-3629 . 281314)
+ (-3630 . 280926) (-3631 . 280746) (-3632 . 280534) (-3633 . 280444)
+ (-3634 . 280354) (-3635 . 280263) (-3636 . 280176) (-3637 . 280086)
+ (-3638 . 280005) (-3639 . 279816) (-3640 . 279760) (-3641 . 279679)
+ (-3642 . 279598) (-3643 . 279517) (-3644 . 279382) (-3645 . 279247)
+ (-3646 . 279123) (-3647 . 279002) (-3648 . 278884) (-3649 . 278748)
+ (-3650 . 278615) (-3651 . 278496) (-3652 . 278237) (-3653 . 278054)
+ (-3654 . 277982) (-3655 . 277890) (-3656 . 277798) (-3657 . 277712)
+ (-3658 . 277614) (-3659 . 277497) (-3660 . 277218) (-3661 . 276939)
+ (-3662 . 276879) (-3663 . 276813) (-3664 . 276747) (-3665 . 276606)
+ (-3666 . 276549) (-3667 . 276492) (-3668 . 276432) (-3669 . 276035)
+ (-3670 . 275511) (-3671 . 275233) (-3672 . 274812) (-3673 . 274699)
+ (-3674 . 274257) (-3675 . 274025) (-3676 . 273822) (-3677 . 273640)
+ (-3678 . 273510) (-3679 . 273304) (-3680 . 273097) (-3681 . 272906)
+ (-3682 . 272341) (-3683 . 272085) (-3684 . 271794) (-3685 . 271500)
+ (-3686 . 271203) (-3687 . 270903) (-3688 . 270773) (-3689 . 270640)
+ (-3690 . 270504) (-3691 . 270365) (-3692 . 269086) (-3693 . 268761)
+ (-3694 . 268380) (-3695 . 268267) (-3696 . 268013) (-3697 . 267717)
+ (-3698 . 267421) (-3699 . 267160) (-3700 . 266985) (-3701 . 266906)
+ (-3702 . 266818) (-3703 . 266717) (-3704 . 266622) (-3705 . 266540)
+ (-3706 . 266468) (-3707 . 265667) (-3708 . 265595) (-3709 . 265263)
+ (-3710 . 265191) (-3711 . 264859) (-3712 . 264787) (-3713 . 264338)
+ (-3714 . 264266) (-3715 . 264161) (-3716 . 264086) (-3717 . 264011)
+ (-3718 . 263939) (-3719 . 263596) (-3720 . 263466) (-3721 . 263389)
+ (-3722 . 262840) (-3723 . 262697) (-3724 . 262554) (-3725 . 262056)
+ (-3726 . 261710) (-3727 . 261482) (-3728 . 261212) (-3729 . 260832)
+ (-3730 . 260592) (-3731 . 260352) (-3732 . 260112) (-3733 . 259872)
+ (-3734 . 259644) (-3735 . 259416) (-3736 . 259264) (-3737 . 259080)
+ (-3738 . 258975) (-3739 . 258852) (-3740 . 258744) (-3741 . 258636)
+ (-3742 . 258309) (-3743 . 258043) (-3744 . 257732) (-3745 . 257427)
+ (-3746 . 257117) (-3747 . 256382) (-3748 . 255787) (-3749 . 255610)
+ (-3750 . 255465) (-3751 . 255310) (-3752 . 255187) (-3753 . 255082)
+ (-3754 . 254967) (-3755 . 254868) (-3756 . 254384) (-3757 . 254274)
+ (-3758 . 254164) (-3759 . 254054) (-3760 . 252950) (-3761 . 252435)
+ (-3762 . 252368) (-3763 . 252294) (-3764 . 251421) (-3765 . 251347)
+ (-3766 . 251291) (-3767 . 251235) (-3768 . 251203) (-3769 . 251117)
+ (-3770 . 251085) (-3771 . 250999) (-3772 . 250575) (-3773 . 250151)
+ (-3774 . 249594) (-3775 . 248482) (-3776 . 246758) (-3777 . 245196)
+ (-3778 . 244400) (-3779 . 243896) (-3780 . 243406) (-3781 . 243000)
+ (-3782 . 242342) (-3783 . 242267) (-3784 . 242195) (-3785 . 242123)
+ (-3786 . 242081) (-3787 . 241959) (-3788 . 241519) (-3789 . 241079)
+ (-3790 . 240639) (-3791 . 240117) (-3792 . 239952) (-3793 . 239787)
+ (-3794 . 239476) (-3795 . 239389) (-3796 . 239299) (-3797 . 238967)
+ (-3798 . 238850) (-3799 . 238769) (-3800 . 238610) (-3801 . 238496)
+ (-3802 . 238421) (-3803 . 237569) (-3804 . 236383) (-3805 . 236283)
+ (-3806 . 236183) (-3807 . 235842) (-3808 . 235763) (-3809 . 235687)
+ (-3810 . 235580) (-3811 . 235422) (-3812 . 235314) (-3813 . 235178)
+ (-3814 . 235042) (-3815 . 234919) (-3816 . 234823) (-3817 . 234674)
+ (-3818 . 234578) (-3819 . 234423) (-3820 . 234268) (-3821 . 233588)
+ (-3822 . 232908) (-3823 . 232165) (-3824 . 231597) (-3825 . 231029)
+ (-3826 . 230461) (-3827 . 229780) (-3828 . 229099) (-3829 . 228418)
+ (-3830 . 227849) (-3831 . 227280) (-3832 . 226711) (-3833 . 226143)
+ (-3834 . 225575) (-3835 . 225007) (-3836 . 224439) (-3837 . 223871)
+ (-3838 . 223303) (-3839 . 223199) (-3840 . 222610) (-3841 . 222504)
+ (-3842 . 222428) (-3843 . 222285) (-3844 . 222192) (-3845 . 222099)
+ (-3846 . 222006) (-3847 . 221907) (-3848 . 221801) (-3849 . 221677)
+ (-3850 . 221553) (-3851 . 221186) (-3852 . 221063) (-3853 . 220961)
+ (-3854 . 220597) (-3855 . 220063) (-3856 . 219987) (-3857 . 219911)
+ (-3858 . 219818) (-3859 . 219636) (-3860 . 219540) (-3861 . 219464)
+ (-3862 . 219371) (-3863 . 219278) (-3864 . 219116) (-3865 . 218555)
+ (-3866 . 217994) (-3867 . 215266) (-3868 . 215093) (-3869 . 213629)
+ (-3870 . 213067) (-3871 . 212868) (-12 . 212696) (-3873 . 212524)
+ (-3874 . 212352) (-3875 . 212180) (-3876 . 212008) (-3877 . 211836)
+ (-3878 . 211664) (-3879 . 211471) (-3880 . 211356) (-3881 . 211086)
+ (-3882 . 211023) (-3883 . 210960) (-3884 . 210897) (-3885 . 210619)
+ (-3886 . 210352) (-3887 . 210299) (-3888 . 209638) (-3889 . 209587)
+ (-3890 . 209394) (-3891 . 209321) (-3892 . 209241) (-3893 . 209128)
+ (-3894 . 208938) (-3895 . 208574) (-3896 . 208302) (-3897 . 208251)
+ (-3898 . 208200) (-3899 . 208130) (-3900 . 208011) (-3901 . 207982)
+ (-3902 . 207880) (-3903 . 207758) (-3904 . 207704) (-3905 . 207527)
+ (-3906 . 207466) (-3907 . 207285) (-3908 . 207224) (-3909 . 207152)
+ (-3910 . 206677) (-3911 . 206302) (-3912 . 203018) (-3913 . 202965)
+ (-3914 . 202837) (-3915 . 202685) (-3916 . 202632) (-3917 . 202490)
+ (-3918 . 200632) (-3919 . 191277) (-3920 . 191126) (-3921 . 191075)
+ (-3922 . 191024) (-3923 . 190973) (-3924 . 190903) (-3925 . 190705)
+ (-3926 . 190562) (-3927 . 190448) (-3928 . 190327) (-3929 . 190209)
+ (-3930 . 190097) (-3931 . 189979) (-3932 . 189874) (-3933 . 189793)
+ (-3934 . 189689) (-3935 . 188752) (-3936 . 188532) (-3937 . 188295)
+ (-3938 . 188213) (-3939 . 187866) (-3940 . 187792) (-3941 . 187697)
+ (-3942 . 187623) (-3943 . 187421) (-3944 . 187330) (-3945 . 187214)
+ (-3946 . 187101) (-3947 . 187010) (-3948 . 186919) (-3949 . 186829)
+ (-3950 . 186739) (-3951 . 186649) (-3952 . 186561) (-3953 . 184199)
+ (-3954 . 184131) (-3955 . 184077) (-3956 . 183952) (-3957 . 183888)
+ (-3958 . 183763) (-3959 . 183644) (-3960 . 182876) (-3961 . 182815)
+ (-3962 . 182696) (-3963 . 181944) (-3964 . 181891) (-3965 . 181702)
+ (-3966 . 181638) (-3967 . 181584) (-3968 . 181475) (-3969 . 180152)
+ (-3970 . 180070) (-3971 . 179980) (-3972 . 179922) (-3973 . 179657)
+ (-3974 . 179572) (-3975 . 179497) (-3976 . 179412) (-3977 . 179355)
+ (-3978 . 179139) (-3979 . 178998) (-3980 . 178263) (-3981 . 177693)
+ (-3982 . 177123) (-3983 . 176553) (-3984 . 175818) (-3985 . 175136)
+ (-3986 . 174544) (-3987 . 173952) (-3988 . 173674) (-3989 . 173219)
+ (-3990 . 172870) (-3991 . 172512) (-3992 . 172188) (-3993 . 172055)
+ (-3994 . 171922) (-3995 . 171590) (-3996 . 171481) (-3997 . 171372)
+ (-3998 . 171263) (-3999 . 171154) (-4000 . 171045) (-4001 . 170936)
+ (-4002 . 170827) (-4003 . 170718) (-4004 . 170609) (-4005 . 170500)
+ (-4006 . 170391) (-4007 . 170282) (-4008 . 170173) (-4009 . 170064)
+ (-4010 . 169955) (-4011 . 169846) (-4012 . 169737) (-4013 . 169628)
+ (-4014 . 169519) (-4015 . 169410) (-4016 . 169301) (-4017 . 169192)
+ (-4018 . 169083) (-4019 . 168974) (-4020 . 168865) (-4021 . 168667)
+ (-4022 . 168352) (-4023 . 166781) (-4024 . 166626) (-4025 . 166488)
+ (-4026 . 166345) (-4027 . 166142) (-4028 . 164191) (-4029 . 164063)
+ (-4030 . 163938) (-4031 . 163810) (-4032 . 163586) (-4033 . 163362)
+ (-4034 . 163234) (-4035 . 163031) (-4036 . 162852) (-4037 . 162325)
+ (-4038 . 161798) (-4039 . 161517) (-4040 . 161099) (-4041 . 160572)
+ (-4042 . 160387) (-4043 . 160244) (-4044 . 159744) (-4045 . 159102)
+ (-4046 . 159046) (-4047 . 158952) (-4048 . 158831) (-4049 . 158760)
+ (-4050 . 158686) (-4051 . 158455) (-4052 . 157830) (-4053 . 157398)
+ (-4054 . 157316) (-4055 . 157174) (-4056 . 156696) (-4057 . 156574)
+ (-4058 . 156452) (-4059 . 156312) (-4060 . 156125) (-4061 . 156009)
+ (-4062 . 155748) (-4063 . 155679) (-4064 . 155480) (-4065 . 155321)
+ (-4066 . 155166) (-4067 . 155059) (-4068 . 155008) (-4069 . 154624)
+ (-4070 . 154383) (-4071 . 154292) (-4072 . 152477) (-4073 . 151888)
+ (-4074 . 151809) (-4075 . 146341) (-4076 . 145551) (-4077 . 145172)
+ (-4078 . 145100) (-4079 . 144911) (-4080 . 144736) (-4081 . 144246)
+ (-4082 . 143824) (-4083 . 143384) (-4084 . 142520) (-4085 . 142396)
+ (-4086 . 142269) (-4087 . 142160) (-4088 . 142008) (-4089 . 141894)
+ (-4090 . 141755) (-4091 . 141673) (-4092 . 141591) (-4093 . 141483)
+ (-4094 . 141063) (-4095 . 140639) (-4096 . 140564) (-4097 . 140298)
+ (-4098 . 140031) (-4099 . 139648) (-4100 . 138947) (-4101 . 138887)
+ (-4102 . 138812) (-4103 . 138737) (-4104 . 138614) (-4105 . 138362)
+ (-4106 . 138275) (-4107 . 138199) (-4108 . 138123) (-4109 . 138027)
+ (-4110 . 134063) (-4111 . 132881) (-4112 . 132218) (-4113 . 132031)
+ (-4114 . 129809) (-4115 . 129483) (-4116 . 129102) (-4117 . 128658)
+ (-4118 . 128423) (-4119 . 128175) (-4120 . 128084) (-4121 . 126588)
+ (-4122 . 126509) (-4123 . 126403) (-4124 . 124867) (-4125 . 124454)
+ (-4126 . 124037) (-4127 . 123935) (-4128 . 123853) (-4129 . 123695)
+ (-4130 . 122302) (-4131 . 122220) (-4132 . 122141) (-4133 . 121786)
+ (-4134 . 121729) (-4135 . 121657) (-4136 . 121600) (-4137 . 121543)
+ (-4138 . 121413) (-4139 . 121209) (-4140 . 120840) (-4141 . 120418)
+ (-4142 . 115254) (-4143 . 114651) (-4144 . 114023) (-4145 . 113808)
+ (-4146 . 113593) (-4147 . 113425) (-4148 . 113210) (-4149 . 113042)
+ (-4150 . 112874) (-4151 . 112706) (-4152 . 112538) (-4153 . 110395)
+ (-4154 . 110123) (-4155 . 103186) (** . 100123) (-4157 . 99703)
+ (-4158 . 99455) (-4159 . 99398) (-4160 . 98900) (-4161 . 95995)
+ (-4162 . 95845) (-4163 . 95681) (-4164 . 95517) (-4165 . 95421)
+ (-4166 . 95303) (-4167 . 95179) (-4168 . 95036) (-4169 . 94865)
+ (-4170 . 94738) (-4171 . 94593) (-4172 . 94440) (-4173 . 94280)
+ (-4174 . 93794) (-4175 . 93704) (-4176 . 93036) (-4177 . 92842)
+ (-4178 . 92746) (-4179 . 92436) (-4180 . 91260) (-4181 . 91053)
+ (-4182 . 89876) (-4183 . 89801) (-4184 . 88620) (-4185 . 85015)
+ (-4186 . 84651) (-4187 . 84374) (-4188 . 84282) (-4189 . 84189)
+ (-4190 . 83912) (-4191 . 83819) (-4192 . 83726) (-4193 . 83633)
+ (-4194 . 83249) (-4195 . 83178) (-4196 . 83086) (-4197 . 82928)
+ (-4198 . 82574) (-4199 . 82416) (-4200 . 82308) (-4201 . 82279)
+ (-4202 . 82212) (-4203 . 82058) (-4204 . 81899) (-4205 . 81505)
+ (-4206 . 81430) (-4207 . 81324) (-4208 . 81252) (-4209 . 81174)
+ (-4210 . 81101) (-4211 . 81028) (-4212 . 80955) (-4213 . 80883)
+ (-4214 . 80811) (-4215 . 80738) (-4216 . 80497) (-4217 . 80157)
+ (-4218 . 80009) (-4219 . 79936) (-4220 . 79863) (-4221 . 79790)
+ (-4222 . 79536) (-4223 . 79392) (-4224 . 78056) (-4225 . 77862)
+ (-4226 . 77591) (-4227 . 77443) (-4228 . 77295) (-4229 . 77055)
+ (-4230 . 76860) (-4231 . 76590) (-4232 . 76394) (-4233 . 76365)
+ (-4234 . 76264) (-4235 . 76163) (-4236 . 76062) (-4237 . 75961)
+ (-4238 . 75860) (-4239 . 75759) (-4240 . 75658) (-4241 . 75557)
+ (-4242 . 75456) (-4243 . 75355) (-4244 . 75240) (-4245 . 75125)
+ (-4246 . 75074) (-4247 . 74957) (-4248 . 74899) (-4249 . 74798)
+ (-4250 . 74697) (-4251 . 74596) (-4252 . 74480) (-4253 . 74451)
+ (-4254 . 73719) (-4255 . 73594) (-4256 . 73469) (-4257 . 73329)
+ (-4258 . 73211) (-4259 . 73086) (-4260 . 72931) (-4261 . 71948)
+ (-4262 . 71089) (-4263 . 71035) (-4264 . 70981) (-4265 . 70773)
+ (-4266 . 70399) (-4267 . 69985) (-4268 . 69624) (-4269 . 69263)
+ (-4270 . 69110) (-4271 . 68808) (-4272 . 68652) (-4273 . 68326)
+ (-4274 . 68255) (-4275 . 68184) (-4276 . 67972) (-4277 . 67165)
+ (-4278 . 66959) (-4279 . 66585) (-4280 . 66065) (-4281 . 65797)
+ (-4282 . 65247) (-4283 . 64697) (-4284 . 64571) (-4285 . 63342)
+ (-4286 . 62136) (-4287 . 61534) (-4288 . 61316) (-4289 . 61130)
+ (-4290 . 59030) (-4291 . 56855) (-4292 . 56707) (-4293 . 56525)
+ (-4294 . 56117) (-4295 . 55816) (-4296 . 55465) (-4297 . 55297)
+ (-4298 . 55129) (-4299 . 54815) (-4300 . 31672) (-4301 . 17711)
+ (-4302 . 16591) (* . 12095) (-4304 . 11839) (-4305 . 11653) (-4306 . 10648)
+ (-4307 . 10379) (-4308 . 9747) (-4309 . 8470) (-4310 . 7222) (-4311 . 6350)
+ (-4312 . 5085) (-4313 . 382) (-4314 . 280) (-4315 . 160) (-4316 . 30)) \ No newline at end of file